
Transient LDV-measurements in the 
draft tube of a high head Francis turbine

Carl Werdelin Bergan

Master of Science in Mechanical Engineering

Supervisor: Ole Gunnar Dahlhaug, EPT

Department of Energy and Process Engineering

Submission date: June 2014

Norwegian University of Science and Technology



 







NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Abstract
Department of Energy and Process Engineering

Transient LDA Measurements in the Draft Tube of a High Head

Francis Turbine

by Carl Bergan

Francis-99 is a series of upcoming workshops aimed at determining the state of the
art of high head Francis turbine simulations. The scope of this essay is to provide
empirical data to serve as validation for the CFD simulations.

Axial and tangential velocity profiles were measured for a model of the Tokke
runner while operating in part load, best efficiency, and full load, at two different
locations in the draft tube cone: 64mm and 382mm below the draft tube inlet.
The results were phase resolved in order to calculate normal Reynolds stresses
at the different operating conditions, and the results have been compared with
computer simulations. The resulting velocity profiles have been evaluated with
respect to the governing equations, and the correlation between velocity profiles,
pressure gradients and normal stresses has been discussed. The effect of head on
the velocity profiles has been evaluated, and found to have only a small impact on
the reduced velocity profiles, both axially and tangentially. The repeatability of
the test rig was also tested, and found to be within acceptable limits.

The reliability of the measured velocity profiles is considered high enough to be
admissible as validation data for the Francis-99 workshop.

The simulated results show good agreement with the measured velocity profiles for
axial flow, but show great discrepancies for the tangential velocity profiles. How-
ever, some similarities can be seen between the simulated and measured results,
and further work is required in this area.
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Sammendrag

Aksiale og tangensielle hastighetsprofiler har blitt målt for modellløpehjulet Tokke
under dellast, bestpunkt, og fullast. Målingene ble gjennomført på to forskjellige
steder i sugerørskonusen: 64mm og 382mm under løpehjulets utløp. Resultatene
har blitt faseanalysert, og normalspenninger i væsken har blitt beregnet på bak-
grunn av dette. Måleresultatene har blitt sammenlignet med CFD-simuleringer av
løpehjulet under de aktuelle driftspunktene. De målte hastighetsprofilene har blitt
diskutert med utgangspunkt i Euler-ligningen, og korrelasjonen mellom hastighet-
sprofiler, trykkgradienter og normalspenninger har blitt diskutert. Etter prøvemålinger
viser det seg at trykket har liten påvirkning på de reduserte hastighetsprofiler,
både i aksiell og tangensiell retning. Testriggens repeterbarhet har også blitt vur-
dert, og konkludert med å være innenfor akseptable grenser. Påliteligheten av de
målte hastighetsprofilene anses høy nok til å kunne brukes som valideringsdata
for Francis-99 workshoppen. De simulerte resultater viser god overensstemmelse
med den målte hastighetsprofilene for aksiellhastigheten, men viser store avvik
for de tangensiellhastigheten. Noen formlikheter kan sees i hastighetsprofilene,
ytterligere arbeid er nødvendig på dette området.
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1 | Introduction

1.1 Background

The increased use of hydro power in supplying peak-demand power in conjunction

with nuclear fission, coal, and other steady, slowly regulated power sources causes

an increase in part load operation on hydro power plants [1]. It is a well known fact

that running a turbine outside of its design point can cause a lot of problems, such

as pressure pulsations, power swings, and reduced lifetime, among other things.

Part of the challenge arises in the draft tube cone, a turbine component dominated

by complicated flow fields, high pressure gradients, high Reynolds stresses, and

low-frequency high amplitude pressure pulsations [1].

The purpose of this thesis is to investigate the flow field in the draft tube of the

model of the Tokke runner at the Waterpower Laboratory at the Norwegian Uni-

versity of Science and Technology (NTNU), with focus on velocity profiles, and

turbulence properties, in order to serve as validation data for Computational Fluid

Dynamics (CFD). The measurements will be performed with 2D Laser Doppler

Anemometry (LDA), for a high head Francis runner operating at part load, the

Best Efficiency Point (BEP), and full load. The experimental results will be com-

pared with simulation results from the master thesis of Ruben Moritz of NTNU,

2014.

1



Chapter 1. Introduction 2

1.1.1 Francis-99

Francis 99 is a series of workshops in which several aspects of Francis turbine

operation will be investigated. The scope of this thesis is LDA measurements of

the draft tube flow for the Tokke model runner at three given operating points,

in order to obtain velocity profiles, turbulence, phase-averaged velocities and, if

possible, other transient phenomena.

The results from this thesis will serve as validation for the numerical simulation

of the same phenomena, in order to determine the state of the art of numerical

simulation of transient phenomena in draft tube flow.

1.1.2 Previous work

Both swirling flow and Francis operating conditions have been extensively inves-

tigated. The effect of different semi-tapered cones attached to the runner on the

velocity field has been investigated by Veveke [2]. The experiments were performed

using Laser Doppler Velocimetry (LDV) on a model Francis turbine at the Water-

power Laboratory at NTNU, and video recording was done in order to visualize

the Rotating Vortex Rope (RVR) behavior.

Dahlhaug [3] used LDA to investigate the velocities in a pure swirling flow where

the swirl is artificially induced, in addition to conventional model draft tube mea-

surements.

LDA measurements have been performed on a model Kaplan turbine by Kaveh

[4], modeling the Projus U9 runner. This investigation focused on the velocity

in the blade channels and the runner outlet, while simultaneously measuring the

pressure distribution in the draft tube cone.

Glas, Forstner, Kuhn, and Jaberg [5] did extensive work in LDV data analysis

regarding periodic phenomena in the flow. This theory is applicable in many cases
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when LDV is utilized, providing a tool for obtaining valuable phase-resolved data

and components of the Reynolds stress tensor.

Trivedi, Cervantes, Gandhi, and Dahlhaug [6] have performed extensive pressure

measurements on the Tokke model runner in conjunction with the Francis-99 work-

shop, as well as turbine performance measurements. Pressure-time measurements

were performed over several operating points, numerical simulation was performed

using two turbulent models, shear stress transport k − ω and standard k − ε.

The flow in a Francis turbine spiral casing has been investigated with LDV by

Antonesen [7].

Swirling flow in a conical diffuser has been investigated by Senoo, Kawaguchi, and

Nagata [8], in which the diffuser demonstrates a higher pressure recovery coefficient

with a diffuser angle of 8 degrees and moderate swirl. Pressure and velocity has

been measured for swirling non-cavitating flows by Guarga, Gracia, Sánchez, and

Rodal [9], in which the size of the rotational core displays a dependency on the

angular momentum in the flow. Velocity and pressure fluctuations in a Francis

draft tube has been investigated by Mollenkopf and Raabe [10] using piezo-electric

pressure transducers and hot-film anemometry.





2 | Theory of the flow

2.1 Theory of turbulence

Turbulence is a flow regime characterized by three dimensional fluctuations, ran-

dom variations, self-sustaining motion, strong mixing, and tightly packed eddies.

Turbulence is a complex phenomena that will never be possible to analytically

quantify completely, due to its chaotic nature. Many books and papers have been

published in the field of turbulence, with hundreds of papers being published every

year on the subject [11]. Turbulence will not be discussed in-depth in this thesis,

but simple velocity decomposition will be explained.

The generally accepted method of dealing with turbulence in velocity measure-

ments is to decompose the individual velocity components.

A typical velocity measurement will not show the constant mean velocity in the

flow, but rather a flow with seemingly random fluctuations about a mean. Sub-

tracting the mean velocity, only this seemingly random fluctuation is left.

Depending on the flow, there may be some periodic phenomena, (axle rotation,

blade wakes, vortex shedding etc.) which will show up in these seemingly random

velocity fluctuations. Resolving for the periodic velocity fluctuations, the velocity

can be decomposed as shown in Equation 5.2. This method is known as Reynolds

triple decomposition [4]. An example of such decomposition is shown in Fig. 2.1.

In this example, the measurements have been resolved according to runner phase.

5



Chapter 2. Theory 6

Figure 2.1: Example of triple decomposition of velocity measurements. This
example is taken from velocity measurements in a Kaplan draft tube [4].

