
Evaluation of predictive methods for wind 
turbine performance and wake 
development

Federico Bosio

Master's Thesis

Supervisor: Lars Sætran, EPT

Department of Energy and Process Engineering

Submission date: March 2014

Norwegian University of Science and Technology



 







1 

Abstract 

In this project I have predicted the performance and the wake development for a model 

wind turbine using the actuator disc with Blade Elements Momentum (BEM) methods. 

The flow has been solved using OpenFOAM, an open-source CFD software, in 

combination with the � � � turbulent model. The results obtained have been compared 

with the experimental results from the wind tunnel. There is a good prediction in the 

wake velocity profiles whereas the kinetic turbulent energy is underestimated. 

Furthermore I have predicted the wake development with the simple actuator disc and 

with the Jensen model, methods computationally cheaper but less accurate. Finally the 

wind turbine models have been compared with the drag disc, a simple porous disc using 

for simulate the wind turbine wake. The actuator disc with BEM is fairly closer to the 

wind turbine than the drag disc.    
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Symbols and notations 

� Axial induction factor 

�� Tangential induction factor 

� Disk area 

� Chord length 

�� Lift coefficient 

�� Drag coefficient 

�� Tangential force coefficient 

�� Axial force coefficient 

�� Power coefficient 

�� Thrust coefficient 

 ! Tangential force per meter 

 " Axial force per meter 

# Wind tunnel height 

� Turbulent length scale 

$%  Mass flow rate 

& Number of blades 

� number of blade stations 

' Static  pressure 

( Power 

') Force per length in tangential direction 

'� Force per length in axial direction         

* Local radius 

+ Tip radius  

+, Hub radius 

� Thickness of the cylinder 
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-. Local tip speed ratio 

/0+ Tip speed ratio 

+1 Reynolds number 

/ Thrust force 

23 Velocity far away 

2.45 Relative velocity 

6 Wind tunnel width 

7 Angle of attack 

� Turbulent dissipation 

8 Local pitch angle 

89 Blade pitch angle  

8� Local twist angle 

� Turbulent kinetic energy 

:! Eddy or turbulent viscosity 

; Viscosity 

< Density 

= Solidity of rotor 

> Angle of the relative velocity 

? Angular velocity of the wind turbine rotor 

@ Angular velocity of the flow in the wake 

�
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1 Introduction 

Focus of this project is to describe the wake of an horizontal axis wind turbine with a 

computational approach. Both industry and research have the interest to elaborate a tool 

which is able to predict the wake of wind turbines with reasonable accuracy and 

computational cost. 

1.1 Historical review 
Nowadays the wind energy is a topic of particular interest. In fact, wind energy is one of 

the oldest mechanical energy sources ever discovered. Since ancient times, the human 

being has taken advantage of wind energy. We know that windmills were already in use 

in the Greek civilization. The windmills had a big diffusion in Europe , in particular in 

Northern Europe, from 10th or 11th century. They were used for water pumping, 

grinding grain, sawing wood. The wind was the major energy source in Europe before 

the advent of industrial revolution, after which the energy from fossil fuels forced the 

other energy source off the market. The main advantage of fossil fuels is 

transportability. The water power resisted longer in the challenge against fossil fuels 

since some kind of transportability could be obtained by channels, although its use was 

significantly reduced. The wind power disappeared completely.  

By the late 1960s, however, the wind energy came back as a significant source of 

energy. This is due to some main factors: first, because of a strong increase of the cost 

of fossil fuels, linked to the awareness that this energy source is not unlimited. 

Secondly, people started to acknowledge that many environmental problems were 

linked with the fuel combustion. The wind, on the other hand, is present everywhere and 

in many place his intensity permits an economically sustainable use. Another important 

role is played by the advances in technology which permitted the construction of more 

efficient wind turbines. These technologies were often developed in other fields and 

rearranged for the wind industry. Nevertheless, a much wider political action is needed 

in order to help the diffusion of this energy source. Important political support consists 

in economical help under the form of incentives to industries and funding to research, 

and in updating governmental regulations to allow the interconnection of wind turbines 

with the electrical networks (the discussion in this part was inspired by Manwell [1]). 

1.2 Problem statement 
Nowadays, wind turbines are arranged in large clusters. In the wind farm planning the 

wake effects are important, and they can account to up to 30% of a wind farm nominal 

energy production, as reported by Dahlberg [2]. Therefore, it is important to be able to 

predict the wake losses with an acceptable uncertainty, in order to make investments 

safer and more remunerative. 

In the latest period, CFD methods have been used in order to simulate wind turbines in 

various flow conditions (different direction and intensity of the wind), and the most 

sophisticated CFD software are also able to take account of the terrain geometry . 



10 

Two options are basically possible when modeling the rotor of a wind turbine. The first 

is to completely resolve the blade geometry, including the boundary layer developing on 

the blade surface. The second is to model the rotor as a force field which induces the 

same momentum loss as the real turbine in the fluid flow. 

The simplest of this second class of modelling approaches is the actuator disk model. In 

its basic version, the model is only able to reproduce an axial momentum deficit in the 

wake, but is not able to predict any wake rotation.

A more physically correct approach is to couple the actuator disc with a BEM model, 

where the force per annular rotor element is calculated from tabulated 2D airfoil data. 

The thrust and the tangential force, predicted with the BEM model, are the input data 

for a CFD software that it permits to analyze the flow around the wind turbine.  

This model is able to simulate the wake rotation connected with the torque extraction by 

the spinning rotor. However this model is axisymmetric, hence the forces are 

independent of the blades position. These models can be coupled either with a steady or 

an unsteady flow model (steady in this work). 

In a more complicated model, denominated actuator line, the blades are represented as 

rotating linear force field. This technique requires a considerably higher computational 

cost and it is inherently unsteady. 

The purpose of this work is to integrate an actuator disc rotor model with BEM in a 

CFD solver. The chosen CFD software is the open-source OpenFOAM. The software is 

free of cost and the user has the possibility to implement custom models by editing the 

source files. In the latest OpenFOAM version (2.2.0) a library with a simple axial 

actuation disk model is present. Purpose of this work was to modify the library in order 

to couple a BEM code to the actuation disc implementation. 

The results obtained from the computational approach were compared with 

experimental data from a model wind turbine (D=0.9 m). Wind tunnel experiments are 

performed in a controlled environment, therefore the inlet conditions are easily 

adjustable and the turbine operating conditions could be easily varied, depending on the 

desired test condition. 

The experimental data used for comparison were acquired in 2011 at the NTNU-EPT 

wind tunnel, in order to organize the so-called Blind Test by Krogstad and Eriksen [3], a 

bench marking of state-of-the art numerical tools for the simulation of the performance 

and wake behind a model wind turbine.  
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2 Theory 

As mentioned in the introduction, the core of the program is based on the actuator disk 

couple with a BEM approach. In this section we will give a description of the simple 

Actuator Disk model, required for a complete understanding of the BEM model. The 

model is explained in a similar fashion in different textbooks, and the following 

description is inspired mainly by Manwell [4], Burton [5], Martin [6]. 

2.1 Simple Actuator Disk (Momentum theory) 
A simple one-dimensional model, but it is able, in first approximation, to simulate the 

power extracted from the wind by the wind turbine rotor. This model consists in 

modelling the wind turbine rotor as an ideal permeable disk, frictionless, inducing a 

pressure drop in the flow. 

Let us consider a control volume, whose boundaries consist in the stream tube and in 

two cross-sections of this stream-tube far away from the disk, perpendicular to the main 

flow direction. There is no flow across the stream-tube, and the flow enters and exits 

from the control volume only across the two limiting cross-sections. 

Fig.2.1 Stream-tube (Burton, T., Sharpe, D., Jenkins, N. and Bossanyi, E.(2001)  Wind Energy 
Handbook. John Wiley & Sons, Ltd. page 43) 

This model uses these assumptions (in addition to the assumption of the ideal disk):   

� Incompressible fluid, < � �AB�
� Homogenous fluid 

� Steady-state flow 
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According to the previous assumptions, the mass flow rate must be the same in all the 

cross-sections of the stream-tube: 

<�323 � <�2C � <�D2D � $% (2.1) 

The subscript E indicates the condition far away upstream, � indicates the conditions at 

the disk level, F indicates the conditions in the far wake.  

It is common practice to introduce �, the axial flow induction factor, and to state the 

velocity at the disk as: 

2C � 23GH � �I (2.2) 

If we consider the conservation of momentum law applied to the control volume: 

/ � 23G<�2I3 � 2DG<�2ID (2.3) 

/ is the Thrust and is equal and opposite to the rate of change of momentum in the 

control volume; according to the mass conservation law we can write: 

/ � $% G23�2DI (2.4) 

Or 

/ � <�2CG23�2DI � <�23GH � �IG23�2DI (2.5) 

The Thrust is also expressed as the pressure difference across the actuator disk: 

/ � G'CJ � 'CKI� (2.6) 

The two values of pressure across the disk are unknown but according to the assumption 

we can apply the Bernoulli’s equation to express this pressure difference by means of 

other variables. 

Applying the Bernoulli equation to the upstream section: 

'3 L HM<23N � 'CJ L HM<2CN (2.7) 

While, for the upstream section: 

'CK L HM<2CN � '3 L HM<2DN (2.8) 

Since the flow is unbounded, we assume that the pressure far downstream reaches the 

same value it had far upstream from the disc. 

Hence the difference of pressure across the disk can be expressed as: 

G'CJ � 'CKI � HM<G23N � 2DN I (2.9) 
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Solving equation (2.6) with equation (2.9), we obtain: 

/ � HM<�G23N � 2DN I (2.10) 

Equating the thrust from equation (2.5) and from equation (2.10), we obtain: 

<�23GH � �IG23�2DI � HM<�G23N � 2DN I (2.11) 

Solving equation (2.11) we obtain: 

2D � 23GH � M�I (2.12) 

Now we can express the thrust only by the upstream variables and by the axial induction 

factor: 

/ � M<�23N �GH � �I (2.13) 

The thrust is characterized by a non-dimensional thrust coefficient ��: 

�� � /ON <�23N
(2.14) 

�� � P�GH � �I (2.15) 

Analyzing the trend of �� we find that the maximum of �� occurs for � � ON; this means 

2D � Q as from equation (2.12). For � R ON, 2D becomes negative: above this value the 

theory breaks down, and can be applied only via an empirical correction. 

