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Abstract 
 

Drying is important in the animal feed industry because the dried product has 

high quality and long shelf life. However, drying is energy intensive taking up to twenty 

percent of the energy used in the industrial sector. The drawbacks of the available 

conventional dryers are negative effect on dried product quality and loss in energy 

losses with detrimental impact on environment.  

Some of the current challenges in the pet food industry are developing mixtures 

that can be dried with acceptable quality. It is important to investigate alternatives to 

improve drying technologies for attaining higher water removal rates while being 

energy efficient and environmentally friendly.  

Experiments in a laboratory scale heat pump dryer were conducted using protein 

mixtures. This drying technology has been developed at NTNU and it is energy efficient 

and environmentally friendly. It has the added benefits of competitive costs while 

producing high quality dried protein mixtures. 

The influence of drying conditions, protein mixture and geometric parameters on 

quality, properties and drying kinetics were studied and discussed later on. A protein 

mixture and related parameters are proposed to achieve better drying kinetics, quality 

and energy use.  

 

 

 

 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Acknowledgements 
 

Firstly, I wish to thank my academic supervisor Professor Dr. Odilio Alves-Filho 

for his help and encouragement during the research and thesis preparation. He offered 

me the opportunity to work on heat pump drying technology and made me feel 

motivated about this field where he is one of the most recognized and rewarded person 

in the world for research and development on this technology. I could learn many new 

things from him during these six months and every time I met him I felt very lucky.  

I am also thankful to the Department of Energy and Process Engineering at 

NTNU for providing infrastructure and its laboratory for this thesis. 

Last but not least, I want to thank my family which gave me the opportunity to 

come to Trondheim to work on my thesis. It was a right decision as I could improve my 

knowledge in energy and impact on the modern Society in a Center of Excellence in 

innovative processes and heat pump technology. 

 

 

 

 

 

 

 

 



iv 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Contents 

 

Abstract i 

 

Acknowledgements iii 

 

List of figures vii 

 

List of tables ix 

 

Notations xii 

 

1    Introduction 1 

   1.1   General drying .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       1 

  1.2   Outline of the thesis  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4 

 

2    Literature review 5 

 

3    Fundamentals of drying  11 

   3.1   Mechanisms of heat and mass transfer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   11 

  3.2   Vacuum freeze drying  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   13 

  3.3   Atmospheric freeze drying .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      14 

  3.4   Heat pump drying   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 15 

       3.4.1   Principle of heat pump dryer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 16 

       3.4.2   Advantages and limitations .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 18 

       3.4.3   Drying kinetics of foods   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   19 

       3.4.4   Quality aspects and properties   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 21 

 

4    Materials, Measuring devices and Methods 23 

   4.1   Materials .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 23 

   4.2   Heat Pump Dryer   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 27 

   4.3   Drying cabinet and chamber .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 29 

   4.4   Measuring devices .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 30 

   4.5   Drying oven method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 31 

   4.6   Rehydration measurements   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 33 

 

5    Experiments and test conditions 35 

 

 



vi 
 

6    Results, Analysis and Discussion 39 

   6.1   Drying kinetics  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 39 

   6.2   Quality parameters  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 51 

        6.2.1   Color analysis .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   51 

        6.2.2   Bulk density .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57 

        6.2.3   Particle density.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 59 

        6.2.4   Rehydration capacity.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      60 

 

7    Conclusions and Recommendations 63 

   7.1   Conclusions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 63 

   7.2   Recommendations for Further Work   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     65 

 

References 67 

  

 

 

 

 

 

 

 

 



vii 
 

List of figures 
 

 

Figure 3.1: Schematic representation of heat pump drying system . . . . . . . . . . . . . . .   16 

Figure 3.2: General drying curve with different drying periods . . . . . . . . . . . . . . . . .    20 

Figure 4.1: Preparation of the samples for drying . . . . . . . . . . . . . . . . . . . . . . . . . . . .   24 

Figure 4.2: Material layer distributed over a methacrylate sheet before freezing . . . .   25 

Figure 4.3: Detail on cutting of the frozen layer into 10 mm long slab shaped  

         particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    25 

Figure 4.4: Boiled sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    25 

Figure 4.5: Size distribution of the boiled samples . . . . . . . . . . . . . . . . . . . . . . . . . . .   26 

Figure 4.6: Sketch of the Heat Pump Dryer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    27 

Figure 4.7: Mollier diagram for the air cycle of the drying process . . . . . . . . . . . . . .    29 

Figure 4.8: The cabinet and drying chamber with the samples . . . . . . . . . . . . . . . . . .   30 

Figure 4.9: Oven used to determine the moisture content of the samples . . . . . . . . . .   32 

Figure 4.10: A view of the devices used for the rehydration measurements . . . . . . . .   34 

Figure 6.1: Moisture ratio for different mixture recipes and the drying  

    conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    43 

 

Figure 6.2: Drying kinetics for different recipes and drying conditions . . . . . . . . . . .   45 

Figure 6.3: Drying kinetics at 20ºC for the boiled samples . . . . . . . . . . . . . . . . . . . .     46 

Figure 6.4: Drying kinetics of the standard samples with extra carbohydrates . . . . . .   47 

Figure 6.5: Influence of particle size on drying kinetics for different recipes . . . . . . .  48 

Figure 6.6: Influence of drying temperature on drying kinetics for the second                              

drying stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   49 



viii 
 

Figure 6.7: STD+CH 10 mm samples dried at 20ºC . . . . . . . . . . . . . . . . . . . . . . . . . .   52 

Figure 6.8: STD+CH 20 mm dried at 20ºC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   52 

Figure 6.9: Color measurements comparison in the white zone for different  

    sample sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   53 

 

Figure 6.10: Color measurements comparison in the red zone for different                  

sample sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54  

Figure 6.11: Color measurements comparison at different drying temperatures . . . . .  55 

Figure 6.12: Standard samples 20 mm dried at 35ºC . . . . . . . . . . . . . . . . . . . . . . . . . .  56 

Figure 6.13: Standard samples 20 mm dried at 30ºC . . . . . . . . . . . . . . . . . . . . . . . . . .  56  

Figure 6.14: Standard samples 20 mm dried at 25ºC . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

Figure 6.15: Bulk density measurements before and at the end of each                     

drying process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   57 

Figure 6.16: Particle density measurements before and at the end of each                

drying test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    59  

Figure 6.17: Rehydration rates for the boiled samples . . . . . . . . . . . . . . . . . . . . . . . .    60 

Figure 6.18: Rehydration rates for the standard samples with added                

carbohydrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    61 

Figure 6.19: Rehydration rates for the standard samples subjected to a  

      second drying stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   62 

 

 

 

 

 

 



ix 
 

List of tables 
 

 

Table 5.1: Experimental design and conditions for all test runs . . . . . . . . . . . . . . . . .   36 

Table 6.1: Specification of the experimental conditions . . . . . . . . . . . . . . . . . . . . . . .   41 

Table 6.2: Summary of moisture content and drying runs . . . . . . . . . . . . . . . . . . . . . .  41  

Table 6.3: MC values obtained for two different drying methods . . . . . . . . . . . . . . . .  42 

 

 

 

 

 

 

 

 

 

 

 



x 
 

 



xi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

Notations 

 
 

HPD  Heat Pump Drying 

HPDs  Heat Pump Dryers 

SMER  Specific Moisture Extraction Rate 

qc  Heat flux 

nw  Evaporation rate 

hg  Heat transfer coefficient 

kg  Mass transfer coefficient 

pv  Water vapor partial pressure 

FD  Freeze Drying 

VFD  Vacuum Freeze Drying 

AFD  Atmospheric Freeze Drying 

COP  Coefficient of performance 

cond  Condenser 

evap  Evaporator 

CFCS  Chlorofluorocarbons 

HCFCs  Hydro chlorofluorocarbons 

Xwb  Moisture content in wet basis 

Xdb  Moisture content in dry basis 

mw  Mass of water in the product 

mt  Total mass of the product 

md  Dry mass fraction of the product 



xiii 
 

Twb  Wet bulb temperature 

Xcr  Critical moisture content 

ρb  Bulk density 

ρp  Particle density 

Vb  Bulk volume of the dried sample 

Vb0  Bulk volume of the fresh sample 

ra  Rehydration rate 

wt  Weight of the sample at a certain rehydration time 

wd  Mass of the dried sample 

PCFs  Proteins, carbohydrates and fats mixture 

Tev  Evaporation temperature 

STD  Standard recipe 

STD+CH  Standard recipe with added carbohydrate 

umf  Minimum fluidization velocity 

MC  Moisture content 

XR  Moisture ratio 

φin  Air relative humidity at the inlet of the drying chamber 

φout                   Air relative humidity at the outlet of the drying chamber 

 

 

 

                      





 

 
 

 

 

 

 

Chapter 1 

 

                                                                              Introduction 

 

1.1.  General drying 

Drying is always one of the main food processing technologies widely used in 

the food industry to preserve food. The main objective of food dehydration is to remove 

water to a level at which microbial spoilage is minimized while extending the product 

shelf-life. Indeed, dried products kept under ambient conditions are also characterized 

by low water activity that inhibits microbial growth and undesirable enzymatic 

reactions. In addition, there is a significant reduction in mass and volume that also 

contributes to reduce the cost of packaging, handling, storing and distributing of 

foodstuffs without involving expensive cooling systems.  

Drying is one of the most energy intensive processes that easily account for up 

to 15% of all industrial energy utilizations. The energy cost is determined by initial and 

final moisture contents, drying time, operating conditions, the scale of the process and 

the type of system (forced-air, drum, freeze and vacuum drying). A large fraction of 

energy is usually lost in industrial drying processes. Therefore, energy management is 

an essential part of drying process and efficient energy conservation contributes 

significantly to the overall operating cost [10]. 
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Another important objective of a drying process is to handle difficult materials 

and to produce a dried product of desired quality at minimum cost and maximum 

throughput. Therefore, a drying system that is both energy efficient and preserves 

product quality is desired. This creates challenges for researchers, food industry and 

dryer manufacturers to develop new technologies to process difficult-sensitive materials 

and to supply final products with high quality and improved properties. 