2.2 Rankine Vortex

For rotating flows in a pipe, the tangential velocity profile often takes on the form

of a Rankine Vortex, a combination of a solid-body rotation and a free vortex [3].

This type of velocity profile is illustrated in Fig. 2.2.

In rotating pipe flows, a commonly used parameter for characterizing the flow is

the Swirl number, or Swirl intensity, which is defined as the ratio between the

tangential and axial momentum [3].

S =

R∫
0

r2 · ρ · uz · uθ · dr

R ·
R∫
0

r · ρ · uz2 · dr
(2.1)

From Equation 2.1, it is clear that a larger relative rotation in the draft tube will

yield a larger swirl number.
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Figure 2.2: The Rankine Vortex. This flow regime is composed of a solid body
rotation and a free vortex [12].

2.3 The Euler equations for swirling flows

Simplifying the Navier-Stokes equation by removing viscous terms, we are left with

the Euler equations, given in Equation 2.2, obtained from [11].

∂ur
∂t

+ ur ·
∂ur
∂r

+
uθ
r
· ∂ur
∂θ
− u2θ

r
+ uz ·

∂ur
∂z

= gr −
1

ρ
· ∂p
∂r

∂uθ
∂t

+ ur ·
∂uθ
∂r

+
uθ
r
· ∂uθ
∂θ
− ur · uθ

r
+ uz ·

∂uθ
∂z

= gθ −
1

ρ
· ∂p
∂θ

∂uz
∂t

+ ur ·
∂uz
∂r

+
uθ
r
· ∂uz
∂θ

+ uz ·
∂uz
∂z

= gz −
1

ρ
· ∂p
∂z

(2.2)

Assuming axially symmetric and steady flow, some terms can be dropped, and we

get the simplified Euler equations given in Equation 2.3.
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ur ·
∂ur
∂r
− u2θ

r
+ uz ·

∂ur
∂z

= −1

ρ
· ∂p
∂r

ur ·
∂uθ
∂r
− ur · uθ

r
+ uz ·

∂uθ
∂z

= 0

ur ·
∂uz
∂r

+ uz ·
∂uz
∂z

= gz −
1

ρ
· ∂p
∂z

(2.3)

2.4 Boundary Layers

When a fluid flows past a solid body, there will be a region close to the body

where the flow is affected by the body’s presence. This region is known as the

boundary layer. Outside of the boundary layer, the flow can be assumed to be

inviscid, whereas inside the boundary layer, viscous effects will, by the definition

of boundary layers, be non-negligible [11]. As an example, Fig. 2.3 illustrates the

boundary layer development of an oncoming flow being disturbed by a flat plate.

Figure 2.3: Example of a Flat-plate boundary layer. Note how the flow outside
of the dashed line is yet unaffected by the plate’s presence [13].

At the wall interface, a no-slip condition is assumed, meaning that the flow is

assumed to have zero velocity in contact with the wall. As one moves gradually

into the flow, the fluid’s speed will approach the free stream velocity, the velocity

in the inviscid region.
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2.5 Flow separation

In addition to the retardation of the flow along the wall, the expanding draft tube

cone will cause an adverse pressure gradient, and the expansion itself may give

rise to flow separation [11].

The increasing downstream pressure will slow the flow, and the retarded boundary

layer along the wall may experience a negative flow rate, depending on the pressure

gradient. Applying the momentum equation at the wall, we get Equation 2.4,

which indicates that the curvature of the velocity profile at the wall has the same

sign as the pressure gradient [11]. If this pressure gradient is positive in the

streamwise direction, it is known as an adverse pressure gradient.

∂2u

∂y2

∣∣∣∣
y=0

=
1

µ
· dp
dx

(2.4)

As the flow progresses along an adverse pressure gradient, the velocity profile close

to the wall will become more and more S-shaped, until the velocity close to the

wall becomes negative, illustrated in Fig. 2.4 [11].

Figure 2.4: Pressure-driven flow separation. The adverse pressure will slow
the flow close to the wall, causing negative flow [11].

Flow separation will reduce the effective divergence of the draft tube, as illustrated

by Fig. 2.5, and thereby reduce the pressure recovery in the draft tube.

By introducing rotation to the flow, it has been found that the centrifugal forces

acting on the water will overcome the adverse pressure gradient provided by the
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Figure 2.5: Reduced divergence in draft tube due to flow separation. The
recirculating regions close to the wall reduce the effective increase in area of the

draft tube cone [12].

boundary layer, preventing flow separation, and thereby enhancing the pressure

recovery coefficient [8].



3 | Lab Preparation

3.1 HSE: lab safety

In order to use laser technology for experiments, an extensive risk assessment

report had to be filled out. This report consisted of reviewing safety hazards in

both the laboratory and in the procedures.

The complete HSE report has been submitted to the HSE-coordinator for the

department of Energy and Process engineering at NTNU.

3.2 Experimental Setup

Due to HSE reasons, the complete laser setup was placed inside a black tent made

of a tarp-like fabric, in order to isolate the rest of the lab from renegade laser rays.

The tests were performed at the Waterpower Laboratory at NTNU by Kaveh

Amiri, Carl Bergan, and Joel Sundström. The Francis test rig was set up for

running in a closed loop, where the upstream pressure can be freely regulated, and

the downstream pressure can be regulated between close to atmospheric pressure

and down to approx. 9m below ambient pressure. A sketch of the test rig is

provided in Fig. 3.1.

The runner in use during the measurements is a 1:5.1 scaled model of the Tokke

hydropower plant. The full scale unit is a 1.78m diameter Francis runner with a

11
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Figure 3.1: Sketch of the closed loop test rig [14].

nominal head of 377m with a power of 110MW. The distributing unit consists

of a spiral casing with 10 stay vanes and 28 guide vanes. The runner has 15 full

length vanes and 15 splitter vanes. The flow rate, measured by an electromagnetic

flow meter, is controlled by the head upstream.

The laser used was a Spectra-Physics Model 177G. The LDA data was processed

with a Burst Spectrum Analyzer (BSA) from Dantec Dynamics. The data sheet

for the laser can be found in Appendix A.

The laser probe was mounted on a three-axis traverse table which allowed for

accurate movement of the laser probe, and allowed for whole velocity profiles to

be recorded without the need for constant attention from the operators. Since

the whole laser setup was inside a closed tent, a web camera was mounted near

the draft tube cone to monitor the progress from the control room in the lab. A

class prism was also mounted around the Plexiglas draft tube cone, in order to

correct for the rarefaction of the laser light, and the space between the glass and

the Plexiglas was filled with water.

The front lens had a focal length of 310mm. The seeding particles used were of

the type Expancel 46 WU 20 with an average diameter of 6 µm.

Test were carried out at three operating points: part load, BEP, and full load.

The corresponding operating conditions are given in Table 3.2.

In order to phase resolve the results, the runner RPM was recorded on a separate

computer in addition to being recorded on the BSA. For this, two input modules
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were used. One NI 9239 4-Ch ± 10 V 24-Bit Simultaneous Analog Input, and one

NI USB-6211 16-Bit, 250 kS/s M Series Multifunction DAQ.

3.2.1 Measuring positions

Fig. 3.2 shows the two sections along which the radial velocity profiles were mea-

sured in the draft tube cone. Section I is located 64mm below the draft tube inlet,

and section II is located 382mm below the draft tube inlet. The radius at section

I and II is 177.5mm and 196.2mm respectively.

Figure 3.2: Measuring sections in the draft tube cone [15].

At full load and BEP, 16-17 points along the radius were measured, whereas for

part load, 25-26 points were recorded. The higher number of measurement points

at part load were chosen in order to better resolve large velocity gradients expected

at this operating point.

3.2.2 Compensations due to weak laser

Several attempts were made to adjust the optics in the Bragg cell in order to

achieve as much power as possible from the four laser components. This was
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controlled by using an intensity meter, which in every case showed that the blue

laser was considerably weaker than the green one.

