
Joint Maintenance Interval and Spare
Parts Optimization using a
Discrete-Event Simulation Model

Arjen Martens

Reliability, Availability, Maintainability and Safety (RAMS)

Supervisor: Jørn Vatn, IPK
Co-supervisor: Trond Østerås, IPK

Department of Production and Quality Engineering

Submission date: July 2015

Norwegian University of Science and Technology

RAMS
Reliability, Availability,

Maintainability, and Safety

Joint Maintenance Interval and Spare Parts

Optimization using a Discrete-Event

Simulation Model

Arjen Martens

July 2015

MASTER’S THESIS

Department of Production and Quality Engineering

Norwegian University of Science and Technology

Supervisor 1: Professor Jørn Vatn

Supervisor 2: Trond Østerås

i

Preface

This report represents the Master’s thesis of the Master’s programme in Reliability, Availabil-

ity, Maintenance and Safety (RAMS) of the Norwegian University of Science and Technology

(NTNU). The subject is part of the risk-based maintenance optimization specialization track of

the RAMS programme.

During this project a Discrete-Event Simulation (DES) in Visual Basic for Applications (VBA)

has been developed which is used for joint maintenance interval and spare parts optimization.

The case on which this simulation is based, has been developed by the author based on data

from Statoil and the OREDA Handbook.

Trondheim, 10-07-2015

Arjen Martens

ii

Acknowledgment

First of all, I would like to thank Jørn Vatn for his guidance throughout this semester. Jørn has

helped me with developing the model. Whenever I faced a problem during the programming,

he showed the possible solutions.

Furthermore, I would like to thank Trond Østerås for helping me with developing the case.

Unfortunately, there were some issues on our way, but I am really thankful that you kept sup-

porting me despite these issues. I am really happy that we were finally able to develop a good

case which I could work with.

Lastly, I would like to thank Statoil for making their data available to me.

A.M.

iii

Summary and Conclusions

The goal of this report is to use discrete-event simulation (DES) as a method for optimizing

maintenance strategies, such as spare parts levels and maintenance intervals. Firstly, the au-

thor argues for spare parts optimization with a DES in Visual Basic for Applications (VBA). The

models and assumptions that are needed for developing such a model are explained. Further-

more, this report elaborates on how a DES can be coded in VBA. Lastly, several methods for

optimizing both speed and decision variables of a DES are introduced.

The report shows how a DES can be coded and which models and assumptions can be used

in developing such a simulation. A specific focus is on the design of the pending-event set (PES),

which is the core of the DES. Several different designs are tested in different situations in order

to determine their performance. The results show that the performance of these methods vary

in each situation, and therefore the designer of a DES should determine the characteristics of

the DES, before an appropriate PES method can be chosen. This thesis shows that a simplified

genetic algorithm can be used in order to find good results in a faster and more structured way

than a trial-and-error method. It furthermore shows that this genetic algorithm can be used for

joint optimization of preventive maintenance interval, the overhaul interval, spare order thresh-

old and stock levels.

The author concludes the report with recommendations for further work. On the practical

side, the impact of different PM strategies on stock levels should be researched. Furthermore,

the research to including condition-based maintenance (CBM) in a model like this should be

taken a step further with a more complex model for CBM. On the theoretical side, the PES

methods should be more thoroughly studied. More functions to manipulate the PES and the

required memory space should be included in further research. Lastly, the author believes that

the simplified genetic algorithm can be further improved, which can be a focus topic in further

research.

Contents

Preface . i

Acknowledgment . ii

Summary and Conclusions . iii

1 Introduction 1

1.1 Background . 1

1.2 Objectives . 2

1.3 Limitations . 3

1.4 Approach . 3

1.5 Structure of the Report . 3

2 Modeling Approaches 4

2.1 Spare Parts Optimization Methods . 4

2.1.1 Introduction to Spare Parts Optimization Methods 4

2.1.2 Discrete-Event Simulation Methods . 5

2.2 Models, Policies and Assumptions in the DES . 6

2.2.1 Components . 7

2.2.2 Situation Sketch . 7

2.2.3 Failures . 8

2.2.4 Stock and Order Policy . 9

2.2.5 Maintenance Policies . 11

2.2.6 Simulation length . 12

3 DES Model 13

iv

CONTENTS v

3.1 Interface of Discrete-Event Simulation Tool . 13

3.2 Logic of DES . 14

3.3 Explanation of the Code . 16

3.3.1 Failures . 16

3.3.2 Maintenance . 17

3.3.3 Costs . 19

3.3.4 Ordering . 19

3.3.5 Transfers . 20

3.3.6 Stock . 20

3.3.7 Pseudo-Random Number Generator . 21

3.4 Quantities of the Model . 21

3.4.1 Decision Variables . 21

3.4.2 Output Variables . 22

3.4.3 Random Variables . 23

3.4.4 Constants . 23

4 Optimization Methods 27

4.1 Introduction to Optimization Approaches . 27

4.2 Genetic Algorithm for Optimizing Decision Variables 29

4.2.1 Introduction to Genetic Algorithm . 29

4.2.2 Genetic Algorithm for Joint Optimization . 30

4.3 PES Handling Optimization . 31

5 Results 35

5.1 Optimal Stock Values for the Kristin Case . 35

5.2 Joint Optimization of the Decision Variables . 37

5.3 Efficiency of PES Methods . 38

6 Summary 40

6.1 Summary and Conclusions . 40

6.2 Discussion . 41

6.3 Recommendations for Further Work . 42

CONTENTS vi

A Acronyms 43

B Code 44

B.1 DES Tool . 44

B.2 Genetic Algorithm . 82

Bibliography 91

List of Figures

2.1 Gas Turbine, Boundary Definition (SINTEF, 2009) . 7

2.2 Two-Echelon Situation . 8

2.3 States and Rate of the System . 9

3.1 User-Interface of the Simulation Tool . 14

List of Tables

2.1 Overview of Inventory Policies . 10

3.1 PES Items with Corresponding Attributes . 15

3.2 Decision Variables for the Kristin Case . 22

3.3 Additional Decision Variables for the Joint Optimization 22

3.4 Output Variables of the Model . 22

3.5 Random Variables of the Model . 24

3.6 Constants of the Model . 26

4.1 Input Variables for the GA for Optimization of the Model 30

4.2 Decision Variables for Joint Optimization of the Model 30

4.3 Input Variables for the GA for Joint Optimization . 31

4.4 Simulation Cases for PES Handling Optimization . 34

5.1 Results for Optimization of the Model by Trial-and-Error 36

5.2 Results for Optimization of the Model by the Genetic Algorithm with 400 runs . . . 36

5.3 Results for Optimization of the Model by the Genetic Algorithm with 10000 runs . 36

5.4 Results for Joint Optimization of the Model by the Genetic Algorithm 38

5.5 Results for Efficiency of PES Methods: Actual Times (in seconds) 38

5.6 Results for Efficiency of PES Methods: Relative Times (in %) 38

5.7 Results for efficiency of PES methods with 20000 iterations: relative times (in %) . 39

Chapter 1

Introduction

1.1 Background

The relation of preventive maintenance (PM) with inventory costs can seem unclear, since the

demand for replaceable parts decreases as the replacement interval increases and is minimum

for a failure replacement policy, where items are only replaced upon failure (Barlow and Proschan,

1964). Hence, with a preventive replacement policy one needs more parts, which results in an

increase of inventory related costs of these spares again. However, a higher PM frequency leads

to a better predictable demand for spare parts and hence to a lower spare parts safety stock

(de Smidt-Destombes et al., 2009). The replaceable parts used for the preventive replacement

can be delivered according to the just-in-time (JIT) principle, which results in no storage costs

for these parts. Van Horenbeek et al. (2013) state in their review paper the importance of joint

maintenance interval and inventory optimization. Models that jointly tackle both optimiza-

tion problems give better optimal solutions, since they do not inherit certain assumptions like

most maintenance interval optimizations models have, for example: infinite number of avail-

able spare parts, perfect repairs or no lead times for spares. Besides that, they do not take in-

ventory related costs into account, which might drop significantly by just a small increase in

other maintenance related costs. The models described in this research paper tackle very basic

systems, with only one component that has only two states. They therefore argue that more re-

search should take place on joint optimization by simulating complex systems. Alrabghi et al.

(2013) optimize maintenance and spare parts in a multi-component system through a com-

1

CHAPTER 1. INTRODUCTION 2

bined discrete-event and continuous simulation.

Condition-based maintenance (CBM) is a maintenance program that recommends main-

tenance decisions based on the information collected through condition monitoring (Jardine

et al., 2006). Online CBM means that monitoring takes place continuously, while offline CBM

means that monitoring only takes place after each test interval. Wang et al. (2008) show in their

paper how stock levels can be optimized by using CBM. They introduce a spare order threshold,

in addition to the preventive replacement threshold in the classical CBM model.

So far models were either focussed on joint optimization of the PM interval and stock levels,

on joint optimization of the test interval and stock level or on finding the optimal spare order

threshold when condition monitoring takes place. This thesis tries to jointly optimize all four

factors by discrete-event simulation (DES), since this has not been done before to the best of

the author’s knowledge. Simulation on joint optimization of maintenance and spares in multi-

echelon supply systems has not been done either, which is also incorporated in this thesis.

1.2 Objectives

This thesis has two practical objectives:

1. Determine the optimal stock values for the Kristin case.

2. Determine the impacts of having different preventive maintenance strategies on stock lev-

els.

Besides those practical objectives, it has several theoretical objectives, which are related to

using a DES for a joint maintenance and spares optimization:

1. Determine a fast method for handling the pending-event set in a discrete-event simula-

tion.

2. Determine an accurate and fast method for optimizing the decision variables of a discrete-

event simulation.

3. Determine an accurate and fast method for joint optimization of the preventive mainte-

nance interval, the overhaul interval, spare order threshold and stock levels.

CHAPTER 1. INTRODUCTION 3

1.3 Limitations

The data acquisition for the Kristin case is very limited and results for this case are therefore

not really useful for practical purposes. The developed DES tool inherits some assumptions

which could give some different results than when other assumptions are made. Results should

therefore be tested more extensively. Furthermore, the tool is not extensively verified by an

external coder, which means that the accuracy of the tool is not guaranteed.

1.4 Approach

A DES is made as basis for this research. A literature has been conducted before by the author

during the specialization project and is therefore not incorporated in this report. However, the

information of this study is used in this report. Based on this information an algorithm is de-

veloped and tested with the DES. Furthermore, methods of implementing a pending-event set

(PES) of a DES are tested here by simulation.

1.5 Structure of the Report

This reports continues with five more chapters. Chapter 2 describes which modeling approaches

are used, while chapter 3 elaborates on how these models are used for programming the DES.

Chapter 4 proposes optimization methods for both optimizing output variables and speed of

the DES. The results of the simulations are shown in chapter 5. Chapter 6 concludes this thesis.

Chapter 2

Modeling Approaches

This chapter elaborates on the models that are used in this thesis. In section 2.1, the author

briefly introduces some methods for spare parts optimization and argues why a DES in VBA is

chosen. Section 2.2 introduces which models and policies for spare parts, maintenance and so

on, are used in the DES.

2.1 Spare Parts Optimization Methods

There are numerous different options for optimizing the amount of spares, of which some are

introduced here. This section clarifies the choice for a DES in VBA for this project.

2.1.1 Introduction to Spare Parts Optimization Methods

One widely spread spare parts optimization technique is Markov Models, about which elemen-

tary information can be found in Ross (2014). A shortage in spares can be denoted by the num-

ber of backorders (BO). In a Markov model this can be modeled as a state with a negative amount

of spares in stock. By finding the steady state probabilities one can get the expected number of

BO and use this in a cost formula that takes the capital costs for stocking and the cost for un-

availability into account, in order to find the optimal amount of spares in stock. The advantage

of this technique is that one gets accurate analytical results. However, this technique suffers

from the so called state space explosion problem, which occurs when problems get bigger. It

is therefore impossible to model most complex systems realistically with Markov models. Since

4

CHAPTER 2. MODELING APPROACHES 5

the problem in this thesis is a complex one, this technique is not suitable. Furthermore, joint

optimization of spare parts and maintenance intervals seems like a very challenging task with

Markov models.

Another technique that can be used is Petri Nets, which is a graphical and mathematical

tool that is applicable to information processing systems. An introduction to Petri Nets can

be found in Murata (1989). One popular Petri Net simulation tool is Colored-Petri Nets (CPN)

Tools, about which more information can be found in Jensen and Kristensen (2009) and van der

Aalst and Stahl (2011). The author has good experiences with this tool, but decides not to use

this tool because one loses some modeling freedom when using a tool like this. The author

expects it would be difficult to make changes to the model, which is also confirmed by Wells

(2002). Furthermore, enabled transition are executed in a random order and can only be in

control with prioritizing transitions. Westergaard and Verbeek (2011) show this prioritizing can

be very extensive and is therefore not always desirable to do. Lastly, when models get complex,

the graphical representation of the Petri Nets can become very complex as well.

Discrete-event Simulation (DES) simulates the dynamics of the real world on an event-by-

event basis and is one of the mainstream computer-aided decision-making tools (Law, 2007). It

utilizes a mathematical/logical model of a physical system that portrays state changes at precise

point in simulated time (Nance, 1993). A short introduction to DES can be found in, for exam-

ple, Robinson (2014). DES can be used when it becomes analytically impossible to analyze the

system and simulation is necessary in order to determine the system’s performance. The flexi-

bility and possibility to simulate large systems are the main reasons for opting for developing a

DES tool for this case. Furthermore, as stated in 1.1, the use of DES for spare parts optimization

is not as extensive studied as, for example, Markov models. Therefore, it is also more interesting

for this research to develop a DES.

2.1.2 Discrete-Event Simulation Methods

There are three options for developing DES models: spreadsheets, specialist simulation software

and programming languages (Robinson, 2014). Spreadsheets require programming constructs,

like Visual Basic, to model more complex systems, while programming languages are used when

systems get very complex. Most systems, however, can be modeled using specialist simulation

CHAPTER 2. MODELING APPROACHES 6

software. Arena (2014) is one of these tools and has been used by the author before. The expe-

rience dictates that also within these special packages one quickly requires some programming

in order to model systems which sufficiently represent reality.

The main reasons for choosing for spreadsheets, supported by VBA, are the limited pro-

gramming experience of the author and the user-friendliness of spreadsheets. The author is not

an expert in programming. Since the Visual Basic programming language has a steep learning

curve and the development time is rather short, success is most likely achieved by using Visual

Basic as programming language rather than a more complex one. However, more important,

the use of spreadsheets is very user friendly. Users can easily enter their own data in the Excel

spreadsheet. The tool is therefore not only applicable to the specific case explained in chap-

ter 3, but can be used for similar situations with different input data. When a DES is created in

another programming language which is not supported by an easy user-interface like the Excel

spreadsheet, it can be more challenging to re-use the tool. It is furthermore easier for the user to

create some different situations in this tool, like the possibilities of having emergency transfers

or PM and CBM.

2.2 Models, Policies and Assumptions in the DES

The unlimited freedom one has during creating a DES in VBA requires choosing of several mod-

els and approaches for modeling the reality as close as possible. The approaches the author

takes in this DES are explained in this section. This section forms the basis for the detailed

explanation of the DES in chapter 3. The choices that are made here, are based on the situa-

tion of the Kristin platform of Statoil. They are made to approximate the situation as close as

possible. The Kristin platform is situated on the South-Western part of the Haltenbanken field.

The Kristin platform produces 10 million cubic meter gas a day, which is compressed on the

platform before transportation. This installation for the compression process consists of a gas

compressor, which is supported by a gas turbine. The Kristin platform is designed with low to

no redundancy. A failure of the gas turbine therefore results in a shutdown of the platform. In

the remainder of the report this situation is referred to as the Kristin case.

CHAPTER 2. MODELING APPROACHES 7

Figure 2.1: Gas Turbine, Boundary Definition (SINTEF, 2009)

2.2.1 Components

The model is based on a gas turbine on the Kristin plant, which is critical to the platform’s pro-

duction. The boundary definition of this gas turbine is given in figure 2.1. Each subdivision of

the turbine consists of several maintainable items, such as valves, seals, casings and a control

unit. In this model it is assumed that there is no redundancy on these maintainable items (MI).

Hence, a failure of one of the MIs leads to a failure of the turbine, which consequently leads to a

shutdown of the platform. The model handles only one type of MI per simulation. The amount

of spares one need per MI are therefore to be optimized separately. This method makes a code

that is much easier to comprehend and still gives accurate results if the availability is high.

2.2.2 Situation Sketch

Spares for the MIs can be stored at the base or the platform. In order to make the case more

generic and realistic to reality, it is assumed that there are five identical platforms which are sup-

ported by one onshore base, which is a classic two-echelon system. The situation is sketched in

figure 2.2. Supply from base to the platforms is either done by boat or in case of an emergency

transport by helicopter. It is assumed that these transports can always take place. Lateral ship-

CHAPTER 2. MODELING APPROACHES 8

Figure 2.2: Two-Echelon Situation

ments from one platform to another are not possible. The only interaction of this system with

the external environment is supplies to the base from an external supplier. Since the platforms

are assumed to be independent and identical, the stock policy have the same optimal values for

each of the platforms.

2.2.3 Failures

Failures and the states in which the system can be, are represented with a Markov model. The

failure rates are exponentially distributed. It is assumed that there is no redundancy, so failure

of one component will lead to failure of the platform. SINTEF (2009) uses three different fail-

ure types: incipient, degraded and critical. This tool, however, uses only degraded and critical

failures. There are therefore three different states for components and platforms: functioning,

degraded and failed. Hokstad and Frøvig (1996) state that critical failures can happen due to

shock failures or critical degraded failures. The critical failure rate given in SINTEF (2009) does

not make this distinction and the failure rate therefore needs some manipulation. Hokstad and

Frøvig (1996) show that this can be done by determining the ratio of degraded critical failures

and shock critical failures based on the failure mechanisms. Failure mechanisms such as cor-

rosion, fatigue and vibration are classified as degraded, while failure mechanisms like electrical

failure, no power and software failure are classified as shock. This gives a degraded-shock ratio.

