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Abstract 
In this report, I analyze the energy savings and carbon reduction potential of Norwegian 

single-family houses constructed between 1971 and 1980 (SFH03) when adding supplementary 

insulation to the outer walls. The report is split into two parts, where the first part consists of a 

material analysis and an energy audit for different façade refurbishments of a SFH03 building. 

The second part covers a scenario analysis of the different insulation solutions when modeling 

the SFH03 building stock segment in a dynamic building stock model from the year  

2000 to 2050.  Each insulation solution represents a unique renovation state in the SFH03 

housing stock, with an associated annual heating demand calculated from the energy audit. In 

addition, renovation cycles, hence the time period between façade refurbishments, of 

30, 40 and 50 years have been applied.  

 

Vacuum insulation and mineral wool insulation are the two insulation types analyzed in the 

material analysis. However, mineral wool insulation is found to be a better material for façade 

refurbishment due to lower investment costs, lower indirect emissions and energy usage during 

manufacturing and a higher lifetime. Manufacturing vacuum insulation results in nine times 

more energy consumption and seven times more carbon emissions compared to manufacturing 

mineral wool corresponding to the same insulation solution.  

 

The three different façade refurbishments assessed in the energy audit are, starting from the 

least ambitious refurbishment, historically refurbished state, approaching TEK 10 requirements 

and approaching passive house requirements. The annual energy need for heating for a chosen 

SFH03 building in original state amounts to 152 kWh/m2. A façade refurbishment will result in 

significant energy savings, corresponding to the heating demand for the different renovation 

refurbishments of respectively 14, 24 and 30 kWh/m2 for mineral wool insulation. Applying 

vacuum insulation will result in slightly lower energy savings, with a difference of respectively 

1 kWh/m2 for TEK 10 standard and 2 kWh/m2 for passive house standard.  

 

The objective of the report is to investigate the reduction potential of energy consumption and 

carbon emissions for the SFH03 dwelling stock segment towards 2050 when introducing more 

advanced insulation solutions for façade refurbishments. For the baseline scenario, the energy 

reduction potential in 2050 is almost 1/3 relative to 2010 for all renovation cycles. The baseline 

scenario corresponds to a scenario with an unchanged refurbishment policy, where historical 

façade refurbishment is conducted throughout the whole simulation period. All other scenarios, 

where more advanced insulation solutions are applied, will result in an even lower future 

heating demand. The carbon emission reduction potential is equal to the energy potential and 

achieves the same reduction in percentage as the energy consumption, hence 1/3 for the baseline 

scenario and lower for the remaining renovation solutions. The reduction potential is highly due 

to a larger share of demolished SFH03 dwellings in 2050.  

 

Single-family houses accounts for almost 70 % of the Norwegian residential stock in 2012. The 

SFH03 stock segment accounts for about 13 % of these. By introducing a more ambitious 

renovation strategy of façade refurbishment for ageing single-family houses, this will contribute 

to reaching climate policy targets and achieving a significant reduction in energy usage and 

carbon emissions.   
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Sammendrag 
I denne masteroppgaven analyserer jeg energibesparelser og utslippspotensialet for norske 

eneboliger bygget mellom 1971 og 1980 (SFH03) ved etterisolering av ytterveggene. 

Rapporten er todelt, hvor den første delen tar for seg en materialanalyse og energievaluering av 

SFH03-bygningen for forskjellige fasaderenoveringer. Den andre delen omfatter en 

scenarioanalyse for de forskjellige isolasjonsløsningene ved modellering av  

SFH03-boligsegmentet i en dynamisk boligmassemodell fra år 2000 til 2050. Hver 

isolasjonsløsning representerer en unik renoveringstilstand i SFH03-boligsegmentet, med et 

tilhørende energibehov for oppvarming beregnet fra energievalueringen. Det er i tillegg benyttet 

renoverinssykluser, det vil si tidsperioden mellom fasaderehabiliteringer, på 30, 40 og 50 år.  

 

Vakuumisolasjon og mineralull er benyttet som hovedtyper i materialanalysen. Mineralull har 

imidlertid vist seg å være et bedre material til fasaderehabilitering, da det gir mindre 

investeringskostnader, har lavere indirekte utslipp og energibruk relatert til produksjon og har 

en høyere levetid. Til sammenligning, gir vakuumisolasjon i snitt ni ganger høyere energibruk 

og sju ganger høyere utslipp relatert til produksjon for samme isolasjonsløsning ved bruk av 

mineralull.  

 

De tre forskjellige fasaderehabiliteringene i energievalueringen er, rangert fra den minst 

ambisiøse, historisk rehabilieringsnivå, tilnærmet TEK10-krav og tilnærmet passivhus-krav. 

Det årlige oppvarmingsbehovet til en SFH03-bygning i original tilstand tilsvarer 152 kWh/m2. 

Rehabilitering av fasaden vil gi betydelige energibesparelser på henholdsvis 14, 24 og 30 

kWh/m2 for mineralull, avhengig av benyttet fasaderehabilitering. Ved bruk av 

vakuumisolasjon vil bruk av dette isolasjonsmaterialet resultere i hakket lavere 

energibesparelser, med en differanse på 1 kWh/m2 for TEK10 og 2 kWh/m2 passivhus-løsning.  

 

Formålet med rapporten er å utforske reduksjonspotensialet i energibruk og CO2-utslipp for 

SFH03-boligsegmentet frem mot 2050 når man introduserer mer avanserte løsninger for 

fasaderehabilitering. Baseline-scenarioet gir en energibesparelse på 1/3 relativt til 2010 ved 

vedlikeholdt renoveringsstrategi, det vil si at historisk rehabilitering er vedlikeholdt gjennom 

hele simuleringsperioden. Alle andre isolasjonsløsninger gir et desto lavere oppvarmingsbehov 

og energibruk. Potensialet i CO2-besparelsene er lik energibesparelsene, det vil si 1/3 for 

baseline-scenarioet og lavere for de resterende ioslasjonsløsningene. Potensialet i 

energireduksjon og CO2-besparelser skyldes i stor grad at en stor del av SFH03-segmentet er 

revet.  

 

Ca. 70 % av den norske boligmassen i består av eneboliger i 2012. SFH03-boligsegmentet 

utgjør ca. 13 % av disse. Ved å innføre en mer ambisiøs renoveringsstrategi der 

fasaderehabilitering inngår for eldre eneboliger, vil energi- og utslippsbesparelsene bidra til å 

nå klimamål og å oppnå en betraktelig reduksjon i energibruk og CO2-utslipp.  
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Key terms and abbreviations 

AB – Apartment Block. Apartment block includes residence for communities and other 

buildings.  

BRA – (“Bruksareal”).The total utility floor space in a building.  

Climate council – translated to “klimaforliket”. 

CO2 equivalents - The total CO2 emissions related to operation of the dwelling per year.   

Delivered energy - The energy delivered to the dwelling when losses are accounted for.  

DHW – Domestic hot water. 

Energy costs - The costs of energy delivered to a dwelling when emissions are accounted for.   

Energy need – The calculated energy demand before applying any technical heating system. 

EU – European Union. 

GHG – Greenhouse gas. 

IPCC - The intergovernmental Panel on Climate Change (known as “FNs klimapanel”). 

Key Performance Indicators - Chosen parameters in the material analysis of insulation 

materials. 

MFA – Material flow Analysis. 

Primary energy - Energy in its pure form, which has not yet been transformed or converted. 

Renovation cycle – Amount of years between façade refurbishments of a building. 

SFH  - Single-family house. 

SFH03 – Single family house built in time cohort 3 (constructed between 1971 – 1980). 

TH – Terraced House. House with two dwellings, row house or houses with three dwellings or 

more.  

The EEA agreement – Agreement on the European Economic Area (known as  

“EØS-avtalen”).  

The National Office of Building Technology and Administration – Translated to  

“Statens bygningstekniske etat”.  

U-value – Is the thermal transmittance and measures the heat loss in a building from the 

building envelope. A high U-value corresponds to a high heat loss, and similarly, a low U-value 

corresponds to a low heat loss through the respective material.  
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1. Introduction 

1.1 Objective and motivation 

Single-family houses in Norway, built before 1990, represented more than 40 % of the total 

Norwegian dwelling stock in 2012 according to Statistics Norway (Prognosesenteret & 

Entelligens, 2011). These houses are in a technically worse condition and have less energy 

efficient building envelopes than newer houses of today’s dwelling stock and may therefore 

represent huge energy savings if energy refurbishment measures are implemented on a massive 

scale (SINTEF Fag, 2014b).  

 

Applying extra insulation to the outer walls of a building is known as an effective refurbishment 

measure for increased energy efficiency for dwellings constructed before 1980. This is due to 

significantly less strict U-value requirements in previous technical regulations for buildings 

(Risholt, 2013). The U-value for the outer walls of a building is a measure on the thermal 

transmittance through the building envelope and represents the heat loss.  

 

The objective of this master’s thesis is to investigate the future energy and carbon emission 

reduction potential when conducting different insulation solutions to the outer walls of an 

important segment of the Norwegian dwelling stock. The segment chosen in the analyses in this 

thesis is single-family houses constructed between 1971 and 1980. In the following, the example 

building will be referred to as an SFH03 building, where the number 03 corresponds to time 

cohort 3 of construction.  

1.2 Research questions 

In this master’s thesis, I will carry out a two-part analysis of Norwegian single-family houses 

constructed between 1971 and 1980.  The first part includes an energy audit of an example 

building representing an average synthetic single-family house built in the 1970s and a material 

analysis of mineral wool and vacuum insulation for different insulation thicknesses when 

refurbishing the outer walls. The second part consists of a scenario analysis of future 

refurbishment effects concerning the heating demand and carbon emission for different 

insulation solutions of the SFH03 dwelling stock segment examined.  

 

In order to analyze and discuss the first part of the thesis work, the following research question 

must be answered:  
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Research question 1:  

How do different insulation solutions for the outer walls affect the energy balance, material 

flows, investment costs and carbon emissions of single-family houses built between 

1971 and 1980?  

 

Energy and carbon emission calculations will be conducted in two energy audit models: 

SIMIEN and TABULA. The material analysis consists of key performance indicators (KPIs), 

including material consumption, waste at the construction-site, investment costs and upstream 

carbon emission and energy flows.  

 

The energy results from the energy audit will be used as input in a dwelling stock model to 

obtain results on dwelling stock level. Obtaining these results will make it possible to gain the 

necessary knowledge to answer the final research question:  

Research question 2:  

How do different insulation solutions for the outer walls of single-family houses built between 

1971 and 1980 influence the energy need for heating and carbon emissions towards 2050?  

In order to investigate the reduction potential in energy usage and carbon emissions towards 

2050, I will perform a scenario analysis in the dynamic building stock model. Each scenario will 

represent a unique insulation solution for façade refurbishment of the SFH03 building, 

corresponding to a respective annual heating demand. The scenarios include different time spans 

between refurbishment, hence different renovation cycles, of respectively 30, 40 and 50 years.   
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2. Context, theory and literature review 

2.1 Political context 

2.1.1 The European regulations 

“Human influence on the climate system is clear”, states the Intergovernmental Panel on Climate 

Change, IPCC (2013), in their fifth assessment report on Climate Change. We humans are 

responsible for having emitted a significant share of the total GHG emissions over the last 

centuries. It is, however, interesting to see that despite a growing world economy, the global 

energy related emissions in 2014 remain unchanged compared to 2013, with a total amount of 

32.3 billion tonnes CO2. The executive director of the International Energy Agency,  

Maria van der Hoeven, points out that even though the latest emissions data is encouraging,  this 

is not an excuse to not seek further implementation of energy mitigation strategies (IEA, 2015). 

According to IPCC, today’s most cost-efficient and simple climate measures are found in the 

building sector (IPCC, 2014; KrD, 2010).  

 

Figure 1: Snapshot of the poster of the climate change report (IPCC, 2013) 

Energy use in buildings represents about 40 % of the total energy use in the European Union 

(EU) and accounts for a significant amount of energy-related CO2 emissions (IPCC, 2013; The 

European Parliament and the Council of the European Union, 2010). These statistics are also 

representative for Norway, according to a report by Multiconsult, SINTEF Byggforsk and 

NTNU (2009). To the writer’s knowledge, several different organs, international as well as 

national ones, see the urgency of implementing immediate measures in order to reduce 

greenhouse gas emissions and the energy consumption in the building sector. The main 
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suggestion is to increase the use of renewable energy sources and improving energy efficiency 

(IPCC, 2013, 2014; Miljøverndepartementet, 2012; The European Parliament and the Council 

of the European Union, 2010). A more energy-efficient Europe will contribute to reducing the 

primary energy consumption and energy imports as well as increasing economic growth and 

creating new jobs related to energy efficiency (The European Parliament and the Council of the 

European Union, 2012). 

 

In order to reduce the total energy consumption in the dwelling sector, renovation will be a 

significant contributor. The energy efficiency directive proposes to renovate 3 % of the heated 

floor area of all buildings over 500 m2 occupied by its central government before July 9th, 2015, 

and buildings over 250 m2 after this date (The European Parliament and the Council of the 

European Union, 2012). As of today, the share of renovated buildings is substantially lower than 

3 % and hence, gaining knowledge of the dynamics of a dwelling stock will be of great 

importance in the years ahead.  

 

It is not intuitive to write about how the Norwegian dwelling stock will develop in a realistic 

manner. Among the many aspects influencing the dynamics, two worth mentioning are political 

decisions from the EU and Norway.  

So far, EU leaders have defined the future energy and climate policy towards 2050 with 

"The 2020 package”, “The 2030 framework” and the “2050 roadmap” (The European Union). 

The 20-20-20 targets, made by the UN Framework Convention on Climate Change  

(the “Climate Convention”) were a result of the 2020 package. Last year, in October 2014, EU 

leaders agreed on implementing the 2030 framework. The 2050 roadmap’s objective is to create 

a low carbon society in the EU. The targets for the EU climate and policies are as follows 

(The European Commission): 
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Table 1: Overview of the EU climate and energy policies up to 2050 (The European Commission) 

The 2020 Package The 2030 Framework The 2050 Roadmap 

Reducing greenhouse 

gas emissions by at least 

20 % below the 

1990 level 

Reducing greenhouse 

gas emissions by at least 

40 % below the 

1990 level 

EU should cut its emissions to 

80 % below 1990 levels.  

Results in two milestones: 

Ensuring that 20 % of 

energy consumed within 

the EU comes from 

renewable sources 

Increasing the share of 

renewable energy to at 

least 27 % of energy 

consumed within the EU  

By 2030 EU should cut its emissions 

to 40 % below 1990 levels 

Reducing primary 

energy use by 20 % with 

projected levels – to be 

achieved through energy 

efficiency 

Increasing energy 

efficiency by at least 

27 % 

By 2040 EU should cut its emissions 

to 60 % below 1990 levels 

Considering that energy consumption from buildings represents such a significant part of the 

total energy use in the EU, it is realistic that the EU will influence the renovation strategies in 

the years to come. Upgrading the energy state of dwellings will most likely reduce the 

operational energy costs, utilize more renewable energy as well as being resource-saving 

compared to building new dwellings.  

Primary energy consumption is a key indicator that is the main reason behind developing the 

framework conditions in energy system withini the EU, by influencing the energy mix in the 

EU and reducing the energy import, states industry counsellor in renewable energy, Dag Roar 

Chrsistensen (Energi Norge, 2012). Primary energy is defined as energy in its pure form, which 

has not yet been transformed or converted.  

In a report, Adapt Consulting (2012), presents the background for the use of primary energy 

factors in different countries and the consequences of applying different methodologies. Their 

main findings confirm that there is no unique methodology in European regulations when 

defining the primary energy in buildings and hence, it is not useful to use primary energy factors 

when calculating total energy if the objective is to reduce the energy use in a society 

(Adapt Consulting, 2012; Energi Norge, 2012). 

 

This may become a problem in the future, with an increasing focus upon life cycle assessment 

for energy systems and energy performance of buildings, combined with an increasing share of 
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renewable energy in the energy mix and more possibilities of importing energy from other 

countries. When there is no unique calculation method, the primary energy factors used for 

heating sources, such as gas or electricity, may be quite different dependent on the country and 

hence influence the calculated primary energy when assessing building audits 

(Adapt Consulting, 2012; Molenbroek, 2011). 

 

In a study by Building Performance Institute Europe, BPIE (2011), the authors have 

recommended several policy recommendations in order to achieve the EU’s CO2 reduction 

targets. The recommendations include, among other, mapping the energy performance of 

buildings on a national level, providing an easily available data collection and establishing 

innovative funding alternatives, which provide flexibility and extra funding for household 

refurbishing. In addition, they suggest changing the existing legislation at EU level from 

voluntary to binding energy measures. Every country should in addition have a detailed 

renovation plan and sufficient information about regulations and climate reduction targets. 

Proper training and education in the construction sector is also mentioned as an important policy 

recommendation. It is highly sought-after to increase the knowledge of energy-efficient 

buildings and encourage technological development and competitiveness in the industry 

(BPIE, 2011).  

2.1.2 Norway’s climate obligations 

Norway has strong ties to Europe for historic and cultural reasons, in addition to sharing values 

concerning climate policy, human rights and rule of law with the EU. This was an incentive for 

Norway to enter the Agreement on the European Economic Area (known as the EEA agreement) 

in 1992. Retrospectively, Norway has taken the initiative to extend their cooperation and 

agreements to the EU in other areas not concerning the EEA framework, including climate and 

energy policies (Norwegian Ministry of Foreign Affairs, 2012). At the same time, environmental 

legislations have indirectly been included by the EU in the EEA agreement. According to the 

Norwegian Ministry of Foreign Affairs, Norway has a big interest in participating in the 

development of the EU climate policy. This is for instance shown in a report by KrD (2010), 

where the main suggestion to solve the energy and GHG issues related to buildings is the same 

as EU’s third 20-20-20 target. KrD manages the National Office of Building Technology and 

Administration and the Norwegian National Housing Bank as well as policy instruments made 

by these agencies. 
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During the last six months, the greener political parties, like Venstre and KrF, have put pressure 

on the rest of the government to follow EU climate policies, with a 40 % reduction of emissions 

within 2030 compared to 1990 emission levels. According to Statistics Norway and the 

Norwegian Environment Agency, the amount of greenhouse gas emissions (GHG) in 1990 

constituted about 52 million tonnes CO2 eq. (The Norwegian Environment Agency, 2015). 

February 4th this year the current government agreed on this goal and hereby proposes to reduce 

the emissions in Europe, together with the EU, by 40 %, or by about 21 million tonnes CO2 eq. 

 

However, it is still uncertain to what extent Norway will reduce its national emissions. Editor 

of economics in Aftenposten, Ola Storeng, states that Norway is a country where it is 

challenging to do climate politics, due to our big oil and gas production on the one hand and 

Norway’s green electricity production, representing the national energy system, on the other 

hand (Aftenposten morgen 5. februar, 2015). The electricity comes from hydropower, which is 

a renewable energy source. In that manner, the power provided to Norwegian homes is 

environmentally friendly and fulfills climate ambitions many countries seek to have reached 

within 30 years.  

 

The challenging part of executing climate policies in Norway is the economy. It is more 

expensive to cut down emissions by reducing the oil and gas production rather than helping out 

other countries cutting down their emissions. This is one of the reasons why Norway has paid 

for UN-certified energy measures in industrial countries as an alternative to cutting down their 

own emissions. A change from previous climate policy in Norway is that the opportunity to 

“ransom oneself” will not be possible anymore. From now on, the climate targets are to be 

reached in the respective countries only and there will not be an opportunity to use climate 

quotas from developed countries.  Time will show if there will be a new international climate 

agreement in Paris in December 2015. One potential effect of several countries coming together 

to discuss climate policies, is that they may set stricter conditions for the consumers and the 

industry than what they would have done individually. (Aftenposten morgen 5. februar, 2015).  

 

In Europe, the Energy Performance of Buildings Directive (2008) has given the standard EN 

13790:2008  as a guideline to assess an energy audit for a building. In Norway, the same standard 

applies.  
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However, Standard Norge (2014) has written a Norwegian standard, adjusted to Norwegian 

conditions in NS 3031:2014. The calculation methods for energy audits of buildings are:  

 

 Simple spreadsheet models (NS3031:1987) 

 Seasonal and stationary methods on a monthly basis (NS3031:2014) 

 Dynamic calculation programs based on an electrical circuit analogy, RC 

(SIMIEN, ISO 13790) 

 Advanced dynamic programs based on difference methods (IDA-ICE, ESP-r) 

 Other advanced simulation programs (Computational Fluent dynamics (CFD),  

Earth energy designer (EED)) 

 

2.2 The Norwegian dwelling stock 

2.2.1 The historical development and current situation 

“A dwelling is a unit of property which contains one or several rooms, is built or rebuilt as a 

whole season private residence for one or several persons, has its own access without having to 

go through another dwelling. Dwellings may be studio apartments and apartments. An 

apartment is a dwelling with minimum one room and a kitchen. A studio apartment is a room 

with its own access designed for one or several persons, has access to water and a toilet without 

having to go through another dwelling” (SSB, 2013). 

 

Thanks to frequent housing censuses in Norway, it has been possible to make statistics of the 

dwelling development in Norway. The number of constructed and completed dwellings has 

varied a lot over the years.  
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Figure 2: The Norwegian dwelling stock development from 1951 to 2013. 

Completed dwellings (SSB, building statistics) 
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See Figure 2 for an overview of completed dwellings in the timespan 1951 to 2013. As shown 

in the graph, there was a “building boom” in the early 70s, when almost 45,000  dwellings were 

completed per year. In contrast, the number of completed dwellings was less than 20,000 per 

year in the early 90s. 