Past experience with LDA at the Waterpower Laboratory shows that the blue

laser will always be weaker than the green one. Due to this, and some initial mea-

surements, it was decided that the blue laser was unfit for reliable measurements,

and all the velocity profiles (tangential and axial components) had to be measured

with the green laser. Implications of this are discussed in Chapter 6. Since the

laser alignment was considered to be more sensitive than the repeatability of the

Francis rig, the laser probe was only rotated once, meaning that all the axial ve-

locity profiles had to be recorded before rotating the probe and then recording all

the tangential velocity profiles.

3.2.3 Shaft encoder

There is a piece of equipment for the Dantec BSA system called a shaft encoder.

The BSA has the option to take analogue inputs, and with the shaft encoder, this

analogue input can be used to calculate the angular position of the turbine runner

and perform predefined actions. This can be used to measure the velocity in

between the turbine blades, as the BSA can trigger data acquisition on predefined

runner angles.

In our case, the shaft encoder would be particularly useful in recording the angular

position of the runner at each data point. Since the BSA used in this thesis wasn’t

equipped with a shaft encoder, a makeshift system had to be constructed.

The problem we faced with using the analogue channels, was that the BSA would

only record voltage from the analogue input when a particle passing was recorded,

thus making it impossible to accurately predict the runner position.

Attached to the runner shaft, there is a slotted disk (with one slot) and an optic

sensor, which gives of 5V when detecting the slot, and 0V otherwise. This sensor

is used in the normal laboratory setup to calculate the number of Rotations Per
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Minute (RPM) for the runner. The signal from this was fed into one of the BSA

analogue channels. However, given the random nature of particle passings, there

is no way of being sure that the optic sensor is giving off a voltage at the arbitrary

time when the BSA records data.

This challenge was overcome by attaching white tape on half the runner shaft,

black tape on the other half, and mounting an optic sensor close to the tape.

This sensor recorded 5V for half the revolution and 0V for the other half, thus

maximizing the chance of successfully recording each revolution. Given a data

rate of 800 particles per second, and a runner frequency of 6.77Hz, each particle

is recorded in a window of approximately 3.5◦, giving an idea of the uncertainty

in the measured angle. In order to obtain a higher resolution in the results, this

voltage was recorded in parallel on a computer with a much higher logging rate

(around 6 kHz), and then the angular position of the runner could be reconstructed

in the post processing.

In order to facilitate the synchronization of these two signals, a single pulse was

recorded on a separate channel at the beginning of each measurement series.

Matching the pulse from the two computers revealed how far along the time scale

the other pulses had to be shifted in order to line up properly.

3.2.4 Optical alignment

When working with optics, angles are important, and misalignment can reduce

the data value. It was therefore paramount to ensure that the traverse table was

parallel to the glass, that the laser was perpendicular to the glass, and that the

laser beams were properly aligned in the vertical and horizontal direction.

For the measurements to be accurate, the laser had to hit the glass as perpendicu-

larly as possible, and the movement axis of the traverse needed to be as perpendic-

ular to the glass as possible. Additionally, the two laser colors had to be as close as

possible to the horizontal and vertical for the tangential and axial measurements

respectively.
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The latter part of the alignment was performed by attaching the probe on its

’holding piece’ and clamping that on a table. The table was made horizontal and

the laser was fired at a wall a distance away. The probe was then rotated until

the two horizontal dots were indeed level.

The next step was to attach the aforementioned ’holding piece’ correctly onto the

traverse table. For this, a right-angled metal piece was used. After that, aligning

the traverse table with respect to the glass wall was done using the laser reflection

off the glass. A control of the alignment was performed using two long pieces of

flat metal with a right angle at the end, to ensure that the traverse table was

indeed perpendicular to the glass wall.

3.3 Experimental Method

In order to make sure that the coordinate system was correct, the wall had to be

located for each measurement.This was simply done by running a small recording

series around where the wall was assumed to be (by visual inspection), and setting

x=0 where the velocity abruptly changes from 0 to a physical value, and where

the velocity histogram looks even. This can be seen in Fig. 3.3.

Figure 3.3: Finding the wall. The histogram illustrates the distribution of the
measured velocity.

The measurement time for each coordinate is dictated by the number of data

points required for a reliable measurement, and by the time available at the lab.

It goes without saying that a large data rate will reduce the time required here.

The measurement time was set to 12 minutes for most measurements, and then
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reduced to 10 minutes for the last few velocity profiles, due to limited laboratory

time.

3.4 Operating Conditions

The operating points used are described on the Francis-99 website, and they yield

the test conditions described in Table 3.1.

Operating point H [m] Q [m3/s] n [Hz] nED QED η [%]
BEP 11.91 0.203 5.59 0.18 0.15 92.6
Full load 11.84 0.221 6.16 0.20 0.17 90.6
Part load 12.29 0.071 6.77 0.22 0.05 71.7

Table 3.1: Francis-99 operating conditions [14].

Upon reaching these operating points, the generator exhibited instabilities which

resulted in an unacceptable variation in torque and RPM. This was observed for

both full load and BEP, not for part load. It was deemed best to perform the

measurements on a slightly different operating point, maintaining constant nED

and QED, but altering the head slightly.

After some experimentation, it was decided upon substituting full load and BEP

with the test conditions shown in Table 3.2. Implications of the change in operating

conditions are discussed in Chapter 6.

Operating point H [m] Q [m3/s] n [Hz] nED QED η [%]
BEP 12.77 0.207 5.74 0.18 0.15 92.4
Full load 12.61 0.230 6.34 0.20 0.17 91.0
Part load 12.30 0.071 6.77 0.22 0.05 72.5

Table 3.2: Operating conditions used in this thesis.

http://www.Francis-99.org




4 | Data analysis

The data obtained from the BSA comes in the form of a text file, with columns

for each data type. Post processing the data is, for the most part, a trivial issue.

The challenge in this test was the absence of a shaft encoder, as mentioned in

Chapter 3.

The analysis consists of matching two pairs of square waves: the wave consisting

of the starting pulse marking the beginning of each logging series, and the wave

consisting of each runner revolution. These were matched together using cross

correlation in an iterative fashion.

The logging equipment used has discrete logging rates, but when recording the

waves in SignalExpress, a rate of 6 kHz was chosen. This gave rise to erroneous

time steps, creating the need for iterative cross correlating.

4.1 Waveform coupling

The purpose of the square waves was to provide some means of reconstructing

the angular position of the runner in retrospect. However, matching the high-

resolution square wave with the (relatively) low resolution velocity measurements

requires some numerical analysis.

19
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4.1.1 Logging rate

According to the online data sheet for the NI 9239 module [16], the logging rates

for this particular input module is calculated by Equation 4.1.

Fs =
fM ÷ 256

m
, m = 1, 2, ..., 31 (4.1)

where fM =12.8MHz for the NI 9293.

Since data acquisition was set at a different logging rate than what the logging

card can provide, it was assumed that the logging card used a logging rate close

to the chosen one, given by the available logging rates. This was used as a ’best

guess’ for the logging rate in the iterative cross correlation of the square waves in

order to save on computing time1.

The BSA records data at random time intervals, but provides a time stamp for

each recorded data point.

4.1.2 Cross correlation

Cross correlation is a measure of the similarity of two wave forms as a function of

the time-lag applied to them. Mathematically, it is defined for continuous functions

f and g as

(f ? g) =

∫ ∞
−∞

f ∗(t) · g(t+ τ) · dt (4.2)

where f ∗ denotes the complex conjugate2 of f and τ is the time lag [17].

The cross correlation will give a good estimate as to how far the data has to be

shifted on the time scale to get the best match. This was used in the iterative
1If the actual logging rate was outside of this range, it will still be found, but the computing

time will be significantly longer.
2For a real function, this will simply be the function itself.
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cross correlation whereby the square waves were shifted relatively to each other

to find the maximum correlation, and the frequencies of the waves was compared,

giving a suggestion for a new time step for the recorded data.

The time stamp provided by the BSA was assumed to be correct in this procedure.

4.2 Phase resolving

The RVR introduces a periodic phenomena, which can be used to phase resolve the

results. What this entails, is that the flow will be more or less periodic with differ-

ent phenomena at different periods. The two most prominent periodic phenomena

of interest here are the RVR and the rotation of the runner itself.

Keeping in mind that the velocity can be decomposed into three parts, the mean

velocity, the periodically fluctuating velocity, and the randomly fluctuating ve-

locity, it is crucial to find the periodic part in order to be able to analyze the

turbulence.

