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Abstract. We consider Rashba spin–orbit effects on spin transport driven by
an electric field in semiconductor quantum wells. We derive spin diffusion
equations that are valid when the mean free path and the Rashba spin–orbit
interaction vary on length scales larger than the mean free path in the weak
spin–orbit coupling limit. From these general diffusion equations, we derive
boundary conditions between regions of different spin–orbit couplings. We
show that spin injection is feasible when the electric field is perpendicular to
the boundary between two regions. When the electric field is parallel to the
boundary, spin injection only occurs when the mean free path changes within
the boundary, in agreement with the recent work by Tserkovnyaket al (Preprint
cond-mat/0610190).
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1. Introduction

Spintronics envisions electronic devices with spin injection, detection and manipulation. The
spin–orbit interaction (SOI) couples the electron spin to its orbital motion. It was early realized
that it can be utilized to manipulate the electron spin in e.g. the Datta–Das spin transistor [1].
More recently, the possibility of spin injection via the SOI in non-magnetic systems was
suggested [2, 3]. The SOI gives rise to the spin Hall effect where a longitudinal electric
field induces a transverse spin current. In semiconductors, the spin Hall effect has generated
significant interest and is predicted to occur in a wide variety of electron and hole doped 2D and
3D systems [4]. A resulting accumulation of a normal to 2DEG (two dimensional electron gas)
spin polarization near sample boundaries has recently been measured [5]. Also, injection of the
spin Hall polarization into a region of the 2DEG where the driving electric field is absent has
been observed in [6].

The spin Hall effect is conventionally separated into an intrinsic and an extrinsic effect.
The intrinsic spin Hall effect is caused by the spin–orbit splitting of energy bands in zinc-blende
semiconductors. In contrast, the extrinsic spin Hall effect arises due to spin-dependent scattering
of impurities. This paper considers the intrinsic spin Hall effect in the diffusive transport regime
for electrons confined in a quantum well subject to the Rashba SOI. We will focus on spin
diffusion in systems where the Rashba coupling constantα varies in space. In particular, we
address a problem of injection of the spin polarization from regions with a large spin–orbit
couplingα to regions where this constant is small or zero.

Recent research has established how spins diffuse, precess and couple to the charge
transport in electron doped III–V semiconductor quantum wells. The charge and spin flows are
described by spin–charge coupled diffusion equations [7, 8]. However, the diffusion equations,
valid in the bulk of the systems, must be supplemented by appropriate boundary conditions.
Calculations to this end were carried out in [9]–[14] and have given rise to discussion in recent
literature. The derivation of these boundary conditions is more subtle than it might first seem
since the calculations must be carried out to the second-order in the SOI strength and include
the effects of the electric field.

The correct boundary condition when the electric field is parallel to the boundary and the
spin–orbit coupling varies in space was derived in [15]. An argument in terms of conventional
Hall physics that extends the results to systems where the mobility also varies was also given:
a spatially dependent spin–orbit coupling varying on length scales smaller than the spin-
precession length corresponds to an effective magnetic field of opposite magnitude for two spin
directions [15, 16]. The effective magnetic field induces a spin dependent Hall voltage across
the boundary [15]. This additional voltage, in its turn, gives rise to spin density variation in the
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transition layer, resulting in a finite spin-density jump, when the transition layer thickness is
reduced to zero.

This paper aims to address spin diffusion and the boundary conditions in more detail and
generality for the Rashba SOI model. Our aim is to clarify some conceptual issues and not to
fit experimental data because typical experimental systems are rather complex with competing
effects and material parameters that are not well known. The Rashba SOI in semiconductor
quantum wells depends on quantum well confinement, which can be manipulated by gates,
or doping profile [17], but usually only at rather long scales. The length scales for variations in
system properties such as the SOI and the mean free path are typically much larger than the mean
free path. Therefore, we will derive general diffusion equations that are valid when the system
parameters vary on length scales longer than the mean free path. These diffusion equations
can then be solved for smooth boundaries between regions of different spin–orbit coupling
strengths and mean free path. From these solutions, we will find boundary conditions that are
not limited to a specific relative direction between the electric field and the interface. When the
electric field is parallel to the interface our derived boundary conditions agree with the result
by Tserkovnyaket al [15] and the analog with conventional Hall physics is rigorously justified
beyond the simplest scenario considered microscopically in [15]. We also present results for the
boundary conditions when the electric field is perpendicular to the interface.