 

The “construction boom” of the 70s was due to the big focus of the government at that time on 

creating housing after the Second World War in order to solve the housing shortage. The 

Minister of Local Government at that time, Helge Seip, presented these plans of increasing the 

housing construction on a gigantic scale and managed to execute them over a short period of 

time when housing shortage was still a problem (Norsk biografisk leksikon; Prognosesenteret 

& Entelligens, 2011). 

  

Since the 1980s, housing construction has been less controlled by the government and has 

instead reflected the actual dwelling demand. Hence, housing construction has followed the 

fluctuations of the market to a greater extent (Prognosesenteret & Entelligens, 2011). SSB 

presents the Norwegian dwelling stock of 2012, where dwellings built before 1990 represent 

approximately 80% of the total number of occupied dwellings. See Table 2 below for a 

presentation of the Norwegian residential stock in number of occupied dwellings and useful 

floor area (BRA).  

Table 2: SSB: The Norwegian dwelling stock divided by dwelling types and construction year in number 

of dwellings and user space (Brattebø & O'Born, 2014). 

Construction 

period 

Number of occupied dwellings  BRA (1000 m2)  

 SFH TH AB Total SFH TH AB Total 

Before 1961 414,980 156,762 195,187 766,929 56,073 11,885 16,211 84,169 

1961 -1970 153,019 48,413 74,541 275,973 20,505 5,025 4,842 30,371 

1971-1980 206,011 69,807 84,424 360,242 29,254 7,430 6,337 43,020 

1981-1990 192,422 67,112 51,144 310,678 32,712 7,093 4,149 43,953 

1991-2001 113,711 58,248 63,552 235,511 17,170 5,619 4,673 27,462 

2002-2012 86,578 62,383 106,897 255,858 13,073 5,985 7,932 26,991 

Total 1,166,721 462,725 575,745 2,205,191 168,786 47,362 41,585 257,733 

 

Dwelling style trends  

There have been several building style trends for dwellings throughout the decays after the 

Second World War. According to Sørby (1992), the first years after the Second World War were 

strongly influenced by a simple and level-headed architectural style, where the typical dwellings 

were single-family houses with saddle roof. Many of the of the dwellings were built with light 

frame walls, and from the middle of the 50s, it started to become more normal to use insulation 
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in the outer walls in combination with light frame-built walls, even though the insulation 

standards during this time cohort were limited. The 60s were more influenced by modernism 

and flat roofs, stained brown and with a basement. The 70s building style was more influenced 

by structuralism and prefabricated houses which were similar (Ramstad, 2006; SINTEF Fag, 

2014b; Sørby, 1992).  

 

Figure 3: Norwegian example buildings from (left to right) the 60s, 70s and 80s 

 

2.2.2 The current energy need and typical heating sources 

Prognosesenteret and Entelligens have done a thorough study calculating the national energy 

consumption of the Norwegian dwelling stock in 2010. The annual energy consumption of the 

Norwegian dwelling stock is estimated to 45.2 TWh. The result is similar to SSB’s statistics on 

the same topic, concluding with an energy demand for Norwegian dwellings of 43.7 Twh 

(SSB, 2014b). One of the reasons for SSB having a discrepancy of more than 3 % may be that 

SSB’s study is based on consumer studies and these samples may give less reliable raw data 

concerning the dwelling stock classification. Prognosesenteret and Entelligens, however, have 

based their model on stereotypical dwellings and not average dwellings. For instance, they have 

operated with an integer number of floors for the standard dwellings and not a decimal number 

(Prognosesenteret & Entelligens, 2011). Hence, there is uncertainty regarding the results of 

energy use for the Norwegian dwelling stock associated with both of these sources.  

 

There are several factors influencing the energy use in a dwelling stock. Dwelling type, energy 

carrier and year of construction are just three out of many variables. Prognosesenteret states that 

the most significant variable out of the three factors mentioned concerning energy use, is the 

dwelling type. The dwelling type characteristics describe the size of the dwelling and the main 

construction material of the building envelope. Both of these characteristics influence specific 

energy need for heating [kWh / m2]. Furthermore, the floor space influences the heating demand 

directly. The larger the dwelling, the more energy is needed. Another correlation is that the 

specific energy need decreases when the building gets more compact in terms of containing 
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more dwellings per floor. Hence, apartment blocks (AB) have a lower energy need than  

single-family houses (SFH) (see Figure 4). The construction material influences the energy need 

indirectly by having thermal characteristics which further influence the specific energy need 

(Prognosesenteret & Entelligens, 2011). 

 

Average energy consumption for Norwegian households depends on dwelling type and heat 

source, as illustrated in Figure 4. Farmhouses and SFH have a bigger heat loss than terraced 

houses (TH) and apartment blocks (AB) and this may explain why they have a higher energy 

consumption. The significant heat loss from SFH and Farmhouses are, among others, due to a 

larger floor area, a high volume compared to the thermal envelope and their choices in energy 

carriers for heating purposes. SFH and farmhouses use firewood for heating to a much higher 

extent than TH and AB. Due to firewood having an efficiency degree that is 25 % lower than 

electricity, SFH and farmhouses have to use more energy in order to deliver the same amount 

of heat as dwellings using electricity as energy carrier. Farmhouses and the SFH may be 

considered the same dwelling type due to similar size, construction material and energy carriers  

(Prognosesenteret & Entelligens, 2011). 

  

Figure 4: Average energy consumption per household for different dwelling types in 2012. 

Reproduced (SSB, 2014b) 
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2.2.3 Space heating variables  

There are many important variables influencing the energy balance of a building. The next sub 

chapter will review the insecurity of energy use in buildings related to indoor temperature and 

infiltration.  

Indoor temperature 
Prognosesenteret states that there has been done little research on the average difference in 

indoor and outdoor temperature despite this being a vital variable influencing the energy balance 

of a building (Prognosesenteret & Entelligens, 2011). There exists good statistical data from 

outdoor climate conditions, so the unreliable parameter is the indoor set-point temperature.  

In NS 3031:2014 (Standard Norge, 2014)  it is decided to put an average indoor temperature of 

20.33°C as the set-point temperature used in dwellings when calculating the energy need. 

(20.33°C is the weighted average of 19°C for 8 hours and 21°C for 16 hours per 24 hours.) 

However, the representative indoor temperature may vary. Entelligens AS has conducted  

energy audits for approximately 100 dwellings and found that the average temperature for a 

standard residential building is substantially lower than 20.33°C. The average indoor 

temperature ranged from 18.0 °C – 20.4 °C for single-family houses, from 18.9 °C – 20.9 °C for 

terrace houses and from 20.2 °C – 22.0 °C for apartment blocks. If energy calculations are based 

on a higher indoor temperature than what occurs in reality, the calculated energy need of the 

dwelling will be substantially higher than the real energy need. In addition, it may be difficult, 

particularly for older dwellings, to maintain desired indoor temperature and avoid unnecessary 

heat loss (Prognosesenteret & Entelligens, 2011).  

The share of heated area is bigger in apartment blocks than terrace houses and  

single-family houses. This is due to TH and SFH representing bigger dwellings and there are 

often unused rooms that are not heated directly.  

In order to show how much the indoor temperature may influence a building’s energy need for 

heating, Prognosesenteret has done a sensitivity analysis of the indoor temperature. As shown, 

there is an almost linear correlation between the indoor temperature and the heating demand of 

the dwelling, see Figure 5. 

 

.  
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Ventilation heat loss 

The energy demand of the dwelling is highly sensitive to the parameters influencing the 

infiltration and ventilation of a dwelling. Below, Figure 6 shows the energy need increase with 

an increase in the air leakage rate. The air leakage rate measures the infiltration at a reference 

pressure of 50 Pascal. The example is from the dwelling stock segment 

SFH 1971 – 1980 in Prognosesenteret & Entelligens (2011). However, the relationship between 

the air leakage rate and the heating need is representative for all dwelling stock segments. 

 

Prognosesenteret and Entelliengs (2011) have presented an overview of typical values for air 

leakage rate and natural air change rates for different dwelling stock segments 

(see Table 3). As shown, there is huge variation between the air leakage rates. Furthermore, 

there is no linear relationship between the air leakage rate and the natural air change rate of the 

dwelling.  

 

 

  

Figure 5: Indoor temperature versus heating demand [kWh/m2].  

Reproduced (Prognosesenteret & Entelligens, 2011). 

Figure 6: Air leakage rate, n50 [1/h] versrus heating demand [kWh/m2]. 

Reproduced (Prognosesenteret & Entelligens, 2011). 
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Table 3: Air leakage rate and air change rate in different dwelling types 

(Prognosesenteret & Entelligens, 2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.4 Renovation activities 

IPCC states that one of the most cost efficient climate measures today is renovation in the 

building sector (2013). Historically speaking, the Norwegian dwelling stock represents one of 

the most renovated dwelling stocks in the world due to a strong economy. A decent share of the 

total renovation investment is energy related. In 2010, about 10 billion NOK was spent on 

energy renovation for the 2.3 million Norwegian dwellings. This is about 20 % of the total 

renovation investment that year (Prognosesenteret & Entelligens, 2011; Risholt, 2013) Most 

likely, this renovation trend will not change, but rather increase in the years to come, due to 

today’s renovation incentives and assumed future renovation incentives (Risholt, 2013). 

 

Even though the renovation expenses on Norwegian dwellings has increased over the last 

decade, there are still many dwellings which have the original technical standard as when they 

were built. Table 4  presents the percentage of dwellings in the dwelling stock being either 

refurbished or in their original state (Prognosesenteret & Entelligens, 2011). 

Standard 

dwelling 

Air leakage rate 

n50 

Air change 

rate ninf 

SFH   

Before 1956 5 0.6 

1956 – 1970 5 0.5 

1971 – 1980 4 0.4 

1981 – 1990 4 0.4 

1991 – 2000 3.5 0.4 

2001 - 2010 3 0.8 

2011 - 2020 2.5 1.2 

AB   

Before 1956 5 0.5 

1956 – 1970 5 0.2 

1971 – 1980 3 0.3 

1981 – 1990 1.5 0.4 

1991 – 2000 1.5 0.4 

2001 - 2010 1.5 1.2 

2011 - 2020 1.5 1.7 

TH   

Before 1956 5 0.5 

1956 – 1970 5 0.5 

1971 – 1980 4 0.4 

1981 – 1990 4 0.4 

1991 – 2000 3 0.4 

2001 - 2010 3 0.8 

2011 - 2020 2.5 1.2 
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Table 4: Share of dwellings in the Norwegian dwelling stock refurbished. Reproduced 

(Prognosesenteret & Entelligens, 2011). 

 Original 

dwelling 

Refurbished Changed 

windows 

Insulation 

of walls 

Insulation of 

ceiling/floor 

SFH      

Before 1956 9 % 91 % 74 % 64 % 55 % 

1956 – 1970 24 % 76 % 64 % 32 % 44 % 

1971 – 1980 61 % 39 % 35 % 6 % 20 % 

1981 – 1990 83 % 17 % 12 % 3 % 14 % 

1991 – 2000 95 % 5 % 4 % 3 % 2 % 

2001-2010 100 % 0 % 0 % 0 % 0 % 

TH      

Before 1956 14 % 86 % 71 % 60 % 45 % 

1956 – 1970 22 % 78 % 68 % 30 % 38 % 

1971 – 1980 39 % 61 % 56 % 12 % 20 % 

1981 – 1990 91 % 9 % 5 % 0 % 8 % 

1991 – 2000 97 % 3 % 3 % 0 % 0 % 

2001-2010 100 % 0 % 0 % 0 %  0 % 

AB      

Before 1956 16 % 84 % 73 % 43 % 35 % 

1956 – 1970 25 % 75 % 66 % 37 % 29 % 

1971 – 1980 29 % 71 % 67 % 24 % 6 % 

1981 – 1990 91 % 9 % 7 % 5 % 6 % 

1991 – 2000 97 % 3 % 3 % 3 % 0 % 

2001-2010 100 % 0 % 0 % 0 % 0 % 

It is shown in the table above that most of the dwellings built before 1971 have gone through 

one or several refurbishment measures. Among the younger dwellings, built after 1990, it is the 

other way around, with less than 5 % of dwellings being subjected to refurbishment and a change 

of the dwelling’s technical standard. In the report “Energiplan – tre trinn for tre poker” by 

Sintef Fag, it is pointed out that there is a huge energy upgrade potential among the SFH built 

in the 70s and 80s due to the fact that only 6 % and 3 % of these have added newer insulation to 

the outer walls (SINTEF Fag, 2014b). This statement is supported by the potential and barrier 

study from Enova, which sets the average lifetime for passive energy measures at 30 years. 

Passive energy measures are energy measures indirectly influencing the energy performance of 

the building, such as upgrade of the building envelope (Prognosesenteret & Entelligens, 2011). 

 

2.2.5 Energy behavior and barriers 

Climate and environmental topics are so-called low engagement topics with a high social status 

value and few people will admit that they are not concerned about the environment 

(Prognosesenteret & Entelligens, 2011). According to Risholt (2013), there are no previous 

studies on how these barriers influence the renovation activity for Norwegian single-family 
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houses.  Prognosesenteret has, however, extended the EU project BARENERGY’s 

(“Barriers for energy changes among consumers and households”) classification of different 

barriers and mapped the following categories of barriers in energy changes in Figure 7 below. 

 

Figure 7: Barriers for energy changes among consumers and households. Reproduced 

(Prognosesenteret & Entelligens, 2011). 

 

They did a survey, asking people about the main reasons for refurbishing windows and adding 

insulation to a Norwegian household. According to the survey, the main reason for insulating 

the dwelling was to save energy and adding it as an extra measure to the main refurbishment.  

 

The main reasons for changing the windows, on the other hand, was necessity, in addition to it 

being an extra measure to the main refurbishment. Hence, refurbishing windows as an energy 

saving measure was considered a secondary reason (Prognosesenteret & Entelligens, 2011).   

 

In a study by Building Performance Institute Europe, BPIE (2011), it is stated that the financial 

barrier for investing in energy saving measures in buildings was the biggest. Among other 

reasons, lack of knowledge and services and the lack of attractive products in the market are 

significant barriers according to Risholt (2013). Lack of knowledge means in this context that 
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the homeowners do not know the benefits nor possibilities related to energy efficiency at home. 

There is neither a big market for services, or the knowledge on how to provide the services 

among craftsmen related to energy efficiency (Risholt, 2013). 

 

Another important perspective is that despite the fact that it is technically possible and that there 

is a huge energy potential in the dwelling sector, it is not always economically reasonable to 

spend resources on breaking the barriers down (Enova, 2012).  

2.2.6 Renovation upgrade to TEK and passive house standard  

Single-family houses built before 1990 represent a large part of today’s dwelling stock. Due to 

more strict requirements over the last couple of decades, concerning the building envelope and 

technical systems, these dwellings are less energy efficient compared to dwellings that are built 

today. One example is the change in U-value requirements for wooden frame walls built between 

1945 and 2010 (Risholt, 2013), that is a measure on the heat loss through the building envelope. 

The majority of the single-family houses built in this time period have a wooden exterior 

cladding and are insulated with mineral wool (Risholt, 2013; SINTEF Fag, 2014b). 

Table 5: U-value requirements and insulation thicknesses for wood frame walls built between 1945 

and 2010. Reproduced (Sintef building and infrastructure, 2010, Risholt, 2013). 

Building period 1945-

1960 

1960-1980 1980-1997 1997-2007 2007- 

Insulation materials Air Mineral 

wool 

Mineral 

wool 

Mineral 

wool 

Mineral wool 

Insulation thickness [mm] - 100 150 200 250 

U-value [W/m2K] 1.5 0.5 0.29 0.22 0.18 

As shown in Table 5, there is a huge renovation upgrade potential for wooden frame dwellings 

built before 1980, due to substantially lower U-value requirements than the current, which is 

0.18 W/m2K (National Office of Building Technology and Administration, 2010). There are 

many ways to upgrade the building envelope. One approach is to have a stepwise energy 

upgrade, renovating the building envelope in three main steps. This will in total improve the 

dwelling’s energy state to an ambitious level, corresponding to today’s regulation requirements 

or better. 

In the report by Sintef Fag (2014b), an energy plan is presented of stepwise refurbished  

single-family houses built between 1960 and 1990, upgrading the dwellings to TEK 10, passive 

house level or low-energy level. The steps are followed in an order that will prevent an energy 

lock-in and distribute the total investment costs over a longer time span. An energy lock-in 
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means that the energy efficiency potential decreases due to unnecessary refurbishing in the prior 

renovation steps. The objective of the report by SINTEF Fag (2014b) is to create a stepwise 

energy plan that will upgrade the building envelope to an ambitious level, which is executed and 

correlated to the next renovation step. The steps include renovation of outer walls, cellar 

(floor and walls bordering the terrain) and ceiling, in addition to technical measures 

(SINTEF Fag, 2014b).  

One alternative to getting a discount on the renovation costs is to apply for support by Enova. 

In 2013, Enova introduced an upgrade support at their webpage, www.enova.no, if the following 

criteria of the dwelling are fulfilled:  

 The energy supply must have an energy performance certificate better than red. Hence, 

the dwelling must have an energy mix avoiding pure electricity or fossile fuels.  

 Fulfill the energy need requirements in accordance to the table presented on the webpage 

(Enova) 

 Reduce the heat loss coefficient by 30 % and not exceed the requirements to the heat 

loss coefficient presented on the webpage (Enova) 

 

2.2.7 Insulation of outer walls 

Upgrading the dwelling façade and insulating the outer walls may be an efficient renovation 

measure that will improve the airtightness of the dwelling’s thermal envelope and hence be 

energy saving due to a lower infiltration. Throughout time, the main construction materials for 

Norwegian houses have been split into two, where single-family houses and terraced houses 

mostly have been wood based and apartment blocks built out of concrete. According to Ramstad 

(2006), wood-based dwellings represented more than 98 % of the Norwegian dwelling stock.  

Newer statistics, however, show that there are dwellings which are made out of other 

construction materials, like steel and LECA (light expanded clay aggregate concrete). Below 

Table 6 shows the share of main construction materials for Norwegian dwellings.   

Table 6: Main construction materials for Norwegian dwellings. Reproduced  

(Prognosesenteret & Entelligens, 2011) 

Main construction material Wood Concrete LECA Steel / other 

SFH 83 % 7 % 7 % 2 % 

TH 78 % 11 % 5 % 6 % 

AB 23 % 54 % 1 % 22 % 

 

  

http://www.enova.no/
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Even though many new dwellings and dwellings built in the future will be based on other 

construction materials, most of the dwellings in the Norwegian dwelling stock consist of older 

dwellings. Hence, there is reason to state that most single-family houses and terraced houses are 

wood based and that a large share of apartment blocks are made out of concrete.  

Insulation methods 
In the Norwegian building sector, there are three main insulation methods when insulating the 

outer wall of a building: insufflation of insulation and exterior and interior wall insulation. 

Insulation of outer walls has the intention of reducing the heat loss from the outer walls and 

making the walls more damp proof (Sintef Byggforsk, 2004).  

 

Exterior wall insulation is a well-known method where one applies new thermal insulation on 

the outside of the wall. This is the most common wall insulation method. The additional thermal 

insulation will cover the original wall, a coherent layer covering the total wall height, 

eliminating the thermal bridges and making the construction warmer and hence drier 

(Sintef Byggforsk, 2004).  

 

Interior wall insulation aims at adding new thermal insulation from the inner walls. This is only 

relevant if the residence coating is intact and in a good state. Unfortunately, there seems to be 

more disadvantages of adding new insulation from the inner rather than from the outer walls. 

The heated floor area will be reduced, and in contrast to the exterior insulation technique, it will 

not be possible to avoid the thermal bridges due to interior walls and timberwork. In addition, 

electrical installations and anything else installed along the walls must be removed during the 

renovation (Sintef Byggforsk, 2004).  

 

Insufflation of thermal insulation are well suited in half-timbered walls with cavities. It is 

possible to insufflate the insulation from the interior or exterior walls. However, the cavities 

should have a thickness of 50 mm or less. It is possible to combine insufflation of thermal 

insulation with interior or exterior wall insulation (Sintef Byggforsk, 2004). 

 

In the stepwise energy upgrade report, it is advised to consider installing a balanced ventilation 

system when insulating the outer walls, in order to remove moist air and increase the air 

exchange rate so that the indoor air quality is maintained (SINTEF Fag, 2014b). 
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Insulation materials, energy consumption and greenhouse gas emissions  
Both by national as well as international organs, energy efficiency is considered the most 

important climate measure in order to reduce the greenhouse gas emissions and energy 

consumption in the building sector (IPCC, 2013; KrD, 2010). Energy efficiency often requires 

a higher consumption of materials, and especially an increase of insulation materials. A higher 

material consumption results in a higher bond energy and bond greenhouse gas emissions from 

the materials (Shrestha, 2014). It is therefore important to look into the choice of insulation 

materials in addition to the actual energy efficiency measures (Korjenic, 2011). In a study by 

Sørnes and Kristjansdottir (2012), an LCA is performed for different wood-based outer-wall 

constructions. The climate accounts in the study show that the insulation material emits the most 

compared to other outer wall components.  

The report “Energi og klimagassanalyse av isolasjonsmaterialer” by SINTEF Fag presents a life 

cycle from cradle to construction site assessment of insulation materials in outer walls in 

Norwegian households. They compare the materials concerning energy need, greenhouse gas 

emissions and hazardous compounds. The conclusion of the study is that insulation materials 

that are based on mineral wool use far less energy and emit less greenhouse gas than XPS, EPS 

and vacuum insulation panels (VIP). Mineral wool is the most common insulation material in 

Norwegian dwellings (SINTEF Fag, 2014a).  