 

Product quality is the most important factor to be considered simultaneously 

with energy conservation. During drying, food materials undergo physical, chemical 

and biological changes that can affect some natural attributes like texture, color, flavor, 

and nutritional value. Therefore, an added objective of drying is to produce dried foods 

of good quality from a nutritional and organoleptic standpoint. Loss of nutritional 

quality is mainly due to the effect of temperature and dehydration on vitamins and 

proteins. Organoleptic quality is severely affected since texture, color and flavor are 

significant attributes used in judging the quality of dried foods [6]. 

Studies have been done about comparison of quality degradation between heat 

pump drying (HPD) and conventional drying methods for several materials and it was 

concluded that HPD offers products of better quality with less energy consumption. 

Quality parameters as color, density and shrinkage are influenced by the dryer type and 

dryer conditions such as temperature and relative humidity. Foods like fruits and 

vegetables consist of water, carbohydrate, lipids, vitamins and minerals. These 

compounds are easily modified in a high temperature drying condition and result in 

degradation of product quality and properties [26].    

 Thus, quality is highly affected by the drying temperature and higher product 

quality is achieved at lower temperature that leads to a highly porous structure of the 

product. 

Recently, there has been a great interest in utilizing heat pumps in combination 

with dryers (HPDs) for drying fruits, vegetables and biological materials. The energy 

efficiency of conventional dryers is generally very low (35% or less) and HPDs 

consume 60 to 80% less energy than conventional dryers operating at the same 

temperature. Heat pumps have been known to be energy efficient when used in 

conjunction with drying operation due to the high coefficient of performance of the heat 
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pump. The evaporator and the condenser recover heat and reduce the energy 

consumption of the drying process [10]. 

One of the main features of the heat pump dryer is its ability to operate in a 

closed cycle with precise control over the thermal environment of the system that allows 

regulating the air temperatures at different stages of the drying process to attain the 

optimum operating conditions. Thus, it is possible to set different combinations of 

drying conditions, with temperatures in the range from -20 to 100ºC, to maximize the 

performance of the system and improve product quality. 

The theoretical maximum specific moisture extraction ratio (SMER) for 

conventional thermal drying is 1.55 kg/kWh (based on the latent heat of water 

vaporization at 100ºC). A typical SMER value achieved by a heat pump is 3 kg/kWh, 

which compares very favorably with conventional convective drying, with values 

ranging from 0.5 to 1 kg/kWh. Thus, heat pump dryers are about 4 to 5 times as 

affective as traditional drying systems [24]. 

 

Therefore, product quality and cost are usually competing factors. The goal is to 

look for a favorable combination of cost, energy efficiency, quality, and price of the 

final product. It is important to investigate alternatives to improve drying technologies 

for attaining higher water removal rates while being energy efficient and 

environmentally friendly.   

The objectives of this work are to set up and perform designed experimental 

trials applying a lab scale heat pump dryer and to study the influence of different protein 

mixture recipes, drying conditions and geometric parameters on quality, properties and 

drying kinetics. 
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1.2. Outline of the thesis 

This thesis is divided in seven chapters that will be described in this section: 

The first chapter gives an introduction about the topic and about the objectives 

of this work and thesis. It explains why drying is important in the industry and the 

reasons why the quality of the product, energy and environment conservation are the 

main factors to be accounted for.  

In Chapter 2 is a literature review, and provides a summary of the importance of 

each quality parameter in the final dried product. It covers also a selection of 

experimental studies on heat pump drying published in the literature and the main 

conclusions achieved about quality of the product. 

Chapter 3 covers fundamentals of drying, drying mechanisms and describes 

different drying technologies. It describes the advantages and limitations of heat pump 

drying and defines the dryer performance indicators. 

In chapter 4 is on materials, measuring devices and methods and explains how 

the material was prepared and used in the experiments. Explanations are given on the 

drying system, the devices used to measure quality parameters and the oven drying 

method. 

In chapter 5 describes the experiments and test conditions, experimental set-ups 

for each test as well as the parameters to be compared. 

Chapter 6 covers the results, analysis and discussion, including the analysis of 

the drying kinetics and measured quality parameters. This chapter provides discussions 

about the best recipes and drying conditions for better drying and quality of the dried 

protein mixtures. 

Conclusions and recommendations for further work are summarized in     

Chapter 7. 

 

 

 



 

 
 

 

 

 

            

Chapter 2 

 

                                                                        Literature review 
 

 

Research in atmospheric freeze drying combined with heat pumps has been and 

is still mainly investigated at NTNU-SINTEF in Trondheim. Several articles have been 

internationally published in this field by both organizations. This literature review gives 

a summary of the development in heat pump drying while keeping high quality of the 

dried products. Drying is done at different drying conditions that may affect positively 

or negatively the final product quality and properties. The main quality parameters are 

described next: 

 Color 

Color is an important quality attribute of dried foodstuffs and it is essential to 

maintain the original color in the dried product. The first quality judgment made by a 

food consumer or buyer is focused on visual appearance. Appearance analyses of foods 

(color, taste and texture) are used as a basis for food quality from the initial through the 

end of processing. Abnormal colors, especially those associated with deterioration, 

spoilage and poor eating quality, cause the product to be rejected by the consumer.
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Therefore, the goal of this work is to measure and analyze color components in 

different protein mixtures before and after drying. Differences in color components 

between fresh, frozen and dried products should be as small as possible to guarantee the 

quality of the final product. 

 Bulk and particle density 

During drying the food products undergo deformations that can be characterized 

by changes in volume, shape, porosity, density and shrinkage. These modifications in 

the material structure are related to and can be determine by changes in bulk and 

particle densities. Then, their determinations are extreme important in terms of product 

quality and characterization of mass and heat transfer phenomena. Optimization of these 

phenomena taking into account the quality of the material or product and the cost of the 

processing is required for the development of drying technologies.  

In the case of drying shrinkage is a consequence of the evaporation of solvent or 

moisture contained in the solid porous matrix. If the volume reduction is strictly 

proportional to the mass loss, the shrinkage is regarded as ideal. On the other hand, if 

the volume reduction is smaller than the volume of evaporated water, the drying 

operation generates an increase in the material porosity. 

For these reasons, the goal of this work is to investigate and to draw conclusions 

the effect of drying operation and material geometry on these parameters and to 

recommend the best recipe and drying conditions for better quality for specific drying 

times. 

 Rehydration 

The rehydration characteristics of a dried product are used as a quality index and 

as indicators of physical and chemical changes during drying. It is related to shrinkage 

and porosity since when drying causes thermal damage to the product it will have 

higher shrinkage, and it will be less porous with lower capacity to absorb water. 

Thus, the additional goal of this work is to study and identify what treatment, 

geometry and condition leads to a better rehydration capacity. 
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 Kinetics and drying curves 

The kinetics and drying curves of a dried product are measured in terms of 

moisture content versus drying time. It is important that the product has higher 

changes in moisture content or higher moisture removal rates in order to reduce 

drying times, which are related to energy consumption. This is normally achieved 

by drying at higher temperatures. However, product quality decreases when drying 

at higher temperatures. Therefore, it is central to achieve a satisfactory solution both 

for quality and energy consumption. 

To sum up, the goal of this work is also to study the effect of drying conditions, 

product shape and sample size on kinetics, drying curves and drying times. Quality 

parameters were also analyzed, discussed and conclusions were drawn for 

recommending which recipe, geometry and during conditions leads to a better product 

quality for a given drying time. 

 

There is no research published in the literature about heat pump drying of 

protein mixtures. Even though most publications on heat pump drying is from NTNU, 

there are extensive references on general drying. It is the useful to examine publications 

on general drying of different products and to survey the drawbacks and advantages of 

conventional drying in foods such as green peas and other materials. Therefore, the 

relevant experimental studies of HPD have been selected and are described next: 

 

The work done by Odilio Alves-Filho, Pablo García Pascual, Trygve M. Eikevik 

and Ingvald Strommen describes the drying of green peas in a fluidized bed heat pump 

dryer under atmospheric freezing and at medium temperature drying. Three different 

types of green peas with two diameters (8 and 10 mm) were used in the trials. The test  

were carried out in combined temperatures, the first 9 hours was for freeze-drying 

followed-up by 3 more hours at 25ºC [15]. 

In addition to the drying kinetics, different product parameters were measured 

before, during and at the end of the drying process. It was found that: 
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As concerned to the drying curves, the drying rate was slightly higher for the 8 

mm green peas, which was the smallest diameter among the treatments. There was also 

a significant effect of temperature on the drying kinetics and, consistently, higher drying 

temperatures produce higher drying rates. 

As related to color, the results indicated that atmospheric freeze-drying under 

temperatures of -5ºC or -10ºC produced dried green peas with original color. The 

sample dried at 25ºC only had significant reduction in the amount of green color.    

As connected to density, the samples dried at 25ºC had higher density as 

expected since shrinkage or reduction in volume of the granules is higher at this 

temperature. 

As concerned to rehydration, the ability to reabsorb water decreases inversely 

with the drying temperature. The 10 mm samples showed a maximum value at -5ºC 

instead at -10ºC, and decreased in the other drying conditions. 

 

 

U. S. Pal, M. K. Khan, and S. N. Mohanty carried out experiments under 

controlled conditions for green sweet pepper in a heat pump dryer using drying 

temperatures of 30, 35, and 40ºC. Fresh green sweet peppers were obtained from the 

local market and they were cut into slices of 5 mm thickness [20]. It was found that: 

The drying curves evidently showed that the drying time decreases with increase 

in drying air temperature from 30 to 40ºC. The moisture content of green sweet pepper 

slices was observed to decrease exponentially with drying time. Heat pump drying at 

30ºC took the longest time or had a lower drying rate. 

The color results showed that chlorophyll content of the final dried product 

decreased with increase in drying air temperature, which might be due to the 

temperature sensitivity of this pigment. 

