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Abstract

The objective of this thesis is to improve flow modeling through offshore natural
gas pipelines. Gassco is a state owned Norwegian company responsible for the
operation of 7800 km offshore natural gas pipelines located in the North Sea. The
pipelines have a diameter of 1 m and can be up to 1000 km in length. Measurements
of the state of the gas, such as pressure, mass flow, temperature and composition
are available only at the inlet and outlet. To know the state of the gas between
these two points one has to rely on computer models. Gassco uses commercial
tools to model the flow of gas through their pipelines. These have previously given
inaccurate results, especially during transient conditions.

The flow of natural gas through long distance offshore pipelines is modeled by
numerically solving the governing equations for one-dimensional compressible vis-
cous heat conducting flow. An implicit finite difference scheme is used to solve
the governing equations. Both spatial and temporal discretization errors are com-
puted. The implemented flow model is validated by running simulations on one of
Gassco’s offshore pipelines. Modeled results show good agreement with measured
values, however some discrepancies are present, especially in the modeled outlet
gas temperature. These discrepancies are determined to be caused by physical ap-
proximation errors, and not because of numerical errors or model simplifications.

The sensitivity of the selection of the equation of state for high pressure natural
gas pipelines is investigated by comparing the SRK, Peng-Robinson, BWRS, GERG
88 and GERG 2004 equations of state. Gassco currently uses a BWRS equation of
state which is especially tuned for hydrocarbons. In a typical offshore natural gas
pipeline, the difference in computed inlet pressure between using the tuned BWRS
and the GERG 2004 equation of state was determined to be approximately 0.1 MPa
(1 bar). Although GERG 2004 is believed to be the most accurate equation of state,
it is computationally demanding compared to BWRS, resulting in BWRS being the
preferred choice. Although there is a difference in computed inlet pressure between
GERG 2004 and BWRS, this difference is relatively constant during both steady
state and transient conditions. By tuning the equivalent sand grain roughness, the
computed inlet pressure using both GERG 2004 and BWRS can be matched in
order to compensate for differences in the equation of state.

The heat exchange between the gas and the surrounding environment is modeled
using two different approaches. The steady external heat transfer model currently
used by Gassco is compared to an unsteady external heat transfer model which
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includes heat accumulation in the ground. It is shown by example that the steady
heat transfer model over predicts the amplitude of temperature changes in the flow
compared to the unsteady heat transfer model. The unsteady heat transfer model
also improves the modeled inlet pressure and outlet mass flow during transient
conditions. Although the modeled temperature is improved using the unsteady
heat transfer model, there is still a discrepancy between modeled and measured
outlet gas temperature. The most important parameters which can account for
this deviation are the ambient sea bottom temperature, soil thermal conductivity
and pipe burial length.

ii



Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
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Chapter 1

Introduction

1.1 Background and motivation

Natural gas is an important primary energy source accounting for almost one forth
of the worlds primary energy consumption [1]. It is a multi-component gas mix-
ture with methane being the primary constituent; other components typically being
ethane, propane, butane, nitrogen, carbon dioxide and other heavier hydrocarbons.
Natural gas can be used for heating, cooking, electric power generation and in sev-
eral other energy demanding processes. Although it is a fossil fuel, it produces
considerably less carbon dioxide per joule delivered compared to other fossil fuels
such as oil and coal. For oil the CO2 emissions are approximately 50% more com-
pared to natural gas, while for coal it is 100% [2]. Because of its longer estimated
future availability compared to crude oil, natural gas will play an important role
as a primary energy source in the coming years [3].

The world production of natural gas in 2010 was 3178 billion cubic meters, 3.3%
of which was produced by Norway [1]. Norwegian natural gas which is extracted
from the continental shelf in the North Sea is first transported to processing ter-
minals offshore and on the mainland where unwanted components are removed.
It is then fed into long export pipelines and transported to continental Europe
and the UK. The Norwegian pipeline infrastructure is operated by the state owned
company Gassco. An overview of the offshore pipeline network is shown in Figure
1.1.

The network consists of 7800 km offshore pipelines which have a diameter of
approximately 1 m. The longest pipeline is Langeled with a length of 1166 km,
which was until the opening of the Nord Stream pipeline from Russia to Germany
in November 2011, the longest offshore pipeline in the world.

In Gassco’s case, the transport pipelines in Figure 1.1 are operated by a single
compressor station at the inlet. Measurements of the state of the gas, such as
pressure, mass flow, temperature and composition are available only at the inlet
and outlet. To know the state of the gas between these two points one has to
rely on mathematical models. These models have several important applications
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1.1. Background and motivation

Figure 1.1: Overview of the pipeline network operated by Gassco. Figure courtesy
of Gassco.
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Chapter 1. Introduction

which include designing, monitoring and operating the pipelines. They also play an
integral part in software based leak detection systems. It is therefore crucial that
these models are as accurate as possible, but at the same time fast and efficient as
they are used in real time applications.

Accurate models for transmission of natural gas through long distance pipelines
are also of great importance when determining the pipeline hydraulic capacity.
When a pipeline is built, the capacity is determined by using available inlet and
outlet pressure as boundary conditions for the model, together with other avail-
able flow parameters. High accuracy in pipeline transport capacity calculations is
important to ensure optimal utilization of the pipeline network. The calculated
transport capacity has to be close to, but not larger than the true capacity, as fail-
ure to deliver the forecasted capacity can result in penalties and a poor reputation
as a gas operator [4].

Gassco uses commercial tools to model the flow of gas through their pipe net-
work. In recent years they have had an active research program to improve flow
modeling in their offshore natural gas pipelines. In the PhD thesis by Lange-
landsvik in 2008 [5] an increased knowledge about frictional pressure drop at large
flow rates resulting from analysis of pipeline operational data led to increased ca-
pacity estimations of 0.2 − 1% in several of Gassco’s pipelines. Other important
contributions have been; improved heat transfer modeling and predicting the cor-
rect heat transfer coefficient [6], improved pipeline capacity by using real time sea
bottom temperature data [7] and improved viscosity correlations [8] - [9]. How-
ever, most of the research up to now has considered steady state conditions only,
with little emphasis on transient flow. During large transients, Gassco has observed
significant deviations between modeled and measured pressure. In Figure 1.2 the
modeled inlet pressure from one of Gassco’s offshore pipelines is shown, which was
computed using their commercial tools. During the transient there is a consider-
able difference between modeled and measured inlet pressure. At the end of the
simulation the difference is almost 5 bar (0.5 MPa). Also, considerable differences
between measured and modeled outlet temperature have been observed. These
observed discrepancies led to the initiation of a research program to improve flow
modeling during transient conditions in long distance offshore natural gas pipelines,
which this PhD thesis is a part of.

Transmission of natural gas through high pressure pipelines is modeled by solv-
ing the governing equations for one-dimensional compressible viscous heat conduct-
ing flow. The governing equations form a system of hyperbolic partial differential
equations which have to be solved numerically. A good overview of different numer-
ical methods for one-dimensional compressible flow can be found in base literature
articles, for instance by Thorley and Tiley [10]. Numerical methods include the
method of characteristics, finite difference, finite volume and finite element meth-
ods. Several articles on numerical techniques for one-dimensional compressible flow
were published during the 80s and 90s; see for instance the work by Issa and Spald-
ing [11], Wylie et al. [12], Poloni et al. [13], Kiuchi [14] and Osiadacz [15]. Research
articles in recent years have been more focused on modeling of physical processes
in gas pipelines rather than numerical methods used to model the flow through
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1.2. Objective of thesis

Figure 1.2: Modeled inlet pressure (in bar) from one of Gassco’s offshore pipelines,
computed using their commercial tool. During the transient there is a considerable
difference between modeled and measured inlet pressure.

them. These include the work by Abbaspour and Chapman [16] and Osiadacz and
Chaczykowski [17] who both consider the non-isothermal pipe flow model. Recent
articles published by Chaczykowski consider both the sensitivity of the gas pipeline
flow model to the selection of the equation of state [18] and the effect of a pipeline
thermal model, which accounts for heat accumulation in the ground [19]. Although
both of these articles consider a very detailed flow model, the inlet pressure of the
pipeline was only 8.4 MPa. In Gassco’s long distance export pipelines the inlet
pressure can be up to 20 MPa, well above that which is typically considered in
the literature. To the authors knowledge, few research articles other than those
published by Gassco have considered pipelines operating under such high pressures.

1.2 Objective of thesis

The objective of this PhD thesis is to study transient flow in long distance offshore
natural gas pipelines and determine whether the discrepancies between modeled
and measured values in Gassco’s pipelines are due to numerical errors or physical
modeling approximation errors. In order to do this a method for modeling transient
one-dimensional compressible viscous heat conducting flow will be developed. This
method will then be applied to Gassco’s offshore pipelines and numerical results
will be compared to measured values. The main objectives of this thesis are:

• Implement a numerical method which can be used to solve the governing
equations for unsteady one-dimensional compressible viscous heat conducting
flow.

• Determine if possible what numerical errors are present in the solution and
verify the developed method with other results in the literature.
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Chapter 1. Introduction

• Validate the implemented method by running simulations on Gassco’s off-
shore pipelines under transient conditions and compare results to measured
values.

• Investigate the effect of the equation of state for pipelines operating at high
pressures (18− 20 MPa).

• Investigate the effect of an unsteady heat transfer model and determine what
effect including heat accumulation in the ground has on the modeled flow
results.

Gassco currently uses commercial tools to model the flow through their pipe net-
work. It is desirable that the results of this work could be used to give recommen-
dations for possible improvements of the current software used by Gassco.

1.3 Research method

This thesis focuses on mathematical modeling of one-dimensional compressible vis-
cous heat conducting flow and is purely a computational study. Unless stated oth-
erwise, all the results in this thesis have been computed by the author. Computed
flow results will be compared to measured values from offshore pipelines which have
been collected from SCADA systems. Uncertainties in these measurements will be
commented on.

1.4 Outline of thesis

This thesis is organized as follows. In Chapter 2 the governing equations for one-
dimensional compressible viscous heat conducting flow are presented. The proce-
dure of how to derive the partial differential equations for pressure, mass flow and
temperature is included in the Appendix. Correlations for determining the friction
factor and different equations of state are included. Also, equations for calculating
the heat transfer between the gas and the pipeline surroundings with and without
considering heat accumulation in the ground are presented.

In Chapter 3 numerical methods are presented. In this work finite difference
methods have been used to numerically solve the governing equations. Both explicit
and implicit methods are considered.

Results are presented in Chapter 4. Both the hydraulic and full non-isothermal
models are considered. Spatial and temporal discretization errors for pressure,
mass flow and temperature are computed. The flow model is verified by comparing
results with those found in the literature. Validation is performed by running
simulations on one of Gassco’s offshore pipelines and comparing results to measured
values.

In Chapter 5 a short discussion on model simplifications is included. The most
important physical processes which are incorporated into the model are discussed
in detail, and the sensitivity of the different parameters is considered. The most
important processes which are investigated are the determination of the friction
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1.4. Outline of thesis

factor, selection of the equation of state and how to model the heat exchange
between the gas and the pipeline surroundings.

Conclusions and outlook are included in Chapter 6. Summary of research ar-
ticles are given in Chapter 7. The research articles are attached at the end of the
thesis.
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Chapter 2

1D Compressible Flow
Model

2.1 Governing flow equations

The governing equations for one-dimensional compressible viscous heat conducting
flow are found by averaging the three-dimensional equations for mass, momentum
and energy conservation across the pipe section. The results is:

Continuity
∂ρ

∂t
+

(ρu)
∂x

= 0 (2.1)

Momentum
∂(ρu)

∂t
+

∂(ρu2 + p)
∂x

= −fρ|u|u
2D

− ρg sin θ (2.2)

Energy

ρcv

(
∂T

∂t
+ u

∂T

∂x

)
+ T

(
∂p

∂T

)
ρ

∂u

∂x
=

fρu3

2D
− 4U

D
(T − Ta) (2.3)

The continuity and momentum equations are expressed on the conservative form,
while the energy equation is in the non-conservative internal energy form. In the
momentum equation the first term on the right hand side is the friction term where
f is the friction factor, while the last term is the gravity term where sin θ is the pipe
inclination angle. In the energy equation the second term on the left hand side rep-
resents the Joule-Thomson effect, which is cooling during expansion. On the right
hand side the first term is the dissipation term, which is the breakdown of mechani-
cal energy to thermal energy. The final term represents the heat exchange between
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2.2. Friction factor

the gas and the pipeline surroundings, where the total heat transfer coefficient U
has the usual definition

U =
Q

Ah(T − Ta)
(2.4)

where Q is the heat flow, Ta the ambient temperature and Ah the area through
which heat transfer occurs. The density ρ can be traded for the pressure p by using
a real gas equation of state

p

ρ
= ZRT (2.5)

where Z = Z(p, T ) is the compressibility factor. Introducing the mass flow rate
ṁ = ρuA, where A is the pipeline cross-section, the partial differential equations
for pressure, mass flow and temperature can be developed into

∂p

∂t
=

[
1
p
− 1

Z

(
∂Z

∂p

)
T

]−1
([

1
T

+
1
Z

(
∂Z

∂T

)
p

]
∂T

∂t
− ZRT

pA

∂ṁ

∂x

)
(2.6)

∂ṁ

∂t
=

ṁZRT

pA

(
−2

∂ṁ

∂x
+ ṁ

[
1
p
− 1

Z

(
∂Z

∂p

)
T

]
∂p

∂x
− ṁ

[
1
T

+
1
Z

(
∂Z

∂T

)
p

]
∂T

∂x

)

− A
∂p

∂x
− fZRTṁ|ṁ|

2DAp
− pA

ZRT
g sin θ (2.7)

∂T

∂t
= −ṁZRT

pA

∂T

∂x
− ṁ(ZRT )2

pAcv
T

[
1
T

+
1
Z

(
∂Z

∂T

)
ρ

]

×

(
1
ṁ

∂ṁ

∂x
−
[
1
p
− 1

Z

(
∂Z

∂p

)
T

]
∂p

∂x
+

[
1
T

+
1
Z

(
∂Z

∂T

)
p

]
∂T

∂x

)

+
f

2cvD

(
ZRT |ṁ|

pA

)3

− ZRT

pcv

4U

D
(T − Ta) (2.8)

The procedure of deriving the equations above is included in the Appendix. The
energy equation can also be expressed in enthalpy or total energy form, opposed to
the internal energy form which is used here. Chaczykowski [19] uses the internal
energy form, while Abbaspour and Chapman [16] use the enthalpy form. All three
representations are correct.

2.2 Friction factor

The friction factor f is a dimensionless quantity which accounts for pressure loss
due to interaction between the fluid and the pipe wall. Except for laminar flow at
low Reynolds numbers there is no exact formula for the friction factor in pipelines.
All correlations which exist are based empirical data. Predicting the correct fric-
tion factor and its behavior for different flow regimes is of great importance when
determining the hydraulic capacity of transport pipelines [5].

8



Chapter 2. 1D Compressible Flow Model

The Colebrook-White correlation [20] is perhaps the most widely used correla-
tion for determining the friction factor in natural gas pipelines

1√
f

= −2 log
(

ε

3.7D
+

2.51
Re
√

f

)
(2.9)

where ε is the equivalent sand grain roughness, D the pipeline diameter and Re the
Reynolds number of the flow. The formula is a merge between the formula derived
by Prandtl for completely smooth turbulent flow and that of Nikuradse for rough
turbulent flow, where the Reynolds dependent term is that of the smooth flow and
ε the rough turbulent flow. Values of the friction factor as a function of Reynolds
number computed from the Colebrook-White correlation for different equivalent
sand grain roughness are presented in Figure 2.1.
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−3
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friction factor

 

 

ε = 1 µm

ε = 3 µm

ε = 5 µm

ε = 10 µm

Figure 2.1: Friction factor f as a function of Reynolds number computed using the
Colebrook-White correlation (Equation (2.9)) for different roughness values typical
of long distance transport pipelines.

Even though the Colebrook-White correlation was developed as early as 1939, it
is still widely used in the industry today. For transportation of natural gas the
Reynolds number is typically of the order 107, meaning the friction factor lies in
the transition region between smooth and fully rough turbulent flow. In the work
by Langelandsvik et al. [21], based on analysis of operational data from natural
gas pipelines, it is stated that the friction factor in the transition region in the
Colebrook-White correlation bears significant uncertainty. Experimental results
from a large scale laboratory setup by Langelandsvik et al. [22] revealed that the
transition from smooth to fully rough turbulent flow is more abrupt than that
suggested by Colebrook-White. A development of a friction factor correlation which
can predict a more abrupt transition between smooth and fully rough turbulent
flow was suggested by Langelandsvik et al. [21], but to the authors knowledge, the
traditional Colebrook-White correlation is generally still the preferred choice.
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2.3. Equation of state

An alternative to the Colebrook-White correlation was suggested by GERG in
2000 and published in the article by Gersten et al. [23]. The suggested correlation
is

1√
f

= − 2
n

log

[( ε

3.7D

)n

+
(

1.499
drRe

√
f

)0.942·n·dr
]

(2.10)

where dr is the draught factor which accounts for other pressure losses such as
curvature and pipe joints, and n is used to control the shape of the transition.
n = 1 corresponds to a smooth Colebrook-White transition while n = 10 a more
abrupt transition. There are however few published articles which consider this
friction factor correlation and limited information is available as to what values of
dr and n should be used. Based on experiments a value of n = 3 was suggested by
Sletfjerding [24].

One major disadvantage of the Colebrook-White correlation is that it is an
implicit relation, meaning an iterative procedure has to be used to compute the
value of f . This can be computationally demanding, especially if the friction factor
is calculated for each pipe section during each time step of the simulation. An
alternative is to use an explicit relation for the friction factor f . One such relation
is Haalands formula [25]

1√
f

= −1.8 log
[( ε

3.7D

)1.11

+
6.9
Re

]
(2.11)

2.3 Equation of state

State variables are related to each other through a real gas equation of state
p

ρ
= ZRT (2.12)

where Z = Z(p, T ) is the compressibility factor. The compressibility factor is a di-
mensionless quantity which depends on pressure and temperature. Under standard
conditions Z → 1 and Equation (2.12) reduces to the ideal gas law. The sensitivity
of the pipeline gas flow model to the selection of the equation of state was inves-
tigated by Chaczykowski [18], where only small differences in flow variables were
observed when using different equations of state. However, the inlet pressure of the
considered pipeline was only 8.4 MPa, which is well below that of typical offshore
pipelines which can be up to 18−20 MPa. Therefore, the influence of the equation
of state for high pressure pipelines will be considered. The different equations of
state investigated are SRK, Peng-Robinson, BWRS, GERG 88 and GERG 2004.

2.3.1 SRK

The Soave Redlich-Kwong (SRK) equation of state was first published in 1972 [26]
and is a modification of the Redlich-Kwong equation of state of 1949 [27]. It is a
cubic equation of state and can be written in polynomial form as

Z3 − (1−B)Z2 + (A−B2 −B)Z −AB = 0 (2.13)
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Chapter 2. 1D Compressible Flow Model

where

A =
aαp

(RT )2

B =
bp

RT

a = 0.42747
(RTc)2

pc

b = 0.08664
RTc

pc

α =

[
1 + (0.480 + 1.574w − 0.176w2)

(
1−

√
T

Tc

)]2

(2.14)

w is the accentric factor and Tc and pc denote critical temperature and pressure.
Mixing rules for gases with multiple components can be found in the literature [26].

2.3.2 Peng-Robinson

The Peng-Robinson equation of state is structurally similar to the SRK equation
of state and was published in 1976 [28]. It is however an improvement compared
to SRK with respect to prediction of liquid density [29]. In polynomial form it can
be written as

Z3 − (1−B)Z2 + (A− 3B2 − 2B)Z − (AB −B2 −B3) = 0 (2.15)

where

A =
aαp

(RT )2

B =
bp

RT

a = 0.45724
(RTc)2

pc

b = 0.07780
RTc

pc

α =

[
1 + (0.37464 + 1.5422w − 0.26992w2)

(
1−

√
T

Tc

)]2

(2.16)

As with SRK the reader is referred to the literature for mixing rules. Owing
to their simple mathematical structure both SRK and Peng-Robinson allow for
convenient compressibility factor calculations, and are therefore still used in the
industry today.

2.3.3 BWRS

Benedict-Webb-Rubin-Starling (BWRS) is a virial equation of state derived from
statistical mechanics. It was developed especially for the gas industry and was
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2.3. Equation of state

published in 1973 [30]. The general form of the BWRS equation of state reads

p

ρ
= RT

(
1 +

1
RT

[(
B0RT −A0 −

C0

T 2
+

D0

T 3
− E0

T 4

)
ρ +

(
bRT − a− d

T

)
ρ2

+ α

(
a +

d

T

)
ρ5 +

cρ2

T 2
(1 + γρ2) exp−γρ2

])
(2.17)

Equation (2.17) contains 11 coefficients which depend on critical density, critical
temperature and the accentric factor. BWRS is used by Gassco today, but with
coefficients which have been especially tuned for hydrocarbons and which differ
from those found in the literature. For known pressure and temperature the density
is determined from Equation (2.17) by using an iterative method such as Newtons
method. Once the density is known the compressibility factor is determined from
Equation (2.12).

2.3.4 GERG 88

The European Gas Research Group (GERG) has performed several research stud-
ies to develop formulas for determining the compressibility factor of natural gas
mixtures. The GERG 88 virial equation of state [31] was developed to accurately
predict the compressibility factor of natural gas mixtures for pressures up to 12
MPa in the temperature range 265− 335 K. The GERG 88 equation of state takes
the form

Z = 1 + BM (T )ρm + CM (T )ρ2
m

BM (T ) =
n∑

i=1

n∑
j=1

xixjBij(T )

CM (T ) =
n∑

i=1

n∑
j=1

n∑
k=1

xixjxkCijk(T ) (2.18)

where BM (T ) and CM (T ) are the second and third virial coefficients which depend
on temperature and gas composition. xi, xj and xk represent the mole fractions
of the ith, jth and kth component. For compressibility factor calculations GERG
88 is claimed to have an uncertainty of less than 0.1% for pressures up to 12 MPa
and temperatures in the range 265− 335 K.

2.3.5 GERG 2004

The GERG 2004 equation of state for natural gas mixtures [32] is the most re-
cently developed equation of state. GERG 2004 allows for accurate compressibility
factor calculations for pressures and temperatures up to 30 MPa and 365 K. The
formula is explicit in Helmholtz free energy a with density and temperature as
independent variables. Introducing the reduced density and temperature δ and τ
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the compressibility factor can be determined from the relation

p(δ, τ)
ρRT

= 1 + δαr
δ (2.19)

where αr
δ is the dimensionless Helmholtz free energy. For a more detailed descrip-

tion on how to determine αr
δ the reader is referred to the GERG 2004 technical

monograph [32]. The GERG 2004 equation of state can also be used to conveniently
determine other thermodynamical quantities such as heat capacity, Joule-Thomson
coefficient, internal energy, enthalpy and entropy. Of all the different equations of
state presented here, GERG 2004 is the only one where it is explicitly stated that
it has been verified for pressures up to 30 MPa. An expansion of GERG 2004, re-
ferred to as GERG 2008, has also recently been published [33]. The only difference
between GERG 2004 and GERG 2008 is that GERG 2008 includes components
which were not considered in GERG 2004, namely n-nonane, n-decane and hydro-
gen sulfide. These components were not considered in this work.

2.3.6 Compressibility factor

The compressibility factor for a typical North Sea natural gas mixture was calcu-
lated using all of the different equations of state presented above. The pressure
range was set to 1−25 MPa and calculations were done at 4 different temperatures
(273, 283, 293 and 303 K). The gas composition (mole fraction) was set to: CH4−
89.16%, C2H6−7.3513%, C3H8−0.5104%, nC4H10−0.0251%, iC4H10−0.0311%,
nC5H12 − 0.0009%, iC5H12 − 0.0024%, N2 − 0.6980%, CO2 − 2.2208%.

Results for the compressibility factor are presented in Figure 2.2. Below 10
MPa the different equations of state predict similar values of the compressibility
factor Z. However, for pressures above 10 MPa considerable discrepancies between
the different equations of state are observed. As GERG 2004 is the only one
which is claimed to be accurate for high pressures it is also considered to be the
best reference. The tuned BWRS (marked as BWRS*) which Gassco currently
uses predicts compressibility factors which are slightly higher than those of GERG
2004 for pressures above 10 MPa. How this effects the flow will be investigated in
Chapter 5.

In Equations (2.6) - (2.8) the partial derivatives of Z with respect to pressure
and temperature are required, which have been computed by taking the derivative
of Z for all correlations. The partial derivative of Z with respect to temperature at
constant pressure is presented in Figure 2.3, the partial derivative of Z with respect
to pressure at constant temperature in Figure 2.4 and the partial derivative of Z
with respect to temperature at constant density in Figure 2.5. In Figure 2.3 and
Figure 2.4 the computed values agree well with each other over the entire pressure
range. In Figure 2.5 some discrepancies above 15 MPa are observed. Values of the
partial derivatives of Z are seldom found in the literature. The partial derivatives
of Z computed from the Peng-Robinson equation of state can be found in the article
by Nagy and Shirkovskiy [34].
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Figure 2.2: Compressibility factor Z as a function of pressure at different temper-
atures computed from the SRK, Peng-Robinson, BWRS, BWRS tuned (BWRS*),
GERG 88 and GERG 2004 equations of state.
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Figure 2.3: Partial derivative of Z with respect to temperature at constant pressure
(∂Z/∂T )p.
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Figure 2.4: Partial derivative of Z with respect to pressure at constant temperature
(∂Z/∂p)T .
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Figure 2.5: Partial derivative of Z with respect to temperature at constant density
(∂Z/∂T )ρ.
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2.4 Heat transfer model

The heat exchange between the gas and the pipeline surroundings is represented
by the final term in Equation (2.8). Two different approaches for modeling the
heat exchange will be considered. The first case is a steady heat transfer model
using a total heat transfer coefficient to predict the heat transfer between the gas
and the environment. In the second case, an unsteady heat transfer model which
takes into account heat accumulation in the ground is considered.

2.4.1 Steady heat transfer model

In the steady heat transfer model the heat exchange between the gas and the
surroundings is modeled using a total heat transfer coefficient U . This approach is
currently used by Gassco today [6]. The total heat flow between the gas and the
pipeline surroundings is defined as

Q = UAh(T − Ta) (2.20)

where U is the total heat transfer coefficient, Ah the area though which heat
transfer occurs, T the temperature of the gas and Ta the ambient temperature. The
total heat transfer coefficient is a combined mode of three different heat transfer
processes. The first process is the heat transfer between the gas and the inner wall
which is modeled using an inner film heat transfer coefficient determined from the
Dittus-Boelter relation [35] for turbulent flow

Nu =
hL

λ
= 0.023 ·Re0.8 · Prn (2.21)

where Nu, Re and Pr are the Nusselt, Reynolds and Prandtl numbers respectively.
h is the film heat transfer coefficient, L the characteristic length and λ the thermal
conductivity of the gas. When the gas is cooled by the ambient, n = 0.4, and in
the reverse case n = 0.3.

The second process it the heat transfer through the pipe wall which is modeled
as a conductive process. The thermal resistance of multilayer cylindrical wall is
defined as

hw =
n∑

i=1

ln(roi/rii)
λi

(2.22)

where λi is the thermal conductivity of wall layer i and ro and ri is the outer and
inner radius respectively.

The final process is the heat transfer between the outer wall and the surrounding
environment which is modeled using an outer film heat transfer coefficient. The film
heat transfer coefficient depends on whether the pipeline is buried under ground
or, as in the case of offshore pipelines, exposed to sea water. For a pipeline buried
under ground, either a deep or shallow burial coefficient can be used, depending
on the burial depth. For a pipeline which is exposed to sea water the following
Nusselt number relation can be used

Nu = 0.26 ·Re0.6 · Pr0.3 (2.23)
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Using an electrical circuit analogy the total heat transfer coefficient U is equal
the sum of all thermal resistances. For a pipeline which is buried under ground,
consisting of three different wall layers like that shown in Figure 2.6, the total heat
transfer coefficient U is determined to be [36]

U =
(

1
hi

+ r1
ln(r2/r1)

λ1
+ r1

ln(r3/r2)
λ2

+ r1
ln(r4/r3)

λ3
+

r1

r3ho

)−1

(2.24)

where hi and ho are the inner and outer film heat transfer coefficients.

r1

air/water

soil

D0

r4

Ta

λi

Figure 2.6: Cross section of buried pipeline consisting of three wall layers with inner
radius r1 and outer radius r4. Each pipe layer has its specific thermal conductivity
λi. D0 is the burial depth from the ground to the pipe centerline and Ta the
ambient temperature.