The results from the insulation material study are presented in Figure 8 and Figure 9. In order 

to compare the insulation types, they are of the same functional unit of 1 m2 thermal insulation 

with a thickness giving the thermal resistance R = 1 m2K/W. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: CO2 emissions from cradle to construction site [kg CO2 eq.] 
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Even though the VIP materials emit far more CO2 and consume more energy than the other 

insulation types, it is concluded in the study that insulating the outer walls to passive house 

standard is sufficiently energy saving regardless of the insulation material. A lower energy 

consumption in the operational face of the dwelling will reduce the direct CO2 emissions. Hence, 

it pays off to insulate with VIP rather than not insulating the outer walls (SINTEF Fag, 2014a). 

However, a perspective of concern is the risk of worsening the thermal characteristics of VIPs. 

In an article about VIPs in wooden frame wall construction, Haavi and Jelle broach the 

importance of installing robust VIPs (2012). This is due to the decrease in their thermal 

characteristics after insulation of the outer walls. Natural ageing of the panels may increase the 

thermal conductivity between 4mW/mK and 8mW/mK. Nevertheless, if the panels are 

perforated, for example by a nail, the thermal conductivity may increase up to about 20 mW/mK. 

This implies that it is crucial to take proper care of vacuum insulation panels in order to maintain 

the thermal characteristics and hence energy savings from the non-aged VIP condition 

(Haavi & Jelle, 2012).  

2.2.8 Waste from construction, rehabilitation and demolition of buildings  

SSB maps the national waste from all sectors. The annual accounts for waste in the building 

sector are complementing the national waste accounts. In 2000, SSB published a thorough report 

mapping the waste of different construction materials from renovation, construction and 

demolition of buildings. Their method was looking at waste generation factors, which are based 

on empirical data from 131 building projects in Oslo. The factors are adjusted for historical 

figures from Finnish and Norwegian building projects.  See Table 7 below for an overview of 

the waste [kg / m2 floor space].   

 

Figure 9: Energy consumption from cradle to construction site [MJ] 
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Table 7: Waste from construction, rehabilitation and demolition of Norwegian dwellings. Reproduced 

(SSB, 2000). 

Waste  

[kg / m2 floor area] 

Total Insulating 

material  

and EPS 

Asbestos Other hazardous 

waste  

Gypsum Concrete 

and brick 

Construction  34.92 1.2 0.0 0.017 3.5 6.5 

Rehabilitation  93.95 0.6 0.5 0.050 5.9 40.4 

Demolition  538.27 2.2 2.5 0.567 4.13 387.3 

When accumulating the waste production factor with the total amount of constructed, 

refurbished and demolished buildings in Norway in the year 1998, SSB got the following results 

for the total amount of waste from different building components:  

Table 8: Total waste [tonnes] from construction, rehabilitation and demolition, by component and 

activity from 1998 (SSB, 2000). 

Waste [tonnes] Total Construction Rehabilitation Demolition 

Total 1,542,720 209,489 372,138 961,094 

Insulation material and EPS 6,326 3,467 1,891 967 

Concrete and brick 1,056,741 77,033 180,939 798,770 

Wood 240,725 41,462 122,845 76,418 

Metal 42,753 3,187 9,061 30,504 

Gypsum 37,088 14,046 20,908 2,133 

Glass 4,675 1,015 2,028 1,631 

Paper, cardboard and 

plastics 

16,736 7,923 2,385 6,428 

Hazardous waste 7,563 112 2,789 4,662 

Of this, asbestos 6,335 - 2,535 3,800 

Waste with unknown 

composition 

130,115 61,244 29,290 39 581 

These numbers represent the waste amount from the building sector in 1998. SSB has not 

published any newer reports than the one from 2000 about waste from building activities. They 

have, however, mapped the waste amount from building activities in the recent years,  

from 2009 to 2012. As shown in Figure 10, the total waste amount from building activities in 

Norway from 2009 – 2012 clearly exceeds the total waste amount that was calculated in 1998, 

with a 25 % increase in waste generation in the building sector in 2012 compared to 1998 levels. 

There is reason to be concerned about waste amounts from construction, rehabilitation and 

demolition in the building sector, considering a rapidly growing population and increase in 

dwelling demand.  
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2.3 Literature review of energy audit models and building stock models 

The following chapter gives a brief literature review of energy audit models for a single building 

and building stock models.  

2.3.1 Energy balance models 

TABULA (Typology Approach for Building Stock Energy Assessment), a project supported 

and developed by the Intelligent Europe project, is an energy audit model based on the seasonal 

and stationary method (Institut Wohnen und Umwelt GmbH; Loga & Diefenbach, 2013). The 

objective of the project was to develop future refurbishment strategies for European households 

in order to reduce the energy consumption. The EPISCOPE project (Energy Performance 

Indicator Tracking Schemes for the Continuous Optimization of Refurbishment Processes in 

European Housing Stocks) is a continuation of the TABULA project, using the same 

methodology for national building stocks in 16 European countries. Brattebø and O'Born (2014) 

have developed a typology brochure for Norway’s housing stock, divided into three building 

types and seven time cohorts for construction. Each building profile in the typology brochure 

includes two different refurbishment packages in addition to the original state, and their 

corresponding energy results and data input for each of the 21 example buildings representing 

their respective dwelling stock segment. 

The energy audit model, SIMIEN, is, among others, used in the stepwise energy upgrade study 

carried out by SINTEF Fag (2014b) on Norwegian single-family houses built in the 1970s. The 

Figure 10: Generated waste from construction, rehabilitation and demolition of 

buildings and turnover for enterprises in construction industries (SSB, 2014a) 
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calculated annual energy need for heating was 199 kWh/m2 in original state (2014b). Another 

study using a similar energy audit to SIMIEN is the barrier study by (Prognosesenteret & 

Entelligens, 2011). They found the annual energy need for heating of a single-family house from 

the 1970s to be 87.8 kWh/m2. The heating demand was calculated to be the average for all 

single-family houses in this time cohort. This includes refurbished houses as well as houses in 

an original state.  

2.3.2 Building stock models 

A building stock model is a model giving insight to the flows influencing the building stock or 

building stock segments over a time period, the development concerning construction 

demolition and energy use in a building stock.  

 

Among building stock models, one distinguish between the bottom-up 

(Shorrock & Dunster, 1997) and the top-down approach (Johnston, 2003). Hence, looking into 

many building types and construction periods or fewer to get a better overview of the total 

building stock. In addition, one distinguishes between linear and dynamic models, hence 

modelling with static building stock rates (Lavenergiutvalget, 2009; Prognosesenteret & 

Entelligens, 2011) and using dynamic stock flows that may change throughout the simulation 

(Sandberg, Sartori, & Brattebø, 2014b). 

 

The model developed by Sandberg et al. (2014b) measures long-term development in a building 

stock in addition to flows presenting renovation in the stock. The model methodology is based 

on studies conducted by Müller (2006), Bergsdal and Brattebø (2007) and Sartori, Bergsdal, 

Müller, and Brattebø (2008). In the last study (2008), the model divides the building stock into 

time cohorts and type classes, enabling the user to look into the segments of the building stock 

instead of the stock as a whole. The building demand is dependent on the number of persons per 

dwelling and the population. This model looks in addition on the impact on energy use and CO2 

emissions, and therefore has an additional separate flow in the system called renovation activity. 

Several renovation alternatives of different “depths” may apply in the model, where the different 

renovation alternatives correspond to different energy balances. 

Results from Sandberg et al.’s model (2014a) show that by renovating the Norwegian housing 

stock in 40-year cycles, the stock is expected to have a renovation rate that will increase from 

1 % today to 1.5 % in 2050 . The energy efficiency directive proposes a renovation rate of 3 % 

for public buildings occupied by central government by 2030 (The European Parliament and the 
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Council of the European Union, 2012). Hence, according to Sandberg’s studies (2014a), this 

target is not likely to be reached in Norway within the first decades. Further, the most critical 

contributor to the total energy need in the residential stock is space heating, representing about 

50 % of the total energy usage. The rest origins from technical appliances, water hating and 

upstream energy flows (Sandberg & Brattebø, 2012). Sensitivity analysis of Sandberg’s model 

(2014a) concludes that that the model is robust to changes in input parameters.  

In the report “Europe’s buildings under the microscope”, a study is carried out of the energy 

potential of a building stock from today (2010) up to 2050, looking into energy use and CO2 

emissions of different rates and types of renovation. Europe 27, Norway and Switzerland were 

the countries participating in the study. The country-by-country study utilizes a methodology of 

static stock and renovation rates, which is in line with a previous study on energy savings 

potential in EU member states, candidate countries and EEA countries  

(BPIE, 2011; Eichhammer, Fleiter, & Schlomann, 2009). The building stock model uses 

constant rates for demolition and construction of respectively 0.2 % and 0.5 % and a baseline 

renovation rate of 1 % (BPIE, 2011).  

Prognosesenteret and Entelligens have constructed a model of the Norwegian dwelling stock, 

investigating how much energy which is potentially saved by renovating the historic dwelling 

stock to TEK 10 standard. They used example buildings divided into different types and age 

cohorts, reflecting the Norwegian dwelling stock Standard Norge (2014).  In order to get the 

total energy need of the building stock, the energy results from one building was scaled up to 

the number of dwellings representing the building type. In addition, the model is based on static 

stock rates, with rates for demolition of 0.3 % and the dwelling stock demand being dependent 

on persons per dwelling and a baseline population forecast. The technical energy efficiency 

potential of the Norwegian dwelling stock was estimated to be 13.4 TWh, where every 

household could save more than 6,000 kWh on an annual basis. The energy potential represents 

approximately 30 % of the total energy that was delivered to Norwegian households in 2010. 

This constitutes a 30 % reduction of the energy use by utilizing available technology and 

expertise in Norway (Prognosesenteret & Entelligens, 2011). Other studies supporting that there 

is a huge theoretical energy potential in the Norwegian dwelling stock are Arnstadutvalget 

(2010), Lavenergiutvalget (2009) and the IEA-SHC task 37 report (Thyholt, 2009). In several 

of the potential studies, the theoretical results show that the biggest energy potential is among 
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single-family houses due the large share they represent in the Norwegian housing stock. Hence, 

these houses will be in need of comprehensive refurbishment in the next couple of decades.  

 

Thyholt (2009) found that by implementing energy measures on the building envelope and 

improve the technology for the heating system, the energy need in the current Norwegian 

residential stock could be reduced by 25 - 40 %.  

 

An argument for not using static flow rates for demolition influencing the dwelling demand in 

the housing stock, as for example Prognosesenteret & Entelligens (2011), is that the stock 

demand, and hence, the stock composition is not likely to stay unchanged over decades. When 

a model measures the energy use of the stock, the results will be based on the existing energy 

demand of the building stock rather than the forecasted one (Sandberg et al., 2014b). 
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3. Methodology 

The following chapter will give a presentation of the models applied in this master’s thesis work, 

a presentation of key input parameters used in the models, in addition to a review of the scenarios 

utilized in the scenario analysis. See appendix 2 for equations and parameters used in 

calculations.  

3.1 Analytical methods 

3.1.1 Conceptual outline 

The work is divided into two parts. Part 1 is to assess the energy performance of -1- typical 

single-family building constructed in the 1970s when applying different insulation solutions to 

the building façade. This includes evaluating the primary energy, delivered energy and 

operational CO2 emissions of the building. In addition, I will do a material analysis of the 

insulation materials used when refurbishing the outer walls. See Figure 11 for a presentation of 

the KPI values in the material analysis. Part 2 includes an evaluation of the energy savings and 

CO2 reduction potential of the total stock of single-family houses in the 

Norwegian dwelling stock when applying different insulation solutions to the façade, when 

using the currently developed dynamic segmented building stock model by Sandberg and Sartori 

(2015). 

Figure 11: KPI values used in the material analysis of insulation materials 

I have used two models, SIMIEN (Programbyggerne, 2014a) and TABULA 

(Loga & Diefenbach, 2013), when assessing the energy performance of the single-family 

example building in order to validate the results and get a broader insight into the differences 

between the two models.  

Both of the models are energy balance models using the mass flow methodology (MFA). 

TABULA and SIMIEN may in addition be applied to different types of building systems and 

surroundings. It is in other words possible to adjust the input parameters for climate and building 
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data, making it possible to assess the energy performance of buildings irrespective of country or 

location in the country, building type or time cohort of construction.  

 

The upstream energy and CO2 flows are calculated based on life cycle analysis (LCA), assessing 

a product’s life cycle from cradle to construction site (stages A1 – A5 in Figure 12. The LCA 

methodology is described in ISO 14040 (European Commitee for Standardization, 2006a) and 

in Baumann and Tillman (2004). The different phases in the life cycle are based on the system 

description concerning life cycle phases in the standard NS-EN 15804 (Standard Norge, 2012).  

 

The CO2 emissions of the building during operation (stage B1 in Figure 12) is calculated based 

on CO2 coefficients from Klimaløftet (2012). See Figure 12 below for a presentation of the 

different life cycle stages of a material.  

 

 

Figure 12: Life cycle stages of a material (SINTEF Fag, 2014a; Standard Norge, 2012) 

3.1.2 Energy audit models 

The core of an energy audit for a single house is to measure the dynamics influencing the energy 

balance in the dwelling The calculations used for finding the energy balance is based on the 

methodology of material flow analysis (MFA). In material flow systems, 

the flows are conserved; hence, the quantity of mass coming into the system is equal to the mass 

going out of the system. In order to apply the concepts of material management in a MFA, it is 

important to define proper system boundaries, a flow chart and stocks and flows (Brunner & 

Rechberger, 2004).  However, in an energy audit model the flows from the building are not 
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material flows, but energy flows going into or out of the system. The energy flows going out 

from the building are heat loss, caused by air infiltration, transmission heat loss through the 

building envelope, ventilation heat loss and heat loss through plugholes and ducted fans. Energy 

flows going in to the building constitute heat gain from heating systems, electrical equipment 

and lighting, irradiance and heat from people in the building (Standard Norge, 2014). In a 

dynamic system, it is also possible to store heat over a period in building constructions, furniture 

and other indoor surfaces, as well as in water containers and pipes.  

 

Figure 13: Elements of the heat balance in a building 

 
 

TABULA 
In contrast to using one system boundary including the building and corresponding heating 

systems, the TABULA energy audit model uses two energy balance systems: one for the 

building and one for the domestic hot water system. The TABULA project developed a standard 

reference calculation method for the energy needs and the delivered energy for space heating, 

in according to the seasonal and stationary method described in (International Organization for 

Standardization, 2008) on the basis of a one-zone model. This calculation method is adjusted to 

fit different building types with different energy performance levels in the building database. In 

addition, it is possible to assess the primary energy, CO2 emissions and heating costs from an 

additional scheme in the model. The TABULA calculation method is generalized, and the user 

may apply the energy audit model to buildings located in any country. This is because the 

external boundary conditions, such as the air temperature and solar radiation, may be adjusted. 

For other factors, such as room temperature, air exchange rate and internal heat sources, standard 

values for the respective countries are applied. All equations used in the TABULA model may 

be found in (Loga & Diefenbach, 2013).  
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SIMIEN 
Another common energy audit model used in the Norwegian industry is the software SIMIEN. 

It has been validated in coherence with the methodology in NS-EN 15265:2007  

(International Organization for Standardization, 2008) and fulfills the requirements to accuracy 

with good scores (Programbyggerne, 2014b). SIMIEN performs energy simulations that are 

based on a simplified dynamic energy calculation method, calculating the energy flows of a 

building during one year. The algorithm is the same as the stationary and seasonal method 

presented in NS3031:2014 (2008), however, with dynamic external and internal climate input 

data that may change every 15 minutes. Input values in the model are adjusted to Norwegian 

conditions and are available in Standard Norge (2014). SIMIEN allows the user to have 

advanced input parameters of the energy systems of the building, climate data, building 

envelope, technical installations and internal load. During simulation, the energy performance 

of the one or multi-zone building is mapped, and the accumulated energy results are available 

in a report after the simulation. The data in the report includes, among others, the annual energy 

need and energy delivered for space heating and cooling for all energy carriers and a heat loss 

budget (Programbyggerne, 2014a).  

 

Dynamic building stock model 
I have used a dynamic segmented building stock model that is currently developed by Sandberg 

and Sartori (2015). The model presents changes over a time period in the dwelling stock, in 

terms of measuring the flows representing construction, demolition and rehabilitation activity 

in the building stock. When buildings are renovated, their energy balance will change and hence, 

so will the corresponding energy need for heating in the stock. The energy flow of the respective 

buildings is a built-in parameter that is up scaled when measuring energy characteristics for the 

entire stock or stock segments.  

 

Population and number of persons per dwelling are drivers in the model, determining the 

dwelling stock demand for each year. Construction activity is equal to the sum of change in 

demand and what is needed to replace demolished dwellings, in accordance with mass balance 

principles (Sandberg et al., 2014b). 

 

The dynamic model functions for renovation and demolition are based on discrete convolution 

and a probability function (Sandberg et al., 2014b). The model uses the probability functions 

DEMi(k) and RENi(k) in order to calculate the fraction of the inflow of dwellings of a particular 

stock segment that are demolished or renovated k years after construction and applies these 



 

32 

 

functions for all previous years m in the simulation. The following equation is used in order to 

demonstrate the amount of renovated dwellings in year t in the simulation 

(Sandberg et al., 2014b):  

 

𝐷𝑟𝑒𝑛,𝑖(𝑅𝐶,𝑖,𝑡) = (𝐷𝑖𝑛,𝑖 ∗ 𝑅𝑐,𝑖)[𝑡] = ∑ 𝐷𝑖𝑛,𝑖[𝑚] · 𝑅𝑐,𝑖[𝑡 − 𝑚]𝑡−1
𝑚=𝑡0

    1 

Dren,i =  Dwellings renovated in year t from stock segment i  

RC,i,t = Value of the renovation cycle, hence, the average time period between refurbishments 

Din,i =  Inflow of dwellings in stock segment i 

RC,i =  Fraction of the inflow of dwellings from stock segment i that are renovated  

t =  Current year in simulation 

t0 =  Year of construction for stock segment i 

 

Rc represents the average time period between refurbishments, also known as a renovation cycle. 

When long-term modeling a dwelling stock, each building will be renovated several times in 

accordance with the chosen renovation cycle. 

 

The equation is expressed as a discrete convolution. In this context it may be described as the 

amount of dwellings from a stock segment going through renovation a particular year in the 

simulation, taking into account the amount of dwellings being constructed all previous years in 

the simulation .  

The renovation function in the model is implemented in a way that prohibits dwellings from 

being renovated unless they are expected to be still standing long enough to justify the 

renovation. This is defined as at least the period of the renovation frequency. The renovation 

function is therefore dependent the demolition function and the parameter defining the intervals 

in the renovation function (Sandberg et al., 2014b).  

3.2 Case description 

The scope of this report is to study the energy and carbon emission reduction potential of 

Norwegian single-family houses built between 1971 and 1980 (SFH03) towards 2050 when 

adding different thicknesses of mineral wool and vacuum insulation to the outer walls. In order 

to achieve this objective, I will investigate the energy balance of one (1) typical 

single-family house from the 1970s, taken from a typology brochure for Norwegian houses from 

the EPISCOPE project (Brattebø & O'Born, 2014). Further, I will use the energy need for 

heating results from the energy audit for further calculations of the energy potential for the total 

dwelling stock segment when applying different types of insulation solutions. I will in addition 
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do a material analysis of the different insulation solutions for one SFH03 building. Hence, 

analyze the material flows, additional investment costs related to manufacturing of new 

insulation, upstream energy and CO2 flows and insulation waste at construction site  

(see Figure 11 for an overview of the KPI values).  

 

The building may be in three different renovation levels, depending on the year of renovation 

of the SFH03 dwellings: Original, Historically refurbished, TEK 10 standard and passive house 

standard (see Table 9).  

 

Before 1980 during the simulation, the SFH03 segment is assumed to remain at an original 

energy standard (Rn1), even if renovated. In the model by Sandberg and Sartori (2015), it is 

assumed that renovation of outer walls before 2010 was considered to be of a lower standard 

compared to today’s technical building regulations (TEK 10) of new buildings. The buildings 

renovated before 2010 therefore goes under the category historically refurbished (Rn2). This is 

different from the definition of the time period of Rn2 in an ongoing study related to the 

EPISCOPE project, as their last year is 2020 for buildings renovated in Rn2. I have assumed 

that all buildings historically renovated to Rn2 use mineral wool insulation. This is because VIP 

materials are not a well-known material applied in house refurbishment in Norway. 

 

The third level is split into three alternatives, depending on the ambitiousness of the renovation. 

All the alternatives will be studied in a scenario analysis. The insulation thickness requirements 

for wooden frame walls are in coherence with the technical building regulations (see Table 5 in 

chapter 2), when applying mineral wool insulation.  

 
Table 9: Renovation levels and requirements when applying mineral wool insulation 

Renovation level Time period Required insulation 

thickness 

[mm min. wool / mm  VIP] 

Rn1 

Original 

1971 - 1980 100 mm insulation 

Rn2 

Historically refurbished 

1980 - 2009 150  mm insulation 

Rn3, consisting of 3 alternatives: 

 Historically refurbished 

 Approaching TEK 10 standard 

 Approaching passive house 

standard 

2010 - 2050  

 

150 / 20 mm insulation 

200 / 30 mm insulation 

350 / 50 mm insulation 
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The input parameters used in the models are adjusted for Norwegian conditions. Hence, climate 

data from Oslo and other parameters such as indoor and building envelope data, are taken from 

Standard Norge (2014), Prognosesenteret & Entelligens (2011) and the TABULA typology 

brochure for Norwegian buildings (Brattebø & O'Born, 2014). Primary energy factors and 

CO2 coefficients for the chosen energy carriers of the building are provided from Strømman 

(2014) and Ecoinvent. Data on material consumption for different insulation materials is 

provided from a report on insulation material analysis, conducted by 

SINTEF Fag (2014a). Other input parameters, such as costs and waste of the materials, are 

estimations made by workers and retailers in the building industry 

(Martinsen, 2015; Promat international, 2015).  