The rehydration ratios were lower for product dried at higher temperature of 

40ºC. This might be due to the structural change in the product at higher drying air 

temperature that inhibits proper reconstitution. 
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O. Alves-Filho, T.M. Eikevik and S.V. Goncharova-Alves published a research 

article on Single and Multistage Heat Pump Drying of Protein. Seven isolated protein 

drying runs were performed using a laboratory single-stage atmospheric and multistage 

scale heat pump fluidized bed dryer. Runs 1, 3, 5 and 7 were single single-stage 

atmospheric freeze-dried using constant drying chamber inlet temperature below the 

protein’s initial freezing point at -5ºC. The drying time was 2, 3, 6 and 8 hours, 

respectively. Runs 2, 4 and 6 were two-stage dried, employing atmospheric freeze 

drying with reside times of 2, 3, and 6 hour promptly followed by evaporative drying at 

25ºC for 2 hours [16]. It was found that: 

Moisture removal rate increased by shifting from single-stage lyophilizaton to 

evaporation. This means that two-stage drying with properly scheduled residence time 

leads to optimum drying rates, improved dryer capacity and enhanced product quality. 

The higher brightness, neutral reddish and higher levels of yellow colors were 

obtained for two-stage dried samples. The results indicated that color components can 

be adjusted in single or two-stage drying with a specific scheduled of temperatures and 

residence times. 

The measurements also showed that atmospheric freeze drying produces dried 

samples with low bulk density characterized by a highly porous structure. Sample bulk 

density dropped as residence time increased in single-stage and density reduction was 

more intense when atmospheric freeze drying was immediately followed by evaporative 

drying. 

Finally, the protein powder reconstitution was generally associated with the level 

of shrinkage during drying. The results indicate that the single-stage dried samples had 

no shrinkage when the residence time at -5ºC was less than 6 hours. Shrinkage in two-

stage drying was higher than in single-stage atmospheric freeze drying. 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

     Chapter 3 

 

                                                             Fundamentals of drying 
 

Air-drying is an ancient process used to preserve foods in which the material to 

be dried is exposed to a continuously hot stream of air causing moisture evaporation. 

This phenomenon involves simultaneous mass and energy transport. 

 

 

3.1. Mechanisms of heat and mass transfer 

Two transport processes occur simultaneously during drying [6]: 

1. Heat transfer from the external surroundings to the surface of the 

food material being dried combined with heat conduction within the 

material. 

2. Mass transfer from inside to the surface of the material followed by 

external transport of moisture to the surroundings. 

Therefore, depending on food product and drying conditions, vaporization may 

occur either at the surface or inside the product. 
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The heat transport during drying is influenced by a variety of parameters. A 

procedure to improve the contact between the particles and the air is fluidization. Some 

advantages of fluid bed drying are high rates of heat transfer and moisture removal that 

leads to high thermal efficiency. Nevertheless, care should be taken to avoid damage to 

the drying product, which may occur in case of intensive fluidization and strong particle 

to particle collisions.  

In the drying process, energy is transferred to the drying material by: 

 Convection, when the hot air flowing through the material is used 

both to supply the heat for evaporation and to carry away the 

evaporated moisture from the product. Heat is transferred mainly by 

convection in over 85% of industrial dryers such as tray, fluid-bed 

and spray drying. 

 Conduction, when the material is in contact with a hot surface as in 

the case in tray, drum or rotary and shelf-vacuum freeze-dryers. 

 

Mass transfer from the product to the flowing air may take place by convection, 

due to the mixture psychometric differences at inlet and outlet. This includes for 

instance partial vapor pressure, temperature and relative humidity differences at the 

boundary layer in the air-product interface. Direct evaporation occurs when the vapor 

pressure on the surface is equal to the atmospheric pressure as in the case of vacuum-

freeze drying. 

Under convective drying, the boundary conditions for the heat flux qc, and the 

evaporation rate nw, can be expressed as: 

  Heat transfer:                  (1) 

  Mass transfer:                    (2) 

where hg and kg are the heat and mass transfer coefficients, T is the temperature, 

and pv the water-vapor partial pressure. Vapor pressure at the product surface can be 

evaluated from the sorption isotherm by 

pv= f(x, T) 
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Several technologies have been developed aiming at best products at the lowest 

cost, such as hot air drying and vacuum-freeze drying.    

Thermal drying is often conducted at high temperatures. However, many 

agricultural and food materials are sensitive to high temperatures. Dehydrated products 

usually may present distinct losses in quality during processing. It is reported that the 

pigment and vitamin degradation rate increases as the drying temperature increases. 

Heated air drying is the lowest cost process. However, conventionally air dried products 

may not rehydrate satisfactorily because of structural changes in the product due to 

excessive thermal damage. During the last few years, emphasis has been placed on 

improving the rehydration characteristics and quality attributes of hot air dehydrated 

commodities. This may be done by changing process variables using pre-drying 

treatments and low temperature processes. Thus drying at low temperature to enhance 

the quality of food products has been a procedure with growing interest in recent years 

[25]. 

 

 

3.2. Vacuum freeze drying 

Vacuum freeze-drying (VFD) accomplishes water removal by sublimation 

directly from the solid phase to the gas phase at very low temperatures and pressures. 

So the moisture is removed by direct sublimation. It is well known that VFD is an 

appropriate method for water removal from heat-sensitive materials and to obtain dried 

products of high quality as compared to higher temperature methods of food drying. It 

has the ability to retain original structure and color, negligible loss of nutrients and 

excellent rehydration capability due to the porous structure of the final product.  

Conventional vacuum freeze-drying requires a longer drying time, leading to 

high energy consumption. This combined with a hermetic of the drying system leads to 

high capital cost. This is partly due to the poor heat transfer rate as the sublimation front 

moves from the exterior to the interior of the frozen material being dried. Vacuum 

freeze-drying cost can be 200-500% higher than that of medium temperature air drying 

in order to achieve the same final moisture content [2]. 
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High value products such as pharmaceutical, biological and food-products, 

which are extremely heat sensitive, are conventionally vacuum freeze dried. Even 

though, VFD process is a well-known and established technology that has a long period 

for research and development, it is an expensive and thermally inefficient drying 

process. It has the advantage of very highly valued dried products, usually with 

preserved nutritional characteristic. Vacuum freeze-dried foods have a high porosity and 

low values of apparent density and variable color but enhanced aroma and taste. The 

other disadvantage is the high fixed or operational costs and, specially high energy 

costs. Thus it is normally used for sensitive materials that can be damaged or 

decomposed at high temperatures.  

As a consequence, atmospheric freeze drying was developed in order to reduce 

the energy consumption and related costs while maintaining a high product quality and 

properties. 

 

 

3.3. Atmospheric freeze drying 

The newest technology applying atmospheric freeze drying (AFD) combines 

heat pump, fluidized bed and convective air flow for moisture removal. Drying is done 

in single or multiple stages and at temperatures below or above the material freezing 

point. The temperature can be set in the range of -3 to -10ºC, hence much higher than 

values used in vacuum freeze drying. It is well known that lower air temperature at a 

fixed relative humidity or vapor pressure has low ability to remove moisture. In 

addition, lower air temperature also requires more energy for cooling and therefore 

reduces the SMER. It has been stated that drying at temperatures around -10ºC is a 

viable solution considering quality and costs, although a faster drying process is desired. 

The advantages of the AFD process in comparison with VFD are [4]. 

 Low initial investment cost since expensive vacuum auxiliary equipment 

are not required. The drying chamber, loop, blower, connections valves 

and ancillary equipment near atmospheric pressure while VFD requires 

structural strength to withstand vacuum. 
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 The process can be designed for continuous operation with higher 

productivity and lower operating cost. 

 Improved heat and mass transfer coefficients between circulating drying 

medium and the frozen or unfrozen material. 

 High quality and homogeneous quality properties of the dried product 

with an increased retention of essential (volatile, aromatic and 

nutritional) compounds in foods. 

 It is possible to minimize the product degradation caused by oxidation by 

applying inert gas drying environment such as nitrogen or helium. 

 The application of a heat pump system and different intensification 

processes added to AFD can decrease both energy consumption and 

drying time. 

However, there are several mutual limitations: 

 Products with high internal resistance to mass transfer have much longer 

drying times for AFD as well as VFD. 

 It is difficult to control the threshold residence time at frozen conditions. 

 

Recently, there has been a significant growth in the potential market for heat 

pump dryers for drying fruits, vegetables and biological materials. 

 

 

3.4. Heat pump drying 

The main heat transfer mechanism in a heat pump dryer is convection, which 

means that heat is transferred by the convection from the air to the drying material. The 

HPD is suitable for drying not only solid products but also liquid, solutions and semi-

solid products. 

Heat pumps used in combination with dryers allow to set the temperatures 

between those of vacuum freeze-drying and warm-air drying. Also, freeze-drying with 

heat pump provides increased capacity, lower energy consumption and a high quality 



16  Fundamentals of drying 

 
 

product that is equivalent to that of vacuum freeze-drying. The main advantages of heat 

pump dryers are the ability to recover energy from the exhaust and to simultaneously 

control the drying air temperature and humidity. This creates the possibility of a wide 

range of drying conditions and product quality [26]. Energy consumption is reduced due 

to the high coefficient of performance of the heat pump dryer if properly designed for 

high thermal efficiency. 

 

3.4.1. Principle of heat pump dryer 

A HP drying process consists mainly of two systems: a HP system and a drying 

loop with a chamber. The main components of the HP unit are an evaporator, a 

condenser, a compressor and an expansion valve. 

 
Fig. 3.1: Schematic representation of heat pump drying system [9] 

 

Figure 3.1 represents a schematic layout of the drying loop and chamber 

integrated with various components of the HP system. The inlet drying air passes 

through the drying chamber at 1 and picks up moisture from the product. The   

moisture-laden air at point 2 is then directed to the evaporator. The moisten air is cooled 

to dew point and dehumidified from point 2 to 3. Sensible heat removal occurs by air 

cooling to just above its dew point. Further cooling results in latent heat transfer and 
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water vapor condensation and removal from the drying loop. Then, latent heat of 

vaporization is absorbed by the boiling of the refrigerant inside the evaporator. This heat 

is recycled using the condenser. Finally, the drying air is re-heated to the desired 

temperature as it moves from point 4 to 1. 

 

The coefficient of performance (COP) and the SMER are used as indicators for 

the dryer performance. 