The overall critical failure rate is then assigned to critical shock and critical degraded failure rate

according to this ratio. Figure 2.3 shows the Markov model.

CHAPTER 2. MODELING APPROACHES 9

Figure 2.3: States and Rate of the System

Failures are generated upon initialization of the system and upon replacement of the com-

ponents. The failures are added to the PES and when the clock reaches the failure time the

failure is executed. This means that it is possible that two critical failures are close to each other

on the timeline and that the second failure occurs when the platform is in a failed state due to

the first failure. When the availability is high, this does not cause significant problems for the

simulation, since the probability of a failure during downtime of a platform is very low. However,

when the availability more failures happen in the simulation than in a real-life situation, which

causes an even lower availability. For this reason, results that yield a low availability should be

cautiously analyzed.

2.2.4 Stock and Order Policy

In the industry, different kind of inventory policies are used, for which table 2.1 gives an overview.

One can classify these under continuous review, where reordering takes place when the stock

level reaches s and periodic review, where every time interval R an order is placed. Another

classification that can be made is ordering up to a stock level (S) or ordering with a certain batch

size (Q). Nowadays inventory policies are usually monitored continuously, as inventory systems

are stored in computerized database systems. Policies with a batch size ordering are often used

for smaller, less-expensive products, that come in batches of a certain amount Q (for example:

boxes of screws, bolts or pens). The other policy is used for items that do not have to ordered

in batches (for example: computers, air-conditioning systems). The (S −1,S) policy is a special

case of the (s,S) with re-order level s = S −1, which is designed for very expensive, slow-moving

spares (Sherbrooke, 2008). Since the author wants to have some more flexibility in the type of

components that are modeled, the (s,S) policy is chosen, rather than the (S−1,S), which is often

CHAPTER 2. MODELING APPROACHES 10

used in mathematical models in the literature.

Table 2.1: Overview of Inventory Policies
Notation Policy
(s,S) Continuous policy with re-order level s and order-up-to level S
(S −1,S) Special case of (s,S) with re-order level s = S −1
(s,Q) Continuous policy with re-order level s and ordering batch size Q
(R,S) Periodic policy with re-order interval R and order-up-to level S
(R, s,Q) Periodic policy with re-order interval R, re-order level s and order-up-to level Q

When an order has been sent out, a new order can only take place after this order is deliv-

ered. This holds for orders at both the platform as base. Order times from the base to external

suppliers are assumed to be deterministic. This assumption holds in real life when suppliers are

reliable and good contracts are signed. However, the order time can in real life depend on the

amount of ordered products. This is not taken into account, which means that each order has

the same order time, regardless whether the order is for 1 or 100 products. The orders normally

have approximately the same size, so the variance on this time due to variance in order size is

negligible. Order times from the platform to the base are assumed to be uniform distributed,

with as lower level the order handling time and as upper level the sum of this order handling

time and the maximum time between two different transfers. In this system it is assumed that

the platform is supplied with an exact interval, the time between two different transfers. Or-

ders are made when the stock level at the platform reaches or goes under s, which occurs after a

request for a spare part is placed. These requests occur randomly, since the failure rate is expo-

nentially distributed. Therefore it can be assumed that the order is placed randomly in the time

interval between two different transfers.

Backorders (B) are created in case the base does not have enough spares to match the order

quantity of the platform. The order quantity becomes the amount of spares at stock in base.

The difference between these quantities becomes a BO. For example, when a platform orders

5 spares to a base, but the base only has 2 spares, 2 spares are send to the platform and the

BO becomes 3 spare parts. BOs from platforms to base are handled with the first-in-first-out

(FIFO) policy. In case the stock in base is not sufficient to handle a complete BO of a platform,

the difference between the amount of spares requested in the BO and what is delivered to the

platform goes back to the queue. This new BO is placed at the back of the queue, this to ensure

CHAPTER 2. MODELING APPROACHES 11

that platforms get more evenly distributed. For example, when there is a BO of 3 spares to a

platform, but there is only one spare in the base stock left, 1 spare is send to the platform and

the other 2 spares are send to the back of the queue.

2.2.5 Maintenance Policies

When a component has to be replaced due to a degraded or critical failure, a spare part is taken

out of stock and is replaced with a new item. It is assumed that there is an unlimited repair

capacity for the replacements at the platform and repairs at the base.

The model comprises of several PM strategies, which can be turned on or switched off by

the user of the tool. During PM all components are tested and degraded components are being

replaced. This is thus a form of offline CBM. This condition testing does not only take place

during a scheduled PM period, but also upon a critical failure. During the shutdown of the plat-

form scheduled preventive replacements are executed when there are enough spares in stock

and when the component is in a degraded state. The PM periods furthermore follow the age-

replacement policy (ARP), which means that when PM is executed after a critical failure, the next

interval is rescheduled and takes place one PM interval after the critical failure. The PM period

that was already planned is cancelled. Besides this offline CBM, the model has the option of

online CBM, which is assumed to detect any degraded failure immediately when this failure oc-

curs. When the platform has online CBM a PM order is send out for the next PM period upon

occurrence of the degraded failure and the necessary spare can be reserved. Lastly, the model

has the option of overhauls. During an overhaul all components are replaced with new compo-

nents and the old ones are discarded. Overhauls follow a block-replacement policy (BRP) and

take place each overhaul interval, which is significantly larger than the PM interval. Overhauls

do not influence the amount of spares in stock. This assumption can be made because over-

hauls are planned a long time in advance and the new components can therefore be delivered

according to the just-in-time (JIT) principle.

CHAPTER 2. MODELING APPROACHES 12

2.2.6 Simulation length

The simulation length depends on both the number of runs (n) and length of one run. As the

length of one run is equal to the design life of the platform, only the number of runs has to

be determined. Winston (2000) states that the required number of runs (n) can be calculated

by using equation 2.1. The author executes 100 trial runs in order to determine the average and

estimated standard deviation (SD) of the output. One can then chose the desired margin of error

(E) and the desired confidence interval α. Choosing a good simulation length is important in

order to find the right balance between accuracy of the results and computation time of running

the model.

n =
(Zα/2 ·SD

E

)2
(2.1)

Chapter 3

Discrete-Event Simulation for Spare Parts

Optimization

This chapter gives a detailed introduction to the DES. Section 3.1 shortly describes the interface

of the tool that is created. The remainder of this chapter goes more into the details of the DES.

Section 3.2 describes the logic of the DES in relation to the PES, section 3.3 elaborates on the

code and section 3.4 gives an overview of the quantities that are used in the DES.

3.1 Interface of Discrete-Event Simulation Tool

The DES tool is programmed in VBA, because it has as main advantage that it is easy for any user

of the tool to enter their own data in the Excel-file and run the simulation. The user-interface is

shown in Figure 3.1. The file is protected against wrong input of the user, for example in the PM

field only the values "TRUE" and "FALSE" are possible and only positive values are accepted for

the and failure and repair rates. This secures the integrity of the simulation. Since the input can

be changed by the user, this tool can be used for different cases. However, these cases should

follow the same models, policies and assumptions that section 2.2 presents.

13

CHAPTER 3. DES MODEL 14

Figure 3.1: User-Interface of the Simulation Tool

3.2 Logic of DES

This section explains the logic of the DES and which functions are executed on the PES in order

to create a better understanding of the functionality of the PES. Once a better understanding

of the required functionality of the PES is created, a more efficient method of storing the PES

and search algorithms can be implemented in the DES. It is therefore essential to document the

required functions for the PES before developing the DES.

Each item in the PES consists of a timestamp, function name and optionally a component

or platform number and order quantity or failure criticality. Table 3.1 shows which attributes

each item in the PES has. The two most essential functions for handling these items in the PES

are deleting the next event and adding an event. Deleting the next event takes place when all the

actions of the previous event are carried out and the next event has to be retrieved. The event

that has the lowest timestamp is taken out of the list and the corresponding function is executed.

In a linked list situation the next event is the first event of the list and can therefore be quickly

retrieved. Deletion of this event easily takes place by setting the pointer of the list head to the

pointer of this first event. In a tree structure, like method 4 in section 4.3 the next event is usually

not the first event and it takes therefore several steps reaching this event and hence deleting it.

Retrieving the first event in a tree structure takes therefore more time than in a normal linked

CHAPTER 3. DES MODEL 15

list.

Deleting an event does not only take place when the next event has to be called, but it also

takes place when, for example, a critical failure occurs and PM takes place upon this failure. The

"OnStartPMPeriod" and "OnEndPMPeriod", which are already in the PES for the corresponding

platform, have to be deleted from the list, as PM does not take place at these times any longer.

Furthermore, if PM actions are already scheduled for components at this platform and there

are enough spares available to execute these in the downtime of the critical failure, these PM

actions are to be deleted from the list as well. Furthermore, reserved transfers of spare parts for

these PM actions are to be deleted from the list as well, as these PM actions do not take place at

the original time any longer. This search only takes place until the next PM time, and therefore,

in the Kristin case, only searches through the first part of the list. On the contrary, when an

overhaul takes place, a search throughout the whole list takes place. The search checks every

event and deletes the events accordingly.

Table 3.1: PES Items with Corresponding Attributes
Function Attribute 1 Attribute 2
OnComponentFailure Component Number Failure criticality
OnComponentReplacement Component Number
OnSpareRepair
OnPlatformOrderArrival Platform Number Quantity
OnBaseOrderArrival Quantity
OnPMReplacement Component Number
OnStartPMPeriod Platform Number
OnEndPMPeriod Platform Number
OnStartOverhaul
OnEndOverhaul
OnPlatformEmergencyArrival Platform Number
OnPlatformOrderArrivalSpareReserved Platform Number Quantity

Adding an event takes place during the initialization of the DES. During the initialization of

components, for example, the event "failure" is inserted in the list for each component. During

the executing of an event it may be necessary to add one or more events to the PES. For example,

upon a critical failure a corrective maintenance action is added to the PES, and, additionally, a

new spare order on the platform might be added to the PES. The author discovers, after observ-

ing many trial simulations, that a majority of the events are added in the beginning of the PES,

CHAPTER 3. DES MODEL 16

which means in the first 20% of the list. This is caused by a very short handling time for many

of the events, after the initialization of the DES. For example, the delivery times or repair times

are relatively short in comparison with the failure times. While working with an indexed list, like

method 2 in section 4.3 once can use this fact for choosing to add some of these events without

looking in the indexed, but immediately in the linked list itself. If the probability is very high

that it falls in the first segment of the list, it could save some time that the indexed list is not

being called.

Besides these functions that manipulate the PES, there are also several assisting functions.

The most important one is the clock. This one keeps track of the time of the simulation and

is changed every time a new event is called from the list. The time elapsed function calculates

the difference between the new time of the clock and previous one, and is used for several cal-

culations, for example for the calculation of the downtime costs. The time elapsed function is

furthermore used for calculating the uptime of each platform. Calculation of the average avail-

ability uses these uptimes upon termination of the simulation in order to determine this output

variable.

3.3 Explanation of the Code

This section elaborates on the code, which can be found in appendix B.1, in order to create an

understanding about the code for the reader. It elaborates on sections 2.2 and 3.2. The expla-

nation is divided in failures (3.3.1), maintenance (3.3.2), costs (3.3.3), ordering (3.3.4), transfer

(3.3.5), stock (3.3.6) and the PRNG (3.3.7).

3.3.1 Failures

The "OnComponentFailure" event is added to the PES upon initialization of the components

and the execution of a degraded failure or replacement of a component. The generation of this

failure is dependent on which state the component finds itself in.

When the component is in a functioning state, a critical (shock) failure time and a degraded

failure time are generated according to their respective mean time to failure (MTTF). The lowest

CHAPTER 3. DES MODEL 17

failure time is chosen and this determines the type of failure that is added to the PES. When the

component jumps to a degraded state due to a degrade failure, a critical failure is added to the

PES. The rate for jumping from the degraded to a failed state is the sum of the critical shock

failure rate and critical degraded failure rate.

The actions upon "OnComponentFailure" depend on the criticality of the failure. In case of

a critical failure, a corrective maintenance (CM) action is issued in case the item is in stock on

the platform. "OnComponentReplacement" is then added to the PES. If there is no stock on the

platform, it is checked whether an emergency transfer should be issues. Furthermore, on the

shutdown of the system, the PM action "PMuponCriticalFailure" is issued, which is explained

in section 3.3.2. If the failed component is repairable, it is send back to the base and a repair

order "OnSpareRepair" is added to the PES. In case of a degraded failure, the PM action "OnPM-

Replacement" is issued for the next PM period in case PM is available. Furthermore, if CBM is

available a spare is reserved at the base for this PM action and the transfer order "OnPlatfor-

mOrderArrivalSpareReserved" is added at the PES on the time of the next PM period.

Furthermore there is a special type of failure, the failure to start on demand. This function

is called for when the system has to be started after a downtime. A random number between

0-1 is generated using the pseudo-random number generator (PRNG) and when this number is

smaller than the FTSpfd the system does not start and another component replacement has to

be issued. This is treated similarly to a critical failure.

3.3.2 Maintenance

Many of the functions in the PES are related to one of the maintenance policies used in this

model. This section elaborates on those.

"OnComponentReplacement" represents the completion of a replacement at the platform,

either of a failed or degraded component. The MTTF is decreased with the repair quality loss, in

order to model imperfect repair and replacement. A new "OnComponentFailure" is generated

and added to the PES if the system does not fail to start.

The DES consists of several PM functions. "OnPMReplacement" represents the PM action

and is executed during a PM period. The repair time is generated using the PRNG and the "On-

ComponentReplacement" for this item is added to the list. When this is larger than the PM

CHAPTER 3. DES MODEL 18

period, the initial end of the PM period is deleted from the PES and a new "OnEndPMPeriod",

with a time equal to the end of the replacement, is added. Furthermore, the earlier generated

critical failure for this component is deleted from the PES. However, when there are not enough

spares on the platform, the PM action is postponed until the next PM period and the "OnPMRe-

placement" is added to the PES again, a spare is reserved at base for this action and the "OnPlat-

formOrderArrivalSpareReserved" is added to the PES, at the time of next PM period. As men-

tioned in sections 2.2.5 and 3.3.1, upon shutdown of the system "PMuponCriticalFailure" takes

place. The initial "OnStartPMPeriod" and "OnEndPMPeriod" are deleted from the PES and the

new "OnEndPMPeriod" is added to the PES with the timestamp of clock +P Mi nter val . Fur-

thermore, a search through the PES takes place in order to find degraded components on the

platform that is shutdown. For those components the "OnPMReplacement" is called and if an

"OnPlatformOrderArrivalSpareReserved" is in the PES for this component, it is deleted from the

PES as well. The component replacement is postponed to the new PM period, if there is not

enough stock. One could have chosen only to execute the "PMuponCriticalFailure" if there are

enough parts in stock and, in that case, keep the PM periods as they are. The probability on a

critical failure becomes therefore slightly higher, but on the other hand less downtime is caused

by calling for PM periods, which is the reason for the author to implement it in this way.

"OnStartOverhaul" and "OnEndOverhaul" are added to the PES upon initializing of the model.

During an overhaul the system is reset, as the components are replaced with complete new com-

ponents are. Therefore, upon "OnStartOverhaul" the following events in the PES are deleted:

"OnComponentFailure", "OnPMReplacement", "OnStartPMPeriod", "OnEndPMPeriod" and "On-

ComponentReplacement". Upon "OnEndOverhaul" the MTTFs of the components are reset

to the initial values. Furthermore the failures for each component are generated again, as de-

scribed in section 3.3.1. Lastly the new PM periods for all platforms and new overhaul period

are initialized.

"OnSpareRepair", which means the completion of a repair at the workshop at the base, is

treated similarly to a base order arrival with a quantity of 1. The only difference is the calculation

of the costs.

CHAPTER 3. DES MODEL 19

3.3.3 Costs

The majority of the costs are calculated when they are called for. For example, when a CM action

takes place, the function "CalcCMCosts" costs is called and the cost for a CM action is added to

the subtotal of CMCosts. However, some of these costs are continuously monitored and those

are the costs that are explained in this section.

The three time-dependent costs are holding costs, downtime costs and online CBM costs.

These are calculated at every iteration of the DES and use the "TimeElapsed" function in order

to determine the correct costs. The holding costs are calculated per platform and additionally

for the base. "CalcDowntimeCosts" determines for each platform in which state it is. For a

platform that is in a failed state the product of Downti mePer T ×T i meEl apsed is added to

the downtime costs, while for a platform in a degraded state the product of Downti mePer T ×
T i meEl apsed × (1−Deg r adedPr oducti on) is added. The online CBM costs are added per

iteration, but could also have been added at the end of the run when the total length of the

simulation is known.

3.3.4 Ordering

The routine "CheckToOrderPlatform" is called every time a spare is used at the platform. If the

platform has an outstanding order already, an order is not issued again. There are three dif-

ferent situations: the full demand can be met by the stock of the platform, the demand can

be partly met or there is no stock at the base at all. When the whole demand can be met,

the function "OnPlatformOrderArrival" is added to the PES, with a quantity that is equal to

Pl at f or mOr der ToLvl −Pl at f or m.Stock. When a part of the demand can be met, the func-

tion "OnPlatformOrderArrival" is added to the PES, with a quantity that is equal to Pl at f or m.−
Or der ToLvl −B ase.Stock. The remainder of the demand that is not met is added to the queue

of BO. When there is no stock at the base, the whole demand is added to the queue. The rou-

tine "CheckToOrderBase" is called every time an order from the platform is issued. Similarly to

orders from the platform, an order is not issued again when the base has an outstanding order

already. When the stock level of the base is lower than the re-order level, "OnBaseOrderArrival"

is added to the PES with a quantity equal to B aseOr der ToLvl −B ase.Stock.

CHAPTER 3. DES MODEL 20

"CheckEmergencyTransfer" is called for when there is a critical failure, the platform is out

of stock and the option to have an emergency transfer is available. If there is no stock at the

base, the function is not further executed. The time of the next order arrival is retrieved from

the list. This time is used to estimate the costs for waiting for a normal transport. Furthermore

the costs for having an emergency transfer are estimated. When this cost is lower than waiting

for a normal transport, "OnPlatformEmergencyArrival" is added to the PES.