3.2.1 System definition of one SFH03 building 

The system boundaries for energy flows are defined to be around the building envelope of the 

example building, along the stapled lines of the square in Figure 14. In the energy audit, I have 

looked at energy flows and operational CO2 emissions. In addition, there are the upstream energy 

and CO2 flows from the manufacturing of new insulation materials that is being produced when 

refurbishing the building. A system drawing of the energy and CO2 flows of the SFH03 example 

building is presented in Figure 14 below.  

 

  

 

 

 

E = Delivered energy to the building [kWh/ m2] 

Q = Calculated energy need for heating [kWh/ 

m2] 

Ep = Primary energy to the building [kWh/ m2] 

C = Operational CO2 emissions [kg CO2/ m
2] 

 

 

 

 

 
Figure 14: System drawing 
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3.2.2 System data 

Building data 
The example building used in this thesis work is a synthetic average building of a single-family 

house built between 1971 and 1980. The data of the building is taken from EPISCOPE’s 

typology brochure for Norwegian houses (Brattebø & O'Born, 2014). Below there is a 

presentation of the building and its most important construction characteristics. Even though the 

building is synthetic, its building characteristics are similar to other example buildings of single-

family houses built in the same time cohort (Prognosesenteret & Entelligens, 2011; SINTEF 

Fag, 2014b).  

Table 10: Building characteristics for SFH (1971-1980).     

 

 

 

 

 

 

 

 

 

 

 

 

Since SIMIEN and TABULA are two different models, there are parameters in each program 

that are unique for the respective model. Therefore, despite making the input data in SIMIEN 

approximately similar to the TABULA input data, it is not always possible to tell the right value. 

Concerning heat loss due to ventilation and infiltration, the calculation methods used in SIMIEN 

Building 

component 

U-value 

[W/m2K] 

Description Area [m2] 

Outer walls 0.41 Timber frame 

walls with 100 

mm mineral 

wool 

186 

Floor towards 

cold basement 

0.24 48x148 mm 

joists. 150 mm 

mineral wool 

87 

Ceiling against 

attic 

0.21 48x198 rafters. 

200 mm mineral 

wool 

87 

Windows and 

doors 

2.6 Double-pane 

windows, 

inflated normal 

glass 

23 

Table 11: Building geometry and energy need for room heating [kWh/m2] 

Building geometry Value 

Heated floor area [m2] 152 

Wall area (external dimensions) [m2] 186 

Dimensions (width x length) [m] 10.8 x 7.0 

Floor height [m] 2.4  

Heated building volume [m3] 380 

Energy need for room heating [kWh/m2] 152 

Figure 15: Single-family house built 

between 1971 – 1980 

(Brattebø & O'Born, 2014) 
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and TABULA are treated differently. Table 12 presents the most important infiltration and 

ventilation parameters that belong to the different models.  

Table 12: Important infiltration parameters in TABULA and SIMIEN 

Infiltration Value Model 

nair,infiltr [1/h] 0.4 TABULA 

nair,use [1/h] 0.4 TABULA 

Surcharge on all U-values, ΔUtbr [W/(m2 envelope area K)] 0.05 TABULA 

Normalized thermal bridge value, tb [W/m2floor K] 0.13 SIMIEN 

Air leakage rate, n50 [1/h] 5.7 SIMIEN 

Natural ventilation, ninf [m
3/hm2] 1 SIMIEN 

TABULA uses a thermal bridge factor that accounts for the heat loss caused by the thermal 

bridges in the building, ΔUtbr. This is not the same as the normalized thermal bridge factor used 

in SIMIEN, which has a corresponding unit of W per m2 building envelope area and not heated 

floor area. However, it is possible to calculate the corresponding value in SIMIEN by 

multiplying the surcharge factor with the envelope area and divide it by the heated floor area, 

see equation 17 in appendix 2. 

Similarly, the natural ventilation factor in TABULA may be converted to the corresponding 

variable in SIMIEN, see equation 18 in appendix 2.  

As for the leakage number, n50, this has been found by an internal converter between the leakage 

number and infiltration rate in the SIMIEN software.   

In the TABULA methodology, there are different classifications for the heat losses due to 

ventilation, infiltration and surcharge on the U-values. The values in bold in Table 13 are the 

chosen values for the example building. As shown in, the surcharge factor on the U-values is 

classified as low and the infiltration parameters are classified as high.  

Table 13: Infiltration variables in TABULA (Loga & Diefenbach, 2013) 

Air leakage rate in TABULA High Medium Low 

ΔUtbr [W/(m2 envelope area K)] 0.15 0.1 0.05 

ninf,air [1/h] 0.4 0.2 0.1 

n,use [1/h] 0.4 0.08 0.04 
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The TABULA methodology uses two parameters for calculating the infiltration heat loss. 

Instead of using a unit that is a volume flow dependent on the heated floor area, like in SIMIEN 

[m3/hm2], TABULA uses a volume flow dependent unit related to a reference heated floor area 

and ventilation reference room height. The TABULA standard value for the standard room  

height is defined as 2.5 meters (Loga & Diefenbach, 2013). 

In order to explore how robust the models are, I have done a sensitivity analysis in SIMIEN, 

which has given me a better understanding of how much a change in six chosen parameters may 

influence the building’s energy performance. Due to limited time and the complexity of the 

TABULA program, I have not done a similar sensitivity analysis for both models. See the results 

chapter 4.3 for results of the sensitivity analyses and chapter 5.2.1 for a discussion about the 

robustness of the chosen parameters.  

The insulation types are divided into mineral wool insulation and vacuum insulation. In this 

subchapter, the insulation material data used in the material analysis will be presented. The data 

is taken from an insulation material study by SINTEF Fag (2014a) and includes thermal 

characteristics, material densities, and upstream energy and CO2 emissions.  

 

When studying insulation materials, there are two material properties in particular that are of 

interest, the thermal conductivity, λ [W/mk], and the thermal resistance, R [m2K/W]. See 

equation 8 for the correlation between λ and R. Both of these characteristics define the insulation 

ability of a material. The thermal resistance, R, is the inverse of the U-value [W/m2K] 

(equation 9) and when evaluating the thermal quality of a construction part or a material, it is 

common to refer to the U-value.  

 

The thermal conductivity, λ, is dependent on the temperature, density and moisture content of 

the material. Light materials are often more insulating than heavy materials due to the fact that 

light materials may contain air gaps filled with air, and still air is a good insulator. However, 

heat transfer may occur by radiation and convection as well. Water for instance transfers heat 

better than air and thus will make the material less insulating when it is wet rather than dry. This 

shows the importance of installing the insulation during rehabilitation and maintaining the 

insulation material dry throughout operation time (Bergman, 2007).  

Table 14 below presents the four different insulation types, their thermal characteristics, 

densities and the required thickness to achieve a thermal resistance R = 1 [m2K/W].  
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Table 14: Insulation material data 

Insulation 

type 

Type Name of product Thickness at 

R = 1 [mm] 

Heat 

conductivity, 

λd  [W/mK] 

Density, ρ 

[kg/m3] 

Type 1 Mineral wool 

 

Fiber glass 35 0.035 16.5 

Type 2 Rockwool  37 0.037 29 

Type 3 Vacuum insulation 

panel (VIP) 

Dow Corning VIP 4.6 0.0046 185 

Type 4 Microtherm 

SlimVac 

7 0.007 185 

As shown in Table 14, there is a significant difference between the two main insulation types’ 

density and heat conductivity. For instance, mineral wool is of a significantly lighter material 

than vacuum insulation, having a density of less than 15 % of the vacuum insulation types. 

Mineral wool however, requires a thicker layer of insulation than vacuum insulation in order to 

achieve an R-value of 1 [m2K/W]. 

Measurement of the upstream energy and CO2 emission flows of the different insulation 

materials requires reliable data on the energy use and CO2 emissions from cradle to construction 

site (A1 – A5 in Figure 12). The data is taken from a study on different insulation materials by 

SINTEF Fag (2014a).   

Table 15 presents the amount of energy or CO2 used when producing 1 m2 of insulation material 

that has an R-value equal to 1 [m2K/W].  

 

Table 15: Upstream energy and CO2 emissions from different insulation materials 

Type Name of product Emission 

intensity A1 – A5 

[Kg CO2] 

Energy intensity 

A1 – A5 [kWh] 

Mineral wool Fiber glass 0.745 5.27218 

Rockwool 1.282 3.88056 

Vacuum insulation panel 

(VIP) 

Dow Corning 

VIP 

9.491 45.28553 

Microtherm Slim 

Vac 

8.151 54.89252 

As shown, mineral wool materials use far less energy and pollute less than vacuum insulation 

materials in the process from cradle to construction site.  

In collaboration with the supervisors, it was decided that I should study two insulation types in 

this master’s thesis. These types are defined as an average of the mineral wool types and an 

average of the vacuum insulation types. Hence, the heat conductivity and density properties will 

be a hybrid between the two subtypes. Similarly, the upstream energy and emission parameters 
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will be an average of the two main insulation types. See Table 16 and Table 17 for a presentation 

of the main insulation types and their respective thermal characteristics and corresponding 

U-values for the different renovation solutions and upstream emission and energy flows.  

 

Table 16: Main insulation types and their respective thermal characteristics 

Type Heat 

conductivity, 

λd  [W/mK] 

Density, ρ 

[kg/m3] 

U-value 

historically 

refurbished 

U-value 

TEK 10 

U-value 

passive house 

Mineral wool 

 

0.0360 23 0.29 0.18 0.10 

Vacuum 

insulation 

0.0058 185 - 0.19 0.12 

 

 

 

Table 17: Energy and emission intensities for the main insulation types 

Type Emission intensity A1 – A5 

[Kg CO2] 

Energy intensity A1 – A5 [kWh] 

Mineral wool 1.02 4.58 

Vacuum insulation 8.82 50.09 

When adding new insulation, there is an option of keeping some or all of the original insulation 

or removing all original insulation and replacing the old in addition to adding new. Despite 

knowing a typical U-value of the original outer wall of the example building, the insulation 

types used were many and of varied quality. Workers from the construction industry state that 

there are huge variations depending on the house’s condition when they evaluate if some of the 

original insulation should be kept in addition to adding new when refurbishing 

(Martinsen, 2015; Solid Prosjekt AS, 2015). For practical reasons, I have chosen to assume that 

all original insulation is removed when renovating the façade of the building.  

Dahlstrøm (2012) assumes that there is no waste from mineral wool on the construction site 

when adding new insulation. This is because the size of the insulation mats is already determined 

when ordering the materials needed (Dahlstrøm, 2012). However, according to workers in the 

contracting and real estate development firm Solid Prosjekt AS, about 4-5 % of insulation 

materials goes to waste on the construction site. Unopened packages and whole insulation mats 

or plates are not accounted for in this statement, as these will be used in new projects 

(Martinsen, 2015; Solid Prosjekt AS, 2015). Few workers in the Norwegian construction 

industry have experience with vacuum insulation. Hence, there are no estimates on the share of 

waste of VIP material during refurbishment of the outer walls. It is however reasonable to 

assume that due to the vacuum insulation consisting of plates, there is little waste when installing 
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the panels. I conclude with assuming 5 % waste of mineral wool and 0 % waste of vacuum 

insulation at the construction site.  

 

Energy mix, primary energy factors, energy cost and interest rate  

The energy mix of the building should reflect the average energy mix among  

single-family houses built in the defined time cohort of 1971 and 1980 (SFH03). 

In the TABULA project the SFH03 average synthetic building has an energy mix consisting of 

80 % electricity and 20 % bio wood and  is found to be representative for this dwelling stock 

segment (Brattebø & O'Born, 2014). I will therefore choose the same energy mix. See Table 18 

for a presentation of the power efficiency factors, ηj,
 for the j number of different energy  

Table 18: Power efficiency factors, , for the different energy carriers in the heating system 

Energy carrier Power efficiency for room 

heating, ηj 

Source 

Fireplace 0.64 TABULA 

Electricity 1 TABULA 

 

 
Table 19: Primary energy factors and CO2 production coefficients 

 

The primary energy is calculated by multiplying the delivered energy with the respective 

primary energy factor of an energy carrier. Primary energy is the energy in the state found in 

nature without being transformed or converted. A PEF has two conventions: a total and a 

resource primary energy factor. The total takes into account all of the transportation, extraction, 

processing and storage losses before the energy gets to the point of use. In addition, it may 

include energy required to build the transformation and transportation units and the energy 

demand of disposing wastes. Waste may for example be ashes from a bio boiler. The resource 

primary energy factor is identical, but excludes the renewable energy consume of the primary 

energy. This factor may therefore be less than unity for non-renewable energy sources. 

There is a big difference between the PEF of electricity in Norway and the PEF for Scandinavia, 

linked to the Norwegian grid. This will results in two very different primary energy 

consumptions, depending on the chosen PEF for electricity, as the PEF for Norway does not 

Energy carrier Non-

renewable PEF 

Total PEF CO2 production 

coeff.  [kg/kWh] 

Source 

Bio wood / Fir log 0.09 1.09 0.261 (Klimaløftet, 2012; 

Strømman, 2014) 

Electricity (Norway) 0.27 1.28 0.05  (Ecoinvent; 

Klimaløftet, 2012) 
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account for export and import of power to the grid. The PEFs are published by Ecoinvent  and 

these are the factors used by TABULA for Norwegian dwellings 

(Ecoinvent; Loga & Diefenbach, 2013).  

 

The CO2 coefficients are taken from the webpage “Klimakalkulatoren”, a webpage provided by 

the government page which gives an overview of emissions in Norwegian households 

(Klimaløftet, 2012). The calculated coefficients are based on the average Norwegian electricity 

mix from the period 2007 to 2011. The reason for utilizing the average values from this period 

is in order to smooth variations in precipitation and outdoor temperature. Similarly, the numbers 

for electricity production and trading are an average from the same period.  

 

As for the energy price used in the economic calculations, I have chosen to use an average value 

for the electricity price the last three years from SSB (2015) for calculating the payback time 

for renovating the outer walls. The energy price includes taxes and user dependent grid rental 

and is defined to be 0.8367 [NOK/kWh].  

 

I have chosen a baseline interest rate, r, of 5 % in the cost calculations of this thesis. This is in 

between the national base rate provided by Norges bank (Norges Bank, 2015) and a typical 

interest rate in an invest analysis by a private company that aims for high profits.  

Investment costs 
I have chosen to do a simplified economic analysis, showing the investment cost of 

manufacturing insulation materials relative to the energy saved over a time period of 40 years. 

40 years is the assumed average time interval between façade refurbishments. See equation 16. 

 

Unfortunately, it has been challenging to get in contact with the producers of vacuum insulation 

panels. For this reason, I could not get a price offer on the Dow Corning VIP insulation. The 

producers of Microtherm insulation have, however, offered prices, and I will therefore proceed 

the cost calculations of VIPs with the prices for Microtherm (Promat international, 2015). 

Promat international manufactures their products in Denmark and offers products in a Danish 

currency. The NOK/DKK currency used in the cost calculations is 1.12 [NOK/DKK] and taken 

from the finance newspaper, Dagens Næringsliv’s, currency calculator (DN, 2015). 

Transportation costs from Denmark to Norway has not been accounted for in the cost 

calculations.    
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The producers of Rockwool insulation gave me the purchase price of their products, which 

corresponds to the cost of producing their products (Rockwool, 2015). The producers of Glava 

insulation referred me to retailer shops for prices of their products instead of giving the 

manufacturing price from the factory. The contact person in Rockwool, Dag Ove Leraand, 

assumes that the pricing level between Glava and Rockwool insulation products are about the 

same. Therefore, I assume that the price for mineral wool insulation is the same regardless of 

the insulation brand utilized. The final prices used in this master’s thesis are the assumed prices 

contracting firms receive when purchasing insulation products. According to Leraand in 

Rockwool, the average discount price is 9 %. This discount estimate is used in further cost 

calculations.   

 

Between the two mineral wool types, there are minimal differences thermal characteristics and 

therefore the average energy savings for mineral wool are used in the cost calculations. 

See Table 20 for a presentation of the investment costs for the chosen insulation types. 

All investment costs are rounded off to the nearest integer.  

Table 20: Investment costs per heated floor area for mineral wool and VIP insulation   

 Insulation 

type 

Historical 

refurbished state 

~TEK 10 ~Passive house 

standard 

Investment cost 

[NOK/m2 floor] 

Min.wool 81 93 195 

VIP - 264 467 
 
 

Table 21: Investment cost per SFH03 dwelling for mineral wool and VIP insulation 

 Insulation 

type 

Historical 

refurbished state 

~TEK 10 ~Passive house 

standard 

Investment 

cost [NOK] 

Min.wool 12 312 14 113 29 647 

VIP - 40 186 70 952 

3.3.3 Variable uncertainty and sensitivity analysis 

When calculating the heating demand of a building, many variables both have an uncertainty 

concerning value and may influence the result for heating demand. In order to validate the 

energy results, it is important to identify which parameters to investigate further in a sensitivity 

analysis. One approach may be to utilize an uncertainty matrix. See Figure 16.  
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Figure 16: Uncertainty matrix 

 
The uncertainty matrix is a quadrant divided into four cells with rows representing the 

uncertainty of the variables and columns representing the sensitivity of the energy results. The 

corresponding symbols to the variables indicate if the variables are case specific or general. 

Hence, the circle implies that the variable is general for the chosen stock segment and is found 

in literature and statistics. The diamond symbol implies that the variable is specific for the 

current building. For another case, the value would be different. The variables in Figure 16 are 

only examples that may fit the respective cell descriptions.   

 

Variables that fit the cell description in the fourth cell in the lower right corner are variables 

with a certain value, which do not influence the energy result much. These variables are 

irrelevant for a sensitivity analysis. Likewise, for variables in the upper right corners. Perhaps 

the variable’s value is uncertain, but it does not influence the energy result, which we are 

interested in examining, hence, these variables may also be neglected in a sensitivity analysis. 

The variables in the remaining cells are variables that do influence the energy results and are 

worth investigating further in order to validate the energy results.  

 
The uncertainty matrix lays the foundation for the chosen parameters in the sensitivity analysis 

in this master’s thesis. See Table 22 for the variables utilized in the sensitivity analysis and their 

corresponding baseline value and description. 
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Table 22: Variables in the sensitivity analysis 

Parameter Baseline value Definition 

ϑ [°C] 20 Average indoor temperature 

tb [W/m2K] 0.13 Normalized thermal bridging factor 

n50 [1/h] 5.7 The air leakage rate under a building 

reference  pressure of 50 Pa 

ninf [m
3/hm2] 1 Exhaust air per hour per square meter 

floor area  

V 380 Conditioned building volume 

αframe 0.3 Frame/window ratio: Area of the 

window given to the window frame 

3.3.4 Stock and flows for the segmented stock model 

According to Statistics Norway in 2010, the number of occupied single-family houses built in 

this time cohort was 206,011, corresponding to 29.2 million m2 of user space 

(Prognosesenteret & Entelligens, 2011). This is equal to 24.8 million m2 of heated floor area by 

assuming that 85 % of a user space area is conditioned. I will study the development of this 

segment of the Norwegian dwelling stock towards the year 2050 when different insulation 

solutions are conducted concerning floor area, energy need for heating, CO2 emissions and 

upstream CO2 flows. Table 23 presents the different scenarios evaluated in the scenario analysis 

for the outer wall of the building and the specific annual energy need. The values for energy 

need for heating are the only input values needed for this scenario analysis in the building stock 

model utilized in this master’s thesis (Sandberg et al., 2014b). 

 

Scenarios Scenario description U-value outer 

wall [W/m2K] 

Scenario 1 Baseline scenario. Maintaining 

level of historical refurbishment  

0.29 

Scenario 2 Approaching TEK 10 standard, 

min. wool 

0.18 

Scenario 3 Approaching TEK 10 standard, 

VIP 

0.19 

Scenario 4 Approaching passive house 

standard, min. wool 

0.10 

Scenario 5 Approaching passive house 

standard, VIP 

0.12 

  

Table 23: Scenario description and their corresponding U-values [W/m2K]  
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3.3 Assumptions 

When performing the case study for SFH03 as one example building and as a segment in the 

Norwegian dwelling stock, I have made several assumptions. The main assumptions are 

summed up below.  

 The synthetic building is equal for all buildings in the building stock segment. I am only 

looking at changes in energy use for different insulation solutions.  

 The energy mix for heating purposes of single-family houses consists of 90 % electricity 

and 10 % bio wood. 

 All insulation materials have a lifetime of 40 years, which is the expected timespan of 

changing the facade. Hence, a renovation frequency of 40 years is assumed when 

changing the façade and adding new wall insulation to a dwelling.   

 Renovation level 3, Rn3, includes all SFH03 buildings renovated from the year 2010.  

 All original wall insulation is removed and substituted by supplementary insulation.  

 I have assumed an average of mineral wool and vacuum insulation characteristics when 

doing the scenario analysis. A combination of the mineral wool types reflects the 

insulation choice in Norwegian households.  

 I have assumed a baseline scenario where the past trend is maintained from 2010 to 2050. 

The past renovation trend has been renovating to a historical refurbishment level, 

corresponding to Rn2.  

 When evaluating the investment costs, it is assumed that the household that is renovating 

is changing the façade regardless of adding extra insulation to the outer walls.  

 I have conducted an investment cost analysis which excludes the installation costs of 

changing the façade and adding extra insulation and only looked at the material costs 

relative to the energy savings.  

 The Dow Corning VIP costs are approximately the same as Microtherm insulation. 

 The Danish currency is defined as 1.12 DKK/NOK (15.05.15). 

 The price of mineral wool insulation is assumed to be the purchase price from Rockwool.  

 Contract firms receives a 9 % discount on insulation products. 

 5 % of mineral wool and 0 % of vacuum insulation gets wasted at the construction site.  