Our paper is organized in the following way. In the next section, we summarize our main
results for the resulting boundary conditions between regions with different spin–orbit couplings
and mean free path. We discuss the implications of these boundary conditions on spin injection
and show that for a parallel electric field spin injection is only possible when the mean free
path together withα vary within the boundary layer, while for the perpendicular field spin
injection takes place even when the mean free path is uniform in the system. Using the Keldysh
formalism, we derive the general diffusion equation in section3 that we employ to compute the
boundary conditions presented in section2. Our conclusions are in section4.

2. Boundary conditions and spin injection

In the absence of disorder, the electrons in a homogeneous quantum well are described by the
Hamiltonian

H =
h̄2k2

2m∗
+σ · hk, (1)

wherem∗ is the electron effective mass,k = (kx, ky) is the wavevector,σ is a vector of Pauli
matrices, andhk is the effective spin–orbit field. Let us assume that the major contribution to
the SOI is given by the Rashba interaction:

hx
k = αky, hy

k = −αkx, (2)

whereki is the 2D electron wavevector. We also assume that the spin–orbit coupling constant
α(r) is spatially modulated. In this case, the spin–orbit term in equation (1) has to be modified
to preserve the Hermitian form of the Hamiltonian, namely, this term is rewritten as 1/2 of the
anticommutator of the momentum operator and the spatially dependentα(r).

Since the spatial variations ofα are assumed to be provided by an appropriate quantum
well modulation or impurity doping profile, any consistent model must in general also take into
account spatial variations of the mean free scattering timeτ(r). The electron gas is under the
action of the electric fieldE(r) and our goal is to find the spin density induced in the 2DEG
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Figure 1. A 2DEG with a spatial dependent Rashba interaction and scattering
time. The Rashba interactionα(x) and scattering timeτ(x) vary in the transition
region between the left region whereα = αl andτ = τl and the right region where
α = αr andτ = τr.

by E. The electric field may vary in regions where the mobility changes in order to maintain a
constant charge current density. We will derive the general diffusion equations corresponding to
the Hamiltonian (1) in the next section.

Let us first discuss some of our main findings of the general diffusion equations when
applied to the problem of spin injection from a region with a large spin–orbit coupling to a
region with a smaller spin–orbit coupling. As an example, we consider a left (x < −d/2) and
right region (x > d/2) with different spin–orbit couplings and mean free paths connected via a
smooth transition layer, as shown in figure1. We assume that the transition layer thicknessd
between the regions is larger than the mean free pathl , but smaller than the spin precession
length λ = h̄2/m∗α, where m∗ is the electron effective mass,l � d � λ. This requires a
sufficiently weak SOI or a low mobility sample. We consider the general case where the electric
field is in the two dimensional plane,E = Exx + Eyy.

The diffusion equations for the spin-componentsSx, Sy, andSz of the spin accumulation
in the bulk of each region (x < −d/2 or x > d/2) valid when 1/τ, hkF � EF are [7, 8, 10]

D∇
2Sx + 4Dm∗α∇Sz

= 0‖

(
Sx

− Sx
b

)
,

D∇
2Sy

= 0‖(S
y
− Sy

b), (3)

D∇
2Sz

− 4Dm∗α∇Sx
= 0⊥Sz,

where D = v2
Fτ/2 is the diffusion constant in terms of the Fermi velocityvF and the elastic

scattering timeτ and0⊥ = 20‖ = 8D(m∗)2α2 are the D’yakonov–Perel spin relaxation rates.
It is well known that in systems with Rashba interaction, a uniform electric field induces a
nonequilibrium bulk spin polarization parallel to the 2DEG [18], denoted in equations (3) asSx

b
andSy

b . Within the linear response theory, the spin polarization components are

Sx
b = −αeEyτ NF, Sy

b = αeExτ NF,

whereNF = m∗/(h̄22π) is the density of states at the Fermi energy. The spin current is not a
conserved quantity in spin–orbit coupled systems, but, with the conventional definition within
the semiclassical theory [19], it reads in diffusive systems for spin flow, e.g. along thex
direction [10]:

j x
= D

[
∇xSx + 2m∗αSz

]
, j y

= D∇xSy, j z
= D

[
∇xSz

− 2m∗α
(
Sx

− Sx
b

)]
.
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We generalize below the diffusion equations (3) to systems with spatially varying parametersα

andτ .
By solving these generalized diffusion equations in the boundary transition layer (−d/2 <

x < d/2), that is thinner than the spin-precession lengthλ, we find in section3 the boundary
conditions (