3.3.5 Transfers

"OnPlatformOrderArrival" increases the stock of the platform with the quantity of the order after

which it is checked whether there are still failed components that are waiting for a spare part for

replacement. If that is the case "OnComponentReplacement" is added to the PES and the stock

of the platform is decreased by one again. At "OnPlatformEmergencyArrival" the "OnCompo-

nentReplacement" is added directly to the PES. The difference between "OnPlatformOrderAr-

rival" and "OnPlatformOrderArrivalSpareReserved" is that in the latter case the stock at the base

still has to be decreased. This could mean that, in the case the stock is 0 at the base, there is no

spare arriving. This is because the spares that are reserved, are taken when they are needed to

replace a failed component.

Upon "OnBaseOrderArrival" the queue with BO’s is handled. This follows the same principle

as explained at "CheckToOrderPlatform" in section 3.3.4.

3.3.6 Stock

The stock on each of the platforms is stored as an attribute of the platform itself and is manip-

ulated by the functions as described in the previous sections. The physical stock on the base

is in the model virtually represented as a ’normal’ stock and a reserved stock. Virtually items

are placed from the normal stock to the reserved stock when a degraded failure takes place and

online CBM detects this failure, or when a PM action has to be postponed because there is insuf-

ficient stock. However, these items can be taken from the reserved stock again, for example, to

meet the demand of another order that comes in. For reordering at the base the reserved stock

is disregarded and only the normal stock has to be equal or lower than the re-order level. By

CHAPTER 3. DES MODEL 21

reserving components the need for ordering spares at the base is detected sooner and should

therefore result in a lower safety stock at the base.

3.3.7 Pseudo-Random Number Generator

The author uses a Pseudo-Random Number Generator (PRNG) for generating the random vari-

ables of section 3.4.3. The Rnd function, which is incorporated in VBA, is used to generate ran-

dom numbers between zero and 1. The Rnd function uses a table of random numbers, and

therefore, for any given initial seed, the same number sequence is generated. The author there-

fore uses the Randomize statement to initialize the random-number generator with a seed based

on the system timer before calling Rnd. The output of Rnd is consequently used to generate

numbers according to the uniform or exponential distribution, as can be seen in the code in

B.1.

3.4 Quantities of the Model

This section describes the quantities that are used in this model. Their respective parameters are

given and their values for the Kristin case are given as well. The quantities are divided in decision

variables (3.4.1), output variables (3.4.2), random variables (3.4.3) and constants (3.4.4).

3.4.1 Decision Variables

The model tries to optimize several decision variables. These decision variables are, however,

different in the two different simulations we run. The decision variables for the Kristin case are

the (s,S) spare order policy variables, for both the platform and base. For the joint optimization

the decision variables are extended with the PM interval, overhaul interval and the boolean CBM

for whether online CBM takes place or not. These variables are constants, when optimizing the

Kristin case, for which the values are shown in table 3.3. The decision variables for the Kristin

case can be found in table 3.2.

It has to be stated that the initial stock levels could also be chosen as decision variables.

However, the author assumes that these are equal to the order-to-levels, as this is the most logi-

CHAPTER 3. DES MODEL 22

Table 3.2: Decision Variables for the Kristin Case
Decision Variable Parameter
Base S BaseOrderToLvl
Base s BaseOrderLvl
Platform S PlatformOrderToLvl
Platform s PlatformOrderLvl

Table 3.3: Additional Decision Variables for the Joint Optimization
Decision Variable Parameter Value
PM interval PMInterval 2000
Overhaul interval OverhaulInt 10000
Online CBM CBM TRUE

cal initial state. Therefore they are not real decision variables. The same holds for the threshold

value for PM at the platform. This one could be regarded as a decision variable and optimized,

but the author choses to have a fixed value for this threshold.

3.4.2 Output Variables

The model has two output variables: the total amount of costs and the average availability. The

total amount of costs is used as the objective function for optimizing the model, where this

variable is to be minimized. The purpose of the average availability is merely to show the per-

formance of the system. One could opt for having the average availability, or a combination of

total costs and average availability as the objective function. The author choses not to do this,

as the simulations show that, with the input parameters of the Kristin case, the availability is not

varying much for different combinations of the decision variables. Table 3.4 summarizes the

output variables.

Table 3.4: Output Variables of the Model
Output Variable Parameter
Total costs AverageTotCosts
Average availability AvgAvailability

CHAPTER 3. DES MODEL 23

3.4.3 Random Variables

The model consists of several random variables, which are summarized in table 3.5. These ran-

dom variables cause the randomness in the model and the values are generated in the simula-

tion using a PRNG, following the distribution of the random variable.

The Kristin platform is being supplied with spare parts, personnel and food supplies by a

boat twice a week. Approximated this means that the maximum time for a transfer to arrive

after the order is placed, is 84 hours. The author assumes that it must take some time to prepare

a transport. Therefore the author argues that this transfer times follows a uniform distribution,

with as minimum the order handling time, and as maximum the sum of the order handling time

and the time between two supplies.

The failure rates of the components that are modeled, are likely to follow a Weibull distribu-

tion with a value for α larger than one. As described in section 2.2.3, the failures are modeled as

a Markov model, which requires exponential transition rates between the states. Furthermore,

SINTEF (2009) presents the failure rate data in an exponential distribution. Using the model

of Hokstad and Frøvig (1996), as introduced in 2.2.3, and the information of SINTEF (2009), we

come to a degraded-shock ratio of 0.73−0.28. The overall critical failure rate is then assigned

to critical shock and critical degraded failure rate according to this ratio. The failure rates are

divided by a factor of 5, since the failure rates in SINTEF (2009) are for the complete gas turbine,

while here it is assumed it consists of 5 identical maintainable items. We then obtain the failure

rates as given in table 3.5.

The replacement and repair rates are assumed to be exponentially distributed as well. The

replacement rates represent the rate for replacing a component at the platform, while the re-

pair rates represent the rate for repairing a repairable component at the workshop at the base.

The replacement rate is based on the very limited data from Statoil, as this is the author’s best

approximation. The repair rates are based on SINTEF (2009).

3.4.4 Constants

Besides all these variables, the model consists of various constants. The values of these con-

stants, however, can be changed for each simulation according to the wishes of the user. Con-

CHAPTER 3. DES MODEL 24

Table 3.5: Random Variables of the Model
Random Variable Parameter Distribution Value
Transfer Time Base-Platform OrderHandlingTime,transTime Uniformly 4-88
Degraded failure rate λd Exponentially 0.000052
Critical degraded failure rate λcd Exponentially 0.000034
Critical shock failure rate λcs Exponentially 0.000013
Replacement rate degraded µd Exponentially 0.25
Replacement rate critical µc Exponentially 0.08
Repair rate degraded γd Exponentially 0.0556
Repair rate critical γc Exponentially 0.0385

stants like these are, for example, the number of runs per simulation or the various costs. Table

3.6 summarizes these constants with according parameters and used values.

The design life of the Kristin platform is 25 years, which is approximated by 219000 hours.

The number of runs is set on 400, which results in a computation time of approximately one

minute per simulation. The desired margin of error (E) of formula 2.1 is set on 0.5% of the

average and a confidence interval with α = 0.05 is chosen, which results in approximately 391

runs. This means that we are 95% sure that the results are accurate within ±0.5%.

The component in this case is a non-repairable component and the fail to start on demand

probability is taken from SINTEF (2009).

Preventive maintenance (PM) takes place every 2000 hours. It is assumed that the minimum

duration is 4 hours, for testing and controlling of the equipment. The actual PM interval can be

higher than these 4 hours, when preventive replacements have to be conducted that take more

than these 4 hours. Every 10000 hours overhaul takes place, for which the duration is 6 hours.

The repair quality, which can be seen as the replacement quality in this case, since new items

are ordered instead of repaired, is assumed to be 0.99. This means that the MT T F decreases

with 1% upon each component replacement, this due to possible non-optimal installation of

the component.

It is assumed that at least one spare should be in stock for using that component for replace-

ment of a degraded component. Hence, this is not an extra restriction on PM, since it is not

known what the policy of Statoil is in this case.

The author assumes the majority of the costs, as there is no data available for these costs.

Logical assumptions are made, such as holding costs for the platform are higher than for the

CHAPTER 3. DES MODEL 25

base and emergency transfer costs are much higher than regular transfer costs. These regular

transportation costs are assumed to be low, since these deliveries take place regardless of the

need for transporting the spare. The downtime costs for the Kristin platform are approximately

15 million kroner a day. The costs per item are based on spare part information from Statoil. An

average from the main maintainable items of the gas turbine is taken for the cost price of the

item.

Three different situations are simulated in order to determine the impacts of having different

PM strategies on stock levels:

1. Overhauls that take place according to BRP.

2. Overhauls that take place according to BRP, and offline CBM that takes place with intervals

according to ARP.

3. Overhauls that take place according to BRP, offline CBM that takes place with intervals

according to ARP and online CBM.

The constants PM, Overhaul and CBM are therefore varying during the three different simula-

tions.

CHAPTER 3. DES MODEL 26

Table 3.6: Constants of the Model
Constant Parameter Value
#Platforms nPlatforms 5
#Components per Platform nComponents 5
Design life platform (h) MaxTime 219000
Number of runs nRuns 400
Emergency transfer option emergTrans TRUE
Emergency transfer time (h) emergTransTime 12
Order from Base time (h) OrderTime 720
Degraded production (0-1) DegradedProduction 0.95
Fail to start on demand FTSpfd 0.0034
Repairable Repairable FALSE
Platform initial stock PlatformStockLvl PlatformOrderToLvl
Base initial stock BaseStockLvl BaseOrderToLvl
PM PM
PM duration (h) PMDuration 4
Overhaul Overhaul
Overhaul duration (h) OverhaulDur 6
Repair Quality (0-1) RepQual 0.99
Min. stockLvl at Platform for PM PMminstock 1
Transfer Base-Platform per item CostPerTransfer 400
Emergency transfer per item CostPerEmergencyTrans 750000
Repair of item at base CostPerRepair 1000
PM replacement per item CostPerPMReplacement 2000
Start PM period CostPerPMPeriod 2500
Downtime per hour DowntimePerT 625000
CM replacement per item CostPerCM 6000
Holding per item per hour on platform HoldingPlatformPerT 2
Holding per item per hour on base HoldingBasePerT 1
Order cost per item OrderCostPerItem 10000
Cost per order on base CostPerBaseOrder 500
Cost per order on platform CostPerPlatformOrder 250
Cost per overhaul per component CostPerOverhaul 10000
Cost for online CBM per time unit CBMpert 2

Chapter 4

Optimization Methods

This chapter introduces methods that can be used for optimizing a DES. Sections 4.1, 4.2 and

4.2.2 focus on optimizing the decision variables of the DES, while 4.3 focuses on optimizing the

computation time of the DES.

4.1 Introduction to Optimization Approaches

This section gives a brief overview of which some methods one can use to find the optimal val-

ues of the model, in order to find optimal stock values in the Kristin case and a method for joint

optimization of the PM interval, the overhaul interval, spare order threshold and stock levels.

In a relatively small case, with a maximum S of 10 for both the base we have 10! × 10! =
1.3×1013 search spaces. Finding the optimal value by calculating all these options would take

too much time and therefore there is a need for a faster method. Firstly, the author develops

a trial and error method which should decrease the computation time significantly. All possi-

ble combinations of base and platform stock levels (s,S) with S = 1,2, ...,10 and s values in the

range from s = max(0,S −2) to s = S −1 are simulated for each of the simulations. After these

simulations, the behavior of the cost function becomes clear and a local optimization strategy

follows consequently through which the local minimum values can then be found. When it is

clear that an S-value of 10 is not sufficient and it is increased. The values of the parameters s

and S are either increased or decreased by 1 for each simulation. If an increment of one of the

27

CHAPTER 4. OPTIMIZATION METHODS 28

parameters yields a higher cost, we know that the previous value was the local maximum and

further increments do not lead to better results. The same holds for decreasing of one of the

parameters. Through this approach al the local minimum values that could be the global mini-

mum cost value are found and therefore this methods yields a value which is close to the global

minimum cost value. This method is more or less a trial and error method, which is undesirable.

It furthermore does not only take a large computation time, but it also requires a lot of time from

the designer to enter the input. The designer should not be a mediator between the model and

the algorithm that optimizes the model. One should desire a simulation that automatically finds

the optimal values. Therefore the author proposes the use of another method for optimizing the

model.

The earlier performed literature study by the author describes both marginal analysis (MA)

as genetic algorithms (GA) as possible ways of optimizing a DES. The author sees a MA here as

unfit, since it is unclear which stock values follow each other. There are no clear increments with

value of one in the parameters. An MA is useful when we want to optimize an (S −1,S) policy,

since the S has increments of one and the optimal value can easily be found. With an (s,S) policy

this is not possible, since there is not such a similar linear increase of the parameters (s,S).

The author therefore choses to use a GA for optimizing this model. An introduction to GA can

be found in Yu and Gen (2010), as it is not further explained here. The main advantage of using

a GA for a complex DES model is that it works very efficient in a situation where there exists

a lot of local minima/maxima. Since the trial and error method shows a lot of local minima,

developing a GA seems like an efficient way in optimizing this problem. Paul and Chanev (1997)

use a simplified GA for optimizing a complex DES model. The algorithm that the author codes

is based on their algorithm. This modified algorithm, which is based on a highly disruptive

crossover and elitist selection, has proved to be a good alternative to the classical GA (Paul and

Chanev, 1997).

CHAPTER 4. OPTIMIZATION METHODS 29

4.2 Genetic Algorithm for Optimizing Decision Variables

4.2.1 Introduction to Genetic Algorithm

The first step is the Initialization. The author decides to create a population size popL of 100.

This size should be big enough to ensure the variance in the population after several iterations,

but is not so big that initialization takes too much computation time. Furthermore, with a very

large population size it requires more iterations to develop the initial population towards a pop-

ulation with a higher fitness level. During this initialization the order-to-levels S for both the

base and platform are initially computed by using the PRNG that generates numbers according

to a uniform distribution, with a minimum of 1 and maximum S value of 15 for both base and

platform. Based on the trial-and-error method this should be sufficient to find the optimal stock

values. After initialization of the order-to-levels, the values for the re-order levels are generated.

These are generated using the same PRNG, but with a minimum of 0 and a maximum of the

according order-to-level S minus 1. The (s,S) order policy of the base represents one gene and

the order (s,S) order policy of the platform represent another gene. Consequently the DES is

executed for all the individuals in the population in order to find the total costs of the respective

stock levels.

After the initialization, Evaluation takes place. The goal function in this optimization is to

minimize the total costs. After this evaluation the weakest individual, which is the one that yields

the highest costs, dies and is replaced by a new individual.

This new individual is created by Crossover. Two parents are randomly chosen for this

crossover. The order policy (s,S) for the base and platform are chosen with a probability Ppar

from the fittest parent and a probability of 1-Ppar from the second parent. After the crossover

mutation can take place in order to get randomness in the population.

This Mutation can take place on this new offspring with a probability of Pmut. When mu-

tation takes place, one of the two genes is randomly chosen and changed. The chosen gene is

regenerated according to the same principle as the initialization.

The last step is Replication of the best individual, which takes place with a probability of

Pbest. The best individual is replicated and added to to the population, replacing the weakest

individual again. This process is being repeated for a number of predefined iterations. A sum-

CHAPTER 4. OPTIMIZATION METHODS 30

mary of the input parameters is given in table 4.1.

Table 4.1: Input Variables for the GA for Optimization of the Model
Parameter Variable Value
popL Population size 100
Ppar Probability that the gene of the fitter parent is chosen during crossover 0.7
Pmut Probability of mutation of a gene after crossover 0.5
Pbest Probability of replication of the best individual at each iteration 0.4
nIterations Number of iterations before termination of the algorithm 50

4.2.2 Genetic Algorithm for Joint Optimization

The GA can be further extended in order to optimize jointly the PM interval, the overhaul inter-

val, spare order threshold and stock levels. The principles of the algorithm stay the same, but

during this optimization problem there are not 4 variables, but 7 decision variables we should

optimize. These variables and their possible ranges are summarized in table 4.2. There are more

variables to optimize and therefore the search grid increases significantly. Therefore other input

variables for the model are necessary, which can be found in table 4.3. The number of itera-

tions is increased, since there is a bigger search grid to cover. Therefore the value of Pbest is

decreased, otherwise the population would loses it variety as too many copies of the best indi-

vidual would be made.

Table 4.2: Decision Variables for Joint Optimization of the Model
Parameter Variable Range
S-base Order-to-level at the base s-base+1 - 15
S-platform Order-to-level at the platform s-platform+1 - 15
s-base Re-order level base 0 - S-base-1
s-platform Re-order level platform 0 - S-platform-1
Overhaul-interval Time in-between overhauls PM interval - 219000
PM-interval Time in-between tests 1000 - Overhaul-interval
Ls Spare order threshold level Degraded - Failed

It is assumed that offline condition monitoring occurs more often than overhauls of the sys-

tem and therefore this interval cannot be higher than the overhaul interval. When the PM and

overhaul intervals become too small, the computation time would increase significantly, and

therefore a minimum value of 1000 hours is assumed. The design life is the maximum of the PM

CHAPTER 4. OPTIMIZATION METHODS 31

Table 4.3: Input Variables for the GA for Joint Optimization
Parameter Variable Value
popL Population size 100
Ppar Probability that the gene of the fitter parent is chosen during crossover 0.7
Pmut Probability of mutation of a gene after crossover 0.5
Pbest Probability of replication of the best individual at each iteration 0.3
nIterations Number of iterations before termination of the algorithm 100

and overhaul intervals, which means that no preventive maintenance actions take place. Both

intervals are changed by factors of 100 hours in order to decrease the search space volume and

to make changes in these intervals significant.