The energy efficiency of the heat pump is related to the coefficient of 

performance defined as the ratio of the heat absorbed in the evaporator or released by 

the condenser divided by the energy input to the compressor and blower. Then, the COP 

is given by: 

           
               

          
 

   

  
    

 

                                     

  

The maximum theoretical heat pump efficiency is given by the Carnot efficiency 

as: 

                       
     

           
                                                       

 

The COPcarnot is ideal and cannot be physically accomplished but is used to 

compare a heat pump system with an ideal value. In practice, the actual efficiency of a 

heat pump is about 40 to 50% of the theoretical Carnot efficiency.  

 

The performance of the dryer is defined by the specific moisture extraction rate 

(SMER) as follows: 

                  
                          

                         
                                

The SMER (kg/kWh) depends on the heat pump dryer thermal efficiency, 

temperature and relative humidity of the air in the inlet and outlet of the evaporator and 
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condenser. Then, the SMER depends also these components operating pressure and 

temperature. Therefore, the SMER is: 

                                       
  

  
                                                       

 

dh:  specific enthalpy for heating and cooling of air [kJ/kg] 

dx:  difference in absolute humidity of the air into and out the HPD              

[kg water/kg dry air] 

 

3.4.2. Advantages and limitations 

The advantages of heat pump drying are [9]: 

 Energy efficiency is improved compared to a conventional dryer. The 

moisture-laden air leaving the drying chamber has a large amount of 

latent energy. This energy is recovered when the air passes through the 

evaporator and re-cycled back to the heat pump drying cycle. Low 

energy consumed is achieved per unit of water removed. 

 Accurate and independent control of temperature, humidity and airflow 

rates are possible. This benefits heat-sensitive materials and produce 

better product quality. 

 The dryer is versatile to dry different types of materials requiring 

operation in a wide range of drying conditions (typically from -20 to 

100ºC) and air relatives humidities can be generated. 

 HPD can be designed accommodating the present trend of using 

environmentally friendly fluids or natural refrigerants like ammonia, 

carbon-dioxide and water. 
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The limitation of this process is: 

 Regular maintenance of the compressors, refrigerant filters, heat 

exchangers etc. are necessary to keep the dryer in optimum operating 

condition. 

 

3.4.3. Drying kinetics of foods 

Experimental data are usually represented as drying curves, which involves the 

plot of moisture content, Xwb, versus drying time, t. These data are the basis to obtain 

the drying rates (DR) and to plot the DR curves. 

The moisture content of a product is expressed in wet or dry basis. The moisture 

content in wet basis (Xwb) is defined as the mass of water in the product (mw) divided by 

the total mass of the product (mt). The moisture content in dry basis (Xdb) is the ratio of 

the mass of water to the dry mass of the product (md). Therefore, the equations are: 

 

                     
  

  
 

     

  
                                                   

 

                       
  

  
 

     

  
                                                    

 

The plot of moisture content versus time produces the drying curve as shown in 

Figure 3.2. The curve can be divided into three main periods: 

 A-B: initial drying period. 

 B-C: constant drying rate period. 

 C-D-E: falling drying rate period. 
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Fig. 3.2: General drying curve with different drying periods 

 

Usually, in the initial drying period moisture evaporation may occur at the 

surface and the temperature evolves from the initial value to the wet bulb temperature 

(Twb). In the constant-rate period, the surface is nearly saturated with free moisture and 

the material remains at constant wet-bulb temperature. The process of evaporation is 

controlled by the diffusion of water vapor through the boundary layer located at the   

air-solid interface. All heat transferred from the air is used for water evaporation from 

the surface. Most food products do not exhibit a constant rate period. This can be 

explained in terms of shrinkage, the time needed to reach the Twb and the fact that the 

water is not always unbounded or the surface is not fully wetted. As a result of these 

effects, a pseudo constant-rate period can be observed in some materials and the drying 

rate depends on material and is lower than that of pure water.  

The falling-rate period starts at the critical moisture content (Xcr). During this 

period the moisture content at the surface decreases and the surface temperature 

increases above the wet-bulb temperature. The consequence is the development of a 

non-flat internal moisture (and temperature) profile. The evaporation zone can move 

progressively from the surface towards the interior of the material. Depending on drying 

conditions and material properties, either or both internal and external resistances will 

play important roles in mass and heat transport. 
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As the moisture content decreases, the internal resistance for mass transfer 

increases and may become the prevailing step while the product temperature approaches 

the dry bulb temperature. In this case, a second falling rate period may be observed. The 

controlling mechanism is the rate at which moisture moves within the product, mainly 

by water vapor diffusion. The moisture content asymptotically approaches the 

equilibrium moisture content Xe and the relative humidity and temperature of the drying 

air [6]. 

 

3.4.4. Quality aspects and properties 

The main quality indicators and properties investigated in the experiments 

carried out in this work are color, bulk and particle density, and rehydration capacity. 

The color parameters for the color change of the materials can be quantified by 

Hunter L (whiteness/darkness), a (redness/greenness), and b (yellowness/blueness) 

values. 

Bulk density (kg/m
3
) is a property of powders, granules, solids and many other 

compounds and substances. In the case of drying wet and porous solids, it is defined as 

the total mass of the material divided by the occupied total volume: 

                                   
 

  
                                                                  

The total volume includes the particles volume and the air held between them. 

 

Volume change of each sample or bulk shrinkage percent is expressed as the 

percentage ratio of the initial to the final volume as follows: 

                                  
  

   
                                                 

where Vb is the bulk volume of the dried sample and Vb0 is the bulk or initial 

volume of the fresh or frozen sample. 
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Particle density (kg/m
3
) is independent of air space and of the degree of 

compaction of the batch containing the particle. The volume includes particle volume 

and internal pore volume. A number of “n” particle samples are considered and the 

mean or average value is determined by: 

 

                                           

    
 
   

  

    
 
   

  
                                                   

 

The rehydration rate (kg/kg), is defined as percentage moisture gain after 

immersing the sample in water. Then, it is calculated from the sample mass difference 

before and after rehydration as follows: 

                                               
     

  
                                                       

where wt is the mass of the sample at a certain rehydration time, and wd is the 

mass of the dried sample.  
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                         Materials, Measuring devices and Methods 
 

 

4.1. Materials  

The material used in the experiments was a mixture of protein, carbohydrate and 

fat designated as PCFs. This mixture was blended and grinded in order to obtain a 

homogeneous mixture for each test. To evaluate drying performances three different 

recipes were used: 

 Recipe 1: standard sample which is basically a original material (PFCs) 

acquired in the market. A batch of approximately five kilograms of this 

material was prepared.  

 Recipe 2: the standard material containing extra amount of carbohydrate. A 

batch of three and a half kilograms of this sample was prepared. 

 Recipe 3: the standard material which was pretreated by boiling process. A 

batch of two kilograms of this recipe was prepared. 
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Figure 4.1 shows the procedure for grinding and blending of the material for the 

mixtures. 

 

Fig. 4.1: Preparation of the samples for drying 

 

As for the standard recipe containing added carbohydrate, 3418.3 grams of the 

standard material was mixed with 240 grams of corn starch which contains 2% of total 

carbohydrate (supplied by Asia Foods and imported by As, Oslo). The amount of corn 

starch in the sample was 7% (240 grams of corn starch divided by 3418.3 grams of the 

standard material). As there is only 2% of carbohydrate in the corn starch, the total 

amount of carbohydrates in the mixture is 4.8 grams that represents 0.14% of total 

carbohydrates in the sample. 

The standard protein material and the mixture with extra carbohydrate were 

distributed over two methacrylate sheets and two layers of 8mm thickness for both 

materials were obtained. After that both materials were frozen and kept in a freezer at a 

temperature of -25ºC until the sample layers were completely frozen. The frozen layers 

were cut into cubes of 10x10x8 mm and 20x20x8 mm. This procedure was done to test 

different particle sizes and to analyze possible effects on drying rates and quality 

parameters.  
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Figures 4.2 and 4.3 show how the material was distributed and cut to the 

samples that were used in the experiments. 

 

 

 

 

 

 

 

 

 

Fig. 4.2: Material layer distributed over a     

methacrylate sheet before freezing 

Fig. 4.3: Detail on cutting of the frozen layer 

into 10mm long slab shaped particles 

 

Finally, a batch of 2944 grams was separated to prepare the boiling sample 

during a period of about 15 minutes. The final mass after boiling was 1943 grams. 

Figure 4.4 shows the result of the pretreatment applied to produce the boiled sample 

from the standard material. 

 

Fig 4.4: Boiled sample 
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To obtain data on particle size and distribution a sample of 10 grams of the 

boiled material was taken and separated into groups based upon individual diameter. 

The amount of particles on each group was quantified.  Figure 4.5 shows the plot of the 

results on size distribution of the protein samples that were boiled and attained almost 

spherical shape with diameters from 1 to 12 millimeters. 

 

 

Fig 4.5: Size distribution of the boiled samples 

 

 

 

 

 

 

 

 

0 

10 

20 

30 

40 

50 

60 

12.00  
mm 

10.00 
mm 

9.09 
mm 

8.50 
mm 

6.06 
mm 

5.58 
mm 

5.03 
mm 

4.62 
mm 

3.12 
mm 

1.04 
mm 

Size distribution 



4.2  Heat Pump Dryer  27 

 
 

4.2. Heat Pump Dryer  

Figure 4.6 shows a simplified layout of the laboratory scale heat pump dryer 

developed at NTNU and applied for all experiments. 

Fig. 4.6: Sketch of the Heat Pump Dryer 

 

1. Blower 6. Compressor 

2. Drying chamber 7. Three-way valve 

3. Air filter 8. External condenser 

4. Evaporator (Air cooler) 9. Receiver 

5. Condenser (Air heater) 10. Expansion valve 

Green line - air drying cycle  

Red line - heat pump cycle 

 

The operation starts as air supplied by the blower (1) flows through the bed of 

material placed in the drying chamber (2). The moisture-laden air is cooled and 

dehumidified by the air cooler (4). Then, the air is reheated by the air heater or 

condenser (5) and blower that also recycle it to the drying chamber. The refrigerant 
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boils inside the air cooler (4), becomes saturated or slightly superheated before being 

compressed (6). After removing the excess energy by the heat exchanger (8), the 

refrigerant is further cooled at the air heater (5). After that, the saturated or subcooled 

liquid refrigerant is throttled by the expansion valve (10). Finally, the refrigerant enters 

the evaporator repeating the heat pump cycle. 