2.4.2 Unsteady heat transfer model

In the steady state heat transfer model the heat transfer is calculated using a total
heat transfer coefficient U . This allows for simple calculations of the heat exchange
between the gas and the surrounding environment. However, such an approach does
not take into account heat accumulation in the ground surrounding the pipeline.
In the work by Chaczykowski [19] the heat transfer is considered as unsteady, so
that the effect of heat accumulation in the ground is taken into account. Transient
heat conduction in the solid surrounding the pipeline is now modeled by solving the
one-dimensional radial heat conduction equation. Assuming azimuthal symmetry,
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the unsteady one-dimensional radial heat conduction equation takes the form

ρcp
∂T

∂t
=

λ

r

∂

∂r

(
r
∂T

∂r

)
(2.25)

The model is axial symmetric where each thermal layer is represented by a coaxial
cylindrical shell, which is now considered as a thermal capacitor, and not a thermal
resistance as in the steady heat transfer model. The setup is shown in Figure 2.7.

air/water

soil

Ta

Ti

ρicpi

Ti+1

ki

ri
ri+1

ri+1/2

Figure 2.7: Cross-section of buried pipeline for the unsteady heat transfer model.
Thermal elements are represented by coaxial cylindrical layers. Each layer is as-
signed a temperature Ti, density ρi and heat capacity cpi.

In the work by Chaczykowski [19], the following equations are solved for the un-
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steady external heat transfer model

Q =
k0D

4
(T − Tn+1

1 )

ρ1cp1
Tn+1

1 − Tn
1

∆t
=

k1

A1
(Tn+1

2 − Tn+1
1 )− k0

A1
(Tn+1

1 − T )

ρicpi
Tn+1

i − Tn
i

∆t
=

ki

Ai
(Tn+1

i+1 − Tn+1
i )− ki−1

Ai
(Tn+1

i − Tn+1
i−1 )

ρNcpN
Tn+1

N − Tn
N

∆t
=

kN

AN
(Ta − Tn+1

N )− kN−1

AN
(Tn+1

N − Tn+1
N−1) (2.26)

The midpoint of the cylindrical shell is located at a distance ri from the pipe
centerline, and is assigned a temperature Ti, density ρi and heat capacity cpi. ki

is the heat transfer coefficient between elements i− 1 and i which depends on the
thermal conductivity λi. Ai is the area of element i (Ai = π(r2

i+1/2−r2
i−1/2)). There

are in total N cylindrical shells. When solving the one-dimensional flow equations
(Equation (2.6)-(2.8)) at a new time level, the heat flow Q from the previous time
step is used in the energy equation to model the heat exchange between the gas
and the surroundings. For an updated gas temperature, the radial heat equation
is solved in the domain surrounding the pipeline to update the temperature field
around the pipeline and determine the new heat flow Q. Solving the radial heat
equation involves finding the numerical solution to the system of equations above
(Equation (2.26)). These are dicretized in an implicit way using a backward Euler
method for the time integration and centered differences for the spatial derivatives.

2.5 Other properties

2.5.1 Viscosity

The viscosity of the gas in micropoise (1 micropoise = 10−7 kg/(m·s)) can be
determined from the Lee-Gonzalez-Eakin (LGE) [37] correlation

µ = K exp(X(ρ/1000)Y ) (2.27)

where

K =
(9.4 + 0.02M)(9T/5)1.5

209 + 19M + (9T/5)

X = 3.5 +
986

(9T/5)
+ 0.01M

Y = 2.4− 0.2X (2.28)

where M is the molecular weight. The viscosity does not appear directly in the
flow equations, but effects the pressure drop along the pipeline as the friction
factor depends on the Reynolds number, which in turn depends on the viscosity.
The viscosity for the natural gas mixture in Section 2.3 as a function of pressure
at different temperatures is presented in Figure 2.8.
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Figure 2.8: Viscosity µ for the natural gas mixture in Section 2.3 as a function of
pressure at different temperatures.

2.5.2 Heat capacity

Both the heat capacity at constant volume (cv) and at constant pressure (cp) are
needed in the flow model. The heat capacity at constant volume appears directly
in the energy equation, while the heat capacity at constant pressure appears in the
Prandtl number when determining the inner wall film heat transfer coefficient in
the heat transfer model. The heat capacity at constant volume and pressure can
be determined from the GERG 2004 equation of state [32]. Using the same gas
mixture as in Section 2.3, results for cv and cp as a function of pressure at different
temperatures are presented in Figures 2.9 and 2.10 respectively.

2.5.3 Joule-Thomson coefficient

The Joule-Thomson effect is the change in temperature upon expansion which
occurs without heat transfer or work. For natural gas pipelines it is the cooling
upon expansion. The Joule-Thomson coefficient is defined as

µJT =
(

∂T

∂p

)
h

=
R

cp

T 2

p

(
∂Z

∂T

)
p

(2.29)

For an ideal gas µJT = 0. The Joule-Thomson coefficient as a function of pressure
at different temperatures is presented in Figure 2.11.
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Figure 2.9: Heat capacity cv for the natural gas mixture in Section 2.3 as a function
of pressure at different temperatures.
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Chapter 3

Numerical Methods

The governing equations in Section 2.1 form a system of hyperbolic partial differen-
tial equations which have to be solved numerically. This chapter discusses different
numerical methods which can be used to solve such a system of equations, with
emphasis on finite difference methods.

An overview of different numerical techniques for one-dimensional compressible
flow can be found in base literature articles, for instance by Thorely and Tiley
[10]. Numerical methods include the method of characteristics, finite difference,
finite volume and finite element methods. The method of characteristics was pop-
ular a few decades ago, see for instance Issa and Spalding [11] and Poloni et al.
[13]. However, as will be pointed out in the following sections, the method of char-
acteristics is slow and more difficult to implement compared to finite difference
methods. Finite difference methods are commonly used to model one-dimensional
compressible flow, see for instance Poloni et al. [13], Kiuchi [14], Greyvenstein
[38], Abbaspour and Chapman [16], Chaczykowski [19] and Modisette [39]. It has
been stated that for high pressure pipelines finite element methods are lengthy and
tedious, and have therefore not been widely used [10]. A finite element method
was implemented by Bisgaard et al. [40], with numerical results being compared to
experimental values. Chaiko uses a finite volume approach to model transient flow
in pipelines [41]. A third order Runge-Kutta discontinuous Galerkin method was
successfully implemented by Gato and Henriques [42]. Osiadacz and Yedroudj [43]
show that finite difference methods have considerable advantage over finite element
methods with respect to computational time.

Before proceeding, a simplified flow model will be introduced. Assuming a
horizontal pipeline and neglecting the convective term in the momentum equation,
the continuity and momentum equations are simplified to

∂ρ

∂t
+

∂(ρu)
∂x

= 0 (3.1)

∂(ρu)
∂t

+
∂p

∂x
= −fρu|u|

2D
(3.2)
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3.1. Method of characteristics

where pressure p and density ρ are related through
p

ρ
= c2 (3.3)

where c is defined as the constant speed of sound. Replacing the density with
pressure and introducing the mass flow rate ṁ = ρuA (A being the pipeline cross
section), Equations (3.1) - (3.2) are developed into

∂p

∂t
+

c2

A

∂ṁ

∂x
= 0 (3.4)

1
A

∂ṁ

∂t
+

∂p

∂x
= −fc2ṁ|ṁ|

2DA2p
(3.5)

This hydraulic model is the same as that of Kiuchi [14]. It assumes isothermal
conditions with a constant temperature along the pipeline.

3.1 Method of characteristics

The method of characteristics (MOC) is a technique for solving hyperbolic partial
differential equations. It reduces the partial differential equations into a family
of ordinary differential equations, which can be solved by integrating along the
characteristic curves from some initial data.

The method can be illustrated by considering the hydraulic model. Multiplying
Equation (3.4) by λ and adding Equation (3.5) yields

λ
[px

λ
+ pt

]
+

1
A

[
c2λṁx + ṁt

]
+

fc2ṁ|ṁ|
2DA2p

= 0 (3.6)

where the partial derivatives are represented by subscripts. Using the relations

dp

dt
= px

dx

dt
+ pt (3.7)

dṁ

dt
= ṁx

dx

dt
+ ṁt (3.8)

leads to the result
dx

dt
=

1
λ

= λc2 (3.9)

Solving the equation for λ (λ = ±1/(c)) and substituting back into Equation (3.9)
yields

dx

dt
= ±c (3.10)

The partial differential equations for p and ṁ have now been reduced to two sets of
ordinary differential equations (one set for each value of λ). These can be integrated
along the characteristic lines. For the C+ characteristic the equations are

C+

{
1
c

dp
dt + 1

A
dṁ
dt + fc2ṁ|ṁ|

2DA2p = 0
dx
dt = c

(3.11)
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and for the C−

C−

{
− 1

c
dp
dt + 1

A
dṁ
dt + fc2ṁ|ṁ|

2DA2p = 0
dx
dt = −c

(3.12)

The principle behind the MOC, illustrated in Figure 3.1, is to integrate the C+

equation along the characteristic dx/dt = c to relate the unknown values pP and
ṁP to initial values pA and ṁA. The same procedure is done for the C− equation
along the characteristic dx/dt = −c to find a relation between pP and ṁP and
initial values pB and ṁB . This gives two algebraic equations for the two unknown
values pP and ṁP .

x

t

C+ C−

P

A B

Figure 3.1: Characteristic lines in x-t diagram. Unknown values pP and ṁP are
related to initial values pA, pB , ṁA and ṁB by integrating along the characteristic
curves C+ and C−.

The governing equations can be solved by either using the natural method of char-
acteristics or the mesh method of characteristics. The natural method is uncon-
ditionally stable and can handle discontinuities [10]. However, when calculating
the updated flow conditions at point P, the space and time location in the x − t
diagram is the point where the characteristics from points A and B meet. This
means that there is no freedom in the choice of the time step ∆t, it is set by the
conditions of the characteristics. For the example above the characteristic curves
are dx/dt = ±c. If the convective term in the momentum equation had not been
neglected the characteristic curves would have been dx/dt = u± c, which is shown
in the book by Wiley [44]. This adds further complications to the natural method
of characteristics. Because the left and right traveling characteristics have slightly
different slopes in the x − t diagram they will not meet at the same grid points
from the previous time level, but rather somewhere in between.

When modeling the transmission of natural gas through pipelines one would like
to set the time step to a specific value based on available boundary conditions, and
when calculating the flow conditions at a new time level it is desirable to have them
at specified grid points. This is the basics of the mesh method, which interpolates
values to a structured grid. This also allows freedom in the choice of time step ∆t.
The mesh method is however only conditionally stable and the time and spatial
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3.1. Method of characteristics

steps are restricted by the CFL condition

(|u|+ c)
∆t

∆x
≤ 1 (3.13)

The mesh method of characteristics is illustrated in Figure 3.2.

xt

t+∆t

t+2∆t

t+3∆t

x1 x2 x3

C+ C−

BA

P

∆x

Figure 3.2: Mesh method of characteristics. Flow values at points A and B are
found by interpolation from neighboring points.

When determining the flow conditions at P the following equations have to be
solved.

(pP − pA) +
c

A
(ṁP − ṁA) +

fc3ṁP |ṁA|
2DA2pA

∆t = 0 (3.14)

(xP − xA) = c(tP − tA) (3.15)

(pP − pB)− c

A
(ṁP − ṁB) +

fc3ṁP |ṁB |
2DA2pB

∆t = 0 (3.16)

(xP − xB) = c(tP − tB) (3.17)

In the friction term the mass flow term is represented by ṁA|ṁP | and ṁB |ṁP |
respectively instead of ṁP |ṁP | in order to give a linear equation in ṁP . To ensure
that this is a valid approximation the CFL number should be close to, but below 1.
In the mesh method of characteristics the time step is kept constant and is set by
the user. The only requirement for the time step is that combined with the spatial
step ∆x it has to fulfill the CFL condition in Equation (3.13). The procedure for
finding pP and ṁP at time level t + 2∆t is as follows.
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Chapter 3. Numerical Methods

1. Find the positions xA and xB at time level t+∆t by solving Equations (3.15)
and (3.17) using the fact that ∆t = (tP − tB) = (tP − tA).

2. When the positions xA and xB are known the values of pA, ṁA, pB and ṁB

can be calculated by interpolating between points x1 and x2 and points x2

and x3 respectively.

3. When pA, ṁA, pB and ṁB are known, the values of pP and ṁP can be found
using Equations (3.14) and (3.16). Boundaries have to be treated separately.

The procedure above is repeated at each time step. Poloni et al. [13] compared
the method of characteristics to explicit finite difference methods. It was stated
that finite difference methods were easier to implement compared to the method
of characteristics. Also, because of the required interpolation in the method of
characteristics, finite difference methods were also found to be computationally
faster. Because finite difference methods are a lot more flexible, the method of
characteristics is seldom used when modeling one-dimensional compressible pipe
flow. Owing to the CFL condition the method of characteristics is limited to small
time steps. The method is however valuable in classification of more complex
systems of PDEs, and for obtaining criteria for the proper initial and boundary
conditions for the fundamental variables in different flow regimes.

3.2 Finite difference methods

Finite difference methods are commonly used when modeling the flow of natural
gas through pipelines. The governing equations are transformed from partial dif-
ferential equations to algebraic expressions in discrete time and space. The basic
idea is illustrated in Figure 3.3.

∼ ∼ ∼ ∼

∼ ∼ ∼ ∼

∼ ∼ ∼ ∼

i = 1 i = 2 i = Ni i + 1
I∆x

∆t

x

t

n

n + 1

n + 2

Figure 3.3: Stencil used in the finite difference method.
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3.2. Finite difference methods

The pipeline is divided into N grid points with ∆x being the distance between
points i and i + 1. ∆t is the time step between time levels n + 1 and n. The
discretization can be either explicit or implicit in time. Explicit methods are easy to
implement, but as with the method of characteristics are limited to small time steps
owing to the stability condition. Implicit methods are more difficult to implement,
but are stable for any choice of time and spatial step.

3.2.1 Explicit finite difference methods

Two explicit finite difference methods will be considered. The two step Lax-
Wendroff method and the third order TVD Runge-Kutta method.

The two-step differential Lax-Wendroff method is an explicit finite difference
method which is second order correct in time and space and was published by Lax
and Wendroff in 1960 [45]. It requires that the governing equations can be written
on the vector form

∂A
∂t

+
∂B
∂x

+ C = 0 (3.18)

For Equations (3.4) and (3.5) the vectors in Equation (3.18) are

A =
[

p
ṁ

]
B =

[
(c2/A)ṁ

(A)p

]
C =

[
0

− fc2|ṁ|ṁ
2ADp

]
where the pipe cross section A and speed of sound c are assumed constant. In
the first step the flow values are calculated at half time steps tn+1/2 and half spa-
tial steps xi+1/2.

An+1/2
i+1/2 =

1
2
(An

i+1 + An
i )− ∆t

2∆x
(Bn

i+1 −Bn
i )− ∆t

4
(Cn

i+1 + Cn
i ) (3.19)

In the second step the values are calculated at a new time step n + 1 using the
values from the previous step.

An+1
i = An

i −
∆t

∆x
(Bn+1/2

i+1/2 −Bn+1/2
i−1/2 )− ∆t

2
(Cn+1/2

i+1/2 + Cn+1/2
i−1/2 ) (3.20)

The method uses centered differences in space. As for the mesh method of charac-
teristics the CFL condition in Equation (3.13) has to be fulfilled to ensure stability.

Higher order accuracy can be achieved by using the third order TVD Runge-
Kutta method by Gottlieb and Shu [46] for the time discretization. The governing
equations are now required to be on the form

∂q
∂t

+ D
∂q
∂x

= S (3.21)

where q is a vector containing flow variables, D a coefficient matrix and S a source
term vector. For the hydraulic model these vectors are

q =
[

p
ṁ

]
D =

[
0 c2/A
A 0

]
S =

[
0

− fc2|ṁ|ṁ
2ADp

]
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The 3rd order TVD Runge-Kutta method advances the solution to time level n+1
by performing the steps

q(1) = qn + ∆tR(qn)

q(2) =
3
4
qn +

1
4
(q(1) + ∆tR(q(1)))

q(n+1) =
1
3
qn +

2
3
(q(2) + ∆tR(q(2))) (3.22)

where R are the vectors of the right hand side of (qi)t = −(qi)x + Si. As with
the Lax-Wendroff method the spatial derivatives are approximated by centered
differences. The second order centered difference scheme for the spatial derivative
of a variable y discretized from x1 to xN is

∂y
∂x

=



dy(x1)
dx

dy(x2)
dx
...

dy(xN−1)
dx

dy(xN )
dx

 =
1

2∆x


−3 4 −1 0 · · · 0
−1 0 1 0 · · · 0
...

. . . . . . . . . · · ·
...

0 · · · 0 −1 0 1
0 · · · 0 1 −4 3




y(x1)
y(x2)

...
y(xN−1)
y(xN )

+O(∆x2)

(3.23)
One sided differences are used at the boundaries x1 and xN . Higher order centered
difference schemes can easily be applied. Stencils for such schemes can be found in
the book by Gustafsson [47]. The stability domain in slightly larger for the 3rd order
TVD Runge-Kutta method compared to the Lax-Wendroff method. However, the
computational time of the Runge-Kutta method is greater than the Lax-Wendroff
method, as three iterations are required at each time level of the Runge-Kutta
method compared to the two iterations of the Lax-Wendroff method.

3.2.2 Implicit finite difference methods

Compared to explicit methods, implicit methods are unconditionally stable and
are not limited to small time steps by the CFL condition. In many cases it may
be advantageous to take long time steps, and because of its stability properties,
implicit finite difference methods are commonly used in commercial tools for one-
dimensional compressible flow calculations.

For implicit finite difference schemes, a simple method for the time discretization
of a flow variable Y at grid point i is the backward Euler method

∂Y (xi, tn+1)
∂t

=
Y n+1

i − Y n
i

∆t
+O(∆t) (3.24)

Spatial derivatives can be approximated by either upwind or centered differences.
The first order one-sided upwind discretization approximates the spatial derivative
of a variable Y at point i by

∂Y (xi, tn+1)
∂x

=
Y n+1

i − Y n+1
i−1

∆x
+O(∆x) (3.25)
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and the second order centered difference discretization approximates the spatial
derivative of a variable Y at a point i by

∂Y (xi, tn+1)
∂x

=
Y n+1

i+1 − Y n+1
i−1

2∆x
+O(∆x2) (3.26)

Higher order stencils can be used for both the upwind and centered difference ap-
proximations. The expressions can be found in the book by Gustafsson [47]. When
discretizing all terms in a fully implicit way the governing equations form a system
non-linear equations. Both Kiuchi [14] and Abbaspour and Chapman [16] solve the
system of non-linear equations by using the Newton-Raphson method. This can be
computationally expensive, especially for long pipelines and complicated networks.
To avoid having to solve a system of non-linear equations, the non-linear terms
can be linearized about the previous time step to give a system of linear equations.
The procedure can be found in the article by Luskin [48], and is also illustrated in
research article [a].

An alternative to the backward Euler method using either upwind or centered
differences for the spatial derivatives is the cell centered method. This method is the
same as that of Kiuchi [14], Abbaspour and Chapman [16], Abbaspour et al. [49]
and Modisette [39], with the latter referring to the method as the cell centered
method. In the cell centered method the partial derivatives for each pipe section,
and not for each grid point as in the backward Euler method, are approximated
by algebraic expressions. In Figure 3.3 pipe section I is the section between grid
points i and i + 1. For section I the time derivatives are approximated by

∂Y (xI , tn+1)
∂t

=
Y n+1

i+1 + Y n+1
i − Y n

i+1 − Y n
i

2∆t
+O(∆t) (3.27)

the spatial derivatives by

∂Y (xI , tn+1)
∂x

=
Y n+1

i+1 − Y n+1
i

∆x
+O(∆x2) (3.28)

and the individual terms by

Y (xI , tn+1) =
Y n+1

i+1 + Y n+1
i

2
+O(∆x2) (3.29)

This method is first order correct in time and second order correct in space, and is
therefore similar to the backward Euler method with second order centered differ-
ences for the spatial derivatives. However, the cell centered method is slightly easier
to implement because the boundary conditions are simpler to handle compared to
the backward Euler method with centered differences. To illustrate how the cell
centered method can be used to solve the governing equations, the hydraulic model
is once again considered

∂p

∂t
+

c2

A

∂ṁ

∂x
= 0 (3.30)

∂ṁ

∂t
+ A

∂p

∂x
= −fc2ṁ|ṁ|

2DAp
(3.31)
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where the friction term in the momentum equation is the only non-linear term.
This term will be linearized in the following. A variable y at time level n + 1 can
be written as a first order Taylor expansion

yn+1
i = yn

i + ∆t(yn
i )t +O(∆t2) (3.32)

Using this approximation, the friction term in the momentum equation can accord-
ing to Luskin [48] be developed into

K
(ṁn+1)2

pn+1
= K

ṁn

pn
(ṁ + 2∆tṁt) +O(∆t2) (3.33)

where K = fc2/2DA. The pressure is taken from the previous time step and
the first order Taylor expansion has been used for the mass flow. Inserting the
expression for the spatial derivative (Equation (3.28)) and the individual term
(Equation (3.29)) in Equation (3.33), the friction term is further developed into

K
(ṁn+1)2

pn+1
≈ K

(ṁn
i+1 + ṁn

i )
(pn

i+1 + pn
i )

(
ṁn+1

i+1 + ṁn+1
i −

ṁn
i+1 + ṁn

i

2

)
(3.34)

Using the expression above for the friction term, the governing equations form a
system of linear equations which can be solved using linear algebra. The discretized
equations are written on the matrix form

Ax = b (3.35)

For a pipeline consisting of 4 grid points like that in Figure 3.4, with inlet mass
flow and outlet pressure as boundary conditions, the matrixes in Equation (3.35)
take the form as given below.

p1

ṁ1

p2

ṁ2

p3

ṁ3

p4

ṁ4

∆x

Figure 3.4: A short pipeline discretized by 4 grid points, with pressure and mass
flow stored at each grid point.

A =



1
2∆t

1
2∆t 0 c2

A∆x 0 0

− A
∆x

A
∆x 0 1

2∆t + fc2

2DA
(ṁn

1 +ṁn
2 )

(pn
1 +pn

2 ) 0 0

0 1
2∆t

1
2∆t − c2

A∆x
c2

A∆x 0

0 − A
∆x

A
∆x

1
2∆t + fc2

2DA
(ṁn

2 +ṁn
3 )

(pn
2 +pn

3 )
1

2∆t + fc2

2DA
(ṁn

2 +ṁn
3 )

(pn
2 +pn

3 ) 0

0 0 1
2∆t 0 − c2

A∆x
c2

A∆x

0 0 − A
∆x 0 1

2∆t + fc2

2DA
(ṁn

3 +ṁn
4 )

(pn
3 +pn

4 )
1

2∆t + fc2

2DA
(ṁn

3 +ṁn
4 )

(pn
3 +pn

4 )
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x =



pn+1
1

pn+1
2

pn+1
3

ṁn+1
2

ṁn+1
3

ṁn+1
4



b =



pn
1 +pn

2
2∆t + c2

A
ṁn+1

1
∆x

− ṁn+1
1

2∆t − fc2

2DA
ṁn

1 +ṁn
2

pn
1 +pn

2
ṁn+1

1 + ṁn
1 +ṁn

2
2∆t + 1

2
fc2

2DA
(ṁn

1 +ṁn
2 )2

pn
1 +pn

2

pn
2 +pn

3
2∆t

ṁn
2 +ṁn

3
2∆t + 1

2
fc2

2DA
(ṁn

2 +ṁn
3 )2

(pn
2 +pn

3 )

pn
3 +pn

4
2∆t − pn+1

4
2∆t

ṁn
3 +ṁn

4
2∆t + 1

2
fc2

2DA
(ṁn

3 +ṁn
4 )2

(pn
3 +pn

4 ) −A
pn+1
4
∆x
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Chapter 4

Results

This chapter presents results for different flow setups using the numerical methods
presented in Chapter 3. In Section 4.1 the method of characteristics and explicit
finite difference methods are used to solve the hydraulic isothermal model. Dis-
cretization errors for all schemes are presented and the hydraulic model is validated
by comparing numerical results to measured values from a short on-shore pipeline.
In Section 4.2 implicit finite difference methods are used to solve the full non-
isothermal model. Verification and validation of the model is included in Section
4.3. Verification is done by comparing numerical results to other results in the lit-
erature, while validation is performed by comparing numerical results to measured
values from an offshore pipeline operated by Gassco.

4.1 Method of characteristics and explicit finite
difference methods

The method of characteristics was compared to explicit finite difference methods
for a horizontal pipeline. Isothermal conditions were assumed, meaning only the
hydraulic model introduced at the beginning of Chapter 3 was solved for the flow.
Two explicit finite difference methods were considered, the two step Lax-Wendroff
method and the 3rd order TVD Runge-Kutta method, both of which use centered
differences for the spatial derivatives.

4.1.1 Results isothermal model

A 48 km horizontal pipeline with an inner diameter of D = 1.016 m was considered.
The constant speed of sound and friction factor were set to 380 m/s and f = 0.0075
respectively. The following boundary conditions were used

p(0, t) = 6 MPa
ṁ(L, t) = f(t) kg/s (4.1)

where f(t) is depicted in Figure 4.1.
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Figure 4.1: Boundary condition for outlet mass flow.

The pipeline was divided into 12 sections, each with a discretization length of
∆x = 4000 m. The time step was set to ∆t = 10 s. With the speed of sound being
380 m/s the CFL number was determined to be 0.95. Results for inlet mass flow
and outlet pressure are presented in Figures 4.2 and 4.3 respectively. The difference
between the solution strategies is small and not visible to the left in Figures 4.2
and 4.3. A close up view during the transient is shown to the right, where small
differences can be observed. The two-step Lax-Wendroff method agrees well with
the 3rd order TVD Runge-Kutta method, while the method of characteristics differs
slightly compared to the other two. The reason for this discrepancy could be the
interpolation errors which are introduced in the mesh method of characteristics.
The Lax-Wendroff method had the shortest computational time, followed by the
Runge-Kutta method which was slightly longer. For the presented case with 17280
time steps the total computational time was approximately 1 second. For the
method of characteristics the computational time was significantly longer and over
twice that of the explicit finite difference methods. This result is in agreement
with Poloni et al. [13]. This increase in computational time is because of the
interpolation which is required at each grid point and time step. The method of
characteristics is seldom used owing to the fact that it is less flexible compared to
finite difference methods because of the required interpolation, which also makes
it computationally more demanding.

4.1.2 Discretization errors

The numerical discretization errors were investigated for all methods presented in
Section 4.1.1. Owing to the stability criteria, the CFL number was kept constant
at 0.95. This was done by reducing the time step ∆t together with the spatial step
∆x for each simulation. The local error is defined as

e =
1
N

(
N∑

i=1

(
Yi − Yi,hi

Yi,hi

)2
)1/2

(4.2)
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Figure 4.2: Left: Results for inlet mass flow using the method of characteristics
(MOC), two-step Lax-Wendroff method (LW) and the 3rd order TVD Runge-Kutta
method (RK). Right: Close up view during the transient.
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Figure 4.3: Left: Results for outlet pressure using the method of characteristics
(MOC), two-step Lax-Wendroff method (LW) and the 3rd order TVD Runge-Kutta
method (RK). Right: Close up view during the transient.

where Y represents p and ṁ at point i. The summation is done over all grid points
N . Yi,hi is the numerical solution computed using the finest grid and the shortest
time step (high resolution solution), and is assumed to be the exact solution. In the
case above the high resolution solution was found using a spatial step of ∆x = 125
m and a time step of ∆t = 0.3125 s. The local errors e for both p and ṁ averaged
over time are presented in Figure 4.4. These are in general small compared to
numerical results of p and ṁ, even for a coarse grid with N = 13 (∆x = 4000
m) and a time step of ∆t = 10 s. The local errors are least for the two-step Lax-
Wendroff method, followed by the 3rd order TVD Runge-Kutta method and the
method of characteristics. All three methods are found to be approximately second
order correct, with the −2 slope indicated in Figure 4.4.
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Figure 4.4: Local error e for pressure p and mass flow ṁ as a function of grid points
N . The local error is computed for the two-step Lax-Wendroff method (LW), the
method of characteristics (MOC) and the 3rd order TVD Runge-Kutta method
(RK).

4.1.3 Validation isothermal model

The isothermal model is validated by solving Equations (3.4) - (3.5) using oper-
ational data from a short transport pipeline. The pipeline considered is a 48 km
on-shore pipeline operated by Gassco. The difference between the inlet and out-
let temperature is approximately 3 ◦C, which justifies the isothermal assumption.
The internal diameter is 1.016 m and the pipeline was divided into 13 grid points
with a spatial discretization length of approximately ∆x = 4000 m. The time
step was set to ∆t = 10 s. Inlet pressure and outlet mass flow were given as
boundary conditions. The speed of sound was c = 340 m/s and the friction factor
f = 0.0075. Results for a 12 hour period are presented in Figure 4.5, with the
inlet mass flow to the left and the outlet pressure to the right. The results were
found using the two-step Lax-Wendroff method which was chosen due to its short
computational time, but both the 3rd order TVD Runge-Kutta method and the
method of characteristics gave almost identical results. Both the computed inlet
mass flow and outlet pressure agree well with measured values, indicating that the
isothermal approximation is valid for the considered pipeline. However, for longer
pipelines operating at high pressure one should, as shown by Osiadacz [17], solve
the non-isothermal model. This will be considered in the next section.