Since components only have three states (functioning, degraded, failed), the threshold level

can only either be "degraded" or "failed". However, it is only natural to order a spare part when

a preventive maintenance action takes place, this spare order threshold level is approached by

having online CBM or not. That means that if there is online CBM, a spare order is send out

upon a degraded failure. When there is no online CBM, the degraded failure is only detected

during a testing period. Hence the spare part is not ordered when the degraded failure occurs.

4.3 PES Handling Optimization

As the simulation requires a significant amount of computation time, one should not only try

to optimize the output results, but also the computation time. Code should be written such

that the events are executed as efficient as possible. One way of optimizing computation time

is the method for the handling of the pending event set (PES). This section explains four dif-

ferent methods, which are tested according to four different cases in order to determine their

functionality.

The first two methods are based on Vatn (2012), who uses a list that is stored in an array.

The first method uses a linear search through this array, while the second method uses an in-

dexed list, which enables fast access to the PES. In the second method the program first searches

through the indexed list, which points to some items in the PES. Through the search in the index

list one does not have to search the complete PES. Listing 4.1 shows the core of method 1, while

listing 4.2 shows the core of method 2. Using a fixed length for the array requires quite some

CHAPTER 4. OPTIMIZATION METHODS 32

memory space, but it has as main advantage that the ReDim statement does not has to be used

every time an event is being added to or deleted from the list. This ReDim statement requires a

lot of computation time, as it copies the whole array to another memory space every time it is

being called (Getz and Gilbert, 2000). The method with a variable array length with resizing of

the array using the ReDim function is not being tested here.

Listing 4.1: Method 1

1 Type PES1Element

2 t As Single

3 NextElement As Integer

4 NextAvail As Integer

5 End Type

6 Const MaxDim As Integer = 4096

7 Public PES1(1 To MaxDim) As PES1Element

Listing 4.2: Method 2

1 Type PESElement

2 t As Single

3 NextElement As Integer

4 NextAvail As Integer

5 pIndx As Integer

6 End Type

7 Const MaxDim As Integer = 4096

8 Public PES(1 To MaxDim) As PESElement

9 Type IndxElement

10 t As Single

11 pPES As Integer

12 End Type

13 Const SizeOfIndx As Integer = 200

14 Public Indx (1 To SizeOfIndx) As IndxElement

Getz and Gilbert (2000) explain another method that uses a linked list class. It is this class

that the author has used for implementation of the tool, as the code is clear and easy to un-

derstand. This method has as advantage over the previous two methods, that the use of the

memory varies according to the length of the list. There is therefore no need to reserve a piece

CHAPTER 4. OPTIMIZATION METHODS 33

of the memory for the array. One can use different search algorithms. The author uses a linear

search method for the implementation of this module, but also a binary search tree is tested.

These linked classes are initialized by setting a "listhead" or "treehead" to the first event that

is to be inserted. The next events that are inserted are then linked through the "NextItem" or

"LeftChild" and "RightChild" attributes. Listing 4.3 shows the core of method 3, while listing 4.4

shows the core of method 4. The search algorithms are not shown here.

Listing 4.3: Method 3

1 ’ ListItem c l a s s .

2

3 Public t As Single

4 Public NextItem As ListItem

Listing 4.4: Method 4

1 ’ TreeItem Class .

2

3 Public t As Single

4 Public LeftChild As TreeItem

5 Public RightChild As TreeItem

These four different methods are tested for four different cases, which are shown in table

4.4. A PES length of 35 is chosen, since this the average length of the PES in the Kristin case.

Additionally, a PES length of 100 is chosen in order to determine the quality of the methods

in different lengths of the PES. Each length is tested with 500 and 2000 iterations in order to

determine the relation between the initialization speed of the PES and the search and delete

speed of the PES. 10 Sets of times are generated and are used for testing these cases. The author

choses to generate 10 different sets and use the same sets for each of the cases in order the

reduce the influence of the generated times on the computation time of each case. For each

set the average of 100 runs is taken as actual computation time for that specific combination of

time set and case.

CHAPTER 4. OPTIMIZATION METHODS 34

Table 4.4: Simulation Cases for PES Handling Optimization
Case Length Iterations
1 35 500
2 100 500
3 35 2000
4 100 2000

Chapter 5

Results

This chapter discusses the results of the optimization problems in this thesis. Section 5.1 dis-

cusses the results for the Kristin Case, while the results for the use of the GA for the joint opti-

mization of the variables are discussed in section 5.2. Lastly, section 5.3 discusses the results for

the efficiency of the different PES methods.

5.1 Optimal Stock Values for the Kristin Case

The model is used for simulating the three cases that are explained in section 3.4.4., in order to

determine the impact of different PM strategies on the stock levels. Table 5.1 shows the results

for the optimization of the case by trial-and-error method, while the results for the optimiza-

tion by the GA are given in table 5.2. The computation time for the trial-and-error method is

approximately four days, while the computation time of the model by the GA is approximately

one day.

The lowest total costs are for the case where we have online CBM, while the highest costs

are for the case where we only have overhauls. Case 2, with offline condition monitoring and

overhauls gives results that are really close to case 1. This is something in line with the expecta-

tions. The amount of spare parts in stock for case 3 are the lowest, while they are the highest for

case 1. This can be explained that more PM actions take place, and therefore more spares are

necessary. As mentioned in the introduction, these could in theory be supplied with a JIT policy.

This is not always possible, since PM actions also take place when the system shuts down after

35

CHAPTER 5. RESULTS 36

a critical system, which cannot be planned.

Table 5.1: Results for Optimization of the Model by Trial-and-Error
Variables Case 1 Case 2 Case 3
platform (s,S) (6,9) (4,5) (3,4)
base (s,S) (4,6) (2,5) (3,8)
Tot. costs (109 kr) 9.442 9.446 18.27
Availability 0.996 0.996 0.998

Table 5.2: Results for Optimization of the Model by the Genetic Algorithm with 400 runs
Variables Case 1 Case 2 Case 3
platform (s,S) (7,9) (7,8) (0,1)
base (s,S) (10,13) (8,11) (3,4)
Tot. costs (109 kr) 9.433 9.427 18.25

The results for the optimization by the GA give a platform stock policy of only (0,1) for the

3rd case, which seems to be too low, even though the total costs are lower than what we had

obtained by the trial-and-error method. For case 1 and case 2 the stock levels are much higher

with optimization by GA than with optimization by trial-and-error. These differences can be ex-

plained by the fact that 400 runs give results that are not accurate enough. The optimal policies

of the GA optimization are simulated once more and then much higher results, which were far

from optimal, are obtained for these policies. These outliers are caused by the low amount of

runs, which have high impact while optimizing the model by the GA. Since the search grid is

significantly smaller than during the trial-and-error-method, we can easily afford it to use more

iterations to obtain more accurate results. The margin of error is therefore set on 0.1%, which

leads to 10000 runs and a computation time of approximately 25 minutes per fitness calculation

of the individual. The results for the simulation with 10000 runs are shown in table 5.3. Despite

having 25 times the amount of runs than the simulation with the trial-and-error method, the

computation time is still short with a length of approximately 2.5 days.

Table 5.3: Results for Optimization of the Model by the Genetic Algorithm with 10000 runs
Variables Case 1 Case 2 Case 3
platform (s,S) (0,3) (12,13) (2,3)
base (s,S) (2,5) (4,12) (8,9)
Tot. costs (109 kr) 9.471 9.489 18.36

CHAPTER 5. RESULTS 37

The total costs for each of the cases are slightly higher for the results of the GA than for the

trial-and-error method. This is caused by the fact that the GA does not guarantees to find the

optimum value, but a local optimum that is close to the global optimum value. Especially case 2

gives completely different values for the re-order and order to levels. This can be caused that this

local optimum is very close to the global optimum value, even though the values of the variables

are very different. This phenomenon is already discovered by the author while executing the

trial-and-error method. Also by this optimization, the difference between costs for case 1 and

case 2 is very small. Adding online CBM seems to have a positive effect on the costs, however,

this is a very small effect. This can be explained by the fact that more PM actions are executed, as

the probability of having a spare part on the platform when this action has to take place is higher

as a result of the reservation system. Therefore more spares are used throughout the lifetime of

the platform, which increases the total costs. The decrease in costs related to a failure is only

slightly smaller than the increase in costs.

As the results for the decision variables are differing, it is hard to get conclusions about the

impact of the different PM policies. The author believes that this is not exactly clear, because PM

periods also take place upon a critical failure and follow an ARP policy, and not a BRP. Therefore

it is hard to predict the spares that are necessary for PM actions. The demand for spares for PM

is uncertain and therefore the amount one needs in stock increases, which is contrary to what

one might expect. It is normally expected that having PM actions can reduce the safety stock.

However, these results show that it is not necessarily always the case.

5.2 Joint Optimization of the Decision Variables

The Genetic Algorithm of section 4.2 is used for joint optimization of the decision variables, for

which the results can be found in table 5.4. The computation time is approximately 3.5 days.

The costs are significantly reduced in comparison with the results from section 5.1. The PM

interval is significantly decreased, while the overhaul interval has been increased. As the results

from the previous section suggest, there is not a big difference between having online CBM or

not. The results in this optimization say there should not be CBM. The stock levels are rather

low, especially for the platform, but this can be explained by the low PM interval. The probability

CHAPTER 5. RESULTS 38

of having to replace multiple components in a PM period and the probability of having a critical

failure become small and therefore less stock is necessary.

Table 5.4: Results for Joint Optimization of the Model by the Genetic Algorithm
Variables Value
platform (s,S) (0,2)
base (s,S) (2,4)
PM interval (h) 1100
Overhaul interval (h) 12400
CBM FALSE
Tot. costs (109 kr) 8.139

5.3 Efficiency of PES Methods

Table 5.5 shows the average of the computation time of the 10 different time sets. However, to

be able to compare the performance, the relative times are computed, which are shown in table

5.7.

Table 5.5: Results for Efficiency of PES Methods: Actual Times (in seconds)
Method 1 Method 2 Method 3 Method 4

Case 1 0.052645 0.053598 0.057199 0.059488
Case 2 0.055965 0.056371 0.062170 0.063246
Case 3 0.203449 0.205215 0.218781 0.228121
Case 4 0.206082 0.207730 0.229848 0.233000

Table 5.6: Results for Efficiency of PES Methods: Relative Times (in %)
1vs2 1vs3 1vs4 2vs3 2vs4 3vs4

Case 1 1.810 8.652 13.000 6.720 10.990 4.002
Case 2 0.726 11.887 13.010 11.080 12.196 1.004
Case 3 0.868 7.536 12.127 6.611 11.162 4.269
Case 4 0.800 11.532 13.062 10.647 12.165 1.371

It is clear that method 1 is the fastest one, regardless of the case. However, when analyzing

the relative times, we learn that the more complex structures (method 2 and 3), perform rela-

tively better when the length of the PES is increasing. Table 5.7 furthermore shows that when the

amount of iterations increases, the method the author uses (method 3), is performing relatively

CHAPTER 5. RESULTS 39

better than methods 1 and 2. This means that initializing the linked list of method 3 is slower

than initializing the array of methods 1 and 2, while the deleting and inserting of items might

go faster. Therefore, the author choses to run another test with 20000 iterations for both PES

lengths. Table 5.7 shows the results for this simulation, relative to method 1.

Table 5.7: Results for efficiency of PES methods with 20000 iterations: relative times (in %)
Method 2 Method 3 Method 4

Length: 35 1.212 6.180 6.972
Length: 100 -0.308 7.653 7.810

The results show that method 1 is not the fastest, when the PES length is 100 and the sim-

ulation runs with 20000 iterations. Furthermore, the performance of both methods 3 and 4

becomes better when the number of iterations increases in comparison with method 1. The

author believes that method 4 performs slower than any other method, because it loses time for

deleting the first item from the PES. Deleting the first item from the tree requires some steps to

find it, as it is placed in a branch of the three, while for the other three methods the item that has

to be deleted, is the first item in the list. These tests show that the benefit of the faster search for

inserting items in the tree are not outweighing the loss of speed when deleting an item.

Chapter 6

Summary and Recommendations for

Further Work

This final chapter summarizes and concludes the work of this thesis in section 6.1, while these

are briefly discussed in section 6.2. Recommendations for further work are given in section 6.3.

6.1 Summary and Conclusions

Section 2.1 shows several possibilities for determining the optimal stock values. The author

shows that developing a DES in VBA is a good option for solving this problem. The author de-

termines the optimal stock values for the Kristin case by a trial-and-error method, for which the

results are shown table 5.1. Table 5.3 shows the results for the Kristin case by solving it with the

genetic algorithm the author has created in section 4.2. These results furthermore show the im-

pacts of the different PM strategies on the total costs and stock levels. The total costs decrease

significantly when PM is scheduled. The difference in total costs between having online CBM

or not is rather small. Unfortunately, as there are many local optima that are very close to the

global optimum, it was very difficult to find a consistent answer for the impact of the different

PM strategies on stock levels. The author argues that enabling PM upon critical failures and fol-

lowing an ARP strategy might increase the amount of spares in stock, rather than decrease, but

this has not been tested extensively.

40

CHAPTER 6. SUMMARY 41

Section 5.3 shows the efficiency results for the different methods for handling a PES, which

are introduced in section 4.3. This research shows that easy constructions, like a linked list, are

most efficient when a PES has a short length and a low amount of iterations take place. When the

length and number of iterations increases, a more complex constructions, such as a linked list

combined with an index list, can become faster than the easy constructions. It can therefore be

concluded that the designer of the DES should determine the characteristics of the DES, before

an appropriate PES method can be chosen.

The author shows that a simplified genetic algorithm, which is introduced in section 4.2,

can be used for solving the model. The decision variables can be optimized and the genetic

algorithm can jointly optimize the PM interval, the test interval, spare order threshold and stock

levels. Especially for the joint optimization the genetic algorithm gives good results, which are

shown in table 5.4. The total costs are reduced significantly using this joint optimization in

respect to the initial values of that are used in the Kristin case. The simplified genetic algorithm

has as main advantage over a normal genetic algorithm that it is much easier to understand and

implement. As good results are obtained in this thesis, it is shown that the proposed simplified

genetic algorithm is a good alternative for a normal genetic algorithm.

6.2 Discussion

As stated in section 1.3, the data acquisition for the Kristin case is very limited and results for

this case are therefore not really useful for practical purposes. The output should therefore not

be used in real life.

The testing of the speed of the methods only tests the speed of inserting items in the PES and

retrieving the next item from the PES. However, as the explanation of the code in 3.3 shows, there

are also functions that are searching for specific items in the list and consequently delete these

elements. These are not included in this research, as only the two basic functions are tested

here. Therefore, the overall performance for each of the methods in might be slightly different

with respect to this specific model.

Due to the characteristics of the model, optimizing the spare order threshold with online

CBM, is too simplistic in this model. As there is only one state between a functioning and failed

CHAPTER 6. SUMMARY 42

state, the degraded state, there is no freedom in choosing the spare order threshold.

The results of the simulation of the simplified genetic algorithm might be better if the in-

put variables of the algorithm are optimized. The author only runs some trial runs in order to

find good values for these. With other values for the variables the algorithm might find a local

optimum that is closer to the global optimum or the computation time might be reduced.

6.3 Recommendations for Further Work

The impacts of having different PM strategies on stock levels is recommended for further work.

One could test the differences in spares when having PM upon critical failures or not, and when

the ARP or BRP policy is chosen.

The research to the efficiency of handling the PES should be extended to all possible manip-

ulations of the PES, not only the two main functions. The author therefore recommends further

research that includes more manipulations, like, for example, deleting specific items from the

list. Furthermore, these methods could be compared with other methods for keeping a PES.

Furthermore, the amount of memory the methods take is not tested. This is also a valuable

characteristic, so this should be included in further research.

A model where online CBM is used more extensively should be developed. A model with

more states could be created, or a model that where components’ performance are represented

with a continuously variable, rather than with discrete states.

The simplified genetic algorithm that is used in this thesis needs some further research in

order to give even better results. One can develop a method in order to optimize the input

values the algorithm requires.

Appendix A

Acronyms

ATP Age-Replacement Policy
BO Backorders
BRP Block-Replacement Policy
CBM Condition-Based Maintenance
CM Corrective Maintenance
CPN Colored Petri Nets
DES Discrete-Event Simulation
FIFO First-In-First-Out
GA Genetic Algorithm
JIT Just-In-Time
MA Marginal Analysis
MI Maintenance Items
MTTF Mean Time To Failure
NTNU Norwegian University of Science and Technology
PES Pending-Event Set
PM Preventive Maintenance
PRNG Pseudo-Random Number Generator
RAMS Reliability, Availability, Maintainability and Safety

43

Appendix B

Code

This appendix shows the VBA code for the DES Tool and for the Genetic Algorithm.

B.1 DES Tool

This section contains the codes of the different modules of the DES Tool. The last two listings

contain the code for the creation of the list and queue class. The list class is used as the PES of

the simulation, while the queue is used to store backorders with a FIFO policy.

Listing B.1: Main Module

1 Public totCost As Single

2 Public Avai l As Single

3 Public transTime As Single

4 Public emergTransTime As Single

5 Public emergTrans As Boolean

6 Public listHead As ListItem

7 Public Clock As Single

8 Public qFront As QueueItem

9 Public qRear As QueueItem

10 Public AverageTotCosts As Single

11 Public A v g A v a i l a b i l i t y As Single

12 Public OrderTime As Single

13 Public DegradedProduction As Single

14 Public OrderHandlingTime As Single

44

APPENDIX B. CODE 45

15 Dim MaxTime As Single

16 Dim Data As Variant

17

18 Sub MainProgSimul ()

19 ’Main program that runs the simulation nRuns times

20 Dim nRuns As Integer

21 AverageTotCosts = 0

22 A v g A v a i l a b i l i t y = 0

23 nRuns = Worksheets (" SpareSimulation ") . Range ("nRuns") . Value

24 MaxTime = Worksheets (" SpareSimulation ") . Range (" LifetimePlatform ") . Value

25

26 For i = 1 To nRuns

27 SubProgSimul

28 CalcTotCosts

29 G e t A v a i l a b i l i t y

30 Next

31

32 ’ Results are written in the sheet

33 Worksheets (" SpareSimulation ") . Range (" TotalCosts ") . Value = (AverageTotCosts / nRuns)

34 Worksheets (" SpareSimulation ") . Range (" A v a i l a b i l i t y ") . Value = (A v g A v a i l a b i l i t y / nRuns)

35 End Sub

36

37 Private Sub SubProgSimul ()

38 ’ Core of the simulation

39 Dim t o c l e a r l i s t As Boolean

40

41 I n i t V a r i a b l e s

42 InitPlatforms

43 InitComponents

44 InitCosts

45 I f PM Then

46 InitPM

47 End I f

48 I f Overhaul Then

49 InitOverhaul

50 End I f

APPENDIX B. CODE 46

51

52 Do While MaxTime > GetClock ()

53 Data = GetNxtEvent ()

54 CalcHoldingCosts

55 CalcDowntimeCosts

56 CalcUpTime

57 CalcCBMcosts

58 ExecuteCallback Data

59 Loop

60

61 ’ Clear the l i s t and queue to create memory space .

