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“You must take the life the way it comes at you and 

make the best of it.” 
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he knowledge of the behavior of non-spherical particles suspended in 

turbulent flows covers a wide range of applications in engineering and 

science. Dispersed two-phase flows and turbulence are the most challenging 

subjects in engineering, and when combined it gives rise to more complexities as 

the result of the inherent stochastic nature of the turbulence of the carrier-phase 

together with the random distribution of the dispersed phase. Moreover, for 

anisotropic particles the coupling between the translation and rotation of particle 

increases the complication. Because of the practical importance of prolate particle-

laden turbulent flows, the plenty of numerical and experimental works have been 

conducted to study such suspensions. 

Numerical approaches have given valuable insight of turbulent suspension 

flows, although the computation has been only carried out at the macro scale and 

models, not including flow distortion around the particle, comprise the detail of the 

flow in the order of a particle size. In addition, the model of the forces imposed on 

the particle by the fluid and mass point treatment are strictly valid for infinitely 

small particle having size less than all scales of the fluid turbulence. Fully resolved 

solution at the scale of the dispersed phase in turbulent flows for high Reynolds 

number has been recently performed but is still a challenge. 

On the other hand, the presence of particle as the dispersed phase makes 

experimental measurements much more complicated than those with single phase 

as a result of particles interference. The area of considerable difficulty with this type 

of experiments is the measurement of the fluid-phase velocity remarkably close to 

the particle surface. Generally, experimental researches have been concentrated on 

measuring the mean velocity and Reynolds stresses of the carrier-phase, and the 

mean velocity, fluctuations, orientation and accumulation of the non-spherical 

particles. Higher-order quantities, including Lagrangian particle velocity 

correlations, the carrier-phase turbulence modulation, and two-particle and particle-

fluid velocity correlations are also of interest. 

It has been found that the rotational and translational movements of the fiber-

shaped particle depend on the nature of carrier-phase field and fiber characteristics 

such as aspect ratio, fiber Stokes number, fiber Reynolds number, and the ratio of 

fiber to flow length scale. 
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With the development of PIV (Particle Image Velocimetry) and PTV (Particle 

Tracking Velocimetry) techniques, it has been appeared that combined PIV/PTV 

will be the best available choice for the experimental study of dispersed two-phase 

flows. The purpose of combined PIV/PTV measurement of two-phase systems is 

simultaneous measurements of fluid and suspended objects, where the PIV 

measurement of the fluid phase are combined with PTV measurement of the 

dispersed phase. 

The objective of this doctoral thesis is to study the behavior of rod-like particles 

suspended in wall-bounded turbulent flow through simultaneous PIV/PTV 

measurements of the velocity of the flow field and particle motion. As a 

representative of rod-like particles, I have employed cellulose acetate fibers with the 

length to diameter ratio (aspect ratio) larger than one. Here, It has been considered 

only dilute suspensions with no flocculation; thus fiber-fiber interaction is 

negligible. The measurements have been conducted within the parallel planes (2D 

view) illuminated by laser in the streamwise direction in thin film suspension 

flowing on the water table setup at Linné FLOW Centre, KTH Mechanics Lab. It is 

shown that this setup is a well-behaved experimental model of half channel flows 

often used in Direct Numerical Simulation (DNS) investigations. Therefore, the 

experimental results are comparable to their DNS counterpart where it is 

convenient. A single camera PIV technique has been used to measure flowing 

suspension. Therefore, it has been needed to preprocess images using a spatial 

median filter to separate images of two phases, tracer particles as representative of 

fluid and fibers suspended. The well-known PIV processing algorithms have been 

applied to the phase of fluid. I have also introduced a novel algorithm to recognize 

and match fibers in consecutive images to track fibers and estimate their velocity. 

It is not feasible to study all relevant aspects of particle-laden turbulent flows in 

a single study. In this study, I present the statistics of the rotational and 

translational motion of fiber-like particles and the surrounding fluid velocity. To the 

author’s knowledge, remarkably little experimental work has been published to date 

on simultaneous measurement of fiber motion and turbulence field in a turbulent 

fiber suspension flow to reveal dynamics of fibers in this regime. Therefore, the 

results of this work will be profitable in better understanding of such multiphase 

flows. The statistical analysis of the translational motion of fibers shows that the 

size of fiber is a significant factor for the dynamical behavior of the fiber near the 

wall. It has been observed that, in the region near the wall, the probability of 

presence of the long fibers is high in both the high-speed and low-speed streaks of 

flow, and the mean velocity of fibers almost conforms to the mean velocity of flow; 

whereas the short fibers are mostly present in the low-speed areas, and the fiber 

mean velocity obey the dominant flow velocity in these areas. In the far-wall 
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regions, the translation of fibers is practically unaffected by the aspect ratio, 

whereas it depends crucially on the wall-normal distance. Moreover, it was found 

that in the case of long fibers near the wall, the low speed fibers mostly are 

orientated in streamwise direction. On the other hand, there is no preferential 

orientation for fast long fibers. Although wall-normal velocities were not measured 

in this study, it is hypothesized that this behavior is a result of fibers being affected 

by the sweep and ejection events known to occur in wall-bounded turbulent flow. 

The fast fibers are in sweep environment and comes from the upper layer. The low 

speed fibers are into ejection areas in the vicinity of the wall, and the wall has a 

stabilizing effect on them. The short fibers are still oriented mostly in streamwise 

direction for a certain range of low velocity. Furthermore, since a considerable 

change of the fiber behavior is observed in a certain ratio of the fiber length to the 

fiber distance from the solid wall, it is supposed that this ratio is also a prominent 

parameter for the behavior of fiber near the wall. 

The results presented are in terms of viscous wall units wherever are denoted by 

superscript “+”. 
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 Chapter 1 

ispersed two-phase flows happen commonly in many engineering and 

science applications, and they are often turbulent. These flows are 

characterized by a phase dispersed in the form of solid particle, droplet, or bubble 

within a fluid (gas or liquid) as carrier phase. Processes such as droplet or bubble 

break-up or particle agglomeration indeed change the interface between the phases. 

However, dispersed multiphase flows are distinguished from other types of 

multiphase flows, where the interface between the dispersed and carrier phases is 

considered in terms of particle-size spectra without the detailed evolution of the 

interface. Dispersed two-phase flows and turbulence are two of the most 

challenging issues in fluid mechanics, and when come together it leads to being 

further complicated because of the inherent stochastic nature of the turbulence of 

the carrier-phase together with the random distribution of the dispersed phase. 

Moreover, for non-spherical particles the coupling between the translation and 

rotation of particle increases the complexity. 

1. Applications 

In the following, examples involving two-phase flows with suspended particles 

are outlined to illustrate the wide application of such flows in the industry and 

science. In plenty of conditions, the particles have a non-spherical shape, and the 

flow is turbulent. 

1.1. Cyclone separator 

The separating of substances in the form of particle and droplet from industrial 

fluid is an important application of fluid-particle/droplet flows. Several methods 

are employed to remove particles or droplets from the flow. If the particles are 

sufficiently large, a settling chamber can be used in which the condensed impurities 

simply depart the flowing gas or liquid and are collected. For small particles into 

gas, the cyclone separator is used, Figure 1. The gas-particle flow enters the device 

in a tangential direction. The particles migrate toward the wall due to centrifugal 

acceleration and then fall toward the bottom where they are collected. The gases 

converge toward the center and form a vortex flow, which exit through a hatch on 

 D 
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the top. The performance of the cyclone is quantified by the particle size and 

density [1]. 

 

 

 

 

 

 

 

 

 

 

1.2. Long distance material transport 

Particle laden flows can be also seen in long distance transporting materials by 

either gases or liquids, depending on application. 

The transport of materials by air is known as pneumatic transport, which is used 

widely in the industry for the transport of solid materials such as cement, grains, 

metal powders, ores, and coal. It has been particularly useful in layouts where 

obstacles prevent straight-line transport like conveyer belt or systems, which require 

tapping the line at arbitrary locations. Flow patterns depend on many factors, 

including particle loading, Reynolds number, particle properties and the layout of 

pipeline. Figures 2 illustrate the regimes that have been identified for gas-particle 

flows in a horizontal pipe. When the gas velocity is sufficiently high, the particles 

are well mixed and maintained in an almost homogeneous state by turbulent 

mixing, Figure 2.a. As the gas velocity is decreased, the particles begin to settle out 

and accumulate on the bottom of the pipe, and series of dunes begin to be formed 

due to the turbulent gas flow as depicted in Figure 2.b. The velocity in which 

deposition begins to occur in the pipe is called “the saltation velocity”. As particles 

keep filling the pipe, there are alternate regions where particles have settled and 

where they are still in suspension. This is called slug flow, Figure 2.c. Finally, at 

lower gas velocities, the pipe is filled by particles, and the gas flows through a 

packed bed, shown in Figure 2.d. At this point, the particle transport is ceased. 

Pneumatic conveying systems are generally categorized in dilute and dense phase 

transport. Dilute-phase transport normally operates with low solids loading on low 

Figure 1 Cyclone separator; 
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pressure and high velocity. In dense phase transport, the pressure difference and 

solids loading are higher, but lower velocity, which leads to less material 

degradation and line erosion [1]. 

 

 

 

  a) Homogeneous flow        b) Dune flow 

 

 

 

   c) Slug flow          d) Packed bed 

 

The transport of particles in liquids is identified as slurry flow. Drilling fluid is 

an example of this application. It is often used while drilling oil and natural gas 

wells to carry cuttings up to the surface. Its ability to do so depends on cutting size, 

shape, and density, and speed of fluid traveling up the well. The mechanics of the 

liquid-solid in slurry flow is complicated because of the particle-particle and fluid-

particle interaction. Homogeneous slurries normally consist of small particles that 

are kept in suspension by the turbulence of the carrier fluid. Usually the 

homogeneous slurry is treated as a single-phase fluid with modified properties that 

depend on particle loading. 

1.3. Solid propellant rocket 

Another example is a gas-particle flow in a propulsion system of the solid 

propellant rocket. The fuel of solid propellant rocket can consist of aluminum 

powder. When the aluminum burns, small alumina droplets are produced and travel 

out the nozzle along with the exhaust gases, Figure 3. The presence of these 

particles decreases the propulsion of the rocket. The principles of gas-particle flows 

are used to design nozzles to achieve the best performance possible within the 

design constraints of the system. 

 

 

 

 

Figure 2 Horizontal pneumatic transport; 

http://en.wikipedia.org/wiki/Oil_well
http://en.wikipedia.org/wiki/Natural_gas
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1.4. Papermaking 

Fiber-reinforced composites processing and paper manufacturing industry are 

of broad applications of multiphase flow process in which the relevant properties 

of the final product depend on the interaction between fluid and the fibers 

suspended. Although the phenomena happened throughout the process are not 

unique, fluid mechanics plays a key role in the final quality of the product. 

For instance in the papermaking process, a dilute cellulose fiber suspension is 

jetted through a headbox, Figure 4. The headbox is the initial part of a paper 

machine, and its task is to deliver a thin spanwise homogeneous suspension onto 

the dewatering part, where the paper sheet is formed. The turbulent velocity 

profiles of fiber suspension can be characterized by a correlation with fiber 

concentration and Reynolds number as the main parameters. The acceleration of 

the flow in the contraction part influences both the fiber flocs and the fiber 

orientation in the final paper sheet. An additional aspect is the effect of the wall 

shear level on the fiber orientation [2]. 

 

 

 

 

 

 

 

 

 

Figure 3 Solid propellant rocket motor; 

Figure 4 The schematic of a headbox [2], courtesy of L.D. Soderberg; 
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As shown in Figure 5, in the dewatering part a planar fiber suspension jet 

produced by the headbox impinges on a moving permeable wire belt (forming 

fabrics), so the water is drained through the belt and the fibers begin to form a 

network [2]. 

 

 

 

 

 

 

 

 

1.5. Environmental fluid mechanics 

In nature, we can also see particle-laden flows in the sandstorm, sedimentation 

of various substances in rivers, aerosols within the atmospheric boundary layer, 

and contaminant transport in the air and water. Therefore, the knowledge of 

particle transport, dispersion and accumulation processes in nature flows, from the 

micro scale to the planetary scale, provides a basis for the development of 

predictions and sustainable environmental management. 

 

 

 

 

 

 

 

 

 

For instance, the mechanism of particle drifting within the atmospheric 

boundary layer or rivers is widely found in phenomena surrounding us, including 

snowdrift on infrastructure such as roads, avalanche risk, soil erosion in farmland, 

Figure 5 Dewatering and consolidating the fiber network on one wire (left) or 
between two wires (right) [2], courtesy of L.D. Soderberg; 

Figure 6 The sandstorm is an example of particles dispersed in atmospheric 

turbulent flow [picture: © Carters News Agency/Peter Vruggink ]; 
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(e)

migration of dunes across deserts, and sedimentation in rivers. Although these 

examples involve different materials, the physics of mechanisms is similar. 

Depending on combinations of particle size and fluid velocity, large boulders creep 

along the surface; smaller particles hop and are entrained into downstream, and tiny 

sediments are transferred by the suspension flow. Typical trajectories of these three 

different transport modes can be divided into two layers, the suspension layer and 

saltation layer where also creeping movement occurs, as depicted in Figure 7. 

 

 

 

 

 

 

 

1.6. Particle-laden wall flows 

The dynamics of a particle phase in wall bounded flows is crucial to predict 

failures of gas turbine blade, wind turbine blade, aircraft wing and etc accurately 

due to particle collision and deposition on the surface [3, 4]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 the three different behaviors of drifting particle within the turbulent boundary layer; 

Figure 8 Volcanic ash deposits and erosion in a turbojet; (a) Fine particle size, 
minimal deposits; (b) Medium particle size, lumps of deposit on blades and 
combustion chamber wall; (c) Medium particle size, deposit covers more than 50% 
of combustion chamber wall; (d) Coarse particle size, deposition of leading edges of 
blades and combustion chamber wall deposits greater than 1 mm; (e) erosion of 
leading edge; (a-d):[3], (e):[4] with permission of NASA; 
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“... the smallest eddies are 
almost numberless, and 
large things are rotated 
only by large eddies and 
not by small ones, and 
small things are turned by 
small eddies and large.” 

2. Turbulence 

It is a fact that most flows are turbulent, which has caught the interest of 

observers during history. Figure 9 is a revision of hand drawing of a free water jet 

issuing from a square hole into a pool, which was found in Leonardo Da Vinci’s 

sketchbook along with a remarkable description. 

 

 

 

 

 

 

 

Such phenomena were termed “turbolenza” by Da Vinci, which is the origin of 

the modern word for this type of fluid flows. Although turbulence has many similar 

characteristics to chaos, it is not exactly chaos, in the sense of the word used in 

analyzing dynamical systems, because turbulent flows are not only time-dependent 

but also space-dependent. The understanding of turbulence is one of the most 

fascinating, challenging and disappointing problems in classical physics. Nobelist 

Richard Feynman described turbulence as "the most important unsolved problem 

of classical physics." 

Turbulent flow is featured by apparently random and chaotic three-dimensional 

vorticity. If there is no three-dimensional vorticity, there will be no real turbulence. 

The ability of generating new vorticity is essential for turbulence to maintain itself, 

and only in a three-dimensional mechanism the necessary turning and stretching of 

vortices by the flow itself is possible. The turbulence of flow results in enhanced 

energy dissipation and diffusivity that is responsible for the enhanced mixing and 

increased rates of mass, momentum and energy transports in a flow. In addition, it 

includes spatial and temporal intermittency, coherent structures, and high sensitivity 

of the instantaneous motions to the initial and boundary conditions. 

There had been no considerable progress in understanding turbulent flow until 

the late 19th Century, beginning with Boussinesq in the year 1877 and Reynolds in 

1883. Boussinesq hypothesized that turbulent stresses are linearly proportional to 

mean strain rates, “eddy viscosities” which is still the keystone of most turbulence 

models. Reynolds was the first who investigates the transition from laminar to 

turbulent flow by injecting a dye streak into the flow through a pipe having smooth 

Figure 9 Leonardo Da Vinci’s observation of turbulent flow, with permission of eFluids.com; 

http://en.wikipedia.org/wiki/Richard_Feynman
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transparent walls, Figure 10. His observations led to identification of a single 

dimensionless parameter, now called the Reynolds number (Re), which 

characterizes flow behavior in this situation. Figure 11 provides an outline that the 

century between Reynolds’ experiments in 1883 to the present time is divided into 

three overlapping period, statistical, structural and deterministic movement [5]. 

 

 

 

 

 

 

 

 

Turbulence is still a subject under studying. None actually knows a lot for sure 

about turbulence, and even worse, scientists even disagree about what they think 

they know. However, it is believed that because of chaotic-like and apparently 

random behavior of turbulence, determining the instantaneous motions of fluid is 

too complicated, and instead, we should rely on statistical methods for most of the 

studies. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Reynolds’ observations in his experiments [Image source: Wikimedia]; 

Figure 11 Movements in the study of turbulence, as described by Prof. J. M. McDonough [5]; 
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2.1. Wall-bounded turbulent flow 

Wall-bounded turbulent flows are inhomogeneous flows in the wall normal 

direction with a mean velocity gradient in the presence of boundaries. The solid 

surfaces are the responsible of necessary vorticity generation for turbulence in the 

absence of any other sources. These vorticities dominate the wall layer dynamics. 

The vorticities are generated at the wall, where an oncoming flow is brought to 

rest to satisfy the no-slip condition. Then they are diffused, transported and 

amplified, in a turbulence regeneration cycle. The presence of the wall causes that 

the three-dimensional vortices, vital for the turbulence, develop more slowly than 

boundary free shear flow because solid walls suppress the growth of velocity 

components normal to the wall, and then reduce the entrainment rate. 

Once the vorticity is produced, the vortex filament oriented spanwise to the 

mean flow lifts. The part of the filament lying further away from the wall, head, 

experiences higher mean flow velocity and be convected downstream faster than its 

parts lying lower, legs. Therefore, the filament would be stretched and intensified. 