Furthermore we can evaluate the power extracted from the air flow: 

( � /2C � M<�23S �GH � �IN (2.16) 

As for the thrust we can define a non-dimensional coefficient for the power: power 

coefficient ��: 

�� � (ON <�23S
(2.17) 

�� � P�GH � �IN (2.18) 

From the analysis of the power coefficient expression, we find that the maximum value 

of ��, known as the Betz limit, is ��TUVW � OXNY � QZ[\ and occurs for � � OS. The Betz 

limit is the maximum theoretically possible ��, while in practice we always lower ��
values. 
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Fig.2.2 Variation of power and thrust coefficients in function of axial induction factor (Martin O. 
L. Hansen (2008) Aerodynamics of Wind Turbines, Second Edition. Earthscan. page 32) 

2.2 Wake rotation 
The previous analysis assumes only axial momentum loss, meaning that the wake is not 

rotating. This implies that we do not take into account the kinetic energy lost to impart a 

rotation to the fluid, leading to a performance overestimation. We can extend this theory 

taking into account the wake rotation. The flow behind the wind turbine rotates because 

it receives, as a reaction, the same torque the rotor experiences, but in the opposite 

direction. In this analysis it is assumed that the free stream flow is not rotating, while 

after flowing through the disk the flow has a constant rotation which does not evolve in 

the wake. All the rotation is given to flow across the disk. For a correct analysis, three 

new variables are introduced: 

@ is the angular velocity of the flow in the wake 

? is  the angular velocity of the wind turbine rotor

�] is the tangential induction factor, it is  defined as: 

�] � @^M?
Furthermore, we consider an annular stream tube that, at the disk, is characterized by a 

radius * and by a thickness �*. Therefore, all the variables are a function of the local 

radius, which allows the axial induction factor � and the tangential induction factor �]
to vary across the rotor. The cross section area of the annular stream tube is equal to 

2_*�*. 
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Fig.2.3 Annular stream tube (Manwell, J. F., McGowan, J. G. and Rogers, A. L.  (2009)    Wind 
Energy Explained: Theory, Design and Application, Second Edition.  John Wiley & Sons, Ltd. page 

97) 

Expression (2.13) can be extended at the case with rotation with the only difference that 

the area is differential so also the thrust is differential: 

�/ � M�GH � �I<23N �� � M�GH � �I<23N M_*�* (2.19) 

We can also obtain a relation for the thrust acting on an annular element �/, by 

considering a control volume that rotates with the same angular velocity of the blades. 

For a reference system moving with the blades the difference of pressure across the disk 

is equal to difference of kinetic energy across the disk, so we can write: 

G'CJ � 'CKI � <G? � HM@I@*N (2.20) 

Since the flow, when flowing through the disc, suffers an increase in its relative 

rotational speed from ? to ? L @, the �/ can be expressed as: 

�/ � G'CJ � 'CKI�� � <G? � HM@I@*NM_*�* (2.21) 

Using the tangential induction factor we have: 

�/ � M��GH � ��I<?N*NM_*�* (2.22) 

Equaling the expression (2.19) and (2.22) we obtain: 

�GH � �I�]GH L ��I � ?N*N23N � -.N (2.23) 

Where -. is the local speed ratio. In this expression the two induction factors and the 

radius are linked together, so for a fixed radius � and �] are dependent on each other. 
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By taking the wake rotation into account, we can also evaluate the torque. Applying the 

conservation of angular momentum we obtain the torque due to the infinitesimal 

annular cross section area: 

�` � �$% �F*�* � M��GH � �I<23?*NM_*�*  (2.24)

By knowing the torque, it is easy to obtain the relation for the power extracted from the 

flow: 

�( � ?�`  (2.25)

Substituting �` in (2.25), expressing �� in function of � and -., and finally integrating 

along the radius we can obtain the power extracted in function of �. With mathematical 

analysis we can evaluate the distribution of � that permits to achieve the maximum 

value of the power coefficient. 

An important parameter for the wind turbine is the tip speed ratio /0+, defined as: 

/0+ � ?+^2  (2.26)

Where + is the tip radius. This parameter has a relevant influence on the behavior of 

machine, and physically it indicates how fast the turbine is rotating with respect to the 

incoming flow. We can estimated the ��TUVW in function of /0+, see Fig.2.4. 

Fig.2.4 Maximum power coefficient in function of tip speed ratio (Manwell, J. F., McGowan, J. G. 
and Rogers, A. L.  (2009)    Wind Energy Explained: Theory, Design and Application, Second 

Edition.  John Wiley & Sons, Ltd, page 100)

From Fig.2.4 we can notice that there is a strong influence of /0+ and the Betz limit 

represent the asymptote value. 

2.3 Blade Element Momentum (BEM) theory 
This theory permits to evaluate the steady load acting on the blades and to consequently 

estimate the thrust, the torque and the power for different wind conditions and angular 
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velocities of the rotor, only by knowing the geometry of the blades. The BEM theory is 

a steady model, hence it is not possible provide the load fluctuation due to the blades 

position. This method uses annular stream tube as the momentum theory, but the ring 

thickness is finite; Applying the conservation of momentum we have seen that we can 

express the thrust �/ (2.19) and the torque �` (2.24), acting on the annular tube, as a 

function of the induction factors. An optimization analysis can evaluate which airfoil 

distribution along the radius allows to obtain the maximum power coefficient, but it is 

not possible evaluate the performance of a generic rotor working in generic condition 

because we don’t know the induction factors distribution. The BEM model adds 

information about the geometry and also estimate the �/ and the �` with an 

aerodynamic analysis of the blade elements that sweep out the annular ring. Equating 

the �/ and the �` obtained via an aerodynamic analysis with those obtained via 

momentum analysis we can estimate the induction factors. This is an iterative process 

that converges when the induction factor does not change over successive iterations. 

Fig 2.5 Blade elements (Manwell, J. F., McGowan, J. G. and Rogers, A. L.  (2009)    Wind Energy 
Explained: Theory, Design and Application, Second Edition.  John Wiley & Sons, Ltd. page 119)

This model is based on these assumptions: 

• There is not radial dependency, so every element does not influence other 

elements and it is not influenced by other elements

• The force acting on the blade element is spread on the annular ring swept out by 

the element 

The force acting on the profile is the vector sum of lift, the force perpendicular to the 

relative velocity and drag, the force parallel to the relative velocity. The relative 

velocity is the vector sum of the axial velocity 23GH � �I, at the disk level, and the 

tangential force ?*GH L ��I, composed by the velocity of the blade element and the 

induced angular velocity. 
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Fig 2.6 Velocities and angles at rotor plane (Martin O. L. Hansen (2008) Aerodynamics of Wind 
Turbines, Second Edition. Earthscan. page 47)

In the figure we can observe the velocities and the angles. The angle 8 is the local pitch 

angle, defined as the sum between the blade pitch angle 89 and the local twist angle 8�. > is the angle between the rotor plane and the relative velocity. The angle of attack 7 is 

given by: 

7 � > � 8  (2.27)

From the picture is easy to link the > angle with the velocities: 

abc> � GH � �I23GH L ��I?*  (2.28)

2.45 dec> � GH � �I23  (2.29)

2.45 fgd> � GH L ��I?*  (2.30)

The lift h and the drag i (force per length) can be evaluated with this expression: 

h � HM<2.45N ��5  (2.31)

i � HM<2.45N ��C  (2.32)

Where �5 is the lift coefficient and �C is the drag coefficient. Both are function of the 

angle of attack. 

We can project the parallel and perpendicular forces to the rotor plane: 

') � h� fgd> L i� dec>  (2.33)

'� � h� dec> � i� fgd>  (2.34)

?*GH L ��I

2.4523GH� �I
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If we can express ') and '� as: 

') � HM<2.45N ��"  (2.35)

'� � HM<2.45N ��!  (2.36)

And then,  if we divided (2.33) and (2.34) for  
ON <2.45N � we obtain: 

�" � �5 fgd> L �C dec>  (2.37)

�! � �5 dec> � �C fgd>  (2.38)

Knowing ') and '� we can evaluate the thrust �/ and the torque �` acting on this 

ring:  

�/ � &')�* (2.39) 

�` � *&'��* (2.40) 

Equating the equation (2.39) with (2.19), we can find an expression for �: 

� � H
j klmnopqr L H

 (2.41)

Equating the equation (2.40) with (2.24), we can find an expression for ��: 
�� � Hj klmo stkopqu � H  (2.42)

Where =is the solidity and it’s defined as: 

=G*I � �G*I&M_*  (2.43)

The BEM algorithm consist in: 

1. Give a guess value to � and to ��
2. Compute > with equation (2.28) 

3. Compute 7 with equation (2.27) 

4. Compute �5 and �C�(usually they are read from table) 

5. Compute �" and �! with equations (2.37) and (2.38) 

6. Compute � and �� with equations (2.42) and (2.43) 

7. Compare the new values of � and �� with those of previous iteration, if the 

difference is greater than the admissible tolerance it’s need to return to point 2 

8. Compute the thrust and the torque acting on the ring with the equation (2.39) 

and (2.40) 
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This algorithm must be applied for all the annular rings in order to obtain the total thrust / and the total torque `. Knowing the torque we can calculate the power: 

( � `?  (2.44)

In the end we can evaluate thrust and power coefficient with equations (2.14) and 

(2.17). 

2.3.1 Tip loss factor 
The difference of pressure between the two disk faces induces a flow around the tip. 

The effect is a lift and drag reduction. This effect is very strong on the tip, while it 

decreases closer to the rotor center. Furthermore, this effect is more important if the 

number of blades is lower. There are many methods to take this effect into account. In 

the current work, the Prandtl’s tip loss factor correction was used. This method consist 

to modify the equation (2.19) and (2.24) including a correction factor  : 

�/ � M�GH � �I<23N  M_*�* (2.45) 

And: 

�` � M��GH � �I<23?*N M_*�*  (2.46)

Where   is calculated as: 

 � M_ fgdKO vwxy z�&�G+ � HIM* dec> {|  (2.47)

The change of equation (2.19) and (2.24) implies the change of the expressions (2.41) 

and (2.42) in: 

� � H
j} klmnopqr L H

 (2.48)

And: 

�� � Hj} klmo stkopqu � H  (2.49)

Hence, in the BEM algorithm ,we must use expressions (2.48) and (2.49) instead of 

(2.41) and (2.42). 



21 

2.3.2 High value of  �
As we have previously observed, the momentum theory is unable to predict the 

behavior of a wind turbine for large value of axial induction factor. Many empiric 

models exist, which describe the thrust coefficient �� as a function of �, for high values 

of the axial induction. Probably one of the most famous is the method by Glauert: 

�� � P�GH � �I � ~ H\ (2.50)

�� � P� vH � HP GZ � \�I�|  � � H\ (2.51)

However, in this work, the method illustrated by Martin [7] was used: 

�� � P�GH � �I If � ~ �� (2.53)

�� � P���N L GH � M��I�� If � � �� (2.54)

Where �� assumes the value of 0.2. This implies that the expression (2.48) is modified 

as follows: 

If � ~ ��
� � H

j} klmnopqr L H
(2.55) 

If � � ��
� � HM �M L �GH � M��I � �G�GH � M��IN L PG���N � HI� (2.56) 

Where: 

� �  decN >=�"
(2.57) 

Therefore, in the BEM algorithm we must use expression (2.48) instead of (2.41) to 

evaluate � and if � � �� recalculate � via expression (2.56). 