Explicit finite difference methods are easy to implement and are fast and effi-
cient. For the pipeline considered in Figure 4.5 they also give acceptable results
for the flow. However, for long offshore pipelines the distance between grid points
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can be small, especially when there is a steep inclination. Also, it may often be
advantageous to use longer time steps than ∆t = 10 s, especially during steady
state conditions. Longer time steps and shorter grid spacing means higher CFL
numbers. Explicit methods are only stable for CFL numbers less than 1. Implicit
finite difference methods are stable for any CFL number, and are therefore often
used in commercial tools for one-dimensional compressible flow models. Implicit
methods will be considered in the next section.
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Figure 4.5: Results for 48 km on-shore pipeline. Left: Inlet mass flow. Right:
Outlet pressure. Results are compared to measured values.

4.2 Implicit finite difference methods

Two different implicit finite difference solution strategies will be considered. The
first case is the cell centered method where the flow values are computed at the
midpoint between two grid points. This method is first order correct in time and
second order correct in space. In the second case the backward Euler method
will be considered, where the spatial derivatives are approximated using both the
one sided upwind approximation and the centered difference approximation. This
method is first order correct in time and either first, second or forth order correct
in space, depending on the selected stencil.

4.2.1 Isothermal model

For the isothermal model the setup and boundary conditions were the same as
in Section 4.1.1. Results for inlet mass flow and outlet pressure were identical to
those in Figures 4.2 and 4.3. The CFL number of the flow is 0.95. Implicit finite
difference methods are unconditionally stable and do not have the same restrictions
on the CFL number as explicit methods. However, for a CFL number of 0.95 the
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backward Euler method with one sided first order upwind approximation for the
spatial derivatives was found to be unstable. In the hydraulic model (Equations
(3.4) - (3.5)), information will travel along the characteristic curves with slopes
±c. Using the one sided approximation for the spatial derivatives, information is
only taken from points which are upstream of the point where the flow is being
computed. While that is correct for the right going acoustic wave with the wave
speed c, it is wrong for the left going acoustic wave with wave speed −c. The von
Neumann stability analysis shows that the backward Euler method with one sided
first order upwind approximations for the spatial derivatives becomes unstable for
CFL numbers less than 1. When using centered differences information is taken
from points lying both upstream and downstream, allowing information to travel
along both characteristic curves. Centered differences are therefore a more phys-
ically correct way of approximating the spatial derivatives compared to one-sided
approximations. The backward Euler method with one-sided first order upwind
approximations for the spatial derivatives is a consistent method for modeling one-
dimensional compressible flow through pipelines, however, it is not convergent.
More details are included in the attached research article [e].

As the backward Euler method with one-sided first order upwind approxima-
tions for the spatial derivatives is not convergent, it is not possible to determine
the discretization errors for CFL numbers below 1. These have therefore been
omitted in the following. Both the spatial and temporal discretization errors for
the cell centered method and the backward Euler method with second and forth
order centered differences for the spatial derivatives are presented in Figure 4.6.
Corresponding values for the spatial discretization errors are given in Tables 4.1 -
4.3.

Table 4.1: Spatial discretization error as a function of grid points N in the isother-
mal model using the implicit cell centered method. e is the local error and O the
order.

p ṁ
N ∆x [km] e O e O
13 4 1.9248 · 10−8 4.0496 · 10−7

25 2 3.4097 · 10−9 2.65 7.4040 · 10−8 2.6
49 0.5 5.9564 · 10−10 2.62 1.2929 · 10−8 2.6
97 0.25 1.0062 · 10−10 2.61 2.1776 · 10−9 2.6
193 0.125 1.4273 · 10−11 2.67 3.0862 · 10−10 2.66
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Table 4.2: Spatial discretization error as a function of grid points N in the isother-
mal model using the backward Euler method with second order centered differences
for the spatial derivatives. e is the local error and O the order.

p ṁ
N ∆x [km] e O e O
13 4 3.8797 · 10−8 1.0624 · 10−6

25 2 1.1691 · 10−8 1.83 2.2467 · 10−7 2.38
49 0.5 1.9516 · 10−9 2.25 3.2400 · 10−8 2.63
97 0.25 3.2864 · 10−10 2.37 4.5864 · 10−9 2.71
193 0.125 5.1955 · 10−11 2.45 6.1004 · 10−10 2.75

Table 4.3: Spatial discretization error as a function of grid points N in the isother-
mal model using the backward Euler method with forth order centered differences
for the spatial derivatives. e is the local error and O the order.

p ṁ
N ∆x [km] e O e O
13 4 8.6265 · 10−9 3.1216 · 10−7

25 2 7.6551 · 10−9 0.18 2.3675 · 10−8 3.94
49 0.5 1.3435 · 10−9 1.40 1.1352 · 10−9 4.23
97 0.25 2.3456 · 10−10 1.79 5.1589 · 10−11 4.33
193 0.125 4.2355 · 10−11 1.97 4.5962 · 10−12 4.12

Table 4.4: Temporal discretization error as a function of time step ∆t in the isother-
mal model using the implicit cell centered method. e is the local error and O the
order.

p ṁ
∆t [s] e O e O
80 3.9338 · 10−6 3.5396 · 10−5

40 1.4327 · 10−6 1.46 1.4664 · 10−5 1.27
20 5.0897 · 10−7 1.48 6.0384 · 10−6 1.28
10 1.7456 · 10−7 1.50 2.4436 · 10−6 1.29
5 5.5810 · 10−8 1.53 9.4143 · 10−7 1.31
2.5 1.5025 · 10−8 1.61 3.2566 · 10−7 1.35
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Figure 4.6: Discretization errors for the implicit cell centered method (CC), back-
ward Euler method with 2nd order centered differences (2nd) and 4th order centered
differences (4th) for the spatial derivatives. Left: Spatial discretization error as a
function of grid points N . Right: Temporal discretization error as a function of
time step ∆t.

For the cell centered method both the pressure and mass flow converge to an order
of approximately 2.6. A similar result for the backward Euler method with second
order centered differences was found. For the backward Euler method with forth
order centered differences the mass flow converges to the expected forth order,
while the pressure only converged to second order. The temporal discretization
error is presented to the right in Figure 4.6, with values given in Table 4.4. Results
in Table 4.4 were computed using the cell centered method. As can be seen in
Figure 4.6, the temporal discretization error for the backward Euler method with
second and forth order centered differences were almost identical to those of the
cell centered method, and are therefore not listed in separate tables.

4.2.2 Non-isothermal model

In the full non-isothermal model Equations (2.6) - (2.8) are solved for the flow.
First an on-shore pipeline buried under ground with a length of 650 km and inner
diameter of 1 m is considered. The following boundary conditions were used:

ṁ(0, t) = f(t) kg/s (4.3)
T (0, t) = 30 ◦C
p(L, t) = 9 MPa

(4.4)

where f(t) is depicted in Figure 4.7.
The distance from the ground surface to the pipe centerline was 2 m, with the

ambient temperature being 5 ◦C. The gas composition (mole fraction) was set to:
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Figure 4.7: Boundary condition for inlet mass flow in full non-isothermal model.

CH4 − 89.16%, C2H6 − 7.3513%, C3H8 − 0.5104%, nC4H10 − 0.0251%, iC4H10 −
0.0311%, nC5H12 − 0.0009%, iC5H12 − 0.0024%, N2 − 0.6980%, CO2 − 2.2208%.
The tuned BWRS equation of state was used to determine the compressibility
factor while the heat exchange between the gas and the pipeline surroundings was
modeled with the steady external heat transfer model. The pipe wall consists of a
single steel layer with a thickness of 25 mm, density ρ = 7850 kg/m3, heat capacity
cp = 500 J/(kg·K) and thermal conductivity λ = 45 W/(m·K). The surrounding
soil had a density of ρ = 2650 kg/m3, heat capacity cp = 950 J/(kg·K) and thermal
conductivity λ = 3 W/(m·K). The pipeline was divided into 101 grid points with a
grid spacing of ∆x = 6.5 km. The time step was set to ∆t = 60 s. The governing
equations were solved using the implicit cell centered method. Results for inlet
pressure, outlet mass flow and outlet temperature are presented in Figure 4.8. For
a 650 km pipeline under the given operating conditions it takes almost 50 hours
for the mass flow at the outlet to reach that of the inlet.

In Figure 4.9 the temperature profile along the pipeline at the final time step
(t = 240 hours) is shown. The gas temperature is equal to the ambient temperature
of 5 ◦C after approximately 250 km. After this the gas temperature is lower than
the ambient due to the Joule-Thomson effect, which is cooling upon expansion.
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42



Chapter 4. Results

0 200 400 600
0

5

10

15

20

25

30

Pipe distance [km]

T
 [

 °
C

]

 

 

T
gas

T
ambient

Figure 4.9: Temperature profile along the pipeline at the final time step. Gas
temperature is equal the ambient temperature after approximately 250 km.

4.2.3 Discretization errors

Both the temporal and spatial discretization errors using the cell centered method
are presented in Figure 4.10, with corresponding values given in Tables 4.5 and 4.6.

Table 4.5: Spatial discretization error as a function of grid points N in the non-
isothermal model using the implicit cell centered method. e is the local error and
O the order.

p ṁ T
N ∆x [km] e O e O e O
26 26 9.1177 · 10−7 4.0748 · 10−6 2.6242 · 10−6

51 13 1.1964 · 10−7 3.01 1.1655 · 10−6 1.86 6.1345 · 10−7 2.16
101 6.5 7.6746 · 10−9 3.52 3.4679 · 10−7 1.82 1.6496 · 10−7 2.04
201 3.25 2.6177 · 10−9 2.86 9.6424 · 10−8 1.83 4.4347 · 10−8 2.00
401 1.625 8.2002 · 10−10 2.56 2.2285 · 10−8 1.90 1.0205 · 10−8 2.03
801 0.825 1.9715 · 10−10 2.46 3.5674 · 10−9 2.05 1.6375 · 10−9 2.15
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Table 4.6: Temporal discretization error in the non-isothermal model using the
implicit cell centered method. e is the local error and O the order.

p ṁ T
∆t [s] e O e O e O
120 2.4966 · 10−7 2.2741 · 10−6 1.0633 · 10−7

60 8.8016 · 10−8 1.50 9.8274 · 10−7 1.21 5.3836 · 10−8 0.98
30 3.0543 · 10−8 1.52 4.2808 · 10−7 1.20 2.6541 · 10−8 1.00
15 1.0289 · 10−8 1.53 1.8693 · 10−7 1.20 1.1811 · 10−8 1.06
7.5 3.2524 · 10−9 1.57 8.0447 · 10−8 1.21 4.4550 · 10−9 1.14
3.75 8.8397 · 10−10 1.63 3.3314 · 10−8 1.22 1.3276 · 10−9 1.26
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Figure 4.10: Local discretization errors in the non-isothermal model. Left: Spatial
discretization error for pressure, mass flow and temperature as a function of grid
points N . Right: Temporal discretization error as a function of time step ∆t.
Corresponding values are given in Tables 4.5 and 4.6.

4.3 Verification and validation

In the article by Oberkampf and Trucano [50] model verification in computational
fluid dynamics is defined as ”substantiation that a computerized model represents
a conceptual model within specified limits of accuracy”. Verification determines
if the programming and computational implementation of the model is correct,
and that one is solving the equations correct. Verification involves examining the
convergence of the numerical method and determining the spatial and temporal
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discretization errors. A key point in verification is also to compare computed results
with either an exact analytical solution or other numerical benchmark results in
the literature. Discretization errors were investigated in previous sections. In
the following computed results will be compared to other numerical results in the
literature.

Model validation is defined as ”substantiation that a computerized model within
its domain of applicability possesses a satisfactory range of accuracy consistent with
the intended application of the model”. It is the process of determining the degree
to which a model is an accurate representation of the real world, and is a check that
one is solving the correct equations. In this work model validation is performed
by comparing numerical results to measured values on one of Gassco’s offshore
pipelines.

4.3.1 Verification with literature

In order to verify the model and numerical method used, simulations were run using
the same setup and boundary conditions as in the work by Chaczykowski [19]. The
boundary conditions used by Chaczykowski were arbitrary selected, but represent
typical flow conditions for on-shore natural gas pipelines. The pipeline considered
has a length of L = 363 km with an internal diameter of D = 1.3836 m. The
average roughness of the pipe was ε = 1.5 · 10−6 m. The following gas composition
(mole fraction) was used: CH4 − 98.3455%, C2H6 − 0.6104%, C3H8 − 0.1572%,
iC4H10−0.0299%, nC4H10−0.0253%, iC5H12−0.0055%, nC5H12−0.004%, N2−
0.0303%, CO2 − 0.7918%. The ground thermal properties were Ta = 3.1 ◦C, soil
thermal conductivity λ = 1 W/(m·K), density ρ = 1640 kg/m3, heat capacity
cp = 1530 J/(kg·K) and burial depth 1.5 m. Thermal properties of the pipe wall
are given in Table 4.7.

Table 4.7: Thermal properties of pipe wall.

Material Thickness [mm] ρ [kg/m3] λ [W/(m·K)] cp [J/(kg·K)]
Internal coating 0.5 1800 0.52 1050
Steel 19.22 7830 45.3 500
External coating 3 940 0.4 1900

The following bounray conditions were used

p(0, t) = 8.4 MPa
T (0, t) = 296.65 K
Q(L, t) = f(t) m3/h (4.5)

where f(t) is shown in Figure 4.11. Note that the flow is given in m3/h (cubic
meters per hour) and not kg/s as in the previous sections. The GERG 88 equation
of state was used to determine the compressibility factor. Results for inlet flow rate,
outlet pressure and outlet temperature are presented in Figures 4.12, 4.13 and 4.14

45



4.3. Verification and validation

respectively. The computed results, using both the steady and unsteady external
heat transfer model, show good agreement with those of Chaczykowski [19]. The
implicit cell centered method was used in this study, while Chaczykowski uses
the implicit multistep Gears method [51] for the time integration and centered
differences for the spatial derivatives.
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Figure 4.11: Boundary condition for outlet flow rate.
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Figure 4.13: Results outlet pressure. Left: Results from Chaczykowski [19]. Right:
Results in this study. Results computed using both the steady and unsteady ex-
ternal heat transfer model.
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Figure 4.14: Results outlet temperature. Left: Results from Chaczykowski [19].
Right: Results in this study. Results computed using both the steady and unsteady
external heat transfer model.
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4.3.2 Model Validation

The model was validated by running simulations on one of Gasscos offshore pipelines.
The pipeline considered has a length of 650 km and internal diameter of 1.016 m.
Three different cases, each spanning a four day time period, were investigated.
Inlet mass flow, inlet temperature and outlet pressure were given as boundary
conditions.

Simulations were run using similar parameters and correlations which Gassco
currently uses today. The tuned BWRS equation of state was used to determine the
compressibility factor while the friction factor was computed from the Colebrook-
White correlation. The heat exchange between the gas and the surroundings was
modeled using both a steady external heat transfer model which Gassco currently
uses, and an unsteady external heat transfer model which includes heat accumu-
lation in the ground. The pipeline was divided into 98 grid points with a varying
∆x. For steep inclination the distance between two grid points was short, while for
little or no inclination the grid size was larger. The time step was ∆t = 60 s. The
pipe wall consists of three different layers, with thermal properties given in Table
4.8.

Table 4.8: Thermal properties of pipe wall.

Material Thickness [mm] ρ [kg/m3] λ [W/(m·K)] cp [kJ/(kg·K)]
Steel 24 7800 50 0.5
Asphalt 7 1300 0.74 1.9
Concrete 80 2500 2.9 0.65

The ground thermal conductivity was λ = 2 W/(m·K), density ρ = 2000 kg/m3,
heat capacity cp = 1420 J/(kg·K) and burial depth approximately 1.5 m. Results
are presented below.

Case 1

Boundary conditions for case 1 are given in Figure 4.15, and represent typical
transient conditions in offshore natural gas pipelines. Results for inlet pressure,
outlet mass flow and outlet temperature are presented in Figure 4.16. Both the
inlet pressure and outlet mass flow agree well with measured values over the entire
four day time period. However, considerable discrepancies between modeled and
measured outlet temperature are observable. The steady external heat transfer
model over predicts the amplitude of temperature changes in the flow compared
to the unsteady external heat transfer model. The difference between the modeled
and measured temperature is presented at the bottom right in Figure 4.16. For the
unsteady heat transfer model, the difference between the modeled and measured
temperature is fairly constant during the entire simulation, while for the steady
heat transfer approach it varies a lot more. This result indicates that using an
unsteady heat transfer model where the pipeline is buried under ground is a more
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Figure 4.15: Boundary conditions for 650 km offshore pipeline for case 1. Left inlet
mass flow, middle inlet temperature, right outlet pressure.

correct approach to model the heat transfer between the gas and the environment
compared to a steady heat transfer approach. However, the modeled temperature
using the unsteady heat transfer model is approximately 1.5− 1.75 ◦C lower than
the measured value. This deviation between modeled and measured outlet gas
temperature is investigated and discussed in Chapter 5. For the modeled inlet
pressure and outlet mass flow, only small differences between the unsteady and
steady external heat transfer models were observed.
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Figure 4.16: Case 1. Results for 650 km offshore pipeline operated by Gassco
for boundary conditions in Figure 4.15. Top inlet pressure, middle outlet mass
flow and bottom outlet temperature. Results computed using both the steady and
unsteady external heat transfer model. To the left computed results are compared
to measured values, while the difference between computed and measured values
are presented to the right.
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Case 2

Boundary conditions for case 2 are presented in Figure 4.17. Results for inlet
pressure, outlet mass flow and outlet temperature are presented in Figure 4.18. As
in case 1, the modeled inlet pressure and outlet mass flow agree well with measured
values. For the outlet temperature the steady heat transfer model over predicts
the amplitude of temperature changes in the flow compared to the unsteady heat
transfer approach. The modeled outlet temperature is approximately 0.5 ◦C below
the measured temperature. For the inlet pressure and outlet mass flow, using an
unsteady heat transfer model improves the results compared to the steady heat
transfer model. During the transient, a major difference in modeled inlet pressure
was observed. The difference between the two model approaches was 0.3 MPa (3
bar). For the outlet mass flow the unsteady heat transfer model agrees better with
measured values, especially after abrupt changes in the flow.
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Figure 4.17: Boundary conditions for 650 km offshore pipeline for case 2. Left inlet
mass flow, middle inlet temperature, right outlet pressure.
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Figure 4.18: Case 2. Results for 650 km offshore pipeline operated by Gassco
for boundary conditions in Figure 4.17. Top inlet pressure, middle outlet mass
flow and bottom outlet temperature. Results computed using both the steady and
unsteady external heat transfer model. To the left computed results are compared
to measured values, while the difference between computed and measured values
are presented to the right.
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Case 3

Boundary conditions for case 3 are presented in Figure 4.19. Results for inlet
pressure, outlet mass flow and outlet temperature are presented in Figure 4.20.
For the inlet pressure and outlet mass flow there is a small deviation between
modeled and measured values at the beginning of the simulation. As the governing
flow equations form a system of hyperbolic partial differential equations, initial
values for pressure, mass flow and temperature are needed along with appropriate
boundary conditions before running simulations. In Figure 4.20 initial conditions
were not correct, however after a short time period the computed flow values showed
good agreement with measured values. As in both the previous cases, the steady
heat transfer model over predict the amplitude of temperature changes in the flow
compared to the unsteady heat transfer model.
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Figure 4.19: Boundary conditions for 650 km offshore pipeline for case 3. Left inlet
mass flow, middle inlet temperature, right outlet pressure.
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Figure 4.20: Case 3. Results for 650 km offshore pipeline operated by Gassco
for boundary conditions in Figure 4.19. Top inlet pressure, middle outlet mass
flow and bottom outlet temperature. Results computed using both the steady and
unsteady external heat transfer model. To the left computed results are compared
to measured values, while the difference between computed and measured values
are presented to the right.
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Chapter 5

Discussion

Results for the one-dimensional flow model were presented in Chapter 4. In Section
4.3.2 the model was validated by running simulations on one of Gassco’s offshore
natural gas pipelines, with results presented in Figures 4.16, 4.18 and 4.20. Modeled
inlet pressure and outlet mass flow agree well with measured values, with only small
discrepancies present. There are however some deviations between modeled and
measured outlet temperature, with the difference being in the region 1 − 1.5 ◦C.
Such a deviation has also been observed by Gassco in their models.

In this Chapter errors and uncertainties in the model are discussed in detail.
It is claimed that discrepancies between modeled and measured values are not due
to numerical errors, but rather physical approximation errors of different processes
which are incorporated into the model. These processes, which include the friction
factor, equation of state and the heat exchange between the gas and the pipeline
surroundings will be discussed in detail. A detailed sensitivity analysis of the heat
transfer model is presented at the end of the chapter.

5.1 Errors and uncertainties

Computed results in Section 4.3.2 agree well with measured flow values from
Gassco’s offshore pipeline. However, small discrepancies are present, especially
in the outlet gas temperature, but also in the case of inlet pressure and outlet mass
flow. In this section numerical errors and simplifications in the one-dimensional
flow model will be discussed.

According to AIAA (American Institute of Aeronautics and Astronautics) guide-
lines [52] errors in computational fluid dynamics are defined as ”A recognizable de-
ficiency in any phase or activity of modeling and simulation that is not due to lack
of knowledge”, meaning that the deficiency is present and identifiable in the model.
Errors can be classified as acknowledged or unacknowledged. Acknowledged errors
include

• Physical modeling error
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5.1. Errors and uncertainties

• Computer round off error

• Iterative convergence error

• Discretization error

while unacknowledged errors include

• Computer programming error

• Usage error

Possible unacknowledged errors can be prevented through verification, as was done
in Section 4.3.1.

Computer round off errors occur because numbers on the computer are stored
with a certain precision, while iterative convergence errors occur because iterative
methods which are used in the model have a stopping criteria. None of these are
considered important in this work.

Discretization errors arise due to the fact that the governing equations are
represented as algebraic equations in discrete time and space. For unsteady flow
calculations discretization errors are present due to both spatial and temporal
discretization schemes. In previous Sections (4.1.2 and 4.2.3) an estimate for the
spatial and temporal discretization errors for pressure, mass flow and temperature
are given. For a correct choice of spatial step ∆x and time step ∆t discretization
errors do not introduce noticeable errors in the flow field solution.

Physical modeling errors are due to uncertainty in the formulation of the model
and deliberate simplifications which are made. Several parameters which are in-
corporated into the model have to be estimated. Some of these parameters, such
as the friction factor and compressibility factor, can not be determined from exact
relations, but rather from correlations which are based on empirical observations.
The uncertainties in these parameters are discussed later in this chapter. Deliberate
simplifications of the flow model are necessary in order to solve the governing equa-
tions in a fast and efficient way. The most important simplification are discussed
below.

One-dimensional assumption

Even though the flow is three-dimensional, a one-dimensional model is the only
feasible way to model the flow of natural gas through long distance high pressure
natural gas pipelines. The governing equations for one-dimensional compressible
viscous heat conducting flow presented in Section 2.1 are the result of averages
of the three-dimensional equations across the pipe cross-section. In the attached
research article [c] the process of transforming the energy equation into the one-
dimensional representation for turbulent flow was studied in detail. Using a turbu-
lent velocity profile it is shown that the dissipation term in Equation (2.3) is over
simplified. It was determined that a correction factor, close to unity, should be
included in the representation of the dissipation term in the energy equation. This
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dimensionless factor depends on the Reynolds number of the flow and the pipe sur-
face roughness. For low Reynolds numbers (Re ' 104) it reduces the dissipation by
as much as 7%, irrespective of roughness. For high Reynolds numbers (Re≥ 107)
and roughness in the high range of the micron decade, the dissipation is increased
by 10%.

For a 150 km pipeline with roughness 10 µm operating at a Reynolds number of
5 ·107 it was shown that including a correction factor on the dissipation term in the
energy equation gave an increase in outlet gas temperature of 1 ◦C compared to
no correction. For pipelines operated by Gassco the surface roughness is typically
2 − 3 µm. For such smooth pipes the correction factor will be close to unity,
even for high Reynolds numbers. In this case, including a correction factor on
the dissipation term in the energy equation has almost no effect on the computed
temperature compared to no correction. The usual expression for the dissipation
term in Equation (2.3) can therefore safely by used.

Linearized model

The governing equations for one-dimensional compressible flow are non-linear.
When using finite differences to compute the numerical solution, and all terms
are discretized in a fully implicit way, the governing equations form a system of
non-linear equations. These can be solved using the Newton-Raphson method,
as was done by Kiuchi [14] and Abbaspour and Chapman [16]. This is however
time consuming, especially for long pipelines and complicated networks. A much
more efficient way to solve the governing equations is to linearize the non-linear
terms about the previous time step. The procedure can be found in the article by
Luskin [48].

In the attached research article [a] a linearized model is compared to a non-linear
model. For the hydraulic model in Chapter 3 (Equations (3.4)-(3.5)) the friction
term in the momentum equation is the only non-linear term. It is shown in detail
how this term is approximated in the linearized model. For both the hydraulic and
full non-isothermal there is no observable difference between solving the linearized
model or the full non-linear model. The computational time is greatly reduced when
linearizing the non-linear terms about the previous time step. A linear model is
therefore a valid approximation for natural gas flow in long pipelines, even under
transient conditions.

Decoupling hydraulic and thermal model

The governing equations for continuity, momentum and energy are in general cou-
pled and have to be solved simultaneously at each time step. This is also done in
most of the simulations in this work. However, it could be advantageous to solve
the thermal model separately from the hydraulic model in order to reduce the com-
putational time for each time step. This was investigated in the attached research
article [b]. Solving the hydraulic model (continuity and momentum equations) sep-
arately one time step ahead of the thermal model (energy equation) simplifies the
governing equations and reduces the computational time. This was shown to only

57



5.2. Test case setup

introduce small errors in the solution. Similar results were reported in the article
by Barley [53].

However, in most cases it is just as convenient to solve all equations simulta-
neously at each time step, as was done in the majority of this work. It should
however be noted that in some special cases it could be necessary to solve the hy-
draulic model separately from the thermal model, which is shown in research article
[e]. Using the cell centered method it is shown that when a discontinuous change
in inlet temperature is given as a boundary condition, unphysical oscillations in
the temperature are introduced into the flow. This can be avoided by solving the
thermal model separately from the hydraulic model using a different discretization
than the cell centered method.

A possible source of error which is not listed above is incorrect boundary con-
ditions. When modeling the flow through natural gas pipelines, operational data is
used as boundary values in the flow model. These data have been measured by flow
metering devices, and contain some uncertainty. In the work by Langelandsvik [5]
it is claimed that the measurement uncertainty for pressure is 0.03− 0.04%, mass
flow 0.5% and temperature 0.04%. In the following it is assumed that the mea-
surement uncertainty is so small that it does not effect the modeled results in any
significant way.

5.2 Test case setup

In order to investigate and discuss different physical processes in the flow model,
a test case scenario is constructed. The pipeline considered is a 650 km pipeline
with a diameter of 1 m, with the setup shown in Figure 5.1.

L = 650 km

Air

Sea Water

25 km25 km

100 m
Ground

Figure 5.1: Offshore natural gas pipeline which is buried under ground on-shore
for the first and final 25 km. The sea bottom is at a depth of 100 m below sea
level. The total length is 650 km.

Offshore natural gas pipelines are typically buried under ground for the first and
final parts of the pipe length where the gas departs the processing terminal and
arrives at the receiving terminal. In Figure 5.1 this has been included by assuming
that the pipeline is buried under ground for the first and final 25 km. Between
this the pipeline is lying on the seabed at an elevation of 100 m below sea level.
Unless stated otherwise, the pipeline is lying on the seabed fully exposed to sea
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water like that in Figure 5.1. The boundary conditions used for inlet mass flow,
inlet temperature and outlet pressure are shown in Figure 5.2. These represent
typical transient conditions, with a large reduction in mass flow and temperature
occurring after one day.
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Figure 5.2: Boundary conditions used in test case scenario. Left inlet mass flow,
middle inlet temperature and right outlet pressure.

The equivalent sand grain roughness was 3 µm while the gas composition was the
same as previously: CH4 − 89.16%, C2H6 − 7.3513%, C3H8 − 0.5104%, nC4H10 −
0.0251%, iC4H10−0.0311%, nC5H12−0.0009%, iC5H12−0.0024%, N2−0.6980%,
CO2 − 2.2208%. Thermal properties of the pipe wall were the same as in Section
4.3.2 and are given in Table 5.1. The ground thermal conductivity was λ = 2
W/(m·K), density ρ = 2000 kg/m3, heat capacity cp = 1420 J/(kg·K) and burial
depth (ground level to top of pipe) 1 m. The ambient air temperature was 6 ◦C
while the sea bottom temperature was 4 ◦C.