The hairpin shaped vortices are formed above the viscous wall layer. Maintained 

upon evolution, these vortical structures burst and become quasi-streamwise 

vortices. These quasi-stream wise vortices are parallel counter-rotating vortices 

travelling with the mean convection velocity of the flow. The clockwise and 

counterclockwise, quasi-streamwise vortices produce ejections on the upwash side 

and sweeps on the downwash side. These vortices lay and bound the low-speed 

streaks as arranged in a series of alternating intervals. The low-speed streaks are 

lifted by the ejection events. 

The clockwise and counterclockwise quasi-streamwise vortices are rarely paired 

in equal size and strength. In most of cases, each mature quasi-stream wise vortex 

follows a small quasi-stream wise vortex of opposite sign, offspring vortex, 

interpreted as the rear, wall-touching end of a counter-rotating quasi-streamwise 

vortex farther downstream. However, on occasion, there are also pairs of quasi-

streamwise vortices with equal strength, characterizing the legs of the so-called 

horseshoe vortices. A sketch of the coherent structures of wall turbulence is 

depicted in Figure 12. For more detail, the reader is referred to references [6-10] 
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    (a)            (b) 

 

 

3. Dispersed multiphase flow 

Measuring, simulating and understanding turbulent dispersed multiphase flows 

with particles suspended are both fundamentally interesting in science and 

important in industry. The presence of particle in turbulent flows has three main 

research aspects: 1) the preferential concentration and the dynamics of particles, 2) 

the effect of turbulence on the coupling between the dispersed and carrier phases, 

3) the modulation of carrier phase turbulence due to the presence of particles. In 

addition, when the particle is not spherical, the orientation of particle in the flow is 

significant. 

The phenomenon of preferential accumulation has been studied for years by 

Maxey [11, 12], Elghobashi & Truesdell [13], Eaton & Fessler [14], and others. It is 

well known that even in isotropic turbulence, particle distribution is not uniform. In 

practice, solid particles have a tendency to accumulate close to a solid surface. 

Wang & Maxey inferred that preferential concentration is controlled by vortical 

structures of small-scale turbulence. Numerical and experimental results have 

shown this to be correct, although it is not tested at high Reynolds numbers. 

The effect of turbulence of flow on the mass, momentum, and energy coupling 

between the phases is significant and the key elements in physics of fluid. In 

momentum coupling, in the limit of zero particle Reynolds number, steady and 

unsteady Stokes flow approximation have been used to obtain analytic expressions 

for the quasi steady, pressure gradient, added mass, and Basset history components 

of the force. In finite Re or for non-spherical particles, empirical corrections are in 

common use and are strictly applicable. The results of experimental measurements 

of the inter-phase force on a particle have not been conclusive. In addition, the 

contribution of very small scale eddies to be best accounted in terms of a stochastic 

Figure 12 (a) Schematic of a hairpin shaped vortex; (b) Near-wall coherent structures and 
associated coherent events; quadrant Re stresses: Q1 and Q2 (ejection), Q3 and Q4 (sweep); 
(a): [10], (b): [7], courtesy of Prof. R.J. Adrian; 
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component in force formulation is an area for future research. The above 

discussion on momentum is applicable to mass and the inter-phase exchange of 

energy [15]. 

Turbulence modulation by particles is another noteworthy aspect of particle-

laden turbulent flow research. However, the turbulence modification mechanism is 

not properly understood due to the wide range of relevant scales and difficulties of 

measuring turbulence with the presence of particles. For instance, previous studies 

had shown that a dilute dispersion of fine particles could either augment or 

attenuate the gas-phase turbulent kinetic energy (TKE) although numerical 

simulation models do not accurately capture such turbulence modulation because 

the models do not include flow distortion in the order of the particle diameter or 

the small scales of flow [16]. It has been observed that the cases with particle sizes 

smaller than the Kolmogorov length scale of carrier phase turbulence had 

turbulence attenuation and considerable turbulence augmentation for particles 

larger than the Kolmogorov length scale. The measurements done by Tanaka & 

Eaton [16] also revealed strong damping of the turbulent kinetic energy and strong 

augmentation of the dissipation rate in a region surrounding the spherical particles. 

3.1. Rod-like particle laden turbulent flow 

As already mentioned, in many conditions the particles are non-spherical. The 

vast majority of numerical studies has assumed ellipsoidal particles as a simple 

model of non-spheres. Plenty of laboratory works has considered rod-like particles 

or fibers as a representative of non-spherical particles, which the length to diameter 

ratio plays the same role as the aspect ratio for ellipsoids. In addition, the fibers can 

be treated as elongated ellipsoidal particles widely used in computational works, 

which move according to their inertia and hydrodynamic drag and rotate under 

hydrodynamic torques. The main feature of anisotropic nature of the non-spherical 

particles is the coupling between the translational and rotational moment due to the 

particle orientation. 

Some first investigations have concentrated on the deposition and orientation of 

fibers or ellipsoidal particles in a turbulent flow. Shapiro and Goldenberg[17] 

developed an experimental technique to measure the deposition velocity of glass 

fibers in a turbulent pipe flow. They found that the shape of particle significantly 

affects the deposition velocity of non-spherical particles, characterized by 

intermediate values of the effective relaxation time. They proposed semi-empirical 

correlations for turbulent deposition velocities of non-spherical particles. 

Fan and Ahmadi[18] presented a sublayer model for the deposition of ellipsoidal 

particles in a wall-bounded turbulence. They showed that the trajectories for 
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ellipsoidal particles are sensitive functions of particle initial orientation. They also 

studied the effects of particle size, aspect ratio, density and gravity direction on the 

deposition rate of ellipsoids. 

Newsom and Bruce[19] experimentally and numerically studied the orientational 

characteristics of relatively large fibrous aerosols in the atmospheric turbulent 

boundary layer. Their experiments showed that fibers with larger diameters tend to 

exhibit a greater tendency for horizontal orientation. The orientational preference is 

more sensitive to fiber diameter than to length. However, the proposed model 

overestimated the observed mean orientation. Olson [20] described the state of 

fibers suspended in a turbulent flow in terms of Probability Density Function 

(PDF) of fiber orientation and deposition through a stochastic model of 

homogeneous and isotropic turbulence. 

Zhang et al. [21] studied the transport and deposition of ellipsoidal particles in a 

turbulent channel flow by the direct numerical simulation (DNS). While the 

Eulerian approach had been accepted for the turbulence field, the particles were 

treated in a Lagrangian approach. The prolate ellipsoidal particles reproduce quite 

reasonably the behavior of rigid elongated fibers. They provided the great results:   

i) The eddy structures of the near-wall turbulent flows have a key role for the 

particle transport and deposition; ii) Both spherical and ellipsoidal particles tend to 

accumulate in the viscous sublayer, and moreover ellipsoidal particles tend to 

accumulate in certain streaks due to the wall coherent vortical structures of 

turbulence; iii) The dispersion and transport of particles with large response times 

are mostly governed by the turbulent flow, and the particle aspect ratio has a small 

contribution. However, the aspect ratio plays a prominent role in the deposition 

rate; iv) Ellipsoids mostly rotate about the axis in spanwise direction due to 

streamwise mean shear field with little rotation about the other axes; v) Ellipsoidal 

particles tend to be aligned in the mean flow direction; vi) In general, the spherical 

and ellipsoidal particles move faster than the surrounding fluid in the streamwise 

direction; 

Moses et al. [22] performed an experimental investigation of fiber motion near 

the wall in shear flow. They showed that the fiber experiences an increased rate of 

rotation in comparison with Jeffery’s prediction for distances less than a fiber 

length and larger than fiber diameter from the wall. In this region, the wall effect is 

higher for longer fibers and is also a function of fiber orientation. The fibers 

oriented normal to the wall rotated faster than those that are parallel with the wall 

at the same distance. Once the fiber becomes aligned with the wall, its rotation gets 

stopped. Thus, the wall has a stabilizing effect in this orientation. In addition, their 
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results showed that the fibers having higher aspect ratio rotate more quickly near 

the wall than those with lower aspect ratio. 

Paschkewitz et al. [23] presented the results of a direct numerical simulation of 

the drag reduction induced by rigid fibers in turbulent channel Flow. Flow statistics 

showed that Reynolds stresses are reduced; the fluctuations of wall-normal velocity 

and spanwise velocity are reduced while streamwise fluctuations are increased, and 

streamwise vorticity is reduced. Melander and Rasmuson[24] simultaneously 

measured the concentration and velocity of wood fibers suspended in the air by the 

method developed on PIV technique using fibers as seeding particles. This made 

their velocity measurements less accurate and reliable. 

Xu and Aidun [25] measured the effect of fiber concentration and Reynolds 

number on the shape of the velocity profile of fiber suspension flow in a 

rectangular channel by Pulsed Ultrasonic Doppler Velocimetry (PUDV). They 

found that the presence of fiber in the suspension decreases the turbulence 

intensity and hence reduces the turbulent momentum transfer. On the other hand, 

fibers in the suspension tend to flocculation, which will grow the momentum 

transfer. The relative contribution of these two types of momentum flux will 

determine the final shape of the velocity profile. 

Shin and Koch[26] presented results of a parametric study in a direct simulation 

of the translational and rotational motion of slender fibers in isotropic turbulence 

in order to realize how the translational and rotational dispersion of fibers depends 

on fiber length and the Reynolds number of the turbulent flow. The fibers having 

lengths smaller than the Kolmogorov length scale move like fluid particles and 

rotate like material lines. With increasing fiber length, the fiber becomes insensitive 

to the smaller-scale eddies so that the translational and rotational motions of fiber is 

slower. 

The influence of homogeneous isotropic grid-generated turbulence on the 

orientation distribution of a dilute suspension of stiff fibers in a planar contraction 

is experimentally studied by Parsheh et al. [27]. They utilized high-speed imaging 

and Laser Doppler Anemometry (LDA) techniques to quantify fiber orientation 

distribution and turbulence characteristics. Their results showed that the 

characteristics of inlet turbulence have a high influence on rotational diffusion. 

Moreover, the flow Reynolds number has negligible effect on the development of 

orientation anisotropy, and the influence of turbulence on fiber rotation is 

insignificant for rotary Peclet number larger than 10. Using PIV measurements of 

the structures of sedimentation flow, Metzger et al.[28] investigated the instability 

of a sediment suspension of rigid and high aspect ratio fibers within a viscous fluid. 

Their observations confirmed the existence of  instability. They reported the mean 
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velocities and velocity fluctuations; the strength of the velocity fluctuations strongly 

correlates with the size of the vertical component of the sedimentation structure. 

Mortensen et al.[29] studied the dynamical behavior of small elongated 

ellipsoidal particles in channel turbulent flow by means of DNS and Lagrangian 

particle tracking. Their approach was similar to which taken by Zhang et al. but 

their focus was on the effect of particle aspect ratio and the particle stokes number 

on the distribution, orientation, translation, and rotation of particle. They found 

that the aspect ratio practically does not have any influence on the translational 

motion, whereas both mean and fluctuating spin components depend crucially on 

it. The prolate particles have a tendency to align themselves with the mean flow 

direction. In addition, ellipsoidal particles like spherical particles tend to accumulate 

in the viscous sublayer and preferentially concentrate in regions of low speed fluid 

velocity. The orientation, distribution, and deposition of fibers in a directly 

simulated turbulent channel flow is investigated by Marchioli et al. [30], as well. 

Their results confirmed that fibers tend to be oriented in the mean streamwise flow 

direction near wall. However, for higher fiber inertia this alignment with streamwise 

direction is just stable for rather short times before fibers rotate in the vertical 

plane. The orientational and translational behaviors of fiber affect the process of 

fiber accumulation at the wall. Comparing the behavior of fibers with that of 

spherical particles demonstrated that the aspect ratio has little influence on 

clustering, preferential distribution, and segregation. They observed no preferential 

orientation and no significant segregation in the channel centerline, which confirms 

that the role of inertia and elongated shape becomes less prominent in far region 

from wall. Andersson et al.[31] developed a novel scheme for strong coupling 

between inertial Lagrangian point particles and a continuous Eulerian fluid phase, 

and presented a two-way coupled simulations of prolate particle laden turbulent 

channel flow. M. Do-Quang et al. [32] simulated almost neutrally buoyant finite-

size rigid fibers in turbulent channel flow through DNS. They showed that the 

finite size leads to fiber-turbulence interactions that are significantly different from 

earlier numerical studies for elongated ellipsoids smaller than the Kolmogorov 

scale. Their simulations indicated that the finite-size fibers tend to stay in the high-

speed streaks due to collisions with the wall. In the central region of the channel, 

long fibers tend to align in the spanwise direction while very close to the wall they 

become mostly aligned in the streamwise direction. 

G. Bellani et al. [33] experimentally investigated shape effects on turbulence 

modulation. They found that ellipsoidal particles cause less reduction of the mean 

Turbulent Kinetic Energy (TKE) in comparison with spherical particles. The 

reason for this is changes in production and dissipation of TKE, as well as 

redistribution of TKE across scales by ellipsoids and spheres. R. Van Hout et al. 
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[34] proposed a combined PIV and digital holographic cinematography to study the 

fiber-flow interaction mechanisms in turbulent flow. They focused on the 

extraction of the velocity field in the vicinity of the fibers and their rotational and 

translation motion. When they applied in-line digital holography to image the fiber 

orientation and positions, the fiber diameters were not resolved in a high 

resolution, but their lengths were different. Their PIV results showed a relation 

between the instantaneous vorticity field and the fiber orientation. However, they 

explained that a larger ensemble size is needed to confirm this in a statistical sense. 
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 Chapter 2 

here are two fundamental approaches to understanding fluid flows 

experimentally, Visualization and Measurement. Visual inspection has probably 

always played a pivotal role in the understanding of complex phenomena, since 

“seeing is believing”. Visualization is accomplished by adding visual markers to the 

originally invisible flows. Common techniques are the injection of dye, marker 

particles or hydrogen bubbles into liquid/water. Airflow can be made visible by 

means of, for example, smoke or tufts attached to a surface. Photographs can be 

used to document the findings. When dynamic, time-dependent phenomena should 

be presented, specialized filming techniques related to the time scale of the flow are 

required. On the other hand, measurements provide quantitative information of a 

flow. Generally, the flow velocity can be acquired at one single position in space, 

point-based measurement, by pitot tubes, hot-wires probes or anemometers. In this 

type of measuring fluid velocity, the probe may spoil the flow around it inevitably 

due to the mechanical measurement principle. 

Particle Image Velocimetry (PIV) and Particle Tracking Velocimetry (PTV) can 

be regarded as the development of flow visualization techniques, which offer the 

solution to combine the methods of visualization and measurement into one 

process. They are optical, entire field, non-intrusive, and indirect techniques providing an 

accurate quantitative measure of the instantaneous flow velocity field across a 

region of the flow field, wherever optical access is achievable. “Entire-field” means 

that the flow velocity field can be measured simultaneously over a defined area 

(Field of View), in contrast to single point-based measurement. “Non-intrusive” is 

the absence of any probe parts that might disturb the flow within the measurement 

area. PIV and PTV extract the fluid velocity from the tracer particles motion, thus 

we measure the velocity of flow indirectly. 

The basic principle for the velocity field measurement is described as the flow 

seeded using tracer particles is recorded sequentially by image acquisition devices in 

the time interval ∆t, and images are processed to extract the particle displacement 

 T 
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∆s using image processing techniques during the time interval ∆t. The velocity is 

estimated by the fundamental definition: 

           
  

  
  

However, the experimental problem is that it cannot be taken in the limit as ∆t 

tends to zero. The time step ∆t is chosen such as to accurately determining the 

displacement ∆s. 

PIV image processing technique primarily depends on the available equipment 

to record the particle image and the seeding particle concentration. There are three 

types of fundamental algorithms for processing: auto-correlation, cross-correlation 

and particle tracking. The correlation-based processing techniques estimate spatially 

averaged velocities on small cells, known as PIV. In PIV, The flow seeded in the 

field of view is resolved by a grid of typically about 100-150 discrete small cells 

(interrogation windows) yielding velocity vectors. The interrogation window size 

determines the grid size of the vector field; it is comparable to computational mesh 

in computational fluid dynamics (CFD). Dynamical conditions can be resolved at 

high sampling rate in the KHz range; alternatively steady conditions can be 

observed at sampling rates below 1 Hz. These spatial and temporal resolutions 

allow detailed analyses of the physics of flow by means of statistics and velocity 

field visualization. These advantages are the reason why PIV is often applied when 

it comes to comparison between experimental and numerical results. In PTV, the 

individual particles embedded in the flow are tracked to identify the displacement 

of particles. It is often defined as the low particle density variant of PIV. 

PIV and PTV are techniques that involve many scientific disciplines including 

advanced optics, laser physics, signal and image processing, data handling and 

especially health and safety regulations. Therefore, background knowledge in these 

disciplines will be helpful to overcome the specific challenges that come up in the 

daily PIV usage. 

1. Principle of PIV operation 

The PIV working principle is quite simple. The flow is seeded with tiny, 

neutrally buoyant, light reflecting particles as tracer. Using a light sheet, formed by 

passing a double pulsed laser beam through an optical arrangement including 

cylindrical lenses, the particles in the measurement plane of the flow are illuminated 

twice with a small time interval. Camera is used to record two exposures of the light 

scattered by the tracer particles. Depending on the flow velocity and the 

magnification factor of the camera lens the delay of the two pulses has to be chosen 

such that adequate displacements of the particle images are obtained on the imaging 
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sensor of the camera. In general, only two components of instantaneous velocity 

can be measured using standard PIV (2D PIV). All the three-velocity components 

measurement is done by a stereoscopic approach (Stereo PIV). The favored 

arrangement of a 2D PIV system is that the biggest velocity component of the 

observed flow field is parallel to the light sheet while the viewing direction of 

camera is normal to the light sheet, as shown in Figure 13. Even when the 

arrangement is restricted for optical access by experimental boundary conditions, 

the setup should not differ too much from the ideal perpendicular arrangement in 

order to keep systematic errors as small as possible. 