2.4 Turbulence 
From experimental observations we know that the flow behind a wind turbine is 

turbulent, exception made for the region right behind the rotor disk, characterized by an 

ordered vortex structure. The actuator disk model is not able to correctly represent the 

vortex structure behind a wind turbine, since the axisymmetric model cannot reproduce 

the tip vortices shed by the blade extremities. For this reason, the flow will be always 
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treated as turbulent, and we do not expect the actuator disc to output very precise 

predictions close to the turbine disk. Further downstream, after the vortex structure 

breakdown, the accuracy of the model increases.  

For this reason, the CFD solver must be couple with a turbulence model. In this section, 

we will give a simple description of the turbulence closure problem, with particular 

attention to the � � � model, which was employed for our calculations. The description 

is based on the text book by Versteeg [8].  

A turbulent flow is characterized by a high value of Reynolds number. The laminar flow 

pattern breaks down into a more chaotic flow, intrinsically unsteady, which means that 

the flow proprieties (velocity and pressure for an incompressible flow) vary in a random 

way. The turbulent flow is dominated by turbulent vortices, the so called “eddies”, 

whose size span covers a wide range of length scales. The largest eddies extract energy 

from the mean flow (this is called vortex stretching), then the energy is transmitted 

down to progressively smaller and smaller eddy, finally the smallest eddies dissipate 

energy for viscous action, and convert kinetic energy into thermal energy. This 

mechanism is called energy cascade. The smallest scale (called Kolmogorov scale) is 

characterized by Reynolds number equal to 1. The presence of eddies of different 

scales, that interacts with each other, improve the heat, mass and momentum exchange 

and induce a better mixing. 

Since turbulence is a random process we can use a statistical approach. Following the 

Reynolds decomposition, we can decompose the flow proprieties in two parts: a steady 

mean value and a fluctuating value: 

� � � L ��
' � ( L '�

Fig.2.7 example of u profile in a turbulent flow (Versteeg, H K and Malalasekera, W (2007) An 
Introduction to Computational Fluid Dynamics, the finite volume method, Second Edition.  

Pearson Education Limited) 
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If we substitute, in the conservation equation, the decomposed flow proprieties we 

obtain the Reynolds-averaged Navier-Stokes equations: 

����� � Q (2.58) 

�2�� L ����G2�I � �H< �(�� L ������*��G�I� L H< ��G�<��
N����I�� L �G�<���������I�� L �G�<��F�������I�� � (2.59) 

���� L ����G��I � �H< �(�� L ������*��G�I� L H< ��G�<����
�����I�� L �G�<��N����I�� L �G�<��F�������I�� � (2.60) 

�6�� L ����G6�I � �H< �(�� L ������*��G�I� L H< ��G�<F���
������I�� L �G�<F���������I�� L �G�<F�N�����I�� � (2.61) 

The structure of these equations is very similar to the Navier-Stokes equation but the 

three momentum equations have extra terms, depending on the product of the 

fluctuating velocities. These terms are called Reynolds stresses, and represent the 

average momentum flux due to the turbulent velocity fluctuations: 

��� � �<�������������
The methods that are based on the averaged Reynolds Equations are called RANS. The 

aim of these methods is to describe the flow by the resolution of a mean equation, which 

is, as we have seen, dependent on the turbulent part. This approach is especially 

appropriate for our problem, which will be treated as steady. As previously noted, 

equations (2.59), (2.60), (2.61) introduce new unknown turbulent terms, which have to 

be modeled. The task of modeling the turbulent quantities is denominated “turbulence 

closure” problem. 

Most turbulence closure methods are based on the analogy between the viscous stress 

and the Reynolds stress. The Boussinesq assumption states that: 

��� � :! ��2���� L
�2����� � M\<� ��  (2.62)

Where :! is the eddy viscosity and � is the turbulent kinetic energy and it’s defined as: 

� � HM ���N���� L ��N���� L F�N������  (2.63)

In other words, equation (2.62) states that the turbulent stresses are directly proportional 

to the gradient of the mean flow. With the additional assumption that the turbulent 

viscosity is isotropic, our system has got four equation and six unknowns. One of the 

most famous and validated model of this type is the � � � model, which introduces two 

extra transport equations for the turbulence closure. 
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2.4.1 � � � model 

This model introduces an extra transport equation for �: 

�G<�I�� L ����G<��I � ��� v:!=¡ �*����| L M:!0�� 0�� � <� (2.64) 

Where 0�� are the mean components of the rate of deformation. Then this model 

introduces another extra transport equation for �, the rate of dissipation of turbulent 

energy per unit mass: 

�G<�I�� L ����G<��I � ��� v:!=¢ �*����| L M�O¢ �� :!0��  0�� � �N¢< �N� (2.65) 

:! is linked to � and � through the expression: 

:! � <�£ �N� (2.66) 

In (2.64), (2.65) and (2.66) five constants appear, whose values are obtained by 

empirical fitting. The following standard values have been proven to give good results 

for many kinds of turbulent flows: 

�£ � QQ[T���=¡ � HQQT���=¢ � H\QT����O¢ � HPPT����N¢ � H[M
�
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3 Methodology 

In this section, the proposed BEM implementation in OpenFOAM will be explained. 

First, we will provide a simple description of the CFD software (OpenFOAM) and of 

the simple axial actuator disc library that was later modified to include the BEM. 

Secondly, we will illustrate the BEM implementation procedure. Then the test case 

geometry and operation conditions will be described. Finally will be described the drag 

disc and the Jensen model. 

3.1 OpenFOAM 
OpenFOAM (Open Field Operation and Manipulation) is a free, open-source code 

written in C++, dedicated to the solution of all continuum mechanics problems but 

especially for computational fluid dynamics (CFD). This software has a good diffusion 

especially in academic organizations. For the post-processing analysis and the 

visualization of simulations Paraview was used. These information are reported on the 

OpenFOAM documentation. The OpenFOAM version used for this work is version 

2.2.0, while the simpleFoam steady-state incompressible solver was used to solve the 

Reynolds-Averaged N-S equations. 

3.2 The original Actuator Disk 
OpenFOAM 2.2.0 contains a built-in axial actuator disk model. This library is called 

actuationDiskSource. In this implementation, the user needs to supply: 

• The orientation of the disk 

• The disk area 

• The power and thrust coefficient of the modeled turbine 

• The point inside the domain where the upstream velocity is sampled 

The code begins by evaluating the axial induction factor � as: 

� � H � ���� (3.1) 

This relation is obtained equaling the equation (2.15) and (2.18). 

After this, the thrust coefficient is recalculated via equation (2.15) and the total thrust 

acting on the disk is computed. 

The disk is defined as a geometrical volume, by its center, radius and thickness. Center 

coordinates, radius and thickness are input variable. The computational cells whose 

center is inside the disk volume are considered to be part of the actuator disc. Each one 
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of this cells is then assigned a point force, equal to the total thrust force multiplied by 

the ratio between the single cell volume and the total volume of all the cells inside the 

disk. 

3.3 The modified Actuator Disk 
In this work, the aforementioned actuationDiskSource library was improved by 

including a BEM disk model. A new simpleFoamAD solver was implemented, which 

was able to call the new library, called actuationDiskSourceBEM. The code is able to 

calculate a distributed force across the rotor disk by making use of the BEM theory, as 

described in 2.3. In this section, we will illustrate how the software works and the 

solutions adopted for the critical parts in the software.  

As a first step, the user has to supply: 

• The orientation of the disk 

• The number of elements in which the blade is divided (�) 

• The number of blades (&) 

• The Tip Speed Ratio (TSR) 

• The thickness of the disk (�) 
• Radius where airfoil part starts (+¤) 
• Radius where cylindrical part ends (+¥) 

• The characteristic of the blade: radius, chord, local pitch angle (*, �, 8) 

• The airfoil proprieties: 7, �5, �C
• The aerodynamic cylinder properties (we consider them independent from 7): �5, �C
• The point inside the domain where the upstream velocity is estimated 

The radius where the airfoil part starts is at  +¤ while the radius where the cylindrical 

part ends is at +¥. This is because the blades are usually structured to have a supporting 

cylindrical part which is used to connect the blade to the hub. 

The code starts by evaluating the angular velocity ? as: 

? � /0+�23+ (3.2) 

After that, the code defines the blade elements. Their number, as seen from the list 

above, is an input, and they are evenly spaced along the blade. The correspondent chord 

and local pitch angle of every blade station is evaluated through interpolation of the 

values provided by the user. 

Through the BEM algorithm (from step 1 to 7) with the Prandtl’s tip loss factor and the 

correction for high value of �, the code evaluates for every blade station the induction 

factors � and ��. Before step 4 the code evaluates the aerodynamic properties of the 
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airfoil at the current blade element. By comparing the local radius value with +¤ and +¥, 

the program uses either the aerodynamic characteristics of the airfoil, or of the cylinder, 

or a blend of the two. Furthermore it is important to note that a relaxation factor was 

introduced for the calculation of � and ��, which means that a blend of the old and the 

new value of � and �� is fed to the next iteration, to avoid the calculation loop becoming 

unstable. 

By the knowledge of >, � and ��, we can estimate the relative velocity 2.45 with 

equation (2.29), then we can calculate the coefficient �" and �! with the equations 

(2.37) and (2.38), and at last the force per length in tangential direction ') and the force 

per length in axial direction '� with relations (2.35) and (2.36). 

The axial thrust and the tangential force acting on the annular ring is obtained by 

integrating the relations (2.39) and (2.40). In order to minimize integration errors, the 

code considers that ') and '� vary in linear way: 

'� � �G* � *�KOI L ¦ (3.3) 

With: 

� � '�T� � '�T�KOG*� � *�KOI (3.4) 

¦ � '�T�KO*� � '�T�*�KOG*� � *�KOI (3.5) 

And: 

') � �G* � *�KOI L i (3.6) 

With: 

� � ')T� � ')T�KOG*� � *�KOI (3.7) 

i � ')T�KO*� � ')T�*�KOG*� � *�KOI (3.8) 

The index � and � � H indicate the two blade stations that contain the �!, annular ring. 
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Substituting the relations (2.69) and (2.72) in the equation (2.40), (2.39) and integrating 

we obtain: 

/� � HM�G*�N � *�KONI L iG*� � *�KOI (3.9) 

`� � H\�G*�S � *�KOSI L HM¦G*�N � *�KONI (3.10) 

They represent the axial thrust and the torque acting on the annular ring taken into 

consideration. We have also to evaluate the tangential force, found by integrating the 

following equation: 

�& � &'��* (3.11) 

The result is: 

&� � HM�G*�N � *�KONI L ¦G*� � *�KOI (3.12) 

Summing the axial thrust and the torque for every annular ring we obtain the axial thrust 

and the torque acting on the disk. With relation (2.44) we can obtain the power and with 

relations (2.14) and (2.17) we can calculate the thrust and power coefficient. 