Sx
− Sx

b

)
d/2

−
(
Sx

− Sx
b

)
−d/2

= −

d/2∫
−d/2

dx Sx
b

1

τ

dτ

dx
, (4)

Sy
d/2 − Sy

−d/2 = 0, (5)

Sz
d/2 − Sz

−d/2 = 0. (6)

The boundary condition for theSx spin density component can be understood in terms of a
conventional Hall effect for two spin directions in the transition layer, see the discussion in [15].

The boundary condition for the spatial derivative of the spin density is particularly simple.
It can be written as continuity of spin current in its conventional definition:(

j s

)
d/2

−
(

j s

)
−d/2

= 0. (7)

Naively, the continuity of the spin current across the boundary is not surprising because the
boundary conditions have been obtained assuming that the boundary layer is thinner than the
spin precession length. That means the effects violating spin current conservation only occur
on much larger length scales. Consequently, there is spin current conservation through the
boundary. However, the continuity of the spin current across the boundary cannot be rigorously
established without doing an actual calculation. In principle, corrections of the orderα2 can
break spin current conservation across the boundary, but we find explicitly in the next section
that such corrections are also absent.

Let us now discuss the implications of the diffusion equations (3) and the boundary
conditions (4)–(7) for spin injection from a region with e.g. a larger spin–orbit coupling constant
to a region with a smaller spin–orbit coupling constant. We consider two limits for the alignment
between the electric field and the boundary. (i) The electric field is parallel to the boundary,
E = Eyy, Ex

= 0 and (ii) the electric field is perpendicular to the boundary,E = Exx, Ey
= 0.

Since we consider the linear response regime, spin injection for general orientations between
the electric field and the boundary can be found as a linear combination of (i) and (ii).

The former case (i) of a parallel electric fieldE = Eyy corresponds to the case studied by
Tserkovnyaket al [15]. For this geometry, the bulk nonequilibrium spin accumulation along
the y-direction vanishes,Sy

b = 0, and the boundary condition (5) implies that

Sy
= 0,

throughout the system. The only nonvanishing bulk component of the spin distribution is
alongx. Deep inside the bulk of the left (l) and right (r) regions:

Sx
bl

= −αleEyτl NF , Sx
br

= −αreEyτrNF.

If the electron mobility is the same in each region,τl = τr, and constant throughout the
boundary, then the spin accumulationSx will change rapidly (i.e. on the scale of the spatial
variations ofα, d) from Sx

bl
= −αleEyτl NF at x = −d/2 to Sx

br
= −αreEyτrNF at x = d/2. For

the slowly varyingSx in bulk, this looks as a discontinuity in the spin accumulation at the
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boundary. When the mobility differs in the two regions, the magnitude of discontinuity in
the spin accumulation across the boundary is modified according to equation (4). This result
differs from [9], where a continuous spin density across the boundary was assumed. Solving the
diffusion equations (3), the solution in the left region is (x < −d/2) [7]

Sx
= Sx

bl
+

∑
n=1,2

Sx
i l ,n

expql,n (x + d/2) , Sz
=

∑
n=1,2

Sz
i r,n expql,n (x + d/2) ,

and in the right region (x > d/2)

Sx
= Sx

br
+

∑
n=1,2

Sx
i r,n

expqr,n (−x + d/2) , Sz
=

∑
n=1,2

Sz
i r,n expqr,n (−x + d/2) ,

whereqn is the solution with positive real part ofqn = (1/λ)

√
2(−1± i

√
7). Continuity of the

spin current, equation (7), combined with the boundary conditions forSx andSz, equations (4)
and (6), imply

Sx
i l ,n

= ~x
l,n1Sx, Sx

i r,n
= ~x

r,n1Sx, Sz
i l ,n = ~z

l,n1Sx, Sz
i r,n = ~z

r,n1Sx,

where

1Sx
= −

d/2∫
−d/2

dx Sx
b(x)

1

τ

dτ

dx

and~x
l , ~x

r , ~z
l and~z

r are lengthy algebraic dimensionless coefficients that depend onql,n, qr,n

and the diffusion coefficientsDl andDr. From these boundary conditions, it should be clear that
spin injection, which we define as a spin accumulation that differs from the bulk spin densitySb,
i.e. Si 6= 0, is only feasible when the mobility varies within the boundary layer, since otherwise
1Sx vanishes. If the mobility is constant throughout the system, there is no spin injection from
the left region to the right region or vice versa. In general,1Sx depends on the specifics of the
variation of the mobility and the spin–orbit coupling in the boundary layer.