The process of phase resolving the data consists of using the time stamp of the

velocity measurements in order to place each velocity measurement in an appro-

priate ’phase bin’ of an appropriate size. The size of this phase bin, or window

size, depends on the phenomena of interest and should be carefully selected. The

windows should be as small as possible in order to get a high resolution in the

phase-averaged values, but large enough to contain enough samples such that the

phase-averaged data dominate the random fluctuations. This is especially true if

the flow contains large temporal gradients [18].





5 | Results

The complete data gathered from the experiments are far too extensive to present

in this thesis. As such, only a post-processed selection of the data is presented for

each operating point.

5.1 Velocity profiles

The velocity profiles from all the measurements are presented in this section. They

are obtained by taking the time-averaged velocities for each measuring coordinate.

For comparison purposes, they are presented as reduced values divided by the bulk

velocity immediately downstream of the runner, shown in Equation 5.1. The radial

coordinate is reduced with respect to the radius at the runner outlet, R =0.175m.

The resulting UBULK is shown in Table 5.1.

u∗ =
u

UBULK
=
π ·D2 · u
4 ·Q

(5.1)

The reduced velocity profiles for position I and position II are superimposed on

each other for comparison purposes.

Operating point UBULK [m/s]
Part Load 0.7375
BEP 2.1503
Full Load 2.3892

Table 5.1: UBULK for the different operating points.

23
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Figure 5.1: Tangentiel (left) and axial (right) reduced velocity profiles for part
load.

Figure 5.2: Tangentiel (left) and axial (right) reduced velocity profiles for
BEP. Note the difference in vertical axes.

Figure 5.3: Tangentiel (left) and axial (right) reduced velocity profiles for full
load. Note the difference in vertical axes.
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5.2 Phase-averaged velocity

The phase-averaged plots visualize the flow in the draft tube cone at the different

operating conditions. They are obtained by phase-averaging the measured veloci-

ties with the runner frequency. The data analysis is performed in the same way as

in [15]. Note the difference in scale for the plot coloring. The results for BEP are

included in this section, all the phase-averaged plots can be found in Appendix C.

Figure 5.4: Phase averaged tangential (left) and axial (right) velocity for BEP,
position I.

Figure 5.5: Phase averaged tangential (left) and axial (right) velocity for BEP,
position II.

5.3 Turbulence

The turbulence is found by decomposing the velocity u(x, t) into three components
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u(x, t) = u(x) + ũ(x, t) + u′(x, t) = 〈u(x, t)〉+ u′(x, t) (5.2)

Where u(x) is the time-averaged velocity and ũ(x, t) is a periodic velocity com-

ponent. Combined they form 〈u(x, t)〉, which is the phase-averaged velocity with

respect to periodic flow phenomena. u′(x, t) denotes random fluctuations in veloc-

ity, which stems from turbulence [15].

Figure 5.6: Reynolds normal stresses v′2 (left) and u′2 (right) for part load.

Figure 5.7: Reynolds normal stresses v′2 (left) and u′2 (right) for BEP.

5.4 CFD velocity profile comparison

The following figures show the velocity profiles obtained by LDA compared to

various simulations. The figures are produced by Ruben Moritz.
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Figure 5.8: Reynolds normal stresses v′2 (left) and u′2 (right) for full load.

Figure 5.9: Tangential (left) and axial (right) reduced velocity profiles for BEP
at section I produced with CFD compared with LDA results.

Figure 5.10: Tangential (left) and axial (right) reduced velocity profiles for
BEP at section II produced with CFD compared with LDA results.





6 | Discussion

The flow field immediately downstream the runner shows distinct traces of the

runner design. Further downstream, the velocity profiles are more smooth, due to

the shear stresses in the flow suppressing the large gradients. The velocity profiles

show a transition from the profile in Fig. 5.4 towards the flow in Fig. 6.5.

The normal Reynolds stresses were similar for full load and BEP, but were an order

of magnitude greater for part load. This is most likely due to the large velocity

gradients present in part load flow, and is further confirmed when the turbulence

reaches a maximum at the largest velocity gradients.

6.1 Evaluation of the experimental setup

The experimental setup is described in Chapter 3. It is of adequate quality, and

the test rig shows good repeatability. The uncertainties in the physical setup is

thought to manifest itself in uncertainties in the turbulence and, to some degree,

in the radial coordinate. The velocity profiles and phase-averaged values are not

affected significantly by uncertainties in the laboratory setup.

6.1.1 Repeatability of the Francis rig

As mentioned in Chapter 3, the axial and tangential components of the velocity

had to be recorded at different times. In order to ensure that the operating point

29
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Part load BEP Full load
Recorded efficiencies [%] 72.11 92.57 90.94

72.12 92.30 90.99
71.71 92.41 90.91

91.13

Mean efficiency [%] 71.98 92.43 90.99

Repeatability [%] ±0.27 ±0.14 ±0.14

Table 6.1: Repeatability of the Francis rig. The efficiencies are calculated as
the mean of a 2 minute series.

recorded was indeed the same, a 2 minute series were recorded for each velocity

profile, and the measurements for the same operating point were then compared.

In comparing the files, the time-averaged values were calculated, outlying data

points were removed1, and the relative difference between the two logging files was

calculated. This simple analysis showed that, even though the conditions were not

exactly the same for all the parameters, they were within acceptable limits.

The variations in hydraulic efficiency are shown in Table 6.1.

6.1.2 Sources of errors

The experimental setup is subject to a number of sources of errors in the measure-

ments, which can be classified as random and systematic errors. Many of the error

margins for systematic errors are supplied by the equipment manufacturer, and

are relatively small. In evaluating the laboratory setup, differentiating between

random and systematic errors is important in order to evaluate the data quality.

Systematic errors can be corrected for retrospectively2, but this is not the case for

random errors. The different sources of errors affect the results in different ways,
1Data points that differ greatly from the mean, due to obvious logging errors, e.g., efficiency

of 3 · 108.
2Given that it is known how the systematic error affects the data, e.g., the distance of a

misalignment or the error in a sensor zero point.
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and to different degrees. Turbulence is concluded to be the most sensitive result

with respect to the following sources of errors.

Alignment of laser

Optical misalignment is a systematic error with a potentially large impact on the

data quality. Much effort was therefore put into properly aligning the equipment,

as described in Chapter 3. The laser probe’s perpendicularity with respect to the

glass wall is considered to be satisfactory, as the alignment was double checked

using the glass wall as a mirror while the laser probe was a distance away. Using

this method, one can ensure precise alignment.

When the equipment was properly aligned, the fastening bolts were tightened,

ensuring no relative movement of the equipment during the measurements.

Movement of traverse table

When recording each velocity profile, the wall had to be found by measuring the

velocity in the vicinity of where the wall was thought to be, shown in Fig. 6.1.

Figure 6.1: Locating the draft tube wall.

The coordinate for the wall seemed to change slightly between velocity profiles,

meaning that there had been a relative shift of the traverse table. This change

was in the order of millimeters, approximately 1mm to 3mm for a 12 minute

measurement, so it should not introduce unacceptable errors in the velocity profiles

measured. Movement of the traverse table would cause some uncertainty to the
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coordinate of the measured volume, an uncertainty which is greater as one moves

towards the center of the draft tube cone. This is particularly crippling for the

results in the presence of large velocity gradients, such as for r∗ = 0.8 at part load

(shown in Fig. 5.1).

Other than that, this movement would not have a significant impact on the quality

of the results.

Calibrations

The calibration reports for the generator torque, the friction torque, flow rate,

differential pressure, and inlet pressure are included in Appendix B.

Instabilities

The turbine exhibited instabilities in the generator torque when operated in BEP

and at full load. The variation in generator torque was around ±50Nm when the

generator torque was around 600Nm. This particular instability was noticed by

visual inspection of the torque history data in the control room.

Since no other instabilities could be found by visual inspection of the graphs, po-

tential instabilities are considered to be insignificant to the measurements. The

error caused by instabilities introduces periodic phenomena of unknown frequen-

cies, which reduces the quality of the phase-resolved data. This, in turn, reduces

the credibility of the measured turbulence, since it is directly linked to the periodic

velocities, as seen in Equation 5.2.