 

 

 

 

 

 

 

 

The two exposures should be taken within a short time interval so that the same 

particles are caught in both exposures. The two exposures may be recorded on 

either a single image (double exposure-single frame) or two consecutive images 

(double exposure-double frame). Evaluating image in the first method is based on 

autocorrelation. This results in a directional vagueness. Therefore, when this 

method is used, the flow must only be in one direction. The double exposure-

double frame method along with cross-correlation processing method is more 

commonly used, and here it has been also applied. The remaining part of this 

chapter will deal with this method. 

In the evaluation of the PIV images, it is assumed that the tracers follow the 

local flow between the two illuminations. The image frames are divided into a large 

number of small interrogation windows. Each interrogation window should include 

at least ten tracer particles on average. A local displacement vector is estimated 

within each interrogation window using cross-correlation processing. The velocity 

is calculated using the time between the image shots and the physical size of each 

pixel on the camera. A schematic example of procedure of PIV recording and 

analyzing is shown in Figure 14. 

 

Figure 13 A 2D PIV system; 

http://en.wikipedia.org/wiki/Displacement_(vector)
http://en.wikipedia.org/wiki/Vector_(geometric)
http://en.wikipedia.org/wiki/Cross-correlation
http://en.wikipedia.org/wiki/Signal_processing
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2. PIV hardware components 

2.1. Seeding 

Actually in PIV measurements, the particle movement is recorded; not the flow 

is measured directly. Therefore, it is necessary that the flow is seeded with particles 

scattering the light in order to image the flow field. The particles should be ideally 

spherical, and small enough to follow the flow, but large enough to scatter the 

required amount of light. The choice of size also depends on the flow scales that 

shall be resolved. Indeed, the particle Stokes number (particle response time) must 

be less than 0.1 to follow fluid streamlines closely with tracing accuracy below 1%. 

In water, the most commonly used particles are polyamide powder (PSP) and 

hollow glass spheres that are sometimes coated by silver (SHG) to enhance 

reflectivity. Usually, smoke is used in airflow measurements in a wind tunnel. We 

must make sure that the seeding is distributed uniformly in the flow. 

2.2. Light source 

Commonly a Q-switched pulsed Nd:YAG laser (Neodymium Yttrium 

Aluminum Garnet) or Nd:YLF laser (Neodymium-doped Yttrium Lithium 

Fluoride) is used as the light source because of their high and stable light intensity. 

Pulsed lasers need some time to build up energy before they can fire a new pulse 

while the PIV image pair needs to be taken within a quite short period. Therefore, a 

laser system with double cavities is usually used. The laser pulses have a duration of 

5-200 ns and energy in each pulse can be up to 500 mJ. However, the light energy 

decreases with the increase of repetition rate, Figure 15. Shuttered Continuous 

Figure 14 Common PIV procedure from laboratory works to data analysis by software; 
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Wave (CW) lasers that provide a compact and cost-effective light source are also 

used in low-speed PIV imaging applications. 

 

 

 

 

 

 

 

 

The lasers of Nd:YAG and Nd:YLF emit monochrome light with a wavelength 

of 1064 nm, which is in the infrared range. For PIV purposes, light with this 

wavelength is not useful since the most of cameras have their maximum sensitivity 

in the blue-green part of the spectrum. Another disadvantage is the light sheet is 

not visible when positioning it in the measurement area. For these reasons, the 

wavelength of these lasers is halved by harmonic generator and IR light-dump, so it 

becomes 532 nm. Figure 16 depicts the basic layout of a common PIV-laser. The 

beam coming out from the laser source has a quasi-circular cross section that has to 

be shaped through a cylindrical lens in order to form a planar light sheet.  

 

 

 

 

 

In general, for applications in gas flows, a high power light source for 

illumination of the tiny tracer particles (or smoke) is required in order to charge the 

imaging sensor well. In liquid flows, larger particles that scatter much more light 

can usually be accepted. Therefore, light sources of considerably lower power can 

be utilized here. In most applications, a compromise must be found. 

PIV laser beams are extremely harmful to the body. It needs to be handled with 

care, and relevant health and safety rules must be followed. 

Figure 15 Light energy versus repetition rate for Litron LDY-300, 
with permission of Litron Laser ltd; 

Figure 16 Dual cavity laser for PIV; 



22 

2.3. Camera 

When the PIV technique was young and immature (in the late 1960’s), the 

recording medium for PIV images was photographic films. The records were 

analyzed by a laser interference method and applying an optical Fourier transform. 

It resulted in a time-consuming data extraction. Later, the photographs were 

scanned after exposure and digital signal processing methods were employed for 

analyzing. The fast progress of PIV came with the availability of digital cameras and 

the development of numerical analysis methods. Digital PIV cameras are typically 

characterized by their maximum recording rates (kHz) and their maximum 

resolution (MPx). However, there is still the problem of combination of frame rate, 

resolution and sensitivity. When higher recording rates are desired, the resolution 

must be reduced in the interest of high frame rates, Figure 17. It is due to limitation 

on technology of pixels charge transferring to the image buffer. Photographic film 

may still be a viable choice when high resolutions are required. 

 

 

 

 

 

 

 

 

The imaging sensor of the digital PIV cameras can be either Charged Coupled 

Device (CCD) or Complementary Metal Oxide Semiconductor (CMOS). CCD and 

CMOS sensor technology have evolved rapidly in recent years to provide both high 

pixel count and high frame rates with high sensitivity and low background noise. 

CCD camera is the classic technology recording consecutive frames, which are 

generally cheaper but comparably slower in acquisition rate (max 20 Hz). CMOS 

cameras can reach very high frame rate (10 KHz), suitable for high-speed imaging, 

but yet more expensive. CMOS cameras do not record sequential frames as such, 

instead a spaced series of image pair on chip. The architecture difference between 

CMOS and CCD sensor imply the demand of an entirely different synchronization. 

Nowadays, with the advent of high frame-rate digital cameras and pulse light 

sources with high repetition rate, it is possible to obtain instantaneous vector maps 

of the flow field with high spatial resolution, which are time-revolved. 

Figure 17 The working range of a few popular time-resolved PIV cameras, 
with permission of LaVision GmbH; 
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2.4. Synchronization unit 

Synchronizing of light pulse timing with the camera and controlling of the light 

pulse duration and the interval between pulses is necessary. A programmable 

synchronization unit triggers the laser pulse and the camera in a specific sequence 

to allow images to be acquired. The duration of the light pulse must be large so that 

the light scattered from particle can charge the chip. On the other hand, it must be 

short enough to freeze the motion of the particles during the pulse exposure in 

order to avoid blurred particle image. The time delay between the illumination 

pulses must be long enough to be able to determine the particle displacement 

between the images with sufficient resolution and short enough to avoid out-of-

plane losses of the particles leaving the light sheet between successive illuminations. 

Short inter-exposure times can be achieved by two different mode. 

 

 

 

 

 

 

 

 

 

 

In the mode of time series measurement, a single laser pulse is triggered for each 

camera shot. From each pair of neighbor images, a vector field is computed so that 

the camera frame rate is equal to the acquisition frequency, Figure 18. The 

acquisition rate should be selected such that the resulting time between laser pulses 

(Δt=1/facq) is adequate for the flow velocities within the field of view. This mode 

provides time-resolved vector fields. These data can yield time-related information 

such as power spectra, Lagrangian tracking and space-time correlations. 

For too high flow velocities to be captured by time interval equal to acquisition 

rate, pairs of images can be taken by letting the first laser pulse be fired at the end 

of the exposure of the first frame and the second pulse at the beginning of the 

exposure of the second frame. This mode gives the user flexibility in choosing a 

Figure 18 A schematic timing overview for time series mode; 
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time interval with no coupling with the camera frame rate. With this mode, velocity 

fields are less correlated in time than with previous mode mentioned. 

 

 

 

 

 

 

 

 

 

 

3. PIV adjustment 

3.1. Light Sheet Adjustment 

The beam emitted by the light source is shaped into a thin sheet via cylindrical 

and spherical lenses. Common arrangement is illustrated in Figure 20. The sheet 

width (D) at a distance L is a function of focal length of the cylindrical lens f1. In 

this arrangement, illumination is not uniform along the propagation direction. 

Other arrangements should be applied when uniform illumination is strictly 

required. 

 

 

 

 

 

 

 

A desired width of the light sheet is needed to minimize loss of the light. It 

depends on the size of the measurement region and the distance between the sheet 

optics and the measurement region. The laser light must be focused in the region so 

that the minimum thickness (waist) of light sheet is placed within the measurement 

Figure 19 A schematic timing overview for very high velocity measurement; 

Figure 20 Light sheet formation optics; 

              light sheet width 
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         sheet waist thickness 
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area, Figure 21. The reason to use the narrow dent of the laser sheet is to minimize 

the equivalent measurement volume that has to be considered in PIV 

measurements. 

 

 

 

 

 

 

3.2. Optical adjustment 

From a practical viewpoint, the particles must be visible in the images as sharp 

and clear as possible. In addition, optical considerations are needed for an accurate 

PIV measurement, such as estimating the dynamic range of the measurement 

system. 

-Scattering properties of tracer particles 

As explained previously, to fulfil the fluid mechanical requirements demands 

small particles as tracer. However, the tracers should scatter enough light to be 

visible. Typical particle size is on the order of a micrometer for gas flows, and tens 

of micrometers for liquid flows, where the particle diameter dp is larger than the 

light wavelength (typically λ=532 nm). This means that the light scattering pattern 

from particle is Mie scattering. A Mie scattering diagram is shown in Figure 22. 

Most of the light is scattered in the forward and backward direction. At a scattering 

angle of 90°, the scattering amplitude is low. This is why a PIV camera with the 

optical axis normal to the light sheet needs generally a strong light source. 

 

 

 

 

 

 

The particle scattering cross section (accordingly scattered light intensity) is 

roughly proportional to the dp
2 and also depends on the particle material refractive 

index relative to the refractive index of the surrounding medium and the light 

Figure 21 Light sheet focusing; 

Figure 22 Scattered light intensity as a 
function of the scattering angle for two 
different particle sizes; 
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wavelength. Another approach is to use fluorescent-dye covered particles, in which 

way the light is absorbed by the dye and is then re-emitted at another wavelength. 

-Imaging and optical configuration 

Figure 23 illustrates the PIV optical configuration for image acquisition. The 

image of illuminated particles within the laser sheet with the thickness of ΔZ0 are 

formed by means of an imaging lens on the recording medium (CCD or CMOS) in 

the image plane. The lens is characterized by its focal length f and aperture number 

f# (the ratio of focal length and aperture diameter). From the geometrical lens law, 

we have: 

 
 

  
 

 

  
 

 

 
 

Where z0 is the image distance to the lens, and Z0 is the object distance to lens. 

The image magnification factor is defined as: 

          

The recorded image diameter dτ of a small particle with real diameter dp on the 

image plane is given by [35]: 

   
    

    
  

Where de presents the diameter of optical image prior to being recorded, and dr 

is the resolution of the recording medium (the resolution elements of a CCD or 

CMOS chip are the pixel elements, and the resolution dr is characterized by their 

spacing). The diameter of the diffracted image of the particle is: 

   
    

    
    

                                   

Where ds is the diffraction-limited spot diameter, and M0.dp presents the 

geometric image diameter. For typical optical arrangement in PIV, it is found that 

ds>>M0dp , so that de≈ds. In other word, the diffraction effect is generally dominant, 

and the particle image diameter is quite uniform despite variations in dp. 

 

 

 

 

 

 

 Figure 23 Schematic illustration of the optical configuration for PIV imaging; 
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All illuminated particles should be in focus. This condition is fulfilled if the 

thickness of the light sheet is equal to or smaller than the depth of field (DoF) in 

the imaging arrangement. The depth-of-field of the image (δz), the range of 

distances in object space for which object is imaged with acceptable sharpness with 

a fixed position of the image plane, is given by the following equation. The depth-

of-field is frequently a constraint imposed on the PIV measurement arrangement. 

              
     

These equations dedicate the lower limit for the particle image diameter and are 

applied for an aberration free lens with a circular aperture. 

3.3. Seeding concentration 

The mathematical analysis utilized to estimate the particle displacement strictly 

depends on the seeding concentration. For low seeding density cases, the particles 

can be individually tracked, this approach known as PTV (explained in details in 

section 9). In measurements where the inter-particle distance specifies the upper 

limit for the spatial resolution, a high seeding density is desired, and a PIV statistical 

evaluation is required to determine the particle displacement, Figure 24. 

The seeding concentration has primary effects on the evaluation of PIV 

recordings. In general, It influences the particle image density and thus the 

measurement uncertainty substantially. The number of particle pairs in two 

successive images depends on the overall seeding concentration and interrogation 

window size. A higher number of particle image pairs increase the signal to noise 

strength in the correlation analysis, thus it increases the probability of valid 

displacement detection. Moreover, higher seeding density allows the use of smaller 

interrogation windows which ensures a high spatial resolution. However, the 

increase in the seeding concentration reduces the optical transparency of the flow. 

Monte Carlo simulations for double frame-double exposure PIV recordings have 

showed that for NI FI FO>5, the valid detection probability is over 95%, where NI 

is the particle image number in an interrogation window, FI and FO are the factors 

of in-plane particle pair loss and out-of-plane particle pair loss. Usually, for 

optimization of the seeding concentration and interrogation window size, it is 

sufficient to ensure the presence of at least five particle pairs within interrogation 

windows. 

 

 

 

http://en.wikipedia.org/wiki/Film_plane
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3.4. Illumination pulse duration 

The duration of the laser pulse (or the image exposure time for continuous 

illumination) should be short enough to give clear circular dots in the image instead 

of a blurred streak of the tracers. This is obtained when the particle image shift 

within the light exposure is considerably smaller than the particle image size (dτ). 

    
  

 
 

On the other hand, the pulse duration should be large enough so that the light 

scattered from the particle can charge the imaging sensor on the camera chip. 

3.5. Illumination pulses separation adjustment 

In general, accurate velocity measurements require a short time interval, which 

in turn introduces the uncertainty associated with the particle displacement 

measurement. Small particle displacements reduce the dynamic velocity range and is 

associated with large displacement measurement error. On the other hand, large 

particle displacements reduce the spatial resolution. 

The time delay between illumination pulses has to be adjusted in a manner that 

the particle image shift (∆s) is in the interval given by the resolution of the system 

and the maximum allowable particle displacement, explained as 0.1pixel<∆s< ¼DI , 

where DI is interrogation window side length. In addition, to avoid out-of-plane 

losses, the constraint of |Δz|<¼ ΔZ0 (Δz is particle displacement normal to light 

sheet) should be satisfied. In high shear flows in order to decrease the gradient 

effect, it should also be M0ut<d. These constraints strongly limit the dynamic 

range of PIV. As a rule of thumb, the pulse separation that give rise to a mean 

particle image shift about 5 pixels would be suitable. 

Figure 24 Strategies for low seeding density and high seeding density; 
filled circles: the particles at the first frame; hollow circle: the particles at 
the second frame; 
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3.6. Camera scaling 

The pixels on the camera chip must be given physical size. The physical scale of 

the pixel depends on imaging configuration including the size of field of view, the 

imaging sensor size on the camera chip and the magnification factor. For normal 

viewing direction with no image distortion, a linear scaling (pixel/mm) is sufficient. 

The camera scaling can be implemented easily by locating a ruler bar in the field of 

view (the object plane), specifying two known points on the ruler image and 

designating their separation as distance in millimeter (mm) for the pixel 

coordinates. Otherwise, (due to oblique viewing direction, curved windows of the 

test section, non-linear imaging optics etc) the images need a correction based on a 

spatial calibration. 

 

 

 

 

 

 

 

4. Image pre-processing 

The image pre-processing will give the possibility to manage the particle image 

before the vector computation is performed. This often helps to enhance the 

quality of the results, especially if one have to work with high or locally changes in 

background intensities. 

-Intensity inversion 

The intensity Inversion can be necessary when the particle image intensity is less 

than the background. 

-Sliding background filter 

The large intensity fluctuations in the background due to reflections etc. should 

be subtracted from the original image. Sliding background filters out the large 

intensity fluctuations in the background while the small intensity fluctuations of the 

particle signal pass through. Therefore, one receives an image with constant 

background level without affecting the particle intensity. The scale length in pixel 

dimensions should be at least double the size of the mean image particle. 

Figure 25 Camera scaling; 
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     (a) original image    (b) after sliding background filter 

 

-Particle intensity correction 

The particle intensity should be corrected locally. This is especially useful if one 

works on particle images with a high intensity fluctuations. It can be performed 

using a MIN-MAX filter. The MIN-MAX filter will determine the maximum and 

minimum intensity on a local window specified by the filter size [ in pixel]. This 

filter will work in the following way: 

1.Takes the image and extract sliding minimum over a window in filter size. 

2.Subtracts this sliding minimum from the original image. This procedure 

removes the local background intensity level. 

3.Calculates a sliding maximum over a window in filter size. 

4. Calculates sliding maximum over a window of 10×filter size to get a global 

maximum. 

5.Divides the results of step 3 by the results of step 4. This is the ratio of local 

to the global maximum. 

6.Multiplies the results from step 2 by the results of step 3. 

As a result, we obtained homogeneous particle intensities so that small particles 

could also contribute to the correlation, Figure 27. 

 

 

 

 

Figure 26 An example for sliding background filter; 
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   (a) original image     (b) after Min-Max filter 

 

5. Cross-correlation analysis 

In double exposure-double frame PIV recording, the particles displacement are 

estimated by cross-correlation analysis. The cross-correlation function is not 

calculated on the whole images but on small cells called interrogation window, as 

already explained. The The cross-correlation can be considered as finding the most 

likely distance giving the best pattern match for the particles pattern that has moved 

within the interrogation window during the time interval. Each correlation operates 

only on the intensities inside the two corresponding interrogation windows.    