62 t o c l e a r l i s t = True

63 Do While t o c l e a r l i s t

64 C l e a r L i s t t o c l e a r l i s t

65 Loop

66 Do Until IsEmpty ()

67 ClearQueue

68 Loop

69 End Sub

70

71 Function I n i t V a r i a b l e s ()

72 Set listHead = Nothing

73 Set l i s t C u r r e n t = Nothing

74 Set l i s t P r e v i o u s = Nothing

75 Set qFront = Nothing

76 Set qRear = Nothing

77 Clock = 0

78 PrevClock = 0

79 CompNumb = 0

80 PlatNumb = 0

81 FC = 0

82 MTTF = 0

83 OrderHandlingTime = Worksheets (" SpareSimulation ") . Range ("OrderHandlingTime") . Value

84 OrderTime = Worksheets (" SpareSimulation ") . Range ("OrderTime") . Value

85 transTime = Worksheets (" SpareSimulation ") . Range (" TransferTime ") . Value

86 emergTransTime = Worksheets (" SpareSimulation ") . Range ("EmergencyTransferTime") . Value

APPENDIX B. CODE 47

87 emergTrans = Worksheets (" SpareSimulation ") . Range ("EmergencyTransfer") . Value

88 MDTd = 1 / Worksheets (" SpareSimulation ") . Range ("MDTd") . Value

89 MDTc = 1 / Worksheets (" SpareSimulation ") . Range ("MDTc") . Value

90 MTTRd = 1 / Worksheets (" SpareSimulation ") . Range ("MTTRd") . Value

91 MTTRc = 1 / Worksheets (" SpareSimulation ") . Range ("MTTRc") . Value

92 FTSpfd = Worksheets (" SpareSimulation ") . Range ("FTSpfd") . Value

93 PMminstock = Worksheets (" SpareSimulation ") . Range ("PMminstock") . Value

94 PM = Worksheets (" SpareSimulation ") . Range ("PM") . Value

95 Overhaul = Worksheets (" SpareSimulation ") . Range ("OVERHAUL") . Value

96 RepQual = Worksheets (" SpareSimulation ") . Range ("RepQual") . Value

97 PMInterval = Worksheets (" SpareSimulation ") . Range (" PMInterval ") . Value

98 PMDuration = Worksheets (" SpareSimulation ") . Range ("PMDuration") . Value

99 CBM = Worksheets (" SpareSimulation ") . Range ("CBM") . Value

100 DegradedProduction = Worksheets (" SpareSimulation ") . Range ("DegradedProduction") . Value

101 End Function

102

103 Function C l e a r L i s t (t o c l e a r l i s t As Boolean)

104 ’ Clear the l i s t

105 I f l istHead I s Nothing Then

106 t o c l e a r l i s t = False

107 E x i t Function

108 End I f

109

110 Set l i s t C u r r e n t = listHead . NextItem

111 I f l i s t C u r r e n t I s Nothing Then

112 Set listHead = Nothing

113 Else

114 Set listHead = l i s t C u r r e n t . NextItem

115 End I f

116 End Function

117

118 Function ClearQueue ()

119 ’ Clear BO queue

120 I f qFront I s qRear Then

121 Set qFront = Nothing

122 Set qRear = Nothing

APPENDIX B. CODE 48

123 Else

124 Set qFront = qFront . NextItem

125 End I f

126 End Function

Listing B.2: PES Module

1 Dim PrevClock As Single

2 Public UpTimes () As Single

3 Public A v a i l a b i l i t i e s () As Single

4

5 Function GetNxtEvent () As Variant

6 Dim t As Single

7

8 Set l i s t C u r r e n t = listHead

9

10 t = l i s t C u r r e n t . t

11 PrevClock = Clock

12 Clock = l i s t C u r r e n t . t

13

14 GetNxtEvent = l i s t C u r r e n t . Data

15 DeleteElementFromList t

16 End Function

17

18 Function ExecuteCallback (Data As Variant)

19 Dim FuncName As String

20 Dim CompOrPlat As Integer

21 Dim Quantity As Integer

22 QorFC = Data (2)

23 CompOrPlat = Data (1)

24 FuncName = Data (0)

25

26 Select Case FuncName

27 Case "OnComponentFailure"

28 OnComponentFailure CompOrPlat , QorFC

29 Case "OnComponentReplacement"

30 OnComponentReplacement CompOrPlat

APPENDIX B. CODE 49

31 Case "OnSpareRepair"

32 OnSpareRepair

33 Case " OnPlatformOrderArrival "

34 OnPlatformOrderArrival CompOrPlat , QorFC

35 Case " OnBaseOrderArrival "

36 OnBaseOrderArrival QorFC

37 Case "OnPMReplacement"

38 OnPMReplacement CompOrPlat

39 Case "OnStartPMPeriod"

40 OnStartPMPeriod CompOrPlat

41 Case "OnEndPMPeriod"

42 OnEndPMPeriod CompOrPlat

43 Case " OnStartOverhaul "

44 OnStartOverhaul

45 Case "OnEndOverhaul"

46 OnEndOverhaul

47 Case " OnPlatformEmergencyArrival "

48 OnPlatformEmergencyArrival CompOrPlat

49 Case " OnPlatformOrderArrivalSR "

50 OnPlatformOrderArrivalSR CompOrPlat , QorFC

51 End Select

52 End Function

53

54 Function CallBackData (CallBackFunction As String , Optional ByVal Element As Integer = 0 ,

Optional ByVal Element2 As Integer = 0)

55 ’ This function combines the function name with a parameter for easy r e t r i e v i n g

56 CallBackData = Array (CallBackFunction , Element , Element2)

57 End Function

58

59 Function InsertElementInList (t As Single , Data As Variant)

60 Dim listNew As ListItem

61

62 Set listNew = New ListItem

63 listNew . t = t

64 listNew . Data = Data

65

APPENDIX B. CODE 50

66 SearchList t , l is tCurrent , l i s t P r e v i o u s

67

68 I f Not l i s t P r e v i o u s I s Nothing Then

69 Set listNew . NextItem = l i s t P r e v i o u s . NextItem

70 Set l i s t P r e v i o u s . NextItem = listNew

71 Else

72 Set listNew . NextItem = listHead

73 Set listHead = listNew

74 End I f

75 End Function

76

77 Function DeleteElementFromList (t As Single)

78

79 SearchList t , l is tCurrent , l i s t P r e v i o u s

80

81 I f l i s t P r e v i o u s I s Nothing Then

82 Set listHead = l i s t C u r r e n t . NextItem

83 Else

84 Set l i s t P r e v i o u s . NextItem = l i s t C u r r e n t . NextItem

85 End I f

86 End Function

87

88 Function SearchList (ByVal t As Single , ByRef l i s t C u r r e n t As ListItem , ByRef l i s t P r e v i o u s

As ListItem)

89 Set l i s t P r e v i o u s = Nothing

90 Set l i s t C u r r e n t = listHead

91

92 Do Until l i s t C u r r e n t I s Nothing

93 I f t > l i s t C u r r e n t . t Then

94 Set l i s t P r e v i o u s = l i s t C u r r e n t

95 Set l i s t C u r r e n t = l i s t C u r r e n t . NextItem

96 Else

97 E x i t Do

98 End I f

99 Loop

100 End Function

APPENDIX B. CODE 51

101

102 Function EventNotice (t As Single , Data As Variant)

103 EventNotice = InsertElementInList (t , Data)

104 End Function

105

106 Function GetClock ()

107 GetClock = Clock

108 End Function

109

110 Function TimeElapsed ()

111 TimeElapsed = Clock − PrevClock

112 End Function

113

114 Function CalcUpTime ()

115 ’ Keeps track of the uptime of each platform

116 For i = 1 To nPlatforms

117 I f Not Platforms (i) . State = Failed Then

118 UpTimes(i) = UpTimes(i) + TimeElapsed

119 End I f

120 Next

121 End Function

122

123 Function G e t A v a i l a b i l i t y ()

124 ’ Calculates the a v a i l a b i l i t y based on the uptimes of a l l platforms

125 Dim A v a i l a b i l i t y As Single

126 A v a i l a b i l i t y = 0

127

128 For i = 1 To nPlatforms

129 A v a i l a b i l i t i e s (i) = UpTimes(i) / GetClock ()

130 Next

131

132 For i = 1 To nPlatforms

133 A v a i l a b i l i t y = A v a i l a b i l i t y + A v a i l a b i l i t i e s (i)

134 Next

135

136 A v g A v a i l a b i l i t y = A v g A v a i l a b i l i t y + (A v a i l a b i l i t y / nPlatforms)

APPENDIX B. CODE 52

137 End Function

Listing B.3: Components Module

1 Public Const Functioning As Integer = 2

2 Public Const Degraded As Integer = 1

3 Public Const Failed As Integer = 0

4 Public CompNumb As Integer

5 Public Repairable As Boolean

6

7 Type Component

8 Number As Integer

9 PlatformNumb As Integer

10 State As Integer

11 Repairable As Boolean

12 CMOrder As Boolean

13 PMOrder As Boolean

14 Event As Integer

15 MTTFd As Single

16 MTTFcs As Single

17 MTTFcd As Single

18 End Type

19

20 Public nComponents As Integer

21 Public Components () As Component

22

23 Function InitComponents ()

24 ’Loop to i n i t i a l i z e a l l components

25 Dim numbComp As Integer

26 Dim totComp As Integer

27 numbComp = Worksheets (" SpareSimulation ") . Range ("nComp") . Value

28 totComp = numbComp * t o t P l a t

29 nComponents = 0

30 Repairable = Worksheets (" SpareSimulation ") . Range (" Repairable ") . Value

31

32 ReDim Components(totComp)

33

APPENDIX B. CODE 53

34 For i = 1 To t o t P l a t

35 For j = 1 To numbComp

36 AddComponent i

37 Next j

38 Next i

39 End Function

40

41 Function AddComponent(ByVal plat As Integer)

42 ’ I n i t i a l i z a t i o n of one si ngle component

43 nComponents = nComponents + 1

44

45 With Components(nComponents)

46 .Number = nComponents

47 . PlatformNumb = plat

48 . State = Functioning

49 . Repairable = Repairable

50 . CMOrder = False

51 . PMOrder = False

52 .MTTFd = 1 / Worksheets (" SpareSimulation ") . Range ("LD") . Value

53 . MTTFcs = 1 / Worksheets (" SpareSimulation ") . Range ("LCS") . Value

54 .MTTFcd = 1 / Worksheets (" SpareSimulation ") . Range ("LCD") . Value

55 End With

56

57 ’ Generate f a i l u r e of t h i s component

58 GenerateFailureFromState2 nComponents

59 EventNotice MTTF + GetClock () , CallBackData ("OnComponentFailure" , nComponents , FC)

60 End Function

Listing B.4: Costs Module

1 Dim TransportCosts As Single

2 Dim RepairCosts As Single

3 Dim PMCosts As Single

4 Dim DowntimeCosts As Single

5 Dim CMCosts As Single

6 Dim HoldingCosts As Single

7 Dim OrderCosts As Single

APPENDIX B. CODE 54

8 Dim OverhaulCosts As Single

9 Dim CostPerTransfer As Single

10 Dim CostPerEmergencyTrans As Single

11 Dim CostPerRepair As Single

12 Dim CostPerPMReplacement As Single

13 Dim CostPerPMPeriod As Single

14 Public DowntimePerT As Single

15 Dim CostPerCM As Single

16 Dim HoldingPlatformPerT As Single

17 Dim HoldingBasePerT As Single

18 Dim CostPerBaseOrder As Single

19 Dim OrderCostPerItem As Single

20 Dim CostPerPlatformOrder As Single

21 Dim CostPerOverhaul As Single

22 Dim CBMcosts As Single

23 Dim CBMpert As Single

24

25 Function InitCosts ()

26 ’ I n i t i a l i z e a l l costs

27 CBMcosts = 0

28 TransportCosts = 0

29 RepairCosts = 0

30 PMCosts = 0

31 DowntimeCosts = 0

32 CMCosts = 0

33 HoldingCosts = 0

34 OrderCosts = 0

35 OverhaulCosts = 0

36 CostPerTransfer = Worksheets (" SpareSimulation ") . Range (" CostPerTransfer ") . Value

37 CostPerEmergencyTrans = Worksheets (" SpareSimulation ") . Range ("CostPerEmergencyTrans") .

Value

38 CostPerRepair = Worksheets (" SpareSimulation ") . Range (" CostPerRepair ") . Value

39 CostPerPMReplacement = Worksheets (" SpareSimulation ") . Range ("CostPerPMReplacement") . Value

40 CostPerPMPeriod = Worksheets (" SpareSimulation ") . Range ("CostPerPMPeriod") . Value

41 DowntimePerT = Worksheets (" SpareSimulation ") . Range ("DowntimePerT") . Value

42 CostPerCM = Worksheets (" SpareSimulation ") . Range ("CostPerCM") . Value

APPENDIX B. CODE 55

43 HoldingPlatformPerT = Worksheets (" SpareSimulation ") . Range (" HoldingPlatformPerT ") . Value

44 HoldingBasePerT = Worksheets (" SpareSimulation ") . Range ("HoldingBasePerT") . Value

45 CostPerBaseOrder = Worksheets (" SpareSimulation ") . Range ("CostPerBaseOrder") . Value

46 OrderCostPerItem = Worksheets (" SpareSimulation ") . Range ("OrderCostPerItem") . Value

47 CostPerPlatformOrder = Worksheets (" SpareSimulation ") . Range (" CostPerPlatformOrder ") . Value

48 CostPerOverhaul = Worksheets (" SpareSimulation ") . Range ("CostPerOverhaul ") . Value

49 CBMpert = Worksheets (" SpareSimulation ") . Range ("CBMpert") . Value

50 End Function

51

52 Function CalcTotCosts ()

53 ’ Calculate t o t a l costs of one simulation run

54 AverageTotCosts = AverageTotCosts + CBMcosts + TransportCosts + RepairCosts + PMCosts +

DowntimeCosts + CMCosts + HoldingCosts + OrderCosts + OverhaulCosts

55 End Function

56

57 Function CalcCBMcosts ()

58 Dim x As Single

59 x = TimeElapsed ()

60

61 CBMcosts = CBMcosts + x * CBMpert

62 End Function

63

64 Function CalcTransportCosts (Q As Integer)

65 TransportCosts = TransportCosts + Q * CostPerTransfer

66 End Function

67

68 Function CalcEmergencyTransCosts ()

69 TransportCosts = TransportCosts + CostPerEmergencyTrans

70 End Function

71

72 Function CalcRepairCosts ()

73 RepairCosts = RepairCosts + CostPerRepair

74 End Function

75

76 Function CalcPMReplacementCosts ()

77 PMCosts = PMCosts + CostPerPMReplacement

APPENDIX B. CODE 56

78 End Function

79

80 Function CalcPMCosts ()

81 PMCosts = PMCosts + CostPerPMPeriod

82 End Function

83

84 Function CalcDowntimeCosts ()

85 Dim x As Single

86 x = TimeElapsed ()

87

88 For i = 1 To nPlatforms

89 I f Platforms (i) . State = Failed Then

90 DowntimeCosts = DowntimeCosts + x * DowntimePerT

91 E l s e I f Platforms (i) . State = Degraded Then

92 DowntimeCosts = DowntimeCosts + x * DowntimePerT * (1 − DegradedProduction)

93 End I f

94 Next

95 End Function

96

97 Function CalcCMCosts ()

98 CMCosts = CMCosts + CostPerCM

99 End Function

100

101 Function CalcHoldingCosts ()

102 Dim x As Single

103 x = TimeElapsed ()

104

105 For i = 1 To nPlatforms

106 HoldingCosts = HoldingCosts + x * HoldingPlatformPerT * Platforms (i) . Stock

107 Next

108

109 HoldingCosts = HoldingCosts + x * HoldingBasePerT * Bases (1) . Stock

110 End Function

111

112 Function CalcBaseOrderCosts (Q As Integer)

113 OrderCosts = OrderCosts + CostPerOrder + Q * OrderCostPerItem

APPENDIX B. CODE 57

114 End Function

115

116 Function CalcPlatformOrderCosts ()

117 OrderCosts = OrderCosts + CostPerOrder

118 End Function

119

120 Function CalcOverhaulCosts ()

121 OverhaulCosts = OverhaulCosts + nComponents * CostPerOverhaul

122 End Function

Listing B.5: Failures Module

1 Public FTSpfd As Single

2 Public FC As Integer

3 Public MTTF As Single

4

5 Function GenerateFailureFromState2 (ByVal comp As Integer)

6 ’ Generate f a i l u r e from functioning s t a t e

7 CompNumb = comp

8 Dim T c r i t As Single

9 Dim Tdegr As Single

10

11 T c r i t = rndExponential (Components(CompNumb) . MTTFcs)

12 Tdegr = rndExponential (Components(CompNumb) .MTTFd)

13

14 ’ This determines whether the f a i l u r e i s c r i t i c a l or degraded , depending on which time i s

lower .