Vibration

The Francis rig, being a piece of rotating machinery, is subject to vibrations of

a number of frequencies. Vibration can cause relative movement between the

whole rig and the laser probe. This was not counteracted to a great extent in the
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measurements, partly because they were considered to be insignificant, and partly

because there is not much one can do about it.

The traverse table was placed on a pallet (to raise it from the floor), which has

some internal dampening of vibrations, but not much. The challenge here is that

the floor the traverse was placed on is not directly connected to the test rig. The

draft tube and spiral casing are mounted on beams attached to the walls, and most

vibrations will be dampened when traveling through the building. If the traverse

table was somehow connected to the draft tube cone or to the spiral casing, this

might introduce vibrations that would excite the traverse table, creating further

errors in the measurements.

The setup is therefore considered to be adequate with respect to vibrations. The

error in this would cause erroneous measurements in turbulence, as this is the part

of the measurements that is most sensitive to vibrations.

Back scattering

As mentioned in Chapter 3, the BSA was recording in back scattering mode. This

method of recording greatly simplifies the experimental setup, both due to the

laser emitter and recording probe being one single unit, and because one doesn’t

need to correct for the rarefaction of the laser light when exiting the draft tube

cone at an off-angle.

The disadvantage with back scattering is that the amount of light scattered back

towards the laser emitter is much less than that which could have been captured

with forward scattering. This is due to the intensity variation of light scattered of

spherical surfaces [19], and will not be discussed further in this thesis.
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6.2 Choice of operating point

Upon reaching the desired operating conditions, the generator exhibited torque-

related instabilities in both BEP and full load operation. In order to avoid unde-

sired disturbances from these instabilities in the results, the test were performed

at a different head, while keeping nED and QED constant. A sensitivity analysis

was performed by measuring the velocity for a short amount of time in both the

unstable area and in our chosen operating point. The resulting velocity profiles

are shown in Fig. 6.2.

Figure 6.2: Reduced tangential (left) and axial (right) velocities for the com-
pared operating points.

The sensitivity analysis shows that even though the velocity won’t be exactly the

same at this different pressure, it is still close enough and similar enough to be of

help when performing numerical simulations of the runner, and the measurements

are therefore considered admissible for the Francis-99 workshop.

6.3 Flow properties

Looking at the velocity profiles for the same operating point but different measur-

ing positions, the effect of the draft tube cone is clearly shown. This can also be

seen in the phase resolved plots: the oscillations are damped downstream the draft

tube cone, and the flow approaches a Rankine Vortex, as discussed in Chapter 2.
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The viscous boundary layer can easily be seen in the axial velocity profiles for

BEP and full load. In part load operation, the large tangential velocity forces

water towards the wall, creating a large pressure gradient. The low flow rate is

dominated by the adverse pressure gradient in the draft tube cone, causing a zone

of negative flow in the center of the draft tube.

By close inspection, the velocity profile for part load operation does seem to exhibit

some wall effects, a reduction of the axial and tangential velocity in the vicinity

of the wall. This agrees (for the tangential part) with the theory of the Rankine

Vortex. It is, however, a relatively small reduction in velocity when compared to

the magnitude of the part load velocity profile.

One can also see that the flow field starts from a forced velocity distribution created

by the runner and approaches a more natural velocity profile shown in Fig. 6.5.

It is reasonable to assume that a longer straight tube would let the flow approach

this flow pattern.

There is also some rotation in the draft tube at BEP operation. This is usually

induced in order to improve upon the draft tube pressure recovery [8].

6.3.1 Flow profile similarities

The velocity profile for full load operation and BEP are almost identical, but the

velocity profile for part load operation is substantially different. All the velocity

profiles approach a Rankine Vortex to some degree, with the location of the max-

imum velocity shifted in the radial direction. The tangential flows seem relatively

unchanged through the draft tube cone, the only change being in magnitude and

that it’s a bit smoother further down from the runner.

By comparing the reduced velocity profiles for each operating point at the same

position, the similarity between the operating points become more clear. The

reduced velocity profile for BEP and full load are almost identical, whereas the

reduced velocity profile for part load is drastically different. For part load opera-

tion, the large tangential component of the velocity will force water out towards



Chapter 6. Discussion 36

the draft tube wall, creating a large pressure gradient which will dominate the flow

field close to the wall. This also contributes to a large kinetic energy, accounting

in large for loss of hydraulic efficiency at part load.

As the water moves down the draft tube cone, the effects of the runner diminish

and the flow approaches a more typical rotating pipe-flow.

6.3.2 Back flow: The dead core

As seen in the velocity profiles for part load operation, there is quite a large

region of axial flow with negative velocity. The high rotational speed in part load

operation creates a large pressure gradient when approaching the wall. At part

load operation, the flow rate is low, but the rotational velocity is staggeringly

high. Revisiting Equation 2.3, and assuming that the low flow rate causes the

radial velocity, ur, to be negligibly low when compared to uθ, Equation 2.3 can be

reduced to Equation 6.1:
u2θ
r

=
1

ρ
· ∂p
∂r

(6.1)

The rotation forces water out to the wall, preventing a back flow scenario along

the wall that is commonly associated with expanding flows in adverse pressure

gradients [11]. This will, according to Equation 6.1, leave the flow with a very

high pressure along the wall. Evaluating the z-component of Equation 2.3, and

assuming positive z-direction in the flow direction, the terms of the equation take

on the following:

r∗-range gz uz
∂uz
∂z

∂p
∂z

0.0− 0.5 > 0 ˜−1.125 ˜−2.09 > 0
0.5− 0.8 > 0 < 0 > 0 > 0
0.8− 1.0 > 0 > 0 < 0 > 0

Table 6.2: Axial pressure gradients in the draft tube cone. The values for
r∗ = 0− 0.5 are taken as approximate values from Fig. 5.1.

Solving for the pressure gradient, we get Equation 6.2

1

ρ
· ∂p
∂z

= gz − uz ·
∂uz
∂z
− ur ·

∂uz
∂r
≈ gz − uz ·

∂uz
∂z

(6.2)
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Thus, there is a positive pressure gradient in the flow direction for the whole cross

section of the draft tube cone. The large radial pressure along the wall will force

the water towards the center, and with the positive pressure gradient in the flow

direction, the flow rate is too low to overcome this obstacle, causing back flow in

the draft tube center. This phenomena is illustrated in Fig. 6.3.

Figure 6.3: Direction of decreasing pressure in the draft tube. The pressure
gradients indicate where the water is forced by the pressure.

This region of back flow is accompanied by an increase in the water velocity close

to the wall, since the entire flow rate plus the recirculated water must pass through

that area. This is likely one of the reasons for the lower efficiency at this operating

point.

Figure 6.4: Reduced velocities for position I (left) and position II (right) at
different swirl numbers.
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Figure 6.5: Axial velocity for swirling flow at different swirl intensities [3].

From Fig. 6.4 we see that the velocity changes from position I to position II are

in the direction of the flow illustrated in Fig. 6.5, and that the retardation has

occurred mainly along the draft tube wall.

For BEP and full load operation, the turbine’s design provides a high flow in the

center region of the draft tube cone, preventing back flow. The flow immediately

downstream the runner will be dominated by the runner design, before it reverts

towards a Rankine Vortex further downstream. As the cross section area increases,

the axial velocity will decrease, and without a large axial velocity, there is a real

possibility that the axial velocity will drop below zero. This phenomena is often

dubbed Vortex Breakdown [3]. The region of high axial velocity immediately

downstream the runner may in this way prevent the formation of a dead core with

back flow further downstream, which in turn will increase the turbine performance.

6.3.3 The Rankine Vortex

When moving downstream, the tangential velocity profiles exhibit a shift from the

forced velocity profiles generated by the turbine, towards a Rankine Vortex.

For part load, transition can be seen in the reduction of the largest velocity gradient

around r∗ = 0.9 and the following increase in the velocity gradient from r∗ = 0 to

r∗ = 0.5. It is likely that, if not for the bend in the draft tube, the peak tangential
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velocity would move in towards the center of the draft tube further downstream,

allowing for a free vortex outside of the solid body rotation zone.