 Transportation and installation costs of insulation is not accounted for in the investment 

calculations. 
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4. Results 
In the following chapter, results from the energy audit and material analysis for the SFH03 house 

will be presented, followed by an investment analysis for the different façade refurbishment 

solutions. Further, results related to the long-term dwelling stock modeling of the SFH03 

segment in the Norwegian dwelling stock will be presented. This includes stock development 

[m2] and energy and CO2 results from the scenario analysis. Different renovation cycles of 

30, 40 and 50 years are applied in the modeling. Lastly, a sensitivity analysis from the SIMIEN 

software will be presented.  

4.1 The energy audit and material analysis of one SFH03 building 

Table 24 presents results from the material and energy analysis of the chosen SFH03 house 

when using mineral wool and vacuum insulation approaching TEK 10 and passive house 

requirements. The waste parameter represents the waste from mineral wool production and the 

original mineral wool insulation from the building. The upstream flows represent the energy and 

carbon emissions required to manufacture and transport the insulation materials to the 

construction-site. Table 26 presents the same results from the material analysis scaled up to 

building level.     

 

The material analysis shows that the mineral wool material stands out positively, with a low 

material consumption and low upstream CO2 emissions. Vacuum insulation emits high levels of 

CO2 and has a high upstream energy. The material consumption [kg] between the two insulation 

types is quite similar.  

 

Table 24:  Material flows and upstream energy and CO2 flows for one (1) SFH03 building per 

heated floor area m2, when applying different insulation solutions for the outer walls 

Insulation type/thickness Material 

need 

[kg/m2] 

Waste  

(original+ new insulation) 

[kg/m2] 

Upstream 

energy 

intensity 

[kWh/m2] 

Upstream CO2 

emissions  

[kg CO2 /m2] 

Historically refurbished 

Min. wool (0.15 m) 

4.4 3.0 20.3 4.5 

TEK 10 Min. wool 

(0.2 m) 

5.9 3.1 32.3 7.2 

TEK 10 VIP (0.03 m) 6.8 2.8 317.0 55.8 

Passive house 

Min. wool (0.35 m) 

10.2 3.3 57.1 12.7 

Passive house VIP 

(0.05 m) 

11.3 2.8 528.4 93.0 
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Table 25 and Table 27 show the energy audit for the example building in the different renovation 

states when applying the different insulation solutions. The energy audit of  

one (1) SFH03 building presents four different parameters: energy need for heating, delivered 

energy, primary energy and operational carbon emissions (stage B1 in Figure 12). As shown, all 

of the flows decrease in value when extra insulation is added to the outer walls. In addition, they 

decrease with the same ratio. This is because the delivered energy, primary energy and carbon 

emissions are scalars of the energy need for heating, scaled up by efficiency factors, primary 

energy factors and CO2 coefficient factors.  

 

Table 25: Energy and CO2 flows for one (1) SFH03 building per heated floor area m2, when applying 

different insulation solutions for the outer walls 

Insulation type/thickness Energy 

need 

[kWh/m2] 

Delivered 

energy 

[kWh/m2] 

Primary 

energy 

[kWh/m2] 

CO2 emissions  

[kg CO2 eq./m2] 

Original (0.1 m) 152 163 202 15 

Historically refurbished Min. 

wool (0.15 m) 

138 148 184 14 

TEK 10 Min. wool 

(0.2 m) 

128 137 170 13 

TEK 10 VIP (0.03 m) 129 138 172 13 

Passive house 

Min. wool (0.35 m) 

122 131 162 12 

Passive house VIP 

(0.05 m) 

123 132 164 12 

 

 

 
Table 26:  Material flows and upstream energy and CO2 flows for one (1) SFH03 building when 

applying different insulation solutions for the outer walls  

Insulation type/thickness Material 

need [kg] 

Waste [kg] Upstream 

energy [kWh] 

Upstream CO2 

emissions 

[kg CO2 eq.]  

Historically refurbished Min. 

wool (0.15 m) 

666 456 3 081 684 

TEK 10 Min. wool 

(0.2 m) 

889 468 4 914 1 091 

TEK 10 VIP (0.03 m) 1 032 423 48 190 8 485 

Passive house 

Min. wool (0.35 m) 

1 555 501 8 687 1 929 

Passive house VIP 

(0.05 m) 

1 721 423 80 317 14 142 
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Table 27: Energy and CO2 flows for one (1) SFH03 building when applying different insulation 

solutions for the outer walls 

Insulation type/thickness Energy need 

[kWh] 

Delivered 

energy [kWh] 

Primary 

energy [kWh] 

CO2 emissions  

[kg CO2 eq.] 

Original (0.1 m) 23 104 24 767 30 761 2 284 

Historically refurbished 

Min. wool (0.15 m) 

20 976 22 486 27 928 2 073 

TEK 10 Min. wool 

(0.2 m) 

19 456 20 857 25 904 1 923 

TEK 10 VIP (0.03 m) 19 608 21 020 26 107 1 938 

Passive house 

Min. wool (0.35 m) 

18 544 19 879 24 690 1 833 

Passive house VIP 

(0.05 m) 

18 696 20 042 24 892 1 848 

Figure 17 presents the heat loss budget of the example building chosen in this master’s thesis 

and the distribution of the thermal loss in the different building components in SIMIEN and 

TABULA. As shown, the heat loss from ventilation, walls and windows are the biggest heat 

loss sources. 

 

The ventilation heat loss counts for almost 1/3 of the building’s total transmission loss in both 

models. However, TABULA has an 8 % bigger heat loss due to ventilation than SIMIEN. At 

the same time, TABULA has a heat loss from the floor that is only half as big as in SIMIEN.  

 

 

 

 

In addition to slightly different heat loss budgets, Table 28 shows a comparison of the energy 

need for heating in original state in SIMIEN and TABULA. The unit utilized is energy per 

heated floor area. As shown, the two models yield almost the same result for energy need, with 

a discrepancy of 3 %.  

  

Figure 17: heat loss budget for the SFH03 building in TABULA and SIMIEN 
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Table 28: Comparison of energy need for heating in original state (Rn1) in SIMIEN and TABULA 

Energy need for heating [kWh/m2] 

SIMIEN TABULA 𝑇𝐴𝐵𝑈𝐿𝐴−𝑆𝐼𝑀𝐼𝐸𝑁

𝑆𝐼𝑀𝐼𝐸𝑁
 [%] 

 

156 152 - 3.0 % 

Figure 18 and Figure 19 are graphical illustrations of the total energy need for heating for a 

SFH03 building in its original and historically refurbished state, upgraded to TEK 10 and 

passive house standard. The parentheses used on the x-axis represent the insulation thickness, 

where the smallest thicknesses are used when applying vacuum insulation and the bigger ones 

are for mineral wool insulation. In order to compare different insulation materials with each 

other, I have chosen the same insulation thickness size for vacuum insulation and mineral wool 

insulation and made my calculations based on the average of these values. A consequence is 

that the corresponding U-value of the dwelling’s outer walls merely approaches the TEK 10 and 

passive house requirements rather than fulfilling the exact requirements. Hence, the U-values 

for the outer walls when using vacuum insulation are slightly higher than the  

U-value requirements for the TEK 10 and passive house standard.  

The upgrade to TEK 10 and passive house standard will decrease the energy need of the dwelling 

substantially, from 152 kWh/m2 in heating demand to respectively 138, 128 and 122 kWh/m2 

for mineral wool, depending on the insulation solution. This corresponds to 9, 16 and 20 % in 

energy savings. The vacuum insulation solutions yield on average a slightly higher value for the 

energy need for heating: respectively 129 and 123 kWh/m2 when approaching TEK 10 and 

passive house standard.  
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Figure 19 presents the same information as Figure 18, but the unit is corresponding to annual 

energy need for heating per SFH03 building and not per m2 heated floor area. See Table 27 for 

the actual values.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 18: Annual energy need for heating with the different insulation solutions [kWh/m2] 

Figure 19: Annual energy need for heating with different insulation solutions [kWh/dwelling] 
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4.2 Investment costs 

Table 29resents the investment costs for different insulation solutions when  renovating the 

façade, using an energy price of0.8367 [NOK/kWh]. The costs used in the calculations are 

explained in chapter 3.2.2. Only mineral wool insulation is applied for the historical 

refurbishment. The annual energy savings is equal to the difference in annual heating demand 

when introducing the more advanced insulation solutions to the original state.  

 

Table 29: NPV values for the different insulation solutions. The interest rate, r, is set to 5, 6 and 7 %. 

Insulation solution Annual energy 

savings [kWh/m2] 

NPV [NOK/m2 floor] 

r = 5 % r = 6 % r = 7 % 

S1, BL, min. wool  

historically refurbished 

14 + 120 + 95 + 75 

S2, min. wool ~TEK 10 24 + 252 + 209 + 175 

S3, VIP ~TEK 10 23 + 66 + 26 -  7 

S4, min. wool ~passive house 30 + 236 + 183 + 140 

S5, VIP ~passive house 29 -  51 -  102 -  144 
 

As shown, the net present value (NPV) for all insulation solutions using mineral wool are 

positive. Conducting mineral wool insulation to TEK 10 standard yields the highest NPV value 

of all the alternatives, followed by passive house standard and historical refurbishment.  

The VIP materials are more expensive and hence give a lower NPV. However, the VIP TEK10 

insulation solution results in a positive NPV for an interest rate, r, equal to or lower than 6 %. 

VIP approaching passive house standard is the only insulation solution with a negative NPV in 

all the calculations. 

Figure 20  shows the resulting NPV values for the different insulation solutions when changing 

the energy price from 0.8367 NOK/kWh (BL). As shown, all mineral wool insulation solutions 

are economically viable when changing the energy price up to ± 100 %. The insulation solution 

for TEK 10 mineral wool is the most economically viable solution. 

VIP insulation when upgrading to TEK 10 gives a positive NPV for all energy price alternatives 

that have decreased with less than 30 % from the baseline price. VIP insulation corresponding 

to passive house standard is economically viable for an energy price increased by 15 % or more. 

For all other price alternatives, VIP passive house standard gives a negative NPV value.   

  



 

52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Long-term modeling of the SFH03 housing segment towards 2050 

4.3.1 Dwelling stock development and renovation activity [m2] 
Figure 21 shows the baseline dwelling stock development of SFH03 from the year 2000 to 2050 

in heated floor area [m2]. The output unit in the model is the number of SFH03 dwellings for 

each year. Hence, in order to convert the number of buildings to heated floor area, the average 

heated floor area of 152 m2 is defined as an input parameter in the model. 

 

All three renovation states, Rn1, Rn2 and Rn3, are included in the results. Rn1 represents all 

dwellings that are in their original state, whereas Rn2 represents renovated dwellings between 

2000 and 2010 in a historically refurbished state and Rn3 renovated dwellings after 2010 to 

2050.  

 

As shown, the total stock segment decreases from its initial value in 2000 due to demolition 

during the time period of the simulation. In 2050, the total heated floor area has been reduced 

with 27 % compared to the area in 2000.  In addition, the SFH03 dwellings in renovation state 

Rn1 decrease significantly from the year 2000 to 2050 in the simulation: starting at 20.3 million 

m2 and decreasing to 1.1 million m2. This is equal to a 95 % decrease in heated floor area. Hence, 

according to the results from the housing stock model, 95 % of the heated floor area in original 

state (Rn1) in the year 2000 will have been renovated in 2050. 

Figure 20: Net present value (NPV) when changing the energy price. The interest rate, r, is set to 5 %. 



 

53 

 

The first 10 years of the simulation, a large part of the dwellings in Rn1 is upgraded to a 

historically refurbished state, Rn2, and no demolition is conducted until 2010. The amount of 

renovated dwellings in renovation state Rn2 stays more or less constant throughout the 

simulation and hence, only a small share of dwellings in Rn2 are demolished.   

From 2010, dwellings are upgraded to Rn3 when going through refurbishment. The share of 

renovated dwellings increases throughout the simulation and in 2050, dwellings in 

 Rn3 – renovated from 2010 – 2050 - represent 11.5 million m2 and the total amount of renovated 

dwellings from Rn2 and Rn3 exceeds 14.6 million m2. This is equal to 93 % of the total SFH03 

housing stock segment.  

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 22 and Figure 23 show the stock composition of SFH03 in its three respective renovation 

states when assuming average time between renovation to change to 50 and 30 years. Figure 23 

shows that the share of dwellings representing SFH03 buildings in Rn2 in the 50-year renovation 

cycle is smaller compared to the share of dwellings in Rn2 following the 30-year renovation 

cycle in Figure 22. The share of Rn2 in the 50-year renovation cycle in 2010 constitutes 7 % of 

the stock segment. In comparison, the dwellings in Rn2 in a 40-year renovation cycle represent 

21 %. Vice versa, when renovating more often, like for buildings following the 30-year 

renovation cycle, the share of SFH03 buildings upgraded to Rn2 in the period 2000 – 2010 is 

significantly higher, representing 59 % of the total stock segment. This is almost three times 

more than for dwellings following the 40-year renovation cycle and eight times more than for 

dwellings following the 50-year renovation cycle. | 

 

Figure 21: Baseline scenario of the dwelling stock composition of SFH03 in renovation 

state Rn1, Rn2 and Rn3 [m2], assuming a renovation cycle of 40 years. 
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A less frequent renovation cycle also results in a lower total amount of renovated dwellings in 

2050. When renovating the façade every 50 years, it results in a total renovated floor area of  

11.5 million m2, hence 20 % lower than when renovating every 40 years. As for the graph 

representing the 30-year renovation cycle, the total amount of renovated dwellings is equal to 

the graph representing the baseline renovation cycle of 40 years.  

 
It may seem like the dwellings in Rn2 increase somewhat in value between the year 2030 and 

2035 in Figure 23. However, this is not the case since Rn2 can only decrease in value after the 

year 2010, and the values for Rn2 are constantly decreasing throughout the simulation in the 

building model. The reason why the Rn2 segment seem to increase is that the Rn1 segment of 

the SFH03 buildings has stopped decreasing and remains constant from 2030.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 24 presents the total amount of the  heated floor area [m2] of the dwelling stock segment 

SFH03 in renovation state Rn3 when conducting renovation cycles of respectively 30, 40 and 

Figure 22: Dwelling stock composition of SFH03 in renovation state Rn1, Rn2 and Rn3, 

assuming a renovation cycle of 50 years. 

Figure 23: Dwelling stock composition of SFH03 in renovation state Rn1, Rn2 and Rn3, 

assuming a renovation cycle of 30 years. 
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50 years. Hence, the graph illustrates the quantity of renovated dwellings from the year 2010 in 

the simulation. As shown, a frequency of 40 years between renovations will result in the largest 

amount of renovated dwellings in this stock segment, representing 11.5 million m2 in 2050. This 

is 14 and 9 % less than using renovation cycles of respectively 50 and 30 years. 

 

The function with a 30-year renovation frequency also has the steepest slope in the beginning 

of the simulation. Hence, a larger amount of SFH03 buildings is renovated between 2010 and 

2015 for the graph representing the 30-year cycle than for the two other functions. However, the 

slope decreases the next couple of decades, resulting in fewer refurbishments among SFH03 

buildings compared to dwellings following a 40-year renovation cycle. The graph representing 

the 50-year renovation cycle is below the other graphs in refurbishment with the exception of 

the time period from 2030 to 2040. In that period, more renovations are conducted for dwellings 

following a 50-year renovation cycle than for those refurbished every 30 years.  

 

One clear observation is that the three line graphs have their highest renovation activity, also 

known as the slope of the line graph, in different times in the simulation. The 30-year cycle has 

its highest renovation activity around year 2010, the 40-year renovation cycle around year 2020 

and the 50-year renovation cycle around year 2030.  

 

 

Figure 24: Renovation cycle analysis of the SFH03 dwelling stock segment in renovation state Rn3 
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4.3.2 Scenarios 

Table 30 presents the different scenarios in the scenario analysis in this master’s thesis. The 

scenarios are insulation solutions applied to the SFH03 segment in renovation state Rn3 from 

2010 to 2050.  

 

 Scenario description Heating demand 

[kWh/m2] 

Scenario 1 Baseline scenario. Maintaining 

level of historical refurbishment  

138  

Scenario 2 Approaching TEK 10 standard, 

min. wool 

128  

Scenario 3 Approaching TEK 10 standard, 

VIP 

129  

Scenario 4 Approaching passive house 

standard, min. wool 

122  

Scenario 5 Approaching Passive house 

standard, VIP 

123  

 

Figure 25 - 27 show the energy need for heating of the SFH03 houses in their respective 

renovation states between 2000 and 2050 for mineral wool insulation. The reason why results 

when applying vacuum insulation is shown is that these results are very similar to the 

corresponding insulation solution for mineral wool. The total energy consumption for heating 

purposes, also known as the energy reduction potential, will decrease during the simulation due 

to demolition of buildings representing the SFH03 stock segment. See Table 32 for an overview 

of the change in energy need for heating throughout the simulations.  

 

As shown, the buildings in Rn1 represent the largest energy potential during the first  

30 - 40 years in the simulation. However, with an increasing share of dwellings in Rn3, the 

corresponding heating demand for SFH03 buildings in Rn3 will increase throughout the 

simulation. In the baseline scenario of Figure 25, the heating demand for SFH03 buildings in 

renovation state Rn3 is higher from the year 2038 compared to the remaining dwellings in 

renovation state Rn2 and Rn1. 

 
Even though the share of renovated dwellings in Rn3 increases during the simulation, the total 

energy need for heating among SFH03 houses decreases. The energy potential increases with 

the  ambitiousness of the insulation solution (see Figure 25 - 27) and hence, scenario 4 

(passive house standard, applying mineral wool insulation) results in a lower heating demand 

for SFH03 buildings in Rn3 than scenario 2 (TEK 10 standard applying mineral wool insulation) 

Table 30: Presentation of the scenarios applied in the scenario analysis, defining the renovation state Rn3 
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and the baseline scenario (historically refurbished, using mineral wool). In the baseline scenario 

in 2050, the heating demand for SFH03 buildings in Rn3 is 1 526 GWh. In scenario 2 and 4, the 

heating demand in 2050 has decreased to respectively 1 416 and 1 356 GWh.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Energy composition of SFH03 in renovation state Rn1, Rn2 and Rn3, scenario 2 

(min.wool, TEK10 standard). Renovation cycle of 40 years applied. 
 

Figure 25: Energy composition of SFH03 in renovation state Rn1, Rn2 and Rn3. Baseline scenario 

(historical refurbishment). Renovation cycle of 40 years applied. 
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Figure 28 shows the change in heating demand in the SFH03 dwelling stock for all the insulation 

solutions in the scenario analysis. The baseline scenario is the scenario with the smallest energy 

potential. Yet, there is an energy potential of almost 32 % relative to the energy need for heating 

in 2000. Figure 28 also shows that the insulation solutions corresponding to a passive house 

standard yield better energy results than the TEK 10 solutions and the historical refurbishment.  

Applying VIP insulation results in a slightly higher heating demand when approaching 

TEK 10 (scenario 3) and passive house standard (scenario 5) compared to applying mineral 

wool insulation. The difference in energy results between the scenarios increases with time. For 

instance, in 2010, the variance between scenario 2 and scenario 3 is 0.02 % and in 2050, the 

variance has increased to 0.05 % (see Table 31).  

Table 32 shows the energy potential among the scenarios relative to the baseline scenario in 

2010. Among the five scenarios, it is scenario 4, approaching passive house standard with 

mineral wool insulation, which has the biggest energy potential of -37.7 % in 2050 relative to 

the baseline scenario in 2010.  

 

 

 

Figure 27: Energy composition of SFH03 in renovation state Rn1, Rn2 and Rn3, scenario 4 

(min.wool, passive house standard). Renovation cycle of 40 years applied. 
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Table 31: Energy potential when applying different renovation types for Rn3. Baseline renovation 

cycle of 40 years applied.  
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 29 and Figure 30 show the total energy need for heating for the SFH03 dwelling segment 

with renovation cycles of 50 or 30 years, with corresponding tables for the energy potential. The 

biggest energy potential when renovating every 30, 40 and 50 years relative to year 2010 

(scenario 4) is respectively 34.9, 37.7 and 36.5 % (see Table 32, Table 34 and Table 36). It is 

interesting to observe that renovating the façade every 40 years results in a higher energy 

Year 2010 2030 2050 

Scenario 1 BL [GWh] 3 214 2 739 2 185 

Scenario 2 -0.15 % -3.3 % -5.3 % 

Scenario 3 -0.13 % -3.0 % -4.8  % 

Scenario 4 -0.24 % -5.3 % -8.5 % 

Scenario 5 -0.23 % -5.0 % -7.9 % 

Table 32: Energy potential when applying different renovation types for Rn3. The potential is 

measured relative to year 2010 for the baseline scenario. Baseline renovation cycle of 40 years applied.  

 

Year 2030, 

Δ2010 BL 

2050, 

Δ2010 BL 

Scenario 1 -14.8 % -32.0 % 

Scenario 2 -17.5 % -35.5 % 

Scenario 3 -17.2 % -35.2 % 

Scenario 4 -19.2 % -37.7 % 

Scenario 5 -18.9 % -37.3 % 

Figure 28: Total energy need for heating of SFH03 for the different scenarios in renovation state Rn3. 

Renovation cycle of 40 years applied. 
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potential than renovating every 50 or 30 years. It is also interesting to see that even though the 

renovation cycle of 40 and 30 years resulted in equal renovation activity in 2050, the energy 

potential is quite different.   

 

All five insulation solutions have an almost equal energy reduction in 2030 when refurbishing 

every 50 or 30 years. However, in 2010, the insulation solutions for the 50-year renovation cycle 

have a higher energy potential compared to the insulation solutions for the 

30-year renovation cycle.  

 

 
 

 

 

 

 

 

 

 

 

  

Figure 29: Total energy need for heating of SFH03 for the different scnearios in renovation state Rn3. 