 

The operating temperature can be adjusted with the condensing and evaporating 

capacities. The regulation of the compressor capacity through frequency control of the 

motor s leads to the required air humidity. This setup adjusting the air drying 

temperatures from -20 to -60ºC and relative humidities from 20 to 90%. These settings 

allow drying of heat sensitive materials either under convective or atmospheric freeze 

drying conditions. The possibility of sequencing these two operations is especially 

advantageous when drying food and bio-products because drying under frozen 

conditions results in minimal shrinkage and better quality, but at lower drying rates. 

Furthermore, by splitting of the drying process into FD by starting at temperatures 

around -5ºC and finishing at 20-30ºC makes the process much faster. This also permits 

to control the quality parameters such as porosity, rehydration rates, product strength, 

texture, color and taste [24].      

 The flow rate of the air is adjusted for superficial velocity varying from 0.3 to 

7.5 m/s by controlling the blower rotation. 

 

As indicated in Figure 4.6 the fraction of humid air (A) leaving the dryer is 

cooled in an evaporator to a temperature TB (B) close to evaporator temperature Tev, 

which is below the dew point. Consequently, part of the moisture from this air stream is 

condensed and the latent heat is used to boil the refrigerant in the evaporator. The 

cooled and moisture-reduced air is mixed with the remaining fraction of humid air from 

the dryer (C). With the addition of the external work provided by the compressor, the 

working fluid attains higher pressure and temperature. It is then condensed in the 

condenser, thus transferring heat to the air mixture (C) and raising its temperature to TD 

(D), which is below the condensation temperature TC. This means that energy is 

recovered and used to re-heat the air with the energy for the working fluid flowing 

through the condenser. 
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Finally, the heated and dehumidified air is directed to the drying chamber. The 

thermodynamic cycle for the air stream in a Mollier chart is shown in Figure 4.7. 

 

Fig 4.7: Mollier diagram for the air cycle of the drying process [24] 

 

 

4.3. Drying cabinet and chamber     

The drying cabinet and chamber made of plywood and isolated with styrofoam 

were used for the experiments as shown in Figure 4.8. The cabinet cross section was   

80 cm by 80 cm and the height was 1.5m. The drying chamber was made of plexiglas 

and it was fixed in the drying cabinet by three pin lock-rotation mechanisms. The drying 

chamber has an internal diameter of 190mm and wall thickness of 5mm. Flexible hoses 

were installed in proper locations to connect the drying chamber to the heat pump air 

loop. 
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Fig. 4.8: The cabinet and drying chamber with the sample 

 

 

4.4. Measuring devices 

The relative humidity and temperature were measured and recorded in the three 

positions indicated by A, B and C in Figure 4.6. The air velocity and all data are 

continuously recorded using a data logger and a computer in order to check the 

operation conditions in the important points of the processes. 

In order to determine how the change in the mass of the experimental samples 

with time during drying, the whole drying chamber containing the samples was 

weighted every 20 or 30 minutes time intervals. The scale used was the model “Mettler 

Toledo XP 600 2M Deltarange” with accuracy of 0.1 grams. 

The mass measurements allow calculating the moisture content at each interval, 

based on the initial and final moisture of the samples that were measured using the 

moisture analyzer “Mettler Toledo HB43-S”. Both the calculated and measured 

moisture content values were compared in order to assure reliability of the experimental 

procedure and to validate that satisfactory results were achieved. 

Another important data is bulk density which was measured for the initially 

frozen and the final dried samples using the standard mass and volume method. This 
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was done by filling a graduated cylinder with an amount between one or two liters of 

the material and measuring the net mass of the sample using the scale with an accuracy 

of 0.01 grams. Bulk density was calculated as the ratio between the mass of the sample 

and its volume accurately given by the graduated cylinder and scale. In some cases, 

initial densities were calculated by measuring the bed height of the samples in the 

chamber, the chamber diameter and calculating the volume by 

                                                                    (13)                                                                                                                                                                                                                                                                                                      

The particle densities were measured by taking ten samples of the material and 

measuring length, height and width for each particle using a caliber and use this data to 

calculate its volume. A mean value of the ten particle volumes were obtained and then it 

was also calculated a mean of the mass measured for the ten particles, calculating 

particle density as the mass dividing by the volume. 

A caliber was also used to determine sizes of the spherical protein samples that 

were boiled. 

The color is an essential value for the evaluation of the frozen and dried product 

quality. The samples were grinded in a mortar to obtain a smooth and uniform sample. 

Then the color components of the samples were measured in terms of brightness (L), 

red-green (a) and yellow-blue (b) using a color meter type “X-Rite 948 

spectrodensitometer”. 

 

 

4.5 Drying oven method  

The moisture content of the different samples was measured using a Heraeus 

shown in Figure 4.9. The oven was set and controlled at a temperature of 130ºC for 16 

hours. The final moisture content values allow comparison with the final values 

calculated and measured with the moisture analyzer and quite similar results were 

obtained.  
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Fig. 4.9: Oven used to determine the moisture content of the samples 

 

To carry out this method, firstly it was prepared a representative portion of the 

material to be tested (between 8 and 9 grams) which was measured using a scale model 

“Mettler Toledo PM1200” with accuracy of 0.001 grams. 

Then the mass of the test sample is determined and recorded as “wet mass”. The 

sample was loaded into a tared aluminum container. In this way, the mass of the 

container and of sample were continuously measured and differences calculated as 

required to obtain the changes in moisture content.  

Finally the samples were dried to constant mass at 130ºC. It is considered that 

constant mass is achieved when less than 0.1% of the test sample wet mass is lost 

during an additional exposure to the drying process. The nearly constant mass was 

observed in an overnight period of 16 hours. By removing the samples from the drying 

oven and cooling them to room temperature, it was possible to measure the mass of the 

test sample and record it as “dry mass”. 

 

The moisture content of the test samples was determined according to the 

definition of moisture content in wet basis: 

                      
  

  
     

       

     
                                               



4.6  Rehydration measurements  33 

 
 

where the mass of water in the sample (mw) is calculated by subtracting the dry 

mass to the wet mass, and the total mass (mt) is the mass of water plus the dried mass. 

 

 

4.6 Rehydration measurements  

Reconstitution of dehydrated products were performed by immersing an amount 

(usually two cubes for 10mm particles and one cube for 20 mm ones) of dried samples 

into hot water at constant temperature of 38ºC controlled by a electrical heater and a 

thermometer. The particles remained immersed for 25 or 30 minutes depending on time 

needed for the samples stop changing the mass within an accuracy of 0.1 g. This was 

achieved at about 5 minutes time interval, after which the samples were drained over a 

paper-filter for about 1 minute. Then, the sample was quickly drained with the paper 

towels in order to eliminate the surface water and then the mass determined using the 

scale. A general view of the devices used for these measurements is shown in Figure 

4.10. 

 

The rehydration capacity (kg/kg) is described as percentage water gain and it 

was calculated from the sample mass difference before and after rehydration as follows: 

 

                                              
     

  
                                                                   

 

where wt is the weight of the rehydrated sample measured at each interval 

and wd is the mass of the dried sample. The samples were placed over a paper-filter 

whose mass was also measured. 
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Fig. 4.10: A view of the devices used for rehydration measurements    
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                                             Experiments and test conditions 
 

 

A number of studies have been made to investigate the influence of process 

variables on the drying kinetics. The variables taken into consideration were the 

composition and properties of the samples such as characteristic size, initial state and air 

temperature, flow, etc. The drying experiments were carried out at three levels of the 

characteristic sample size (cubes of 10 and 20 mm, and size distribution of 1 to 12 mm 

for the boiled samples), three different recipes (standard material, standard with added 

carbohydrate and boiled samples), two initial states (frozen or unfrozen) and at five 

levels of air temperatures (-2, 20, 25, 30 and 35ºC).  

Tests were done either in single or two-stage drying. The two-stage drying mode 

combines atmospheric lyophilization immediately followed by evaporation at 

temperature higher than the material freezing point. 

The experiments were performed in fixed bed by controlling the drying air just 

below the incipient fluidization. The material is placed in the chamber having a 

perforated bottom plate. Air flows through the product and the air velocity is kept in a 

range that the particles are not moving by the air. 
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Eight experiments have been carried out in batches divided in three categories 

(A, B or C) as a function of the material tested (three different recipes) and different 

drying conditions (temperature, material size and state). The details and experimental 

conditions of the drying runs in the heat pump dryer are given in Table 5.1. 

 

Run  Recipe Temperature (°C) Time (min) Initial state Particle size (mm) 

A1 Boiled 20 390 Frozen 1 to 12 

A2 Boiled 20 390 Unfrozen 2 to 12 

B1 STD+CH 20 390 Frozen 10 

B2 STD+CH 20 390 Frozen 20 

C1 STD -2 360 Frozen 20 

C2 STD -2/35 120/140 Frozen 20 

C3 STD -2/30 240/140 Frozen 20 

C4 STD -2/25 360/140 Frozen 20 

 

Table 5.1: Experimental design and conditions for all test runs 

 

 

In the first batch it was tested a boiled protein mixture considering two different 

states: frozen (A1 test) and unfrozen (A2 test) material. An amount of 875.9 grams of 

the boiled material was used and loaded into the drying chamber to be dried in       

single-stage drying using constant drying chamber inlet temperature of 20ºC with a 

residence time of 390 minutes and at a blower air flow set point of 3.6. Because of the 

small size of the boiled particles, losses through the perforated plate in the chamber at 

the end of both drying tests were 68.1 and 48.2 grams, respectively. The effect of the 

initial sample state on the drying kinetics and quality parameters wil be analyzed in the 

next chapter. 

In the second batch of experiments, a protein mixture with a specific amount of 

added carbohydrate was single-stage dried with a residence time of 390 minutes. The 

tests were carried out considering 854.5 grams approximately of this material and they 

were dried at 20ºC at a blower air flow initial set point of 5.15. This value was lowered 

during the drying process based on the minimum fluidization velocity (Umf) that 

dropped slightly during the tests. The air velocity was lowered to 4.8 m/s just below the 
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Umf to achieve drying at static bed. Two experiments were done under these conditions 

for initial frozen material considering 10 mm (B1) and 20 mm (B2) cube sides in order 

to compare drying at different particle sizes. Each test had initial bed height of 45 mm 

and 58 mm which corresponds to an initial volume of 1.275 liters and 1.644 liters, 

respectively. 