Figure 28 illustrates evaluation of PIV recordings using cross-correlation. 

 

 

 

 

 

 

 

 

The spatial cross-correlation function R(∆s) is expressed by: 

                       
 

 

Figure 28 Cross-correlation analysis of PIV recordings; 

Figure 27 Example for particle intensity correction; 
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Where the interrogation windows of the first and the second images are denoted 

as I1(X) and I2(X), and ∆s is the shift between the windows. The image intensity is 

separated into:  

 

 

The spatial correlation can be separated into three terms: 

                            

Where: RC: mean background correlation. 

   RF: correlation between mean intensity and intensity fluctuations. 

   RD: correlation of image fluctuations. 

The most probable displacement is determined by the position where R(∆s) 

reaches its maximum value. The discrete cross-correlation approach is common in 

digital PIV since it can utilize the advantage of the FFT for a fast processing. 

-Subpixel interpolation 

After the cross-correlation calculation, a measure of the displacement is found 

by detecting the location of the highest correlation peak on the correlation map, but 

it will also introduce a bias error in evaluating the peak location. The peak detected 

will result in an uncertainty of ±0.5 pixel. However, the accuracy can be increased 

considerably by curve fitting and an interpolation scheme. 

The most common way to perform the subpixel interpolation is to employ a 

three-point estimator. When the maximum peak has been detected at [xi,yj] (pixel 

position), the neighbor values are used to fit a Gaussian function to the peak 

usually. Correlation peak can be approximated by a rotationally symmetrical 

Gaussian bell working on 3×3 or 5×5 pixel. Other ways in order to interpolate the 

subpixel of the peak are parabolic peak fit and peak centroid. 

-Window overlap and iterative evaluation 

Recent PIV methods utilize algorithms with overlapped windows and iterative 

evaluations with decreasing in interrogation windows size or with constant size, 

which can notably reduce the errors due to the image pair losses and in-plane 

velocity gradients simultaneously increasing the spatial resolution. 

Figure 29 shows interrogation windows with 50% overlap. The interrogation 

window size and specified value for overlap determine the spacing of vectors in the 

vector field i.e. the higher the overlap percentage, the higher resolution while 

decrease pairs losses. 
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During the iterative analysis (multi-pass), the vector field is calculated by an 

arbitrary number of iterations with either a decreasing interrogation window size or 

constant size. In general, the vector field calculated in the prior iteration will be 

reference vectors as the best choice for window shift in the next iteration. In this 

manner, the window shift is adaptively improved to ensure the same particles are 

correlated with each other even if one use small interrogation windows where fewer 

particles enter into or disappear from the interrogation window. It enhances the 

signal to noise ratio in correlation and the vectors in the following steps are 

computed more accurately and more reliably. The multi-pass with adaptive window 

shift and decreasing window size during the passes allows to use a much smaller 

final interrogation window size than it would be possible without adaptive window 

shifting. This improves the spatial resolution of the vector field and produces less 

erroneous vectors. Figure 30 illustrates the adaptive multi-pass with constant size of 

interrogation window. 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 Vector position depending on interrogation window size and overlap; 

Figure 30 Adaptive multi-pass with constant interrogation; 
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-Window deformation 

The high local gradients lead to a large particle pair loss and spoil the peak 

detection. The information from the initial steps can be used to stretch the 

interrogation window according to the shear in the flow field, Figure 31. The 

particle pair loss is reduced, and the signal to noise ratio is increased. 

 

 

 

 

 

6. Vector post-processing 

Even in carefully designed PIV measurements, there is a probability that an 

interrogation yields a spurious vector. Although in practice the number of 

erroneous vectors in a PIV data set is relatively low (typically less than 5 %), their 

occurrence is more or less unavoidable. These vectors generally result from 

interrogation cells that contain insufficient particle-image pairs, and differ 

nonphysically in magnitude and direction from nearby valid vectors. Once a vector 

field has been computed, vector validation algorithms can be applied to eliminate 

spurious vectors. 

-Allowable vector range 

The Allowed vector range will restrict the filtered vectors to a specified range. 

The information obtained from the scatter plot, Figure 32, may be useful to select 

the correct range for valid vector components. 

 

 

 

 

 

 

 

 

 

Figure 31 Deformed interrogation window; 

Figure 32 A sample of u-v scatter plot for the turbulent flow near the wall; 

u: streamwise velocity, v: spanwise velocity; 
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-Peak Ratio 

The peak ratio factor Q or the signal to noise is defined as Q=P1-min/P2-min. 

Where min is the lowest value of the correlation plane and P1 and P2 are the peak 

heights of the first and second highest correlation peak. The Q-factor can be used 

as a postprocessing criteria for eliminating questionable vectors below this 

threshold. In general, the higher Q-factor indicates more confidence in the vector. 

It should be noted that this procedure is quite unspecific and will also remove 

acceptable vectors. One would use this postprocessing procedure, when it is 

necessary to have as few spurious vectors as possible, e.g. when calculating flow 

averages and rms values. In these cases, it is better to remove all questionable 

vectors because erroneous vectors will spoil statistics. Accidental removal of good 

vectors only means that additional images are required to compute an accurate 

average. It should also be noted that bad vectors may also have a high peak ratio. 

 

 

 

 

 

 

This ratio is always Q>1 (usually in the range of about 1.5), and if it is high (let's 

say above 2) it indicates that the vector is quite likely a valid vector. Peak ratios 

close to 1 mean that there is a high probability that the found highest peak (best 

vector) is a false random peak. This ratio gives a clear indication of the goodness of 

the vector field. 

-Local Median filter 

In order to find and remove erroneous vectors with more efficiency, a local 

median filter can be applied in post-interrogation procedure. The local median filter 

calculates a median vector from the neighboring vectors (usually 8 neighboring 

vectors) and compares the center vector with this median vector ± deviation of the 

neighboring vectors. Each vector component is checked independently so that the 

median value means that e.g. all u, v or w components are sorted independently 

according to their value, and the middle component is taken. The central vector is 

regarded as a bad vector and removed from the vector field when it is outside the 

allowed range. 

 

Figure 33 Peak ratio or signal to noise ratio, with permission of LaVision GmbH; 
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Criteria for keeping a vector is: 

 Vmedianx,y,z−Vrms x,y,z <=Vcenterx,y,z<= Vmedianx,y,z+Vrms x,y,z 

       
 

   
               

  

With Vmedian= median value of all V components of the N neighbor vectors; 

  Vrms=deviation of V components of the N neighbor vectors. 

This procedure has the advantage that large outliers at either end of the sorted 

list will not change the median value. This way is a reliable method for identifying 

and removing spurious vectors even when many spurious vectors are present, 

Westerweel [36]. 

7. Some 2D-PIV considerations 

7.1. Interrogation window size 

The size of interrogation window should be such that all particles within this cell 

have moved homogeneously in the same direction and the same displacement. As 

shown in Figure 35, the interrogation window size determines the sampling 

resolution and the smallest detectable flow structures. 

 

 

 

 

   (a)     (b) 

 

Figure 35 Optimum size of interrogation 
window; (a) Interrogation window is too 
big (violation of sampling theorem),     
(b) Interrogation window is at the limit, 
but will do the measurement; 

Figure 34 Local Median filter window; 
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7.2. The particle displacement 

As described, the fluid velocity is measured indirectly as a displacement of the 

tracer particles within a small cell in a finite time interval. The tracer particles are 

considered as ideal when they i) exactly follow the motion of the fluid, ii) do not 

modify the fluid properties or the flow and iii) do not interact with each other. It 

implies that the displacement field only provides an approximation of average 

velocity along the particle trajectory over a time ∆t, as illustrated in Figure 36. 

 

 

 

 

 

 

 

 

 

Thus, the particle displacement ∆s cannot lead to an exact representation of u 

(the local fluid velocity) but approximates it within a finite error ε: 

            

The associated error is often negligible only if the spatial and temporal scales of 

the flow are larger in comparison to the PIV spatial resolution and the exposure 

time delay, and if the dynamical response of the tracer particle is fast [37]. 

7.3. Peak-locking effect 

Sometimes, the velocity calculated has a bias toward integer values, which is 

called peak-locking or pixel-locking effect. It can be identified by zigzag type 

patterns in the vector field. It can also be better quantified by histogram plots of 

the pixel displacement. Peak locking can occur when the particle images produced 

on the imaging sensor are less than one pixel in diameter. The particle image 

diameter of 2-3 pixels assures avoiding this bias error, since 3 points yield most 

information for subpixel estimator then, for example, Gaussian function are 

successfully applied for the curve fitting. 

 

Figure 36 The particle displacement approximates the fluid velocity; 
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(a) A particle image size smaller than 1 pixel causes a strong bias to integer values 

 

 

 

 

 

(b) A particle image size of 3 pixels assures avoiding peak-locking 

 

7.4. Accuracy of the PIV measurements 

First of all, because of optical imperfections the recorded particle images are not 

perfect circular. Therefore, measuring the displacement of particle images is 

uncertain due to the irregular shape of the image particle. This uncertainty is 

proportional to the mean diameter of the particle image. 

 σΔx=cτ.dτ 

Where cτ is a constant that depends on the ability of the analysis procedure to 

determine the displacement between the images. This constant is 1-10% [38]. 

Two major forms of error in PIV are the mean-bias and random errors (σ). 

These values are under influence of many factors. The PIV data processing with 

cross-correlation function and the sub-pixel interpolation is fundamental in the PIV 

accuracy. The analysis of PIV method with the cross-correlation approach using 

simulated images (normally done through Monte Carlo simulations) has shown that 

both the mean-bias and random errors have been found to be of the order of 0.1 

pixels [38]. The accuracy of 2D PIV in optimal conditions is on the order of 1-2% 

that is commonly mentioned in literature. These errors in PIV measurements also 

depend considerably on how the experimental parameters are set e.g. seeding, 

resolution, time between pulses, light sheet thickness and alignment between the 

light sheet and the field of view where the measurements is performed. Still, the 

total uncertainty of PIV is often given about 5% in the best case. 

Figure 37 Peak-locking effect, with permission of LaVision GmbH; 
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7.5. Spatial resolution, dynamic velocity range and dynamic spatial range 

Typically, the spatial resolution of a planar PIV is of order one millimetre and an 

appropriate width of the field-of-view in the flow is of the order of 100 mm. 

However, both larger and smaller fields are possible, subject to certain practical 

limitations. Although a PIV system is often characterized by its accuracy and spatial 

resolution, two quantities of dynamic velocity range and dynamic spatial range 

better describe the capabilities of a PIV system, especially in turbulence 

measurements. The dynamic velocity range is defined as the ratio of the maximum 

velocity range that can be measured with a fixed set of instrumental parameters to 

the minimum resolvable velocity measurement. The dynamic spatial range of a PIV 

is defined as the ratio of the field-of-view in the object space to the smallest 

resolvable spatial variation. Fundamentally, this ratio is the same as the number of 

independent vector measurements that can be made across the linear dimension of 

the field-of-view. Obviously, large dynamic spatial resolution allows one to measure 

small scale variation embedded in larger scale motion as occurs in numerous fluid 

mechanical phenomena such as boundary layers and turbulence. Dynamic spatial 

range is related to spatial resolution, and dynamic velocity range is related to the 

fundamental velocity resolution and accuracy of a PIV. The dynamic velocity range 

(DVR) is given by [35]: 

                 

Where                ,      is the full-scale velocity defined to the 

maximum magnitude of the flow velocity. 

If the format of the recording medium is denoted by its dimensions L in the 

recording plane, then the field-of-view in the flow is given by l=L/M0 based on 

optical arrangement. The minimum resolvable scale is less than        , thus the 

dynamic spatial range (DSR) is at least[35]: 

               

The following equation describes the capability of a PIV system to have both a 

large dynamic velocity range and a large dynamic spatial range [35]. 

                   

The format length L characterizes the size of the recording medium, which 

determines its capacity to hold information. The recorded particle image diameter dτ 

is a measure of the performance of the optical arrangement and the optical imaging 

system, and cτ is a measure of the ability of the interrogation algorithm to measure 

displacements accurately. PIV systems having large values of L/cτdτ are well suited 
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for turbulence research, and the measurement of the flows with higher Reynolds 

number require larger values of this constant. 

7.6. Systematic error caused by viewing direction 

Usually the camera should be set up so that the viewing direction is normal at 

the middle of the object plane. Even for this ideal arrangement, a slight distortion 

at the edges of the recorded image is always present, depending on the distance to 

the object plane, and the magnification factor, Figure 38. 

 

 

 

 

 

 

 

When the difference of the viewing angle at the edges of the image relative to 

the normal direction is less than 8°, the error of displacement measurement will be 

less than %1 (1-cos(8°)). For example, if the field-of-view is 10 cm at a distance of 

50 cm from the camera, the inclination of the viewing angle at the rim will be 

arctan(5/50)≈5.7°. This means that a displacement of 10 pixel at the edges of the 

image is actually measured as 9.95 pixel. Since such (locally constant) error of 0.5% 

is rather small, we can simply ignore it. However, if the field of view is bigger (for 

example 20 cm) at a closer distance to the camera (for example 20 cm), the error 

increases (above 10% for the viewing angle of 30°). Therefore, one should at least 

be aware of this error and check the configuration for a given experimental setup. 

If the experimental setup requires a viewing angle significantly different from 

the normal direction, a correction procedure is mandatory to be able to calculate 

correct results. 

8. Optimum 2D-PIV configuration 

We now consider an optimum PIV configuration for a given experiment. The 

most important consideration is to match the size of a typical particle image with 

the resolution of the recording medium, denoted by dr . If the image diameter 

satisfies the criterion of de ≥ 2 dr , the finite resolution of the recording medium has 

a negligible effect on the accuracy of measuring the displacement of the particle 

Figure 38 Systematic error caused by viewing direction; 
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image. The optimum magnification and the corresponding optimum f# can be 

found as the following for an optimum optical arrangement [35]: 

       
   

           
  

 

        
          

       
   

The experiments in water instead of air require larger tracer particles to 

compensate for scattered light energy lost due to the smaller ratio of refractive 

indices. The recorded particle image of a 20μm particle is less sensitive to the 

effects of parameters other than the geometric image diameter, so the optimum 

magnification varies less for experiments in water. 

9. Particle Tracking Velocimetry (PTV) 

PTV is a well-established technique (even before PIV) to determine the velocity 

of individual tracer particles embedded in flow by tracking them in video recordings 

or successive image frames. Their trajectories are derived from running discrete 

visualizations of the flow, and PTV is, therefore, considered as the low-density 

range of PIV that deals with the correlation evaluation to estimate the local motion 

of the tracers within interrogation windows, as already described. When locally 

strong velocity gradients with small vortices are present across the interrogation 

area, PTV will resolve the corresponding vectors of changing magnitude, whereas 

PIV will yield an averaged vector with lower accuracy due to the broadening of 

displacement peak. 

PTV essentially consists of two parts: i) identification of the particles in a given 

frame, and ii) matching of these particles with the corresponding particles in the 

successive frames. Therefore, PTV measurements contain two main sources of 

error: the error in determining the particle positions in images and erroneous 

particle pairing. The first one is related to the imaging itself and the adopted image 

processing algorithm. The PTV measurement contains velocity errors that are 

mostly related to the rough estimate of the particle centroids. If the locations of the 

particles have been reliably determined, the subsequent matching process aims to 

find the corresponding particles in the next frame. The purpose of the matching 

procedure is thus to determine the correct link for the same particle from one 

image frame to the next one. Obviously, this can only be a path with a maximum 

likelihood for a specific criterion. The three basic tracking principles can be 

summarized as follow, Pereira et al [39]: estimating the position of the selected 

particle in the next image frame; determining a neighborhood area around the 
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expected location in which the particle is likely to be found; applying appropriate 

criteria to determine the most likely track if there is more than one possible option. 

These principles can be applied to any flow regime under consideration and can be 

extended to any tracking task in which moving objects must be tracked in time. 

The simplest approach to match corresponding particle images is the nearest 

neighbor method. The link criterion in this method is simply the minimum distance 

of a match or the minimum variation of length and angle of all possible tracks of an 

object particle in a search radius of the neighborhood. In this method, multi-frames 

in a tracking line are usually used for the evaluation of the smoothness of a particle 

trajectory and accurately measuring the particle velocity. Classical algorithms for 

PTV have been introduced by Kobayashi et al. [40], Nishino et al. [41], Hassan and 

Canaan [42], and Malik et al. [43]. An inherent challenge for these algorithms is the 

compromise between accuracy and computational cost. In addition, the nearest 

neighbor methods are effective for relatively low-density particle images in which 

the particle displacements are smaller than the mean inter-particle distance. A 

potential weakness of these algorithms is also that they search for the minimum 

travel distance only from possible matches within a localized search area, and hence 

the searching is not performed throughout the image. Therefore, a global minimum 

is not sought.  

Okamoto et al. [44] presented their two-frame model in which particle pairs 

were identified by searching for the smallest spring force calculated over particles in 

a certain neighborhood. Another method with the view to improve the detection of 

particle pairs to achieve applicability in higher density particle images is the use of a 

predictor. This predictor can decrease the search area significantly in the next frame 

and thus improve the match probability of particles. Such predictors can be either 

theoretically known velocity distributions or experimentally obtained by PTV of 

previous images or a coarse PIV evaluation (super-resolution PIV). One typical 

example of this is the hybrid PIV/PTV method introduced and used by Keane et 

al. [45], Cowen and Monismith [46], Takehara et al. [47], and Cardwell et al. [48], in 

which standard cross-correlation PIV is employed prior to the individual-particle 

tracking in order to estimate in advance the local velocity to be calculated by PTV. 

Another example is the hybrid PIV/CFD method, see Kaga et al. [49]. This 

approach is also used in most of the tracking algorithms that use multi-frames. 