Renovation cycle of 50 years applied. 
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Year 2010 2030 2050 

Scenario 1 BL [GWh] 3 256 2 816 2 228 

Scenario 2 -0.06 % -2.3 % -4.5 % 

Scenario 3 -0.06 % -2.1 % -4.0  % 

Scenario 4 -0.10 % -3.7 % -7.2 % 

Scenario 5 -0.09 % -3.5 % -6.7 % 

 

 

 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 

  

Table 33: Energy potential when applying different renovation types for Rn3. Baseline renovation 

cycle of 50 years applied. 

Year 2030, 

Δ2010 BL 

2050, 

Δ2010 BL 

Scenario 1 -13.5 % -31.6 % 

Scenario 2 -15.6 % -34.7 % 

Scenario 3 -15.4 % -34.3 % 

Scenario 4 -16.8 % -36.5 % 

Scenario 5 -16.6 % -36.2 % 

Table 34: Energy potential when applying different renovation types for Rn3. The potential is 

measured relative to 2010 for the baseline scenario. Baseline renovation cycle of 50 years applied. 

Figure 30: Total energy need for heating of SFH03 for the different scenarios in renovation state 

Rn3. Renovation cycle of 30 years applied. 
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Year 2030, 

Δ2010 BL 

2050, 

Δ2010 BL 

Scenario 1 -13.5 % -29.4 % 

Scenario 2 -15.6 % -32.8 % 

Scenario 3 -15.4 % -32.5 % 

Scenario 4 -16.9 % -34.9 % 

Scenario 5 -16.7 % -34.5 % 

 

Figure 31 shows the CO2 level of the SFH03 stock segment during operation in the baseline 

scenario when assuming a renovation cycle of 40 years. Because the operational carbon 

emissions are dependent on the delivered energy, this graph has an identical shape to the energy 

graph of the baseline scenario, Figure 25. Thus, the share of carbon emissions from 

Rn1 and Rn2 are equal to the share of energy consumption from Rn1 and Rn2 in the time period 

between 2000 and 2050.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 35: Energy potential when applying different renovation types for Rn3. Baseline renovation 

cycle of 30 years applied. 

Year 2010 2030 2050 

Scenario 1 BL [GWh] 3 096 2 677 2 185 

Scenario 2 -0.24 % -2.5 % -4.8 % 

Scenario 3 -0.22 % -2.2 % -4.3 % 

Scenario 4 -0.38 % -4.0 % -7.7 % 

Scenario 5 -0.36 % -3.7 % -7.2 % 

Table 36: Energy potential when applying different renovation types for Rn3. The potential is measured 

relative to year 2010 for the baseline scenario. Baseline renovation cycle of 30 years applied. 

 

Figure 31: CO2 emissions from SFH03 in renovation state Rn1, Rn2 and Rn3. Renovation 

cycle of 40 years applied [million kg CO2 eq.]. 
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Figure 32 shows the total carbon emission development for the different scenarios towards 2050 

for all SFH03 dwellings during operation. As shown, and in coherence with Table 37, the CO2 

emissions in the baseline scenario are reduced from 318 million in 2010 to 

216 million kg CO2 eq. in 2050. This corresponds to a 32 % decrease in CO2 emissions in 2050.  

 

Figure 33 and Figure 34 show the CO2 potential when renovation cycles of respectively 

50 and 30 years are applied. An important observation is that the CO2 potential follows the 

energy consumption of and renovation activity in the dwelling stock segment. This results in an 

almost identical CO2 potential as the energy potential with a corresponding renovation cycle. 

Comparing Table 37 and Table 38 with Table 31 and Table 32 confirms this observation.  This 

also applies for the scenarios with renovation cycles of 30 and 50 years.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 32: CO2 reduction potential for the different insulation solutions in the scenario 

analysis. Renovation cycle of 40 years applied. 
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Table 38: CO2 savings for all scenarios relative to CO2 emissions in 2010 for the baseline scenario. 

Renovation cycle of 40 years is applied.  

Year 2030, 

Δ2010 BL 

2050, 

Δ2010 BL 

Scenario 1 -14.8 % -32.0 % 

Scenario 2 -17.7 % -35.7 % 

Scenario 3 -17.4 % -35.4 % 

Scenario 4 -19.3 % -37.7 % 

Scenario 5 -19.0 % -37.4 % 

 

 

 

 

 

 

 
 

Table 37: CO2 savings in the scenario analysis relative to CO2 emissions for the baseline scenario in year 

2010, 2030 and 2050. Renovation cycle of 40 years is applied.  

Year 2010 2030 2050 

Scenario 1 BL [million kg CO2]   318   271   216 
Scenario 2 -0.16 % -3.4 % -5.4 % 

Scenario 3 -0.15 % -3.1 % -4.9  % 

Scenario 4 -0.25 % -5.3 % -8.4 % 

Scenario 5 -0.24 % -5.0 % -7.9 % 

Figure 33: CO2 reduction potential for the different insulation solutions in the scenario 

analysis. Renovation cycle of 50 years applied. 
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Table 40: CO2 savings for all scenarios relative to CO2 emissions in 2010 for the baseline scenario. 

Renovation cycle of 50 years is applied. 

 
Year 2030, 

Δ2010 BL 

2050, 

Δ2010 BL 

Scenario 1 -13.6 % -31.7 % 

Scenario 2 -15.7 % -34.8 % 

Scenario 3 -15.5 % -34.5 % 

Scenario 4 -16.8 % -36.5 % 

Scenario 5 -16.6 % -36.2 % 

 

 

 

 

 

 

 

 

 

 

  

Year 2010 2030 2050 

Scenario 1 BL [million kg CO2]   323   279   220 
Scenario 2 -0.06 % -2.4 % -4.6 % 

Scenario 3 -0.06 % -2.2 % -4.2  % 

Scenario 4 -0.10 % -3.7 % -7.0 % 

Scenario 5 -0.09 % -3.5 % -6.7 % 

Table 39: CO2 savings in the scenario analysis relative to CO2 emissions for the baseline scenario in 

year 2010, 2030 and 2050. Renovation cycle of 50 years is applied. 

Figure 34: CO2 reduction potential for the different insulation solutions in the scenario 

analysis. Renovation cycle of 30 years applied. 
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Table 42: CO2 savings for all scenarios relative to CO2 emissions in 2010 for the baseline scenario. 

Renovation cycle of 30 years is applied 

Year 2030, 

Δ2010 BL 

2050, 

Δ2010 BL 

Scenario 1 -13.5 % -29.5 % 

Scenario 2 -15.8 % -32.9 % 

Scenario 3 -15.6 % -32.6 % 

Scenario 4 -17.0 % -34.8 % 

Scenario 5 -16.8 % -34.5 % 

 

 

  

Table 41: CO2 savings in the scenario analysis relative to CO2 emissions for the baseline scenario in 

year 2010, 2030 and 2050. Renovation cycle of 30 years is applied. 

Year 2010 2030 2050 

Scenario 1 BL [million kg CO2]   306   265   216 
Scenario 2 -0.25 % -2.6 % -4.9 % 

Scenario 3 -0.22 % -2.3 % -4.5 % 

Scenario 4 -0.38 % -4.0 % -7.6 % 

Scenario 5 -0.36 % -3.7 % -7.1 % 
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4.4 Sensitivity analysis 

Table 43 and Table 44 present the results from the sensitivity analysis when changing the 

respective parameters from ±15 to ± 70 %. The variables, except for the indoor temperature, are 

scaled with similar values in order to compare the sensitivity in energy need for heating. 

Table 44 shows the sensitivity analysis for the indoor temperature when the temperature ranges 

from 17 to 23 °C. The symbol ΔQb represents the change in annual heating demand when 

changing the respective input parameter to a specified value.  

 

 

 

 

 

 

 

 

 

 

Figure 35 presents the variance in energy need for heating when changing the indoor 

temperature, ϑ [°C], from the default value of 20°C to ± 3°C. Among all of the variables used 

in the sensitivity analysis, the indoor temperature has the largest variations and is the most 

sensitive parameter to changes, ranging from + 23.5 and – 20.7 % of the annual heating demand 

when changing the indoor temperature with ±15.8 %. In addition, the change in indoor 

temperature results in a larger change in annual heating demand. This did not occur for any of 

the other variables used in the sensitivity analysis.    

Table 43: Results from sensitivity analysis  

 ΔQb,  tb ΔQb,   n50 ΔQb,  ninf ΔQb, V ΔQb, αframe 

– 15 % -1.3 % - 3.8 % - 1.3 % - 3.6 % - 0.9 % 

+ 15 % +1.3 % + 4.1 % + 3.0 % + 3.9 % + 1.2 % 

– 25 % -1.9 % - 5.7 % - 2.5 % - 5.8 % - 1.6 % 

+ 25 % +1.9 % + 6.5 % + 4.7 % + 6.7 % + 1.9 % 

- 35  % -3.2 % - 7.7 % - 3.5 % - 7.7 % - 2.3 % 

+ 35 % +3.2 % + 9.5 % + 6.5 % + 9.5 % + 2.7 % 

-  70 % -5.8 % -11.8 % - 7.6 % - 11.8 % - 4.7 % 

+ 70 % +5.7 % + 19.6 % + 12.5 % + 19.6 % + 5.3 % 

ϑ ΔQb 

- 5.3 % (19 °C) - 7.1 % 

+ 5.3 % (21 °C) + 7.4 % 

- 10.5 % (18 °C) - 14.1 % 

+ 10.5 % (22 °C) + 15.3 % 

- 15.8 % (17 °C) - 20.7 % 

+ 15.8 % (23 °C) + 23.5 % 

Table 44: Results from sensitivity analysis for the room temperature parameter, ϑ [°C] 
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Figure 36 presents the variance in annual heating demand for different values of the normalized 

thermal bridging value. As shown, the fluctuations in annual heating demand are not 

significantly high. Even when changing the normalized thermal bridging factor with ± 70 %, the 

annual heating demand has a change of less than 6 %.  

 

 

 
 
 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 38 and Figure 37 show the fluctuations in the energy need for heating when changing the 

air leakage rate, n50 [1/h], and the natural ventilation rate, ninf [m
3/hm2]. It is clear from the graphs 

that the air leakage rate is far more sensitive than the natural infiltration in the building, with an 

increase of almost 20 % in annual heating demand when changing the leakage number by 70 %. 

In comparison, the natural infiltration rate is increased by almost 13 %, which is 7 % less than 

the air leakage rate. However, both of the parameters result in significant fluctuations in the 

heating demand of the building.  

 

Figure 35: Sensitivity analysis of the average indoor temperature, ϑ [°C]. 

Figure 36: Sensitivity analysis of the normalized thermal bridging value, tb  [W/m2K]. 
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Figure 39 and Figure 40 show the fluctuation in heating demand when changing the conditioned 

building volume and the frame/window ratio. The volume is a sensitive parameter, changing the 

annual heating demand with almost 20 % when the parameter is changed to 70 %. Figure 39 

shows that the conditioned building volume parameter and the leakage number, n50, changes the 

heating demand to almost the same extent. Figure 40 shows that the variable representing the 

frame/window ratio has little influence on the annual heating demand. This is in accordance 

with Table 43, which show that αframe and the normalized thermal bridging factor, tb, are the 

least sensitive parameters in this sensitivity analysis.  

Figure 37: Sensitivity analysis of ninf [m3/hm2] 

Figure 38: Sensitivity analysis of n50 [1/h]. 
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Figure 39: Sensitivity analysis of the heated building volume, V [m3]. 

Figure 40: Sensitivity analysis of the frame/window ratio, αframe [-]. 
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5. Discussion 
In this chapter, I will provide a discussion of the main findings of the study and what appear to 

be their causes, referring to the two research questions stated in chapter 1. From this, it is 

elaborated on the strengths and weaknesses of the methods and models used in the study. Finally, 

implications of the findings are presented with respect to possible messages for policy-making 

and further research. 

5.1 Main findings of this study 

5.1.1 Façade renovation measures for one SFH03 building 

 

Energy need for heating 
In this master’s thesis, more advanced insulation solutions for façade refurbishment have been 

introduced. As can be seen from Figure 18, the SFH03 building achieves energy savings in 

heating demand, which vary between 14 and 30 kWh/m2 heated floor area, depending on the 

insulation solution applied. 

 

The vacuum insulation (VIP) yields a slightly higher heating demand than mineral wool 

insulation for TEK 10 and passive house requirements of respectively 1 and 2 kWh/m2. This is 

because the insulation materials approach passive house and TEK 10 standards by using a 

standard insulation thickness that corresponds to the requirements. For the vacuum insulation 

materials, this resulted in one (Dow corning) fulfilling the requirements and the other 

(Microtherm) having a slightly higher U-value than the U-value requirements.   

Figure 18 and Figure 19 show that the SFH03 building’s annual heating demand in original state 

is 23 104 kWh, corresponding to 152 kWh/m2 per heated floor area. According to the barrier 

study by Prognosesenteret & Entelligens (2011), an average single-family house built in the 

1970s has an annual heating demand of 87.8 kWh/m2. This is substantially lower than the 

findings from the energy audit in this master’s thesis. The discrepancy may partly be explained 

with the different stock segments examined. Prognosesenteret & Entelligens (2011) have 

measured the average heating demand of all SFH03 buildings, regardless of the building’s 

renovation state.  Hence, they have not distinguished between single-family houses in an 

original state and refurbished houses like in this master’s thesis. Typical refurbishment measures 

conducted on the refurbished SFH03 dwellings may be façade refurbishment, changing the 

windows or installing a balanced ventilation system. In addition, the SFH03 building utilized in 

the energy audit by Prognosesenteret & Entelligens (2011) has some different building 



 

73 

 

characteristics from the ones used in this master’s thesis, something which also results in a 

discrepancy in heating demand.  

Even though there is a significant energy saving potential related to refurbishing the outer walls 

and adding supplementary insulation, this energy measure might not be suitable as the only 

energy measure for all dwellings. Occasionally, the building envelope might get too air tight 

when adding supplementary insulation, resulting in a worse indoor climate. According to 

SINTEF Fag (2014b), it might be necessary to install a balanced ventilation system in addition 

to refurbishing the outer walls in order to sufficiently remove moist air and increase the air 

exchange rate.  

Delivered energy  
The delivered energy to the SFH03 building depends on the energy efficiency of the energy 

carriers chosen and the respective energy share delivered from each energy carrier. In this thesis, 

the energy carriers were chosen to be bio wood and electricity, as these are common energy 

carriers for single-family houses built in the 1970s. The efficiency factors utilized are taken from 

TABULA, which utilizes general values for all European countries participating in the project. 

An energy efficiency of 0.64 for bio wood and 1 for electricity, amounts to 163 kWh/m2 in 

delivered energy to the SFH03 building for heating purposes.  

 

In coherence with the NS3031:2014 methodology, the overall energy efficiency is calculated 

based on the three factors: The production efficiency, the distribution efficiency and the special 

effect in the conditioned room. Based on this methodology, the recommended values for energy 

efficiency of bio wood and electricity are lower than the standard values in TABULA of 

respectively 0.52 for bio wood and 0.89 for electricity. By using the recommended values in 

NS3031:2014, the calculated delivered energy would be higher than the results in Table 25 and 

Table 27. One may question if the recommended values in NS3031:2014 fit better for 

Norwegian conditions by yielding more realistic results for the delivered energy than by using 

standard energy efficiency factors from TABULA.  

Primary energy 
The primary energy is dependent on the delivered energy and the primary energy factors called 

PEFs. Even though the PEF for electricity accounts for import and export to the grid, there lies 

an uncertainty in the future PEF value for electricity, as the future export and import demand to 

the power grid is unknown. The primary energy of the example building today may be quite 

different from the primary energy in 2050. Considering that Norway will be connected to the 
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grid in the UK and the rest of Europe through the NSN Link (Statnett, 2013b) and 

NordLink project (Statnett, 2013a), it is not unrealistic to assume that the future PEF for 

electricity in Norway will increase in the upcoming decades due to an increase in electricity 

import from carbon based energy carriers.  

Carbon emissions 
Since the carbon emissions only are dependent on the energy usage in the SFH03 building, the 

emissions are dependent on the delivered energy and the CO2 coefficients utilized. As previously 

mentioned, there is an uncertainty related to the results for delivered energy, and thus, the results 

for the operational carbon emissions. 

 

The CO2 coefficients for Norwegian conditions, taking into account the export and import of 

electricity, are updated this year and taken from “Klimakalkulatoren” (Klimaløftet, 2012). 

Therefore, one may assume that these coefficients are representative for Norwegian households.  

 

Waste 
The input data concerning share of manufactured insulation material going to waste is provided 

from only one person in the construction industry (Martinsen, 2015).  This makes the assumption 

unreliable, and further mapping of the upstream material flows for refurbishment is needed. 

 

In addition, it is an uncertain assumption that all original insulation is replaced with new 

insulation. According to Leraand (Rockwool, 2015), there is a large variation in the original 

insulation quality for single-family houses in the 1970s, and it is not possible to state an average 

amount of waste from original wall insulation. Some houses have 100 % intact insulation and 

only needs to add the extra amount of insulation required, and other houses have severally 

damaged insulation.  

 

The total waste quantity from original and manufactured insulation has a direct impact on all of 

the KPIs in the material analysis in terms of calculating for a larger amount of insulation than 

necessary.  

 

Material consumption 
Even though VIP panels have a density that is more than 8 times higher than mineral wool 

insulation, the material consumption, hence the weight of the material required, for the different 

insulation solutions are almost identical. This is because the U-value requirements for TEK 10 

and passive house standard corresponds to very thin thicknesses for the VIP insulation and hence 
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a smaller total volume of insulation material than for mineral wool insulation. If waste of 

VIP panels was assumed when renovating the façade, there would be a bigger difference in 

material consumption between the two materials.  

 

Upstream flows 
When adding supplementary insulation to the outer walls, the upstream flows from carbon 

emissions and energy consumption increase. VIP insulation is in particular a material with high 

upstream energy and carbon emissions. However, with the façade refurbishment, there will be 

significant energy savings and reduced carbon emissions that will last until the next façade 

refurbishment, and these will outweigh the high upstream flows. According to 

Prognosesenteret & Entelligens (2011) and SINTEF Fag (2014b), the expected lifetime for 

building facades is 40 years, so this is the assumed baseline value for the amount of years 

between façade refurbishments for SFH03 buildings. 

 

The insulation solution emitting the most CO2 during manufacturing and that requires the 

highest upstream energy consumption is VIP insulation fulfilling passive house requirements. 

The upstream energy required to manufacture the material amounts to 528 kWh/m2 floor area, 

corresponding to CO2 emissions equal to 93 kg CO2 eq. /m2. The annual energy benefit and 

carbon emission reduction from upgrading from original state to VIP passive house standard 

correspond to 29 kWh/m2 and 3 kg CO2 eq. /m2. In 40 years, the total energy savings is 

1 160 kWh/m2, corresponding to a carbon emission reduction of 120 kg CO2 eq. /m2. Hence, the 

total energy savings are clearly higher than the upstream energy flow, and the reduction in 

carbon emissions and upstream CO2 flow. All other insulation solutions will result in higher 

energy savings and a higher carbon emission reduction.  

 

The transport stage from factory to construction site is included when calculating the upstream 

flows in the material analysis. However, according to a study from SINTEF Fag (2014a), the 

transport stage does not have a large impact on the results of energy and carbon emissions in the 

life cycle analysis of insulation materials. The transport is not significant, even if the factory 

producing insulation materials was based outside of Norway (SINTEF Fag, 2014a).  

Rockwool and Glava are produced in Norway, so the energy required to transport the insulation 

to a construction site in Norway is small. Microtherm and Dow Corning insulation on the other 

hand are produced in Denmark and Belgium respectively, and would require more energy for 

transportation to the construction site. It may therefore have been unnecessary to include the 
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transport stage in the material analysis, concerning a small energy consumption and low carbon 

emissions compared to the other stages in the material life cycle.  

 

Investment costs  
The baseline interest rate is set to 5 % from a policy perspective and applies between a private 

company and the national base rate in Norway. However, the investors in this context are private 

households and not companies. It is reasonable to believe that a payback time of 40 years for a 

façade refurbishment is a little too long. By increasing the interest rate, the payback time 

decreases. Results show that even with an interest rate of 7 % all mineral wool solutions yield a 

positive NPV and hence, are economically viable.  

 

A critical parameter influencing the economic analysis is the energy price, as the future energy 

price is uncertain. The sensitivity analysis of the energy price show that even with a 100 % 

decrease in energy price, all insulation solutions for mineral wool are economically viable due 

to a low investment price and high energy savings.  

 

Another variable influencing the economic results is the investment price for insulation 

materials. Concerning mineral wool insulation, Leraand (2015) in Rockwool states that the 

average discounts on insulation materials were 9 % in addition to 25 % taxes. A former 

master’s student has presented prices for Rockwool insulation [NOK/m2 outer wall], provided 

from Hjellnes Consulting (Storvolleng, 2014). These prices coincide well with the assumption 

from Leraand (2015). For instance, Hjellnes pays 74.3 NOK/m2 wall for an insulation thickness 

of 0.198 m, which is the corresponding insulation thickness when approaching TEK 10 standard. 

The average price for the same product is, according to Leraand, 75.7 NOK/m2 wall, hence 

almost equal to the price provided by Hjellnes, with a 2 % higher price. It is therefore fair to 

assume that the investment costs used for mineral wool insulation in the cost analysis is less 

uncertain than the energy price and interest rate.  

 

The investment costs when applying mineral wool for historical refurbishment and 

refurbishment corresponding to TEK 10 standard are much lower than for refurbishment 

corresponding to passive house standard. Upgrading to TEK 10 standard gives a 13 % increase 

and upgrading to passive house standard results in a 240 % increase in investment cost compared 

to a historical refurbishment. The higher price difference between upgrading to passive house 

and TEK 10 standard is due to the fact that there are no mineral wool products with an insulation 

thickness corresponding to passive house standard (350mm). Instead, one purchases two 
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insulation mats that in total have the required thickness (200mm + 150mm). Insulation products 

value more or less the same regardless of insulation thickness. When applying two insulation 

mats for the same surface area, this will therefore result in a significant increase in investment 

costs.  