 For both first and second batch of experiments, determination of drying curves 

was done by measuring the mass by a digital scale initially and during drying at time 

intervals of 30 minutes. The net mass of the material was obtained by difference from 

the mass of the drying chamber containing the material and the mass of the empty 

drying chamber. The drying chamber containing the material was taken out the cabinet 

for each of these periodic mass measurements as quick as possible for rapid recovery of 

the set conditions inside the drying cabinet. 

 

The third series of batch drying experiments was a combination of a first drying 

stage and a second drying stage. For the first stage, a batch of 1990.4 grams that 

corresponds to a volume of 4.5 liters of the standard protein mixture was dried at a 

temperature of -2ºC (test C1). Cube particles with sides of 20 mm were tested for 6 

hours at a blower initial set point of 7.5. Every drying time of 2 hours, a certain amount 

of the drying product was taken away from the drying chamber and keep in the freezer 

to be dried in a second stage. As a result of this first stage, three different samples of the 

initial material were obtained after a drying time of 2 hours (test C2), 4 hours (test C3) 

and 6 hours (test C4). These samples were dried in a second stage for 2 hours and 20 

minutes at a drying temperature of 35ºC, 30ºC and 25ºC, respectively. The net mass of 

the product was measured during the whole drying process at time intervals of 20 

minutes. The mass measurements required removal of the drying chamber from the 

cabinet but the air temperature and velocity were re-established to set points quickly. 

Also, for every drying test the air relative humidity, temperature and air velocity 

were continuously recorded using a data logger and a computer.    

Before and after drying tests, a sample (one cube) was taken for measurements 

of initial and final color, moisture content and particle density measured using either 

frozen and dried products. The determination of bulk density was carried out at the 
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ambient temperature of the laboratory that was constant at about 22ºC. Rehydration 

measurements were done at the end of the experiments following the procedure 

described in the previous chapter.  



 

 
 

 

 

 

 

     Chapter 6 

 

                                             Results, Analysis and Discussion 
 

To identify the recipes and process conditions lead to better drying rates and 

quality dried products, it is necessary to compare drying times, quality parameters and 

properties of the dried protein mixtures. 

 

6.1. Drying kinetics 

The drying kinetics obtained and curves were plotted as moisture content versus 

drying time. The values of moisture content were calculated from the change in the 

mass of the product weighed at 30 minutes time intervals for the first drying stage and 

20 minutes for the second stage. The total mass of the product was calculated by 

subtracting the mass measured from the mass of the empty drying chamber. The initial 

moisture content in wet basis (Xwb)0 was measured using the moisture analyzer. From 

this value on, the fractions of dry matter and water were determined and used to 

calculate the moisture content at each interval. The procedure is: 
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This procedure allowed to obtain the drying kinetic curves that were plotted 

based on the moisture contents calculated for the given drying times or time intervals. 

                                                 
  

  
                                                              

 

The final moisture content of the product was obtained for the final time or the 

last interval. The calculated value was compared with the final moisture content 

measured with the moisture analyzer at the end of each test in order to verify the 

validity of our calculations.  

The drying kinetics resulting from the different recipe mixtures were done 

considering different temperatures and sample sizes and will be now discussed. 

Moisture content and drying rates are all important indicators for the effectiveness and 

performance of the drying process. The drying rate is related with the moisture content. 

 

As each test run has different initial moisture content and moisture ratio (XR) 

that were represented and compared for the different tests. 

Moisture ratios are obtained by calculation as the difference between the 

moisture content at each interval and the final value divided by the difference between 

the initial and final moisture content: 

                                             
    

     
                                                                 

 

As for the final moisture content approaches an equilibrium value for relatively 

large drying time. The minimum final moisture value for every test has been taken into 

account and the analysis was assumed that the final or equilibrium moisture content, at 

the end of each drying period, approached 4%wb. 
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Table 6.1 shows the temperature and relative humidity average values for each 

run at the inlet and outlet of the drying chamber. 

 

run 
inlet (A) outlet (B) 

T [°C] φin T [°C] φout 

A1 20.6 11.2 19.8 14.8 

A2 20.7 10.8 19.6 13.2 

B1 20.3 11.4 20.1 12.4 

B2 19.9 10.9 20.0 12.3 

C1 -1.9 35.4 -0.5 35.6 

C2 34.5 8.0 33.3 8.8 

C3 30.0 7.1 29.7 7.6 

C4 25.0 8.7 24.7 9.2 

 
Table 6.1: Specification of the experimental conditions 

 

Table 6.2 shows the initial and final moisture content values for each test to have 

an overall view of the moisture content changes for different recipes and drying 

conditions. 

 

Experiment Temperature (°C) 
Initial MC, 
Xdb (kg/kg) 

Final MC, 
Xdb (kg/kg) 

A1 20 71.41 8.64 

A2 20 68.33 6.69 

B1 20 44.71 22.17 

B2 20 44.71 28.65 

C1 -2 62.81 51.51 

C2 -2/35 62.81/57.61 42.38 

C3 -2/30 62.81/54.19 38.72 

C4 -2/25 62.81/51.51 37.64 

 
Table 6.2: Summary of moisture content and drying runs 
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Final moisture content values were also calculated for each test by applying 

drying oven method to compare these values with the ones obtained in the heat pump 

dryer. An amount between 2 or 3 cubes (9 grams) of each sample were prepared and 

dried in an oven at a temperature of 130ºC. Samples of the standard recipe dried at -2ºC 

were not available and could not be measured because all the material was used for the 

second drying stage. Table 6.3 shows the moisture content values obtained from the 

oven method as well as the values obtained by using the heat pump dryer. 

 

Experiment 
MC, Xdb (kg/kg)             

Heat Pump 
MC, Xdb (kg/kg)            
Oven Method 

A1 8.64 8.998 

A2 6.69 6.919 

B1 22.17 23.611 

B2 28.65 30.779 

C2 42.38 35.445 

C3 38.72 37.216 

C4 37.64 37.633 

 
Table 6.3: Moisture content values obtained for two different drying methods 

 

Final moisture content values obtained for samples dried in the oven are quite 

similar to that measured during the experiments in the heat pump dryer. Slightly higher 

values are normally achieved in the oven except for the test where a second drying stage 

was applied.  

Therefore, moisture removal rates are equivalent to those ones obtained in the 

heat pump but quality parameters analysis should be carried out in order to validate this 

drying method to be accepted in the industry. 
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Figure 6.1 shows the plots of moisture ratio for the five tests involving single 

stage drying. Each test has been run considering different mixture recipes, drying 

temperatures and sample sizes. This experimental design allows studying the influence 

of these variables on the drying rates. 

 

 
 

Fig 6.1: Moisture ratio for different mixture recipes and the drying conditions 

 

The drying rate of food materials generally decreases as drying progresses. 

Figure 6.1 shows that mass transfer improves as the air temperature increases. For 

similar materials, the drying rate is lowest for the standard sample dried at -2ºC and 

highest for the sample dried at 20ºC. In other words, higher moisture removal rates are 

achieved at higher temperatures. 

The results also show a rapid increase in drying rate with reduced size or 

dimension. The smallest particles are the boiled ones with a size distribution from 1 to 

12 mm and they have the highest drying rates while the lowest moisture removal is for 

standard 20 mm particles. Thus, the drying time increases and the rate drops as sample 

size or thickness increases. 
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The final moisture ratio difference between the standard 20 mm sample and the 

standard 20 mm sample with added carbohydrate is about 0.2 while between standard 

sample and boiled sample is about 0.74. Standard 20 mm samples when operated with 

drying temperature at -2ºC took 360 minutes to reduce the moisture ratio from 1 to 0.81 

while standard 20 mm samples with added carbohydrate dried at 20ºC took 60 minutes 

to achieve the same value. Boiled frozen samples dried at 20ºC took less than 30 

minutes. 

Thus, the highest moisture removal or drying rate is for the boiled protein 

mixture dried at 20ºC followed by the standard recipe with added carbohydrate dried at 

the same temperature.  

The results of this study demonstrate that pretreatments such as boiling may 

significantly increase drying rate, and therefore decrease drying time of material for a 

given final moisture content. 
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The moisture contents versus the drying times for the single stage drying tests as 

described before are plotted in Figure 6.2. The aim is to compare the differences the 

initial moisture contents and effects on the drying curves for the different mixture 

recipes tested. 

 

 
 

Fig. 6.2: Drying kinetics for different recipes and drying conditions 

 

The initial moisture content for the standard recipe is 62.81%. Application of 15 

minutes hydro-thermal treatment (boiling) leads to a higher moisture content in the 

sample (70% approximately). The addition of a certain amount of corn starch (moisture 

content around 15%) to the standard sample reduces the initial moisture content down to 

a value of 44.71%. 
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Analysis was made on how moisture content was affected by material initial 

state that was either frozen or unfrozen. The comparison for the boiled samples is 

shown in Figure 6.3. 

 

 
 

Fig. 6.3: Drying kinetics at 20ºC for the boiled samples 

 

For this case, the moisture content at each interval was calculated based on the 

final moisture content measured in the analyzer. 

It is showed that the drying rates for the unfrozen material are slightly higher 

than for the frozen material. The reason may be that the energy provided in the drying 

air was used to heat up the grain to the drying temperature. In other words, the unfrozen 

material dried quicker because for the same drying temperature and particle size the 

initial drying period to preheat this sample is shorter because the surface temperature is 

closer to the drying temperature. 

 

 

 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

70 

75 

0 30 60 90 120 150 180 210 240 270 300 330 360 390 

M
o

is
tu

re
 c

o
n

te
n

t,
 X

w
b

(%
) 

Drying time [min] 

Boiled 20°C, Frozen Boiled 20°C, Unfrozen 



6.1  Drying kinetics  47 

 
 

In order to analyze how moisture content is affected by size, tests were done 

with 10 to 20 mm cubes using the standard samples with an extra amount of 

carbohydrates. The results are plotted in Figure 6.4. 