Table 5.1: Thermal properties of pipe wall.

Material Thickness [mm] ρ [kg/m3] λ [W/(m·K)] cp [kJ/(kg·K)]
Steel 24 7800 50 0.5
Asphalt 7 1300 0.74 1.9
Concrete 80 2500 2.9 0.65

5.3 Friction factor and surface roughness

Transport pipelines operated by Gassco are made of steel and usually have a layer
of concrete and asphalt on the outside. Before being put into service the pipelines
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are coated on the inside. Internal coating reduces the friction between the gas
and the pipe wall, therefore reducing the cost of the operating compressor. When
determining the friction factor f from the Colebrook-White correlation in Equation
(2.9) the equivalent sand grain roughness of the pipeline surface is required. The
equivalent sand grain roughness corresponds to that which Nikuradse used in his
experiments when measuring the pressure drop in pipelines [54]. Based on these
results he developed the friction factor correlation for rough turbulent pipe flow,
which is the first term in the Colebrook-White correlation in Equation (2.9). Based
on the discussion in the thesis by Langelandsvik [5] there does not seem to be a
clear way of how to determine the equivalent sand grain roughness. Measurements
by Langelandsvik on pipelines operated by Gassco suggest an equivalent sand grain
roughness of approximately 6 µm. However, both Langelandvik [5] and Piggott [55]
show by examples how the roughness changes over time, especially before and
after pigging of the pipeline. In Gassco’s case, when performing capacity tests
in offshore pipelines the effective roughness is estimated by operating the pipeline
at steady state conditions, with stable flow rate, inlet pressure, outlet pressure,
inlet temperature and gas composition. The wall roughness is then used to tune
the model so that the simulated results coincide with measured values. How the
equivalent sand grain roughness effects the flow is illustrated in Figure 5.3, which
shows the modeled inlet pressure for the pipeline described in Section 5.2. Three
different roughness values were used, 2, 3 and 4 µm. The difference in inlet pressure
between 3 and 4 µm is approximately 0.15 MPa (1.5 bar). The same was found for
the difference between 2 and 3 µm. For outlet mass flow and outlet temperature
there was no observable difference between the different roughness values.
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Figure 5.3: Results inlet pressure using an equivalent sand grain roughness of 2,
3 and 4 µm in the Colebrook-White formula. Difference between each curve is
approximately 0.15 MPa.
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An equivalent sand grain roughness of 2, 3 and 4 µm is somewhat lower than that
measured by Langelandsvik on coated transport pipelines. However, Langelandsvik
shows by example [5] (page 142) how the measured friction factor from a long
distance offshore pipeline all lie on a Colebrook-White curve with an equivalent
sand grain roughness of 1 − 2 µm. In other words, running a simulation under
steady state conditions and tuning the sand grain roughness in order to match the
simulated results with measured values corresponds to a sand grain roughness of
1−2 µm, considerably lower compared to measured values of the surface roughness.
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Figure 5.4: Friction factor f as a function of Reynolds number using the Colebrook-
White (CW) and GERG friction factor formulas for an equivalent sand grain rough-
ness of 3 µm.

Having run several steady state simulations tuning the surface roughness in order
to match computed result with measured values, a similar conclusion was drawn by
the author. Even though the surface roughness was claimed to be approximately 5
µm, after tuning the equivalent sand roughness was determined to be approximately
2 µm. For results in Section 4.3.2 the equivalent sand grain roughness was 2
µm. Experimental results from Langelandsvik et al. [22] suggest a more abrupt
transition from smooth to rough turbulent flow compared to that predicted by
Colebrook-White. This transition takes place in the Reynolds number range which
Gassco typically operates in (Re ∼ 5 ·107). In Section 2.2 the GERG friction factor
formula (Equation (2.10)) is claimed to give a more abrupt transition from smooth
to rough turbulent flow. For an equivalent sand grain roughness of 3 µm the friction
factor f as a function of Reynolds number using both the Colebrook-White and
GERG formula is shown in Figure 5.4. In the GERG friction factor formula the
transition and draught factor were set to n = 3 and dr = 1.01 respectively. In the
Reynolds number range 107−108 these two relations show quite different behaviors,
with the GERG formula predicting a considerably lower friction factor compared
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5.3. Friction factor and surface roughness

to the Colebrook-White formula.
In Figure 5.5 the modeled inlet pressure using the Colebrook-White formula

with an equivalent sand grain roughness of 3 µm is shown. When using the GERG
friction factor formula with the same equivalent sand grain roughness, the modeled
inlet pressure is lower compared to that computed using the Colebrook-White for-
mula. In order to get similar results using the GERG friction factor formula, the
equivalent sand grain roughness had to be increased to 5 µm. The corresponding
modeled inlet pressure is also shown in Figure 5.5. This result agrees well with
that computed using the Colebrook-White formula with an equivalent sand grain
roughness of 3 µm. In this work it has been observed that in order to match the
modeled pressure with measured values, the equivalent sand grain roughness has
to be approximately 2 µm. This is considerably lower than measured values of
approximately 5− 6 µm [5]. Owing to the more abrupt transition from smooth to
rough turbulent flow, results in Figure 5.5 suggest that the GERG formula can be
used to give similar results as the Colebrook-White formula with a larger equiv-
alent sand grain roughness. Results in Figures 5.4 and 5.5 are not sufficient to
suggest that the GERG friction factor formula is more correct than Colebrook-
White. However, compared to Colebrook-White the GERG formula can be used
with an equivalent sand grain roughness closer to the measured surface roughness.
Although several others ( [5], [24], [55]) have stated that the transition from smooth
to rough turbulent flow is more abrupt than that predicted by Colebrook-White,
it still seems to be the preferred choice when determining the friction factor in
natural gas pipelines.
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Figure 5.5: Modeled inlet pressure using Colebrook-White and GERG friction
factor formulas. The equivalent sand grain roughness had to be increased from 3
to 5 µm for the GERG friction formula in order to get similar results to those using
the Colebrook-White formula.
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5.4 Equation of state

Different equations of states commonly used when modeling the flow through nat-
ural gas pipelines were presented in Section 2.3. These included SRK, Peng-
Robinson, BWRS, GERG 88 and GERG 2004. Gassco currently uses a version
of BWRS which is especially tuned for hydrocarbons. Results for the compress-
ibility factor Z as a function of pressure at different temperatures were presented
in Figure 2.2. As commented on previously, up to 10 MPa the different equations
predict similar values for the compressibility factor Z. But in the range 10 − 25
MPa there is a considerable difference between the computed values. To investi-
gate the effect of the different equations of state, simulations were run using all the
presented correlations.

Results for inlet pressure using all the different equations of state are presented
at the top of Figure 5.6, with BWRS* being the tuned BWRS currently used
by Gassco. At the bottom the difference in inlet pressure between the indicated
equation of state and the tuned BWRS* is shown. The GERG 2004 equation of
state is the most recently developed, and the only one which is explicitly stated
to be valid for pressures up to 30 MPa. It is therefore assumed to be the most
accurate equation of state presented in this work. Off all the equations of state
presented here, the tuned BWRS* shows the best agreement with GERG 2004. The
GERG 2004 gives an inlet pressure which is approximately 0.1 MPa (1 bar) below
the tuned BWRS*. This difference is fairly constant over the entire simulation
period during both steady and transient conditions. Results for outlet mass flow
and outlet temperature are given in Figure 5.7. Only small differences in outlet
mass flow and outlet temperature can be observed between the different equations
of state, and the sensitivity of the selection of the equation of state is not that
dominant as in the case of the modeled inlet pressure. Referring to Figure 2.2 in
Section 2.3, the different equations of state do not differ that greatly for pressures
up to 10 MPa. Above this the difference is more dominant. As the outlet pressure
of the pipeline lies in the region 9 − 10 MPa (Figure 5.2), it is expected that the
sensitivity of the equation of state on the outlet is not that significant as on the
inlet.

As the GERG 2004 equation of state is valid up to 30 MPa, it would be the pre-
ferred choice when modeling the flow through high pressure natural gas pipelines.
It can also be used to calculate other thermodynamical properties such as heat
capacities, enthalpy, entropy and internal energy, and can handle a gas mixture
with up to 18 different components. However, it is computationally demanding
compared to other equations of state such as BWRS and GERG 88. For the exam-
ples above, the computational time for GERG 2004 was almost ten times that of
BWRS and GERG 88. The reason for this great increase in computational time is
the vast amount of coefficients which are required in the GERG 2004 equation of
state. Therefore, owing to its considerably shorter computational time compared
to GERG 2004, the tuned BWRS would still be the preferred choice when model-
ing the flow of natural gas through long distance pipelines. The difference in inlet
pressure between GERG 2004 and the tuned BWRS in Figure 5.6 is approximately
0.1 MPa. However, since this difference is fairly constant over the entire simulation
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Figure 5.6: Top: Results inlet pressure using the different equations of state.
BWRS* is the tuned BWRS currently used by Gassco. Bottom: Difference in-
let pressure between indicated equation of state and the tuned BWRS*.

period during both steady and transient conditions, it can be compensated for by
tuning the equivalent sand grain roughness in order to match the inlet pressure of
the BWRS and GERG 2004 equation of state.

The Joule-Thomson effect is cooling upon expansion, with the Joule-Thomson
coefficient defined in Equation (2.29). This coefficient depends on the partial
derivative of Z with respect to T at constant p. Small differences in computed
outlet temperature in Figure 5.7 indicate that the Joule-Thomson effect is not sen-
sitive to the selection of the equation of state. Even though the numerical values
of the partial derivatives of Z are small, they still have a large influence on the
flow. In Figure 5.8 this was investigated by setting all the partial derivatives equal
to zero. For the modeled inlet pressure no difference during steady state condi-
tions was observed. However, during the transient, setting the partial derivatives
of Z equal to zero gave a much higher inlet pressure. For the outlet mass flow
small differences can be seen in Figure 5.8. For the outlet temperature, setting
the partial derivatives equal zero and neglecting the Joule-Thomson effect gave an
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Figure 5.7: Results for outlet mass flow (top) and outlet temperature (bottom)
using the different equations of state.

outlet temperature which was approximately 5 ◦C higher. For the considered case,
during expansion the Joule-Thomson effect cools the gas by approximately 5 ◦C.
The partial derivatives of Z can not be neglected in the detailed flow model.
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Figure 5.8: Results setting partial derivatives of Z equal zero (dZ = 0). Top inlet
pressure, middle outlet mass flow and bottom outlet temperature. Result compared
to simulation where partial derivatives of Z were not equal to zero (dZ 6= 0).

5.5 Effect of varying composition

Results in Section 4.3.2 were computed using a varying gas composition. The
composition was given as a boundary condition at the inlet and was tracked along
the pipeline until it reached the outlet. The basic principle of how to model the
flow with a varying composition is illustrated in Figure 5.9.

A pipeline is discretized by N nodes from i = 1 to i = N . At time t0 there is
no information available about the composition of the gas along the pipeline. The
composition at each node is therefore assumed to be the same as that of the inlet.
During a time step ∆t the gas has moved a distance d1 = u1 ·∆t, where u1 is the
velocity at node 1. The distance d1 corresponds to the length of the first batch with
a composition corresponding to that of the inlet at time t0. At time t2 = t0 + 2∆t
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t = t0

t1 = t0 + ∆td1 = u1 ·∆t

i = 1 i = 2 i = N

t2 = t0 + 2∆td2 = d1 + u1 ·∆t

Figure 5.9: Principle behind how to model the flow with a varying composition.
Gas is divided into batches, each with a separate composition.

the first batch has moved a distance d2, while a new batch has entered the pipeline
directly behind the first batch. At t2, the first batch which entered the pipeline
has now passed node i = 2. The composition at i = 2 has now been updated with
the composition of batch 1. By advancing the solution further in time, the process
is repeated until the batch reaches the end of the pipeline. In Figure 5.10 a typical
North Sea natural gas mixture is presented. The composition varies in time, with
data for a three day period given. Methane (C1) is the dominating component and
is presented to the left. After one day there is a considerable decrease in methane,
which is compensated for by an increase in ethane (C2), which is presented in the
middle in Figure 5.10. Other dominating components are propane (C3), nitrogen
(N2) and carbon dioxide (CO2), which are also presented in the middle graph.
Heavier components such as butane (C4) and pentane (C5) are only present in
small amounts, and are presented to the right in Figure 5.10.

Using the setup in Section 5.2, simulations were run with a varying and constant
composition. For the constant composition, the composition at time step 1 in
Figure 5.10 was used. Results for inlet pressure and outlet mass flow are presented
in Figure 5.11. For the inlet pressure, a small difference of approximately 0.1 MPa
can be observed during the transient, which occurs when the methane amount
decreases and is compensated for by a larger amount of ethane. As ethane is a
heavier component than methane, using a varying composition will give a higher
inlet pressure, as the gas in the pipeline has a higher molecular weight. Apart
from the period where the methane content decreases significantly, no observable
difference between using a constant and varying composition was observed. For
the outlet mass flow to the right in Figure 5.11, a small difference of 10 kg/s at the
end of the simulation was observed, while for the outlet temperature there was no
difference.

67



5.6. Heat transfer model

0 1 2 3
84

85

86

87

88

89

90

Time days

m
o
le

 f
ra

c
ti
o
n

 

 

0 1 2 3
0

2

4

6

8

10

12

Time days
m

o
le

 f
ra

c
ti
o
n

 

 

0 1 2 3
0

0.01

0.02

0.03

0.04

0.05

0.06

Time days

m
o
le

 f
ra

c
ti
o
n

 

 

C1

C2

C3

N
2

CO
2

iC4

nC4

iC5

nC5

Figure 5.10: Gas composition in mole fraction. Left: C1. Middle: C2, C3, N2 and
CO2. Right: iC4, nC4, iC5 and nC5.
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Figure 5.11: Effect of varying composition. Left inlet pressure, right outlet mass
flow. Simulation were run using a varying composition (that in Figure 5.10) and a
constant composition. For the constant composition, the composition at time step
one in Figure 5.10 was used.

5.6 Heat transfer model

In Section 2.4 the external heat transfer model which predicts the heat exchange
between the gas and the surrounding environment was presented. Currently Gassco
uses a steady heat transfer model, based on a total heat transfer coefficient U , to
model the heat exchange. In Section 4.3.1, where the flow model was verified
with results from Chaczykowski [19], the steady heat transfer model over predicts
the amplitude of temperature changes in the flow compared to an unsteady heat
transfer model. This was also observed in the model validation case in Section
4.3.2. The difference between the steady and unsteady external heat transfer model
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is that the unsteady model takes into account heat accumulation in the ground.
All results in previous sections suggest that heat accumulation in the ground and
pipe wall should be included in the model. This statement may also be supported
by considering the Fourier number of the heat equation. The radial heat equation
which is solved in the domain surrounding the pipeline takes the form

ρcp
∂T

∂t
=

λ

r

∂

∂r

(
r
∂T

∂r

)
(5.1)

which can be expressed on dimensionless form as

∂T ∗

∂t∗
=

Fo

r∗
∂

∂r∗

(
r∗

∂T ∗

∂r∗

)
(5.2)

where ∗ represents a dimensionless variable. Fo is the Fourier number which is
defined as

Fo =
αt

L2
(5.3)

where α = λ/ρcp is the thermal diffusivity, t the characteristic time and L the
characteristic length through which heat conduction occurs. The Fourier number
is the ratio of the heat conduction rate to the heat storage rate. For small Fourier
numbers (much less than 1) the heat storage rate is greater than the heat conduction
rate, underlining that heat accumulation should be included in the model. For the
example in Section 4.3.1, the thermal diffusivity was approximately 4 · 10−7 m2/s,
the characteristic length 1.5 m and the characteristic time 25 hours, giving a Fourier
number of approximately 0.02. For such a small Fourier number the heat storage
is much great than the heat conduction rate, underlining that heat accumulation
in the ground and pipe wall should be included in the model.

Results in Section 4.3.2 show that when using an unsteady external heat trans-
fer model, the profile of the outlet gas temperature agrees well with the measured
temperature, and is a considerable improvement compared to the steady external
heat transfer model which over predicts the amplitude of temperature changes in
the flow. An unsteady heat transfer model also gives improved results for the
modeled inlet pressure and outlet mass flow during transient conditions. This can
especially be observed in Figure 4.18. For the inlet pressure, only small differences
were observed during steady state conditions. However, during the transient there
is a considerable difference of 0.3 MPa (3 bar) between the two solution strategies.
To the right in Figure 4.18 the difference between the modeled and measured pres-
sure is presented, with the unsteady heat transfer model showing better agreement
with measured values. For the outlet mass flow there is also a noticeable im-
provement, especially when there are abrupt changes in the flow. The significant
improvement in modeled pressure and mass flow further underlines the need for an
unsteady heat transfer model. Although the unsteady heat transfer model agrees
well with respect to the amplitude of temperature changes in the flow, discrepan-
cies between the modeled and measured gas temperature are still present. Possible
causes behind these discrepancies will be discussed in the following sections.
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5.6.1 Sensitivity of heat transfer model

For the unsteady external heat transfer model the most important parameters are;
the thermal conductivity, heat capacity and density of each thermal layer, the burial
depth and whether the pipeline is buried under ground or not, and the ambient
temperature. The sensitivity of these parameters will be investigated. Two cases
will be considered. In the first case the setup is the same as that in Section 5.2,
with the ambient air and sea bottom temperature being 6 ◦C and 4 ◦C respectively.
This case corresponds to typical winter conditions. In the second case the ambient
air and sea bottom temperatures are 15 ◦C and 7 ◦C respectively, corresponding
to conditions during the summer season.

Case 1 - winter

For case 1 during the winter season the outlet gas temperature corresponds to that
in Figure 5.7. In Table 5.2 and Table 5.3 the results of increasing the thermal con-
ductivity λ and heat capacity cp of each thermal element separately by a factor two
is presented. ∆T is the difference in outlet gas temperature, ∆p the difference in
inlet pressure and ∆ṁ the difference in outlet mass flow. In all cases the difference
is the average of the last two days.

Table 5.2: Sensitivity of thermal conductivity in unsteady heat transfer model. λ
is increased by a factor 2. ∆T , ∆p and ∆ṁ is the difference in outlet temperature,
inlet pressure and outlet mass flow.

λ [W/(m·K)] factor ∆T [◦C] ∆p [MPa] ∆ṁ [kg/s]
Steel 50 2 0.0108 4.64· 10−5 0.0045
Asphalt 0.74 2 0.2131 6.67· 10−4 0.0795
Concrete 2.9 2 0.6060 0.0016 0.2141
Soil 2 2 0.4987 -0.0092 -0.0546

Table 5.3: Sensitivity of heat capacity in unsteady heat transfer model. cp is
increased by a factor 2. ∆T , ∆p and ∆ṁ is the difference in outlet temperature,
inlet pressure and outlet mass flow.

cp [J/(kg·K)] factor ∆T [◦C] ∆p [MPa] ∆ṁ [kg/s]
Steel 500 2 -0.0127 3.1 · 10−5 0.037
Asphalt 1900 2 -0.002 5.7 · 10−5 0.0047
Concrete 650 2 -0.0146 -2.0· 10−4 0.0136
Soil 1420 2 -0.0464 0.0017 0.059

Although increasing the thermal conductivity and heat capacity by a factor two is
a considerable amount, the difference in computed outlet temperature was not that
significant. For the heat capacity cp, the difference in outlet temperature was of the
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order 0.01 ◦C. For the thermal conductivity λ, the change in outlet temperature
was more noticeable. By increasing the thermal conductivity of the concrete and
soil by a factor two, the outlet temperature was determined to be approximately
0.5 ◦C higher. For the pipe wall, the thermal properties are believed to be fairly
accurate, with an increase in thermal conductivity of the concrete by 100% an
unlikely scenario. However, the thermal conductivity of the soil contains more
uncertainty, and most likely contains seasonal variation. An increase (or decrease)
in thermal conductivity of the soil by a factor 2 is therefore not that unlikely.
Increasing the density ρ by a factor two would give the same result as increasing
the heat capacity cp by a factor two, as it is the product of the heat capacity and
density which enters into the model. The results of an increase in density by a
factor two is therefore the same as the results of an increase in heat capacity by a
factor two in Table 5.3. For the inlet pressure and outlet mass flow the difference
in computed results were not that significant as for the temperature.

The burial depth, being the distance from the ground level to the outer wall of
the pipeline was originally 1 m. The effect of varying the burial depth is presented
in Table 5.4. For a shorter burial depth, the outlet temperature increases, while
for a larger burial depth it decreases. The burial depth is only significant for the
sections where the pipeline is buried under ground, which for the setup considered
is the first and final 25 km.

The effect of increasing and decreasing the length in which the pipeline is buried
under ground was investigated, with results presented in Table 5.5. By increasing
the length in which the pipeline is buried under ground at the inlet and outlet
to 30 km, the outlet gas temperature is reduced by approximately 0.5 ◦C, while
decreasing the length to 20 km increased the gas temperature by approximately
0.6 ◦C. The burial length is an important parameter to know in order to model the
correct temperature at the outlet.

Table 5.4: Effect of burial depth. ∆T , ∆p and ∆ṁ is the difference in outlet
temperature, inlet pressure and outlet mass flow. The original burial depth was 1
m.

Burial depth [m] ∆T [◦C] ∆p [MPa] ∆ṁ [kg/s]
0.4 0.5466 -0.01 -0.0843
0.6 0.2737 -0.0052 -0.0481
0.8 0.1089 -0.0021 -0.0186
1 0 0 0

1.2 -0.0780 0.0016 0.0128
1.4 -0.1370 0.0028 0.0214
1.6 -0.1831 0.0038 0.0266
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Table 5.5: Effect of distance which pipeline is buried under ground. ∆T , ∆p and
∆ṁ is the difference in outlet temperature, inlet pressure and outlet mass flow.
The original burial length was 25 km.

Burial length [km] ∆T [◦C] ∆p [MPa] ∆ṁ[kg/s]
20 0.6640 -0.0087 0.0565
25 0 0 0
30 -0.5233 0.0084 -0.0519

The effect of the ambient temperature was investigated, with results given in Table
5.6. The original air temperature was 6 ◦C and sea bottom temperature 4 ◦C. A
change in sea bottom temperature was more significant than a change in ambient
air temperature. An increase in sea bottom temperature of 1 ◦C gave an increased
outlet gas temperature of 0.26 ◦C, while for an increase in ambient air temperature
of 1 ◦C the difference in outlet gas temperature was 0.08 ◦C. Results in Table 5.6
indicate that the model is more sensitive to the ambient sea bottom temperature
towards the end of the pipeline compared to the beginning. For a 1 ◦C increase
in sea bottom temperature for the first 300 km, the difference in outlet gas tem-
perature was −0.0029 ◦C, while for a corresponding increase along the final 300
km the difference was 0.2672 ◦C. When only increasing the ambient temperature
along the final 150 km, the difference in outlet temperature was 0.2652 ◦C. When
increasing the ambient sea bottom temperature from 4 ◦C to 6 ◦C along the final
300 km, the difference in outlet gas temperature was approximately 0.5 ◦C. The
same difference was found when increasing the temperature along the final 150 km.

Table 5.6: Effect of change in ambient temperature. ∆T , ∆p and ∆ṁ is the
difference in outlet temperature, inlet pressure and outlet mass flow.

Old T [◦C] New T [◦C] ∆T [◦C] ∆p [MPa] ∆ṁ [kg/s]
Air 6 7 0.0825 6.2·10−4 0.0137
Air 6 9 0.2480 0.0018 0.041
Air 6 4 -0.1648 -0.0012 -0.0274
Sea 4 5 0.2644 0.0435 -0.0207
Sea 4 6 0.5262 0.0867 -0.0456
Sea 4 3 -0.2671 -0.0438 0.0164
Sea first 300 km 4 5 -0.0029 0.0203 0.0381
Sea final 300 km 4 5 0.2672 0.0232 -0.0596
Sea final 150 km 4 5 0.2652 0.0097 -0.0358
Sea final 300 km 4 6 0.5314 0.0463 -0.1190
Sea final 150 km 4 6 0.5275 0.0193 -0.0711
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Case 2

In the second case the ambient air and sea bottom temperature were set to 15 ◦C
and 7 ◦C respectively. These values correspond to typical conditions during the
summer season. Apart from this, the flow setup was the same as in Section 5.2.
The outlet gas temperature is shown in Figure 5.12. Compared to Figure 5.7, the
outlet temperature of the gas is approximately 5 ◦C higher.
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Figure 5.12: Outlet gas temperature for case 2 with ambient air and sea bottom
temperature of 15 ◦C and 7 ◦C respectively.

As in case 1, the sensitivity of parameters which enter into the heat transfer model
were investigated in detail. The sensitivity of the thermal conductivity and heat
capacity of each thermal layer is presented in Table 5.7 and Table 5.8. The thermal
conductivity was increased by a factor 2, with the most noticeable difference being
observed for the concrete and soil layer. As commented on earlier, the thermal
conductivity of the concrete is thought to be relatively accurate, and an increase
by a factor 2 is therefore very unlikely. However, the thermal conductivity of the
soil is more uncertain. For an increase in soil thermal conductivity by a factor 2,
the difference in outlet gas temperature is approximately 1 ◦C. Results in Table
5.8 again confirm that the model is not sensitive to a change in heat capacity
and density of the medium surrounding the pipeline. Even for an increase in heat
capacity by a factor 2, the difference in outlet gas temperature was less than 0.1
◦C.

The effect of burial depth and length are presented in Table 5.9 and Table 5.10.
It can be observed that, compared to case 1, the model is not that sensitive to a
change in burial length of the pipeline. When decreasing the burial length to 20
km, the difference in outlet gas temperature was 0.24 ◦C, while in case 1 it was
0.66 ◦C. The most likely reason for this is that the difference between the ambient
and the gas temperature at the outlet is a lot more in case 2 compared to case 1.
As the ambient temperature at the outlet is a lot more compared to the gas, there
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will be energy transferred from the surroundings to the gas. This compensates for
the Joule-Thomson effect, which is cooling upon expansion. Because of the large
temperature difference, the heat exchange rate at the outlet is high, and the gas is
not cooled by the Joule-Thomson effect to the same extent as when the temperature
difference between the gas and the ambient is small. For a shorter burial length,
this leads to an increase in outlet gas temperature.

The sensitivity of the ambient temperature is presented in Table 5.11. As in
case 1, the model is more sensitive to a change in ambient temperature along the
final part of the pipeline compared to the first part. For all computations in this
case, the difference in inlet pressure and outlet mass flow is not that significant as
for the outlet temperature.

Table 5.7: Sensitivity of thermal conductivity in unsteady heat transfer model. λ
is increased by a factor 2. ∆T , ∆p and ∆ṁ is the difference in outlet temperature,
inlet pressure and outlet mass flow.

λ [W/(m·K)] factor ∆T [◦C] ∆p [MPa] ∆ṁ [kg/s]
Steel 50 2 0.0167 8.8·10−5 0.0038
Asphalt 0.74 2 0.3336 0.0015 0.0674
Concrete 2.9 2 0.9792 0.0041 0.181
Soil 2 2 1.0198 -0.0045 -0.0119

Table 5.8: Sensitivity of heat capacity in unsteady heat transfer model. cp is
increased by a factor 2. ∆T , ∆p and ∆ṁ is the difference in outlet temperature,
inlet pressure and outlet mass flow.

cp [J/(kg·K)] factor ∆T [◦C] ∆p [MPa] ∆ṁ [kg/s]
Steel 500 2 -0.0182 2.9·10−4 0.0349
Asphalt 1900 2 -0.0029 5.3 ·10−5 0.0044
Concrete 650 2 -0.0223 -2.0 ·10−4 0.0132
Soil 1420 2 -0.0666 0.0015 0.0544
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Table 5.9: Effect of burial depth. ∆T , ∆p and ∆ṁ is the difference in outlet
temperature, inlet pressure and outlet mass flow. The original burial depth was 1
m.

Burial depth [m] ∆T [◦C] ∆p [MPa] ∆ṁ [kg/s]
0.4 1.1010 -0.0056 -0.0596
0.6 0.5551 -0.003 -0.0343
0.8 0.2230 -0.0012 -0.0129
1 0 0 0

1.2 -0.1606 9.2·10−4 0.0082
1.4 -0.2818 0.0016 0.0133
1.6 -0.3760 0.0022 0.0156

Table 5.10: Effect of distance which pipeline is buried under ground. ∆T , ∆p and
∆ṁ is the difference in outlet temperature, inlet pressure and outlet mass flow.
The original burial length was 25 km.