3.3.1 Force distribution 
When the BEM iteration is completed, we know the axial and tangential force which is 

acting on every annular ring. A criterion to divide the total force among the cells in the 

annular ring is then needed. 

In a first version, the code simply divided the force among the cells whose cell center 

was inside the annular ring. This method had two major drawbacks. First, counting the 

cells when the simulation was executed in parallel resulted to be problematic. Second, 

this method caused strong force discontinuities between two consecutive annular rings. 

This is due to the presence of cells whose volume is shared between two adjacent 

annular rings but the cell is assigned the force by the ring which contains its cell center. 

This discontinuity results into a jeopardized velocity pattern close to the disk surface. 

In the final version, a different force distribution method was chosen, to avoid the two 

previously mentioned problems. The code calculates the volume of the ring: 

�A�.�"§ � _G*�N � *�KONI� (3.13) 
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Then it calculates a correction factor to account for the difference between the 

geometric volume of the geometrical boundaries of the cylindrical area defining the 

actuator disc and the sum of the volumes of the cells inside the actuator disc volume: 

�A** � _+N�� (3.14) 

where�� is the sum of all cells volumes whose cell centers fall inside the disk volume. 

The forces assigned to the cells are: 

!̈T� � /�© ª«5�.�"§ª�455¬�«..�
®

(3.15) 

�!T� � &�© ª«5�.�"§ª�455¬�«.. �� (3.16) 

Where �® is a unit vector normal to the disk and �� is a unit vector that lies on the disk 

plane and is perpendicular to the vector that defines the position of the cell center with 

respect to the disc center. 

3.3.2 TSR constant and � constant 
Since 23 is taken from a point upstream of the disk inside the domain, it changes for 

every solver iteration, even though very slightly. For this reason, relation (3.2) becomes 

unclear. For this reason two different implementations of the actuation disc library were 

attempted: 

• TSR constant 

• ? constant 

In the first implementation, for every solver step the code inserts in the relation (3.2) the 23 extrapolated from a point inside the domain, to calculate ?. The rotational speed of 

the turbine will therefore vary according to the 2.4¯ in order to keep the TSR constant. 

The velocity triangles will therefore be constant, and the power and thrust coefficients 

will also be constant throughout the solver iterations. 

In the second implementation, the code estimates ? via relation (3.2) only for the first 

time step. In the following time steps, the code keeps ? constant. Hence, for every time 

step, the TSR varies and the power and thrust coefficients are not constant throughout 

the different iterations needed for the code to converge.  

In the result section we will note that these two different implementations generate very 

little changes in the results. 
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3.4 Cases analyzed 
For the validation of the code, I used the same test cases analyzed in the Blind Test by 

Krogstad and Eriksen [9]. 

The test cases are: 

• TSR=6 

• TSR=3 

• TSR=10 

In this section I illustrate the geometry, boundary condition and initial condition of 

cases tested with my code. 

3.4.1 Domain geometry 
The domain has roughly the same dimension of the test section of the wind tunnel. The 

length of the interval is: 

� � HP�$
The cross section has rectangular shape, and the height of the wind tunnel is slightly 

diverging in order to the static pressure constant in the test section. This is neglected in 

the current computational domain: 

Height #: 

� � H°H�$
Width 6: 

� � M±M�$
An actuator disk has theoretically zero thickness but, when implemented in finite 

volume CFD code, it must have a thickness in order to identify the cells to which the 

force needs to be assigned to, meaning that the actuator disk is practically a cylinder. 

The radius of the disk is equal to the tip radius of the rotor. We have studied the 

sensitivity of the simulations with respect to two different thicknesses of the cylinder: 

• � � Z��$
• � � HQ��$

The disk was positioned on the absolute coordinates: 

� � P�$
� � Q[QZ�$
� � H\²�$
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Hence the disk center is placed exactly in the cross-section center, we expect that the 

wake will be symmetric with respect to the two planes. In the experimental tests, the 

turbine center was placed at: 

� � Q°H±�$
Nacelles and tower are neglected. 

3.4.2 Mesh 
The mesh is constrained by the number of blade elements. To avoid a bad distribution 

of the force, the mesh dimension needs to be equal or smaller than the distance between 

two consecutive annular rings. The cases analyzed have 20 or 30 blade stations. With 20 

blade stations and considering a tip radius of QPP±�$, the maximum mesh cell size can 

be MM��$. With 30 blade elements the maximum cell size is about HZ��$. To avoid 

using a fine mesh in the whole domain, the mesh was refined only inside the cylinder. 

The refinement was performed by dividing the hexahedral cell elements into 8 smaller 

cells. In table 3.1 the different mesh configurations are summarized. 

Table 3.3.1 Different mesh configurations 

Number of blade stations Dimension of the cell out of the cylinder 

MQ P��$\��$M��$
\Q M��$HZ��$
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3.4.3 Blade geometry and airfoil aerodynamic characteristic 
The tip Radius of the blade is, as mentioned above, + � QPP±�$. The characteristic of 

the blade (chord and local pitch angle) are reported  in the Table 3.3.2. 

Table 3.3.2 Definitions of chord length and local pitch angle as a function of blade 
radius(Pierella, F, Eriksen, PE, Sætran, L Krogstad , P-Å  Invitation to the 2012 “Blind test 2” 

Workshop Calculations for two wind turbines in line. Department of Energy and Process 
Engineering, NTNU) 

radius r [m] chord c [m] local pitch angle 8 [deg]  
0.0075 
0.0225 
0.049  
0.055  
0.0675 
0.0825 
0.0975 
0.1125 
0.1275 
0.1425 
0.1575 
0.1725 
0.1875 
0.2025 
0.2175 
0.2325 
0.2475 
0.2625 
0.2775 
0.2925 
0.3075 
0.3225 
0.3375 
0.3525 
0.3675 
0.3825 
0.3975 
0.4125 
0.4275 
0.4425 

0.0135 
0.0135 
0.0135  
0.0495  
0.081433 
0.080111 
0.077012 
0.073126 
0.069008 
0.064952 
0.061102 
0.05752  
0.054223 
0.051204 
0.048447 
0.045931 
0.043632 
0.041529 
0.039601 
0.037831 
0.036201 
0.034697 
0.033306 
0.032017 
0.030819 
0.029704 
0.028664  
0.027691  
0.02678   
0.025926 

120    
120    
120    
38    
37.055    
32.544    
28.677    
25.262    
22.43    
19.988    
18.034    
16.349    
14.663    
13.067    
11.829    
10.753    
9.8177    
8.8827    
7.9877    
7.2527   
6.565    
5.9187    
5.3045    
4.7185    
4.1316    
3.5439    
2.9433   
2.2185   
1.097    
-0.71674 

The first three radiuses correspond to the part of the blade which is shaped as a circular 

cylinder. This part consists in the connection between the hub and the blade. In this 

blade section, the aerodynamic performance of the cylindrical airfoil is: 

�5 � Q
�C � QZ

Both parameters are constant and independent from 7. 
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The airfoil used all along the span is the 14% thick NREL S826. It has been designed to 

be used near the tip as reported in the Blind Test by Krogstad and Eriksen [10]. The 

blades were machined in aluminium, resulting in enough stiffness in order to neglect 

any aeroelastic effect. 

Fig.3.1 NEREL S826 airfoil (Krogstad , P-Å and Eriksen, PE (2012) “Blind test” calculations of 
the performance and wake development for a model wind turbine. Renewable energy, 50 (2013), pp 

325-333) 

As reported  by Sarmast and Mikkelsen [11], at low Reynolds numbers, the 

aerodynamic behavior of the airfoil is strongly Reynolds dependent. The airfoil shows 

signs of post stall and before stall hysteresis in particular for very low Reynolds +1 � P ¬ HQj. The hysteresis is not present, for low and medium Reynolds +1 � ² ¬ HQj
and +1 � ° ¬ HQj the hysteresis appears before and after stall, for high Reynolds the 

hysteresis compares only after stall. 

Depending on the rotational regime of the turbine, the blade sections experience 

different local Reynolds numbers and therefore have different aerodynamic behaviors. 

In order to simplify the software algorithm, the �5 and �C curve for�+1 � HM ¬ HQ³ was 

chosen to be representative of the whole blade. The choice is motivated by the fact that 

this Reynolds number is relative to the blade tip at design condition, which gives the 

most significant contribution in terms of extracted power. The aerodynamic 

characteristic are obtained experimentally by Sarmast and Mikkelsen [12]. 

In Fig.3.2 and Fig.3.3 the experimental aerodynamic characteristics for +1 � HM ¬ HQ³
are reported. 
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Fig.3.2 Cl-� Re=1.2exp5 NRELS826 airfoil 

Fig.3.3 Cd-� Re=1.2exp5 NRELS826 airfoil 

We expect that, at design condition and for all the blade stations, the airfoil works in the 

range 7 � �Z´ µ LZ´�where the drag coefficient is low and almost constant. At off-

design conditions, the angle of attack can exceed these limits, therefore the aerodynamic 
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were extrapolated for a wider range via the AirFoilPreptool 7 � �H°Q´ µ LH°Q´, by 

Hansen, Windward Engineering, May, 2004, version 2.0.  

In Fig.3.4 and Fig.3.5 the extrapolated aerodynamic characteristic are reported. 

Fig.3.4 Cl-� Re=1.2exp5 NRELS826 airfoil extrapolated 

Fig.3.5 Cd-� Re=1.2exp5 NRELS826 airfoil extrapolated 

At the blade root, there is a smooth transition between the circular cylinder and the 

section with the s826 airfoil. The aerodynamic characteristic in this region were 

estimated by means of a linear interpolation between the airfoil characteristic and the 

cylinder �5 � �¶. 
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3.4.4 Working condition 
The TSR defines the working condition of the wind turbine. The model turbine is 

designed to have optimum efficiency at TSR=6. The performance and the wake of the 

turbine were also evaluated in off-design conditions, TSR=3 and TSR=10. Considering 

that the inlet speed remain the same for all the cases, a different TSR implies a different 

angular velocity ?.      