After the first step, every next step is using the velocity vector to predict the 

position of the particle in the next frame. However, a problem with these improved 

schemes is that they are not always practical. 

The probability match/relaxation method is another scheme of two-frame 

particle tracking. The fundamental idea of this method is the search for the most 
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probable link of a reference particle while assuming similar displacements for its 

neighbor particles, i.e. so-called quasi-rigidity. The algorithm proposed by Baek and 

Lee [50] and Ohmi and Li [51] for tracking discrete particles is based on the 

iterative estimation of the match and no-match probability as a degree of the 

matching. In an iterative process in order to achieve successful termination of the 

tracking algorithm, the correct link probability, namely match probability, is 

gradually increased close to unity while the other probabilities, no-match 

probability, tend to zero. The match probability algorithm mainly relies on quasi-

rigidity conditions applied to the neighbor particles. The threshold for the 

maximum velocity implies that the corresponding particles cannot move beyond 

the maximum expected displacement in the flow field. The heuristic conditions of 

quasi-rigidity are usually explained as small velocity changes and coherent motions. 

Since the particles have a finite mass, small velocity changes are a natural 

consequence of the physical law of motion. It is also anticipated that a group of 

particles within a small region move coherently, namely represents a pattern of 

common movement in successive images. These requirements restrict the 

applicability of the algorithm although the other techniques such as correlation in 

PIV or three/four frames PTV also assume implicitly that these requirements are 

valid [50]. 

The third approach to the particle-matching algorithm is Artificial Neural 

Networks (ANNs). Knaak et al. [52] proposed a Hopfield neural network in which 

a cost function involving the fluid dynamics constraints is minimized to solve the 

particle correspondence problem. The approaches such as nearest neighborhood or 

relaxation method are inherently treated as a local minimization of a cost function 

that involves the underlying constraints and not the whole of constraints. Using 

neural networks, e.g. Hopfield networks, all constraints can be explicitly included in 

the cost function in a computationally efficient manner. The cost function that 

Knaak et al. used is the summation of four terms, neighborhood criterion, the 

uniqueness constraint, the rigidity constraint, and the smoothness constraint, 

derived from the physics of fluids. Hopfield neural network proposed is an N×M 

array of neurons where N and M are the total number of particles in the first and 

second image, respectively, to minimize the cost function formulated in order to 

solve the problem of particle correspondence in PTV. Their network performed 

much better than the nearest-neighbor algorithm. The neural network proposed by 

Grant and Pan [53] for pairing is different from the above. It implements a filter 

that, when applied to the particle images, lets pass through only those that match. 

Ohmi and Sapkota [54] showed that a Cellular Neural Network can be successfully 

implemented in a particle pairing algorithm of PTV with remarkably low 

computation time and adequate accuracy. The Labonté algorithm was inspired by 
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Kohonen’s Self-Organizing Map (SOM) neural network [55]. It consists of two 

sub-networks, each one associated with one of two successive frames. The weight 

vectors of their neurons start at the positions of the particle images in the 

associated frame. The network dynamics makes these weight vectors follow 

trajectories that approximate those of the positions of the particles in the two 

frames. The weight vectors from the two sub-networks that correspond to 

matching particles meet at some midway points between them while those that 

correspond to unmatchable particles stay alone. This neural network can be 

regarded as a pre-sorting routine for the nearest neighbor method, for which the 

weight vector of a given particle acts as an initial indicator pointing towards the 

matchable partner. Labonté described his procedure as an enhanced version of the 

nearest neighbor-matching algorithm. He showed that his SOM algorithm 

iteratively converges towards a solution even when the number of matching 

particles is low. The algorithm was found to require only a few correct matching 

pairs to progressively adjust itself. A striking feature of this algorithm is that its 

learning principle seems to correspond perfectly to the intuitive recognition of 

particle matching through the eyes of humans. Others have also developed the 

algorithm of particle pairing based on Labonté SOM neural network in 3D PTV, 

e.g. Ohmi [56] and Ohmi et al. [57]. 

10. Techniques of phase separation in two-phase flow measurement 

The following four different fundamental techniques can be found in literature 

where PIV/PTV has been applied to the simultaneous measurement of both 

phases of two-phase flows and needed discrimination between flow tracer particles 

and dispersed phase: 1) fluorescence tagging, 2) amplitude discrimination, 3) phase 

dynamics, and 4) geometrical characteristics. 

Fluorescent particle tagging is one of the most mature of phase separation 

techniques, and commercial systems are even available[58]. Using this method, one 

phase (usually tracer particles) is labeled with a fluorescent dye that can be excited 

by the light source (e.g. Rhodamine). The dye absorbs the incident light, then re-

emits at a longer wavelength. This makes it possible to discriminate the PIV tracers 

from other scattering objects, such as bubbles, droplets, and dispersed particles as 

second phases. It needs an appropriate optical filter to block the light with the 

wavelength of light scattered and passes the fluorescent light. Therefore, two 

cameras are usually used; one which records light directly scattered by both phases, 

the other which only records fluorescent images. The emitted fluorescent light is 

isotropic that means there is no dependency of particle-image brightness on the 

light beam direction and viewing angle. It only depends on the amount of 

fluorescent dye. The use of two synchronized cameras and the need of a powerful 
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laser to produce adequate intensity fluorescent images are drawback to this method. 

This technique has been extensively used for the study of bubbly flows. 

Amplitude discrimination techniques count on a strong difference in the light 

scattering amplitude between the dispersed and carrier phase particles to separate 

the phases. Therefore, the maximum scattering cross-section of the tracers of the 

carrier phase and the smallest particles of the dispersed phase are required to be 

different by more than an order of magnitude to prevent significant crosstalk 

between the phases. Even with properly selected seeding particles, this method 

requires careful tuning and patience to optimize the imaging to eliminate the 

interference between the phases. 

Phase dynamics technique was established upon the inherent differences in the 

motion of the two phases to discriminate between them [59]. The separation is 

performed in correlation map by identifying the two dominant correlation peaks, 

one that represents the motion of the tracers while the other provides the 

displacement of the dispersed phase. This method can be useful for high 

concentration flows of very fine particles and can even provide carrier phase 

turbulence statistics. However, because the method is based on the bulk average 

motion of the dispersed phase, the details of the interaction terms may not always 

be clear. 

The fourth class of techniques is based on the geometrical properties of the 

dispersed and seeding particles to separate the phases. The one can use a particle 

mask function to eliminate the crosstalk between the phases from influencing the 

correlation calculations. The masking uses a threshold calculation of the particle’s 

size, and hence a significant difference between the sizes of the particles is required 

for proper separation. The other method in this class was developed by Kiger and 

Pan [60]. They provided a reliable, single camera technique using a median filter. A 

median filter is a nonlinear signal processing technique that has been found 

effective in reducing random noise, also called salt-and-pepper noise because of its 

appearance as dots superimposed on an image, and periodic interference patterns 

without severely degrading the signal [61]. In PIV image processing, the property of 

preserving sharp edges makes the filter useful because it allows more information 

about the original image to be maintained. This is especially beneficial in regions of 

high shear, where the ratio of signal to noise is relatively low. For a two-phase 

image with both small tracer particles and large particles, the tracers can be 

regarded as salt-noise scattered over a uniform background. This technique can 

resolve the local particle/fluid interaction within the flow, and the performance of 

the separation process can be quantified as a function of the particle size and image 

resolution. 
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 Chapter 3 

n combined PIV/PTV measurements of particle-laden flows, the measurement 

of the dispersed particle-phase motion is carried out by a PTV approach. The 

algorithms of PTV have inherently been designed for the low-density range of tiny 

particles of flow tracer. In case of particle suspension, if the particle concentration 

is low enough to avoid a large number of overlapping particle images, the particles 

can be identified with reasonable accuracy. However, a lack of consistent technique 

to match particles in the successive images makes still tracking difficult. The 

condition of quasi-rigidity, which relaxation methods are based on, is not 

appropriately applicable to follow individual particles scattered in the fluid phase. 

Furthermore, it is likely that we lose many matchable particles (information) using 

nearest neighborhood methods with multiple successive frames due to out-of-plane 

losses. Besides, in the case of a concentrated particle suspension the nearest 

neighbor method is not efficient. 

A. Carlsson et al. [62] have proposed a steerable filter to determine position and 

orientation of fibers in digital images of flowing suspension with acceptable error. 

Therefore, here a novel two-frame algorithm was developed to take the fiber 

orientation into account for pairing as well as their positions for tracking rod-like 

fibers in suspension flows. Using one additional characteristics of the particle will 

improve not only the robustness against loss of pair-particles between image frames 

but also reliable matching for larger numbers of dispersed particles. Neural 

networks are one of the most attractive algorithms for the particle-matching 

problem of PTV since they do not require any prior information of the flow field 

and particle behavior examined. Moreover, the searching to find particle pairs is 

performed globally; see [53], [52], [55], and [56]. Among neural networks, the Self-

Organizing Map (SOM) model seems to be a convenient tool for the present 

purpose because it is an unsupervised learning model that is capable to group 

similar particles only based on particle features in the images. The two-frame 

algorithm that it is presented here is based on SOM neural network in order to 

satisfy the requirements mentioned above. 

 

 I 
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1. Introduction to the concept of Artificial Neural Network 

It is believed that the human brain consists of a three-dimensional matrix of 

interconnected processing units, called neurons that have the capacity of 

implementing simultaneous and non-linear processing strategies. A biological 

neuron has four types of components that should be considered in understanding 

an artificial neuron: dendrites, synapse, soma, and axon. The neuron’s dendrites are 

responsible for receiving signals from other neurons. The signals are electric 

impulses that are transmitted across a synaptic gap via a chemical process. The 

action of the chemical transmitter modifies the signal in a manner similar to 

weighing them. The synaptic connections between the neurons hold memories 

which can be updated both during the learning (initializing) stage and processing of 

data sets. The soma, or body of neuron, collects the incoming signals. When 

sufficient input signal is received, the cell sums or integrates the inputs and then 

acts as a processing unit in which it either triggers, giving an electrical output, or 

stays inactive. Its signal is transmitted through its axon to the other neurons, [63]. 

The described nature of the processing elements is used in many artificial neural 

networks. As shown in Figure 39, the neuron model may be considered as a 

multiple input, single output operator. The xi is the input signals from other 

neurons, the wi is the interconnection weights, and y is the output signal. Each input 

xi is multiplied by its corresponding weight wi, and then the product xi. wi is fed into 

the neuron. In the neuron, these products is summed up so that this summation 

usually denoted as net in the literature. In mathematical form for two vectors input 

X=(x1, x2, ..., xm) and weight W=(w1, w2, ..., wm), net is the dot product of these two 

vectors, X.W ≡ x1w1+x2w2+...+xmwm. Finally, the neuron computes its output as a 

specific function of net, y=f(net+bias). This function is called the activation function 

that can be defined in different forms depending on the characteristics of 

applications. A neuron can be considered as a black box, which receives input 

vector X and generates a scalar output y. 

 

 

 

 

 

 

An artificial neural network is characterized by i) the architecture of 

interconnection of its neurons, ii) its activation function, and iii) the method the 

Figure 39 Artificial neuron model; 
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weights of the connections is modified, called training or learning. The architecture 

of a network comprises of distinct layers of neurons, a layer of input neuron that 

receive signals from the outside world, a layer of output neuron from which the 

response of the net can be sent out, and any number of hidden layers between 

them, as shown in Figure 40. 

 

 

 

 

 

 

 

In some other neural network models, output of neurons can also feed 

backward. A neural network in which the outputs can propagate in both forward 

and backward directions is called recurrent model. 

The most valuable property of a neural network is the ability to learn, the 

process the neural network adjusts its weights in response to external inputs. The 

process of learning is categorized to supervised and unsupervised learning. Many 

neural network models have been developed for different applications. The most 

functional networks are: 

I. The back propagation network is a multilayered, non-recurrent, 

supervised learning model and is used mainly to recognize input patterns 

with pre-defined classes. 

II. The Kohonen self-organizing maps network is a two layered, non-

recurrent, unsupervised learning model that is capable to cluster patterns 

of input without knowledge of their distribution. 

III. The Hopfield neural network that is a form of a non-multilayered, 

recurrent, supervised learning models works differently from the other 

network models. The architecture of this network creates an internal state 

that allows exhibiting  dynamic behavior and can use their internal 

memory to process arbitrary sequences of inputs. In Hopfield neural 

network, a cost function derived for a specific case mathematically to 

describe the system is optimized. 

IV. The ART (Adaptive Resonant Theory) network is also an 

unsupervised learning model used to classify input patterns. 

Figure 40 A typical network architecture; 

http://en.wikipedia.org/wiki/Unsupervised_learning
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The capability of neural networks in modeling complex nonlinear problems as 

well as providing a fast, automatic method in some applications in fluid mechanics 

and heat transfer have proved, [64], [65] and [66]. The analysis of PIV/PTV images 

typically involves feature extraction and classification. Indeed, the nearest neighbor 

and statistical analysis methods have been used to group the particle images for 

quantifying the local displacement in track of particle image. Generally in a neural 

network used in classification, the samples may be classified using pattern 

recognition rules established on training data sets or clustering by self-learning, 

where one wants a neural network to group data by similarity. The neural networks 

have been used for recognizing pairs to improve the efficiency of analysis. 

1.1. Kohonen Self-Organizing Map 

The self-organizing map neural networks introduced and developed by 

Kohonen [67] assumes a topological structure among the cluster units. It actually 

converts complex and nonlinear statistical relationships between high-dimensional 

data into simple geometric relationships on low-dimensional maps. This property 

can be observed in the brain, but the other artificial neural networks do not have 

this. Self-organization is an unsupervised learning method that the neural network 

organizes itself to form useful information in a competitive learning procedure in 

which neurons compete with each other. The winners of the competition 

strengthen their weights while the losers' weights stay unchanged or are weakened. 

The architecture of the Kohonen network is a two-layer network, as shown in 

Figure 41. The first layer is the input layer, and the second one is the output layer, 

called the Kohonen layer and the neurons in the Kohonen layer are called Kohonen 

neurons. Every neuron of input layer is connected to all Kohonen neurons, with a 

variable associated weight. The network is non-recurrent, and information is fed 

forward only from the first layer to second. 

The weight vector for a cluster unit serves as a sample of the input patterns 

associated with that cluster. During the self-organization process, the cluster unit 

whose weight vector matches the input pattern most closely (typically Euclidean 

distance) is selected as the winner. The winning unit and its neighboring units, in 

terms of the topology of the cluster units, update their weights. Finally, the network 

clusters the n-inputs to m bunch units. 
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2. SOM implementation for pairing 

The method used in the present study is primarily based on the SOM model 

introduced by Labonte´ [55]. However, improvements have been made in order to 

take the particle orientation into account and also to enhance the algorithm 

performance. 

The network architecture comprises two similar sub-networks, each one 

corresponding to one of the two images. Each of the sub-networks has one layer of 

neurons of which the initial weight vector is the same as the characteristic vector of 

the non-spherical particle in images, (x,y,θ), where x, y and θ are the normalized 

components of particle position and orientation in the image respectively. Thus, 

each neuron is associated with an individual particle. Within each sub-network, the 

neurons are interconnected so as to allow a winner to take all competition among 

them. Here, the variables related to the first and the second image will be denoted 

with small and capital letters, respectively. Let vi (i = 1,…,N) and Vj (j = 1,…,M) be 

the characteristic vectors of the particles in first and second image (vi=(xi,yi,θi) and 

Vj=(xj,yj,θj)) as inputs to sub-networks, where N and M are the number of particles 

in the first and the second image respectively. Each neuron has a weight vector, 

w(x,y,θ), represented by wi: i=1,2,…,N and Wj: j=1,2,…,M for the first and second 

sub-network. 

Both sub-networks react similarly to their inputs. At the beginning, we set the 

initial weight vectors of each neuron equal to the characteristic vector of the 

particles in the images. Therefore, the first sub-network has N neurons located at vi 

and the second one has M neurons at Vj. The weight vectors are updated so that 

the stimuli for one sub-network are the weight vectors of the neurons in the other 

sub-network. Let       denote the Euclidean distance between the two points a 

and b in vector space, as                 
         

         
 . First, the 

input vector vi is presented to the second sub-network. Then, an activated neuron is 

selected from the latter sub-network, which is the one with the weight vector 

closest to vi and if        <Dmax. Dmax can be chosen in a trial-and-error process to 

Figure 41 SOM neural network; 
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reach high performance in matching for a few test images. It can be explained as 

the largest length of the possible Euclidean distance in the images (limitation of 

similarity) like the limitation that is used in many other tracking algorithms. 

However, we should consider that here the algorithm actually seeks the activated 

neuron and the winner in the entire image. When the first sub-network is 

stimulated with the weight vector Wj of the activated neuron of jth in the second 

sub-network, neurons compete and the one with the minimum distance (the 

closest) and the condition of        <Dmax wins the competition. If there is no 

activated neuron, there is no competition, and when there is no winner, there will 

be no weight updating. When there is a winning neuron, the winner and its 

neighbors within a certain distance “R” are awarded a weight change. If “c” denotes 

the winner's index, and “α” is a relaxation factor between 0 and 1, each neuron of 

the first sub-network is subjected to the following change of weight vectors: 

                                                
                    

                                    
  

First, the radius R of the winner neighborhood is set so large that many 

neighboring neurons are included in the network. Once the weights have been 

updated, the neighborhood radius R is decreased to a smaller and smaller size, and 

eventually sufficiently small to include only the winner. The weight vectors of the 

first sub-network are updated according to: 

                                                
    

In the next step, in turn, the stimulus vector wi of the ith neuron activated by Vj 

in the first sub-network is presented to the second sub-network. A winning neuron 

is selected as the closest one to wi and the condition mentioned. Similar to the 

previous step, each time the weight vector wi is presented to the second sub-

network, the weight vectors of the second sub-network are updated according to: 

                    
 
                          

The alternate cycles described above are repeated iteratively until the two sets of 

weight vectors reach together into one point while the two sub-networks react to 

each other. A small range ε has to be determined, within which two weight vectors 

will be considered to be equivalent. In a final computation cycle, if the two weight 

vectors of sub-networks are less than this small threshold distance ε, the matching 

pair is accepted; otherwise, it is discarded because their relationship is apparently 

not close enough. 
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2.1. Test cases 

It is practically impossible to assess the performance of the algorithm using 

laboratory data. Hence, the proposed algorithm is examined by means of both 2D 

synthetic images of ellipsoidal particle suspension flow and results of a direct 

numerical simulation (DNS) of prolate particle-laden turbulent channel flow. An 

advantage of these synthetic images or the results from DNS is that we can refer to 

the original particle displacement data, from which the images are generated, and 

compare particle-tracking results directly. 