Burial length [km] ∆T [◦C] ∆p [MPa] ∆ṁ [kg/s]
20 0.2405 -0.0101 0.0596
25 0 0 0
30 -0.2084 0.0095 -0.0527

Table 5.11: Effect of change in ambient temperature. ∆T , ∆p and ∆ṁ is the
difference in outlet temperature, inlet pressure and outlet mass flow.

Old T [◦C] New T [◦C] ∆T [◦C] ∆p [MPa] ∆ṁ [kg/s]
Air 15 16 0.0850 6.1·10−4 0.0131
Air 15 18 0.2551 0.0018 0.0393
Air 15 14 -0.0850 -6.1 ·10−4 -0.0131
Sea 7 8 0.3432 0.0425 -0.0286
Sea 7 9 0.6835 0.0858 -0.0612
Sea 7 6 -0.2609 -0.0438 0.0254
Sea first 300 km 7 8 -0.0033 0.0194 0.0287
Sea final 300 km 7 8 0.3462 0.0227 -0.0556
Sea final 150 km 7 8 0.3446 0.0095 -0.0317
Sea final 300 km 7 9 0.6894 0.0457 -0.1132
Sea final 150 km 7 9 0.6861 0.0194 -0.0653
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5.6.2 One-dimensional approximation

The unsteady external heat transfer model presented in Section 2.4.2 is a one-
dimensional model, with the setup shown in Figure 2.7. Each thermal layer is
represented by a coaxial cylindrical shell, with the boundary condition on the outer
most shell being the ambient temperature Ta. This implies that the boundary
condition along the entire circular domain is Ta, which in general is not correct,
as the temperature at a distance D0 above the pipeline will in general be different
from that at a distance D0 below. In the one-dimensional external heat transfer
model, the heat flow is assumed to be the same in all radial directions.

In order to set correct boundary conditions, the two-dimensional heat conduc-
tion equation has to be solved in the domain surrounding the pipeline, as in the
work by Barletta et al. [56]. It is shown that the temperature field in the soil sur-
rounding the pipeline is not symmetric, and that the one-dimensional assumption
in general is not valid. This is also illustrated in research article [d] in the Ap-
pendix. The heat flux from a natural gas pipeline is computed by solving both the
one-dimensional and two-dimensional heat conduction equation. The computed
heat flux between the gas and the surroundings was determined to be approxi-
mately 50% more in the one-dimensional model compared to the two-dimensional
model. To determine how this will effect the flow, the one-dimensional flow model
should in future be coupled to a two-dimensional external heat transfer model.
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Conclusions and Outlook

6.1 Conclusions

Transmission of natural gas through long distance high pressure offshore pipelines
was modeled by numerically solving the governing equations for one-dimensional
compressible viscous heat conducting flow. The governing equations are solved us-
ing an implicit finite difference scheme. The cell centered method where the flow
values are computed at the midpoint between two grid points was used. Bound-
ary conditions can easily be handled and the method uses centered differences to
approximate the partial derivatives in space. Centered differences are preferred
over one-sided approximations as these are stable for any CFL number. When
discretizing all terms in a fully implicit way, the governing equations form a system
of non-linear equations. To avoid having to solve a system of non-linear equations,
the non-linear terms are linearized about the previous time step to give a system
of linear equations.

Both the spatial and temporal discretization errors for pressure, mass flow and
temperature were computed and are determined to be small compared to typical
flow values. Other model simplifications, such as the one-dimensional assumption,
model linearization and thermal decoupling are discussed in detail. These do not
effect the results in any significant way. The model was validated by running
simulations on a long distance offshore natural gas pipeline operated by Gassco.
Computed results agreed well with measured values, but some discrepancies were
observed, especially in the outlet gas temperature. These discrepancies are most
likely due to physical approximation errors. Three different parameters which enter
into the model are discussed in detail; the friction factor, equation of state and heat
transfer term.

The friction factor was determined from the traditional Colebrook-White corre-
lation, which is currently used by Gassco today. It has previously been stated that
the transition from smooth to fully rough turbulent flow is more abrupt than that
suggested by Colebrook-White. The alternative friction factor formula suggested
by GERG was investigated. This formula gives a more abrupt transition com-
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pared to Colebrook-White, however it contains two additional parameters, with
little information available as to what numerical values these should be assigned.
Because of this it is difficult to claim whether the GERG friction factor formula
is an improvement of the Colebrook-White formula. A possible improvement of
the Colebrook-White formula would only be possible by performing experiments
in large scale test laboratories, something which has not been covered by the scope
of this work.

The sensitivity of the selection of the equation of state for high pressure pipelines
was investigated by comparing the SRK, Peng-Robinson, BWRS, GERG 88 and
GERG 2004 equations of state. Gassco currently uses a BWRS equation of state
with coefficients which are especially tuned for hydrocarbons. GERG 2004 is the
most recently developed equation of state, and also believed to be the most accurate
at high pressures (18 - 20 MPa). When modeling the flow of natural gas through
high pressure pipelines, the major difference between the different equations of state
was observed in the modeled inlet pressure. Comparison between GERG 2004 and
the tuned BWRS currently used by Gassco gave a difference in inlet pressure of
0.1 MPa. This difference was observed during both steady state and transient
conditions. The major disadvantage of GERG 2004 is its computational time,
which is significantly longer compared to BWRS. Taking this into account, the
tuned BWRS equation of state is most likely still the best alternative in Gassco’s
case. As the difference in computed inlet pressure between GERG 2004 and BWRS
was fairly constant during both steady and transient conditions, the difference can
be compensated for by tuning the equivalent sand grain roughness in such a way
that the inlet pressure when using BWRS matches that of GERG 2004.

An unsteady external heat transfer model, which takes into account heat ac-
cumulation in the ground, was compared to a steady external heat transfer model
currently used by Gassco. It is shown by example that the steady external heat
transfer model over predicts the amplitude of temperature changes in the flow.
Even for an offshore pipeline, which is only buried under ground for a short dis-
tance at the beginning and end of the pipeline, including heat accumulation in the
ground is important in order to model the correct outlet gas temperature. The
unsteady heat transfer model also improves the modeled inlet pressure and outlet
mass flow. Compared to the steady heat transfer model the unsteady heat transfer
model significantly improves the modeled outlet gas temperature. However, there
is still a discrepancy between modeled and measured outlet gas temperature. The
difference was observed to be in the region 1 − 1.5 ◦C. Such a deviation has also
been observed by Gassco in their models. The most important parameters identi-
fied that can account for this discrepancy is the ambient sea bottom temperature,
soil thermal conductivity and pipeline burial length.

6.2 Outlook

In order to achieve better agreement between modeled and measured outlet gas
temperature, the following key points should be addressed in future research.

• Thermal properties of the pipe wall and soil are important when modeling
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the outlet gas temperature, especially the concrete and soil thermal conduc-
tivity. While data for the concrete thermal conductivity is believed to be
fairly accurate, the soil thermal conductivity is thought to be more uncer-
tain. Accurate data for the soil thermal conductivity at both the inlet and
outlet of the pipeline could improve the modeled gas temperature.

• The unsteady external heat transfer model is a one-dimensional model. Cor-
rect ambient boundary conditions in the domain surrounding the pipeline is
not possible in a one-dimensional model, only in the two-dimensional case. To
investigate how this effects the flow, a two-dimensional external heat transfer
model should be coupled to a one-dimensional flow model. In a real time ap-
plication, solving the two-dimensional heat transfer model at every grid point
would most likely not be feasible owing to the increase in computational time.
However, it still important to know how a two-dimensional external heat
transfer model would effect the flow compared to a one-dimensional model.
It could be possible to derive an expression for the one-dimensional external
heat transfer model which compensates for the one-dimensional assumption.
Such an expression should be valid for both steady and unsteady flow condi-
tions.

• In this work, only pipelines which were buried under ground or fully exposed
to sea water were considered. Partially buried pipelines were not covered in
this work. This is a key point which should be considered in detail, as many
offshore pipelines lying on the seabed are partially buried. Heat transfer
from a partially buried pipeline was investigated by Morud and Simonsen
[57], however they only considered the steady one-dimensional heat transfer
model. By implementing a two-dimensional heat transfer model, the domain
surrounding the pipeline can be constructed such that it replicates a partially
buried pipeline. By doing this it can be determined how the heat transfer
from partially buried pipelines, including heat accumulation in the ground,
effects the flow.
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Chapter 7

Summary of research articles

Article [a]

J.F. Helgaker. An implicit method for 1D unsteady flow in a high pressure transmis-
sion pipeline. In Proceedings of First ECCOMAS Young Investigators Conference
2012, Aveiro, 2012.

Explicit and implicit finite difference are implemented in order to numerically solve
the governing equations for unsteady one-dimensional compressible flow. Implicit
finite difference methods are unconditionally stable and are therefore often used
when modeling the flow of natural gas through high pressure transmission pipelines.
As the governing equations are non-linear, discretizing the equations in a fully im-
plicit way gives a system of non-linear equations which has to be solved at every
time step. This can be computationally expensive, especially for long pipelines and
complicated networks. In this article it shown by example how the governing equa-
tions can be linearized to give a system of linear equations, which can be solved
using linear algebra.

The computational time of the linear model is compared to that of the non-
linear model, and shown to be considerably less. For transient flow through a 650
km pipeline there was no observable difference in results between the linear and
non-linear model. This confirms that a linear assumption when modeling the flow
of natural gas through long distance pipelines is valid. Also, the simple hydraulic
model is compared to the full non-isothermal model. A clear difference in modeled
pressure and mass flow was observed, confirming that a full non-isothermal model
should be used when modeling the flow of natural gas through long distance high
pressure pipelines.

Article [b]

J.F. Helgaker and T. Ytrehus. Coupling between Continuity/Momentum and En-
ergy Equation in 1D Gas Flow. Energy Procedia 26 (2012), pages 82-89, In Pro-
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ceedings of 2nd Trondheim Gas Technology Conference, Trondheim 2011.

Transportation of natural gas through high pressure offshore transmission pipelines
is simulated by numerically solving the governing equations for one-dimensional
compressible viscous heat conducting flow. Since the flow is compressible and vis-
cous, and the temperature is a function of pressure and density, the continuity,
momentum and energy equation should be solved simultaneously at each time step
when using an implicit finite difference method to solve the governing equations.
However, in some cases it may be advantageous to solve thermal model (energy
equation) separately from the hydraulic model (continuity and momentum equa-
tions). In this article, solving the energy equation separately one time step after
the continuity and momentum equations is investigated.

Decoupling the thermal model from the hydraulic model makes the resulting
system of equations easier to solve and reduces the computational time for each
time step. It is shown by example that this simplification does not effect the results
in any major way, indicating that the changes in temperature are sufficiently slow to
allow the energy equation to be solved separately one time step after the continuity
and momentum equations. For a pipeline discretized by N points, solving all three
governing equations simultaneously implies finding the inverse of a (3N−3)×(3N−
3) matrix at each time step. When solving the thermal model separately from the
hydraulic model, the inverse of a (2N −2)× (2N −2) and (N −1)× (N −1) matrix
is required at each time step. This procedure reduces the computational time of
each time step.

Article [c]

T. Ytrehus and J.F. Helgaker. Energy Dissipation Effect in the One-Dimensional
Limit of the Energy Equation in Turbulent Compressible Flow. Journal of Fluids
Engineering - Transactions of The ASME, Vol. 135 (6) (2013).

When modeling the flow of natural gas through long distance pipelines, the gov-
erning equations for one-dimensional compressible flow are found by averaging the
three-dimensional equations over the pipe cross-section.

In this article a turbulent velocity profile is used when deriving the one-dimensional
version of the energy equation in turbulent compressible flow. The result is a cor-
rection factor, close to unity, on the usual expression of the dissipation term in
the energy equation. This factor, which depends on the Reynolds number of the
flow and the pipe surface roughness, will to some extent affect the temperature
distribution along the pipeline. For low Reynolds numbers (Re ' 104) it reduces
the dissipation by as much as 7%, irrespective of roughness. For high Reynolds
numbers (Re ≥ 107) and roughness in the high range of the micron decade, the dis-
sipation is increased by 10%. If the pipeline is also thermally isolated such that the
flow can be considered adiabatic, the effect of turbulent dissipation gains further
importance.

It is shown by examples how a correction factor can give changes in outlet
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temperature of up to 1◦C or more, depending upon thermal insulation and the
length of the pipe. However, for pipelines operated by Gassco the surface roughness
is typically in the range 3−5 µm. In this roughness range and for Reynolds numbers
of approximately 107 the correction factor is so close to unity that it does not effect
the temperature distribution along the pipeline in any significant way. In this case
the usual expression for the dissipation term in the energy equation may be used.

Article [d]

J.F. Helgaker, A. Oosterkamp and T. Ytrehus. Transmission of Natural Gas
through Offshore Pipelines - Effect of unsteady heat transfer model. In B. Skallerud
and H. Andersson, editors, MekIT’13: Seventh national conference on Computa-
tional Mechanics, pages 113-131, Akademika Publishing 2013

The heat exchange between the gas and the pipeline surroundings in investigated
in detail. A steady state external heat transfer model, based on using a total heat
transfer coefficient U , is compared to an unsteady external heat transfer model
which takes into account heat accumulation in the ground. It is shown by exam-
ple that a steady heat transfer model over predicts the amplitude of temperature
changes in the flow compared to an unsteady heat transfer model. Results are
compared to measured values from an offshore natural gas pipeline. These confirm
that the steady heat transfer model over predicts the amplitude of temperature
changes in the flow compared to an unsteady heat transfer model, even for an off-
shore pipeline which is only buried under ground for a short length at the beginning
and end of the pipeline. It is also shown by example that during large transients
a considerable difference in modeled inlet pressure is observed between the steady
and unsteady external heat transfer model.

The considered heat transfer model is one-dimensional. This implies that the
boundary condition along the entire circular domain is the ambient temperature
Ta, which in general is not correct, as the temperature at a distance D0 above
the pipeline will in general be different from that at a distance D0 below. In the
one-dimensional external heat transfer model, the heat flow is assumed to be the
same in all radial directions. Correct boundary conditions can only be set in a
two-dimensional model. The heat flux from a two-dimensional model was therefore
compared to the heat flux from the one-dimensional model. For the considered
case, it was determined that the one-dimensional heat transfer model over predicts
the heat flux by approximately 50% compared to a two-dimensional model.

Article [e]

J.F. Helgaker, B. Müller and T. Ytrehus. Transient Flow in Natural Gas Pipelines
using Implicit Finite Difference Schemes. Submitted to Journal of Fluids Engineer-
ing, June 2013.
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The transmission of natural gas through high pressure pipelines is modeled by nu-
merically solving the governing equations using implicit finite difference schemes.
Two main approaches are considered. In the first case the backward Euler method
is considered, with spatial derivatives being approximated by both first order one-
sided upwind and second order centered differences. In the second case the implicit
cell centered method is considered, where flow values are computed at the midpoints
between two grid points.

The backward Euler method with upwind approximations for the spatial deriva-
tives is unstable for CFL numbers less than 1. The von Neumann stability anal-
ysis confirms this. The backward Euler method with centered differences and the
implicit cell centered method are stable for any CFL number. However, for a
discontinuous change in inlet temperature both methods introduce unphysical os-
cillations in the temperature profile along the pipeline. A solution strategy where
the thermal model is solved separately from the hydraulic model using a differ-
ent discretization technique is suggested. The hydraulic model is solved using the
implicit cell centered method, while the thermal model is solved using the back-
ward Euler upwind method. This solution strategy is stable for any CFL number
and does not introduce unphysical oscillations for a discontinuous changes in inlet
temperature.

Article [f ]

J.F. Helgaker, A. Oosterkamp, L.I. Langelandsvik and T. Ytrehus. Validation of
1D Flow Model for Transmission of Natural Gas through Offshore Pipelines. Sub-
mitted to Journal of Natural Gas Science and Engineering, June 2013

The 1D flow model is validated by running simulations on an offshore natural
gas pipeline operated by Gassco. Modeled results agree well with measured values,
however some discrepancies are present, which most likely are due to physical ap-
proximation errors. The influence of different physical processes which enter into
the flow model are discussed in detail. These include the friction factor, equation
of state and the heat exchange between the gas and the surroundings.

The influence of the equation of state for high pressure natural gas pipelines
is investigated. The SRK, Peng-Robinson, BWRS, GERG 88 and GERG 2004
equations of state are investigated. The most noticeable difference was observed in
inlet pressure, with the difference between GERG 2004 and BWRS being 0.1 MPa
(1 bar).

The heat exchange between the gas and the surroundings was modeled using
both a steady external heat transfer model and an unsteady external heat trans-
fer model. By comparing computed results to measured values the steady heat
transfer model over predicts the amplitude of temperature changes in the flow,
while the unsteady model agrees a lot better with measured values. Including heat
accumulation in the ground gives improved results for the modeled temperature.
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Appendix

Derivation of Governing Eq. for 1D flow

The governing equations for 1D unsteady compressible viscous heat conducting
flow are

Continuity
∂ρ

∂t
+

∂(ρu)
∂x

= 0 (7.1)

Momentum
∂(ρu)

∂t
+

∂(ρu2 + p)
∂x

= −fρu2

2D
− ρg sin θ (7.2)

Energy

ρcv

(
∂T

∂t
+ u

∂T

∂x

)
+ T

(
∂p

∂T

)
ρ

∂u

∂x
=

fρu3

2D
− 4U

D
(T − Ta) (7.3)

The energy equation is in the non-conservative internal energy form. The density
ρ can be exchanged for the pressure p using a real gas equation of state

p

ρ
= ZRT (7.4)

The mass flow rate is defined as

ṁ = ρuA (7.5)

Continuity Equation

The equation of state (Equation (7.4)) can be written as

ln ρ = ln p− lnZ − lnR− lnT (7.6)

Taking the derivative of Equation (7.6) with respect to time

1
ρ

∂ρ

∂t
=

1
p

∂p

∂t
− 1

Z

∂Z

∂t
− 1

T

∂T

∂t
(7.7)
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The compressibility factor is a function of pressure and temperature, Z = Z(p, T )

∂Z

∂t
=
(

∂Z

∂p

)
T

∂p

∂t
+
(

∂Z

∂T

)
p

∂T

∂t
(7.8)

Equation (7.7) can now be written

1
ρ

∂ρ

∂t
=
[
1
p
− 1

Z

(
∂Z

∂p

)
T

]
−

[
1
T

+
1
Z

(
∂Z

∂T

)
p

]
(7.9)

The continuity equation can now be written

∂p

∂t
=

[
1
T

+
1
Z

(
∂Z

∂T

)
p

] [
1
p
− 1

Z

(
∂Z

∂p

)
T

]−1
∂T

∂t

− ZRT

pA

[
1
p
− 1

Z

(
∂Z

∂p

)
T

]−1
∂ṁ

∂x
(7.10)

Momentum Equation

For the momentum equation the expression for the gas velocity is needed

u =
ṁZRT

pA
(7.11)

which can be rewritten

lnu = ln ṁ + lnZ + lnR + lnT − ln p− lnA (7.12)

Taking the derivative of Equation (7.12) with respect to time

1
u

∂u

∂x
=

1
ṁ

∂ṁ

∂x
+

1
Z

∂Z

∂x
+

1
T

∂T

∂x
− 1

p

∂p

∂x
(7.13)

The derivative of the compressibility factor with respect to x is

∂Z

∂x
=
(

∂Z

∂p

)
T

∂p

∂x
+
(

∂Z

∂T

)
p

∂T

∂x
(7.14)

Inserting this into Equation (7.13)

1
u

∂u

∂x
=

1
ṁ

∂ṁ

∂x
+

[
1
T

+
1
Z

(
∂Z

∂T

)
p

]
∂T

∂x
−
[
1
p
− 1

Z

(
∂Z

∂p

)
T

]
∂p

∂x
(7.15)

Assuming a constant pipe cross-section A, the momentum equation can be written

1
A

∂ṁ

∂t
+

1
A

(
u

∂ṁ

∂x
+ ṁ

∂u

∂x

)
+

∂p

∂x
= −fṁu

2D
− ρg sin θ (7.16)
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Inserting the expressions for u, ρ and ∂u/∂x gives the final result for the momentum
equation

∂ṁ

∂t
=

ṁZRT

pA

(
−2

∂ṁ

∂x
+ ṁ

[
1
p
− 1

Z

(
∂Z

∂p

)
T

]
∂p

∂x
− ṁ

[
1
T

+
1
Z

(
∂Z

∂T

)
p

]
∂T

∂x

)

− A
∂p

∂x
− fZRTṁ|ṁ|

2DAp
− pA

ZRT
g sin θ (7.17)

The momentum equation was derived from the conservative form, opposed to
Chaczykowski [19] who derived it from the non-conservative form. The momentum
equation derived from the non-conservative form is

∂ṁ

∂t
= −ṁZRT

pA

∂ṁ

∂x
+ ṁ

[
1
p
− 1

Z

(
∂Z

∂p

)
T

]
×
(

∂p

∂t
+

ṁZRT

pA

∂p

∂x

)
− ṁ

[
1
T

+
1
Z

(
∂Z

∂T

)
p

]
×
(

∂T

∂t
+

ṁZRT

pA

∂T

∂x

)
− A

∂p

∂x
− fZRTṁ|ṁ|

2DAp
− pA

ZRT
g sin θ (7.18)

Equation (7.17) and (7.18) look different, but mathematically they are the same.
In Equation (7.18) all the terms in the continuity equation (Equation (7.10)) can
be identified. The sum of these terms is zero, meaning Equation (7.18) can be
simplified to (7.17). Equation (7.17) is thought to be easier to work with as there
is only one time derivative, opposed to Equation (7.18) which has three.

Energy Equation

In the energy equation (Equation (7.3)) an expression has already been found for
the gas velocity u and the derivative of the velocity ∂u/∂x. In the Joule-Thomson
term an expression is needed for the derivative of the pressure with respect to
temperature. Using the real gas equation of state(

∂p

∂T

)
ρ

= ρR

[
Z + T

(
∂Z

∂T

)
ρ

]
(7.19)

Using this the internal energy equation is developed into

∂T

∂t
= −ṁZRT

pA

∂T

∂x
− ṁ(ZRT )2

pAcv
T

[
1
T

+
1
Z

(
∂Z

∂T

)
ρ

]

×

(
1
ṁ

∂ṁ

∂x
−
[
1
p
− 1

Z

(
∂Z

∂p

)
T

]
∂p

∂x
+

[
1
T

+
1
Z

(
∂Z

∂T

)
p

]
∂T

∂x

)

+
f

2cvD

(
ZRT |ṁ|

pA

)3

− 4U
ZRT

pcvD
(T − Ta) (7.20)
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Abstract. Explicit and implicit finite difference methods have been used to numerically solve the governing equations for

one-dimensional compressible viscous heat conducting flow. For the implicit method, to avoid having to solve a system of non-

linear equations, the non-linear terms are linearized about the previous time step. The linearized model is shown to give just as

good results as the non-linear model and the computational time is greatly reduced. Accurate, efficient and stable methods for

compressible 1D unsteady flow calculations are desirable for industrial applications. The presented model was validated using

operational data from high pressure natural gas transmission pipelines.

Keywords: CFD; numerical methods; unsteady compressible 1D flow.

1 INTRODUCTION

Natural gas is an important energy resource in Europe and the rest of the world and can be transported over long

distances through high pressure transmission pipelines. For offshore pipelines lying on the seabed, measurements of

the state of the gas, such as pressure, flow rate, composition and temperature are usually done only at the inlet and

outlet. To know the state of the gas between these two points one has to rely on computer models. These models

are used to monitor the gas, providing estimated time of arrival for unwanted quality disturbances and predicting

the pipeline hydraulic capacity. It is crucial that these models are as accurate as possible, but at the same time they

have to be fast and efficient as conditions in the pipeline are usually transient. As offshore transport pipelines are

becoming longer and longer, the need for mathematical models which are both accurate and fast is becoming more

important.

The simulation of natural gas in pipelines involves the numerical solution of a system of initial valued partial dif-

ferential equations which are of hyperbolic type. An overview of different numerical techniques used to solve the

governing equations for 1D unsteady compressible flow can be found in base literature articles, for instance by

Thorley and Tiley [1].

The method of characteristics was popular a few decades ago, see for example the article by Wylie [2]. It is however

slow compared to other methods such as finite difference and the time step is restricted by the CFL condition.

Finite difference methods are commonly used to solve 1D unsteady flow problems. Poloni [3] used the explicit

finite difference method which is fast and easy to implement, but as with the method of characteristics the time step

is limited by the CFL condition. The implicit finite difference method is unconditionally stable and is therefore

commonly used in commercial tools. It can however be computationally more expensive, especially if one has to

solve a system of non-linear equations at each time step. The fully implicit model was solved by Kiuchi [4] and

Abbaspour and Chapman [5].
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The model by Kiuchi assumes isothermal conditions, while Abbaspour and Chapman solve the non-isothermal

model. If changes in temperature along the pipeline are small one can assume an isothermal model, which means

only the continuity and momentum equations have to be solved for the flow. However, for large pipelines operating

at high pressures one has to, as shown by Osiadacz [6], solve the non-isothermal model.

Both Kiuchi and Abbaspour and Chapman discretize the equations in a fully implicit way and use the Newton-

Raphson technique to solve the system of non-linear equations. Although the method is stable and gives good

results [5], it is computationally expensive and becomes impractical for long pipelines and complex networks. In

the following a linearized implicit finite difference method will be investigated. The non-linear terms are linearized

about the previous time step as in the article by Luskin [7]. It will be compared to the non-linear method and

validated using operational data from offshore high pressure transmission pipelines.

2 MATHEMATICAL MODEL

2.1 Governing Equations

The governing equations for 1D unsteady compressible viscous heat conducting flow are

Continuity
∂ρ

∂t
+

∂(ρu)

∂x
= 0 (1)

Momentum
∂(ρu)

∂t
+

∂(ρu2 + p)

∂x
= −fρu2

2D
− ρg sin θ (2)

Energy

ρcv

(

∂T

∂t
+ u

∂T

∂x

)

+ T

(

∂p

∂T

)

ρ

∂u

∂x
=

fρu3

2D
+ ρq (3)

The continuity and momentum equations are expressed in conservative form while the energy equation is in the non-

conservative internal energy form. The density ρ can be exchanged for the pressure p by using a real gas equation

of state
p

ρ
= ZRT (4)

where Z = Z(p, T ) is the compressibility factor. The ratio between pressure p and density ρ is the speed of sound

squared, i.e. p/ρ = c2. sin θ is the pipe inclination angle, f the friction factor which can be found from the

Colebrook-White [8] correlation
1√
f

= −2 log

(

ε

3.7D
+

2.51

Re
√

f

)

(5)

where ε is the surface roughness, D the pipeline diameter and Re the Reynolds number of the flow. The last term in

the energy equation is the heat transfer term between the gas and the medium surrounding the pipeline

ρq = −4U

D
(T − Ta) (6)

where U is the total heat transfer coefficient and Ta the ambient temperature.

2.2 Simple model

A simple model (SM) for 1D unsteady flow is based on the model by Kiuchi [4]. Trading the density ρ for the

pressure p and introducing the mass flow rate ṁ = ρuA (A being the pipeline cross-section) the continuity and

momentum equations are developed into
∂p

∂t
+

c2

A

∂ṁ

∂x
= 0 (7)

∂ṁ

∂t
+ A

∂p

∂x
= −fc2ṁ|ṁ|

2DAp
(8)

The pipeline is assumed to be horizontal and the convective term in the momentum equation has been neglected. Ki-

uchi assumed an isothermal model and therefore a constant speed of sound. In this article the SM is a non-isothermal

model and the energy Equation (3) is solved together with Equations (7) and (8) to determine the temperature along

the pipeline. The speed of sound is then determined at every point and is not assumed constant.
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2.3 Full model

In the full model (FM) no terms are neglected when finding the partial differential equations for pressure, mass flow

and temperature. The procedure can be found in the article by Chaczykowski [9]. The result is

∂p

∂t
=

[

1

T
+

1

Z

(

∂Z

∂T

)

p

]

[

1

p
− 1

Z

(

∂Z

∂p

)

T

]

−1
∂T

∂t
− ZRT

pA

[

1

p
− 1

Z

(

∂Z

∂p

)

T

]

−1
∂ṁ

∂x
(9)

∂ṁ

∂t
=

ṁZRT

pA

(

−2
∂ṁ

∂x
+ ṁ

[

1

p
− 1

Z

(

∂Z

∂p

)

T

]

∂p

∂x
− ṁ

[

1

T
+

1

Z

(

∂Z

∂T

)

p

]

∂T

∂x

)

− A
∂p

∂x
− fZRTṁ|ṁ|

2DAp
− pA

ZRT
g sin θ (10)

∂T

∂t
= −ṁZRT

pA

∂T

∂x
− ṁ(ZRT )2

pAcv

T

[

1

T
+

1

Z

(

∂Z

∂T

)

p

]

×
(

1

ṁ

∂ṁ

∂x
−
[

1

p
− 1

Z

(

∂Z

∂p

)

T

]

∂p

∂x
+

[

1

T
+

1

Z

(

∂Z

∂T

)

p

]

∂T

∂x

)

+
f

2cvD

(

ZRT |ṁ|
pA

)3

+
q

cv

(11)

Equations (9-11) are almost identical to the ones in the article by Chaczykowski, the only difference is that the mo-

mentum equation is derived from the conservative form, while Chaczykowski derives it from the non-conservative

substantial derivative form.