Next, let us study the second scenario 2 where the electric field is perpendicular to the
boundary,E = Exx, Ey

= 0. In this case, we will find that spin injection is feasible even when
the mobility is uniform throughout the system. In the bulk of the left (right) region, we have
Sy

= Sy
bl

= αleEx
l τl NF (Sy

= αreEx
r τrNF), while the other spin components vanish. Since the

electric current is continous across the interface, the electric fields on both sides of the boundary
must differ in order to adjust to the different mobilities so thatEx

l τl = Ex
r τr. The boundary

conditions (4), (6) and (7) then imply that

Sx
= 0 and Sz

= 0,

throughout the system. In contrast to the previous scenario 1, where the in-plane spin component
Sx exhibits a discontinuity across the transition layer when the mobility is uniform,Sy is
continous here. Solving the diffusion equations (3), we find in the left region (x < −d/2)

Sy
= Sy

bl
+ Sy

i l expλ−1
l (x + d/2) ,
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and in the right region (x > d/2)

Sy
= Sy

br
+ Sy

i r expλ−1
r (−x + d/2) .

Continuity of the spin current and the boundary condtions forSy imply

Sy
i l = ~

y
l

[
−

(
Sy

br
− Sy

bl

)]
, Sy

i r = ~ y
r

[
−

(
Sy

br
− Sy

bl

)]
,

where

~
y
l = −

Drλ
−1
r

Dlλ
−1
l + Drλ−1

r

, ~ y
r =

Dlλ
−1
l

Dlλ
−1
l + Drλ−1

r

.

In the limit of weak spin-flip relaxation in the left region,λl � λr Dl/Dr, we find ~
y
l = −1,

~ y
r = 0 and~z

= 0. In contrast to scenario 1, spin injection is feasible even when the mobility
is constant throughout the system. This means that spin injection is feasible independent on the
spatial variation of mobilities.

Let us now compare the spin-injection efficiency in scenario 1 (electric field parallel to
the interface) and 2 (electric field perpendicular to the interface). It is clear that geometry 2 is
more effective than geometry 1 when the mobility is constant throughout the system. For the
simplest case, where both the mean free path and the spin–orbit coupling linearly change within
the boundary layer:

α(x) =
αr +αl

2
+

x

d
(αr − αl) , τ (x) =

τr + τl

2
+

x

d
(τr − τl) ,

we find

1Sx
=

αr +αl

2
NFeEy (τr − τl)

and

−
(
Sy

br
− Sy

bl

)
= − (αr − αl) NF

eEx
r τr + eEx

l τl

2
. (8)

For this simplest system of a linear variation of the spin–orbit coupling and mobility and
assuming that one uses the same electric fields in the two scenarios, then 2 is more effective
than 1 provided∣∣∣∣αl − αr

αl +αr

∣∣∣∣ >

∣∣∣∣τl − τr

τl + τr

∣∣∣∣ ,
e.g. when the change in the spin–orbit coupling constant is larger than the change in mobility
between the regions. Here, we are crudely characterizing the spin-injection efficiency by the
jump in spin density with respect to the bulk levels.

3. Derivation of diffusion equation

In this section we will derive general diffusion equations that are valid when the mean free
path and spin–orbit coupling vary on length scales longer than the mean free path. It is well
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known that in a homogeneous system an electric field induces a spin polarization parallel to the
2DEG [18]. In an inhomogeneous system, an interplay of this effect and the spin Hall effect
can give rise to a more complicated spin distribution. A convenient tool to study such a system
is the spin diffusion equation. We start from the Keldysh formalism and obtain the Boltzmann
equation for the spin distribution function. In terms of the Boltzmann function, the spin density
is defined asS=