 

The VIP insulation manufacturers were hard to get in touch with, and I could only receive a 

price estimate from Promat international, which manufactures Microtherm insulation. 

Furthermore, VIP is a new insulation product that is not much used by Norwegian contracting 

firms. This enables manufacturers and retailers to charge more and vary the prices for the same 

product. Little data and the fact that VIP is a new insulation product in Norway make the 

investment price for VIP an uncertain variable in NPV calculations. Therefore, it is not certain 

if a positive NPV for VIP when approaching TEK 10 level reflects the actual NPV value.  

 

5.1.2 Influence of façade renovation measure on the aggregated heating demand 

and carbon emissions for the Norwegian SFH03 building stock segment towards 

2050 

 

Renovation activity for the SFH03 housing segment towards 2050 
There are significant variations in renovation activity throughout the simulation period for the 

SFH03 stock segment. This is because the SFH03 buildings in the residential stock follows an 

average time span between façade renovations. Hence, more SFH03 buildings are renovated in 

the period where façade replacement is needed, hence when approaching the lifetime of the 

façade, and fewer during the first decades after façade refurbishments.  

 

The slope of the line graph is higher when the renovation activity is high and lower in periods 

when less façade refurbishments are conducted. Hence, the point on the line graph with the 

highest renovation activity implies that this is the year where it is expected that most SFH03 

buildings refurbish the façade. Figure 24 shows the renovation activity for the different 

renovation cycles from the year 2010 – 2050, where the slope of the line graph corresponds to 

the renovation activity for the respective renovation cycles. As shown, the steepest slope of the 

line graphs occur in different years in the simulation, respectively year 2010, 2020 and 2030 for 

the 30-, 40- and 50- year renovation cycle. This is because the average time between façade 

refurbishments differs due to different input values in the model for the average lifetime of the 

façade.  
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Energy potential 
High uncertainty in defined indoor temperature results in an uncertain energy result for space 

heating with the different façade refurbishment solutions for the SFH03 building. When there is 

uncertainty in the energy intensity from the SFH03 building, the up-scaled results to dwelling 

stock level are also related with uncertainty. However, ongoing studies by Sandberg show that 

the total energy need in the Norwegian housing stock are similar to the available statistics on 

energy usage in the housing stock. According to Sandberg and Brattebø (2012), about 50 % of 

the total energy need is from space heating, hence, there is reason to believe that when the results 

from the long-term modeling are similar to statistics, it shows that the assumptions defining the 

heating demand are not too far from the reality.  

 
The reduction potential in heating demand of the SFH03 dwelling stock is significant for all 

insulation solutions. Even for the baseline scenario, which achieves the lowest reduction in 

energy consumption, the total heating demand in 2050 is reduced by almost 1/3 relative to the 

total heating demand in 2010 for all renovation cycles. The large energy potential is however 

highly due to demolition of a larger share of the dwellings.  

 

Among the three renovation cycles, refurbishing the façade every 40 years results in the biggest 

energy potential at all times in the simulation period. A large share of the SFH03 dwelling stock 

is renovated after 2010, hence, are in Rn3, and achieves a significant energy reduction when 

refurbishing to a more ambitious level than historical refurbishment. Among the different 

scenarios corresponding to the respective façade refurbishments, whereas scenario 4 (fulfilling 

passive house standard requirements with mineral wool insulation) gives the biggest energy 

minimization at all times in the simulation period.  

 
However, there are variations in energy reduction depending on the average time between façade 

refurbishments. The SFH03 dwelling stock segment following the 30-year renovation cycle 

yields an energy potential that is almost 3 % lower than for the 40-year renovation cycle, despite 

achieving the same renovation share at the end of 2050 in Rn2 and Rn3. The large share of 

dwellings renovated before 2010, hence dwellings in Rn2, may explain the higher future heating 

demand. When a large amount of SFH03 buildings are renovated to a less ambitious renovation 

state than the façade refurbishment conducted after 2010, this may yield  an “energy lock-in” 

effect until the next façade refurbishment for the respective dwellings. This is because the large 

share of the dwellings in Rn2 are forced to be in this renovations state for the next 30 years.  
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Despite historically refurbished dwellings save 14 kWh/m2 in heating demand compared to 

SFH03 dwellings in an original state, all other insulation solutions give annual energy savings 

that are 23 kWh/m2 or higher. This implies that historically refurbished dwellings consume 

9 kWh/m2 more energy, corresponding to 39 % less in energy savings, than dwellings that are 

renovated to a more ambitious level. Hence, for all other scenarios than the baseline scenario, 

where Rn2 and Rn3 have an equal heating demand, the SFH03 segment will have a significantly 

lower heating demand. Moreover, the larger share of dwellings constituting Rn3 instead of Rn2, 

the higher is the energy potential achieved in 2050. By way of comparison, the share of 

renovated dwellings is equal when renovating every 30 or 40 years. The difference is that a 

significantly larger share of SFH03 buildings are in Rn2 when renovating every 30 years, and 

this yields a larger heating demand than if they were renovated to a more ambitious renovation 

state. This shows that the insulation solution applied influences the energy potential more than 

the actual renovation frequency.  

 

Furthermore, the energy potential relative to 2010 in the baseline scenario is higher for dwellings 

following a 40-year renovation than a 30-year renovation cycle despite the fact that the share of 

renovated SFH03 buildings in 2050 are equal for both renovation cycles. This is because the 

heating demand in 2010 is higher when refurbishing every 40 years than every 30 years. When 

the heating demand in 2050 is equal for both renovation cycles, this results in higher energy 

savings relative to 2010 for the dwellings following the 40-year renovation cycle.  

 

Carbon emission reduction potential 
The operational CO2 emissions from the SFH03 houses are dependent on the delivered energy 

to the dwelling stock segment. This is clear from equation 7, where the carbon emissions are 

equal to the delivered energy multiplied by a CO2 coefficient for the respective energy carrier. 

Since the CO2 coefficient is a scalar, the carbon emission potential is equal to the energy 

potential for the different insulation solutions with corresponding renovation cycles.  

 

As mentioned in chapter 5.1.1, in Upstream flows, the carbon emissions from manufacturing 

insulation materials constitute a small part compared to the significant energy savings over a 

period equal to the façade lifetime. This is also the case for dwellings that go through façade 

refurbishment more than once during the simulation period. Due to limited time, it was not 

possible to calculate the exact benefits in carbon emission reduction for the SFH03 dwelling 

stock.  
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5.2 Strengths and weaknesses of methods and models used in this study 

Two energy audit models and one dynamic stock model have been utilized in this study. The 

energy audit models are based on different calculation methods, as SIMIEN simulates 

dynamically and TABULA stationary. Different methodology is not an actual weakness to the 

respective models, but may be a weakness when validating the energy results by comparing the 

model results. In the following subchapter, I will discuss some of the reasons behind different 

energy results in SIMIEN and TABULA. In addition, there will be discussed weaknesses and 

strengths of the dynamic building stock model.  

5.2.1 The SIMIEN and TABULA Model 

SIMIEN is a well-known and utilized energy audit tool when examining the energy performance 

of buildings. The software fulfills the requirements to accuracy when measuring the energy 

balance, with good scores when comparing the model results to reference values 

(Programbyggerne, 2014b). It is therefore a clear strength to use SIMIEN in the energy audit in 

this master’s thesis as a method to validate the results from the TABULA worksheet.  

 

Climate data 
Some dynamic parameters in SIMIEN are not possible to change and will yield different energy 

results within the SIMIEN and TABULA model. For instance, this applies to the climate data 

for irradiation and outdoor temperature throughout the year. In TABULA, the climate data is set 

static on a monthly basis concerning irradiation and outdoor temperature. This results in 

differences between indoor and outside temperature throughout the year in SIMIEN and 

TABULA. Furthermore, it will have an impact on the results for the heating demand, as this is 

dependent on this temperature difference, the heat loss coefficient, the heating season duration 

and the heat gains.  

Heat loss from the floor 
One weakness when comparing heating demand results from SIMIEN and TABULA is that they 

have different methods of treating the U-value of the floor when the floor borders to an unheated 

basement and not the ground. The different heat loss calculations through the floor results in 

different heat losses through the floor within the two models. 

 

When the floor is on top of an unheated basement, the room temperature will be higher than if 

the floor is on top of the ground. For this this reason, the transmission losses from the floor will 

be smaller.  
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In the TABULA methodology, an adjustment factor is utilized when the floor borders to an 

unheated basement. The standard value for this is 0.5, and hence, when applying this factor, 

TABULA yields a heat loss through the floor which is half of the heat loss compared to if the 

floor was on top of the ground. SIMIEN calculates a transmission loss through the ground which 

is almost the double of the heat loss calculated in TABULA. However, the difference in heating 

demand is not significant, as the total difference between the two models for heat loss through 

the floor only amounts to 3 %.  

 

Ventilation heat loss 
The TABULA calculation method presented in Loga and Diefenbach (2013), operates with four 

different air change rates caused by infiltration, differing from 0.05 – 0.4 1/h. In addition, the 

TABULA method uses an additional term when calculating the heat loss caused by infiltration 

of a building, representing usage of the building. This results in a different equation measuring 

the heat transfer coefficient by infiltration from the one used in SIMIEN, and thus 

NS3031:2014 (Standard Norge, 2014).  

Results from the sensitivity analysis in SIMIEN 

A sensitivity analysis in SIMIEN gives an indication of whether the methodology utilized when 

finding the energy balance of a building is robust given uncertainty and assumptions.  

 

The sensitivity analysis in SIMIEN shows that there are particularly four parameters influencing 

the annual heating demand of the building. These are the conditioned building volume, the 

natural ventilation, the air leakage rate and the indoor temperature.  

 

The conditioned building volume, V, and the natural ventilation, nair,inf, influence the heat loss 

due to infiltration directly, as these constitute variables in the equation determining the 

infiltration heat loss. In coherence with NS3031:2014, the natural ventilation due to infiltration 

and the conditioned volume are proportional to each other (see equation 2). Since the natural 

ventilation and the air leakage rate are proportional (see equation 3), this explains why a 

specified change [%] in the air leakage rate, n50, and V results in an almost identical change in 

heating demand. The equation calculating the infiltration heat loss is as follows 

(Standard Norge, 2014):  
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𝐻𝑖𝑛𝑓 = 𝑐𝑛𝑉            2 

 

Hinf Heat loss coefficient for infiltration [W/K] 

nair,inf Natural ventilation in the building [1/h] 

V Conditioned building volume 

c Specific heat capacity for air. Standard value = 0.33 [Wh/m3K] 

 

When assuming no mechanical ventilation, the equation defining the natural ventilation due to 

infiltration is as follows (Standard Norge, 2014):  

 

𝑛 = 𝑛50𝑒            3 
 

n50 Air leakage rate when the reference pressure in the building is 50 Pa [1/h] 

e Terrain shielding coefficient. Standard value when no shielding = 0.1 [-] 

 

 

The indoor temperature is the most sensitive parameter in the sensitivity analysis and minor 

changes of the variable give significant fluctuations in the heating demand. It did not make sense 

to vary the indoor temperature to ± 70 %, as for the other variables, because this is not a realistic 

temperature span in an average household. Instead, ϑ varies ± 3 °C from the baseline indoor 

temperature of 20 °C. Since the indoor temperature is one of the variables defining the total heat 

loss of a building, this may explain the large changes in heating demand. See equation 4 below 

for total heat loss of a building in month i (Standard Norge, 2014):  

 

𝑄𝐻,𝑖 = (𝐻𝐷 + 𝐻𝑈 + 𝐻𝑣 + 𝐻𝑖𝑛𝑓)( ϑ – ϑout,i)ti + Qg,i     4 

 

QH,i Heat loss from a building in month i [kWh] 

HD Direct transmission loss [W/K] 

HU Transmission loss to unheated zones in the building [W/K] 

HV Heat loss coefficient for ventilation [W/K] 

Hinf Heat loss coefficient for infiltration [W/K] 

ti Amount of hours in month i divided by 1000 for conversion to kWh [h] 

Qg,i Heat loss to the ground in month i 

ϑ Indoor room temperature [°C] 

ϑout Average outdoor temperature in month i [°C] 

 

As shown, the heat loss from a building is dependent on the respective heat loss coefficients, 

the difference in indoor and outdoor temperature, also known as ΔT, and the amount of hours 

measuring the heat loss. Climate data defining the outdoor temperature is gathered from years 

of statistical data within both of the models. Hence, the unknown variable defining ΔT is the 

indoor temperature, and a slight increase of the indoor temperature will result in a significant 
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change of the total heat loss of the building.  The heat loss to the ground, Qg,i, is also dependent 

on the indoor temperature, but has in addition a more complex equation than the other heat loss 

sources. This term is therefore defined as a separate equation term in equation 4. In addition to 

the room temperature being a sensitive parameter, its baseline value is associated with 

significant uncertainty (Prognosesenteret & Entelligens, 2011).  

 

Figure 17 shows that the biggest heat loss sources in the SFH03 building are the windows, walls 

and ventilation/infiltration. The thermal bridging factor and the window/frame ratio did not give 

as significant fluctuations in the energy need for heating as the three parameters mentioned 

previously. Considering that surcharge on the thermal bridges represents only 7 % of the total 

heat losses, and that the window frame area contributes to a minor change in solar heat gains, 

the sensitivity analysis yields a reasonable result.   

 

The large fluctuations in heating demand when changing the volume, air leakage rate, natural 

ventilation and indoor temperature may be due to these variables being a part of critical 

equations determining the heat loss. Furthermore, the heating demand is equal to the total heat 

loss subtracted by the total heat gain; hence, the heat loss represents a large part of the heating 

demand. 

 

The utilized SFH03 example building in the energy audit 
The example building used in the thesis work is a synthetic average building taken from the 

EPISCOPE’s typology brochure and hence, when the floor area is scaled up to stock segment 

level, the total floor area of SFH03 buildings matches statistical data. However, one may 

question if the chosen SFH03 building is a representative candidate of the SFH03 dwelling stock 

segment concerning geometry and technical characteristics. However, the SFH03 synthetic 

average building is very similar to a single-family house constructed in the 1970s, used in a 

study in the SEOPP report (SINTEF Fag, 2014b). Furthermore, according to  

Skeie et.al. (2014b), the building utilized in this study is typical for single-family houses 

constructed between 1971 and 1980.      

 

Energy decay 
The building data are assumed to be identical to those of the construction year. However, one 

may question if these characteristics have been maintained throughout decades without the 

building going through an energy decay. For instance, the U-value of the outer walls is of special 

interest in this master’s thesis. Originally, the U-value of the outer walls were 0.41W/m2K in 
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the 1970s when the building was constructed. If the current U-value in reality is higher, this 

would imply that the energy results for heating demand is better than the actual energy need for 

heating of today. Furthermore, façade refurbishment would yield higher energy savings, and 

thus a lower payback time of the investment of insulating the outer walls.   

 

Not only may an energy decay or natural ageing occur with the original building, but by adding 

VIP insulation to the outer walls, there is a risk of perforating the material. If the panels are 

perforated, for example by a short object like a nail, the thermal conductivity may increase to 

almost the double of 20 mW/mK. Furthermore, there is a natural ageing of VIP materials, where 

the thermal conductivity increases between 4 and 8 mW/mK (Haavi & Jelle, 2012). This implies 

that there are more downsides concerning a decay in thermal characteristics of VIP panels 

compared to mineral wool insulation.   

Indoor temperature 
According to Prognosesenteret & Entelligens (2011), the difference between indoor and outdoor 

temperature during the coldest days of the heating season is the most crucial variable defining 

the heating demand of a building. Since there is sufficient historical data to define the outdoor 

temperature in Norway, the most important variable between the two temperatures is the indoor 

temperature. NS3031:2014 recommends a weighted average indoor temperature of 20.33 °C for 

all households (Standard Norge, 2014). However, Entelligens found that the average indoor 

temperature for single-family houses ranged from 18.0 °C to 20.4 °C after having conducted 

energy audits for 100 dwellings. The average room temperature for SFH03 buildings was found 

to be 19 °C (Prognosesenteret & Entelligens, 2011). Entelligens’ energy audits of 100 dwellings 

do not give sufficient data for the info to be seen as reliable. The significant variation shows that 

the indoor temperature is connected to high uncertainty, and a small change in this variable will 

result in a significant impact on the heating demand.  

 

The SFH03 example building operates with an indoor temperature of 20 °C, which is defined as 

the standard room temperature in the TABULA project. This is in the middle of the 

recommended values in NS3031:2014 and the barrier study report. As TABULA’s standard 

values aim at reflecting the average values in all 16-member countries, it is highly realistic that 

this value does not correspond to the actual weighted average indoor temperature in Norway. 
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Infiltration/ventilation 
Heat loss due to infiltration and ventilation in a building represents a significant heat loss source 

in the heat loss budget in Figure 17. The natural ventilation varies among the dwelling types and 

depends on air leakages in the building envelope. Prognosesenteret & Entelligens (2011) has 

found the natural ventilation, nair,inf , and the corresponding air leakage rate, n50, for single-family 

houses built between 1971 and 1980 to be respectively 0.4 [1/h] and 4 [1/h]. The value for 

natural ventilation is identical to the chosen value for the SFH03 example building the standard 

value for high infiltration in the TABULA model. However, the corresponding air leakage rate 

in the barrier study is almost 30 % lower than the air leakage rate found by SIMIEN’s internal 

converter between natural ventilation and the air leakage rate. The corresponding air leakage 

rate in SIMIEN is the one used in the energy audit in this thesis. As shown in the 

sensitivity analysis, a change in the air leakage rate has a clear impact on the heating demand of 

the dwelling, and thus, the energy results from the barrier study yield a lower heating demand 

for SFH03 buildings.  

5.2.2 The Dynamic Building Stock Model 

The model developed by Sartori and Sandberg (2014b) is a result of decades of dynamic building 

stock development. Despite its weaknesses, it is a clear strength that the model has high accuracy 

concerning dwelling stock development in accordance to national statistics.   

 

Dwelling stock development and stock composition 
There are always short-term fluctuations in a dwelling stock over decades, something which 

makes the dwelling stock development non-linear. Sometimes these fluctuations are not 

dependent on the demolition activity, and hence, they are not possible predict and model. It is 

possible to correct in retrospect, but it is not implemented in an actual algorithm.  

 

According to Bergsdal and Brattebø (2007) the lifetime of dwellings has a strong influence on 

the construction and demolition rate in a housing stock and is hence a critical parameter. Even 

though the lifetime for dwellings are taken from the most reliable source available, more 

research is needed in order to reduce the uncertainty of applying an unrealistic lifetime of 

dwellings. 

 

One clear weakness to defining the total dwelling stock constructed during a specified time 

cohort is that it does not say anything about the dwelling stock composition throughout the time 

cohort. It only states how the stock looks like as a whole during that specific time span. This 
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may create weaknesses in the model concerning the demolition shares and renovation shares 

defined throughout simulation.  

 

Renovation  
There do not exist sufficient statistical data when it comes to Norwegian renovation activity. 

This creates a significant uncertainty when modeling a dwelling stock with a renovation activity 

that reflects the actual renovation activity. The reason behind the lack of data is that most of the 

renovation activity is not specified, which makes it hard to estimate the quantity of for example 

façade refurbishments for a specific dwelling stock segment.  

 

Renovation activity is dependent on more variables than the renovation cycle applied. Economy 

among households is also a critical parameter, creating fluctuations in the renovation activity. 

A wealthy economy in households will often result in more refurbishments, and vice versa, a 

worse economy in households will result in postponed refurbishments.  The economy is not a 

variable that is accounted for in this model.  

 

Renovation of dwellings may increase the user space, in addition to improving their energy 

characteristics. This is not accounted for in this analysis. In a future model implementation, this 

aspect may be integrated in the model implementation.    

 

Another weakness regarding the implementation of the renovation function is that the model 

does not keep track of the number of times dwellings have been renovated. This might have 

been interesting to know when investigating the renovation activity of a dwelling stock segment 

when modeling for longer periods. However, this aspect is irrelevant when looking at energy 

results.  

 

Energy use  
The climate data has a significant impact on the energy use in the dwelling stock. Hence, if the 

climate data in the model are different from the actual outdoor climate in a particular period, 

this will give a discrepancy between the measured energy use and the modeled energy use. This 

has been the case for cold years, like 2010 (Meteorologisk institutt, 2014) , when there was a 

higher heating demand in the average dwelling than earlier. It is, however, possible to adjust the 

climate data from year to year in the model, so that it is possible to adjust climate data in 

retrospect. This is clearly a strength of the model, concerning modeling a similar energy use to 

the actual dwelling stock, including fluctuations in energy demand due to climate changes.  
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Population 
The model has not accounted for a negative growth in population, which would add to a 

decreasing dwelling demand. A decreasing population is perhaps not a realistic scenario in 

Norway (SSB, 2014c), but the model is generalized and may as well be used for dwelling stocks 

with a decreasing population.  Questions to answer in order to model residential stocks with a 

negative growth in population may be: Will the demolition increase? Should one assume a 

dwelling stock consisting of non-occupied dwellings for the ones moving out? Moreover, what 

will happen to the construction rate?   

5.3 Implications of findings with respect to policy-making and future research 

In coherence with the 2030 Framework, Norway has committed on reducing 40 %, or about 

22 million tonnes CO2 eq., of the national GHG emissions by 2030 compared to 1990 levels 

(Nrk, 2015; The European Commission). In order to fulfill the climate targets, different 

measures must be implemented in various sectors, including the building and housing sector. 