3 NUMERICAL METHODS

The governing equations form a system of initial valued partial differential equations which are of hyperbolic type

and have to be solved numerically. Explicit and implicit finite difference methods will be investigated.

3.1 Explicit finite difference method

There are several different explicit methods which can be used for 1D unsteady flow. First order approximations are

in general not sufficient when modeling transients in gas pipelines as these are unstable [1]. Higher order methods

are therefore needed, e.g. the Lax-Wendroff or MacCormack scheme which are both 2nd order multistep meth-

ods. Poloni [3] used the two step differential Lax-Wendroff method, while Liang [10] used the TVD-MacCormack

scheme to solve the 1D shallow water equations, but the method can be applied to 1D unsteady pipe flows. In this

article the 3rd order TVD Runge-Kutta method by Gottlieb and Chu [11] was used for the time derivatives, while

2nd order centered differences were used for the spatial derivatives. For the SM in Section (2.2), Equations (7) and

(8) can be written in the form

∂q

∂t
+ A

∂q

∂x
= S (12)

where q = [p, ṁ]T , A is a 2x2 coefficient matrix and S the source term vector. The 3rd order TVD Runge-Kutta

method advances the solution to time level n + 1 by performing the steps

q(1) = qn + ∆tR(qn)

q(2) =
3

4
qn +

1

4
(q(1) + ∆tR(q(1)))

qn+1 =
1

3
qn +

2

3
(q(2) + ∆tR(q(2))) (13)



J.F. Helgaker | Young Investigators Conference 2012 4

where R are the vectors of the right hand side of (qi)t = −(qi)x + Si. The 2nd order centered difference scheme

for spatial derivatives of a variable y discretized from x1 to xN is

∂y

∂x
=

















dy(x1)
dx

dy(x2)
dx
...

dy(xN−1)
dx

dy(xN)
dx

















=
1

2∆x















−3 4 −1 0 · · · 0
−1 0 1 0 · · · 0

...
. . .

. . .
. . . · · ·

...

0 · · · 0 −1 0 1
0 · · · 0 1 −4 3





























y(x1)
y(x2)

...

y(xN−1)
y(xN )















+ O(∆x2) (14)

One sided differences are used at the boundaries x1 and xN . The time step ∆t in the explicit method is restricted by

the stability condition of the 3rd order TVD Runge-Kutta method.

3.2 Fully implicit finite difference method

Fully implicit methods are unconditionally stable. Compared to explicit methods the time step is not restricted by

the CFL condition. Both Kiuchi [4] and Abbaspour and Chapman [5] discretize the equations in a fully implicit

way. The partial derivatives with respect to time are approximated by

∂y

∂t
=

yn+1
i+1 + yn+1

i − yn
i+1 − yn

i

2∆t
(15)

the partial derivatives in space are approximated by

∂y

∂x
=

yn+1
i+1 − yn+1

i

∆x
(16)

and the individual terms by

y =
yn+1

i+1 + yn+1
i

2
(17)

where y represents p, T and ṁ. The method is claimed to be first order correct in space and second order correct in

time [5]. For a pipe which is discretized by N nodes there will be 3N values of p, T and ṁ and (3N-3) equations.

A boundary value is assigned each variable, meaning there are (3N-3) unknowns at each time level n+1. Whether

applied to the SM in Section (2.2) or the FM in Section (2.3) the governing equations for the fully implicit method

form a system of non-linear equations. Kiuchi and Abbaspour and Chapman use the Newton-Raphson technique

to solve the system of non-linear equations. In this article the fsolve function in MATLAB which uses the Trust-

Region-Dogleg Algorithm was used.

3.3 Linear implicit finite difference model

While the explicit method in Section (3.1) is easy and efficient to solve, the time step is limited to small values by the

stability condition. The fully implicit method in Section (3.2) is stable, but because the discretized equations form a

system of non-linear equations the method is time consuming. It would be favorable to have a method which is both

fast and stable. The solution is to linearize the non-linear terms in the fully implicit method about the previous time

step and solve the linear system of equations. A variable y at time level n+1 can be written as a first order Taylor

expansion

yn+1
i = yn

i + ∆t(yn
i )t + O(∆t2) (18)

For the SM in Section (2.2) the only non-linear term is the friction term in the momentum equation. This term can

according to Luskin [7] be (assuming ṁ > 0) written as

K
(ṁn+1)2

pn+1
= K

ṁn

pn
(ṁn + 2∆tṁt) + O(∆t2) (19)

where K = fc2/2DA. The pressure has been taken from the previous time step and the first order Taylor expansion

has been used for the mass flow. Inserting Equations (15) and (17) for the spatial derivative and the individual terms

in Equation (19), the friction term is developed into
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K
(ṁn+1)2

pn+1
≈ K

(mn
i+1 + mn

i )

(pn
i+1 + pn

i )

(

mn+1
i+1 + mn+1

i − mn
i+1 + mn

i

2

)

(20)

Using this result, Equations (7) and (8) now form a system of linear equations, which can be solved in an efficient

way using simple linear algebra.

4 RESULTS

The presented numerical methods will be investigated for both the SM and FM. In Section( 4.1) a 650 km pipe with

constructed boundary conditions has been investigated. In Section( 4.2) the FM has been validated using operational

data from high pressure natural gas transmission pipelines.

4.1 Comparison of models and numerical methods

A 650 km pipeline transporting natural gas with a molecular weight of 18 was divided into 100 sections with a

discretization length of 6.5 km. The diameter was 1 meter and the inclination angle was set to zero. The setup was

similar to that of Chaczykowski [12]. The following boundary conditions were assigned.

p(0, t) = 16MPa

T (0, t) = 25◦C

ṁ(L, t) = f(t) (21)

f(t) is shown in Figure 1.
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) 
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g
/s

]

Figure 1: Boundary condition for the outlet mass flow.

The total heat transfer coefficient was set to 4 W/m2K and the ambient temperature to 4 ◦C . The SM in Sec-

tion (2.2) was solved by both the explicit, linearized implicit and the non-linear implicit method. Figure 2 shows the

computed outlet pressure for the linearized and non-linear implicit methods. The two methods gave almost identi-

cal results, but the computational time was substantially less for the linearized method compared to the non-linear

method. Comparison of computational times are given in Table 1. For the SM the linear implicit method was

over 90 times faster than the non-linear implicit method. A close up view of the pressure drop during the transient is

shown to the right in Figure 4. The difference between the two is less than 0.01 MPa and shows that the non-linear

terms can be linearized about the previous time step without effecting the results in any major way.

An estimation of the local spatial discretization error for the pressure in the SM using the linear implicit finite

difference method is given to the left in Figure 3. The numerical error has been plotted at two different times, t=100h
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Figure 2: Outlet pressure for the SM using the linearized and non-linear implicit finite difference method. The two

methods give almost identical results. The computational time is greatly reduced using the linear method.
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Figure 3: Left: Spatial discretization error scaling for pressure in the SM using the linearized implicit method.

The error has been plotted at two different times, t = 100h when the conditions are transient and t = 250h when the

conditions are steady state. The local error is higher during the transient. Right: Error in outlet pressure as a function

of time for different number of grid points N. In both figures the error has been scaled with the outlet pressure for

the finest grid.
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Figure 4: Left: Outlet pressure for the SM and FM using the linearized implicit finite difference method. Right:

Close up view of outlet pressure during the transient.
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Figure 5: Comparison of the SM and FM using the linearized implicit finite difference method. Left: Inlet mass

flow. Right: Outlet temperature.
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during transient conditions and t=250h during steady state conditions. The error is larger when the conditions are

transient. The spatial discretization error for the outlet pressure as a function of time for different grid sizes is shown

to the right. The temporal discretization error was found to be of the same order of magnitude as the spatial. Similar

estimates for the discretization errors were also found using the FM.

The difference between the SM and FM using the linear implicit method is shown to the left in Figure 4. During

steady state the two models give almost identical results, while during the transient there is a noticeable difference in

outlet pressure which at most is approximately 0.04 MPa. Figure 5 shows the inlet mass flow and outlet temperature

for the SM and FM. The computational time for the FM was only a factor 1.1 larger than for the SM. To get as

accurate results as possible the FM should be used instead of the SM.

Results for the SM using the explicit method is shown to the right in Figure 4. As expected it is similar to the

linear and non-linear implicit method. The reason why it is slightly different compared to the non-linear implicit

method is that the explicit method is third order correct in time and second order correct in space, while the non-

linear method is second order correct in time and first order correct in space. Because the time step in the explicit

method is restricted by the CFL condition, ∆t in the explicit method was smaller than in the implicit methods. The

computational time for each time step is shorter for the explicit method, but because the total number of time steps is

larger for the explicit method compared to the implicit method the total computational time is shorter for the implicit

method. This, combined with the fact that the implicit method is unconditionally stable makes the linear implicit

finite difference method the preferred choice.

Table 1: Ratio of computational times for different methods in Section (4.1). The SM using the linear implicit finite

difference method was used as the reference.

Method Time step ∆ t Ratio computational time

Linearized implicit SM 60 s 1

Explicit SM 10 s 3.3

Linearized implicit FM 60 s 1.1

Non-linear implicit SM 60 s 92.1

4.2 Validation with operational data

The implicit methods were validated using operational data from high pressure natural gas pipelines. Data was taken

from offshore pipelines in the North Sea transporting natural gas from Norway to continental Europe and the UK.

Simulated results were compared to measured data for a 650 km pipeline with a diameter of approximately 1 meter.

When modeling the flow of natural gas in offshore pipelines the gravity term in the momentum equation can not be

neglected due to the height difference between the sea level and the sea bottom. Close attention needs to be paid to

the discretization length. When the inclination angle is large the discretized length needs to be small, and when the

inclination angle is small the length can be larger. This leads to problems with explicit methods, because the CFL

condition depends on the discretization length ∆x. When the inclination angle is large, the discretization length is

so small that the CFL condition would require a very small time step ∆t, which would be impractical. Therefore,

implicit methods are used when simulating transportation of natural gas in offshore pipelines.

Inlet mass flow and temperature and outlet pressure were given as boundary conditions. Results were found using

both the linearized and the non-linear implicit finite difference method. Figure 6 shows the results for inlet pressure

and outlet mass flow and temperature. The difference between the linearized and the non-linear method is very small.

The computational time for the non-linear method was over 100 times longer than for the linearized method. Inlet

pressure and outlet mass flow agree well with measured data. There is a noticeable deviation in outlet temperature.

This is most likely due to uncertainty in the total heat transfer coefficient U and the ambient sea bottom temperature

Ta.

5 CONCLUSIONS

The objective of this article was to derive a fast and accurate method for unsteady 1D compressible flow of natural

gas in long pipelines. Implicit finite difference methods should be used to ensure stability. The governing equations

form a system of non-linear equations which have to be solved at each time step. Previous articles which have

discretized the equations in a fully implicit way have used numerical techniques to solve the resulting system of

non-linear equations. This is shown to be very time consuming and impractical for industrial applications. This
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Figure 6: Simulated results validated against operational data for 650 km offshore pipeline using the linearized and

non-linear implicit finite difference method. Top figure inlet pressure, middle outlet mass flow and bottom outlet

temperature. The linearized method was approximately 100 times faster compared to the non-linear method.
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article demonstrates how the governing equations can be linearized about the previous time step to get a linear

system of equations. This greatly reduces the computation time for each time step. Results show that for large

diameter high pressure transmission pipelines the linearized method gives almost the same result as the non-linear

method. Validation against operational data from the industry confirm this. A linear implicit finite difference method

should be used when simulating the flow of natural gas in long pipelines.
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Abstract

Transportation of natural gas through high pressure offshore transmission pipelines has been simulated by numeri-
cally solving the governing equations for one-dimensional compressible viscous heat conducting flow. For the implicit
method the energy equation is solved one time step behind the continuity and momentum equation. Compared to solving
all three equations simultaneously, this will decrease the computational time for each time step during the simulation.
Under typical operating conditions for export pipelines in the North Sea this does not affect the results in any major
way, indicating that the changes in temperature are sufficiently slow to allow the energy equation to be solved separately
from the continuity and momentum equation.

c© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the organizing committee of
2nd Trondheim Gas Technology Conference.

Keywords: Natural gas pipelines, 1D unsteady flow, Simulations and models

1. Introduction

Natural gas is an important energy resource in Europe and the rest of the world. North Sea natural gas
is transported from the continental shelf to processing terminals on the Norwegian mainland and then fed
into long export pipelines to continental Europe and the UK. The offshore transportation system, which is
operated by the Norwegian state owned company Gassco, consists of a network of 7800 km large diameter
high pressure pipelines. An overview of the gas transport system is given in Fig.1. Measurements of the
state of the gas, such as pressure, flow rate, composition and temperature are done only at the inlet and outlet
of the pipelines. To know the state of the gas between these two points one has to rely on computer models.
These models are used to monitor the gas, predicting the pipeline hydraulic capacity and providing estimated
time of arrival for unwanted quality disturbances and pigs. Gassco uses one-dimensional simulator tools to
model the flow of natural gas in their network. It is crucial that these models are as accurate as possible,
but at the same time they are required to calculate the updated flow conditions in a fast and efficient way.
Conditions in the pipelines are usually transient due to varying demands in supply or sudden shut down or
failure of the operating system.
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© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the organizing committee of 
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Fig. 1. Overview of the Norwegian natural gas transport system in the North Sea which Gassco operates. Figure courtesy of Gassco.

Simulation of gas transmission involves the numerical solution of a system of initial valued partial
differential equations for mass, momentum and energy conservation which are of a hyperbolic type. The
governing equations and different numerical solution techniques can be found in base literature articles, for
instance by Thorley and Tiley [1]. Different numerical techniques include the method of characteristics,
finite difference and finite volume methods. Poloni et al. [2] compare the method of characteristics and the
explicit finite difference method for unsteady pipe flow. An explicit finite difference method is fast and easy
to implement, but the time step is restricted by the stability criterion. The implicit finite difference method is
unconditionally stable with respect to the choice of time step and is therefore often used in one-dimensional
unsteady flow simulation tools.

If the changes in temperature along the pipeline are small, an isothermal model can be applied. Only the
continuity and momentum equations have to be solved for the flow. An isothermal model for transient flow
using an implicit finite difference method is given in the paper by Kiuchi [3]. However, for large pipelines
operating at high pressures the gas entering the pipeline usually has a temperature which is higher than the
ambient temperature. Heat exchange with the surroundings and cooling due to expansion (Joule Thomson
effect) will contribute to a significant temperature drop along the pipeline. One therefore has to, as shown
by Osiadacz [4], solve the non-isothermal model. This was done, for instance by Abbaspour and Chapman
[5] and Chacykowski [6]. In both these articles an implicit finite difference method is used to solve the
continuity, momentum and energy equations for the flow. In the first case the Newton-Raphson technique
is used to solve the resulting system of non-linear equations, while in the latter case the implicit multistep
Gear’s method was used.

Solving the implicit non-linear system of equations using the Newton-Raphson technique is very time
consuming and becomes impractical when working with large pipeline networks. The CPU time can be
greatly reduced by linearizing the non-linear terms about the previous time step and solving the implicit
linear system of equations. The procedure is given in the article by Luskin [7]. Commercial software may
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also solve the energy equation separately from the continuity and momentum equation in order to reduce
the CPU time further. This decoupling of the energy and momentum budget makes the resulting system
of equations easier to solve and reduces the CPU time for each time step. However, since the flow is
considered compressible and viscous, decoupling the energy equation from the continuity and momentum
equations will introduce an error in the solution, as the temperature is a function of pressure and density. In
Gasscos case, even though one models also flows with large transients, the change in temperature in space
and time is assumed to be sufficiently slow so that decoupling the energy equation from the continuity and
momentum equations will not introduce a significant error. This will be investigated in the following. This
article will present a transient model for one-dimensional pipeline flow, and two options for solution strategy
will be considered; fully coupled or one-way coupled momentum-energy budget.

2. Governing equations

The governing equations describing one-dimensional compressible viscous heat conducting flow are

Continuity
∂ρ

∂t
+

∂(ρu)
∂x

= 0 (1)

Momentum
∂(ρu)

∂t
+
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= −fρu2

2D
− ρg sin θ (2)
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)
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fρu3
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− 4U
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The continuity and momentum equation are expressed in conservative form while the energy equation is in
the non-conservative internal energy form. The density ρ can be exchanged for the pressure p by using a
real gas equation of state

p

ρ
= ZRT (4)

where Z = Z(p, T ) is the compressibility factor. There exist several different types of equations of state.
The sensitivity of the pipeline gas flow model to the selection of the equation of state was investigated by
Chaczykowski [8]. In the following the Soave Redlich Kwong (SRK) [9] equation of state has been used to
determine the Z factor. The Colebrook-White correlation [10] was used to determine the friction factor f

1√
f

= −2 log
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ε
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+

2.51
Re
√

f

)
(5)

where ε is the surface roughness and Re the Reynolds number of the flow. The last term in the energy
equation accounts for heat transfer between the gas and the medium surrounding the pipeline, where Ta is
the ambient temperature and U the total heat transfer coefficient. By trading the density for the pressure
and introducing the mass flow rate ṁ = ρuA (A being the constant pipeline cross-section) the governing
equations become
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[
1
p
− 1

Z

(
∂Z

∂p

)
T

]
∂p

∂x
− ṁ
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The procedure for deriving Eqs.6-8 is given in the article by Chaczykowski [6]. In this work the momentum
equation (Eq.7) is derived from the conservative form (Eq.2), instead of the non-conservative substantial
derivative form as used by Chaczykowski.

3. Numerical formulation

Equations 6 - 8 have to be solved numerically. If all terms are discretized in a fully implicit way, one has
to simultaneously solve a system of non-linear equations. Abbaspour and Chapman [5] do this by using the
Newton-Raphson technique, but this is very time consuming and impractical. The non-linear terms can be
linearized about the previous time step as in the article by Luskin [7]. This gives an implicit linear system
of equations which can be efficiently solved at each time step. After the equations are linearized they are
discretized in time and space. The pipeline is divided into N sections and N+1 grid points. Section j is the
section between point i and i+1. The flow variables are calculated at the grid points. The partial derivatives
with respect to time at section j are approximated by

∂Y

∂t
=

Y n+1
i+1 + Y n+1

i − Y n
i+1 − Y n

i

2Δt
(9)

the partial derivatives with respect to x by

∂Y

∂x
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Y n+1
i+1 − Y n+1

i

Δx
(10)

and individual terms by

Y =
Y n+1

i+1 + Y n+1
i

2
(11)

where Y represents ṁ, p and T . This corresponds to the discretization used by Abbaspour and Chapman,
which is second order correct in time and first order correct in space. Boundary values need to be assigned
to each variable which is being computed. The mass flow and temperature were given at the inlet, while
the pressure was given at the outlet. Two solution strategies will be considered, a fully coupled momentum-
energy budget where Eqs.6-8 are solved simultaneously at each step, or a one-way coupled momentum-
energy budget where the continuity and momentum equations are solved together using the temperature
from the previous time step, before the energy equation is solved for the new temperature using the updated
values for the pressure and mass flow.

4. Results

Two different setups will be considered. In Section 4.1 a simple test case with given boundary conditions
is investigated. In Section 4.2 the model and solution strategies will be validated using operational data from
an offshore transmission pipeline operated by Gassco.
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4.1. Test case

A 650 km horizontal pipeline with diameter 1 meter was used as a test case for the two solution strategies.
The outlet pressure and inlet temperature were kept constant at 10 MPa and 25 ◦C respectively. The inlet
mass flow varied as in Fig.2. The ambient temperature was kept constant at 5 ◦C and the heat transfer
coefficient was set to 16 W/(m2K). The gas had a molecular weight of 17.95. The pipeline was divided
into 101 grid points. A grid refinement confirmed this to be sufficient. In Fig.3 the local error scaling
for pressure, mass flow and temperature as a function of grid points N is given. The time step Δt in the
calculations was set to 60 seconds. The difference between the two solution strategies for the calculated
inlet pressure, outlet mass flow and outlet temperature is very small and not visible in Fig.4. The difference
can be seen in Fig.5-6 where the scaled inlet pressure and outlet mass flow found using the two different
strategies are shown. The computational time was reduced by approximately 20% by solving the energy
equation separately from the continuity and momentum equations.

Fig. 2. Boundary condition for inlet mass flow used in the test case.
Fig. 3. Local error scaling for pressure, mass flow and temperature
as a function of grid points N.

Fig. 4. Results for test case. Inlet pressure left, outlet mass flow middle and outlet temperature right. The difference between the
two solution strategies is very small and not visible in the figure. The computational time was reduced by solving the energy equation
separately from the continuity and momentum equations.

4.2. Model validation

The model was validated using operational data from a 650 km offshore pipeline operated by Gassco.
The pipeline was divided into 98 grid points were values for ṁ, p and T were stored. The length of each
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Fig. 5. Ratio of inlet pressure for the coupled and decoupled so-
lution. There is a difference of 0.1% during transient conditions,
while the difference in steady state is negligible.

Fig. 6. Ratio of outlet mass flow for the coupled and decoupled
solution. The ratio for the mass flow was found to be much less
than for the pressure.

Fig. 7. Simulated results validated against operational data for 650 km pipeline. Top figure shows inlet pressure, middle outlet mass
flow and bottom outlet temperature. Difference between fully coupled and one-way coupled solution is very small.
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section varied, depending on the inclination angle θ. Steep inclination means short grid spacing, while little
or no inclination leads to larger grid spacing. The results for both solution strategies are shown in Fig.7.
The difference between them is very small and almost not visible. The modeled inlet pressure and outlet
mass flow agree well with measured values. There is however a noticeable difference between modeled
and measured outlet temperature. Two of the most important parameters in the model are the total heat
transfer coefficient U and the ambient temperature Ta. Since the pipeline is an offshore pipeline one has to
rely on oceanographic data for predicting the sea bottom temperature. In the model presented here there is
some uncertainty in these parameters. To accurately predict the gas temperature one needs more accurate
values for the heat transfer coefficient and the sea bottom temperature in the North Sea. Even if the modeled
temperature can be improved by reducing the uncertainty in U and Ta, it is not likely that this would lead to
any major differences between the two solution strategies presented here.

Fig. 8. Comparison of two different solution strategies. Top left shows difference between modeled and measured inlet pressure for the
fully coupled and one way coupled momentum energy budget. Top right ratio of inlet pressure for the coupled and decoupled solutions.
Bottom left the ratio of outlet mass transfer for the two strategies, bottom right the ratio of outlet temperature.

In Fig.8 the ratio between the fully coupled solution and the one-way coupled solution is shown for
pressure (top right), mass flow (bottom left) and temperature (bottom right). There is approximately a 0.15%
difference in pressure, ±0.5% in mass flow and an even smaller difference in temperature. The difference
between modeled and measured pressure at the outlet is shown in the top left corner of Fig.8. The difference
between the two solution strategies is at most 0.5 bar. The computational time is reduced by solving the one-
way momentum-energy budget compared to the fully coupled momentum-energy budget. When solving the
system of linear equations at each time step the inverse of a square matrix has to be computed. For a pipeline
consisting of N + 1 grid points the fully coupled momentum-energy budget requires finding the inverse of
a 3N × 3N non tridiagonal matrix. For the one-way momentum-energy budget the problem is reduced to
finding the inverse of a 2N × 2N and a N ×N non tridiagonal matrix at each time step. This decreases the
computational time for each time step.

5. Conclusions

Transportation of natural gas in high pressure transmission pipelines has been modeled using a 1D im-
plicit finite difference method. The non-linear terms are linearized about the previous time step to give a
linear model. For long pipelines operating at high pressures one has to solve the non-isothermal model,
which means solving the three governing equations, continuity, momentum and energy at each point during
each time step. The three governing equations are coupled and have in general to be solved simultaneously.
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However, in long pipelines operating at high pressure the temperature changes in space and time are as-
sumed to be sufficiently small so that the energy equation can be solved separately one time step behind the
continuity and momentum equations. For typical long subsea export lines, it has been shown that solving the
energy equation one time step behind the continuity and momentum equations does not change the results
in any significant way. This has been demonstrated to reduce the computational time for each time step, and
it may be implemented into commercial tools for modeling gas flow in large and complicated networks. For
practical purposes a one-way coupled momentum-energy budget therefore gives just as good results as a
fully coupled momentum-energy budget and reduces the computational time for simulating flow of natural
gas in high pressure transmission pipelines.
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Appendix A. Nomenclature

A - pipeline cross-section area [m2]

cv - heat capacity [J/(kgK)]

D - pipeline diameter [m]

f - friction factor

g - gravitational constant [m/s2]

ṁ - mass flow [kg/s]

p - pressure [kg/(ms2)]

R - specific gas constant [J/(kgK)]

Re - Reynolds number

T - temperature [K]

Ta - ambient temperature [K]

t - time [s]

U - heat transfer coefficient [W/(m2K)]

u - gas velocity [m/s]

x - spatial coordinate [m]

Z - compressibility factor

ε - pipe surface roughness [m]

ρ - density of the gas [kg/m3]

θ - pipe inclination angle
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Summary Transportation of natural gas through large diameter high pressure pipelines is mod-
eled by numerically solving the governing equations for one-dimensional compressible viscous
heat conducting flow. The heat exchange between the gas and the pipeline surroundings is modeled
using two different approaches. In the first case a steady state heat transfer model is investigated.
This is compared to an unsteady heat transfer model which accounts for heat accumulation in the
ground. Comparison of the two models show that the steady state heat transfer model over predicts
the amplitude of temperature changes in the flow. Also, during large transients, a significant dif-
ference in modeled pressure and mass flow rate is observed between the two models. The models
are validated using operational data from an offshore natural gas pipeline.

Introduction

Gassco is a state owned Norwegian company responsible for the operation of a network con-
sisting of 8000 km of high pressure large diameter natural gas pipelines on the sea bed across
the North Sea. Natural gas is transported from the continental shelf to processing terminals on
the Norwegian mainland. After the gas has been processed and unwanted components are re-
moved, it is fed into long export pipelines and transported to continental Europe and the UK.
These pipelines on the seabed can be up to 1000 km in length. The state of the gas is only
known at the inlet and outlet. Between these points one has to rely on computer models to
predict the flow conditions in the pipeline. An overview of the North Sea natural gas transport
system which Gassco operates is shown in Fig.1.

Gassco uses one-dimensional compressible flow models to simulate the flow of natural gas
through their pipelines. These have several important applications which include designing,
monitoring and operating natural gas pipelines. They are also used to predict the pipeline hy-
draulic capacity and are an important part of pipeline leak detection systems. Modeling the
transmission of natural gas through high pressure pipelines involves finding the numerical solu-
tion to a system of initial valued partial differential equations representing continuity, momen-
tum and energy conservation. These equations form a system of hyperbolic partial differential
equations.

An overview of different numerical techniques commonly used to solve such a system of equa-
tions can be found in the base literature article by Thorley and Tiley [14]. These include the
method of characteristics, finite difference, finite volume and finite element methods. Finite
difference methods are the most commonly used methods to model unsteady flow in high pres-
sure pipelines. Explicit finite difference methods are easy to implement, but allow only for
small time steps due to the CFL stability criteria. Implicit finite difference methods are uncon-
ditionally stable and allow for large time steps. These are therefore often used in commercial
tools. Implicit finite difference methods were used by Kiuchi [13], Abbaspour and Chapman [7]
and Chaczykowski [9]. Kiuchi solves the isothermal model, which means solving the continu-
ity and momentum equation to find the pressure and mass flow rate in the pipeline. For short



pipelines operating at low pressures it is admissible to assume an isothermal model. However,
for large pipelines operating at high pressures one has to, as shown by Osiadacz [2], solve the
non-isothermal model.

Figure 1: Overview of the Norwegian natural gas transport system in the North Sea which Gassco oper-
ates. Figure courtesy of Gassco.

Modeling the correct temperature in long subsea natural gas pipelines is of great importance
when predicting the pipeline hydraulic capacity [5]. Calculating the correct temperature is quite
complex as there are several different terms in the energy equation which have to be modeled in
approximate ways. These include the change in internal energy, Joule-Thomson effect, dissipa-
tion term and the heat exchange with the surroundings. The temperature in the pipeline depends
on several thermodynamic properties which are often calculated from a real gas equation of
state. The sensitivity of the pipeline gas flow model to the selection of the equation of state was
investigated by Chaczykowski [8]. Modeling the heat transfer between the gas and the pipeline
surroundings for offshore pipelines has typically been done by using a total heat transfer coef-
ficient [6]. The heat transfer coefficient is found from a combination of three steps and consists
of heat transfer between the gas and the inner pipeline wall, transfer through the pipe wall and
transfer between the surrounding and the outer pipe wall. This is a steady state process and
does not allow for heat accumulation in the ground surrounding the pipeline. In the article by
Chaczykowski [9] the effect of an unsteady heat transfer model, where heat accumulation in the
ground is taken into account, is investigated. This model was compared to a traditional steady
state heat transfer model. It was found that a steady state heat transfer model overestimates the
amplitude of the temperature changes in transient flow. The unsteady heat transfer model was
only investigated for on-shore pipelines buried under the ground. Also, the inlet pressure of the
pipeline considered was 8.4 MPa, which is a lot lower compared to those operated by Gassco,
which can have an inlet pressure of up to 20 MPa.