∑
k gk, and the nonequilibrium charge density as 2

∑
k gch

k . The linearized
equation for the nonequilibrium part of the Boltzmann function can be written in the form (see
e.g. [15, 19])

v∇gi
k − α(ẑ× ∇)i g

ch
k + 2(gk ×hk)i −

∂gch
k

∂k
∇hi

k + eE
∂gi (0)

k

∂k
=

1

τ

(
Si

E − gi
k

)
, (9)

wherev = k/m∗, i = x, y, z, SE = δ(Ek − EF)S/NF, g(0)

k = −hkδ(Ek − EF) is the equilibrium
Boltzmann function for spin, and̂z is the unit vector perpendicular to 2DEG. The first two
terms on the left-hand side of equation (9) describe variations of the Boltzmann function due to
particle motion with spin-dependent velocity, the third term is the spin precession in the Rashba
field, the fourth term is the spin-dependent acceleration in the spatially dependent Rashba field,
and fifth term is associated with the driving electric field. The right hand side of equation (9)
represents collisions in the self-consistent Born approximation caused by weak and isotropic
scalar disorder.

In the leading approximation, the charge component of the Boltzmann function is
determined by the drift of electrons in the external field:

gch
k = eτ

kE
m∗

δ(Ek − EF), (10)

which can be spatially dependent throughτ ≡ τ(r). Due to this dependence, the second term
on the left hand side of equation (9) becomes important in the following calculation of the spin
polarization. We note that this takes place only for the electric field parallel to the interface. For
a perpendicular field, as we have mentioned above, the combinationτ Ex is continuous across
the boundary.

The next step is to derive from (9) the diffusion equation for the spin polarization. There
are two ways to do this, depending on how fastτ(r) andα(r) vary in space. If the corresponding
length scale is shorter than the electron mean free pathl , the diffusion equation can be applied
only within regions where variations ofτ(r) andα(r) are slow, while the regions of their fast
modulation have to be described by the original kinetic equation (9). For example, one can
consider a thin transition layer between two regions characterized by nonequal uniform values
of τ(r) and α(r). In this case, equation (9) can be used to derive boundary conditions for
diffusion equations on both sides of the interface. If variations of the parameters take place
on length scales larger thanl , the general diffusion equation valid in the entire 2D system can
be straightforwardly derived from equation (9). We will follow the second procedure assuming
slow enough variations ofτ(r) andα(r), throughout the system. We will see in the following that
the characteristic spatial scale of the spin density variations dictated by the diffusion equation
is the spin precession lengthλ = h̄2/m∗α. Hence, this length must be much larger thanl , which
means also thathk � 1/τ . Then, following [19], the diffusion equation can be directly obtained
from equation (9). To this end, let us denote

Qi
=

Si
E

τ
+α(ẑ× ∇)i g

ch
k +

∂gch
k

∂k
∇hi

k − eE
∂gi (0)

k

∂k
. (11)
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The functiongi
k can now be found by applying the operator

3̂−1
≈ τ [1− (v∇)τ + (v∇)τ (v∇)τ ] , (12)

which is the inverse tô3 = v∇ + τ−1 expanded to the second order with respect toτv∇, where
v is the particle velocity. In this way, we obtain

gk = 3̂−1
[
Q− 2hk(gk ×nk)

]
, (13)

wherenk = hk/hk, while to orderα2 the vector product in (13) can be expressed as

gk ×nk = 3̂−1(Q×nk) + 2τ 2hkQ⊥, (14)

whereQ⊥ =Q− nk(nkQ). In theh2
k terms, we disregarded gradient corrections. Furthermore,

the3̂−1 operator in equations (14) and (13) can be expanded according to equation (12). Below,
we will keep the terms up to order∇2 andα3 in expansions in∇ andα, as well as up toα2

∇ in
cross products. Substituting equation (14) and (11) into (13) and taking a sum overk, we arrive
at a closed diffusion equation for the spin density. For simplicity, we consider the case whenα

andτ depend only on thex-coordinate, while the direction of the electric field is arbitrary. This
is sufficient to discuss, e.g. a boundary between two regions with different Rashba couplings.
Finally, the system of diffusion equations takes the form

∇x D∇x(S
x
− Sx

b) +∇x DSx
b

τ ′

τ
+ 2Dm∗α∇xSz + 2∇x Dm∗αSz

− 0‖(S
x
− Sx

b) = 0, (15)

∇x D∇xSy
− 0‖(S

y
− Sy

b) = 0, (16)

∇x D∇xSz
− 2Dm∗αSx

b

τ ′

τ
− 2Dm∗α∇x(S

x
− Sx

b) − 2∇x Dm∗α(Sx
− Sx

b) − 0⊥Sz
= 0 , (17)

whereτ ′
= dτ/dx.