3.4.5 Boundary conditions and initial condition 
The CFD software needs, as an input, the definition of the boundary conditions and 

initial conditions for the flow variables which for a steady-state solution of an 

incompressible turbulent flow with a � � � turbulence closure technique are: speed 2, 

pressure�', turbulent kinetic energy��, turbulent dissipation��, eddy viscosity :!. The 

domain boundaries are the inlet section, the wind tunnel walls (ground, top, sides), and 

the outlet section. 

Table 3.3.3 U and p boundary and initial condition 

2 '
Inlet fixed value of (10 0 0) m/s absence of gradient 

Outlet absence of gradient fixed value 0 $N^BN
Ground wall fixed value of (0 0 0) m/s absence of gradient 

Top wall fixed value of (0 0 0) m/s absence of gradient 

sides wall fixed value of (0 0 0) m/s absence of gradient 

internal field (initial 

condition) 

(10 0 0) m/s 0 $N^BN

For the definition of the turbulent kinetic energy inlet boundary and initial conditions 

the following relation by Versteeg and Malalasekera [13] was used: 

� � \M G2.4¯/�IN (3.17) 

Where 2.4¯ � HQ$^B is the reference speed and /� � Q\�· is the turbulence intensity 

at the inlet section of the NTNU wind tunnel. 

For what concerns the turbulent dissipation: 

� � �£S^j �S^N� (3.18) 

Where � is the length scale representative of the large-scale turbulence. 
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The value of :! is evaluated with the relation (2.66). 

The simulations were run with two values of �¸
• � � Q±h where h is an characteristic length of the equipment, for our case I used 

the equivalent diameter of the wind tunnel cross section 

h � M¹6 ¬ #_ � MP°±Z² (3.19) 

• � � QQ\Z�$ experimental, reported in the Blind test 3 by Krogstad and Sætran 

[14]  

The boundary conditions for the turbulent quantities and the initial condition for the 
cases with � calculated as from equation (3.19) 

Table 3.3.4 �,�,º» boundary and initial condition, l calculated 

� � :!
Inlet fixed value 0.00135 $N^BN fixed value 

4.6807exp(-6) $N^BS
calculated from �
and � fixed value 

0.0350427956 $N^BS
Outlet absence of gradient absence of gradient calculated from �

and �
Ground wall wall function that 

openFoam calls 

kqRWallFunction 

wall function that 

openFoam calls 

epsilonWallFunction

wall function that 

openFoam calls 

nutkWallFunction 

Top wall wall function that 

openFoam calls 

kqRWallFunction 

wall function that 

openFoam calls 

epsilonWallFunction

wall function that 

openFoam calls 

nutkWallFunction 

sides wall wall function that 

openFoam calls 

kqRWallFunction 

wall function that 

openFoam calls 

epsilonWallFunction

wall function that 

openFoam calls 

nutkWallFunction 

internal field (initial 

condition) 
0.00135 $N^BN 4.6807exp(-6) $N^BS 0.0350427956 $N^BS
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The boundary conditions and the initial conditions for the cases with the experimental 

value of �are reported in the Table 3.3.5 

Table 3.3.5 �,�,º» boundary and initial condition, l experimental 

� � :!
Inlet fixed value 0.00135 $N^BN fixed value 

0.0002328705 $N^BS
calculated from �
and � fixed value 

0.0007043614 $N^BS
Outlet absence of gradient absence of gradient calculated from �

and �
Ground wall wall function that 

openFoam calls 

kqRWallFunction 

wall function that 

openFoam calls 

epsilonWallFunction

wall function that 

openFoam calls 

nutkWallFunction 

Top wall wall function that 

openFoam calls 

kqRWallFunction 

wall function that 

openFoam calls 

epsilonWallFunction

wall function that 

openFoam calls 

nutkWallFunction 

sides wall wall function that 

openFoam calls 

kqRWallFunction 

wall function that 

openFoam calls 

epsilonWallFunction

wall function that 

openFoam calls 

nutkWallFunction 

internal field (initial 

condition) 
0.00135 $N^BN 0.0002328705 $N^BS 0.0007043614 $N^BS

It is possible to observe that the inlet condition for turbulent viscosity is very different 

for the two different values of the integral length scale. If we use equation (3.19), the 

turbulent viscosity is 20 times higher than the experimental value, likely leading to a 

considerable overestimation of the turbulent spreading rate of the wake. 

3.5 Drag Disc 
The Drag Disc is a circular grid and it is used to experimentally simulate a turbine. The 

disc induces a momentum loss in the flow, and if properly designed its wake can 

simulate the wake of a wind turbine. The characteristics of the disc wake are different in 

many ways from the ones of a turbine, especially for what concerns turbulence 

production and the wake recovery rate. 
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The experimental results from Pierella and Sætran [15] on a drag disc with a regular 

mesh made up of square section cylinders were used in order to provide an additional 

validation dataset to the code. 

The porous disc had an external diameter of i � °Q��$T and a porosity (defined as 

open area over total disc area) of 55%. This porosity led to a thrust coefficient of �� � Q°M, constant for the tested inflow velocities °Z�$^B�and HH�$^B. 

3.6 Jensen Model 
The Jensen model is a simple algebraic model used to predict the wake behind a wind 

turbine. The main vantage of this model is the very low computational cost, in fact it 

does not solve the turbulent field. The details of this model is reported by  Jensen [16] 

and Choi and Shan [17].  

In this model it is assumed a linear variation of the wake radius: 

*D � + L 7�� (3.20) 

Where *D is wake radius at the distance � from the rotor. The coefficient 7 is assumed 

equal to QH. Considering a constant value of the velocity in the cross section of the 

wake, evaluating the velocity behind the rotor with the relation (2.12), with a 

momentum balance we obtain: 

2 � 23 �H � M� z ++ L 7��{
N� (3.21) 

And using relation (2.15) we can express the velocity 2 in function of �� and we 

obtain:

2 � 23 �H � �H � �H � ��� z ++ L 7��{
N� (3.22) 

The Jensen model has a large diffusion among the companies, and it is often used to 
design wind farms, after having been calibrated via an as big as possible experimental 
database in order to select the correct parameters.
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4 Results 

In this section we will illustrate the results obtained and validate them against the wind 

tunnel experimental data. Most of the computations are performed with the program 

version with constant TRS, while the constant rotational velocity results were only 

compared with the constant TSR computations. 

First, a parametric study on the number of elements necessary to resolve the rotor disc 

was performed. The influence of the turbulent boundary condition and of the disk 

thickness was analyzed with the coarser mesh. The finer mesh, with 30 cells per rotor 

radius, was employed to produce the final results both for on-design and off-design 

conditions. After that, the results on a horizontal and a vertical diagonal will be 

compared. Then the results obtained from a simple actuator disk were compared with 

the version coupled with BEM. Finally, the actuator discs were compared with the 

porous disc and the simple Jensen model. 

4.1 �� and �	
Before implementing the BEM on the actuator disc, it was deemed important to validate 

the BEM algorithm. Furthermore, we can calibrate how many blade stations are needed 

in order to correctly model the rotor. The following plots show the dependency of the �� and �� on the number of blade stations. 

4.1.1 TSR=6 

Fig.4.1 Cp-blade stations TSR 6
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Fig.4.2 CT-blade stations TSR=6

From Fig.4.1 and Fig.4.2 we can note that, at design conditions, the �� and �� have an 

asymptotic behavior for increasing number of blade elements. If we take as the 

asymptotic value the results obtained with 100 blade elements, we can estimate the 

errors committed by choosing a smaller number of elements, namely 20 or 30 elements 

for the current work.  

Table4.1 Discretizazion blade error at TSR=6 

�� ��
20 elements 1.56 % 0.44 % 

30 elements 0.78 % 0.29 % 
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4.1.2 Off-design conditions. TSR=3 

Fig.4.3 Cp-blade stations TSR=3 

Fig.4.4 CT-blade stations TSR=3 

From Fig.4.3 and Fig.4.4 we can note that at off-design conditions (TSR=3), �� and ��
have also an asymptotic behavior. In table 4.2 the errors as a function of the number of 

blade elements are listed, taking the asymptotic value as the result obtained with 100 

blade elements. 
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Table 4.2 Discretizazion blade error at TSR=3 

�� ��
20 elements 1.39 % 0.25 % 

30 elements 0.62 % 0.11 % 

4.1.3 Off-design conditions. TSR=10 

Fig.4.5 Cp-blade stations TSR=10 

Fig.4.6 CT-blade stations TSR=10 
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From Fig.4.5 and Fig.4.6 we can observe the behavior for TSR=10. In table 4.3, the 

errors for 20 and 30 elements are listed: 

Table 4.3 Discretizazion blade error at TSR=10 

�� ��
20 elements 9.15 % 0.12 % 

30 elements 4.20 % 0.11 % 

By observing the percentage errors, we can note that at on-design conditions the error 

linked with the �� is in all cases less than 0.5 %. This error is the most significant for 

our analysis because the �� is linked with the axial force that the disk exerts on the 

flow, thus defining the wake velocity deficit and shape. At on-design conditions, the 

error linked with �� is less than 1 % when using 30 blade elements, and anyway less 

than 2 % when employing 20 elements. The maximum error on the ��is for TSR=10. 

To have an error below the 5 % threshold, we must use 30 elements.  

Using more than 30 elements would allow more accurate results. Anyway, this would 

imply a higher mesh refinement inside the actuator disk and a higher total cells number, 

which would require an unrealistically high computational cost. 

According to the previous observations we can consider 30 elements enough in order to 

have an adequate accuracy in all our simulations, both on-design and off-design. Since 

sensitivity analysis to different parameters is run at on-design conditions, using 20 cells 

is a good compromise between accuracy and computational cost. 
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The Fig.4.7 and Fig.4.8 show the �� and �� as a function of TSR, compared with the 

experimental results by Krogstad and Eriksen [18]. In this analysis, the blade is divided 

in 30 elements.  

Fig.4.7 Power coefficient in function of TSR 

From Fig.4.7 we can note that the agreement is very good around on-design conditions 

and for low TSR numbers. However, for high TSR, the BEM algorithm diverges from 

the experimental data and already around TSR=10 the error is not negligible. Another 

incongruence is the TSR for which optimum efficiency is achieved: the turbine is in fact 

designed for TSR=6, but the BEM algorithm predicts a maximum around TSR=5. 
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Fig.4.8 Thrust coefficient in function of TSR 

From Fig.4.8 we note that the agreement of the thrust coefficient is quite good almost 

everywhere, even though there seems to be a constant offset of around 0.05 between the 

two curves. Only for very high TSR the two data series start to diverge significantly. 

The matching is particularly good close to the design TSR.  