15 I f Tdegr < T c r i t Then

16 MTTF = Tdegr

17 FC = 1

18 Else

19 MTTF = T c r i t

20 FC = 0

21 End I f

22 End Function

23

24 Function GenerateFailureFromState1 (ByVal comp As Integer)

APPENDIX B. CODE 58

25 ’ Generate f a i l u r e from degraded s t a t e

26 CompNumb = comp

27 Dim newMTTF As Single

28 newMTTF = 1 / (1 / Components(CompNumb) . MTTFcs + 1 / Components(CompNumb) .MTTFcd) ’ the

MTTF to a c r i t i c a l s t a t e i s now formed by both c r i t i c a l shock as c r i t i c a l degraded

29 FC = 0

30 MTTF = rndExponential (newMTTF)

31 End Function

32

33 Function OnComponentFailure (ByVal comp As Integer , ByVal c r i t As Integer)

34 CompNumb = comp

35 PlatNumb = Components(CompNumb) . PlatformNumb

36 FC = c r i t

37

38 I f FC = 1 Then

39 DegradedFailure CompNumb, PlatNumb

40 Else

41 C r i t i c a l F a i l u r e CompNumb, PlatNumb

42 I f Components(CompNumb) . Repairable Then

43 EventNotice rndExponential (MTTRc) + GetClock () + rndUAB(OrderHandlingTime ,

OrderHandlingTime + transTime) , CallBackData ("OnSpareRepair") ’ spare repair time =

MTTR + how much time i t takes to transport i t back

44 End I f

45 End I f

46 End Function

47

48 Function C r i t i c a l F a i l u r e (ByVal comp As Integer , ByVal plat As Integer)

49 CompNumb = comp

50 PlatNumb = plat

51

52 CalcCMCosts

53

54 Components(CompNumb) . State = Failed

55 Platforms (PlatNumb) . State = Failed

56

57 I f Platforms (PlatNumb) . Stock > 0 Then ’ i f stock > 0 then replace component

APPENDIX B. CODE 59

58 Platforms (PlatNumb) . Stock = Platforms (PlatNumb) . Stock − 1

59 Components(CompNumb) . CMOrder = True

60 Components(CompNumb) . Event = EventNotice (rndExponential (MDTc) + GetClock () ,

CallBackData ("OnComponentReplacement" , CompNumb))

61 E l s e I f emergTrans Then

62 I f CheckEmergencyTransfer (CompNumb) Then

63 Components(CompNumb) . CMOrder = True

64 End I f

65 End I f

66

67 I f PM Then

68 PMuponCriticalFailure CompNumb, PlatNumb

69 End I f

70 CheckToOrderPlatform PlatNumb

71 End Function

72

73 Function DegradedFailure (ByVal comp As Integer , ByVal plat As Integer)

74 CompNumb = comp

75 PlatNumb = plat

76

77 Components(CompNumb) . State = Degraded

78 Platforms (PlatNumb) . State = Degraded

79 GenerateFailureFromState1 CompNumb ’ create c r i t i c a l f a i l u r e

80 EventNotice MTTF + GetClock () , CallBackData ("OnComponentFailure" , CompNumb, 0)

81

82 I f PM Then ’ i f PM we detect the f a i l u r e during the next t e s t period

83 EventNotice Platforms (PlatNumb) . NextPM + 0.001 , CallBackData ("OnPMReplacement" , CompNumb)

’ +0.001 in order to make sure replacement i s a f t e r beginning of PM period

84 End I f

85

86 I f CBM Then ’ i f CBM then we detect t h i s degraded f a i l u r e when i t occurs

87 I f Bases (1) . Stock > 0 Then ’ i f base has enough stock , reserve item

88 EventNotice Platforms (PlatNumb) . NextPM, CallBackData (" OnPlatformOrderArrivalSR " ,

PlatNumb , 1)

89 Bases (1) . Stock = Bases (1) . Stock − 1

90 Bases (1) . StockReserved = Bases (1) . StockReserved + 1

APPENDIX B. CODE 60

91 CheckToOrderBase

92 Else

93 QueueAdd PlatNumb , 1 , True ’ create BO

94 End I f

95 Components(comp) . PMOrder = True

96 End I f

97 End Function

98

99 Function Fai lToStart (ByVal comp As Integer , ByVal plat As Integer) As Boolean

100 CompNumb = comp

101 PlatNumb = plat

102

103 Fai lToStart = False

104 Dim x As Single

105

106 Randomize

107 x = Rnd ()

108

109 I f x < FTSpfd Then ’ f a i l to s t a r t

110 Fai lToStart = True

111 Components(CompNumb) . State = Failed

112 Platforms (PlatNumb) . State = Failed

113 I f Platforms (PlatNumb) . Stock > 0 Then

114 Platforms (PlatNumb) . Stock = Platforms (PlatNumb) . Stock − 1

115 Components(CompNumb) . CMOrder = True

116 Components(CompNumb) . Event = EventNotice (rndExponential (MTTRc) + GetClock () ,

CallBackData ("OnComponentReplacement" , CompNumb))

117 End I f

118 CheckToOrderPlatform PlatNumb

119 End I f

120 End Function

Listing B.6: Platform Module

1 Public PlatNumb As Integer

2 Public BaseOrderToLvl As Integer

3 Public BaseOrderLvl As Integer

APPENDIX B. CODE 61

4 Public BaseStockLvl As Integer

5 Public PlatformOrderToLvl As Integer

6 Public PlatformOrderLvl As Integer

7 Public PlatformStockLvl As Integer

8

9 Type Platform

10 Number As Integer

11 Stock As Integer

12 OrderToLvl As Integer

13 OrderLvl As Integer

14 State As Integer

15 Ordered As Boolean

16 NextPM As Single

17 PMperiod As Boolean

18 PMcritical As Boolean

19 End Type

20 Public t o t P l a t As Integer

21 Public nPlatforms As Integer

22 Public Platforms () As Platform

23 Public OrderToLevel As Integer

24 Public OrderLevel As Integer

25

26 Type Base

27 Number As Integer

28 Stock As Integer

29 OrderToLvl As Integer

30 OrderLvl As Integer

31 Ordered As Boolean

32 StockReserved As Integer

33 End Type

34 Public nBases As Integer

35 Public Bases (1) As Base

36

37 Function InitPlatforms ()

38 ’Loop to i n i t i a l i z e a l l platforms

39 nPlatforms = 0

APPENDIX B. CODE 62

40 nBases = 0

41 t o t P l a t = Worksheets (" SpareSimulation ") . Range (" nPlat ") . Value

42

43 ReDim Platforms (t o t P l a t)

44

45 PlatformOrderToLvl = Worksheets (" SpareSimulation ") . Range ("PLATOTL") . Value

46 PlatformOrderLvl = Worksheets (" SpareSimulation ") . Range ("PLATOL") . Value

47 PlatformStockLvl = Worksheets (" SpareSimulation ") . Range ("PLATIS") . Value

48 BaseOrderToLvl = Worksheets (" SpareSimulation ") . Range ("BASEOTL") . Value

49 BaseOrderLvl = Worksheets (" SpareSimulation ") . Range ("BASEOL") . Value

50 BaseStockLvl = Worksheets (" SpareSimulation ") . Range ("BASEIS") . Value

51

52 For i = 1 To t o t P l a t

53 AddPlatform

54 Next

55

56 ReDim UpTimes(nPlatforms)

57 ReDim A v a i l a b i l i t i e s (nPlatforms)

58 AddBase

59

60 End Function

61

62 Function AddPlatform ()

63 ’ I n i t i a l i z a t i o n of one platform

64 nPlatforms = nPlatforms + 1

65

66 With Platforms (nPlatforms)

67 .Number = nPlatforms

68 . Stock = PlatformStockLvl

69 . OrderToLvl = PlatformOrderToLvl

70 . OrderLvl = PlatformOrderLvl

71 . State = Functioning

72 . Ordered = False

73 . NextPM = PMInterval

74 . PMperiod = False

75 . PMcritical = False

APPENDIX B. CODE 63

76 End With

77 End Function

78

79 Function AddBase ()

80 ’ I n i t i a l i z a t i o n of the platform

81 nBases = nBases + 1

82 With Bases (nBases)

83 .Number = nBases

84 . Stock = BaseStockLvl

85 . OrderToLvl = BaseOrderToLvl

86 . OrderLvl = BaseOrderLvl

87 . Ordered = False

88 . StockReserved = 0

89 End With

90 End Function

Listing B.7: Repair and Ordering Module

1 Public MTTRd As Single

2 Public MTTRc As Single

3 Public MDTd As Single

4 Public MDTc As Single

5

6 Function OnSpareRepair ()

7 ’ Finishing of repair i s s imilar as a r r i v a l of order of one component at base

8 CalcRepairCosts

9 OnBaseOrderArrival 1

10 End Function

11

12 Function CheckToOrderPlatform (ByVal plat As Integer)

13 PlatNumb = plat

14 Dim Q As Integer

15 Dim Q2 As Integer

16 I f Platforms (plat) . Ordered Then

17 E x i t Function

18 End I f

19

APPENDIX B. CODE 64

20 I f Platforms (PlatNumb) . Stock <= Platforms (PlatNumb) . OrderLvl Then

21 Q = Platforms (PlatNumb) . OrderToLvl − Platforms (PlatNumb) . Stock

22 I f Q <= Bases (1) . Stock + Bases (1) . StockReserved Then ’Enough at base to supply the

f u l l demand

23 EventNotice rndUAB(OrderHandlingTime , OrderHandlingTime + transTime) + GetClock ,

CallBackData (" OnPlatformOrderArrival " , PlatNumb , Q)

24 I f Q <= Bases (1) . Stock Then

25 Bases (1) . Stock = Bases (1) . Stock − Q

26 Else

27 Q = Q − Bases (1) . Stock

28 Bases (1) . Stock = 0

29 Bases (1) . StockReserved = Bases (1) . StockReserved − Q

30 End I f

31 E l s e I f Bases (1) . Stock + Bases (1) . StockReserved > 0 Then ’ Only part of the

platformorder can be met

32 Q2 = Bases (1) . Stock + Bases (1) . StockReserved

33 EventNotice rndUAB(OrderHandlingTime , OrderHandlingTime + transTime) + GetClock ,

CallBackData (" OnPlatformOrderArrival " , PlatNumb , Q2)

34 Q = Q − Q2

35 Bases (1) . Stock = 0

36 Bases (1) . StockReserved = 0

37 QueueAdd PlatNumb , Q, False

38 Else

39 QueueAdd PlatNumb , Q ’no spares at base , create BO

40 End I f

41 Platforms (PlatNumb) . Ordered = True

42 End I f

43 CheckToOrderBase

44 End Function

45

46 Function CheckToOrderBase ()

47 Dim Q As Integer

48

49 I f Bases (1) . Ordered Or Components(1) . Repairable Then ’Check whether order has been sent

out or component i s repairable , then no order from base

50 E x i t Function

APPENDIX B. CODE 65

51 End I f

52

53 I f Bases (1) . Stock <= Bases (1) . OrderLvl Then

54 Q = Bases (1) . OrderToLvl − Bases (1) . Stock

55 EventNotice OrderTime + GetClock () , CallBackData (" OnBaseOrderArrival " , , Q) ’ check

times

56 Bases (1) . Ordered = True

57 End I f

58 End Function

59

60 Function OnBaseOrderArrival (ByVal Q As Integer)

61 Dim Quantity As Integer

62 Dim ForPM As Boolean

63 Dim Q2 As Integer

64 Bases (1) . Ordered = False

65 Bases (1) . Stock = Bases (1) . Stock + Q

66

67 I f Not Components(1) . Repairable Then

68 CalcBaseOrderCosts Q

69 End I f

70

71 ’Loop handles BO that are in queue

72 Do Until IsEmpty Or Bases (1) . Stock + Bases (1) . StockReserved = 0

73 QueueRemove PlatNumb , Quantity , ForPM

74 I f Bases (1) . Stock + Bases (1) . StockReserved >= Quantity And (Not ForPM) Then ’

Complete BO i s met

75 EventNotice rndUAB(OrderHandlingTime , OrderHandlingTime + transTime) + GetClock ,

CallBackData (" OnPlatformOrderArrival " , PlatNumb , Quantity)

76 I f Quantity <= Bases (1) . Stock Then

77 Bases (1) . Stock = Bases (1) . Stock − Quantity

78 Else

79 Quantity = Quantity − Bases (1) . Stock

80 Bases (1) . Stock = 0

81 Bases (1) . StockReserved = Bases (1) . StockReserved − Q

82 End I f

APPENDIX B. CODE 66

83 E l s e I f Bases (1) . Stock + Bases (1) . StockReserved > 0 And (Not ForPM) Then ’ Only part of

the BO can be met

84 Q2 = Bases (1) . Stock + Bases (1) . StockReserved

85 EventNotice rndUAB(OrderHandlingTime , OrderHandlingTime + transTime) + GetClock ,

CallBackData (" OnPlatformOrderArrival " , PlatNumb , Q2)

86 Bases (1) . Stock = 0

87 Bases (1) . StockReserved = 0

88 Quantity = Quantity − Q2

89 QueueAdd PlatNumb , Quantity

90 E l s e I f Bases (1) . Stock > 0 And ForPM Then ’ I f the BO i s for PM then create t r a n s f e r

for next PM i n t e r v a l

91 EventNotice Platforms (PlatNumb) . NextPM, CallBackData (" OnPlatformOrderArrivalSR " ,

PlatNumb , 1)

92 Bases (1) . Stock = Bases (1) . Stock − 1

93 Bases (1) . StockReserved = Bases (1) . StockReserved + 1

94 Else

95 QueueAdd PlatNumb , Quantity , True

96 E x i t Do

97 End I f

98 Loop

99

100 CheckToOrderBase ’ Order new components to be sure that stock did not go under s a f t e r

handling BOs

101 End Function

Listing B.8: Replacing Module

1 Public PM As Boolean

2 Public PMInterval As Single

3 Public PMDuration As Single

4 Public NextPM As Single

5 Public PMstrat As Str ing

6 Public Overhaul As Boolean

7 Public OverhaulInt As Single

8 Public OverhaulDur As Single

9 Public PMminstock As Integer

10 Public RepQual As Single

APPENDIX B. CODE 67

11 Public l i s t C u r r e n t As ListItem

12 Public l i s t P r e v i o u s As ListItem

13 Public CBM As Boolean

14

15 Function OnComponentReplacement(ByVal comp As Integer)

16 CompNumb = comp

17 PlatNumb = Components(CompNumb) . PlatformNumb

18

19 With Components(CompNumb)

20 .MTTFcd = .MTTFcd * RepQual

21 .MTTFd = .MTTFd * RepQual

22 End With

23

24 GenerateFailureFromState2 CompNumb

25

26 With Components(CompNumb)

27 . CMOrder = False

28 . State = Functioning

29 End With

30

31 ’ Generate new f a i l u r e for t h i s component (ei the r FTS or "normal" f a i l u r e)

32 I f Not Fai lToStart (CompNumb, PlatNumb) Then

33 EventNotice MTTF + GetClock () , CallBackData ("OnComponentFailure" , CompNumb, FC)

34 End I f

35

36 FixPlatform PlatNumb

37 End Function

38

39 Function OnPMReplacement(ByVal comp As Integer)

40 CompNumb = comp

41 PlatNumb = Components(comp) . PlatformNumb

42

43 I f Platforms (PlatNumb) . Stock >= PMminstock And Platforms (PlatNumb) . Stock > 0 Then

44 Platforms (PlatNumb) . Stock = Platforms (PlatNumb) . Stock − 1

45 ExecutePM CompNumb, PlatNumb

46 Components(CompNumb) . PMOrder = False

APPENDIX B. CODE 68

47 Else ’ i f there i s not enough stock , postpone PM for next i n t e r v a l

48 PostponePM CompNumb, PlatNumb

49 End I f

50 End Function

51

52 Function ExecutePM (ByVal comp As Integer , ByVal plat As Integer)

53 Dim t As Single

54 CompNumb = comp

55 PlatNumb = plat

56

57 CalcPMReplacementCosts

58 t = rndExponential (MDTd)

59

60 EventNotice t + GetClock () , CallBackData ("OnComponentReplacement" , CompNumb)

61 I f t > PMDuration Then ’PM w i l l take longer , so end has to be extended

62 SearchListForFunction PlatNumb , "OnEndPMPeriod" ’ find and delete i n i t i a l end of PM

period

63 AddEndPMPeriod GetClock () + t , PlatNumb

64 End I f

65 CheckToOrderPlatform PlatNumb

66

67 SearchListForFunction CompNumb, "OnComponentFailure" ’ find and delete the already

generate f a i l u r e of the component

68

69 I f SearchListForFunction (PlatNumb , " OnPlatformOrderArrivalSR ") And Bases (1) . StockReserved

> 0 Then ’ find and delete reserved t r a n s f e r for component

70 Bases (1) . StockReserved = Bases (1) . StockReserved − 1

71 Bases (1) . Stock = Bases (1) . Stock + 1

72 End I f

73 End Function

74

75 Function PostponePM(ByVal comp As Integer , ByVal plat As Integer)

76 CompNumb = comp

77 PlatNumb = plat

78

APPENDIX B. CODE 69

79 EventNotice Platforms (PlatNumb) . NextPM + 0.01 , CallBackData ("OnPMReplacement" , CompNumb)

’ +0.001 in order to make sure replacement i s a f t e r beginning of PM period

80

81 I f Components(comp) . PMOrder Then ’ i f order was made before , then don ’ t make a new

t r a n s f e r order

82 E x i t Function

83 End I f

84

85 I f Bases (1) . Stock > 0 Then

86 EventNotice Platforms (PlatNumb) . NextPM, CallBackData (" OnPlatformOrderArrivalSR " ,

PlatNumb , 1)