-Matching performance parameters 

In this section, it is explained some general parameters on which the 

achievements of the tracking depends. Because the position and orientation of the 

particles are known, number of particle pairs and their displacement are also known 

in advance in the test cases. The particle number density is defined as the following: 

    
       

  
 

Where P(r) is the probability density function of a particle with radius r. The 

number of particles within the observation area Ao is simply given by: 

                  

The mean inter-particle distance, corresponding to the probability of finding a 

single particle within a circle, can be obtained as: 

     
 

    
 

Here, the tracking parameter that influences the performance of any tracking 

algorithm is defined as: 

   
  

     
 

Where smean is the mean particle displacement in the images. We also introduce 

the recovery ratio and the mismatch ratio to evaluate the performance of the 

algorithm: 

                                          

The recovery ratio ηr is the number Mcl of links correctly found divided by the 

actual number of correct links Ncl. ηm is the mismatch ratio defined as Msl, the 

number of spurious links, divided by Nfl, the total number of links detected by the 

algorithm including both correct and incorrect links. Thus, ηr represents a direct 

measure of the performance of the algorithm while ηm indicates a noise-to-signal 
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ratio and indicates if the algorithm can reliably discriminate and dismiss 

unpaired/noise particles. 

-Test case of plane potential suspension flow in a corner 

The artificial images considered here are from an idealized case in which 

ellipsoidal particles follow a pattern of plane potential flow in a 90° - corner. 

Although this does not correspond to a real situation, they provide a high 

complexity to match, i.e. from short to long displacements as well as the change of 

orientation of a particle between two successive snapshots. It is considered three 

different concentrations 50, 100 and 200 particles within an image dimension of 

2016×2016 pixels that is a standard size in PIV/PTV measurements. In 

constructing the images, to take into account the particles moving in and out of the 

window due to the fluid motion in the plane, the particles were randomly 

distributed in an area 10% larger than the main interrogation window. Then we let 

all these particles undergo the displacements corresponding to the flow pattern in 

the next image and those that were still in the main window were provided as the 

particles in the successive images. In addition, in order to model the particles that 

would enter or leave the measuring domain due to moving perpendicular to it in a 

real flow, we added 20% unmatchable particles distributed at random positions as 

noise. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42 Superposition of two successive snapshots of non-spherical particle suspension flow; 

( )the red particles in the first snapshot; ( )the blue particles in the second snapshot that undergo 

the displacements corresponding to plane potential flow pattern in a 90° corner; the dotted green 

arrows are the original and known match links, the solid green arrows are those that the algorithm 

could find; 
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Figure 42 shows a superposition of two successive frames for the case of 100 

matchable particles in the plane potential flow in a 90° corner. As seen, the 

algorithm found 83% of match links, and it could even detect corresponding 

particles where the particles displacement exceeded the inter-particle distance. The 

algorithm could also distinguish between dissimilar particles situated in the vicinity 

of each other since their orientation angles also were considered. 

The performance of the algorithm for this test case is reported in Table 1 for all 

three cases of different particle concentrations in the image. The tracking parameter 

ϕ is varied from 1.75 to 0.87 with increasing particle concentration from 50 to 200. 

The number of epochs, i.e. the computational cycles in which the weights are 

varied, is fixed to 12 for all cases, and the updated weights of the two subnets 

converge to corresponding one during this period. As seen in this table, the 

computational time and efficiency of the algorithm depends on the particle number 

and accordingly on ϕ. In the case that the mean inter-particle space is less than the 

mean particle displacement (ϕ=0.87), the recovery ratio ηr is severely decreased to 

64%. The mismatch ratio ηr is increased to 30%, but the performance of the 

algorithm is still reasonably acceptable. This algorithm was also compared with an 

particle-tracking code developed based on the nearest neighbor method from 

reference of [68]. This code was applied to the same three synthetic cases, and the 

results are also shown in Table 1. The performance of the two algorithms is equally 

suitable for the dilute case. However, when the particle concentration is increasing, 

the efficiency of the nearest neighbor algorithm is decreasing. For all particle 

concentrations, the present algorithm is better than the nearest neighbor algorithm. 

For the highest concentration, the present algorithm is superior. 

Table 1 The algorithm performance for the cases of synthetic images 

Possible 

pairs (No) 
ϕ 

The SOM-based algorithm The nearest neighbor algorithm 

ηr ηm 
Computational 

time 
ηr ηm 

50 particles 1.75 %90 %8 0.66 (sec.) %88 %10 

100 particles 1.3 %83 %11 0.76 (sec.) %67 %29 

200 particles 0.87 %64 %30   2.1 (sec.) %24 %65 

 

-Test case of prolate spheroids dispersed in wall turbulence: 

  An example of real 3D data from DNS 

We also estimated the performance of the algorithm by tracking dispersed 

prolate spheroidal particles in a turbulent channel flow obtained from DNS. This 

serves an example of a real case of usual combined PIV/PTV measurements of 

turbulent suspension flow. 
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The direct numerical simulation results of fully-developed turbulent channel 

flow laden with elongated ellipsoidal particles are available for particle aspect ratio 

5:1 and dimensionless response time τ+=30 at a friction Reynolds number Reτ=180 

(based on the half channel width h), see [31]. The computational domain was 

6h×3h×h in the streamwise, spanwise, and wall-normal directions, respectively. We 

are thus able to examine the present algorithm by tracking particles dispersed by the 

turbulence of the carrier fluid. The particles was just considered that traveled 

through a narrow volume of 2h×1h×0.02h in the middle of the channel at a 

distance z+=30 from the channel wall, i.e. fairly close to where turbulent velocity 

fluctuations are most intense, and the particle orientations vary considerably. This 

volume corresponds to a conventional observation volume in PIV/PTV 

measurements. The projection of the particle motion and orientation on the x-y 

plane parallel to the channel walls was extracted. Indeed, this DNS-based test case 

provides a physically realistic distribution of non-spherical particles in wall-

turbulence including all appearing or disappearing particle images in the 

measurement domain due to out-of-plane fluctuating motions. Therefore, the data 

set includes 2D motion and orientation of the prolate particles in a wall-parallel 

plane. In this case, the initial number of particles in the field of view, No=122, is 

unchanged, and the mean inter-particle distance is thus constant with do≈73 pixels. 

The tracking parameter ϕ was varied by choosing different time intervals,        

          
    , hence changing the mean particle displacement as provided in   

Table 2. The epoch number (number of iterations) for all these test cases is fixed to 

20, and the computational time was in the order of 1.0 s. An illustrative example of 

ellipsoidal particles scattered by the numerically simulated turbulence of the carrier 

fluid at two consecutive frames with a time interval of Δt+=0.096 is shown in 

Figure 43. 

Table 2 Tracking parameter and mean particle displacement 

for different values of ∆t+; do ≈ 73 pixels; 

∆t+ smean (pixels) ϕ 

0.012 8.56 8.53 

0.024 17.1 4.27 

0.048 34.2 2.13 

0.096 51.35 1.42 

0.192 68.5 1.07 

0.384 85.6 0.85 

0.768 102.7 0.71 

1.536 119.82 0.61 
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Figure 44 shows the recovery ratio ηr and the mismatch ratio ηm as a function of 

the tracking parameter ϕ. It is seen that the recovery ratio decreases significantly to 

about 54% as ϕ reduces to 1.0, whereas the mismatch ratio ηm still remains low (less 

than 15%). This arises from the fact that an increased time step, which decreases ϕ, 

causes more diversity in the particles orientation and position due to the intense 

velocity fluctuations in this observation area. This high diversity leads to relatively 

low efficiency of the particle matching that is only based on feature extraction with 

no pre-estimated displacement. However, the low number of erroneous 

displacement vectors detected (ηm<15%) makes this algorithm reliable and robust. 

 

 

 

 

 

 

 

 

 

Figure 43 Superposition of two successive frames of prolate particles dispersed in turbulent 

channel flown resulting from DNS-based simulations, ϕ=1.42; the red ellipses are particles in the 

first snapshot; the blue ellipses are particles in the second snapshot; the dotted green arrows are 

the original and known match links; the solid green arrows are the ones detected by the algorithm; 

Figure 44 Particles dispersed in the wall turbulence case: recovery ratio ηr and mismatch ratio ηm; 
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 Chapter 4 

he experiments were conducted in the water table facility at Linné 

FLOW Centre, KTH Mechanics Lab through combined PIV/PTV 

measurements. The well-known PIV technique was used for the 

measurement of fluid phase flow and some novel PTV techniques, described 

in the previous chapter, were applied to track fibers in the flow and to 

measure the motion of fibers. Schematic representation of the experimental 

setup and definition of the coordinates of x, y, z are shown in Figure 45. 

1. Flow apparatus 

The test section of the water table is made of glass plates with length 230 cm 

and width 56 cm. These dimensions promise fully developed turbulent flow and 

absence of any sidewall boundaries effects and disturbance due to the reservoirs on 

the flow over measurement area in the centre and at 130 cm distance from the start 

point of flow. Reservoirs are located upstream and downstream of the test section, 

Figure 45. Two upstream reservoirs are for mixing of the suspension and reducing 

disturbances in flow as settling chamber, respectively. The reservoir in downstream 

is to store suspension. The total suspension volume is 120 liters. 

 

 

 

 

 

 

 

 

 

 

T 

Figure 45 Schematic representation of experimental setup; 
the flow direction on the water table is left to right; 
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The angle of the test section with respect to the horizon is adjustable by a screw 

joined to stands. The film of suspension flows down, driven by gravity alone, on 

the slightly inclined table, and the suspension is pumped from the downstream tank 

to the upstream tank to make a closed circuit flow. The thickness of film flow for a 

specific angle of the test section is set by controlling the flow rate of the pump in 

order to attain a certain friction Reynolds number (Reτ). With appropriate 

configuration of the pump setting and the table angle, we can establish a no 

acceleration condition for the flow over the test section. 

2. Optical measurement setup 

A single camera (Imager Pro HS 4M; double-frame 12 bit CMOS with 

resolution of 2016×2016 pixel and pixel size of 11μm × 11μm) and light sheet 

optics (with divergence: f= -10 mm and adjustable focus: 0.3 – 2 m) are mounted 

on a traverse unit. It makes possible to shift the light sheet and camera to a new 

position in two axes of x and z without changing their position with respect to each 

other. The camera was placed beneath the bottom wall of the water table in down 

to up direction at the location of the measurement area in order to record the 

images of flow on the table, Figure 45. 

The measurements were carried out in planes parallel to the bottom wall, i.e. 

planes parallel to the x-y plane, illuminated using a Nd: YLF laser (Litron Lasers; 

double-exposure 22.5 mJ/pulse @ 527 nm) to create the field of view. The laser 

was set so that the waist of the light sheet was at the centre of the imaging domain 

with thickness of approximately 1 mm throughout the domain. 

The camera lens (Sigma; 105mm f/2.8 Macro) was focused on the imaging 

domain at the fixed distance of 30 cm to have a field of view in size of 63 mm×63 

mm in a magnification factor of 0.35. This size of field of view is appropriate both 

to capture sufficient number of coherent structures of turbulence and to have high 

resolution in the calculation of the velocity field. Because the water table walls are 

flat plates and the camera was installed normal to the middle of the object plane, we 

had almost no image distortion. Besides, since the field-of-view lengths were 63 

mm at a distance of 300 mm to the camera, the deviation of the camera viewing-

angle at the edges of the image from the standard perpendicular view in the middle 

of the image is arctan(31.5/300)≈6°. This means that the error in measuring 

displacement due to image perspective is less than 0.5%. The f-number of 5.6 was 

used to yield the optical depth of field of 0.98 mm. This depth of field is of the 

order of the light sheet thickness, and thus many out-of-focus effects are not 

expected. The reason for considering the depth of focus in combination with the 

light sheet thickness is to estimate the equivalent measurement volume, which has 
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to be considered when choosing the size of the interrogation window. Regarding to 

this PIV setup, the scaling factor was 0.0313 mm/pixel. 

DaVis 7.2 (LaVision GmbH) did the hardware control, data acquisition and PIV 

processing. The flow was seeded by Glass Hollow Spheres (LaVision GmbH) with 

a mean size 9-13 μm as tracer particles. 

The camera recorded the images with double frame-double exposure in the 

interval of 700 μs. This delay time was chosen optimally in a compromise between 

the largest dynamic range of velocity and acceptable loss of correlation due to out-

of-plane motion. The measurements were done at a recording rate of 20 Hz for the 

duration of 79 s in order to obtain statically independent samples of turbulent 

suspension flow in 1578 PIV images. 

3. Flow condition 

One useful aspect of this flow apparatus is that the flow is driven by gravity 

alone. By balancing all forces acting upon an element of flow and with the 

assumption of not being any acceleration in flow, the wall shear stress can be 

obtained as the following where θ is the angle of the water table with respect to the 

horizon, h is the thickness of film flowing and ρ is the density of fluid, as shown in 

Figure 46. 

            

So: 

                  

 

 

 

 

 

 

The friction Reynolds number is in turn obtained based on the thickness of   

and the friction velocity    as: 

    
    

 
  

         

 
 

Figure 46 The film flow falling on inclined plate; 
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Where ν is the kinematic viscosity of fluid and g is gravity acceleration. It is 

notable that the considered flow on the water table can be approximately 

characterized as a half channel flow and Reτ (based on the film thickness, which 

corresponds to the channel half-width in the channel flow study) can be determined 

directly from geometry and fluid properties. 

Velocity profiles of the single-phase flow measured by Laser Doppler 

Velocimetry (LDV) at the acquisition points around the field of view in upstream, 

downstream, and two spanwise positions have showed excellent agreement with 

DNS data for a fully developed turbulent channel flow. For more details, the reader 

is referred to M. Kvick [69] where the same setup was used. 

3.1. Evaluation of flow quality 

Before performing the main experiments with fiber suspension, a series of PIV 

measurement on pure flow was done. PIV processing procedure will be described 

in the next chapter. To examine the quality of the flow within the measurement 

area on the water table, the experimental data obtained were compared with DNS 

results for fully developed turbulent channel flow. For all cases of the experiment, 

the thickness of film flow was set on 11.5±0.5 mm by controlling the flow rate of 

the pump for the table angle of 0.081±0.005 deg for Reτ=150. In this configuration, 

we could establish a no acceleration condition for the flow over the test section. 

One of the controversial questions in most of the channel or open channel flow 

studies is determination of the location where the fully developed turbulence 

regime is occurred. Typically, in this type of studies the definition of the entrance 

length is used to refer to the distance where beyond that the fully developed 

turbulence is dominant. This subject has been investigated in several studies, Dean 

[70] and Zanoun [71]. However, there are no common consensuses on a certain 

range for this parameter. Nevertheless, to verify the fully developed turbulent flow 

in the experiment domain, two PIV measurements were done with and without the 

tripping wire at the entrance of the flow into the test section while water table was 

set for the friction Reynolds number of 150. 

Furthermore, we assessed the turbulence homogeneity. The measurement area 

was divided into two different sub-areas in streamwise, and three different sub-

areas in spanwise direction, as shown in Figure 47, and the flow over these areas 

was independently measured for Reτ=150. There was a good homogeneity in 

spanwise and streamwise direction. The deviation of the data was less than 1.1%, 

and the reason for this can be due to the not re-aligning the laser sheet respect to 

the wall when it was shifted to the upstream position. 
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Finally, in order to check the repeatability of the experiments with different 

parametric values, while Reτ is fixed, an additional series of tests were carried out. 

In these test cases, the water table inclination angle was changed, and 

correspondingly the film thickness was altered to keep the Reτ constant at 150. 

The results of the velocity profile and root mean square (rms) values of 

streamwise velocity for all test cases above are presented in Figure 48, where the 

comparison between DNS data of fully developed turbulent channel flow, 

Kawamura Lab [72], and experimental data obtained shows a strong agreement. 

Uncertainties in the bulk velocity and velocity rms value were less than 5% at 95% 

confidence level. This demonstrated that the flow is fully developed turbulent over 

the slightly inclined table and that it compares well with DNS database of turbulent 

channel flow. Any minor deviations, however, can be due to probable human errors 

related to the experimental setup and limitations of the measurement technique, 

especially for the data points very close to the wall. 

 

 

 

 

 

 

 

 

 

Figure 49 shows a sample of the vector field and vorticity field measured at the 

plane of z+=14. The low-speed and high-speed streaks of the flow with the 

clearance of λ+≈100 are observable. These near-wall coherent structures of 

turbulent flow are well known. 

Figure 47 Homogeneity assessment; 

Figure 48 Velocity profile and streamwise velocity rms for Reτ=150; (•) experimental data 
for 7 independent test cases; (-) DNS database for fully developed turbulent channel flow 
of Kawamura lab; dimensionless based on wall variables; 
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     (a)             (b) 

 

4. Suspension experiments 

We used dilute suspensions (volume fraction Φv≈2×10-5) of cellulose acetate 

fibers with density of 1300 kg/m3 and diameter of 70 µm in tap water. The 

experiments were conducted for three different types of fibers in length: 0.5 mm, 

1mm & 2 mm corresponding to aspect ratios of 7, 14 & 28 respectively. For all 

cases, the fiber concentration in the measurement volume, nl3 where n is the 

number density of fiber and l is the fiber length, was less than 10-2. This suggests 

the interaction between the fibers and the fiber effect on flow rheology will be 

weak [73]. 