4.2 The blade discretized by 20 elements 
All the following results are computed considering 20 elements in the blade span. The 

turbine is always running at on-design conditions, TSR=6. 

4.2.1 Mesh dependence 
First we need to analyze the mesh independency, in order to choose a mesh which is 

fine enough to accurately describe the problem with a not excessive computational cost. 

We carried out the analysis for two different values of the inlet turbulent length scale, as 

illustrated in the methodology section: � � H±PH\�$ calculated, � � QQ\Z�$
experimental. The variables of interest are plotted along a line passing through the disk 

center having the same orientation of the normal disk axis and along a horizontal line at 

a downstream distance of 3 rotor diameters. 
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Fig.4.9 Pressure profiles along the centerline, mesh dependence, n 20, 
 � � ������ (calculated) 

Fig.4.10 Axial speed profiles along the centerline, 
 � � ������ (calculated) 
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Fig.4.11 Mean velocity profiles along a horizontal line X/D=3,mesh dependence, n 20,
 �� ������ (calculated) 

Fig.4.12 Turbulent kinetic energy profiles along a horizontal line X/D=3,mesh dependence, n 
20,
 � � ������ (calculated) 

From Fig.4.9, Fig.4.10, Fig.4.11, Fig.4.12 we can notice a strong mesh dependence if 

we use  � � H±PH\�$, except for what concerns the pressure values. For this reason, in 

the following analyses, the simulations with 20 blade elements will be run with a mesh 

of 2 cm. 
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Fig.4.13 Pressure profiles along the centerline, mesh dependence, n 20, 
 � � �����
(experimental) 

Fig.4.14 Axial speed profiles along the centreline, mesh dependence, n 20, 
 � � �����
(experimental) 
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Fig.4.15 Mean velocity profiles along a horizontal line X/D=3, mesh dependence, n 20, 
 �� ����� (experimental) 

Fig.4.16 Turbulent kinetic energy profiles along a horizontal line X/D=3, mesh dependence, n 20, 
 � � ����� (experimental) 

With the experimental value of the turbulent length scale (� � QQ\Z�$) the mesh 

dependence is less strong. The mean velocity profiles in the wake, the most important 

parameter for our analysis, shows that a 3cm mesh is accurate enough. We can also note 

that a coarse mesh (4 cm) produces non-symmetric profiles in the wake (Fig.4.15 and 
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Fig.4.16). This is not acceptable since the analyzed cases are symmetric in geometry 

and boundary conditions. This problem is probably due to numerical errors. 

4.2.2 Turbulent boundary condition influence 
In the following plots, we compared the experimental data from the wind tunnel 

measurements with the result obtained with two different turbulent length scales, as 

illustrated in the section 3.4.5: � � H±PH\�$ calculated from equivalent diameter, � � QQ\Z�$ experimental. The mesh used for both cases is the same, with a cell size of 

2 cm, since it is important that the cases differ only for the turbulent boundary 

condition. We have previously observed in section 4.2.1 that the case with the turbulent 

length scale (TLS) calculated by relation (3.19) does not reach an asymptotic condition 

for the analyzed meshes, while a 2 cm mesh guarantees mesh independency for the case 

with the experimental turbulent length scale. 

Fig.4.17 Mean velocity profiles along a horizontal line X/D=3, l dependence 

The agreement between the profile with experimental TLS and the wind tunnel data is 

very good. Obviously the peak at � +¼ ½ Q\ cannot be reproduced since it is due to the 

presence of the nacelle and the tower, as reported by Krogstad and Eriksen [19]. The dip 

in the centerline, observable both for the experimental and numerical data, is due to 

flow acceleration: the blades do not extend to the disk center, therefore no energy 

extraction is possible in that zone. This dip is deeper in the simulation with 

experimental TLS, since we did not include the nacelle in the model. The flow 

acceleration due to solid blockage causes negative values of the velocity profile for ¾� +¼ ¾ R HM. This acceleration is a consequence of mass conservation in the closed 
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wind tunnel section, and to the steady treatment of the problem. Therefore, the velocity 

deficit due to the presence of the disk must be balanced by a flow speed-up around the 

disk. The average velocity must remain the same in all the cross sections. 

On the other hand, the velocity profile obtained with the calculated TLS is completely 

different. The high value of the turbulent length scale causes an immediate diffusion of 

the wake, which  reaches a Gaussian shape immediately after the rotor. 

Fig.4.18 Turbulent kinetic energy profiles along a horizontal line X/D=3, l dependence

As for the turbulence, the agreement of the profile with experimental TLS and the wind 

tunnel data is quite good. Obviously the asymmetry at the centerline cannot be 

reproduced, but our model is able to predict the peaks position at the edges of the disk. 

In the experiment, the presence of these peaks is due to the tip vortices and partly to the 

turbulent kinetic energy produced in the shear layer between the wake and the 

undisturbed flow. The height of the peak is underestimated by 3 times. Again the model 

with calculated outputs completely wrong TKE values, far too high across the disc, 

meaning a high degree of turbulent diffusion which explains the Gaussian mean 

velocity profile shape. 

From these two plot it is clear that a more precise inlet flow description (supported by 

experimental results) yields in a more accurate prediction. 



53 

In the following analysis, the simulations will be run the turbulent boundary condition 

deriving from experimental data (� � QQ\Z m), which guarantees a more precise 

velocity distribution and a lower amount of diffusion. 

4.2.3 Disk thickness influence 
In the following graphs two velocity profiles are reported, one obtained using a disk 

with thickness of 5 cm and the other with a thickness of 10 cm. 

Fig.4.19 Pressure profiles along the centerline, thickness disc dependence 

Fig.4.20 Axial velocity profiles along the centerline, thickness disc dependence 
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Fig.4.21 Mean velocity profiles along a horizontal line X/D=3, thickness disc dependence 

Fig.4.22 Turbulent kinetic energy profiles along a horizontal line X/D=3, thickness disc 
dependence 

From Fig.4.19, Fig.4.20, Fig.4.21, Fig.4.22 we can note that there is a negligible 

influence of the disk thickness on all velocity profiles. Although the average value of 

the blade chord projection on the axial direction is closer to 5 cm, in the following 
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analysis a disk of 10 cm of thickness will be used, since a lower thickness gives some 

velocity discontinuity across the disk boundary (picture not reported) that are to some 

extent unphysical. 

4.3 Influence of the number of elements that divided the blade 
In the following graphs we report on the difference between profiles obtained using 20 

elements, 30 elements and the reference experimental data. The size of the employed 

mesh is the same, 2 cm. 

Fig.4.23 Mean velocity profiles along a horizontal line X/D=3, number blade stations dependence 
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Fig.4.24 Turbulent kinetic energy profiles along a horizontal line X/D=3, number blade stations 
dependence 

We can note that the wake is only slightly influenced by the number of blade elements. 

The differences are observable only in the turbulent kinetic energy graph, since the y-

axis is in logarithmic scale. As previously reported, using 20 or 30 elements does not 

have a significant influence on the �� and �� values. For this reason also in the wake 

the differences are low. However the difference there are, so in the simulation I used 30 

elements for a greater accuracy. 

4.4 The blade discretized by 30 elements 
All the following analysis are executed with 30 element. 

4.4.1 Mesh dependence 
In the next graph the mesh dependence is illustrated. The cases have mesh sizes of 2 cm 

and 1.5 cm. The mesh dependence is evaluated on the On-design condition (TSR=6). 
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The pressure and the velocity, in Fig.4.25 and Fig.4.26, are plotted along the wind 

tunnel centerline. 

Fig.4.25 Pressure profiles along the centerline, TSR=6, mesh dependence, n 30 

In Fig.4.25 we can observe that with a 2 cm mesh we already have reached a good 

asymptotic condition, and that there is virtually no variation with the 1.5 cm case. The 

step at the disk level is obviously due to the force assigned to the mesh elements making 

up the disc. From � � [ the pressure starts to slightly decrease. This is probably due to 

the boundary layer developing on the wind tunnel walls, which creates a friction. This is 

the typical phenomenon that can be observed in any pipe, with the name of friction loss: 

the wind tunnel can be considered as a large and short pipe characterized by a small 

friction loss, which needs a pressure gradient to be overcome. 
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Fig.4.26 Axial speed profiles along the centerline, TSR=6, mesh dependence, n 30 

In Fig.4.26, the 2cm mesh has already reached the asymptotic condition, as also 

observed in Fig.4.25. The flow slows down for the presence of the disk but at the disk 

level it has a sudden acceleration because the centerline flow does not meet the blades 

and the nacelle is not modeled. The nearby flow meets the blades and must slow down, 

so the flow at the turbine centerline accelerates. After the disk, for the effect of the 

turbulent diffusion, the wake spreads and the flow on the centerline slows down. After � � HM�$, we can note that the flow starts to accelerate, this is probably due to the 

wake spread. 
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Fig.4.27 Mean velocity profiles along a horizontal line X/D=1, TSR=6, mesh dependence, n 30 

As for the non-dimensional velocity on a horizontal diagonal, from Fig.4.27, the 2cm 

mesh is sufficiently accurate. The central dip reaches 0 because the line is very close to 

the disk and the wake has not diffused, yet. Obviously the experimental dip is less deep 

because of the presence of the nacelle. We can also note that the numerical model 

slightly overestimates the peaks. 
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Fig.4.28 Turbulent kinetic energy profiles along a horizontal line X/D=1, TSR=6, mesh 
dependence, n 30 

Also for Fig.4.28 the 2 cm mesh is enough accurate: The peaks are predicted in the right 

position, but their height is underestimated. 
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Fig.4.29 Mean velocity profiles along a horizontal line X/D=3, TSR=6, mesh dependence, n 30 

Also Fig.4.29 the 2 cm mesh is enough accurate. At 3 diameters the wake is starting to 

diffuse more intensely: the two peaks drop to 0.4 while the centerline velocity increases 

to 0.7. 
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Fig.4.30 Turbulent kinetic energy profiles along a horizontal line X/D=3, TSR=6, mesh 
dependence, n 30 

Also in Fig.4.30 the 2 cm mesh results sufficiently accurate. The diffusion reduces the 

height of the turbulence peaks size , and the error by the simulation is reduced. The 

central part of the wake is well simulated except for the asymmetry that the code is not 

able to predict. 
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Fig.4.31 Mean velocity profiles along a horizontal line X/D=5, TSR=6, mesh dependence, n 30 

Also in Fig.4.31, the experimental data shows that at 5 diameter distance the wake 

turbulent diffusion merges the two peaks in one. Even though the computational model 

shows a good agreement, it still features two peaks instead of a smooth profile. This 

difference is probably due to the nacelle presence that increases the centerline velocity 

deficit with respect to the numerical simulations. 
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Fig.4.32 Turbulent kinetic energy profiles along a horizontal line X/D=5, TSR=6, mesh 
dependence, n 30 

The peaks continue to decrease and together also the error: the numerical peaks are half 

of the real peaks. However at this disk distance my model underestimates the wake 

width: the numerical width is around 3+ whereas the experimental data show a wake 

around 3.5�+. 