The tangential velocity profile for full load and BEP have similar properties, a

forced velocity profile in position I due to the runner, and a similar transition as

for part load. Large gradients are reduced, particularly the gradient in r∗ = 0.9−1.

For BEP, the velocity profile in position I is for the most part a constant veloc-

ity profile, with some changes at the wall and at the draft tube center. Further

downstream, this profile shifts towards a solid body rotation, with some wall ef-

fects distinguishable close to the wall. It is therefore reasonable to assume that

the tangential velocity profile for BEP will approach a Rankine Vortex further

downstream.

For full load, the velocity profile shifts towards a solid body rotation with small

effects of the wall near r∗ = 1. This is due to the tangential velocity being close

to zero near the wall already.

6.3.4 Blade wakes

Fig. 5.4 shows the phase averaged data for BEP from the LDA measurements, and

it clearly illustrates the velocity field in the draft tube cone, as well as showing the

effects of the runner blades. We see how the velocity drastically increases towards

the middle, and how greatly it depends on the runner blades, causing pressure

pulsations. These pulsations will cause fatigue loads to the runner, and in some

cases, unacceptable power swings.

Wakes from the runner blades can be seen in some of the phase averaged plots.

In particular for BEP operation, shown in Fig. 5.4, the phase resolved tangential

velocity immediately downstream the runner shows unmistakable traces of the

runner blades.
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This becomes even more clear when plotting the contours around threshold values,

shown in Fig. 6.6. The runner blades can be seen in the tangential velocity for all

operating points at position I.

Figure 6.6: Contours of phase resolved tangential velocity at BEP, position I.

The tangential flow field shown at BEP in position I is in many ways the design

fingerprint of the runner. It clearly shows how the water exits the turbine at the

different operating points. Traces of the runner blades disperse quickly through

the draft tube cone, and are no longer detectable at position II. This is due to the

amount of shear introduced by these large local velocity gradients, and they will

therefore even out after a relatively short time.

6.3.5 Turbulence

Turbulence is calculated as the normal Reynolds stresses, u′2 and v′2. As mentioned

earlier, it was only possible to calculate the normal Reynolds stresses, due to

limitations in the experimental setup regarding laser strength and back scattering.

In terms of using the data for simulation validation, they are sufficient, but not

ideal. The graphs given in Chapter 5 give an idea as to how the expected results

should be, and can be a great help in picking the correct turbulence model for

numerical simulation.
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For both full load and BEP operation, the Reynolds stresses appear to show sig-

nificant variation only at the draft tube center and in the vicinity of the wall. The

high level of stresses in the draft tube center can be explained by the chaotic na-

ture of the flow in this position. When approaching the wall, the viscous boundary

layer becomes dominant, causing large stresses on the flow.

For part load operation, the normal stresses are an order of magnitude larger

than at the other operating points. There is also a maximum of stresses around

r∗ = 0.7 − 0.8, which is approximately at the interface between the positive and

negative axial flow. This is also an area of large velocity gradients, seen in Fig. 5.1,

which could contribute to the large turbulence. As mentioned earlier, there is some

uncertainty in the measurement position’s coordinates.

6.4 CFD results

Velocity profiles for BEP have been simulated by Ruben Moritz, and are shown in

Fig. 5.9 and Fig. 5.10. The simulated velocity profiles show some agreement with

the measured results for the axial velocity component, with the largest discrepancy

occurring in the draft tube center. The tangential velocity profiles show little

agreement, with an exaggerated velocity near the draft tube center. Even though

the velocity magnitudes are different for the tangential velocity components, traits

of the velocity profile seem to agree with the measured profile. In the CFD results,

a velocity peak is clearly visible close to the draft tube center. By close inspection,

a similar peak is visible in the measured velocity profile, but it is much smaller.

There is reason to believe that a higher spatial resolution in the measurements

will reveal a similar-looking peak in the tangential velocity profile, even though

the magnitude will be much smaller.

According to Ruben Moritz, the mesh used for the simulation caused a small

extension of the runner hub, artificially creating a short semi-tapered cone [20].

This would limit the axial velocity and increase the tangential velocity close to the

center. This could account for some of the discrepancies in the simulated results.
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Another theory is that the discrepancies can be attributed to the measurements

for BEP were carried out at different operating conditions than those given in

Table 3.1. There is reason to believe that the difference in velocity magnitude can

be attributed to the difference in head and flow. However, comparing the velocity

profiles in Fig. 6.2, the tangential velocity profile does not exhibit more sensitivity

to a change in operating conditions than the axial velocity profile. The difference

between simulated and measured velocity profiles is much greater in the tangential

direction than in the axial direction, but both velocity components show little

sensitivity to a slight change in operating point. Since the error seems to be limited

to the tangential velocities, it can not be attributed to the measurements being

performed at slightly different operating conditions than prescribed by Table 3.1.

There is reason to believe that the discrepancies in simulated tangential velocity

stems from numerical errors in the simulation, such as errors in the meshing.
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7.1 Conclusions

The velocity profiles within the draft tube of the Tokke model runner have been

accurately measured, and they have been compared to the CFD results of the

same runner. The measurements were carried out under satisfactory laboratory

conditions, with relatively low uncertainties in the measured velocity profiles, and

the measurements for turbulence show agreement with expected results. The mea-

surements show that the Tokke runner has moderate swirl at BEP, which prevents

a low-pressure region near the draft tube wall, enhancing draft tube performance.

Additionally, the runner shows an increased discharge near the center of the draft

tube cone, minimizing the risk of back flow. The post-processed results show dis-

tinct traces from the runner in the draft tube flow, and large normal stresses in

the presence of large velocity gradients.

Comparisons with CFD results show good agreement with the measured axial

velocity profiles, but large discrepancies in the tangential flow. However, some

traits of the tangential velocity profile can be seen in the simulations, but the

velocity magnitudes are unacceptable.

Measurements of turbine performance and pressure pulsations were not performed

due to limited laboratory time.
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7.2 Further Work

More accurate turbulence measurement could be performed with a shaft encoder

installed and with the 2D probe working. 3D anemometry is recommended in order

to calculate the complete Reynolds stress tensor. 3D velocimetry will also enable

solving for all the terms in the Euler equations, yielding the pressure gradients

in the draft tube cone, which in turn yields the pressure field in the draft tube

when coupled with pressure measurements along the wall. This would also enable

correlation between transient velocity phenomena and variations in pressure.

In order to better understand transient phenomena, PIV measurements should

be performed in the draft tube cone. Phenomena that can be investigated with

this method is the formation of the dead core, the formation of the RVR, vortex

breakdown, and RVR precession frequencies.

Better agreement with simulated results and measured results could be achieved

by CFD-simulation using same operating conditions as in this thesis, particularly

for part load and full load. Comparisons with the measured normal stresses should

also be performed.
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A | Laser Data Sheet

The data sheet for the laser system was obtained from the user manual of the LDA

system. It describes in great detail the LDA system used in this thesis.
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B | Calibration Documents

The calibration reports for the generator torque, the friction torque, flow rate,

differential pressure, and inlet pressure can be found here. The calibrations were

performed at the Waterpower Laboratory, following the standard procedures for

this type of calibration.
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CALIBRATION  REPORT

CALIBRATION  PROPERTIES

Calibrated  by:  Carl  Bergan  

Type/Producer:  FHCW36W1-­ACKAY  /  Fuji  Electric  

SN:  N3M7766T  

Range:  -­50  -­  50  bar  

Unit:  kPa  

CALIBRATION  SOURCE  PROPERTIES

Type/Producer:  Pressurements  deadweight  tester  P3223-­1  

SN:  66256  

Uncertainty  [%]:  0,01  

POLY  FIT  EQUATION:

Y=  -­123.4925116E+3X^0  +  62.6940117E+3X^1

CALIBRATION  SUMARY:

Max  Uncertainty        :  Inf  [%]  

Max  Uncertainty        :  0.11945150  [kPa]  

RSQ                                              :  1.000000  

Calibration  points  :  31  

Figure  1  :  Calibration  chart  (The  uncertainty  band  is  multiplied  by  1000  )

_______________________________________

Carl  Bergan
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CALIBRATION  VALUES