87 Bases (1) . Stock = Bases (1) . Stock − 1

88 Bases (1) . StockReserved = Bases (1) . StockReserved + 1

89 Else

90 QueueAdd PlatNumb , 1 , True

91 End I f

92 Components(comp) . PMOrder = True

93 End Function

94

95 Function FixPlatform (ByVal plat As Integer)

96 PlatNumb = plat

97

98 Dim IsFixed As Boolean

99 IsFixed = True

100

101 I f Platforms (PlatNumb) . PMperiod Then

102 E x i t Function

103 End I f

104

105 For i = 1 To nComponents ’ I f a component i s in a f a i l e d state , platform i s not repaired

yet

106 I f Components(i) . PlatformNumb = PlatNumb And Components(i) . State = Failed Then

107 IsFixed = False

108 E x i t For

109 End I f

110 Next

APPENDIX B. CODE 70

111

112 I f IsFixed Then

113 Platforms (PlatNumb) . State = Functioning

114 End I f

115 End Function

116

117 Function InitPM ()

118 For i = 1 To nPlatforms

119 AddStartPMPeriod Platforms (i) . NextPM, Platforms (i) .Number

120 AddEndPMPeriod Platforms (i) . NextPM + PMDuration , Platforms (i) .Number

121 Next

122 End Function

123

124 Function AddStartPMPeriod (ByVal t As Single , ByVal plat As Integer)

125 PlatNumb = plat

126 EventNotice t , CallBackData ("OnStartPMPeriod" , PlatNumb)

127 End Function

128

129 Function AddEndPMPeriod(ByVal t As Single , ByVal plat As Integer)

130 EventNotice t , CallBackData ("OnEndPMPeriod" , PlatNumb)

131 End Function

132

133 Function OnStartPMPeriod (ByVal plat As Integer)

134 PlatNumb = plat

135 CalcPMCosts

136 Platforms (PlatNumb) . NextPM = GetClock () + PMInterval + PMDuration

137

138 Platforms (PlatNumb) . PMcritical = False

139 Platforms (PlatNumb) . PMperiod = True

140 Platforms (PlatNumb) . State = Failed

141 End Function

142

143 Function OnEndPMPeriod(ByVal plat As Integer)

144 PlatNumb = plat

145

146 Platforms (PlatNumb) . PMperiod = False

APPENDIX B. CODE 71

147 FixPlatform PlatNumb

148 ’ A l l components have to s t a r t up again

149 For i = 1 To nComponents

150 I f (Not Components(i) . State = Failed) And PlatNumb = Components(i) . PlatformNumb Then

151 Fai lToStart i , plat

152 End I f

153 Next

154

155 AddStartPMPeriod Platforms (PlatNumb) . NextPM, PlatNumb

156 AddEndPMPeriod Platforms (PlatNumb) . NextPM + PMDuration , PlatNumb

157 End Function

158

159 Function PMuponCriticalFailure (ByVal comp As Integer , ByVal plat As Integer)

160 CompNumb = comp

161 PlatNumb = plat

162 Dim PMadded As Boolean

163 PMadded = False

164

165 SearchListForFunction PlatNumb , "OnStartPMPeriod"

166 SearchListForFunction PlatNumb , "OnEndPMPeriod"

167 ’ S t a r t pm i n t e r v a l

168 CalcPMCosts

169 Platforms (PlatNumb) . NextPM = GetClock () + PMInterval + PMDuration

170 Platforms (PlatNumb) . PMperiod = True

171 Platforms (PlatNumb) . State = Failed

172 Platforms (PlatNumb) . PMcritical = True

173 AddEndPMPeriod GetClock () + PMDuration , PlatNumb

174

175 For i = 1 To nComponents

176 I f Components(i) . PlatformNumb = PlatNumb Then

177 I f SearchListForPM (i) Then

178 I f l i s t P r e v i o u s I s Nothing Then ’ delete PM item from l i s t

179 Set listHead = l i s t C u r r e n t . NextItem

180 Else

181 Set l i s t P r e v i o u s . NextItem = l i s t C u r r e n t . NextItem

182 End I f

APPENDIX B. CODE 72

183 I f (Not i = CompNumb) Then

184 OnPMReplacement i

185 End I f

186 End I f

187 End I f

188 Next

189

190 End Function

191

192 Function SearchListForPM (ByVal comp As Integer) As Boolean

193 SearchListForPM = False

194 PlatNumb = Components(comp) . PlatformNumb

195

196 Set l i s t P r e v i o u s = Nothing

197 Set l i s t C u r r e n t = listHead

198

199 Do Until l i s t C u r r e n t I s Nothing

200 I f Platforms (PlatNumb) . NextPM + 0.1 < l i s t C u r r e n t . t Then

201 E x i t Do

202 End I f

203 I f l i s t C u r r e n t . Data (1) = comp And l i s t C u r r e n t . Data (0) = "OnPMReplacement" Then

204 SearchListForPM = True

205 E x i t Do

206 Else

207 Set l i s t P r e v i o u s = l i s t C u r r e n t

208 Set l i s t C u r r e n t = l i s t C u r r e n t . NextItem

209 End I f

210 Loop

211 End Function

212

213 Function SearchListForFunction (ByVal x As Integer , ByVal FuncName As Str ing) As Boolean

214 ’ Searches any action in the l a s t with r e l a t i o n to x (=comp or plat) and deletes t h i s

action

215 Set l i s t P r e v i o u s = Nothing

216 Set l i s t C u r r e n t = listHead

217 SearchListForFunction = False

APPENDIX B. CODE 73

218

219 Do While Not l i s t C u r r e n t I s Nothing

220 I f l i s t C u r r e n t . Data (1) = x And l i s t C u r r e n t . Data (0) = FuncName Then

221 I f l i s t P r e v i o u s I s Nothing Then ’ delete PM item from l i s t

222 Set listHead = l i s t C u r r e n t . NextItem

223 Else

224 Set l i s t P r e v i o u s . NextItem = l i s t C u r r e n t . NextItem

225 End I f

226 SearchListForFunction = True

227 E x i t Do

228 Else

229 Set l i s t P r e v i o u s = l i s t C u r r e n t

230 Set l i s t C u r r e n t = l i s t C u r r e n t . NextItem

231 End I f

232 Loop

233 End Function

234

235 Function InitOverhaul ()

236 OverhaulInt = Worksheets (" SpareSimulation ") . Range ("OVERHAULint") . Value

237 OverhaulDur = Worksheets (" SpareSimulation ") . Range ("OVERHAULdur") . Value

238

239 AddStartOverhaul OverhaulInt

240 AddEndOverhaul OverhaulInt + OverhaulDur

241 End Function

242

243 Function AddStartOverhaul (ByVal t As Single)

244 EventNotice t , CallBackData (" OnStartOverhaul ")

245 End Function

246

247 Function AddEndOverhaul (ByVal t As Single)

248 EventNotice t , CallBackData ("OnEndOverhaul")

249 End Function

250

251 Function OnStartOverhaul ()

252 Dim ToDelete As Boolean

253 ToDelete = True

APPENDIX B. CODE 74

254 CalcOverhaulCosts

255

256 ’ delete a l l future f a i l u r e s and planned replacements

257 Do While ToDelete = True

258 DeleteFutureEvents ToDelete

259 Loop

260

261 For i = 1 To nPlatforms

262 Platforms (i) . State = Failed

263 Next

264 End Function

265

266 Function OnEndOverhaul ()

267

268 For i = 1 To nComponents

269 With Components(i)

270 .MTTFd = 1 / Worksheets (" SpareSimulation ") . Range ("LD") . Value ’ rese t the lambdas to

i n i t i a l values

271 . MTTFcs = 1 / Worksheets (" SpareSimulation ") . Range ("LCS") . Value

272 .MTTFcd = 1 / Worksheets (" SpareSimulation ") . Range ("LCD") . Value

273 . State = Functioning

274 . CMOrder = False

275 . PMOrder = False

276 End With

277 Next

278

279 For i = 1 To nPlatforms

280 Platforms (i) . State = Functioning

281 Next

282

283 ’ Generate f a i l u r e s for each component

284 For i = 1 To nComponents

285 plat = Components(i) . PlatformNumb

286 Components(i) . State = Functioning

287 I f Not (Fai lToStart (i , plat)) Then

288 GenerateFailureFromState2 i

APPENDIX B. CODE 75

289 EventNotice MTTF + GetClock () , CallBackData ("OnComponentFailure" , i , FC)

290 End I f

291 Next

292

293 ’ I f we have PM i n i t i a l i z e PM periods again

294 I f PM Then

295 For i = 1 To nPlatforms

296 Platforms (i) . NextPM = GetClock () + PMInterval

297 AddStartPMPeriod Platforms (i) . NextPM, i

298 AddEndPMPeriod Platforms (i) . NextPM + PMDuration , i

299 Next

300 End I f

301

302 ’add next overhaul period

303 AddStartOverhaul GetClock () + OverhaulInt

304 AddEndOverhaul GetClock () + OverhaulInt + OverhaulDur

305 End Function

306

307 Function DeleteFutureEvents (ByRef ToDelete As Boolean)

308 Set l i s t P r e v i o u s = Nothing

309 Set l i s t C u r r e n t = listHead

310

311 Do While Not l i s t C u r r e n t I s Nothing

312 I f l i s t C u r r e n t . Data (0) = "OnComponentFailure" Or l i s t C u r r e n t . Data (0) = "

OnPMReplacement" Or l i s t C u r r e n t . Data (0) = "OnStartPMPeriod" Or l i s t C u r r e n t . Data (0) =

"OnEndPMPeriod" Then

313 I f l i s t P r e v i o u s I s Nothing Then

314 Set listHead = l i s t C u r r e n t . NextItem

315 Else

316 Set l i s t P r e v i o u s . NextItem = l i s t C u r r e n t . NextItem

317 End I f

318 ToDelete = True

319 E x i t Do

320 E l s e I f l i s t C u r r e n t . Data (0) = "OnComponentReplacement" Then

321 I f l i s t P r e v i o u s I s Nothing Then

322 Set listHead = l i s t C u r r e n t . NextItem

APPENDIX B. CODE 76

323 Else

324 Set l i s t P r e v i o u s . NextItem = l i s t C u r r e n t . NextItem

325 End I f

326 CompNumb = l i s t C u r r e n t . Data (1)

327 PlatNumb = Components(CompNumb) . PlatformNumb

328 Platforms (PlatNumb) . Stock = Platforms (PlatNumb) . Stock + 1 ’ the spare part has

not been used , so put i t back in stock

329 ToDelete = True

330 E x i t Do

331 Else

332 Set l i s t P r e v i o u s = l i s t C u r r e n t

333 Set l i s t C u r r e n t = l i s t C u r r e n t . NextItem

334 ToDelete = False

335 End I f

336 Loop

337 End Function

Listing B.9: Random Library Module

1 Function rndUAB(A As Single , B As Single)

2 ’ Returns a random number uniformly distr ibuted on (A , B)

3 ’ Even i f A > B, t h i s w i l l work as B−A w i l l then be −ve

4 I f (A <> B) Then

5 Randomize

6 rndUAB = A + ((B − A) * Rnd ())

7 Else

8 rndUAB = A

9 End I f

10 End Function

11

12 Function rndExponential (ByVal mu As Single)

13 ’

14 ’ Returns a random number exponentially distr ibuted with

15 ’ mean MU

16 ’

17 Dim x As Single

18 x = 0

APPENDIX B. CODE 77

19

20 I f (mu < 0) Then

21 MsgBox " Error in rndExponential "

22 rndExponential = 0

23 Else

24 Randomize

25 Do While x = 0

26 x = Rnd ()

27 Loop

28 rndExponential = −Log (x) * mu

29 End I f

30 End Function

Listing B.10: Transfers Module

1 Function CheckEmergencyTransfer (ByVal comp As Integer) As Boolean

2 ’ Function checks whether emergency t r a n s f e r i s cheaper than waiting for next supply

3 Dim CostNormal As Single

4 Dim CostEmergency As Single

5 Dim t1 As Single

6 Dim t2 As Single

7 CompNumb = comp

8 PlatNumb = Components(CompNumb) . PlatformNumb

9 CheckEmergencyTransfer = False

10

11 I f Bases (1) . Stock + Bases (1) . StockReserved = 0 Then ’ i f base stock i s 0 then we can ’ t

supply

12 E x i t Function

13 End I f

14

15 I f SearchListForOrderArrival (PlatNumb , l istCurrent , l i s t P r e v i o u s) Then ’ check when next

order a r r i v a l i s

16 t1 = l i s t C u r r e n t . t − GetClock ()

17 t2 = rndUAB(OrderHandlingTime , OrderHandlingTime + transTime)

18 I f t1 < transTime Then

19 CostNormal = t1 * DowntimePerT + CostPerTransfer

20 Else

APPENDIX B. CODE 78

21 CostNormal = t2 * DowntimePerT + CostPerTransfer

22 End I f

23 Else

24 CostNormal = t2 * DowntimePerT + CostPerTransfer

25 End I f

26

27 CostEmergency = emergTransTime * DowntimePerT + CostPerEmergencyTrans

28

29 I f CostEmergency < CostNormal Then ’When emergency costs are cheaper , we c a l l for an

emergency t r a n s f e r

30 EventNotice t2 + GetClock () , CallBackData (" OnPlatformEmergencyArrival " , CompNumb)

31 CheckEmergencyTransfer = True

32 I f Bases (1) . Stock > 0 Then

33 Bases (1) . Stock = Bases (1) . Stock − 1

34 Else

35 Bases (1) . StockReserved = Bases (1) . StockReserved − 1

36 End I f

37 End I f

38 End Function

39

40 Function SearchListForOrderArrival (ByVal plat As Integer , ByRef l i s t C u r r e n t As ListItem ,

ByRef l i s t P r e v i o u s As ListItem) As Boolean

41 SearchListForOrderArrival = False

42 Set l i s t P r e v i o u s = Nothing

43 Set l i s t C u r r e n t = listHead

44

45 Do While Not l i s t C u r r e n t I s Nothing

46 I f l i s t C u r r e n t . Data (1) = plat And l i s t C u r r e n t . Data (0) = " OnPlatformOrderArrival "

Then

47 SearchListForOrderArrival = True

48 E x i t Do

49 Else

50 Set l i s t P r e v i o u s = l i s t C u r r e n t

51 Set l i s t C u r r e n t = l i s t C u r r e n t . NextItem

52 End I f

53 Loop

APPENDIX B. CODE 79

54 End Function

55

56 Function OnPlatformEmergencyArrival (ByVal comp As Integer)

57 CompNumb = comp

58 CalcEmergencyTransCosts

59 EventNotice rndExponential (MDTc) + GetClock () , CallBackData ("OnComponentReplacement" ,

CompNumb)

60 End Function

61

62 Function OnPlatformOrderArrival (ByVal plat As Integer , ByVal Q As Integer)

63 PlatNumb = plat

64 Dim i As Integer

65 i = 1

66

67 CalcPlatformOrderCosts

68 CalcTransportCosts Q

69

70 Platforms (PlatNumb) . Ordered = False

71 Platforms (PlatNumb) . Stock = Platforms (plat) . Stock + Q

72

73 ’ I f we s t i l l have f a i l e d components that are not being repaired yet , a repair order i s

issued

74 Do While Platforms (PlatNumb) . Stock > 0

75 I f Components(i) . PlatformNumb = PlatNumb And Components(i) . State = Failed And

Components(i) . CMOrder = False Then

76 Components(i) . CMOrder = True

77 EventNotice rndExponential (MDTc) + GetClock () , CallBackData ("

OnComponentReplacement" , Components(i) .Number)

78 Platforms (PlatNumb) . Stock = Platforms (PlatNumb) . Stock − 1

79 End I f

80 i = i + 1

81 I f i > nComponents Then

82 E x i t Do

83 End I f

84 Loop

85

APPENDIX B. CODE 80

86 CheckToOrderPlatform PlatNumb

87 End Function

88

89 Function OnPlatformOrderArrivalSR (ByVal plat As Integer , ByVal Q As Integer)

90 Dim Quantity As Integer

91 Quantity = Q

92 PlatNumb = plat

93

94 I f Bases (1) . StockReserved > 0 Then

95 Bases (1) . StockReserved = Bases (1) . StockReserved − 1

96 OnPlatformOrderArrival PlatNumb , Quantity

97 E l s e I f Bases (1) . Stock > 0 Then

98 Bases (1) . Stock = Bases (1) . Stock − 1

99 OnPlatformOrderArrival PlatNumb , Quantity

100 Else

101 QueueAdd PlatNumb , Quantity , True

102 End I f

103 End Function

104

105 Public Function QueueAdd(ByVal PlatNumb As Integer , Q As Integer , Optional PM As Boolean

= False)

106 Dim qNew As QueueItem

107 Set qNew = New QueueItem

108

109 qNew. PlatformNumb = PlatNumb

110 qNew. OrderQuantity = Q

111 qNew. ForPM = PM

112

113 ’ What i f queue i s empty? Better point

114 ’ both the front and rear pointers at the

115 ’ new item .

116 I f IsEmpty Then

117 Set qFront = qNew

118 Set qRear = qNew

119 Else

120 Set qRear . NextItem = qNew

APPENDIX B. CODE 81

121 Set qRear = qNew

122 End I f

123 End Function

124

125 Public Function QueueRemove(ByRef PlatNumb As Integer , ByRef Quantity As Integer , ByRef

ForPM As Boolean)

126 ’ Remove an item from the head of the

127 ’ l i s t , and return i t s value .

128

129 I f IsEmpty Then

130 QueueRemove = Null

131 Else

132 PlatNumb = qFront . PlatformNumb

133 Quantity = qFront . OrderQuantity

134 ForPM = qFront . ForPM

135 ’ I f there ’ s only one item

136 ’ in the queue , qFront and qRear

137 ’ w i l l be pointing to the same node .

138 ’ Use the I s operator to t e s t for that .

139 I f qFront I s qRear Then

140 Set qFront = Nothing

141 Set qRear = Nothing

142 Else

143 Set qFront = qFront . NextItem

144 End I f

145 End I f

146 End Function

147

148 Property Get IsEmpty () As Boolean

149 ’ Return True i f the queue contains

150 ’ no items .