The measurements were carried out in three levels approximately z+=14, 43 & 

72 (in wall unit) from the bottom wall. These three levels were chosen based on the 

fact that these levels cover the plenty of the information of flow turbulence 

mechanism, and the fibers have the most fluctuations in these regions due to the 

surrounding fluid fluctuations. In addition, the preferential concentration of fibers 

likely takes place near the wall. The matrix of experiments is presented in Table 3. 

All experiments were set for Reτ=170. 

The fiber Stokes number is other key parameter, defined as the ratio between 

the fiber relaxation time and flow characteristic time, St=τ+=τfib/τflow. The Stokes 

number shows the relative influence of the fiber inertia, i.e. how fibers move 

independently of the turbulent eddies. The flow time scale used widely in numerical 

works is taken as τflow=ν/uτ
2 presenting the viscous time scale of the flow, which is 

the time available for eddy-particle interaction. However, we believe that the fiber 

response time scaled on Kolmogorov time scale demonstrates fiber dynamics more 

Figure 49 (a) velocity field; (b) vorticity field (ωz) at z+=14; 
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adequately because fibers are under the influence of local structures of flow that 

Kolmogorov scales represents them. The dynamic response of non-spherical 

particles is orientation dependent. Shapiro and Goldenberg [17] proposed an 

equivalent response time for fibers based on the assumption of isotropic particle 

orientation and the orientation averaged resistance:    
        

 

             

      
 , where S 

is the ratio of the fiber density to fluid and a+ is dimensionless semi-minor axis of 

fiber with aspect ratio of λ. The fiber specifications are also summarized in Table 3. 

Table 3 The fiber specification and the matrix of experiments 

 Fiber specification Measurement position 

length (mm) aspect ratio (λ) response time (τ+) Z+=14 Z+=43 Z+=72 

Case 1 0.5 7 0.2 √ √ √ 

Case 2 1.0 14 0.24 √ √ √ 

Case 3 2.0 28 0.3 √ √ √ 

 

As a reference for the fiber suspension measurements, before introducing fibers 

into the flow, the pure flow in the test section was first assessed in the levels 

specified. This was done using the same setup as it would be used for the 

suspension flow experiments in order to ensure that any observed changes in flow 

statistics cannot be caused by the measurement setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50 Overall view of the 
experiment apparatus and PIV 
setup; 



66 

 

 

 

 

 

 

 

 

  



67 

 Chapter 5 

pplying the PIV/PVT techniques to dispersed multiphase flows introduces 

problems related to discriminating between the tracers representing the fluid 

phase flow and the suspended particles or fibers. In order to obtain accurate carrier 

phase velocity fields of suspension, the particle or fiber images must be eliminated 

from original images prior to PIV data processing. The PTV data processing must 

be only applied to the images of fibers as well. 

1. Phases separation 

Because of the optical measurement setup, we employed the spatial median 

filtering proposed by Kiger & Pan [60]. This technique utilizes the size difference 

between the tracer particles and suspended objects. It can be applied to solid-liquid 

two-phase turbulent flows to provide a reliable technique for phase separation in 

single-camera images. The performance of the separation process depends on the 

filter size and the ratio of suspended object and tracer image size. 

The procedure for the cases is illustrated in the sample images in Figures 51 (a-

c). The small tracer particles with size of 2 pixels can be removed by applying a 5×5 

window of local median filter to the raw image, a sample of raw images in Figure 

51(a). The value of each pixel is replaced with the median value of its neighbors in 

window. The result is the image of fibers with a mean diameter of 6 pixels, Figure 

51(b). Subtracting the resulting image from the original one leaves only the tracers 

in image acceptable for PIV processing, Figure 51(c). Therefore, the fiber and fluid-

phase velocity can be calculated using Fiber Tracking Velocimetry and PIV 

technique, respectively. 
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Filtering with the median filter will influence the accuracy of the displacement 

calculation through residual images of fibers left by the image separation process, 

Figure 51(c). This results from erosion of fibers by the filter, and hence an 

incomplete removal when it is subtracted from the original image. Kiger & Pan 

showed that a filter with width of f/dt>2.0, where f and dt are the filter size and 

tracer size in an image, will provide average displacement errors in the tracer flow 

field in the order of 0.02 pixels. In addition, the images can be improved by some 

image pre-processing techniques to reduce errors, described in the next section. 

Here, the median filter size of 5×5 was chosen after a trial and error procedure, 

when the fluid velocity field showed a satisfactory signal to noise ratio. Typically, 

the peak-to-peak ratio in the correlation map exceeded 2.7 and more than 97% of 

vectors were extracted as correct vector. 

2. PIV image processing 

PIV data processing was performed by DaVis 7.2 for both the clean flow (single 

phase flow) and the fluid phase of the fiber suspension flow. The PIV images were 

preprocessed to improve the quality of the results. Using sliding background 

filtering in size 7 pixels, we subtracted the large intensity fluctuations in the 

background due to reflections etc. We also normalized particle intensity in images. 

This option applies a local particle intensity correction using a MIN-MAX filter. As 

a result, we obtained homogeneous particle intensities so that small particles could 

also contribute to the correlation. 

The vector field computation was carried out using a three-pass cross-

correlation algorithm (FFT-based) with decreasing interrogation window size from 

64×64 to the final size 32 × 32 pixel interrogation windows with 50% overlap. This 

resulted in an array of 126×126 vectors with a final vector spacing of 0.5 mm. The 

multi-pass with decreasing window size helps to correlate the correct particles and 

Figure 51 Example of sequence of image pre-processing procedure; (a) original two-
phase image including tracers and fibers; (b) fibers image obtained with the filter 
width 5×5; (c) fluid phase image resulting with just traces; 
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improves the signal-to-noise, thus enhances the spatial resolution of the vector field 

and produces less erroneous vectors. 

Once the vector field has been calculated, vector validation algorithms were 

applied to eliminate spurious vectors. The information obtained from the scatter 

plot of displacements was useful to select an allowed vector range that restricts the 

filtered vectors. Any vector outside this range was removed. In addition, the first to 

the second peak ratio factor of two in the cross-correlation map was used as a post-

processing criterion for eliminating questionable vectors below this threshold. In 

general, higher peak ratio factor indicates more confidence in the vector. 

Furthermore, In order to find and remove erroneous vectors with more 

efficiency, a local median filter was applied in post-interrogation procedure. The 

local median filter computes a median vector from the neighbor vectors and 

compares the center vector with this median vector ± an allowed deviation. The center 

vector is regarded as a spurious vector and removed from the vector field when it is 

outside this allowed range. This way is a reliable method for identifying and 

removing spurious vectors even when many spurious vectors are present, 

Westerweel [36]. The deviation of “1.5×rms of neighbor vectors” was chosen in a trial 

and error procedure depending on the turbulence of the vector field processed. 

3. Fiber Tracking Velocimetry 

Fiber Tracking Velocimetry is the estimation of velocities of individual fibers 

tracked in consecutive images deriving their trajectories in visualizations of 

suspension flow. The fiber tracking itself consists of two fundamental parts,           

i) identifying fibers in visualization volume, and ii) matching pair those in 

consecutive images. 

3.1. Fiber identification 

In order to determine the position and orientation of fibers in images, an image-

processing algorithm in the class of steerable filters implemented in MATLAB was 

used. This type of image filters for ridge detection has been proposed by Jacob and 

Unser[74] and has been developed and evaluated by Carlsson et al [62] for fiber 

detection. The ability of this filter for identifying fibers in digital images obtained 

from visualization of flowing suspensions has been found to be excellent with 

acceptable accuracy. In the procedure of fiber recognition, we need a threshold on 

brightness level of fibers to recognize reliably those that are in the light sheet 

(measurement volume). A dynamic threshold described in the next sections is 

introduced for this purpose. 
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-Light scattering from cylindrical fiber in oblique incidence 

In this part, we explain the dependence of light scattering from a finite fiber on 

the incidence angle of the light beam and the fiber. A discussion of solutions to 

some of the problems involving light scattering from arbitrarily oriented infinite or 

finite cylinders already studied will be found in the literatures[75-78]. It is quite 

probable that the mathematics developed so far will not be capable to explain the 

light-scattering patterns from finite fibers in PIV measurement of suspension, i.e. 

something like Mie theory for light scattering from tracer spheres. Even so, existing 

treatments are useful here because they explain the unique type of light-scattering 

pattern produced by fibers like optically ideal cylinders, and this should be 

understood by anyone involved in optical diagnostics of the fiber suspension flow. 

When a narrow beam of monochromatic parallel rays from a laser collides with 

a straight translucent fiber in an angle of incidence, the rays will be diffracted, 

reflected, refracted, and omnidirectionally scattered. The omnidirectional scattering 

of light is caused by optical imperfections. Cohen and Acquista [77] found an 

equation for the intensity of the scattering of a ray that hits obliquely on the surface 

of an extremely long taut fiber that is assumed optically ideal, i.e. it has a smooth 

external cylindrical surface, a circular cross-section, translucent, and optically 

homogeneous and isotropic. It can be predicted that the scattered radiant energy, 

mostly including reflected, and refracted lights, emerges along the surface of the 

cone whose half-apex angle is the angle between the cylinder axis and the direction 

of the incident beam and is viewed on a circle, sighting towards the apex of the 

cone. The geometry of characteristics of light scattered by a tilted infinite cylinder 

in light sheet is shown in Figure 52(a). 

The diffraction of the light consists of a series of spots generated by the 

constructive and destructive interference of the rays transmitted by the fiber and 

those are bent into the shadow of the obstacle when encounter the edges, and 

depends on the ratio of obstacle diameter and wavelength. At oblique incidence, 

these spots appear only on the surface of this cone, and its intensity decreases as 

inverse ratio of distance from the cylinder. 

At lower aspect ratios, the characteristics of the scattering begin to exhibit finite-

size effects. The scattering pattern becomes diffused, with the large deviation from 

scattering along the cone surface occurring for infinite cylinders. While aspect ratio 

is decreasing, the scattered light energy distribution is beginning to approach a Mie 

scattering pattern, but the effects of the cone representing scattering pattern along 

are still clear in a slightly skewed distribution. 
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         (a)            (b) 

 

 

As a special case, the intensity distribution of scattered light for a cylinder with 

aspect ratio of 20 in the incidence angle of 60° is shown in Figure 52(b) from 

reference [77]. The two peaks representing scattering along the cone surface are still 

clearly distinguishable, but the distribution is much diffused. 

-Light scattering from the finite acetate cellulose fibers in visualization 

The specifications of the experiments that influence optical measurements of 

fiber motion comprise colorless acetate cellulose fibers with a diameter of 70 µm 

and aspect ratio of 7, 14 & 28 and refractive index n=1.5. The laser beam has a 

wavelength of 527 nm. The CMOS chip of the camera as light detector is in a 

perpendicular position to the incidence plane of the light and fiber, in 2D view. The 

fiber diameter is comparably bigger than light beam wavelength, thus diffraction 

effects are negligible. 

Figures 53(a-c) depict the dependence of the brightness level (normalized with 

the maximum value in each case) of fibers in images on incidence angles of the 

laser beam in the suspension visualization. The incidence angles are measured 

relative to the perpendicular to the axis of the fiber as the ϕ=0 means normal 

incidence and ϕ=90° (or -90°) means that the laser beam and fiber are at the same 

direction. As seen in Figures 53, at the region of normal incidence, the light 

intensity of fibers are dispersed in a wide range from max 1 to minimum about 

0.03. The dense region of intensity dispersion of fibers move to lower intensities 

when the light direction incline away from the normal incidence to ϕ= 90° (or -90°) 

where laser beam and fiber are parallel. At ϕ= 90° (or -90°), this region is 

remarkably thin and almost there are no intensity zones with high density. 

As mentioned in the previous part, for aspect ratios in order of 20, light 

scattering is along a diffused cone with half angle of 90°-ϕ, although there is some 

Figure 52 (a) the geometry light scattering from an infinite cylinder in an incidence angle [78]; 

(b) the intensity of light scattered by a cylinder with aspect ratio 20 in the incidence angle of 60°[77]; 



72 

omnidirectional scattering caused by optical imperfections. Therefore, at ϕ=90° (or 

-90°) there is no cone surface that concentrated energy of scattered light propagates 

along that and there are just scattering due to optical imperfections of fibers. If we 

assume a 2D orientation in parallel sheets, and only a small fraction of fibers is in 

light sheet and the rest is in the expansion of the laser sheet, we can conclude that 

almost all fibers recorded in the range of incidence angle of 90° are in light sheet. In 

the light sheet, the power of illuminating laser is strong enough that 

omnidirectional scattering of light from these fibers can charge the camera chip to 

record. On the other hand, all fibers that are in normal incidence of the light beam 

scattered a wide range of intensities according to their distance to center of light 

sheet so that those that are in light sheet have high intensity. When fiber aspect 

ratio decreases, the evidence of cone of light scattering is spread out more. 

Consequently, it is predictable that dependence of their brightness on incidence 

angle decreases, although this dependency exist yet. This is observable on Figure 53 

for the fibers of λ=14 &7. 

 

 

 

 

 

 

 

     (a) λ=28          (b) λ=14 

 

 

 

 

 

 

     (c) λ=7 

 

 

Figure 53 The scatter plot of brightness 
level of fiber vs. incidence angle of light 
beam for different aspect ratios; 
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We can reach briefly the following two principals: 

1- Of the fibers that are at the same direction, those that have the highest 

brightness are in the light sheet. 

2- For the fibers that are in light sheet, the more inclined to the normal direction 

to the light beam, the higher intensity of light scattered. 

This dependence of fiber brightness on light incidence angle leads to that the 

brightness of fiber images quite varies with respect to their direction to the light 

beam as well, not only because of being out of light sheet. The dependence of fiber 

brightness on the light direction can be seen in Figure 54. 

 

 

 

 

 

 

 

 

 

-Dynamic threshold to recognize fibers in visualization volume 

The dependence of intensity of light scattered by fibers on their orientation 

relative to the light beam direction causes that we cannot simply discriminate 

between the fibers in the light sheet and those are outside using just the fiber 

brightness in images. It was found that two fibers at the same level in light sheet, 

but with two different orientations will have different brightness in images, the one 

closer to the normal direction to the light beam is brighter, and the one that is more 

aligned in light direction appears darker. In addition, at the same angle the fibers 

that are in the light sheet will be highly brighter in comparison with the other fibers 

outside, in the expansion region of the light sheet. Nevertheless, this problem does 

not seem to have attracted much consideration from researchers working on fiber 

tracking. The common method of individual particle detection has been single 

threshold binarization. This single threshold level in most PIV/PTV recordings will 

result in either capture of a large number of fibers out of light sheet or a 

considerable loss of the fiber data. Therefore, to reach a confident method, if we 

choose the relevant level of brightness as a threshold for any range of fiber angle to 

Figure 54 A sample image of fibers brightness in PIV measurement; 
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set as threshold instead of a fixed constant threshold overall orientation, we will be 

able to identify fibers that are in the light sheet properly. Thus, we will have 

different threshold for different orientations. 

The basic concept of the dynamic threshold is to adjust a brightness level for 

each range of fiber orientation according to being of fibers in light sheet with a 

specified confidence level. This concept is illustrated through Figure 55 (a-c). The 

histogram of mean brightness level of fibers for a selected range of fiber 

orientations (70° to 80°) and the case of fiber λ=14 at z+=43 is presented in Figure 

55(a). This distribution has a skewed shape, and we found the Generalized Extreme 

Value Distribution (GEV) could well model both high peak and long tail of the 

distributions in a fitting manner, red curves in Figure 55(a). Now if we put the 

purpose on finding fibers in light sheet with a confidence level 95%, we must 

determine a brightness level that the probability of the being of fibers is 95%, thus 

the fibers having higher brightness than that threshold are the relevant fibers for us, 

i.e. they are in the light sheet. The Cumulative Distribution Function of these 

distributions gives us the threshold on the brightness that the values greater or 

equal will have the probability 95%, Figure 55(b). The thresholds to identify fibers 

in the light sheet with 95% confidence have showed on Figure 55(c). 

 

 

 

 

 

 

        (a)              (b) 
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Figure 55 (a) a example of histogram of 
mean brightness level of fibers for fiber 
orientation rage of 70° to 80°, for the 
case of fiber λ=14 at z+=43. The red 
solid line: GEV function fitted on the 
distribution; (b) cumulative frequency 
for the distribution of the case of (a); (c) 
mean brightness of fiber vs. fiber 
orientation. The red solid lines: threshold 
for the range of orientation; 
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3.2. Fibers pair matching 

After detecting fiber position and orientation reliably in visualization volume, we 

need to match the corresponding ones in sequential images to estimate their 

displacement and accordingly their velocity. 

Because the orientation of fibers has a significant role in pairing as well as their 

position, in case of tracking fibers in suspension flows, it was used the matching 

algorithm based on SOM neural network in order to meet the requirements for 

more reliable matching at larger numbers of dispersed fibers and more robustness 

against loss-of-pair fibers between successive frames. This algorithm and its 

capability of tracking were discussed in detail in chapter 3. 
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“It doesn't matter how beautiful your theory is, it doesn't 

matter how smart you are. If it doesn't agree with experiment, 

it's wrong.” 
Richard Feynman 
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 Chapter 6 

he current work focuses on the statistical characterization of the rod-like stiff 

fiber motion in wall-bounded turbulent flow. The fiber distribution, 

orientation and velocity statistics for three different aspect ratios (λ=7, 14, 28) and 

at three different wall-normal distances (z+=14, 43, 72) are reported and discussed. 