Value  [kPa] Voltage  [V]
Best  Poly  Fit

[kPa]
Deviation  [kPa] Uncertainty  [%]

Uncertainty

[kPa]

100.15107096 3.568514 100.23194381 -­0.08087286 0.078017 0.07813460
110.16617805 3.728806 110.28131534 -­0.11513728 0.069667 0.07674990
120.18128515 3.887419 120.22538384 -­0.04409870 0.065701 0.07896064
130.19639224 4.047206 130.24307170 -­0.04667946 0.061127 0.07958517
140.21149934 4.205739 140.18214229 0.02935705 0.053951 0.07564578
150.22660644 4.366537 150.26323251 -­0.03662607 0.044391 0.06668730
160.24171353 4.525215 160.21139279 0.03032074 0.044800 0.07178866
170.25682063 4.684813 170.21719787 0.03962276 0.038009 0.06471346
180.27192772 4.846488 180.35327244 -­0.08134472 0.042415 0.07646212
190.28703482 5.004530 190.26156363 0.02547118 0.036347 0.06916286
200.30214191 5.162530 200.16722868 0.13491323 0.034843 0.06979034
220.33235611 5.481835 220.18572320 0.14663291 0.030977 0.06825306
240.36257030 5.801508 240.22732202 0.13524828 0.025258 0.06070966
260.39278449 6.121151 260.26701631 0.12576818 0.023296 0.06066156
300.45321287 6.764796 300.61967074 -­0.16645787 0.039757 0.11945150
340.51364125 7.399644 340.42084282 0.09279843 0.026285 0.08950298
360.54385545 7.721100 360.57421222 -­0.03035677 0.020555 0.07411008
380.57406964 8.037890 380.43508505 0.13898458 0.015876 0.06041961
400.60428383 8.360698 400.67320123 -­0.06891740 0.018127 0.07261675
410.61939092 8.518145 410.54415357 0.07523735 0.015897 0.06527732
420.63449802 8.681732 420.80006677 -­0.16556876 0.021281 0.08951393
430.64960511 8.838419 430.62340630 0.02619882 0.016469 0.07092244
440.66471221 8.998681 440.67090756 -­0.00619535 0.014683 0.06470099
450.67981931 9.158291 450.67751380 0.00230551 0.016641 0.07499894
460.69492640 9.317464 460.65669249 0.03823391 0.015766 0.07263225
470.71003350 9.477423 470.68515556 0.02487793 0.014922 0.07023966
480.72514059 9.636606 480.66498479 0.06015581 0.017254 0.08294249
490.74024769 9.798846 490.83644408 -­0.09619639 0.014973 0.07347674
500.75535478 9.958927 500.87256862 -­0.11721383 0.015028 0.07525550
100.15107096 3.569086 100.26777774 -­0.11670679 0.096805 0.09695141
0.000000 1.969028 -­0.04624555 0.04624555 Inf NaN

COMMENTS:

The  uncertainty  is  calculated  with  95%  confidence.  The  uncertainty  includes  the  randomness  in  the  calibrated  instrument  during  the  calibration,
systematic  uncertainty  in  the  instrument  or  property  which  the  instrument  under  calibration  is  compared  with  (dead  weight  manometer,  calibrated
weights  etc.),  and  due  to  regression  analysis  to  fit  the  calibration  points  to  a  linear  calibration  equation.The  calculated  uncertainty  can  be  used  as
the  total  systematic  uncertianty  of  the  calibrated  instrument  with  the  given  calibration  equation.

Appendix B. Calibration Documents IX



CALIBRATION  REPORT

CALIBRATION  PROPERTIES

Calibrated  by:  Carl  Bergan  

Type/Producer:  FHCW36W1-­ACKAY  /  Fuji  Electric  

SN:  N3M7762T  

Range:  -­50  -­  50  bar  

Unit:  kPa  

CALIBRATION  SOURCE  PROPERTIES

Type/Producer:  Pressurements  deadweight  tester  P3223-­1  

SN:  66256  

Uncertainty  [%]:  0,01  

POLY  FIT  EQUATION:

Y=  -­123.4029305E+3X^0  +  62.6675364E+3X^1

CALIBRATION  SUMARY:

Max  Uncertainty        :  Inf  [%]  

Max  Uncertainty        :  0.08238731  [kPa]  

RSQ                                              :  1.000000  

Calibration  points  :  30  

Figure  1  :  Calibration  chart  (The  uncertainty  band  is  multiplied  by  1000  )

_______________________________________

Carl  Bergan

Appendix B. Calibration Documents X



CALIBRATION  VALUES

Value  [kPa] Voltage  [V]
Best  Poly  Fit

[kPa]
Deviation  [kPa] Uncertainty  [%]

Uncertainty

[kPa]

0.000000 1.975083 0.37065083 -­0.37065083 Inf NaN
100.15107096 3.567598 100.16962074 -­0.01854979 0.082263 0.08238731
110.16617805 3.727182 110.17040291 -­0.00422486 0.070363 0.07751579
120.18128515 3.886257 120.13919505 0.04209010 0.062481 0.07509030
130.19639224 4.046721 130.19510559 0.00128665 0.056863 0.07403338
140.21149934 4.206555 140.21148661 0.00001273 0.052981 0.07428499
150.22660644 4.366058 150.20719170 0.01941474 0.045691 0.06864049
160.24171353 4.525651 160.20846578 0.03324775 0.043076 0.06902508
170.25682063 4.685033 170.19656377 0.06025686 0.040731 0.06934736
180.27192772 4.845520 180.25386611 0.01806161 0.036399 0.06561766
190.28703482 5.004610 190.22364069 0.06339413 0.034469 0.06558975
200.30214191 5.164502 200.24369873 0.05844319 0.031441 0.06297703
220.33235611 5.483303 220.22213608 0.11022002 0.027966 0.06161770
240.36257030 5.803237 240.27164610 0.09092420 0.025286 0.06077768
260.39278449 6.123783 260.35943944 0.03334505 0.021861 0.05692380
300.45321287 6.762144 300.36398327 0.08922960 0.018367 0.05518412
340.51364125 7.402044 340.46492528 0.04871597 0.016989 0.05785083
360.54385545 7.721382 360.47705527 0.06680018 0.016125 0.05813864
380.57406964 8.041240 380.52176449 0.05230514 0.015111 0.05750792
400.60428383 8.361462 400.58928744 0.01499639 0.014245 0.05706766
410.61939092 8.521777 410.63581110 -­0.01642018 0.014788 0.06072124
420.63449802 8.681091 420.61963846 0.01485956 0.015406 0.06480335
430.64960511 8.841386 430.66493558 -­0.01533047 0.014914 0.06422514
440.66471221 9.000692 440.64825390 0.01645831 0.015969 0.07036982
450.67981931 9.161257 450.71049160 -­0.03067230 0.013138 0.05921241
460.69492640 9.321747 460.76797292 -­0.07304652 0.013339 0.06145330
470.71003350 9.480984 470.74696393 -­0.03693044 0.013958 0.06570405
480.72514059 9.641579 480.81105685 -­0.08591626 0.014141 0.06797985
490.74024769 9.801412 490.82744223 -­0.08719454 0.013352 0.06552514
500.75535478 9.961352 500.85048081 -­0.09512602 0.013119 0.06569623

COMMENTS:

The  uncertainty  is  calculated  with  95%  confidence.  The  uncertainty  includes  the  randomness  in  the  calibrated  instrument  during  the  calibration,
systematic  uncertainty  in  the  instrument  or  property  which  the  instrument  under  calibration  is  compared  with  (dead  weight  manometer,  calibrated
weights  etc.),  and  due  to  regression  analysis  to  fit  the  calibration  points  to  a  linear  calibration  equation.The  calculated  uncertainty  can  be  used  as
the  total  systematic  uncertianty  of  the  calibrated  instrument  with  the  given  calibration  equation.
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CALIBRATION  REPORT

CALIBRATION  PROPERTIES

Calibrated  by:  Carl  Bergan  
Type/Producer:  
SN:  V4331-­9  
Range:  
Unit:  kg  