The purpose of this work is to investigate the effect of the unsteady heat transfer model as
suggested by Chaczykowski [9] for an offshore natural gas pipeline operating at high pressure.
This model will be compared to the steady state heat transfer model which has typically been



used for offshore pipelines. As the unsteady model is one-dimensional, the computed heat flux
will be compared to that of a two-dimensional heat transfer model in order to verify the one-
dimensional approximation. The models will be validated using operational data from one of
Gasscos offshore natural gas pipelines.

Theory
Governing Equations

The governing equations for one-dimensional compressible viscous heat conducting flow are
found by averaging the three dimensional versions over the pipe cross-section. The result is:
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The continuity and momentum equations are expressed in the conservative form, while the
energy equation is in the non-conservative internal energy form. In the energy equation the
second term on the left hand side represents the Joule Thomson effect, which is cooling upon
expansion. On the right hand side the first term is the dissipation term, which is the breakdown
of mechanical energy to thermal energy. The last term is the heat exchange between the gas and
the pipeline surroundings where the total heat transfer coefficient U has the usual definition

U =
Q

A(T − Ta)
(4)

where Q is the heat flow, A the pipeline cross-section and Ta the ambient temperature. The
density can be related to the pressure through a real gas equation of state

p

ρ
= ZRT (5)

where Z = Z(p, T ) is the compressibility factor. In this work the BWRS (Benedict-Webb-
Rubin-Starling) [12] equation of state was used to determine the compressibility factor Z. The
friction factor f can be determined from the Colebrook-White correlation [3]
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where ε is the equivalent sand grain roughness, D the pipe inner wall diameter and Re the
Reynolds number of the flow. Introducing the mass flow rate ṁ = ρuA and replacing the
density ρ with the pressure p in Equations (1) - (3) the partial differential equations for p, ṁ and
T are developed into
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The procedure of deriving Equations (7)-(9) can be found in the article by Chaczykowski [9]. In
the natural gas industry, measured quantities at the pipe inlet and outlet are often pressure p and
mass flow rate ṁ. The rewrite of Equations (7)-(9) is beneficial as the measured flow values at
the boundaries can be incorporated directly into the model, opposed to Equations (1)-(3) which
require density ρ and velocity u as measured values at the boundaries.

Steady state heat transfer model

Gassco currently uses a steady state heat transfer model to predict the heat exchange between
the gas and the pipeline surroundings [5]. For a buried pipeline, like that in Fig.2, the heat ex-
change between the gas and the pipeline surroundings is a combined mode of three different
heat transfer processes.

r1

air/water
soil

D0

r4

Ta

ki

Figure 2: Cross-section of a buried pipeline consisting of three wall layers with inner radius r1 and outer
radius r4. Each pipe layer has its specific thermal conductivity ki. D0 is the burial depth from ground
level to the pipe centerline. Ta is the ambient temperature of either air or water.



The first process is the heat transfer between the gas and the inner wall, which is modeled
using a film transfer coefficient determined from the Dittus-Boelter relation [4]

Nu =
hL

k
= 0.023 ·Re0.8 · Prn (10)

where Nu, Re and Pr are the Nusselt, Reynolds and Prandtl numbers respectively. h is the
film transfer coefficient, L the characteristic length and k the thermal conductivity of the gas.
When the gas is cooled by the ambient, n = 0.4, and in the reverse case n = 0.3. Heat transfer
through the pipe wall is modeled as a conductive process. In Fig.2 the pipe wall consists of three
different wall layers, each with a thermal conductivity ki. The final process is the heat transfer
between the outer wall and the surroundings which is modeled using an outer film coefficient
determined from either a deep or shallow burial correlation, depending on the burial depth D0.
To compute the total heat transfer coefficient U , each heat transfer process is assigned a thermal
resistance, and the total heat transfer coefficient is equal to the sum of all thermal resistances.
The following expression can be derived for the pipeline in Fig.2 [1]

U =

(
1

hi

+ r1
ln(r2/r1)

k1

+ r1
ln(r3/r2)

k2

+ r1
ln(r4/r3)

k3

+
r1

r3ho

)−1

(11)

where hi is the inner film coefficient, ho the outer film coefficient and k the thermal conductivity
of each layer.

Unsteady heat transfer model

While the steady state heat transfer model using the total heat transfer coefficient U allows for
simple calculations of the heat exchange between the pipeline and the surroundings, it does not
take into account time dependent heat accumulation in the ground and in the pipe wall. In the
work by Chaczykowski [9] the heat transfer from the gas to the surroundings is considered as
unsteady, so that the effect of heat accumulation is taken into account. Transient heat conduction
in the solid surrounding the pipeline is now modeled by solving the one-dimensional radial
heat conduction equation. Assuming azimuthal symmetry, the unsteady one-dimensional heat
conduction equation takes the form

ρcp
∂T

∂t
=

k

r

∂

∂r

(
r
∂T

∂r

)
(12)

The model is axial symmetric where each thermal layer is represented by a coaxial cylindrical
shell, which is now considered as a thermal capacitor, and not a thermal resistance as in the
steady heat transfer model. Fig.3 shows the half plane of the cross-section of a buried pipeline
with different thermal elements. Equation (12) is discretized using an implicit finite difference
scheme
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)
−
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(
T n+1

i − T n+1
i+1

∆r2

)
(13)

where ri+1/2 is the radial position located halfway between ri and ri+1. ρi and cpi is the density
and heat capacity of element i, while ki+1/2 is the heat transfer coefficient between elements i+1
and i. In order to couple the one-dimensional radial heat equation with the one-dimensional flow
model, the heat flow Q between the gas and the inner wall is defined as

Q =
k0D

4
(T − T1) (14)



where k0 is the heat transfer coefficient between the the gas and the inner wall which, as in the
steady heat transfer model, is determined by the film transfer coefficient in Equation (10). T1

is the temperature of the first cylindrical shell in Fig.3. At the outer domain the ambient tem-
perature Ta is set as the boundary condition. When solving the one-dimensional flow equations
at a new time level, the heat flow Q from the previous time step is used in the energy equation
to model the heat exchange between the gas and the surroundings. For an updated gas temper-
ature, the radial heat equation (Equation (12)) is solved together with Equation (14) to update
the temperature field around the pipeline and determine the heat flow Q between the gas and
the surroundings.

air/water
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Ta

Ti

ρicpi

Ti+1

∆r

ki+1/2

riri+1

ri+1/2

Figure 3: Half plane of the cross-section of a buried pipeline. Thermal elements are represented by
coaxial cylindrical layers.

Numerical scheme

Equations (1)-(3) form a system of hyperbolic partial differential equations which have to be
solved numerically. In this work an implicit finite difference scheme is used, which is preferred
over an explicit scheme, as it is stable for any CFL number. Explicit methods are only stable
for a CFL number less than 1. For transportation of natural gas through high pressure pipelines,
the CFL number is (u + c)∆t/∆x, where c is the speed of sound, u the velocity of the gas and
∆x and ∆t the spatial and temporal step. The numerical value of u + c is approximately 400
m/s. The spatial step between grid points ∆x can vary, and depends on the inclination angle.
For steep inclination a short ∆x is required, while for little or no inclination a larger grid size
may be used. In the case of an explicit method with a short grid space of ∆x = 100 m, a time
step of ∆t = 0.25 s or less is required to ensure stability. During steady state periods one would
typically use time steps much greater than this. When using an implicit method, the time step
can be set to any reasonable value, regardless of what the spatial step is. This illustrates why it
is advantageous to use an implicit method compared to an explicit method when modeling the
flow of natural gas through long distance pipelines.

The numerical stencil is presented in Fig.4. The pipeline is divided into N grid points with ∆x
being the distance between points i and i + 1. ∆t is the time step between time level n + 1 and
n. Flow values are stored at the grid points, but are computed at the midpoint between two grid
points.
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Figure 4: Stencil used in the finite difference method

For pipe section I , which is the section between points i and i + 1, the partial derivative of
a variable Y with respect to time is approximated by

∂Y (xI , tn+1)
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i
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the spatial derivative by
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and the individual term by
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i+1 + Y n+1
i

2
+O(∆x2) (17)

This method is first order correct in time and second order correct in space. When discretizing
all terms in a fully implicit way, the governing equations form a system non-linear equations.
Solving such a system can be computationally expensive, especially for long pipelines and
complicated pipe networks. To simplify the computations the non-linear terms are linearized
about the previous time step to give a system of linear equations. The procedure can be found in
the article by Luskin [10]. The resulting system can be solved in an efficient way using simple
linear algebra. This has been done in the following.

In the case where an unsteady heat transfer model is used, the radial heat equation is solved
in the solid domain surrounding the pipeline at every grid point and time step. The number
of thermal elements surrounding the pipeline depends on whether the pipeline is buried under
ground or exposed to sea water. For the case where the pipeline is buried under ground each
wall layer is assigned a thermal element, and the surrounding soil is divided into four layers.
When exposed to sea water each wall layer is assigned a thermal element, while the heat transfer
between the outer wall and the sea water is modeled using a film transfer coefficient, as there is
no heat accumulation in the surrounding sea water.

Results
In the following a 650 km horizontal pipeline with an inner diameter of 1.016 m will be con-
sidered. Simulations will be run for both an on-shore and offshore pipeline. Offshore pipelines



are usually buried under the ground for the first and final lengths of the pipeline where the gas
departs the processing terminal and arrives at the receiving terminal, as shown in Fig.5. This
has been included in the offshore pipeline simulations.

L = 650 km

Air

Sea Water

20 km20 km

GroundGround

Figure 5: Offshore natural gas pipeline which is buried under ground for first and last 20 km. Pipeline is
lying on seabed exposed to the sea water.

The following boundary conditions were used

p(L, t) = 9 MPa

T (0, t) = 30 ◦C

ṁ(0, t) = f(t) kg/s (18)

where f(t) is shown in Fig.6.
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Figure 6: Inlet boundary condition for the mass flow rate.

The gas composition (in mol%) was set to: CH4 = 89.1704%, C2H6 = 7.3513%, C3H8 =
0.5104%, iC4H10 = 0.0251%, nC4H10 = 0.0311%, N2 = 0.6980% and CO2 = 2.2209%. The
pipe wall consists of a single steel layer with a thickness of 25 mm. The steel layer has a density
of ρ = 7850 kg/m3, heat capacity cp = 500 J/(kg K) and thermal conductivity k = 45 W/(m K).
For the buried pipeline the surrounding soil was assumed to have a density of ρ = 2650 kg/m3,
heat capacity of cp = 950 J/(kg K) and thermal conductivity k = 3 W/(m K). All simulations
were performed using both the steady and unsteady heat transfer model.

The pipeline was divided into 101 grid points with a grid spacing ∆x = 6.5 km. A time step
of ∆t = 60 s was used. The convergence of the numerical scheme presented in the previous



section and the discretization errors were investigated, with the local error defined as

e =
1

N

(
N∑

i=1

(
Yi − Yi,hi

Yi,hi

)2
)1/2

(19)

where Y represents p, ṁ and T at point i. The summation is done over all grid points N , where
Yi,hi is the numerical solution computed using the finest grid and shortest time step (high reso-
lution solution). Results are presented in Fig.7. The spatial discretization error as a function of
grid points N is shown to the left. As the numerical method is second order correct in space, a
line with slope −2 is indicated. Both the mass flow and temperature converge to order second
order, while the pressure converges to an order of approximately 2.5. The temporal discretiza-
tion errors as a function of time step ∆t are shown to the right in Fig.7. The numerical method
is first order correct in time. Both mass flow and temperature converge to first order, while the
pressure converges to an order of approximately 1.5. The local errors for pressure, mass flow
and temperature are small and results indicate that a grid consisting of 101 points and a time
step of ∆t = 60 s is sufficient to run simulations on long distance natural gas pipelines.
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Figure 7: Local errors. Left: Local error for pressure, mass flow and temperature as a function of grid
points N . Right: Local error for pressure, mass flow and temperature as a function of time step ∆t.

On-shore pipeline

For the on-shore pipeline the distance from the ground surface to the pipe centerline was 2 m.
The ambient air temperature was set to 5◦C. Results for inlet pressure, outlet mass flow rate
and outlet temperature using both the steady and unsteady heat transfer models are presented in
Fig. 8. During steady state conditions there is no difference between the two solution strategies.
However, when the flow conditions are transient a small difference in computed inlet pressure
and outlet mass flow rate can be observed. But these differences are small compared to that
of the outlet temperature which is shown at the bottom of Fig.8. During transient conditions a
difference of up to 1◦C was observed, with the steady state heat transfer model over predicting
the amplitude of the temperature changes in the flow, which can clearly be seen in Fig. 8. At
the final time step there is a small difference in outlet temperature between the two solution



strategies. The computed outlet temperatures will eventually converge to the same value, but
because the thermal response of the unsteady heat transfer model is considerably slower than
that of the steady heat transfer model, the time it takes for the temperature profiles in Fig. 8 to
converge is longer than the simulation time.

Offshore pipeline

The offshore natural gas pipeline schematics is shown in Fig.5. For the first and final 20 km
the pipeline is buried under ground, while for the remaining part it is lying on the seabed fully
exposed to the sea water. The total length is the same as for the on-shore pipeline and the
boundary conditions are unchanged. The ambient air temperature is 5◦C while the ambient sea
bottom temperature is 4◦C. Because the sea water has a high heat capacity and currents on the
sea bottom constantly move the water across the pipeline, it is assumed that there is no heat
accumulation in the sea water. The heat transfer from the outer pipe wall to the surrounding sea
water is modeled using a film coefficient which is computed from a Nusselt-number relation.
The surrounding sea water is assumed to have a velocity of 0.5 m/s across the pipeline.

Results for inlet pressure and outlet mass flow rate are almost identical to those in Fig.8 for the
on-shore case. Under the given operating conditions there was no significant difference in inlet
pressure and outlet mass flow using the two different heat transfer models. There was however
a small difference in outlet temperature which is presented in Fig.9.
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Figure 8: Results on-shore pipeline using the two different heat transfer models. Top inlet pressure,
middle outlet mass flow rate and bottom outlet temperature. The steady heat transfer model over predicts
the amplitude of temperature changes in the flow compared to the unsteady heat transfer model.
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Figure 9: Outlet temperature for offshore pipeline using both unsteady and steady heat transfer model.
Difference between the two temperature profiles is less than for the on-shore pipeline as there is no heat
accumulation in the surrounding sea water.

Model validation

So far only a change in inlet mass flow rate has been considered, while the inlet temperature has
been kept constant. In this section a change in both inlet mass flow rate and temperature will
be considered. Boundary conditions are taken from operational data from a 650 km offshore
pipeline operated by Gassco. The pipeline was buried under ground for the first and final 20
km. The effect of an unsteady heat transfer model on Gasscos pipelines will be investigated.
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Figure 10: Boundary conditions for model validation. Left inlet mass flow, middle inlet temperature and
right outlet pressure. Data courtesy of Gassco.

The pipeline diameter is approximately 1 m. The boundary conditions for outlet pressure, inlet
mass flow rate and inlet temperature are given in Fig.10. After approximately 2 days a large
transient occurs with a large reduction in inlet mass flow rate and temperature. The pipeline was
discretized by 98 grid points with a varying ∆x and ∆t = 60 s. The data is from the winter
season and the ambient temperature is approximately 6◦C. Results are presented in Fig.11.
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Figure 11: Results model validation. Top left: Computed inlet pressure found using unsteady and steady
heat transfer model compared to measured inlet pressure. Top right: Difference inlet pressure between
unsteady and steady heat transfer model. During transient a difference of 0.3 MPa can be observed.
Middle left: Computed outlet mass flow using different heat transfer models compared to measured value.
Middle right: Difference outlet mass flow between different heat transfer models. Bottom left: Outlet
temperature using two different heat transfer models compared to measured outlet temperature. Steady
heat transfer model over predicts temperature changes compared to unsteady. Bottom right: Difference
outlet temperature using different heat transfer models.



Results for inlet pressure, outlet mass flow rate and outlet temperature in Fig.11 are compared to
measured values from the offshore pipeline. For the inlet pressure (top Fig.11) a small difference
during steady state conditions can be observed between the unsteady and steady heat transfer
model. However, during transient conditions there is a considerable difference in inlet pressure.
This difference is approximately 0.3 MPa and occurs at the beginning of the transient. For
the outlet mass flow small differences are seen in Fig.11, although these small differences are
present during both transient and steady state conditions. In agreement with Chaczykowski [9]
the steady heat transfer model over predicts the amplitude of temperature changes in the flow.
This is clearly visible in the outlet temperature (bottom Fig.11). Although Chaczykowski only
investigated on-shore buried pipelines, results in Fig.11 demonstrate that a steady heat transfer
model also over predicts the amplitude of temperature changes in the flow for offshore pipelines.
Even though the pipeline investigated here was buried under the ground only for the first and
final part of the pipe length, an unsteady heat transfer model for these short pipeline sections
gives improved results for the computed outlet temperature.

Discussion
Unsteady heat transfer

The reason why there is such a considerable difference in inlet pressure between the two heat
transfer models in Fig.11 during the transient can be interpreted as follows. In the steady state
heat transfer model the heat exchange term between the gas and the pipeline surroundings in
Equation (4) is proportional to the product of the total heat transfer coefficient U and the tem-
perature difference (T−Ta) between the gas and the ambient. As the ambient temperature in the
model validation case was approximately 6◦C and the inlet temperature in Fig.10 is never less
than 20◦C the temperature difference will always be positive. The total heat transfer coefficient
U is also positive, implying that the heat exchange between the gas and the surroundings will
always be modeled as a positive energy flux out of the pipeline. In the unsteady heat transfer
model the temperature at each thermal layer is computed at every time step. After a steady state
period the inner pipe wall is assumed to have the same temperature as the gas, while the outer
pipe wall and soil layers further away have a lower temperature. When a transient occurs, and
there is a large drop in inlet temperature like that in Fig.10, the gas temperature drops below the
temperature of the inner wall. For a short period of time, before thermal equilibrium is reached,
an energy flux will be transferred from the wall to the gas. By computing the temperature at
each thermal layer the unsteady heat transfer model allows for energy to be transferred from
the wall to the gas. This gives a higher gas temperature at points close to the inlet compared to
a steady state heat transfer model, which in turn gives a higher inlet pressure during transients
like the one observed in Fig.11.

The relation between heat conduction and heat storage can be determined by considering the
Fourier number

Fo =
αt

L2
(20)

where α = k/ρcv is the thermal diffusivity, t the characteristic time and L the characteristic
length through which heat conduction occurs. For the on-shore pipeline the characteristic length
is the burial depth, which is approximately 1.5 m. The time for the ramp up or ramp down to
occur in Fig.8 is approximately 50 hours, and the thermal diffusivity of the soil is 1.2 · 10−6

m2/s, giving a Fourier number of 0.1. The physical meaning of this is that the heat conduction
rate is an order of magnitude less than the heat storage rate, and the transient thermal response
upon the change in the mass flow rate is predominantly dictated by the heat storage effect, even



on a two day time scale as is the case here. For shorter characteristic time scales, the larger the
effect of heat storage compared to the effect of heat conduction. In this case, the value of the
Fourier number underlines that the steady state approach for heat transfer is not valid. In such
case it should be much larger then 1.

The Biot number gives the ratio of the heat transfer resistances inside of and at the surface of a
body, and is defined as

Bi =
hL

k
(21)

where h is the heat transfer film coefficient at the boundary of the body, L is the characteristic
length and k is the thermal conductivity of the body. The Biot number determines whether or not
the temperature inside a body will vary significantly in space when heated or cooled over time as
a result of thermal gradients applied to its surface. For small Biot numbers (0.1 or less) the heat
conduction inside the body is much faster than the heat convection at the surface, meaning that
temperature gradients inside the body are negligible. For the on-shore pipeline the characteristic
length L can be chosen as the volume of the body divided by the surface area. For the circular
system of the pipeline buried under ground with ambient boundary condition there are two
Biot numbers. At ground level, at a radius of 2 meters from the pipe centerline, the ambient
temperature can be coupled with a heat transfer coefficient of 50 W/(mK). The characteristic
length is L = 4.5 and the soil thermal conductivity k = 3 W/(m2K). The Biot number is then 75.
On the outer pipe wall we can consider the outer film coefficient as the heat transfer coefficient,
or alternatively the combined wall resistance and inner wall film coefficient. This will also give
a high Biot number. These high Biot numbers show that for a change of ambient temperature
and heat transfer conditions at the pipe wall, the surrounding soil will react by developing time
dependent temperature gradient. This further supports the need for an unsteady heat transfer
model.

One-dimensional approximation

The unsteady heat transfer model is a simple and straightforward way to include heat accu-
mulation in the ground. However, the model does have limitations. Because it is an axial-
symmetric one-dimensional model, it has symmetric boundary conditions, implying that the
ambient boundary condition which is set above the pipeline is automatically set for the entire
circular domain surrounding the pipeline. This is not correct, as boundary conditions on each
side and below generally differ from that of the ambient temperature boundary on top. This can
only be set correctly using a two-dimensional model.

To verify the computed heat flux in the one-dimensional unsteady heat transfer model it is com-
pared to the computed heat flux from a two-dimensional model, which was made in ANSYS
Fluent. In this model, the soil and pipe are represented by a 2D finite volume grid, and the
calculations incorporate solving the energy equation on the solid domain. The soil domain is
50 meters deep and extends 25 meters sideways in each direction from the pipe centerline, and
consisted of approximately 35000 computational cells. Symmetric boundary conditions are em-
ployed at the left and right side of the soil domain. At the bottom of the soil domain a constant
temperature boundary conditions is used which is set at 10 ◦C. At the top of the soil domain
the ambient temperature is coupled through a heat transfer coefficient of 50 W/(m2K). The gas
temperature is connected to the inner wall of the pipe though the film transfer coefficient in
Equation (10).

The following two cases were considered:



• 1) Gas temperature 30 ◦C, ambient temperature 5 ◦C

• 2) Gas temperature 1.5 ◦C, ambient temperature 5 ◦C

These two cases correspond to the conditions at the inlet and outlet of the on-shore pipeline
during steady state conditions. The pipe setup and thermal data are the same as in the on-shore
pipeline case. For case 1, the Reynolds and Prandtl number were 3.06·107 and 0.72 respectively.
For case 2 these values were 3.69 · 107 and 0.71 respectively. The thermal conductivity of the
gas was 0.0521 W/(m K) in the first case and 0.042 W/(m K) in the second. The calculated heat
flux in W/m for both cases are presented in Table.1. The computed heat flux in the 1D model
was approximately 50% more than the 2D model for both case 1 and 2. The temperature field
around the pipeline for case 1 and 2 is shown in Fig.12 and 13 respectively. Results in Table.1
suggest that the 1D heat transfer model under the given operating conditions predicts too large
values of the heat flux between the gas and the surroundings, owing to the one-dimensional
axial-symmetric assumption.

Case 1 Case 2
1D heat transfer model 353 W/m −49 W/m
2D heat transfer model 230 W/m −33 W/m

Table 1: Calculated heat flux in W/m using the 1D and 2D heat transfer model. The calculated heat flux
in the 1D case was approximately 50% greater than in the 2D case.

The heat flux in the one-dimensional model can be adjusted to match that of the two-dimensional
model by introducing the equivalent soil radius, as is done in other compressible flow mod-
els [11]. This should be investigated in more detail for the examples shown above.

Figure 12: Contour lines for the temperature around the pipeline for case 1. The gas temperature is 30
◦C and the ambient 5 ◦C.



Figure 13: Contour lines for the temperature around the pipeline for case 2. The gas temperature is 1.5
◦C and the ambient 5 ◦C.

Conclusion

An unsteady heat transfer model has been compared to a steady state heat transfer model for
transmission of natural gas through high pressure large diameter pipelines. This model allows
for heat accumulation in the pipe wall and ground surrounding the pipeline. Results for the on-
shore buried pipeline demonstrate that the steady heat transfer model over predicts the amplitude
of temperature changes in the flow. The same model was applied to an offshore natural gas
pipeline. Even though heat accumulation is only present at beginning and end of the pipeline
where it is buried under ground, and not along the main part which is exposed to sea water, the
unsteady heat transfer model still has an effect on the flow conditions in the pipeline. For large
transients considerable differences were observed between the two heat transfer models. As with
the on-shore pipeline, the steady state heat transfer model for offshore pipelines over predicts
the amplitude of temperature changes in the flow. Also, a significant difference in modeled inlet
pressure was observed between the two models under transient conditions. The computed heat
flux is compared to that of a two-dimensional heat transfer model. For the considered case the
one-dimensional model over predicts the heat flux by 50% compared to the two-dimensional
model. In order to investigate how this affects the flow, a detailed two-dimensional heat transfer
model should be used at every grid point and be compared to the one-dimensional case. The
presented models were validated using operational data from an offshore natural gas pipeline.
Results suggest that an unsteady heat transfer model should be used for offshore natural gas
pipelines.
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Nomenclature

cp heat capacity constant pressure [J/(kg·K)]
cv heat capacity constant volume [J/(kg·K)]
D pipe inner wall diameter [m]
f friction factor
g gravitational acceleration [m/s2]
h film transfer coefficient [W/(m2·K)]
k heat transfer coefficient [W/(m·K)]
L characteristic length [m]
ṁ mass flow [kg/s]
Nu Nusselt number
Pr Prandtl number
p pressure [Pa]
Q heat flow [W]
T temperature [K]
Ta ambient temperature [K]
R gas constant [J/(kg·K)]
r pipe radius [m]
Re Reynolds number
t time [s]
U total heat transfer coefficient [W/(m2·K)]
u gas velocity [m/s]
x spatial coordinate [m]
Z compressibility factor
α thermal diffusivity [m2/s]
ε equivalent sand grain roughness [m]
ρ density [kg/s]
θ pipe inclination angle
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Abstract

Transportation of natural gas through high pressure large diameter offshore
pipelines is modeled by numerically solving the governing equations for one-
dimensional compressible pipe flow using an implicit finite difference method.
The pipelines considered have a diameter of 1 m and length of approximately
650 km. The influence of different physical parameters which enter into the
model are investigated in detail. These include the friction factor, equation
of state and heat transfer model. For high pressure pipelines it is shown
that the selection of the equation of state can have a considerable effect
on the simulated flow results, with the recently developed GERG 2004 being
compared to the more traditional SRK, Peng-Robinson and BWRS equations
of state. Also, including heat accumulation in the ground is important in
order to model the correct temperature at the outlet of the pipeline. The
flow model is validated by comparing computed results to measured values
for an offshore natural gas pipeline.
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Nomenclature

A pipe cross section [m2]
cp heat capacity at constant pressure [J/(kg·K)]
cv heat capacity at constant volume [J/(kg·K)]
D pipe diameter [m]
Fo Fourier number
f friction factor
g gravitational constant [m/s2]
h film transfer coefficient [W/(m2·K)]
k thermal conductivity [W/(m·K)]
ṁ mass flow rate [kg/s]
p pressure [Pa]
pc critical pressure [Pa]
pr reduced pressure
Q heat flow [W]
R gas constant [J/(kg·K)]
Re Reynolds number
r pipe radius [m]
T Temperature [K]
Ta Ambient temperature [K]
Tc critical temperature [K]
Tr reduced temperature
t time [s]
U total heat transfer coefficient [W/(m2·K)]
u gas velocity [m/s]
x spatial coordinate [m]
Z compressibility factor
ε equivalent sand grain roughness [m]
ρ density [kg/m3]
ρm molar density [kg·mol/m3]
θ pipe inclination angle

1. Introduction

Natural gas may be transported over long distances through high pressure
transmission pipelines. An overview of the Norwegian natural gas transport
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system lying in the North Sea is shown in Fig. 1. The network is operated
by the Norwegian state owned company Gassco. After the gas has been
processed and unwanted components are removed it is fed into long export
pipelines and transported from Norway to continental Europe and the UK.
The pipelines have a diameter of approximately 1 and can be between 600−
800 km in length. Measurements of the state of the gas such as pressure,
mass flow, temperature and composition are available only at the inlet and
outlet. To know the state of the gas between these two points one has to rely
on computer models.