The objective is to study the effect of aspect ratio, accordingly fiber length (size 

effect), and local flow structures on the behavior of long fibers (longer than local 

flow scales) in a wall turbulence. In addition, the total orientation distributions of 

fibers in measurement volume are present. 

Figure 56 shows the polar histogram of the fiber orientation in the visualization 

volume including the fibers creeping on the wall. It illustrates that orientation 

distribution of fibers depends considerably on fiber length. The short fibers (λ=7) 

are distributed mostly in orientations of 0°- 45° and 135°- 180° where angle of 90° 

is in mean flow direction. The fibers with moderate size (λ=14) have a nearly 

isotropic distribution. Long fibers (λ=28) are orientated significantly in the main 

flow direction. It can be due to the competing effects of the sedimentation and the 

wall contact versus fluid inertia for different sizes of fiber, where the sedimentation 

and direct wall contacts drive the orientation towards the spanwise direction and 

the fluid inertia tends to drive the fiber orientation towards the flow direction. 

 

 

 

 

 

 

       λ=7      λ=14        λ=28 

 

The velocity statistics of the fibers and the surrounding fluid is summarized in 

Table 4(a-c). In order to quantitatively express the fiber fidelity in following the 

 T 

Figure 56 The polar histogram of fibres orientation; 
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fluid motion only by a single value, the correlation coefficient for the fluctuating 

velocity of fiber and surrounding fluid are presented, see Table 4. The fiber-fluid 

fluctuating velocity correlaton is defined as the correlation between the fiber and 

fluid fluctuating velocity measured at the same point in the space and time. This 

correlation coefficient provides the strength of particle-fluid interaction. To do this, 

after determining of the position of fiber velocity vector from the fiber tracking at 

the center of the fiber, the fluid velocity data in the neighborhood of fiber are 

extracted from a search area around the fiber center, which its size is twice the 

interrogation window size used in PIV calculation. The fluid velocity at the position 

of the fiber center is interpolated as a representative of the surrounding fluid 

velocity. The mean and fluctuating velocities are defined as follow (the same 

definition for streamwise velocity (U) and spanwise velocity (V)): 

                                      and                                    

The root mean square (rms) of the velocities is calculated as: 

               
  

   

   
 

Where * denotes fiber or fluid, and N is the total number of the extracted fiber 

or fluid velocity. The correlation coefficient is an indicator to the level of 

dependency of two random variables    
        

 
      . There are several ways to 

indicating the degree of dependency for two random variables. The Pearson 

correlation coefficient is the common way to define a measure of the linear 

relationship between two variables [79]. 

     
        

 
       

 

                         
 

   
         

 
     

       

   
 

When the fiber velocity is different from the surrounding fluid velocity because 

of fiber inertia, gravity or moving through different flow regions, the fiber relative 

velocity, referred to as fluid velocity seen by fiber, is a significant variable. The fiber 

relative velocity is defined as: ΔU=Ufluid - Ufiber . 

 

Table 4(a) The velocity statistics of fiber and the surrounding fluid velocity for case1: λ=7, τ+ = 0.2 

z+                       
         

            
             

            
        

  
            

        
  

       

14 2.79 3.84 9.83 12.62 3.94 2.51 0.36 0.15 

43 0.53 2.40 14.32 14.86 2.59 1.76 0.44 0.36 

72 0.47 1.71 15.70 16.17 1.94 1.46 0.53 0.41 
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Table 4(b) The velocity statistics of fiber and the surrounding fluid velocity for case1: λ=14, τ+ = 0.24 

z+                        
           

            
             

            
        

  
            

        
  

       

14 0.71 3.30 11.77 12.48 3.70 2.51 0.44 0.24 

43 0.65 2.32 14.34 14.99 2.49 1.70 0.49 0.35 

72 0.53 1.74 15.70 16.25 1.98 1.47 0.52 0.40 

Table 4(c) The velocity statistics of fiber and the surrounding fluid velocity for case1: λ=28, τ+ = 0.3 

z+                        
           

            
             

            
        

  
            

        
  

       

14 -0.68 3.73 11.65 10.97 4.17 2.87 0.48 0.24 

43 -0.28 2.25 14.84 14.57 2.44 1.90 0.49 0.33 

72 0.44 1.58 15.71 16.14 1.90 1.39 0.57 0.44 

 

As seen, the correlation coefficients for all cases increase with an increase in the 

wall-normal distance. It can be concluded that fibers in the regions far away from 

the wall follow the fluctuations of fluid better than the ones are near the wall. The 

reason can be that fluid fluctuations are the highest near the wall so that the fiber 

inertia does not allow fiber to pursue the fluctuations completely. On the other 

hand, the degree of following the fluid motion for long fibers (λ=28) in the near-

wall areas is higher than the short fibers (λ=7). It can be due to the fiber length. It is 

notable that the fiber time response is in the order of one for all cases. Although 

long fibers show a considerable level of correlation with fluid fluctuations near the 

wall, negative mean relative streamwise velocity is observed for them. However, 

these negative quantities are not in high order. 

In Figures 57, the distributions of fiber streamwise velocity for the three aspect 

ratios and the three levels are depicted together with the corresponding fluid 

velocity. It can be observed that for the case of fibers with aspect ratio 28 at the 

region near the wall, z+=14 where the flow fluctuations are the most extensive, the 

fiber velocity distribution exhibits two distinct peaks in two different zones (zone I 

and II). The zone I accords with the position of low-speed streaks of flow, and the 

zone II corresponds with the position of high-speed streaks. The fibers belong to 

zone I have the velocity less than mean fiber velocity and are in low speed area of 

flow, thus these fibers have come from lower layers with lower momentum to this 

layer. On the other hand, the fibers in zone II have a velocity higher than the mean 

velocity of fiber in this level coming from upper layers with higher momentum. 

Moreover, the mean velocity of fibers almost conforms to flow mean velocity. 

Although we have not measured wall-normal velocities, it can be hypothesized that 

the zones of I and II are respectively associated with the ejection and sweep 

environments known in wall turbulence mechanism. Decreasing aspect ratio, and 
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accordingly decreasing fiber length, the evidence of these zones and peaks is 

disappearing. For the case of fibers with aspect ratio 7, the fibers mean velocity 

obey the dominant flow velocity in low-speed streaks. In higher levels, the fibers 

mostly follow the dominant local flow regardless their size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 58 shows the distributions of fiber streamwise velocity assembled for all 

cases. As seen, the fiber translational motion is practically unaffected by the aspect 

ratio, whereas it depends crucially on local flow structure in different layers. This 

has been already observed for the ellipsoidal particles in DNS results [29]. In the 

region near the wall (z+=14), the distributions of fibers streamwise velocity cover a 

wide range of velocities due to existing wide range of turbulence scales near the 

solid wall. However, different trends are observed for fibers with different size. In 

upper layers, the fiber aspect ratio (fiber length) considerably loses its significance. 

This shows that the fiber length has a key role in the fiber behavior in the regions 

near the wall. 

 

 

 

Figure 57 The fluid and fiber streamwise velocity distribution for three 
different aspect ratios and in three different wall-normal distances; 
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   λ=7

   λ=14
   λ=28

red:           z+=14
green:    z+=43
blue:    z+=72

 

 

 

 

 

 

 

 

 

 

Such observations can be explained by looking at fiber rotation. The fibers tend 

to rotate about the spanwise axis (y-axis) due to the streamwise mean shear field 

[21]. In the far field, where the distance from the wall is greater than the fiber 

length so that the fiber can rotate freely, the fiber motion can be perfectly described 

by Jeffery’s equations [80]. Therefore, the experimental results confirm previous 

numerical results. For distances fewer than the fiber length, the fibers experience a 

fiber-wall interaction, and the wall ceases fiber rotation. This causes that the fiber 

offends Jeffery’s manner. This is why the experimental observations do not agree 

with the numerical results for the near-wall regions. 

The orientation of fibers does matter since it influences the fiber dynamics. In 

addition, it has practical importance in the quality of production in papermaking 

industries [2]. It has been observed numerically by Zhang et al. [21] and Mortensen 

et al [29] that small ellipsoidal particles have preferential orientation in streamwise 

direction. Newsom and Bruce [19] found that the orientation preference was more 

sensitive to fiber diameter than to length. The fibers with larger diameter displayed 

a greater tendency for horizontal orientation during their experiments about 

horizontal orientation properties of fibrous aerosols in atmospheric turbulence. 

The scatter of the fiber streamwise velocity versus fiber orientation is exhibited 

in Figure 59 for the near-wall level. The angle that describes the fiber orientation is 

defined relative to the mean flow direction as the cos(θ)=1 means the fiber oriented 

in the streamwise direction. In Figure 59(a), high concentration of long fibers in 

two zones, zones I and II, is clear. It exhibits a high tendency of low speed fibers to 

orientate in streamwise direction, zone I. On the other side, the fast long fibers do 

not have a preferential orientation and are distributed in every direction, zone II. 

Figure 58 The superimposed fiber velocity distributions for three different 
aspect ratios and in three different wall-normal distances z+=14, 43 72; 
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These two zones can be corresponded to two events of ejection and sweep 

mentioned previously. The fast fibers are in sweep environment in the upper layer 

and under the influence of extensive fluctuations surrounding. The low speed fibers 

are in low sweep areas in the vicinity of the wall, and the wall has a stabilizing effect 

on them. 

Decreasing fiber length broadens the zone II so that there is no evidence of 

preferential velocity or orientation in this zone for the short fibers, Figure 59(c). 

However, the short fibers are still oriented mostly in streamwise direction for a 

certain range of velocity, zone I. 

 

 

 

 

     (a) λ=28       (b) λ=14      (c) λ=7 

 

My purpose is to describe a mechanism for these fiber behaviors observed. To 

this, I have to join all the phenomena already observed. It has been apparent that 

the strong sweeps and ejections carry particles toward and away from the wall, 

conditioned by the presence of particles to be transferred. It leads to preferential 

distribution. These coherent events are generated by the near-wall coherent quasi-

stream wise vortices [7-9]. These quasi-stream wise vortices are parallel counter-

rotating vortices, which lay and bound the low-speed streak as arranged in a series 

of alternating intervals. The ejection events on the upwash side contribute to lift 

low-speed streaks. However, in most of cases, these clockwise and 

counterclockwise quasi-streamwise vortices are not paired in equal size and 

strength. Each mature quasi-stream wise vortex often follows a small quasi-stream 

wise vortex of opposite sign, offspring vortex, interpreted as the rear, wall-touching 

end of a counter-rotating quasi-streamwise vortex farther downstream, in a 

turbulence regeneration cycle. Marchioli and Soldati [81] showed the role of the 

offspring vortex in trapping the particles in the wall layer. 

Here, the evidences are presented that the probability of existing high aspect 

ratio, here let us give it a physical sense and say long fibers, in sweep and ejection 

environments is higher than being trapped in certain areas. It can be explained that 

long fiber in the outer flow is captured by a sweep. It approaches the wall and 

moves between the vortex and the wall. The fiber may touch the wall surface or 

not. Afterwards, the fiber on the upwash side of the vortex is subject to the 

Figure 59 The scatter plot of the fiber streamwise velocity versus fiber orientation, z+=14; 
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influence of the ejection. Since the long fibers reacts to flow fluctuations as fast as 

possible due to the increase in the efficiency of the interception mechanism of long 

fibers by the wall, the longer fibers experience a short residence time into low-

speed streaks. It can cause a nearly equal rate of fiber transfer toward and away 

from the wall in sweep and ejection events. Nevertheless, it has been numerically 

observed for point-mass ellipsoidal particles that there is a net transfer of fibers 

towards the wall and the fibers remain trapped for a long time into the low-speed 

streaks where the flow fluctuations are not strong enough. On the other hand, the 

probability of being short fibers (low aspect ratio) in low-speed streaks is high, and 

they are mostly trapped in low-speed streaks for a long time during the cyclic events 

mentioned. This mechanism is illustrated in Figure 60. 

 

 

 

 

 

 

 

The distribution of fluctuating wall-normal angular velocity of the fibers, (Ωz´)+, 

are shown in Figure 61. The mean wall-normal angular velocity is zero for all cases 

in all distances from the wall. Gaussian distribution function was fitted 

appropriately to the experimental data. 

 

 

 

 

 

 

 

 

 

 

Figure 60 The mechanism predicted for fiber transfer and segregation; 

Figure 61 Probability density of fluctuating wall-normal angular velocity of the fiber, (Ωz´)+, 
for the different fiber sizes in the different wall-normal distance; the Gaussian PDF is fitted 
to the experimental data in a good manner; 
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This figure exhibits that PDF profiles of (Ωz´)+ for fibers in the middle sizes 

(λ=7 & 14) collapse on each other for distances far away from the wall (z+=72 & 

43). However, for long fiber (λ=28), it is different with a lower peak and higher and 

longer tails. This indicates some uncommon events for long fibers. Near the wall, 

the different behaviours are observed for the different sizes of fiber. 
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 Chapter 7 

A two-frame algorithm based on SOM neural network has been 

developed for matching rod-like particle pair that have one major symmetry 

axis for Fiber Tracking Velocimetry of fiber suspension flows. The evaluation of 

the algorithm has been established by means of synthetic particle images and 

DNS results of prolate-particle-laden turbulent channel flow. A major 

advantage of neural networks is that no initial knowledge of the flow area being 

examined and the particle behavior is needed. This feature makes neural networks 

attractive schemes for particle pairing. Moreover, for suspension flows involving 

rod-like particles tracking, the particle angle plays a key role in the matching of 

corresponding particles. Therefore, SOM neural network became the method 

chosen in the present study since it made us able to utilize all features of the particle 

images, i.e. both orientation and position, to find pair particles in relatively high-

density particle images and establish a robust and reliable matching algorithm. 

The test cases considered cover a wide range of applications. It was 

demonstrated that the tracking capability of the developed algorithm is superior for 

both high and low tracking parameter ϕ. In the case of homemade images of 

particles in a 2D potential flow in a corner, ϕ was varied from 1.75 to 0.87 by 

increasing the particle number density in the images. For ϕ>1.0, the ability of the 

algorithm to detect corresponding particles in successive image frames is excellent; 

ηr >83% and ηm<11%. The recovery ratio ηr is reduced to 64%, and the mismatch 

ratio ηr is raised to 30% for ϕ<1.0. The performance of the algorithm remains 

nevertheless satisfactorily. Furthermore, the elapsed time grows with the number of 

particles in the images and jumps to 2.1 s for ϕ<1.0. For data sets derived from the 

results of DNS-based computer simulations of prolate spheroidal particles in 

turbulent channel flow, the performance of the algorithm is evaluated for various 

values of ϕ with increasing time step between sequential image frames. For ϕ>1.0, 

the recovery ratio ηr exceeds 54%, and the mismatch ratio ηm is below 15%. The 

algorithm shows a weak performance for ϕ<1.0 because the low ϕ and the 

accompanying large time interval between samples cause a large variation in the 

orientation and position of particles. This makes particle tracking difficult. 

Although the performance and reliability of the present algorithm has been 

demonstrated only for elongated rod-like particles in the present paper, we believe 

1. 
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that the same algorithm can be utilized also for suspensions of other non-spherical 

particles provided that the orientation of the individual particles can be defined for 

instance by means of an axis of symmetry. 

It was found that the light scattering pattern from fibers in the light sheet 

depends on the incidence angle of the beam light and the viewing angle. This 

causes the variations of the fiber brightness level in images depends on their 

orientation. Therefore, it was introduced dynamic threshold concept to recognize 

the fibers reliably in the visualization volume. The dynamic threshold along with 

the matching algorithm proposed made us able to track correct fibers in 

consecutive image frames. 

In addition, experimental study of behavior of rod-like stiff fibers dispersed in 

a wall-bounded turbulent flow has been carried out using PIV/PTV 

measurements. The suspension was a dilute mixture of cellulose acetate fibers with 

a diameter 70 µm in three different aspect ratios 7,14 & 28 and moderate response 

time (τ+) in order of one into tap water. The friction Reynolds number was 

approximately 170, and the data are comparable with DNS results due to the 

inherent characteristic of the experimental setup. 

In the present work, the motion and orientation statistics of fibers are reported 

to examine the fiber size effect and local flow structure on the behavior of long 

fibers (longer than local flow scales) in wall turbulence. It is well known that 

particle transfer mechanism is dominated by the near-wall turbulent coherent 

structures. The results we experimentally obtained reveal that the size of fiber is a 

significant factor for the dynamic behavior of fiber in the near-wall region. It was 

indicated that the probability of attendance of the long fibers (λ=28) is high in the 

ejection and sweep areas in the wall region. On the other hand, the results showed 

the short fibers accumulated likely into the low-speed area for a long time. In upper 

layers, the far-wall region, it was observed that almost all translational velocity 

statistics are negligibly affected by fiber aspect ratio. 

Besides, it was found for long fibers near the wall that the high-speed fibers 

have no preferential orientation. This was not observed for short fibers. However, 

for all cases there is a high tendency of lower speed fibers to orientate in 

streamwise direction. 

There is a significant difference in the behavior of fibers with lengths of 1 and 2 

mm compared to the fibers with a length of 0.5 mm in the wall-normal distance of 

1 mm (z+=14). It is acceptable that the ratio of the fiber length to the fiber distance 

from the wall is an important parameter in the fiber behavior in the vicinity of a 

solid surface. 

 

2. 

3. 
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“ We've learned from experience that the truth will come out. 
Other experimenters will repeat your experiment and find out 
whether you were wrong or right. Nature's phenomena will 
agree or they'll disagree with your theory. And, although you 
may gain some temporary fame and excitement, you will not 
gain a good reputation as a scientist if you haven't tried to be 
very careful in this kind of work. And it's this type of integrity, 
this kind of care not to fool yourself, that is missing to a large 
extent in much of the research in cargo cult science. ” 

 

Surely You're Joking, Mr. Feynman! , 

Richard Feynman 

 

 

 

 

 

 

 

 

 

 

 

 

 



96 

 

 

 

 

 

 

 

 