CALIBRATION  SOURCE  PROPERTIES

Type/Producer:  Calibrated  weights  from  the  Norwegian  Metrology  Service  
SN:  -­  
Uncertainty  [%]:  -­  

POLY  FIT  EQUATION:

Y=  +  4.94233453E+0X^0  +  3.56050316E+0X^1

CALIBRATION  SUMARY:

Max  Uncertainty        :  3.050197  [%]  
Max  Uncertainty        :  0.195622  [Nm]  
RSQ                                              :  0.996974  
Calibration  points  :  20  

Figure  1  :  Calibration  chart  (The  uncertainty  band  is  multiplied  by  10  )

_______________________________________
Carl  Bergan
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CALIBRATION  VALUES

Value  [Nm] Voltage  [V]
Best  Poly

Fit  [Nm]
Deviation  [Nm] Uncertainty  [%]

Uncertainty

[Nm]

6.413417 0.282346 5.947627 0.465790 3.050197 0.195622
9.392601 1.156561 9.060273 0.332328 1.451454 0.136329
12.371785 2.004324 12.078738 0.293048 0.868079 0.107397
15.350969 2.823888 14.996796 0.354174 0.822492 0.126261
18.330154 3.671944 18.016302 0.313852 0.977586 0.179193
18.330154 3.759031 18.326378 0.003776 1.012307 0.185557
15.350969 2.950999 15.449377 -­0.098408 0.864223 0.132667
12.371785 2.143939 12.575837 -­0.204052 0.866651 0.107220
9.392601 1.319573 9.640678 -­0.248077 1.359450 0.127688
6.413417 0.444982 6.526693 -­0.113276 2.859470 0.183390
6.413417 0.414234 6.417216 -­0.003800 2.894625 0.185644
9.392601 1.233979 9.335922 0.056679 1.406125 0.132072
12.371785 2.065743 12.297419 0.074366 0.865852 0.107121
15.350969 2.945771 15.430761 -­0.079791 0.862500 0.132402
18.330154 3.762655 18.339281 -­0.009128 1.013819 0.185835
18.330154 3.783015 18.411773 -­0.081619 1.022025 0.187339
15.350969 2.980893 15.555812 -­0.204843 0.874880 0.134302
12.371785 2.170794 12.671452 -­0.299667 0.867867 0.107371
9.392601 1.342211 9.721281 -­0.328680 1.347812 0.126595
6.413417 0.475706 6.636088 -­0.222671 2.824769 0.181164

COMMENTS:

The  uncertainty  is  calculated  with  95%  confidence.  The  uncertainty  includes  the  randomness  in  the  calibrated  instrument  during  the  calibration,
systematic  uncertainty  in  the  instrument  or  property  which  the  instrument  under  calibration  is  compared  with  (dead  weight  manometer,  calibrated
weights  etc.),  and  due  to  regression  analysis  to  fit  the  calibration  points  to  a  linear  calibration  equation.The  calculated  uncertainty  can  be  used  as
the  total  systematic  uncertianty  of  the  calibrated  instrument  with  the  given  calibration  equation.
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CALIBRATION  REPORT

CALIBRATION  PROPERTIES

Calibrated  by:  Carl  Bergan  

Type/Producer:  HBM  Z6FC3  

SN:  V4536-­4  

Range:  50-­500  kg  

Unit:  kg  

CALIBRATION  SOURCE  PROPERTIES

Type/Producer:  Calibrated  weights  from  the  Norwegian  Metrology  Service  

SN:  

Uncertainty  [%]:  

POLY  FIT  EQUATION:

Y=  -­194.76444248E+0X^0  +  483.04451254E+0X^1

CALIBRATION  SUMARY:

Max  Uncertainty        :  Inf  [%]  

Max  Uncertainty        :  8.452808  [Nm]  

RSQ                                              :  0.999220  

Calibration  points  :  62  

Figure  1  :  Calibration  chart  (The  uncertainty  band  is  multiplied  by  10  )

_______________________________________

Carl  Bergan
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CALIBRATION  VALUES

Value  [kPa] Voltage  [V]
Best  Poly

Fit  [kPa]
Deviation  [kPa] Uncertainty  [%]

Uncertainty

[kPa]

0.000000 0.410646 3.595961 -­3.595961 Inf NaN
58.977897 0.529835 61.169460 -­2.191563 13.407204 7.907287
107.986952 0.630283 109.690456 -­1.703504 7.065710 7.630045
156.996987 0.731147 158.412290 -­1.415303 4.686240 7.357256
206.005258 0.831619 206.944393 -­0.939135 3.442486 7.091701
255.009020 0.931386 255.136282 -­0.127262 2.680214 6.834787
304.021113 1.035067 305.219148 -­1.198036 2.163003 6.575986
353.033010 1.132356 352.213670 0.819340 1.796264 6.341404
402.048337 1.234668 401.635295 0.413043 1.518360 6.104540
451.058372 1.330344 447.850784 3.207589 1.306529 5.893210
500.073406 1.438344 500.019922 0.053484 1.133380 5.667731
549.086381 1.540121 549.182498 -­0.096117 0.996124 5.469582
647.103020 1.741200 646.312688 0.790332 0.791997 5.125040
745.123188 1.947096 745.769782 -­0.646594 0.650646 4.848113
843.139827 2.147145 842.402091 0.737737 0.553365 4.665645
941.118242 2.351661 941.192738 -­0.074495 0.486476 4.578313
1039.116945 2.549372 1036.695846 2.421099 0.442080 4.593730
1137.101731 2.743416 1130.427749 6.673981 0.413694 4.704121
1235.089555 2.957853 1234.010046 1.079508 0.399043 4.928538
1333.069734 3.145622 1324.710785 8.358948 0.390189 5.201493
1431.046384 3.360490 1428.501789 2.544595 0.390509 5.588360
1529.024113 3.537953 1514.224575 14.799538 0.389636 5.957631
1578.014741 3.648419 1567.584175 10.430566 0.393305 6.206415
1627.003606 3.746582 1615.001447 12.002159 0.395663 6.437445
1676.002075 3.831716 1656.124927 19.877148 0.396516 6.645617
1724.989959 3.917986 1697.797167 27.192792 0.397820 6.862360
1773.978824 4.034160 1753.914646 20.064177 0.403788 7.163105
1822.975039 4.094789 1783.200834 39.774205 0.401768 7.324121
1871.970372 4.186937 1827.712680 44.257691 0.404472 7.571590
1920.963255 4.302142 1883.361417 37.601838 0.410692 7.889244
1969.964566 4.372498 1917.346524 52.618042 0.410464 8.085992
1969.964566 4.501549 1979.683916 -­9.719350 0.429084 8.452808
1920.963255 4.454698 1957.052856 -­36.089602 0.433041 8.318562
1871.970372 4.369423 1915.861315 -­43.890944 0.431475 8.077078
1822.975039 4.268232 1866.981609 -­44.006571 0.427579 7.794661
1773.978824 4.160712 1815.044851 -­41.066028 0.422810 7.500555
1724.989959 4.041867 1757.637047 -­32.647088 0.416415 7.183124
1676.002075 3.935476 1706.245864 -­30.243789 0.412111 6.906994
1627.003606 3.826877 1653.787511 -­26.783906 0.407718 6.633594
1578.014741 3.710861 1597.746685 -­19.731943 0.402565 6.352529
1529.024113 3.594883 1541.724191 -­12.700078 0.397910 6.084138
1431.046384 3.360998 1428.747314 2.299070 0.390595 5.589589
1333.069734 3.172108 1337.504695 -­4.434962 0.393563 5.246471
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C | Phase-resolved results

Phase-resolved velocity is available here for all operating points at both measuring

sections.

Figure C.1: Phase resolved tangential (left) and axial (right) velocity for part
load, position I.

Figure C.2: Phase resolved tangential (left) and axial (right) velocity for part
load, position II.
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Figure C.3: Phase resolved tangential (left) and axial (right) velocity for BEP,
position I.

Figure C.4: Phase resolved tangential (left) and axial (right) velocity for BEP,
position II.
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Figure C.5: Phase resolved tangential (left) and axial (right) velocity for full
load, position I.

Figure C.6: Phase resolved tangential (left) and axial (right) velocity for full
loaf, position II.
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