Let us consider the limiting case when the mobility through the scattering timeτ is
homogeneous,τ ′

= 0. It can then be seen that the solution of equations (15) and (17) is Sz
= 0,

andSx
= Sx

b . SinceSx
b depends onx throughα(x), this spin density component simply follows

the spatial dependence of the Rashba coupling constant, as it was discussed in the previous
section. The behavior ofSy is different. If, for example,α varies from some finite value to
zero across the transition layer, equation (16) shows that the electric field perpendicular to the
interface,Ex, drives injection ofSy into a region of e.g. a vanishing Rashba SOI, corresponding
to scenario 2 analyzed in detail in section2.

Let us consider a thin transition layer whereα(x) andτ(x) vary between their constant
values on the left and on the right from this layer. In this case, the spin polarization is expected
to change fast within the layer, while it varies much more slowly outside the layer, if its width
d is much less than the spin-precession lengthλ. The magnitude of the spin density variation
across the layer can be found directly from the diffusion equations (15)–(17). Indeed, in the
leading approximation with respect tod/λ, whenx is within the layer, we retain in the diffusion
equations only the leading terms proportional to∇

2
x . After integration of the first of the equations

from a pointx1 just to the left of the interface to some pointx, it becomes

∇x(S
x
− Sx

b) + Sx
b

τ ′

τ
−

[
∇x(S

x
− Sx

b) + Sx
b

τ ′

τ

]
x=x1

. (18)
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The expression in square brackets can be set to 0 because∇xSx
|x=x1 ∼ (Sx)/λ, ∇xSx

b |x=x1 = 0,
andSx

bτ ′/τ |x=x1 = 0. Hence, integration of equation (18) from x1 to x2 yields

(Sx
− Sx

b)|x=x2 − (Sx
− Sx

b)|x=x1 = −

∫ 2

1
dx Sx

b

τ ′

τ
. (19)

Similarly, it is easy to show that thez spin component slowly varies across the boundary, while
the y spin component changes according to

Sy
|x=x2 − Sy

|x=x1 = 0. (20)

Equation (19) coincides with the result obtained in [17]. It shows that whenτ is x dependent,
Sx does not follow exactly the spatial profile ofSx

b . Due to this mismatch, according to equation
(17), the Sz component of the spin density is not zero on both sides of the transition layer and
spin injection is feasible.

The rest of the boundary conditions can be obtained from equations (15)–(17) by
integrating these equations across the layer and taking into account thatSz and the sum of
the first two terms in (18) vary slowly within the layer. Therefore, the term proportional to∇xSz

can be disregarded when integrating equation (15) and also can be disregarded the sum of the
second and third terms of the last line. They give rise only to corrections∼α2d/λ. Also, taking
into account that outside the layerτ ′

= α′
= 0, we obtain[

∇xSx + 2m∗αSz
]

x2
=

[
∇xSx + 2m∗αSz

]
x1
,[

∇xSz
− 2m∗α(Sx

− Sx
b)

]
x2

=
[
∇xSz

− 2m∗α(Sx
− Sx

b)
]

x1
, (21)

∇xSy
|x2 = ∇xSy

|x1.

Hence, we arrive at the boundary conditions corresponding to spin current conservation across
the interface in its conventional definition (up to the orderα2), although in general such a current
is not a conserved quantity.

4. Conclusions

We have derived general diffusion equations for spin transport driven by electric fields in a
quantum well subject to Rashba SOI. The diffusion equations are valid for spatially dependent
mean free paths and SOI couplings. From these general diffusion equations, we can determine
the boundary conditions for the spin-density and spin-current components in regions with
different mean free paths and spin–orbit couplings via boundaries that are thicker than the mean
free path, but thinner than the spin-precession length. We find that spin injection is possible
when the electric field is perpendicular to the interface, and also when the electric field is parallel
to the interface. In the latter case, spin injection is possible provided the boundary layer has a
spatially dependent mobility.
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