For the housing sector, we need to have an ambitious renovation strategy for the existing and 

ageing dwelling stock in order to reduce the future energy consumption. Since single-family 

houses represent almost 70 % of the heating demand in the Norwegian residential stock  

(see Table 2 in chapter 2), implementing energy refurbishment measures for these houses will 

have a significant impact on the total reduction potential in energy usage. The SFH03 stock 

segment accounts for about 13 % of all single-family houses. By introducing façade 

refurbishment measures for all ageing Norwegian single-family houses, this will contribute 

significantly to fulfilling future climate targets.  

 

Long-term stock modeling of the SFH03 segment towards 2050 show that façade refurbishment 

contributes significantly in reducing the energy need for space hating and reducing operational 

carbon emissions. 93 % of the total SFH03 housing segment has refurbished the façade in 2050 

when using a renovation cycle of 40 years. The predicted reduction in GHG emissions yields a 

15 % reduction, or 0.05 million tonnes CO2 eq. The relative reduction is significant, but the 

actual reduction contributes with only 0.2 % of the EU and national reduction target by 2030.  

 

The baseline renovation strategy when long-term stock modeling is that dwellings renovated 

after 2010 will achieve a standard equal to the historically refurbished level. However, results 

from the investment analysis show that the insulation solution giving the lowest NPV value over 

40 years of payback time was by far the TEK 10 solution for mineral wool insulation. This is 

the case even when the energy price is doubled and with an interest rate of 7 %. This result is 
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surprising, as the TEK 10 standard for the outer walls requires an insulation thickness that is 25 

% thicker than for a historically refurbished level. Unless climate policies for older dwellings 

change, it is more reasonable to assume that the most common refurbishment measure for the 

façade among SFH03 households in the future will be an upgrade to a historically refurbished 

level and not to TEK 10 standard.  

 

SFH03 constitutes a small segment in the Norwegian residential stock. However, there is 

significant potential in energy saving and carbon reduction by adding supplementary insulation 

to the outer walls. By addressing this refurbishment measure to all single-family houses in need 

for façade replacement, this will have a positive impact on the total energy need and carbon 

emissions from the residential building stock. Further research is however needed in order to 

quantify the reduction potentials.  

 

In addition, other refurbishment measures, like installing a heat pump, will reduce the delivered 

energy and operational carbon emissions even more.  Air-to-air heat pumps have an average 

COP between 2.5 and 3, and will save up to 50 % of the total delivered energy for space heating 

compared to an electrical heating system (Stene, 2011).  It may be interesting to look at a change 

in energy carriers or an increase in local energy sources (e.g. heat pump or solar power) for 

future research.  
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6. Conclusions 
In this study, single-family houses constructed between 1971 and 1980 (SFH03) have been 

examined for different insulation solutions when adding supplementary insulation to the outer 

walls. Long-term modeling of the heating demand and carbon emissions towards the year 2050 

for the SFH03 housing stock has given valuable insight of the reduction potential in energy 

usage and carbon emissions towards 2050 for façade refurbishments.  

 

While it is clear that further research is needed, some preliminary conclusions may be drawn. 

Insulation solutions with mineral wool seems to be a better alternative than vacuum insulation. 

This is due to a better score than VIP materials concerning thermal characteristics, 

manufacturing cost and carbon emissions and energy use during manufacturing. In addition, 

there is a certain risk of maintaining the thermal characteristics of a VIP material concerning 

not perforating the materials and a natural decay that is higher than for mineral wool insulation.  

 

In addition, the investment costs when applying vacuum insulation is significantly higher than 

for mineral wool insulation. The most economically viable insulation solution is fulfilling  

TEK 10 requirements. Applying vacuum insulation for the same renovation state results in a 

NPV value that is almost four times lower than the NPV value when using mineral wool 

insulation when using an interest rate of 5 % and a payback time of 40 years. 

 

Sensitivity analysis in SIMIEN gives an indication that the model is robust to changes in the 

majority of the variables. However, the indoor temperature was the only variable that would 

give a larger change in percentage for the heating demand than the change of the room 

temperature. The weighted average value for the indoor temperature is associated with high 

uncertainty, as we do not have sufficient statistical data supporting the defined value.    

 

Renovating the façade every 40 years results in refurbishing up to 93 % of the total SFH03 stock 

segment in 2050, achieving a minimization of energy usage and carbon emissions of 1/3 

compared to 2010 levels. All other insulation solutions are more ambitious, and hence, gives an 

even higher reduction potential. However, a large amount of the reduction in energy 

consumption and carbon emissions is highly due to a significant amount of demolished 

SFH03 dwellings. 

 

It seems more beneficial to implement a renovation cycle of 40 years instead of 30 years, despite 

achieving the same share of renovated dwellings in the SFH03 dwelling stock segment by 
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following a 30-year renovation cycle. This is because the share of façade refurbished SFH03 

buildings after 2010, called Rn3, is higher for the 40-year renovation cycle than for the 

30-year renovation cycle, which results in a higher energy potential when the Rn3 insulation 

solution is more ambitious than the historical refurbishment requirements. Hence, the insulation 

solution influences the energy potential more than the actual renovation frequency. In addition, 

an “energy lock-in” effect occurs for the large amount of SFH03 dwellings that are forced to be 

in the same renovation state until the next façade refurbishment for the 30-year renovation cycle 

compared to the 40-year renovation cycle. 

 

The dynamic building stock model utilized in this study yields realistic results, corresponding 

well with statistics concerning energy need in the dwelling stock and the dwelling stock 

development. This model seems therefore suitable for a more detailed long-term modeling of 

the future energy need for the Norwegian dwelling stock. However, in order to make the model 

reflect the  dwelling stock and predict a realistic future energy demand and dwelling stock size, 

more data of the lifetime of dwellings and the timespan between refurbishments are needed.  
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7. Further work 
In this master’s thesis, some differences between the TABULA methodology and calculation 

methods used in NS3031:2014 and NS-EN 15725:2008 were observed. In future work, it could 

be interesting to do a more thorough and detailed study on the differences between the two 

energy audit models.  

 

I have not investigated in detail the total energy savings and carbon emission reduction for the 

SFH03 stock segment when accounting for the upstream flows for the different insulation 

solutions. This may be of interest in further work for renovation of adding supplementary 

insulation to the outer walls.  

 

The current material analysis does not include downstream energy and CO2 flows. Performing 

an expanded analysis of waste treatment of mineral wool and VIP insulation should be included 

in further work.   

 

In addition, there was only one stock segment investigated in the current study (SFH03). 

It would also be interesting to study the energy and GHG emission effects of refurbishments of 

the façade on single-family houses built in other time cohorts.  

 

It may also be interesting to conduct a scenario analysis of the same dwelling stock segment 

(SFH03), including additional refurbishment measures, like changing the windows or installing 

a heat pump.  
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klimagassutslipp og energikostnader for norske eneboliger bygget mellom 1956 og 1970 

 

 

Background and objective 

The background of this master’s thesis is the current high priority of R&D and practical 

implementation of new solutions for minimising energy consumption of buildings and the 

corresponding expected environmental life cycle impact reductions. For this to happen it is 

important to understand the aggregated energy and carbon emissions situation of the standing 

residential building stock, and its dynamic changes over time due to stock growth, stock 

ageing, renovation opportunities, new building codes, building occupancy behaviour and the 

potentials for improvement in the system. The ongoing EPISCOPE project (using the 

TABULA method) examines such questions for the Norwegian residential building stock, and 

the student will contribute to the ongoing research by conducting an in-depth case study 

analysis of renovation opportunities of an important segment of the Norwegian residential 

building stock. The study of an assumed average building in the segment is combined with 

model results from a dynamic dwelling stock model to obtain results on dwelling stock level.  

 

The objective of this master’s thesis is to contribute to the understanding of long-term 

potential for reductions of energy demand in an important segment of the Norwegian dwelling 

stock. The student will study the different options for introduction of additional energy 

measures in single-family houses constructed in the period 1956-70 and their effects on 

material flows, energy demand, and greenhouse gas (GHG) emissions. This will be done for 



 

ii 
 

an assumed average building in the segment before the dynamic effects over time for the 

segment as a whole are analysed. 

 

 

The following tasks are to be considered: 

 

1. Carry out a literature review of the state-of-the-art strategies, technologies and/or 

methods that are relevant for your work. 

2. Provide a systems definition of the system you are analysing, including description of 

goal and scope, system boundaries, data inputs and assumptions, for selected scenarios 

and/or configurations of technological solutions within your system. 

3. Carry out an in-depth analysis of energy related renovation strategies for an average 

single-family house constructed in the period 1956-70 including their effects on 

material flows, life-cycle energy demand and GHG emissions.  

4. Define relevant indicators and/or metrics for documenting the performance of the 

system.  

5. Use the available segmented dynamic dwelling stock model to scale up the results to 

dwelling stock level (for this segment of the stock). Compare scenarios assuming 

different strategies regarding energy measures introduced when renovating as well as 

scenarios assuming different renovation intervals.  

6. Report the results from the material, energy and GHG emission performance analysis 

of your system (including scenarios) and the particular importance of critical system 

variables, components or assumptions leading to these results. 

7. Discuss the overall findings of your work, agreement with literature, strengths and 

weaknesses of your methods, and possible practical and/or methodological 

implications and recommendations of your work.  

 

--  ”  -- 

 

Within 14 days of receiving the written text on the master’s thesis, the candidate shall submit a 

research plan for his project to the department. 

 

When the thesis is evaluated, emphasis is put on processing of the results, and that they are 

presented in tabular and/or graphic form in a clear manner, and that they are analyzed carefully.  

 

The thesis should be formulated as a research report with summary both in English and 

Norwegian, conclusion, literature references, table of contents etc. During the preparation of the 

text, the candidate should make an effort to produce a well-structured and easily readable report. 

In order to ease the evaluation of the thesis, it is important that the cross-references are correct. 

In the making of the report, strong emphasis should be placed on both a thorough discussion of 

the results and an orderly presentation. 

 

The candidate is requested to initiate and keep close contact with his/her academic supervisor(s) 

throughout the working period. The candidate must follow the rules and regulations of NTNU 

as well as passive directions given by the Department of Energy and Process Engineering. 

 

Risk assessment of the candidate's work shall be carried out according to the department's 

procedures. The risk assessment must be documented and included as part of the final report. 

Events related to the candidate's work adversely affecting the health, safety or security, must be 

documented and included as part of the final report. If the documentation on risk assessment 
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represents a large number of pages, the full version is to be submitted electronically to the 

supervisor and an excerpt is included in the report. 

 

Pursuant to “Regulations concerning the supplementary provisions to the technology study 

program/Master of Science” at NTNU §20, the Department reserves the permission to utilize all 

the results and data for teaching and research purposes as well as in future publications. 

 

The final report is to be submitted digitally in DAIM. An executive summary of the thesis 

including title, student’s name, supervisor's name, year, department name, and NTNU's logo 

and name, shall be submitted to the department as a separate pdf file. Based on an agreement 

with the supervisor, the final report and other material and documents may be given to the 

supervisor in digital format. 

 

 Work to be done in lab (Water power lab, Fluids engineering lab, Thermal engineering lab) 

 Field work 
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Appendix 2: Equations and parameters 

The following equations are calculations done in this project in order to carry out a thorough 

material analysis of the insulation materials examined and energy flows from the chosen 

building.  

Equation 5 expresses the annual primary energy consumption to a system, dependent on the 

energy consumption of and energy export from the system. The current system does not export 

energy, and the second equation term is hence zero.  

 

      5 

 

 

Ep,r,i  Annual primary energy consumption in renovation state r for insulation type i[kWh] 

E,j,r,i Energy delivered from energy carrier j, performing rehabilitation level r [kWh] 

Eexp,j,r,i Energy exported from energy carrier j, performing rehabilitation level r [kWh] 

fp,,j  Primary energy factor from delivered energy for energy carrier j [-]  

fexp,del,j Primary energy factor from exported energy for energy carrier j [-] 

 

Equation 6 defines the delivered energy to a system, where heat losses from the energy carriers 

are accounted for.   

 

𝐸𝑟,𝑖 =  ∑ 𝑦𝑗𝑄𝑟,𝑖(1 + η𝑗)𝑗          6 

 

Er,i Annual delivered energy in renovation state r for insulation type i [kWh] 

Qr,i Annual energy need for heating in renovation state r for insulation type i [kWh] 

yj Share of energy supplied by energy carrier j [] 

ηj Energy efficiency for energy carrier j [] 

j Number of energy carriers in the heating system [] 

 

Equation 7 defines the annual operational carbon emissions from a building, dependent on the 

CO2 coefficients from the respective energy carriers of the heating system.  

 

𝐶𝑟,𝑖 =  ∑ 𝑦𝑗𝐸𝑟,𝑖µ𝑗𝑗           7 

 

Cr,i Annual carbon emissions from a building in operational state in renovation state r for 

insulation type r [kg CO2 eq.] 

µj CO2 coefficient for energy carrier j [kg CO2 eq. / kWh delivered energy] 

  

𝐸𝑝,𝑟,𝑖 = ∑ (𝐸𝑗,𝑟,𝑖𝑓𝑃,𝑗)𝑁
𝑗

− ∑ (𝐸𝑒𝑥𝑝,𝑗,𝑟𝑓𝑃,𝑒𝑥𝑝,𝑗)
𝑗
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Equation 8 defines thermal resistance (Ri,r) and measures how well a material can resist a heat 

flow.  

𝑅𝑖,𝑟 =  
𝑑𝑖,𝑟

 𝜆𝑖 
            8 

Ri,r  Thermal resistance for insulation type i when renovating to rehabilitation level r 

[m2K/W] 

di,r Thickness for insulation type i and renovation level r [m] 

λi  conductivity of the material for insulation type i [mK/W] 

 

Equation 9 defines the overall heat transfer coefficient (Ui,r), describing how well a material 

conducts heat and is the inverse of the thermal resistance.  

𝑈𝑖,𝑟 =  
1

𝑅𝑖,𝑟
            9 

Equation 10 gives the quantity of thermal insulation needed (Mm,i,r) when renovating the outer 

walls of insulation type i.  

Mm,i,r = ρidi,rS(1+k)          10 

Mm,i,r Amount of insulation type i when renovating performing rehabilitation level r  

[kg/m2 floor area] 

ρi Density of insulation type i [kg/m3]   

di,r Thickness for insulation type i and renovation type r [m] 

S Factor for wall and floor area [m2/m2] 

k Percentage waste from purchased insulation material [
%

100
] 

 

 

 

Equation 11 gives the amount of waste of insulation from new insulation on the construction 

site and original insulation being replaced (Mw,i,r). 

  

𝑀𝑤,𝑖,𝑟 = (𝑘𝑀𝑚,𝑖,𝑟 + 𝑙𝑀𝑜,𝑖)         11 

Mw,i,r Amount of waste from insulation type i and renovation type r  [kg/m2 floor area] 

Mm,i,r, Amount of insulation type i when renovating with type r [kg/m2 floor area] 

k Percentage waste from purchased insulation material [
%

100
] 

l Percentage of original insulation being replaced from outer walls [
%

100
] 

Mo,i,r Amount of original insulation in outer walls [kg/m2 floor area] 
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Equation 12 gives the energy consumption of insulation material manufactured and 

transported to the construction site (Qi,r). This is referred to as the upstream energy flow. 

𝑄𝑖,𝑟 = 𝑞𝑖𝑅𝑖,𝑟𝑆           12 

Qi,r Energy consumption related to manufacturing and transport to construction site of 

insulation type i and renovation type r [kWh / m2 floor area] 

Ri,r Thermal resistance of insulation type i when renovating to type r 

qi  Energy consumption of manufacturing 1 m2 insulation type i with a corresponding  

R-value of 1 W/ m2K [kWh / 1R m2 wall] 

S Factor for wall and floor area [m2/m2] 

 

Equation 13 gives the amount of upstream CO2 emissions, Ei,r [kg CO2/ m
2 floor area], from 

insulation material manufactured and transported to the construction site. This is referred to as 

the upstream CO2 flow.  

Ei,r = eiRi,rS           13 

Ei CO2 emissions related to manufacturing and transport to construction site of insulation 

type i and renovation type r [kg CO2/ m
2 floor area] 

ei  CO2 emissions of manufacturing of 1 m2 insulation type i with a corresponding R-value 

1 W/ m2K [CO2 / 1R m2] 

S Factor for wall and floor area [m2/m2] 

Equation 14 gives the manufacturing costs of insulation type i when renovating to  

energy state r (Cm,i,r). 

𝐶𝑚,𝑖,𝑟 =
(

𝐴𝑤𝑎𝑙𝑙
𝐴𝑖𝑛𝑠,𝑖,𝑟

)𝑐𝑚,𝑖,𝑟𝑥𝑑

𝐴𝑟𝑒𝑓
         14 

Cm,i,r Manufacturing costs of insulation type i when renovating to energy state r 

 [NOK/ m2 floor area] 

cm,i,r Manufacturing costs of one package of insulation type i with a specified surface area 

for renovation level r [money unit/m2 wall] 

xd conversion factor to NOK from specified money unit at date and time d []  

Aref Heated floor area [m2] 

Ains,i,r Surface area of specified insulation material package 
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Equation 15 describes how to convert energy flows of a building into energy flows per  

m2 floor area (Ex,ref). 

 

𝐸𝑥,𝑟,𝑟𝑒𝑓 =  
𝐸𝑥,𝑟

𝐴𝑟𝑒𝑓
           15 

 

Ex,r,ref    Energy type x when performing renovation level r per m2 floor area [kWh/m2] 

Ex,r   Energy type x when performing renovation level r [kWh] 

Aref   Heated floor area [m2]  

Equation 16 gives the net present value (NPV) of investment cost per heated floor area of 

refurbishing the façade to renovation level r and adding new insulation, relative to the energy 

saved over a time period of 40 years.  

𝑁𝑃𝑉 =  −Ir,i + ∑
𝑒𝑄𝑟,𝑖

(1+𝑟)𝑛
𝑛=40
𝑛=1          16 

Ir,i Investment cost of manufacturing insulation material i, when renovating to renovation 

level r  [NOK/m2] 

e  Average energy price for electricity [NOK/kWh] 

Qr,i Annual energy saved when renovating to renovation level r with insulation material i 

per m2 heated floor area [kWh/m2] 

r real interest rate [-] 

n number of years since renovation of the outer walls [-] 

 

 

Equation 17 gives the conversion between the surcharge on the thermal bridges,  

ΔUtbr [W/(m2 envelope area K)], and the normalized thermal bridge values, tb [W/(m2 floor K)].  

 

𝛥𝑈𝑡𝑏𝑟 =
(𝑡𝑏)𝐴𝑟𝑒𝑓

𝐴𝑒𝑛𝑣
           17 

 

ΔUtbr Surcharge on the thermal bridges [W/(m2 envelope area K)] 

tb Normalized thermal bridge value [W/(m2 floor areaK)]’ 

Äenv Surface area of the building envelope [m2] 

 

 

Equation 18 gives the conversion between natural ventilation ninf,air [1/h] and ninf [m
3/m2h]:  

 

𝑛 =  
𝑛𝑖𝑛𝑓𝑉

𝐴𝑟𝑒𝑓
           18 

 

n Natural air change rate in a building, also known as the natural ventilation [1/h] 

ninf Natural ventilation in cubic meters of air per m2 heated floor area [m3/m2h] 

V Heated building volume 
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Appendix 3: Important parameters  

In the following table, all parameters used in the calculations in this master’s thesis are 

summarized, with corresponding descriptions, values and units.   

Parameter Description Value Unit 

Awall Surface area of the outer walls 186 m2 

Aroof Surface area of the roof 87 m2 

Afloor Surface area of the ground floor 87 m2 

Awindow Surface area of the windows and doors 23 m2 

Aenv Surface area of the building envelope 383 m2 

Aref Heated floor area 152 m2 

h Floor height 2.4 m 

V Heated building volume 380 m3 

Uwall Original state 0.40 W/m2K 

Historically refurbished 0.29 W/m2K 

TEK 10, min. wool 0.18 W/m2K 

TEK 10, VIP 0.19 W/m2K 

Passive house, min. wool 0.10 W/m2K 

Passive house, VIP 0.12 W/m2K 

Uroof U-value for the roof 0.21 W/m2K 

Ufloor U-value for the floor 0.23 W/m2K 

Uwindow U-value for the windows and doors 2.6 W/m2K 

tb Normalized thermal bridging factor 0.13 W/m2K 

n50 Air leakage rate 5.7 1/h 

ninf Natural ventilation 1 m3/hm2 

ninf,air Natural ventilation 0.4 1/h 

nuse Air change rate by usage 0.4 1/h 

ϑ Indoor temperature 20 °C 

αframe Window/frame ratio 0.3 - 

η  Energy efficiency for wood 0.64 - 

Energy efficiency for electricity 1 - 

f Total primary energy factor for wood 1.09 - 

Total primary energy factor for electricity 1.28 - 

μ CO2 coefficient for wood 0.261 [kg CO2 eq./ kWh] 

CO2 coefficient for electricity 0.05 [kg CO2 eq./ kWh] 

e Average price for electricity 0.836

7 

NOK/kWh 

r Interest rate for baseline value 0.05 - 

Alternative interest rate 0.06 - 

Alternative interest rate 0.07 - 

C Manufacturing costs for min.wool, 

historically refurbished 

66 NOK/m2 wall 

Manufacturing cost for min.wool, TEK 10 76 NOK/m2 wall 

Manufacturing cost for VIP, TEK 10 236 DKK/m2 wall 

Manufacturing cost for min.wool, passive 

house 

159 

 

NOK/m2 wall 

Manufacturing cost for VIP, passive house 372 DKK/m2 wall 
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x Conversion factor from DKK to NOK  1.12 NOK/DKK 

R Renovation cycle, lifetime of the façade. 

Baseline value 

40 years 

Alternative renovation cycle 30 years 

Alternative renovation cycle 50 years 

 
 
 