In conclusion the 2 cm mesh can be consider enough accurate, hence in the next 

analysis we will use a 2 cm mesh. 
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4.4.2 Off-design condition 
Now we will focus on the off-design behavior predictions, and compare them with wind 

tunnel experimental data. 

4.4.2.1 TSR 3 

In this condition the intersection of the blades are stalled, while the outer regions work 

at high angle of attack, see for example the analysis from Krogstad and Lund [20]. 

Fig.4.33 Mean velocity profiles along a horizontal line X/D=3, TSR=3 

From Fig.4.33 we can note that the numerical model is not able to predict the wake at 

the rotor centre, meaning that the stall is overpredicted. Also, at low TSR, the 

contribution of the tower drag in the wake generation is quite relevant, due to the low 

thrust on the turbine rotor. The thrust of the rotor is underestimated, the blockage is 

lower than the reality and hence the flow around the disc is slower. 
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Fig.4.34 Turbulent kinetic energy profiles along a horizontal line X/D=3, TSR=3 

We can observe from Fig.4.34 that the experimental data show an almost constant level 

of turbulent kinetic energy in the wake. This is due to the boundary layer that is 

separated along the blade, which produces a remarkable amount of kinetic energy. The 

peaks due to the tip vortices and to the turbulence in the shear layer are reduced than at 

design conditions. The profile obtained by the numerical code is not able to give a 

correct prediction. 
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4.4.2.2 TSR 10 

In this conditions, the tangential velocity becomes predominant, so the outer regions of 

the blades work a low angle of attack. The airfoils located at low radii work at negative 

angles of attack, implying that these sections do not extract energy from the flow but 

work like a propeller. 

Fig.4.35 Mean velocity profiles along a horizontal line X/D=3, TSR=10 

The numerical model is able to give a very good prediction. The central dip is deeper 

than at TSR 6, due to the energy being transferred to the flow in the central part of the 

disk. On the velocity profile (here not reported) for X/D=1 the centerline velocity deficit 

reaches a negative value. At the distance of X/D=3 the turbulent diffusion reduces the 

negative peak depth. Also for the experimental data the acceleration given by the inner 

sections of the rotor implies that the central peak, which was present at TSR=6, 

disappears. 
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Fig.4.36 Turbulent kinetic energy profiles along a horizontal line X/D=3, TSR=10 

Also the turbulent kinetic energy profile at TSR=10 agrees quite well with the 

experimental results. The production of turbulent kinetic energy from the tip vortices 

become comparable to that produced for boundary layer effect, there is a little 

difference of TKE between the centre and the edges of the wake. the turbulent kinetic 

energy reaches high values Z ¬ HQKN. However the numerical model underestimates the 

wake width. 



69 

4.4.3 Horizontal vs Vertical 
So far the characteristic (speed and turbulent kinetic energy) were plotted on a 

horizontal line. In the next graphs we overlap the profiles along a horizontal line with 

the profile along a vertical line. For the numerical solution we expect a symmetric 

profile also along the vertical line, since the disk center is placed exactly in the middle 

of the wind tunnel. For the experimental profile we expect a slight asymmetry for the 

presence of the nacelle and the tower and because in reality the turbine hub height is 

slightly below the wind tunnel centerline. 

The plots are related to design condition, for three downstream distances: X/D=1, 

X/D=3, X/D=5 

Fig.4.37 Mean velocity profiles at X/D=1, along a horizontal line and along a vertical line 
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Fig.4.38 Turbulent kinetic energy profiles at X/D=1, along a horizontal line and along a vertical 
line 

Fig.4.39 Mean velocity profiles at X/D=3, along a horizontal line and along a vertical line 
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Fig.4.40 Turbulent kinetic energy profiles at X/D=3, along a horizontal line and along a vertical 
line 

Fig.4.41 Mean velocity profiles at X/D=5, along a horizontal line and along a vertical line 
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Fig.4.42 Turbulent kinetic energy profiles at X/D=5, along a horizontal line and along a vertical 
line 

From Fig.4.37, Fig.4.38, Fig.4.39, Fig.4.40, Fig.4.41, Fig.4.42 we note that the 

horizontal and vertical profile of the numerical code are almost superimposed, while the 

experimental profiles are quite different. The lateral peaks of the vertical numerical 

profile are due to the top and ground walls presence. If the z-axis was extended, also the 

horizontal numerical results would have similar peaks. Furthermore we note that the 

difference between the horizontal and the vertical profile obtained with the code is 

greater near the disc and it decreases far from the disc. 

From the experimental data we can note that the horizontal profiles are characterized by 

a greater symmetry than the vertical profiles because the rotor is placed in the centre of 

the horizontal direction but it is not placed in the centre of the wind tunnel height. The 

profile along the vertical line shows asymmetry also in the position of the principals 

peaks, this asymmetry is greater far from the disc. From Fig.4.37 we note that for 

negative �^+ the vertical profile obtained from experimental data shows a lower 

velocity, this is probably due to the presence of the tower. 

The case tested with the numerical code places the rotor in the centre of the wind tunnel 

height, this geometrical difference, between real case and simulation, is probably the 

reason of the worse matching between experimental data and numerical data along the 

vertical lines than along the horizontal lines. 
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4.5 TSR constant vs � constant 
In this section we compared the result so far obtained with the code version at TSR 

constant with those obtained with the code version at � constant. All the following 

analyses are executed with 30 blade elements and a 2 cm mesh. 

We started by  showing the outputs of the turbine performance that we obtained with the 

version with constant TSR and with the constant ��version. 

Fig.4.43 Power coefficient on-design and off-design, TSR constant and � constant 

From Fig.4.43 we can see that the influence on the �� is very low. For on-design 

conditions the difference is negligible, while for low TSR the with constant TSR gives a 

slightly higher ��. For high TSR the constant ��version gives a greater value of the ��. 
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Fig.4.44 Thrust coefficient on-design and off-design,  TSR constant and � constant 

For the thrust coefficient the choice of the version is non influential in on-design as well 

as off- design condition. 
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Before analyzing the wake, we show the velocity profile at the centerline, which is 

important to understand the difference in the two code versions. 

Fig.4.45 Axial speed profiles along the centerline, TSR=6, TSR constant and � constant 

From Fig.4.45 we can note that the velocity at the wind tunnel inlet, fixed by boundary 

condition to 10 m/s, is different from the velocity used by the BEM algorithm to 

calculate the upstream velocity, for which OpenFOAM takes the velocity at � � M�$. 

This velocity is slightly higher because of the centerline velocity increase due to the 

boundary layer developing on the wind tunnel walls: the flow is incompressible so the 

velocity at the centerline must increase. From this plots we can anyway note that this 

speed difference is almost imperceptible, hence the results obtained with the two 

versions are almost the same. 
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In the next graphs we compared the profile obtained with the constant TSR version with 

those obtained with constant �. 

4.5.1 TSR 6 

Fig.4.46 Mean velocity profiles along a horizontal line X/D=3, TSR=6, TSR constant and �
constant 

Fig.4.47 Turbulent kinetic energy profiles along a horizontal line X/D=3, TSR=6, TSR constant 
and � constant 
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4.5.2 TSR 3 

Fig.4.48 Mean velocity profiles along a horizontal line X/D=3, TSR=3, TSR constant and �
constant 

Fig.4.49 Turbulent kinetic energy profiles along a horizontal line X/D=3, TSR=3, TSR constant 
and � constant 
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4.5.3 TSR 10 

Fig.4.50 Mean velocity profiles along a horizontal line X/D=3, TSR=10, TSR constant and �
constant 

Fig.4.51 Turbulent kinetic energy profiles along a horizontal line X/D=3, TSR=10, TSR constant 
and � constant 
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In all the analyzed setups, there is a very little change in the two program versions. We 

aspect more difference for the off-design cases because they are characterized by a 

greater difference of the �� obtained with the two versions, in fact the only graph where 

we can note a slightly difference in the profiles is Fig.4.48 (TSR=3).  

4.6 Actuator Disk with BEM vs simple Actuator Disk 
In section 3.2 and 3.3 we illustrated how the simple Actuator Disk and the Actuator 

Disk with BEM work, highlighting the greater complexity of the Actuator Disk with 

BEM. Moreover, at the beginning of this section, we noted the necessity for a fine 

enough mesh which is able to keep up with the blade discretization, hence the actuator 

disk with BEM is characterized by greater computational cost. In the light of this greater 

complexity and computational cost, we expect more accurate results. In this section we 

compared the wake profiles obtained with the simple actuator disk with the actuator 

disk with BEM and the experimental data. 

As input in the simple actuator disk, we used the �� and �� evaluated with the BEM 

code (see section4.1). 

The 2 cm mesh was used for both simulations, while in the actuator disk with BEM the 

blade was divided into 30 elements.  

4.6.1 TSR 6 

Fig.4.52 Mean velocity profiles along a horizontal line X/D=1, TSR=6, by simple actuator disk, 
BEM and experimental data 

From Fig.4.52 we can note that the simple actuator disk is not able to predict the typical 

V-shape of the wake, but is characterized by an almost constant value for the all wake 
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width. This velocity profile is characteristic of the simple actuator disk for all distances 

and all for working condition. From this figure we can note that the peaks at the disk 

edge are overestimated by both the actuator disk models, but the one with BEM is 

closer to the experimental data.  