 

 

Fig. 6.4: Drying kinetics of the standard samples with extra carbohydrates 

 

As it has been considered the same recipe, both samples with the same initial 

moisture content and the tests were done by filling the chamber with the same initial 

mass. It can be observed that the smaller particles (10 mm size) dried quicker than the 

larger particles under the same drying temperature and considering the same recipe. 

Moisture content is reduced by 22.54% in 10 mm particles and 16.06% in 20 mm ones. 

The main reason is that smaller particles have lower mass transfer resistance than larger 

cubes. Also the higher number of smaller particles provides a larger surface area for 

heat and mass transfer leading to a higher drying rate and shorter moisture content for 

the same drying period.  

To reduce moisture content from 44.71% to 28.65%, drying time was decreased 

by 210 minutes (from 390 minutes to 180 minutes) for 10 mm particles compared to the 

drying time for 20 mm samples dried at the same temperature. Thus, the results indicate 

that the smaller the recipe sample size or thickness, the shorter the time and the quicker 

the product dries. 
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In order to analyze how moisture content is affected by size (particles of 10mm, 

20mm or size distribution between 1 and 12mm in the boiled ones) two different recipe 

samples were dried at the same temperature. The tests were done considering an initial 

frozen material and the results are plotted in Figure 6.5. 

 

 

Fig. 6.5: Influence of particle size on drying kinetics for different recipes 

 

The plot clearly show that the final moisture content difference between 10 mm 

STD+CH particles and boiled ones is about 13.53%wb while between 20mm and boiled 

particles is 20.01%wb. The drying rate is highest for the boiled sample and lowest for 

the sample containing extra carbohydrates with a particle size of 20 mm.  

The main reason for the difference in drying kinetics is that particle size and 

availability of larger surface area promotes and intensifies moisture removal. It is 

evident that, for the same initial mass, the number and surface area in a bed of boiled 

particles is higher due to small size distribution. Consistently, the boiled particles have a 

size distribution ranging from 1 and 12 mm and dried quicker than larger particles. 
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In order to analyze how moisture content is affected by drying temperature it 

was considered the standard sample after a first drying stage. The results are shown in 

Figure 6.6. 

 

 

        Fig. 6.6: Influence of drying temperature on drying kinetics for the second drying stage 

 

Figure 6.6 shows moisture content plots for single-stage drying of the standard 

recipe after 6 hours drying at a temperature of -2ºC, as well as the second drying stage 

for the three cases studied at different drying temperatures. As expected, there is 

acceleration of the two-stage drying process due to the increase of the temperature of 

the drying air from 25 to 35ºC. This is obvious during the first periods of drying 

indicating that mass and heat transfer rates improve as the air temperature increases and 

higher moisture removal rates can be achieved. Thus, the greater the difference between 

the product and drying medium, the higher the drying rate. 

In addition, by shifting single-stage to two-stage atmospheric freeze drying the 

effective diffusivities and water removal rates increased. During the first drying stage at 

-2ºC, moisture removal rates are 5.25, 8.62 and 11.3%wb with residence times of 120, 

240 and 360 minutes, respectively. As for the second drying stage, moisture removal 
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rates are 15.23, 14.47 and 13.87%wb for a drying period of 120 minutes and at drying 

temperatures of 35, 30 and 25ºC, respectively. As a result of the two-stage drying, 

moisture removal rates of 20.43, 23.09 and 25.17%wb are achieved for drying times of 

260, 380 and 500 minutes, respectively. Only 11.3% of water removal was achieved for 

single-stage drying at -2ºC with residence time of 390 minutes. 

A first drying stage at a temperature below the initial freezing point can be 

applied for a short time to remove unbound moisture. This stage can be followed by a 

second drying stage at a higher temperature to remove the residual moisture that results 

in higher dryer capacity. Therefore, a first drying stage of 120 minutes at -2ºC followed 

by a second stage of 140 minutes at 35ºC is recommended to increase drying rates and 

dryer capacity. However, it could be preferable to carry out a second drying stage at a 

lower temperature of 30 or 25ºC if the material is sensitive to higher temperatures. For 

this reason, it is important to analyze quality parameters to determine the best drying 

process in order to achieve higher drying rates and a material with a desired quality. 
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6.2. Quality parameters  

A better product quality is normally achieved by applying atmospheric freeze 

drying compared to drying with temperatures above the material freezing point. 

Better quality indicators are: fast rehydration capacity, low bulk and particle 

density, small shrinkage, higher porosity of the product and an attractive color. These 

improvements could increase the current degree of acceptance of dehydrated products in 

the market. 

In this study, the effect of recipe design, drying temperature and particle size on 

color, density and rehydration of protein mixtures was analyzed and evaluated. 

 

6.2.1. Color analysis 

Color is an important attribute in quality of dried foodstuffs. Hunter color 

parameters have previously proved valuable in describing visual color deterioration and 

providing useful information for quality control. 

Initial and final color was measured using a color meter based on the Hunter 

color scale. The components are redness (a), yellowness (b) and brightness (L), which 

were measured and used to analyze color changes between the original material and the 

dried sample. The color requirement for dried protein mixtures are brightness equal or 

slightly lower than in the fresh material, similar red values and neutral in yellow ones. 

Color changes have been studied in the standard samples containing additional 

carbohydrates and drying at the same temperature (20ºC). Both samples have similar 

initial color component values because they are originated from the same mixture 

recipe. 

 In order to analyze changes in particular sample regions, the final color 

measurements for the dried samples have been measured at two different locations: an 

overall zone (white) and a proteic zone (red). The reason is that our sample has two 

characteristics zones because the standard sample was red and the corn starch added 

gives it a white component. 
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Some pictures of the final drying samples for both tests are shown in Figures 6.7 

and 6.8. 

 

  
Fig.6.7: STD+CH 10 mm samples dried at 20ºC 

 

 
Fig 6.8: STD+CH 20 mm samples dried at 20ºC 

 

The main color of the recipe product is red and brightness. Then, brightness (L) 

and redness (a) are the main color components to be analyzed and, if possible, they 

should be kept unchanged. Also, these quality aspects should approach the original 

values or be in a better range as specified for final product acceptance in the market. 
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Fig. 6.9: Color measurements comparison in the white zone for different sample sizes 

 

The measurements show how brightness (L) for both samples drops after drying 

in the white zone. This indicates that HPD process causes a color shift towards the 

darker region. Thus the white zone of the dried samples is a bit darker than the original 

recipe color and it is more significant in larger particles of 20 mm. 

On the other hand, red color component (a) increased for 10mm particles and 

decreased slightly for the larger samples. 

Finally, yellow component (b) increased slightly for 10mm particles and 

decreased for 20 mm samples. 

The color is affected by particle size, as shown in the plot. The dried smaller 

particle of 10mm has final color closer to the original frozen sample because the final 

material is less dark and redder than in the case of the bigger particles. Therefore, the 

results show that quality of the smaller particles in the white zone is higher what is 

better accepted in the market. 
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Fig. 6.10: Color measurements comparison in the red zone for different sample sizes 

  

As for L values in the characteristic red zone, brightness is again lower in the 

dried material. It is also shown that the red value is lower in the final 10 mm sample 

than in the 20 mm sample so smaller thickness particles are not as dark as the larger 

ones which is preferable. On the other hand, the red component is slightly higher for 

smaller particles whereas yellowness is lower. 

 Therefore, in the proteic zone which is mainly red, brightness and redness are 

the main components to be taken into account. Both values change in a not negligible 

range in the final dried product so the standard protein mixture recipe with added 

carbohydrates has not the most desirable results in terms of color when dehydrates. 

However, slightly better color values are achieved for smaller particles of 10mm and 

they will be better accepted for costumers in terms of quality. 
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The results of color parameters obtained from standard samples dried at -2ºC and 

subjected to a second drying stage at a higher temperature are presented in Figure 6.11. 

 

 

Fig 6.11: Color measurements comparison at different drying temperatures 

 

This graph is used to compare the color components for the first drying stage of 

the standard sample after 6 hours drying at a temperature of -2ºC, as well as the second 

drying stage for the three cases studied at different drying temperatures in order to 

analyze how color is affected by temperature. 

The brightness (L) of the standard material drops after the drying process for all 

cases causing a color shift towards the darker region. However, it is observed that 

brightness is lower for samples dried at higher temperatures which indicate that lower 

temperatures produce color closer to the original frozen material. This is shown in 

Figures 6.12, 6.13 and 6.14 where samples dried at 35ºC are darker than samples dried 

at 25ºC. 

As for the red color component (a) it can be observed that it is almost preserved 

as the original value or improved for all samples dried by heat pump atmospheric freeze 

drying. Red component increased slightly after drying except for the samples dried at 

30ºC were (a) value decreased. This is an important result because a red dried product is 
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better accepted in the market due to the initial color of the standard material was mainly 

red.  

On the other hand, yellow color component (b) is also preserved for all samples 

although this is not the main component in terms of quality for the protein mixture that 

it has been considered. 

The results indicate that lower temperature produce color closer to the initial 

color of the fresh or frozen sample than a higher temperature. Furthermore, a single 

drying stage at a temperature below the protein’s mixture initial freezing point followed 

by a second stage above the freezing point enhance color properties in the dried product. 

The pictures of the final dried samples subjected to a second drying stage are 

shown in Figures 6.12, 6.13 and 6.14. 

Fig. 6.12: Standard samples 20 mm dried at 35ºC 

Fig 6.13: Standard samples 20 mm dried at 30ºC 
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Fig 6.14: Standard samples 20 mm dried at 25ºC 

 

 

6.2.2. Bulk density  

Initial and final bulk densities were measured at the start and end of the drying 

tests for each sample. This was done to study how the density of the product changes 

when drying. Each sample had different final moisture content due to varying drying 

temperatures and residence times. 

 

 

Fig 6.15: Bulk density measurements before and at the end of each drying process 

0 

100 

200 

300 

400 

500 

600 

700 

800 

STD+CH 20°C, 
10mm 

STD+CH 20°C, 
20mm 

STD -2°C, 
20mm 

STD 20mm 
2hr -2°C, 2nd 

stage 35°C 

STD 20mm 
4hr -2°C, 2nd 

stage 30°C 

STD 20mm 
6hr -2°C, 2nd 

stage 25°C 

Bulk density ρ[kg/m3] 

Initial  

Final 



58  Results, Analysis and Discussion 

 
 

Figure 6.15 shows the bulk densities for six drying tests. The higher density of 

standard of the 10 mm thick samples with extra amount of carbohydrate is due to higher 

porosity and less bulk void since the smaller particles fill the voids of the graduated 

cylinder used to measure bulk density. It is also observed that initial bulk density for 

standard samples with added carbohydrate is higher than that of standard samples 

because corn starch contributes to a higher value. 