151

152 IsEmpty = ((qFront I s Nothing) And (qRear I s Nothing))

153 End Property

APPENDIX B. CODE 82

Listing B.11: ListItem Class

1 Public t As Single

2 Public Data As Variant

3 Public NextItem As ListItem

4

5 Private Sub C l a s s _ I n i t i a l i z e ()

6 Set NextItem = Nothing

7 End Sub

8

9 Private Sub Class_Terminate ()

10 Set NextItem = Nothing

11 End Sub

Listing B.12: QueueItem Class

1 Public NextItem As QueueItem

2 Public PlatformNumb As Integer

3 Public OrderQuantity As Integer

4 Public ForPM As Boolean

5

6 Private Sub C l a s s _ I n i t i a l i z e ()

7 Set NextItem = Nothing

8 End Sub

9

10 Private Sub Class_Terminate ()

11 Set NextItem = Nothing

12 End Sub

B.2 Genetic Algorithm

The following listing contains the GA code that is used for the joint optimization. The code for

the optimization of the DES is similar to this, except for the parameters for the PM interval,

overhaul interval and CBM. It is therefore not used again. The main code of the tool has to

be adapted slightly, as some of the input parameters come from the GA code instead of the

worksheet. These changes are not shown here.

APPENDIX B. CODE 83

Listing B.13: Genetic Algorithm for Joint Optimization

1 Type Individual

2 BaseOrderToLvl As Integer

3 BaseOrderLvl As Integer

4 PlatformOrderToLvl As Integer

5 PlatformOrderLvl As Integer

6 PMinterval As Single

7 OverhaulInt As Single

8 CBM As Boolean

9 FitnessLvl As Single

10 End Type

11 Dim popL As Integer

12 Dim genL As Integer

13 Dim Ppar As Single

14 Dim Pmut As Single

15 Dim Pbest As Single

16 Dim I t e r a t i o n s As Integer

17 Dim baseMax As Integer

18 Dim platMax As Integer

19 Dim pmMax As Single

20

21 Public Population () As Individual

22

23 Sub MainGA()

24 Dim indexLow As Integer

25 Dim indexHigh As Integer

26 indexLow = 0

27 indexHigh = 0

28 InitVar

29 InitPopulation

30

31 For i = 1 To I t e r a t i o n s

32 indexLow = lowEvaluation ()

33 DoCrossover indexLow

34 DoMutation indexLow

APPENDIX B. CODE 84

35 Population (indexLow) . FitnessLvl = GetFitnessLvl (Population (indexLow) . BaseOrderToLvl ,

Population (indexLow) . BaseOrderLvl , Population (indexLow) . PlatformOrderToLvl ,

Population (indexLow) . PlatformOrderLvl , Population (indexLow) . OverhaulInt , Population (

indexLow) . PMinterval , Population (indexLow) .CBM) ’ calculate the f i t n e s s l v l of the new

individual by running the DES

36 indexLow = lowEvaluation ()

37 indexHigh = highEvaluation ()

38 DoBestReplication indexLow , indexHigh

39 Worksheets (" SpareSimulation ") . Range ("B22") . Value = Population (indexHigh) .

BaseOrderToLvl

40 Worksheets (" SpareSimulation ") . Range ("B23") . Value = Population (indexHigh) . BaseOrderLvl

41 Worksheets (" SpareSimulation ") . Range ("B24") . Value = Population (indexHigh) .

PlatformOrderToLvl

42 Worksheets (" SpareSimulation ") . Range ("B25") . Value = Population (indexHigh) .

PlatformOrderLvl

43 Worksheets (" SpareSimulation ") . Range ("B26") . Value = Population (indexHigh) . OverhaulInt

44 Worksheets (" SpareSimulation ") . Range ("B27") . Value = Population (indexHigh) . PMinterval

45 Worksheets (" SpareSimulation ") . Range ("B28") . Value = Population (indexHigh) .CBM

46 Worksheets (" SpareSimulation ") . Range ("B29") . Value = Population (indexHigh) . FitnessLvl

47 ActiveWorkbook . Save

48 Next

49

50 End Sub

51

52 Function InitVar ()

53 popL = 100

54 genL = 4

55 Ppar = 0.7

56 Pmut = 0.5

57 Pbest = 0.3

58 I t e r a t i o n s = 100

59 baseMax = 15

60 platMax = 15

61 pmMax = 219000

62 End Function

63

APPENDIX B. CODE 85

64 Function InitPopulation ()

65 ’ I n i t i a l i a z e population

66 ReDim Population (popL − 1)

67

68 For i = 0 To popL − 1

69 Population (i) . BaseOrderToLvl = GenerateBaseOrderToLvl (1 , baseMax)

70 Population (i) . BaseOrderLvl = GenerateBaseOrderLvl (0 , Population (i) . BaseOrderToLvl −
1)

71 Population (i) . PlatformOrderToLvl = GeneratePlatformOrderToLvl (1 , platMax)

72 Population (i) . PlatformOrderLvl = GeneratePlatformOrderLvl (0 , Population (i) .

PlatformOrderToLvl − 1)

73 Population (i) . OverhaulInt = GenerateOverhaulInt (1000 , pmMax)

74 Population (i) . PMinterval = GeneratePMinterval (1000 , Population (i) . OverhaulInt)

75 Population (i) .CBM = GenerateCBM ()

76 Population (i) . FitnessLvl = GetFitnessLvl (Population (i) . BaseOrderToLvl , Population (i) .

BaseOrderLvl , Population (i) . PlatformOrderToLvl , Population (i) . PlatformOrderLvl ,

Population (i) . OverhaulInt , Population (i) . PMinterval , Population (i) .CBM) ’ calculate

the f i t n e s s l v l of the new individual by running the DES

77 Next

78 End Function

79

80 Function DoCrossover (ByVal indexLow)

81 Dim x As Integer

82 Dim y As Integer

83 Dim p As Single

84 x = indexLow

85 y = indexLow

86

87 Do While x = indexLow

88 x = CInt (rndUAB(0 , popL − 1))

89 Loop

90 Do While y = indexLow

91 y = CInt (rndUAB(0 , popL − 1))

92 Loop

93

94 I f Population (x) . FitnessLvl < Population (y) . FitnessLvl Then

APPENDIX B. CODE 86

95 p = Ppar ’ x i s f i t t e r

96 Else

97 p = 1 − Ppar ’ y i s f i t t e r

98 End I f

99

100 ’Chose stock policy base from one of the parents

101 Randomize

102 I f Rnd () < p Then

103 Population (indexLow) . BaseOrderToLvl = Population (x) . BaseOrderToLvl

104 Population (indexLow) . BaseOrderLvl = Population (x) . BaseOrderLvl

105 Else

106 Population (indexLow) . BaseOrderToLvl = Population (y) . BaseOrderToLvl

107 Population (indexLow) . BaseOrderLvl = Population (y) . BaseOrderLvl

108 End I f

109 Randomize

110 ’Chose stock policy platform from one of the parents

111 I f Rnd () < p Then

112 Population (indexLow) . PlatformOrderToLvl = Population (x) . PlatformOrderToLvl

113 Population (indexLow) . PlatformOrderLvl = Population (x) . PlatformOrderLvl

114 Else

115 Population (indexLow) . PlatformOrderToLvl = Population (y) . PlatformOrderToLvl

116 Population (indexLow) . PlatformOrderLvl = Population (y) . PlatformOrderLvl

117 End I f

118 ’Chose overhaul i n t e r v a l from one of the parents

119 Randomize

120 I f Rnd () < p Then

121 Population (indexLow) . OverhaulInt = Population (x) . OverhaulInt

122 Else

123 Population (indexLow) . OverhaulInt = Population (y) . OverhaulInt

124 End I f

125 ’Chose t e s t i n t e r v a l from one of the parents . Chose from both parents when PM i n t e r v a l of

both parents i s lower than overhaul i n t e r v a l

126 I f Population (x) . PMinterval < Population (indexLow) . OverhaulInt And Population (y) .

PMinterval < Population (indexLow) . OverhaulInt Then

127 Randomize

128 I f Rnd () < p Then

APPENDIX B. CODE 87

129 Population (indexLow) . PMinterval = Population (x) . PMinterval

130 Else

131 Population (indexLow) . PMinterval = Population (y) . PMinterval

132 End I f

133 E l s e I f Population (x) . PMinterval < Population (indexLow) . OverhaulInt Then

134 Population (indexLow) . PMinterval = Population (x) . PMinterval

135 Else

136 Population (indexLow) . PMinterval = Population (y) . PMinterval

137 End I f

138 ’Chose CBM from one of the parents

139 Randomize

140 I f Rnd () < p Then

141 Population (indexLow) .CBM = Population (x) .CBM

142 Else

143 Population (indexLow) .CBM = Population (y) .CBM

144 End I f

145 ’ Reset f i t n e s s value

146 Population (indexLow) . FitnessLvl = 0

147 End Function

148

149 Function DoMutation (ByVal indexLow)

150 Dim x As Single

151

152 Randomize

153 I f Rnd () > Pmut Then

154 E x i t Function ’ skip mutation 1−Pmut of the i t e r a t i o n s

155 End I f

156

157 Randomize

158 x = Rnd ()

159 I f x < 1 / 5 Then

160 Population (indexLow) . BaseOrderToLvl = GenerateBaseOrderToLvl (Population (indexLow) .

BaseOrderLvl + 1 , baseMax)

161 Population (indexLow) . BaseOrderLvl = GenerateBaseOrderLvl (0 , Population (indexLow) .

BaseOrderToLvl − 1)

162 E l s e I f x < 2 / 5 Then

APPENDIX B. CODE 88

163 Population (indexLow) . PlatformOrderToLvl = GeneratePlatformOrderToLvl (Population (

indexLow) . PlatformOrderLvl + 1 , baseMax)

164 Population (indexLow) . PlatformOrderLvl = GeneratePlatformOrderLvl (0 , Population (

indexLow) . PlatformOrderToLvl − 1)

165 E l s e I f x < 3 / 5 Then

166 Population (indexLow) . OverhaulInt = GenerateOverhaulInt (Population (indexLow) .

PMinterval , pmMax)

167 E l s e I f x < 4 / 5 Then

168 Population (indexLow) . PMinterval = GeneratePMinterval (0 , Population (indexLow) .

OverhaulInt)

169 Else

170 Population (indexLow) .CBM = GenerateCBM ()

171 End I f

172 End Function

173

174 Function DoBestReplication (ByVal indexLow As Integer , ByVal indexHigh As Integer)

175 Randomize

176 I f Rnd () > Pbest Then

177 E x i t Function ’ skip best r e p l i c a t i o n 1−Pbest of the i t e r a t i o n s

178 End I f

179

180 Population (indexLow) . BaseOrderToLvl = Population (indexHigh) . BaseOrderToLvl

181 Population (indexLow) . BaseOrderLvl = Population (indexHigh) . BaseOrderLvl

182 Population (indexLow) . PlatformOrderToLvl = Population (indexHigh) . PlatformOrderToLvl

183 Population (indexLow) . PlatformOrderLvl = Population (indexHigh) . PlatformOrderLvl

184 Population (indexLow) . OverhaulInt = Population (indexHigh) . OverhaulInt

185 Population (indexLow) . PMinterval = Population (indexHigh) . PMinterval

186 Population (indexLow) .CBM = Population (indexHigh) .CBM

187 Population (indexLow) . FitnessLvl = Population (indexHigh) . FitnessLvl

188 End Function

189

190 Function lowEvaluation () As Integer

191 ’ Find the individual with the best f i t n e s s (= highest costs)

192 Dim low As Integer

193 low = 0

194 For i = 1 To popL − 1

APPENDIX B. CODE 89

195 I f Population (i) . Fi tnessLvl > Population (low) . FitnessLvl Then

196 low = i

197 End I f

198 Next

199 lowEvaluation = low

200 End Function

201

202 Function highEvaluation () As Integer

203 ’ Find the individual with the best f i t n e s s (= lowest costs)

204 Dim high As Integer

205 high = 0

206 For i = 1 To popL − 1

207 I f Population (i) . Fi tnessLvl < Population (high) . FitnessLvl Then

208 high = i

209 End I f

210 Next

211 highEvaluation = high

212 End Function

213

214 Function GenerateBaseOrderToLvl (ByVal Min As Integer , ByVal Max As Integer) As Integer

215 GenerateBaseOrderToLvl = CInt (rndUAB(Min, Max))

216 End Function

217

218 Function GeneratePlatformOrderToLvl (ByVal Min As Integer , ByVal Max As Integer) As

Integer

219 GeneratePlatformOrderToLvl = CInt (rndUAB(Min, Max))

220 End Function

221

222 Function GenerateBaseOrderLvl (ByVal Min As Integer , ByVal Max As Integer) As Integer

223 GenerateBaseOrderLvl = CInt (rndUAB(Min, Max))

224 End Function

225

226 Function GeneratePlatformOrderLvl (ByVal Min As Integer , ByVal Max As Integer) As Integer

227 GeneratePlatformOrderLvl = CInt (rndUAB(Min, Max))

228 End Function

229

APPENDIX B. CODE 90

230 Function GeneratePMinterval (ByVal Min As Single , ByVal Max As Single) As Single

231 GeneratePMinterval = (Round(rndUAB(Min, Max) / 100)) * 100

232 End Function

233

234 Function GenerateOverhaulInt (ByVal Min As Single , ByVal Max As Single) As Single

235 GenerateOverhaulInt = (Round(rndUAB(Min, Max) / 100)) * 100

236 End Function

237

238 Function GenerateCBM () As Boolean

239 Randomize

240 I f Rnd () < 0.5 Then

241 GenerateCBM = True

242 Else

243 GenerateCBM = False

244 End I f

245 End Function

Bibliography

Alrabghi, A., Tiwari, A., and Alabdulkarim, A. (2013). Simulation based optimization of joint

maintenance and inventory for multi-components manufacturing systems. In Simulation

Conference (WSC), 2013 Winter.

Arena (2014). https://www.arenasimulation.com/.

Barlow, R. E. and Proschan, F. (1964). Comparison of replacement policies, and renewal theory

implications. The Annals of Mathematical Statistics.

de Smidt-Destombes, K. S., van der Heijden, M. C., and van Harten, A. (2009). Joint optimisation

of spare part inventory, maintenance frequency and repair capacity for k-out-of-n systems.

International Journal of Production Economics, 118(1):260 – 268.

Getz, K. and Gilbert, M. (2000). VBA developer’s handbook. SYBEX.

Hokstad, P. and Frøvig, A. (1996). The modelling of degraded and critical failures for components

with dormant failures. Reliability Engineering and System Safety, 51(2):189–199. cited By 11.

Jardine, A. K., Lin, D., and Banjevic, D. (2006). A review on machinery diagnostics and prognos-

tics implementing condition-based maintenance. Mechanical Systems and Signal Processing,

20(7):1483 – 1510.

Jensen, K. and Kristensen, L. M. (2009). Coloured Petri Nets. Springer.

Law, A. (2007). Simulation Modeling and Analysis. McGraw-Hill, New York.

Murata, T. (1989). Petri nets: properties, analysis and applications. Proceedings of the IEEE,

77(4):541–580.

91

BIBLIOGRAPHY 92

Nance, R. E. (1993). A history of discrete event simulation programming languages. Technical

report, Virginia Polytechnic Institute and State University.

Paul, R. and Chanev, T. (1997). Optimising a complex discrete event simulation model using a

genetic algorithm. Neural Computing and Applications, 6(4):229–237. cited By 9.

Robinson, S. (2014). Discrete-event simulation: A primer, chapter 2, pages 10–25. John Wiley &

Sons Ltd.

Ross, S. M. (2014). Introduction to Probability Models. Academic Press.

Sherbrooke, C. (2008). Optimal Inventory Modeling of Systems: Multi-Echelon Techniques.

Kluwer Academic Publishers, Boston.

SINTEF (2009). OREDA: Offshore Reliability Data. OREDA Participants.

van der Aalst, W. and Stahl, C. (2011). Modeling Business Processes: A Petri Net-Oriented Ap-

proach. The MIT Press.

Van Horenbeek, A., Buré, J., Cattrysse, D., Pintelon, L., and Vansteenwegen, P. (2013). Joint main-

tenance and inventory optimization systems: A review. International Journal of Production

Economics, 143(2):499 – 508. Focusing on Inventories: Research and Applications.

Vatn, J. (2012). Introduction to discrete-event simulation.

Wang, L., Chu, J., and Mao, W. (2008). A condition-based order-replacement policy for a single-

unit system. Applied Mathematical Modelling, 32(11):2274–2289.

Wells, L. (2002). Performance Analysis using Coloured Petri Nets. PhD thesis, University of

Aarhus.

Westergaard, M. and Verbeek, H. (2011). Efficient implementation of prioritized transitions for

high-level petri nets. Petri Nets and Software Engineering.

Winston, W. L. (2000). Simulation Modeling Using @RISK. Duxbury Press.

Yu, X. and Gen, M. (2010). Introduction to Evolutionary Algorithms. Springer London.

	Preface
	Acknowledgment
	Summary and Conclusions
	Introduction
	Background
	Objectives
	Limitations
	Approach
	Structure of the Report

	Modeling Approaches
	Spare Parts Optimization Methods
	Introduction to Spare Parts Optimization Methods
	Discrete-Event Simulation Methods

	Models, Policies and Assumptions in the DES
	Components
	Situation Sketch
	Failures
	Stock and Order Policy
	Maintenance Policies
	Simulation length

	DES Model
	Interface of Discrete-Event Simulation Tool
	Logic of DES
	Explanation of the Code
	Failures
	Maintenance
	Costs
	Ordering
	Transfers
	Stock
	Pseudo-Random Number Generator

	Quantities of the Model
	Decision Variables
	Output Variables
	Random Variables
	Constants

	Optimization Methods
	Introduction to Optimization Approaches
	Genetic Algorithm for Optimizing Decision Variables
	Introduction to Genetic Algorithm
	Genetic Algorithm for Joint Optimization

	PES Handling Optimization

	Results
	Optimal Stock Values for the Kristin Case
	Joint Optimization of the Decision Variables
	Efficiency of PES Methods

	Summary
	Summary and Conclusions
	Discussion
	Recommendations for Further Work

	Acronyms
	Code
	DES Tool
	Genetic Algorithm

	Bibliography