Fig.4.53 Turbulent kinetic energy profiles along a horizontal line X/D=1, TSR=6, by simple 
actuator disk, BEM and experimental data 

From Fig.4.53, describing the turbulent kinetic energy at X/D=1 at TSR=6, we note that 

the two peaks on the disk edges are equally captured by the two actuator disk models, 

and both underestimate them. The velocity profile predicted by the simple actuator disk 

presents a deep dip between the two peaks. The turbulent kinetic energy is in fact zero 

where there are no velocity gradients: inside the wake of the simple actuator disk the 

velocity (as we saw in figure Fig.4.53) is almost constant and so the turbulent kinetic 

energy is only approximately HZ ¬ HQKj. 
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Fig.4.54 Mean velocity profiles along a horizontal line X/D=3, TSR=6, by simple actuator disk, 
BEM and experimental data 

From Fig.4.54 we note the constant shape for the simple actuator disk, different from 

X/D=1 because now the profile is completely constant, because close to the disk the 

streamlines are curved and this implies a changing in the velocity whereas far from the 

disk the streamline are parallel. Furthermore error on the peak height is bigger. The 

wake width is anyway very well captured by both models. 
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Fig.4.55 Turbulent kinetic energy profiles along a horizontal line X/D=3, TSR=6, by simple 
actuator disk, BEM and experimental data 

The more constant speed profile at X/D=3 implies lower turbulent kinetic energy values 

for the simple actuator disk (H\ ¬ HQKj in the center). The two lateral peaks are slightly 

better captured by the simple actuator disk (around +15 % the increase of the peaks 

height), it also give a more correct wake width (approximately +5 % the increase of 

width). 
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Fig.4.56 Mean velocity profiles along a horizontal line X/D=5, TSR=6, by simple actuator disk, 
BEM and experimental data 

At this distance from the disk we note that the turbulent diffusion reduced the size of the 

zone with constant velocity, characterizing the center of the wake predicted by the 

simple actuator disk profile. 
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Fig.4.57 Turbulent kinetic energy profiles along a horizontal line X/D=5, TSR=6, by simple 
actuator disk, BEM and experimental data 

At exception of the central dip the simple actuator disk predict slightly better the peaks 

height and the wake width. The central dip is due to the constant velocity profile in the 

centre of the wake, that continue to be in spite of the diffusion. 
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4.6.2 Off-design condition 
As reported in the section dedicated on the methodology, we know that the simple 

actuator disk does not use the input �� but recalculates a new �� using also the input ��. The recalculation is done using relations based on the simple momentum model 

without rotation, without Pradtl’s correction and without the correction for high axial 

induction factor. In the analysis at design conditions this relations are quite good, but at 

off-design conditions they do not fit. Hence we expect that the thrust that the simple 

actuator disk assigns to the cells inside the cylinder is incorrect, so the wake that we 

obtain is also very different from the real wake. 

4.6.2.1 TSR 3 

Fig.4.58 Mean velocity profiles along a horizontal line X/D=3, TSR=3, by simple actuator disk, 
BEM and experimental data 

The simple actuator disk produces a velocity profile which completely different from 

reality, the lateral peaks height (they exceed 0.5) and the wake width are wrong 

(approximately 3). 
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Fig.4.59 Turbulent kinetic energy profiles along a horizontal line X/D=3, TSR=3, by simple 
actuator disk, BEM and experimental data 

Both the actuator disk are not able to predict the turbulent kinetic energy profile for low 

TSR. The simple actuator disc overestimates the peaks heights (approximately the 

double) and underestimates the central wake of almost two orders of magnitude. The 

actuator disc with BEM underestimates everywhere. 
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4.6.2.2 TSR 10 

Fig.4.60 Mean velocity profiles along a horizontal line X/D=3, TSR=10, by simple actuator disk, 
BEM and experimental data 

From Fig.4.60 we can note that the actuator disk underestimates completely the wake 

intensity. With a low blockage effect due to a low thrust, the flow around the wake 

accelerates less. We expected a considerable error for the simple actuator disc at 

TSR=10, because for high values of axial induction factor the simple actuator disc 

model is no longer valid, it requires a empirical correction that in the simple actuator 

disc, presented in OpenFOAM, is not implemented. 
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Fig.4.61 Turbulent kinetic energy profiles along a horizontal line X/D=3, TSR=10, by simple 
actuator disk, BEM and experimental data 

Our models generally underestimate the turbulent kinetic energy level, maybe for effect 

of the turbulent model used. In this case the simple actuator disk underestimates 

severely (approximately 3 order of magnitude in the centre and approximately 13 times 

the peaks values) the speed profile, due to a wrong assignment of the thrust: the result is 

a strong underestimation of the turbulent kinetic energy. 

These last four figures show us what we mentioned before: the simple actuator disk is 

completely inappropriate to describe a wind turbine in off-design conditions. The 

simple actuator disk gives us better result at design conditions. However also in this 

condition the actuator disk with BEM offers us a better wake description. 
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4.7 Turbine vs Drag disc 
In the previous section the simple actuator disc and the actuator disc model were 

compared with the experimental data obtained from a wind turbine. In this section we 

want to analyze whether the computational model is more close to predict a wind 

turbine or a Drag Disc. 

In this section we compare the wake profiles obtained with the simple actuator disk, 

with the actuator disk with BEM, the simple Jensen model, the experimental data by the 

wind turbine and the experimental data in the wake of the Drag disc. These comparisons 

are performed at TSR=6 because in this condition the wind turbine has the same �� of 

the Drag Disc, as we can observe from Fig.4.8. A 2 cm mesh was used for both 

simulations, where the blade, in the actuator disk with BEM, was divided into 30 

elements. The profile are relative to two positions, X/D=1 and X/D=3 downstream from 

the turbine. 

Fig.4.62 Mean velocity profiles along a horizontal line X/D=1, TSR 6, by simple actuator disk, 
BEM, Jensen model, turbine experimental data and drag disc experimental data 
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Fig.4.63 Mean velocity profiles along a vertical line X/D=1, TSR 6, by simple actuator disk, BEM, 
Jensen model, turbine experimental data and drag disc experimental data 

Fig.4.64 Mean velocity profiles along a horizontal line X/D=3, TSR 6, by simple actuator disk, 
BEM, Jensen model, turbine experimental data and drag disc experimental data 
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Fig.4.65 Mean velocity profiles along a vertical line X/D=3, TSR 6, by simple actuator disk, BEM, 
Jensen model, turbine experimental data and drag disc experimental data 

From Fig.4.62, Fig.4.63, Fig.4.64, Fig.4.65 we can note that in general both the 

computational solutions are closer to the turbine. The actuator disc with BEM simulates 

very well the turbine and the velocity profile is completely different from the drag disc 

data: the actuator disc with BEM predict a central dip surrounded by two peak in 

correspondence of the disc edge whereas the drag disc wake has only one central peak. 

The model predicts a smaller velocity deficit than the turbine. The simple actuator disk 

overestimates the wake and the correspondence profile are limited by the turbine data 

and the drag disc data. In Fig.4.63 we can note that the simulations predict a profile 

close to the ground wall different from the turbine and the drag disc profile whereas 

turbine and drag disc are characterized by a similar profile in this zone, which is 

probably due to the tower presence. 

The Jensen model is the method that produce the worst results, this was predictable 

because it is thought to analyse a real wind turbine whereas in my work is used to 

analyse a model in a wind tunnel. In the Jensen model the 7 coefficient have to be 

calibrated with experimental data, so the value used (7 � QH) is quite accurate for a 

real case and not for a model. Furthermore this model does not consider the blockage 

effect and do not respect the conservation of the mass: it does not see the flow 

acceleration around the disk. The Jensen profile is squared because the Jensen model is 

an analytic model and it has not terms that take account of the velocity profile diffusion. 
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5 Conclusion 

In this thesis the wake behind a wind turbine, modeled by an actuator disk with BEM, 

was analyzed, both at on-design and off-design conditions. As a general comment, the 

model results match quite well the experimental data. At TSR=6, while the matching is 

particularly good for the velocity profiles, the estimated turbulent kinetic energy is 

twice as low. At on-design condition and for high TSR the agreement between 

simulations and experiments is better than for low TSR, probably due to errors in the 

estimation of the stall. The computational model is not able to predict the asymmetry in 

the experimental wake velocity profiles , which was due to the presence of nacelle and 

the tower, which were not included in the computational model. Despite the little 

discrepancies, we can use the actuator disc with BEM to analyzed the turbine wake and 

it can be a good tool to design a wind farm. 

The actuator disc model coupled with a BEM approach is more complex and requests 

more computational resources than the simple actuator disk. Despite that, the wake 

predictions are significantly better. When comparing the computations with 

experimental results from wind tunnel tests, the simple actuator disk is not able to 

predict the mean velocity of the flow at the center of the wake, while the actuator disk 

with BEM reproduces the wake more accurately. At off-design conditions, the simple 

actuator disk model outputs completely wrong results especially for what concerns the 

mean velocity profiles. 

The computations were also compared to the experimental results obtained with a 

porous disc, used as an experimental static simulator of a wind turbine. The porous disc 

wake was markedly different from the model turbine wake, being deeper and featuring 

much higher turbulence levels. While the actuator disc with BEM was in better 

agreement with the model turbine results, the simple actuator disc outputted velocity 

profiles which were featuring equally high errors both with respect to the turbine and 

the drag disc. 

The Jensen model, which is still the standard model for wake analysis in industrial 

environments, was outperformed by both actuator disc models, both for what concerns 

the agreement with the model turbine and the porous disc. This is due to the rather crude 

approximations of the Jensen model, especially for what concerns the wake spreading 

and evolution. Both the Jensen model and the actuator disc require the same input for 

the rotor simulation (i.e. only the turbine ��) and are equally crude for what concerns 

the rotor representation. Nevertheless, using a CFD model to simulate the wake 

spreading greatly improves the simulation, especially since the reference experiments 

were performed in a wind tunnel, where the low turbulence levels limit the spreading 

rate of the wake. As a general comment, the actuator disc with rotation is to be preferred 

over the Jensen model if the details of the wake want to be resolved. 
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The performance of the computational models is strictly linked with the accuracy of the 

input data, like the aerodynamic characteristics of the airfoil and the background wind 

tunnel turbulence. When experimental aerodynamics characteristics of the airfoil are 

used, and when the experimental value for the inlet turbulent length scale is employed, 

the results have a better agreement with the experiments. The turbulent length scale has 

a strong influence: if we use a relation used to calculate the turbulent length scale in a 

pipe the results are completely wrong, and the wake recovery is greatly overestimated.  

Although the analyzed model has proved to output good result, it can be surely 

improved in three key areas: 

• Mesh refinement 

• Including a model for nacelle and tower 

• Using Reynolds dependent airfoil characteristics 

The mesh used is a simple hexahedral mesh, where the cells have a regular hexahedron 

shape. The mesh had the same size in the whole computational domain exception made 

for the disc region, where the mesh is more refined. A possible improvement would be 

to increase the mesh refinement in the disc area and in the disc wake, to improve the 

precision in the wake resolution. In order to avoid that a cell is split between two 

adjacent annular rings, the usage of cells with a curved surface would be beneficial. 

The nacelle and the tower could be represented via simple actuator disks, even though 

the simple actuator disk library should be modified in order to include the empirical law 

which takes into account momentum theory breakdown.

In the current analysis the aerodynamic characteristics of the airfoil for +1 � HM ¬ HQ³
were used for all calculations. An important improvement would be to insert the 

possibility of Reynolds dependent calculation of the airfoil characteristics, in order to 

take into account the variability of the blade performance at different TSR and for 

different radiuses of the analyzed blade section. 
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