On the other hand, significant bulk density change is achieved for the standard 

20 mm samples that was dried at -2ºC and the bulk density was reduced by almost 19% 

(from 438.76 to 369.29 kg/m
3
). The reasons are that water removal from samples 

containing corn starch is accompanied by volume reduction and the samples dried at 

higher temperatures experienced higher shrinkage. Both occurrences may cause the 

final density to be more similar or higher than the initial value  

Low values of bulk density at the end of drying compared to initial values are 

achieved in almost every test. The main reason is that the matrix volume reduction is 

smaller than the equivalent volume or mass of the evaporated water and, as a 

consequence, the product porosity increases and the bulk density drops. This means that 

shrinkage in the products is lower for atmospheric freeze dehydrated samples and that 

this process does not cause structural damage to the product.  

However, the 20 mm samples containing extra carbohydrates had increased bulk 

density probably due to reduced heat and mass transfer in these larger particles with 

lower surface area. In such case the water removal during drying was lower than the 

volume change or shrinkage causing the bulk density to increase. 

In addition, the case of the samples subjected at a second drying stage at a higher 

temperature of 35ºC leads to a higher final bulk density. This dependence may be 

related to shrinkage that is more pronounced during high temperature drying. That 

produces a less porous product with a lower final volume making the final bulk density 

to increase. This product may be less accepted by consumers compared to better 

samples obtained in the other tests. 

It is also shown that the samples subjected at a second drying stage that the 

initial bulk density is lower for samples dried during 6 hours at a temperature of -2ºC. 

This is because a long drying time at a given temperature allows higher moisture 



6.2  Quality parameters  59 

 
 

removal and the product tends to shrink. However, shrinkage at temperatures below 

freezing point is less significant. The reduction in final density is higher in the samples 

dried at 25ºC (almost 10% whereas reduction in samples dried at 30ºC is around 6%) 

because there is a critical temperature where shrinkage peak, where the shrinkage is 

maximum. Thus, a sample dried above (or below) this temperature has a lower density. 

 

6.2.3. Particle density 

Initial and final particle densities were measured at the start and end of the 

drying process. The particle density for each sample is shown in Figure 6.16. 

 

 

Fig. 6.16: Particle density measurements before and at the end of each drying test 

 

The results show that samples containing corn starch as extra carbohydrate have 

higher particle density than standard samples. 

Higher values of particle density at the end of drying compared to initial values 

are observed for almost all tests on the contrary of bulk density measurements. The 

reason is that particle density does not include the air between the particles and the 
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change in volume of each particle due to shrinkage becomes more significant than the 

corresponding water removal. This is more evident in the 20 mm samples dried at 

higher temperatures. 

The samples subjected to a second drying stage at 35, 30 and 25ºC had increased 

particle density from their initial values by 8.9, 7.0 and 4.2%, respectively. Only the 

STD+CH 10mm thick samples dried at 20ºC and  the STD 20mm particles dried at -2ºC 

achieved lower final particle densities due to lower shrinkage and higher heat transfer 

rates, respectively. 

 

6.2.4. Rehydration capacity 

The rehydration characteristics of a dried product are important and often used 

as a quality index. Reconstitution of dehydrated products allows elucidation of how a 

material is affected by the shrinkage, porosity and structural damage after drying.  

The results for the rehydration capacity for different recipes were measured for 

all samples dried for different drying conditions. The measured data were organized in 

tables and results of rehydration versus time are shown in Figures 6.17, 6.18 and 6.19. 

 

 

Fig 6.17: Rehydration rates for the boiled samples 
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The plot indicates that the boiled samples have excellent rehydration capacity by 

having an improved structure and particularly high porosity. Furthermore, it is observed 

that particles that were initially unfrozen rehydrates better than frozen particles because 

moisture removal and final porosity were higher. 

Therefore, rehydration capacities of pre-treated particles, such as boiled samples, 

were higher than for untreated samples. 

 

 

 

Fig 6.18: Rehydration rates for the standard samples with added carbohydrates  

 

Standard samples containing extra amount of carbohydrates exhibited lower 

rehydration capacity than boiled samples. As expected, the rehydration ratio for the     

20 mm particles dried at 20ºC is the lowest among the different recipes considered. The 

final value for this sample where the rehydration ratio becomes constant is 0.13 whereas 

the final value for the standard sample subjected to a second drying stage at 35ºC (see 

Figure 6.19) is 0.25. This resulting low rehydration is in agreement with bulk density 

data since samples with larger particle size were strongly affected by shrinkage and high 

temperature drying. It is apparent that low shrinkage and more porous structure leads to 

higher capacity to absorb water during reconstitution. 
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Fig 6.19: Rehydration rates for the standard samples subjected at a second drying stage 
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Chapter 7 

 

                                       Conclusions and Recommendations 
 

 

7.1. Conclusions 

There has been a significant growth in the last years in using heat pumps in 

combination with drying operations. Heat pump drying satisfies important requirements 

in industrial drying as it is known as an energy efficient and environmentally friendly 

technology which produces high quality drying products. A diversity of lines of 

research and development has been established at NTNU and SINTEF in this field. 

Based on experiments carried out carried out using protein mixtures and 

applying a fixed bed heat pump dryer (see Chapter 6) it was found that the higher 

drying rates were achieved for the protein mixtures subjected to a boiling pre-treatment 

and they also have higher rehydration rate due to the more porous structure of the 

samples . On the other hand, single-stage drying of the standard 20 mm samples below 

the initial freezing point at a temperature of -2ºC requires much longer drying times to 

achieve the same moisture removal which leads to an increase in the energy 

consumption. However, this drying condition causes less damage to the product and its 

final quality is better accepted in the market.  
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Temperature and sample size are the characteristics strongly affecting quality 

parameters. Color components of the samples are well-preserved after heat pump drying 

although lower brightness and slightly higher redness values are normally achieved for 

the different recipes and drying conditions tested.  

Slightly better color values close to fresh protein mixtures are achieved for 

standard recipes comparing to recipes containing added carbohydrates and also samples 

drying at lower temperatures but color differences are not significantly different to 

decide which recipe has the best quality at the end of the drying process. 

As far as bulk density concerned, the highest difference between the initial and 

final dried product is achieved for the standard recipe dried at -2ºC and also for the 

standard 10 mm sample with added carbohydrate. Bulk densities are reduced about 19% 

and 10.3%, respectively. This clearly shows that smaller sample and lower drying 

temperature produce better product quality in terms of final density. The reason is that 

mass reduction in these samples is higher than volume reduction due to shrinkage so a 

more porous sample is obtained which is desirable. In addition, standard 20mm samples 

dried at -2ºC and followed by a second drying stage at a temperature of 25 and 30ºC 

presented lower final densities. However, higher final density values from the initial 

ones are achieved in samples dried at 35ºC as well as in 20 mm samples with added 

carbohydrate. Therefore, both samples exhibited shrinkage values that cannot be 

accepted in the market and drying under these conditions cannot be validated. 

As for rehydration capacity, higher values are presented at lower temperatures. 

Standard 20 mm samples subjected to a second drying stage at 25ºC have reasonable  

good rehydration capacity as well as 10 mm samples containing added carbohydrate and 

dried at 20ºC which achieved the highest values. Nevertheless, 20 mm samples for this 

recipe have the lowest rehydration rate what is in agreement with bulk densities values 

because they are strongly affected by shrinkage.  

 

Thus heat pump drying allows handling of heat sensitive materials either under 

non or atmospheric freeze drying conditions. The possibility of sequencing these two 

operations is specially advantageous when drying foods because drying under frozen 

conditions minimizes shrinkage although at lower drying rates. Furthermore, splitting of 
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the drying process into atmospheric freeze drying at temperatures around -2ºC followed 

much faster finish drying at 25 or 30ºC making it possible to control quality parameters 

such as porosity, rehydration rates and color. 

The recipes containing added carbohydrates achieved good quality properties 

with optimum drying rates but only for small samples of 10 mm sides. Moisture 

removal ratio was about 22% during a 390 minutes drying process at 20ºC. 

Furthermore, 20 mm standard samples dried at a temperature below the freezing point at 

-2ºC and then at a temperature of 25ºC produced acceptable quality with moisture 

removal rates about 25% during a drying process of 510 minutes. Therefore, samples 

containing added carbohydrates and dried at 20ºC are recommended but only for 

production of samples with 10 mm side. The reason is that drying capacity is higher 

leading to lower cost of production since more product can be dried to a desired 

moisture content during the same time. This leads to lower dried product prices for the 

costumer. However, drying capacity can be improved for standard recipes by reducing 

the sample size from 20 mm to 10 mm. 

 

 

7.2. Recommendations for Further Work 

So far, a lot of improvements have been done in HPD technology in order to 

reduce energy consumption in industrial drying. But higher energy efficiencies and 

better control of quality parameters can be achieved in the future. 

Further research is necessary and it is of great interest to conduct more 

experiments with a wider variety of settings. Special interest could be a single-stage 

drying of the standard recipe for smaller samples thickness to compare with the results 

obtained for the standard recipe with added carbohydrate. In addition, more experiments 

on the two-stage drying for the standard recipe with added carbohydrate and also for the 

boiled recipe need to be carried out to be able to make predictions.  

Further experiments should also include measurements of total energy 

consumption which is related to production cost and important for scale up the dryer 
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system from laboratory to industrial size. Furthermore, comparison of the energy 

consumption to other drying forms could be an interesting task. 

Research other methods, processes and parameters for intensification of the 

drying process is recommended. The effect of the bed height could also be increased to 

influence capacity and compare drying rates.  

Finally, it should be considered that industrial operations are made in continuous 

mode instead of laboratory test doing in batch mode. This should be considered in 

future experiments and a great challenge would be to develop an industrial scale plant 

working on this mode. 
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