Transmission of natural gas through high pressure pipelines can be mod-
eled by numerically solving the governing equations for one-dimensional com-
pressible viscous heat conducting flow. Such mathematical models have sev-
eral important applications in the gas industry. These include designing,
operating and monitoring natural gas pipelines and predicting the pipeline
hydraulic capacity. High accuracy in transport capacity is important to en-
sure optimal utilization of the network, as failure to deliver the forecasted
capacity can result in penalties and a poor reputation as a gas network opera-
tor (Langelandsvik et al. (2009)). They also play an integral part in software
based leak detection systems. It is therefore crucial that these models are as
accurate as possible, but at the same time fast and efficient as conditions in
the pipeline are usually transient.

An overview of different numerical techniques used to solve the governing
flow equations can be found in base literature articles (Thorley and Tiley
(1987)). These include the method of characteristics, finite difference, fi-
nite volume and finite element methods. Finite difference methods have
commonly been used to model the flow of natural gas through pipelines (Ab-
baspour and Chapman (2008), Chaczykowski (2010), Kiuchi (1994)), with
implicit methods being preferred to explicit, as these are stable for any choice
of time and spatial step.

In order to accurately model the flow through high pressure pipelines
one has to solve the full non-isothermal model (Osiadacz and Chaczykowski
(2001)), which implies solving the continuity, momentum and energy conser-
vation equations for the flow. As well as solving the governing flow equations,
several physical processes have to be modeled in appropriate ways. These
include the friction factor, equation of state and heat exchanges between
the gas and the surrounding environment. Previous research has looked into
the sensitivity of the pipeline gas flow model to the selection of the equa-
tion of state (Chaczykowski (2009)) and the effect of the pipeline thermal
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Figure 1: Overview of the Norwegian natural gas transport system in the North Sea.
Figure courtesy of Gassco.

model (Chaczykowski (2010)). However, in both these cases the investigated
pipeline had an inlet pressure of 8.4 MPa, which is typical that of an on-
shore distribution network. Offshore pipeline like those in Fig. 1 can have
an inlet pressure of up to 20 MPa, well above that typically considered in
the literature.

The objective of this study is to validate the one-dimensional flow model
for high pressure offshore natural gas pipelines. An implicit finite difference
method is used to solve the governing flow equations. The model is validated
by running simulations on an offshore natural gas pipeline and comparing
numerical results to measured values. Different physical processes which
enter into the one-dimensional flow model will be investigated and discussed
in detail. These include the friction factor, equation of state and heat transfer
between the gas and the surrounding environment. For the equation of state
the recently developed GERG 2004 will be compared to the more traditional
SRK, Peng-Robinson and BWRS equations of state currently used today.
The heat exchange between the gas and the surroundings will be modeled
using both a steady and unsteady external heat transfer model. The main
difference between these two approaches is that the unsteady heat transfer
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model takes into account heat accumulation in the ground surrounding the
pipeline.

2. Theory

2.1. Governing Equations

The governing equations for one-dimensional compressible viscous heat
conducting flow are found by averaging the three-dimensional versions across
the pipe cross section. The result is:

Continuity
∂ρ

∂t
+

∂(ρu)

∂x
= 0 (1)

Momentum
∂(ρu)

∂t
+

∂(ρu2 + p)

∂x
= −fρu|u|

2D
− ρg sin θ (2)

Energy

ρcv

(

∂T

∂t
+ u

∂T

∂x

)

+ T

(

∂p

∂T

)

ρ

∂u

∂x
=

fρu3

2D
− 4U

D
(T − Ta) (3)

In the momentum equation the first term on the right hand side is the friction
term, where f is the friction factor. The final term is the gravity term where θ
is the pipe inclination angle. In the energy equation the second term on the
left hand side represents the Joule-Thomson effect, which is cooling upon
expansion. On the right hand side the first term is the dissipation term,
which is breakdown of mechanical energy to thermal energy. The final term
represents the heat exchange between the gas and the surroundings.

The density can be related to pressure and temperature by using a real
gas equation of state

p

ρ
= ZRT (4)

where Z = Z(p, T ) is the compressibility factor. When working with natural
gas pipelines, one is often interested in knowing the pressure and mass flow at
the inlet and outlet. By replacing the density with pressure and introducing
the mass flow rate ṁ = ρuA, where A is the pipeline cross section, Equations
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(1)-(3) can be developed into partial differential equations for p, ṁ and T
(Chaczykowski (2010)). The result is:

∂p

∂t
=

[

1

T
+

1

Z

(

∂Z

∂T

)

p

]

[

1

p
− 1

Z

(

∂Z

∂p

)

T

]

−1
∂T

∂t

− ZRT

pA

[

1

p
− 1

Z

(

∂Z

∂p

)

T

]

−1
∂ṁ

∂x
(5)

∂ṁ

∂t
=

ṁZRT

pA

(

− 2
∂ṁ

∂x
+ ṁ

[

1

p
− 1

Z

(

∂Z

∂p

)

T

]

∂p

∂x
− ṁ

[

1

T
+

1

Z

(

∂Z

∂T

)

p

]

∂T

∂x

)

− A
∂p

∂x
− fZRTṁ|ṁ|

2DAp
− pA

ZRT
g sin θ (6)

∂T

∂t
= −ṁZRT

pA

∂T

∂x
− ṁ(ZRT )2

pAcv
T

[

1

T
+

1

Z

(

∂Z

∂T

)

ρ

]

×
(

1

ṁ

∂ṁ

∂x
−
[

1

p
− 1

Z

(

∂Z

∂p

)

T

]

∂p

∂x
+

[

1

T
+

1

Z

(

∂Z

∂T

)

p

]

∂T

∂x

)

+
f

2cvD

(

ZRT |ṁ|
pA

)3

− ZRT

pcv

4U

D
(T − Ta) (7)

2.2. Friction factor

The friction factor accounts for the frictional force between the fluid and
the pipe wall. The friction factor f for a pipe, commonly denoted the Darcy-
Weisbach friction factor, is defined as

f =
−dp/dx

1

2
ρu2

D (8)

This is a semi-empirical parameter, meaning that no analytical description
of these forces has been developed. For pipeline flow with high turbulence
intensity (described by the Reynolds number), it is also impossible to fully
calculate this parameter by computational simulations.

Today the Colebrook-White formula is the most widespread relation for
determining f , which combines the two main regions for the friction factor.
For low Reynolds numbers the friction factor is solely dependent on Reynolds
number (smooth turbulent flow), whereas for higher Reynolds numbers the
friction factor becomes independent of Reynolds number and only depends on
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the internal roughness (rough turbulent flow). Colebrook-White is a mathe-
matical combination of these two expressions that was developed in the 1930s
(Colebrook (1939))

1√
f

= −2 log

(

ε

3.7D
+

2.51

Re
√

f

)

(9)

where ε is the equivalent sand grain roughness, D the diameter of the pipe
and Re the Reynolds number of the flow. Later, several modifications to
the smooth turbulent law have been suggested (McKeon et al. (2005)), while
how to determine the roughness elements on the inner wall by means of
measurement has been discussed based on recent experiments (Langelandsvik
et al. (2008), Shockling et al. (2006)). For transportation of natural gas
through offshore pipelines, the Reynolds number is typically of the order 107,
meaning the friction factor lies in the region between smooth and fully rough
turbulent flow. Based on operational data from natural gas pipelines, it is
stated that the friction factor in the transition region in the Colebrook-White
correlation bears significant uncertainty (Langelandsvik et al. (2005)). A
modified friction factor formula was proposed by the European Gas Research
Group (GERG) (Gersten et al. (2000))

1√
f

= −2

n
log

[

(

1.499

drRe
√

f

)0.942·n·dr

+
( ε

3.7D

)n
]

(10)

where dr is the draught factor which accounts for other pressure losses such as
curvature and pipe joints, and n is used to control the shape of the transition.
n = 1 corresponds to a smooth Colebrook-White transition while n = 10 a
more abrupt transition.

In Fig. 2 the friction factor f computed using the Colebrook-White and
GERG friction factor formulas for an equivalent sand grain roughness of 3
µm is shown. For dr = 1.01 and n = 3 the GERG friction factor formula
gives a more abrupt transition from smooth to fully rough turbulent flow
compared to Colebrook-White. However, limited information is available as
to what values of dr and n should be used. It is therefore difficult to conclude
whether the GERG friction factor formula is any significant improvement
of the traditional Colebrook-White correlation. Hence, the GERG friction
factor formula has limited capability to predict frictional pressure drop in
new pipelines.
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Figure 2: Friction factor f computed using the Colebrook-White (CW) and GERG friction
factor correlation. The GERG friction factor formula predicts a more abrupt transition
from smooth to fully rough turbulent flow compared to Colebrook-White.

2.3. Equation of state

The equation of state is the relationship between state variables. Several
different equations of state, including SRK, Peng-Robinson, BWRS, AGA-8,
GERG 88 and GERG 2004, are applied in the industry today. The sensitivity
of the gas pipeline flow model to the selection of the equation of state has been
investigated previously (Chaczykowski (2009)) for the SRK, BWR, AGA-8
and GERG 88 equations of state. These did not influence the computed flow
parameters and line-pack values in any significant way. However, the inlet
pressure in the considered pipeline was only 8.4 MPa, which is typical that
of an on-shore distribution network. Offshore natural gas pipelines can have
inlet pressures in the range 18 - 20 MPa. The sensitivity of the selection of
the equation of state for high pressure pipelines will therefore be investigated
in the following. The equations of state considered are SRK, Peng-Robinson,
BWRS, GERG 88 and GERG 2004.

SRK

The Soave-Redlich-Kwong (SRK) is a modification of the Redlich Kwong
equation of state and was first published in 1972 (Soave (1972)). It is a cubic
equation of state, and in the original article by Soave it is validated up to 12
MPa. It can conveniently be expressed as

Z3 − Z2 + Z(A −B − B2) − AB = 0 (11)
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where A and B are constants which depend on reduced pressure and tem-
perature

A = 0.427
αpr

Tr
(12)

B = 0.08664
pr

Tr
(13)

where the subscript r denotes reduced state variables (pr = p/pc, Tr = T/Tc,
pc and Tc being critical pressure and temperature). The parameter α is a
function which depends on the reduced temperature and the accentric factor.
Mixing rules are applied to gas mixtures.

Peng-Robinson

Peng-Robinson is also a cubic equation of state and is structurally sim-
ilar to SRK. It was first published in 1976 and is claimed to predict the
liquid phase densities more accurately compared to SRK (Peng and Robin-
son (1976)). On polynomial form it can be expressed as

Z3 − (1 − B)Z2 + (A − 3B2 − 2B)Z − (AB − B2 −B3) = 0 (14)

where
A = 0.45724

αpr

Tr
(15)

B = 0.07780
pr

Tr
(16)

As with SRK α is a function of reduced temperature and accentric factor.
Owing to their simple mathematical structure, cubic equations of state such
as SRK and Peng-Robinson along with their modifications are still frequently
used in the industry today. However, they have proven to be inaccurate,
especially for pressures above 12 MPa (Modisette (2000)).

BWRS

The Benedict-Webb-Rubin-Starling (BWRS) equation of state is based on
a virial expansion in density. It was published in 1973 and is a modification
of the BWR equation of state (Starling (1973)). The BWRS equation of
state is formulated as

p = ρnRT +

(

B0RT − A0 −
C0

T 2
+

D0

T 3
− E0

T 4

)

ρ2
n +

(

bRT − a − d

T

)

ρ3
n

+ α

(

a +
d

T

)

ρ6
n +

cρ3
n

T 2
(1 + γρn) exp(−γρ2

n) (17)
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In total it contains 11 coefficients. Values and mixing rules can be found in
the literature. Because of its ability to cover both liquid and gases the BWRS
is widely used for simulations of pipelines with high density hydrocarbons
(Modisette (2000)). For the offshore network in Fig. 1, the operator Gassco
currently uses a BWRS equation of state with coefficients which are especially
tuned for hydrocarbons, which will be denoted as BWRS* in the following.

GERG88

The European Gas Research Group (GERG) has performed an exten-
sive research into compressibility factor measurements. The GERG 88 virial
equation of state was developed to accurately predict the compressibility
factor of natural gas mixtures (Jaeschke et al. (1991)). It takes the form

Z = 1 + BM(T )ρm + CM(T )ρ2
m (18)

BM (T ) =
n
∑

i=1

n
∑

j=1

xixjBij(T ) (19)

CM(T ) =
n
∑

i=1

n
∑

j=1

n
∑

k=1

xixjxkCijk(T ) (20)

where BM (T ) and CM(T ) are the second and third virial coefficients which
depend on temperature and gas composition. xi, xj and xk represent the
mole fractions of the ith, jth and kth component. For compressibility factor
calculations GERG 88 is claimed to have an uncertainty of less than 0.1%
for pressures up to 12 MPa and temperatures in the range 265 − 335 K.

GERG 2004

GERG has since published the GERG 2004 equation of state which accu-
rately predicts compressibility factors for pressures and temperatures up to
30 MPa and 365 K respectively (Kunz (2007)). The GERG 2004 is explicit
in Helmholtz free energy a with density and temperature as independent
variables. As a function of reduced density δ and temperature τ the com-
pressibility factor is determined from

p(δ, τ )

ρRT
= 1 + δαr

δ (21)
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where αr
δ is the dimensionless Helmholtz free energy. The GERG 2004 equa-

tion of state can also conveniently be used to predict other thermodynam-
ical properties such as enthalpy, internal energy, heat capacity and Joule-
Thomson coefficients to mention a few.

The compressibility factor as a function of pressure and temperature for a
typical North Sea natural gas mixture was calculated using all the equations
of state mentioned above. The composition of the gas in mol% was set to the
following: CH4 − 89.16%, C2H6 − 7.35%, C3H8 − 0.51%, nC4H10 − 0.03%,
iC4H10−0.03%, nC5H12−0.002%, iC5H12−0.001%, N2−0.70%, CO2−2.22%.
In the 1D flow model (Equations (5) - (7)) the partial derivatives of Z with
respect to temperature and pressure are required. These are found by taking
the derivative of the expression for Z with respect to p and T . In Fig.3 the
compressibility factor Z as a function of pressure at different temperatures is
presented. Up to 10 MPa the different equations of state predict almost the
same value of the Z factor. Above 10 MPa a more noticeable difference is
observed. Partial derivatives of Z with respect to temperature and pressure
are presented in Fig.4 - 6. In Fig.4 and Fig.5 the computed values agree well
with each other over the entire pressure range. In Fig. 6 some deviations
above 20 MPa are observed.
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Figure 3: Compressibility factor Z as a function of pressure at different temperatures. For
pressures below 10 MPa only small differences between the different equations of state are
observed. For pressures above 10 MPa a considerable difference can be seen.
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Figure 4: Partial derivative of Z with respect to temperature at constant pressure
(∂Z/∂Tp).

12



0 5 10 15 20 25
−4

−3

−2

−1

0

1

2

3
x 10

−8

p [MPa]

∂
Z

/∂
p

T

T=273 K

 

 

0 5 10 15 20 25
−4

−3

−2

−1

0

1

2

3
x 10

−8

p [MPa]

∂
Z

/∂
p

T

T=283 K

 

 

0 5 10 15 20 25
−3

−2

−1

0

1

2
x 10

−8

p [MPa]

∂
Z

/∂
p

T

T=293 K

 

 

0 5 10 15 20 25
−3

−2

−1

0

1

2
x 10

−8

p [MPa]

∂
Z

/∂
p

T

T=303 K

 

 

SRK

PR

BWRS

BWRS*

GERG88

GERG04

SRK

PR

BWRS

BWRS*

GERG88

GERG04

SRK

PR

BWRS

BWRS*

GERG88

GERG04

SRK

PR

BWRS

BWRS*

GERG88

GERG04

Figure 5: Partial derivative of Z with respect to pressure at constant temperature
(∂Z/∂pT ).
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Figure 6: Partial derivative of Z with respect to temperature at constant density (∂Z/∂Tρ).

2.4. Heat transfer model

The final term in the energy equation (Equation (7)) represents the heat
exchange between the gas and the surrounding environment. This term is
currently modeled by Gassco using a total heat transfer coefficient U (Ram-
sen et al. (2009)). The heat transfer coefficient for a pipeline consisting of
multiple wall layers is

U =

[

ro

ri

1

hi

+
N
∑

n=2

(

ro

kn

ln

(

rn

rn−1

))

+
1

ho

]

−1

(22)

where ro is the outer radius of the pipe, ri the inner radius, rn outer ra-
dius of wall n, kn the thermal conductivity of wall n, hi the inner wall film
heat transfer coefficient and ho the outer film heat transfer coefficient. This
is a steady state approach which does not allow for heat accumulation in
the ground. To include heat accumulation in the ground one has to solve
the unsteady heat transfer model (Chaczykowski (2010)). In the unsteady
heat transfer model the one-dimensional radial heat equation is solved in the
domain surrounding the pipeline.

ρcp
∂T

∂t
=

k

r

∂

∂r

(

r
∂T

∂r

)

(23)

14



The radial heat equation can be expressed on dimensionless form as

∂T ∗

∂t∗
=

Fo

r∗
∂

∂r∗

(

r∗
∂T ∗

∂r∗

)

(24)

where ∗ represents a dimensionless variable. Fo is the Fourier number which
is defined as

Fo =
αt

L2
(25)

where α = k/ρcp is the thermal diffusivity, t the characteristic time and L
the characteristic length through which heat conduction occurs. The Fourier
number is the ratio of the heat conduction rate to the heat storage rate. For
small Fourier numbers (much less than 1) the heat storage rate is greater
than the heat conduction rate, underlining that heat accumulation should be
included in the model. The radial heat conduction equation is solved on the
domain shown in Fig.7. The model is axial symmetric, where each thermal
layer is represented by a coaxial cylindrical shell. Equation (23) is discretized
using finite differences

air/water

soil

Ta

Ti

ρicpi

Ti+1

ki+1/2

riri+1

ri+1/2

Figure 7: Half plane of the cross-section of a buried pipeline. Thermal elements are
represented by coaxial cylindrical layers, with each element assigned a temperature Ti,
heat capacity cpi and density ρi. ki+1/2 is the heat transfer coefficient between elements
i and i + 1.

In order to couple the one-dimensional radial heat equation with the one-
dimensional flow model, the heat flow Q between the gas and the inner wall
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is defined as
Q = hiA(T − T1) (26)

where hi is the inner wall film coefficient, A the area through which heat
transfer takes place, T the gas temperature and T1 the temperature of the first
thermal element. For an updated gas temperature the radial heat equation
is solved in the domain surrounding the pipeline to determine the updated
temperature field. For an updated temperature field the heat flow Q between
the gas and the surroundings is computed. This value is then used to model
the heat exchange between the gas and surroundings at the next time step.

3. Numerical Scheme

Transportation of natural gas through high pressure natural gas pipelines
is modeled by numerically solving the governing equations for one-dimensional
compressible flow. Equations (5)-(7) form a system of hyperbolic partial
differential equations which are solved using finite differences, with the dis-
cretization being implicit in time. The numerical stencil is presented in Fig.8.

∼ ∼ ∼ ∼

∼ ∼ ∼ ∼

∼ ∼ ∼ ∼

i = 1 i = 2 i = Ni i + 1

I∆x

∆t

x

t

n

n + 1

n + 2

Figure 8: Stencil used in the finite difference method

A pipeline is divided into N grid points. The distance between point i and
i + 1 is the discretization length ∆x, while the time step between time level
n + 1 and n is ∆t. Flow values are stored at grid points, but are computed
at the midpoints between two grid points. For pipe section I , being the pipe
section between points i and i +1, the partial derivative of a flow variable Y
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with respect to time is approximated by

∂Y (xI , tn+1)

∂t
=

Y n+1
i+1 + Y n+1

i − Y n
i+1 − Y n

i

2∆t
+ O(∆t) (27)

the spatial derivative by

∂Y (xI, tn+1)

∂x
=

Y n+1
i+1 − Y n+1

i

∆x
+ O(∆x2) (28)

and the individual terms by

Y (xI , tn+1) =
Y n+1

i+1 + Y n+1
i

2
+ O(∆x2) (29)

This is method is first order correct in time and second order correct in
space, and is the same method as in the work by Kiuchi (Kiuchi (1994))
and Abbaspour and Chapman (Abbaspour and Chapman (2008)). When
discretizing all terms in a fully implicit way, the governing equations form a
system on non-linear equations. Kiuchi and Abbaspour and Chapman solve
the system of non-linear equations using the Newton-Raphson method. This
can however be time consuming, especially for long pipelines and complicated
networks, and would not be feasible for real time applications. To simplify
the computations the non-linear terms are linearized about the previous time
step to give a system of linear equations. This system can be solved in an
efficient way using simple linear algebra, which is done in the following.

4. Results

The influence of the friction factor, equation of state and heat transfer
model on the transmission of natural gas through offshore pipelines is in-
vestigated. In Sections 4.1 - 4.4 a simple 650 km constructed pipeline is
considered, with the setup shown in Fig.9. For the first and final 25 km
the pipeline is buried under ground and is lying on-shore. For the 600 km
between this it is an offshore pipeline lying at a depth of 100 m. The pipeline
is lying on the seabed and is completely exposed to the seawater.

The composition of the gas was kept constant and was set to: CH4 −
89.16%, C2H6 − 7.35%, C3H8 − 0.51%, nC4H10 − 0.03%, iC4H10 − 0.03%,
nC5H12−0.002%, iC5H12−0.001%, N2−0.70%, CO2−2.22%. Inlet mass flow,
inlet temperature and outlet pressure were given as boundary conditions.
The inlet mass flow is depicted in Fig.10. The outlet pressure was kept
constant at 9 MPa and the inlet temperature at 30◦C.
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Figure 9: Offshore natural gas pipeline which is buried under ground for the first and final
25 km. The total length is 650 km.
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Figure 10: Boundary condition inlet mass flow.

4.1. Discretization errors

When using finite differences the governing equations are transformed into
algebraic expressions in discrete time and space. Such a process introduces
discretization errors in the solution. As the numerical method presented in
Section 3 is first order correct in time and second order correct in space,
the discretization errors will be proportional to ∆t and ∆x2 respectively. In
order to investigate the discretization errors in the model, the local error is
defined as

e =
1

N

(

N
∑

i=1

(

Yi − Yi,hi

Yi,hi

)2
)1/2

(30)
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Figure 11: Local discretization errors for pressure p, mass flow ṁ and temperature T . Left:
Spatial discretization error as a function of grid points N . Right: Temporal discretization
error as a function of time step ∆t.

where Y represents p, ṁ and T at point i. The summation is done over all
grid points N , where Yi,hi is the numerical solution computed using the finest
grid and the shortest time step (high resolution solution). Results for the
local error are presented in Fig.11.

To the left in Fig.11 the spatial discretization error as a function of grid
points N is presented, while the temporal discretization error as a function of
time step ∆t is presented to the right. As the numerical method is first order
correct in time and second order correct in space, the 1 and −2 slopes are
included. The numerical method converges to the expected order. The local
discretization errors are small and are not considered to effect the flow field
solution in any way. When modeling the flow of gas through long distance
pipelines, discrepancies between computed results and measured values are
thought to be because of physical approximation errors, and not numerical
errors. Some of the modeled physical processes which enter into the flow
model will be discussed in the next sections.

4.2. Influence of friction factor

The two different friction factor formulas presented in Section 2.2 were
investigated for the flow. The equivalent sand grain roughness was set to 3
µm. For the GERG formula the draught factor and transition shape factor
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were set to dr = 1.01 and n = 3 (Piggott et al. (2002)). A change in the
friction factor is most noticeable in the modeled inlet pressure. In Fig. 12
the modeled inlet pressure using both the Colebrook-White and the GERG
friction factor formulas is shown. The Colebrook-White formula predicts
an inlet pressure which is approximately 0.3 MPa higher than the GERG
formula.
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Figure 12: Modeled inlet pressure using both the Colebrook-White and the GERG friction
factor formulas for an equivalent sand grain roughness of 3 µm.

4.3. Influence of Equation of State

The influence of the equation of state on the flow model was investigated
by running simulations with SRK, Peng-Robinson, BWRS, GERG 88 and the
GERG 2004 equation of state. Results for inlet pressure, outlet mass flow
and outlet temperature are presented in Fig.13. Gassco currently uses the
BWRS equation of state with coefficients especially tuned for hydrocarbons,
denoted as BWRS*.

The most noticeable difference between the different equations of state
was observed in the inlet pressure. Results for computed inlet pressure is in
the range 17−19.5 MPa. For such high pressures the GERG 2004 equation of
state is believed to be the most accurate. Compared to GERG 88 the GERG
2004 predicts an inlet pressure which is approximately 0.1 MPa higher, while
compared to BWRS* it is approximately 0.1 MPa lower. The influence of the
selection of the equation of state on outlet mass flow and temperature is not
that significant as with the inlet pressure. The outlet mass flow computed
using the GERG 2004 equation of state lies between computed mass flow
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Figure 13: Influence of the equation of state on the flow model. Top inlet pressure,
middle outlet mass flow and bottom outlet temperature. Results found using the SRK,
Peng-Robinson, BWRS, BWRS*, GERG 88 and GERG 04 equations of state.
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values using the other equations of state. For modeled outlet temperature
GERG 2004 generally predicts a slightly lower outlet temperatures compared
to the other equations of state. However, this difference is small and not
noticeable in Fig.13.

4.4. Heat transfer model

Using the same boundary conditions, the model was run using both the
steady and unsteady external heat transfer models. Results for outlet tem-
perature are presented in Fig.14. The steady heat transfer model over pre-
dicts the amplitude of temperature changes in the flow compared to the
unsteady heat transfer model which takes into account heat accumulation in
the ground.
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Figure 14: Results outlet temperature using both the unsteady and steady heat transfer
model. The steady heat transfer model over predicts the amplitude of temperature changes
in the flow compared to the unsteady heat transfer model.

4.5. Model Validation

The one-dimensional flow model was validated by running simulations on
one of Gasscos offshore pipelines, with simulated results being compared to
measured values. Operational data was used as boundary conditions, with
the pipe setup being similar to that in Fig.9. Results for inlet pressure, outlet
mass flow and outlet temperature are presented in Fig.15.
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Figure 15: Simulated results compared to measured values using both the steady and
unsteady external heat transfer models. Top inlet pressure, middle outlet mass flow,
bottom outlet temperature.

The tuned BWRS equation of state was used to determine the compress-
ibility factor, while the friction factor was computed from the Colebrook-
White correlation. Simulations were run with both the steady and unsteady
external heat transfer model. For the outlet temperature the steady heat
transfer model over predicts the amplitude of temperature changes in the
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flow. When using the unsteady heat transfer model, the amplitude of the
temperature changes agree well with measured values. There is also a observ-
able difference in computed outlet mass flow between the two heat transfer
models. After abrupt changes in outlet mass flow, the unsteady heat trans-
fer model agrees better with measured values compared to the steady heat
transfer model.

5. Discussion

For most of the computations in this work the Colebrook-White friction
factor formula was used to determine the frictional force between the fluid
and the pipe wall. The Colebrook-White formula was compared to the more
recently developed GERG friction factor formula, which is stated to give
a more abrupt transition from smooth to fully rough turbulent flow. For
a Reynolds number of approximately 107, the difference in computed inlet
pressure between the two relations was quite significant, with the GERG
formula predicting a considerably lower inlet pressure than Colebrook-White.
However, the GERG formula contains two new factors which are not well
documented in the literature, and there is little information as to what values
these parameters should have for given flow conditions. The Colebrook-
White frictional factor formula is therefore still the preferred choice when
predicting the frictional pressure drop in the pipeline.

For the different equations of states considered in Section 4.3, the biggest
influence was observed in the modeled inlet pressure. As the inlet pressure
lies in the region 16 − 19 MPa, this is also the region where the different
equations of state differ most from each other, as was observed in Fig.3. As
the GERG 2004 is the only equation of state which is explicitly stated to
be valid for such high pressures, it is also believed to be the best reference.
At the outlet the difference in computed outlet mass flow and temperature
is small. As the outlet pressure was set constant at 9 MPa, the different
equations of state agree well with each other in this pressure region in Fig.3.
Therefore, the difference in computed flow variables at the outlet is not that
significant.

Together with the GERG 88 equation of state the tuned BWRS equation
of state currently used by Gassco matches the results of the GERG 2004
quite well. Owing to the fact that it is validated for pressured up to 30
MPa and temperatures up to 365 K, and that it can conveniently be used to
determine physical properties such as heat capacity, enthalpy, entropy and
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internal energy, GERG 2004 would be the preferred equation of state when
modeling the flow through high pressure natural gas pipelines. However,
compared to all other equations of states considered here, GERG 2004 is the
most computationally demanding. For the examples considered above, the
computational time for the entire simulation using GERG 2004 was found to
be approximately 10 times greater compared to other equations of state. This
significant increase in computational time is likely due to all coefficients which
are required in the case of GERG 2004. Because of this great increase in
computational time, the tuned BWRS equation of state is still the preferred
choice for real time applications. The difference in computed inlet pressure
between GERG 2004 and the tuned BWRS was approximately 0.1 MPa.
This pressure difference can be compensated for by tuning the equivalent
sand grain roughness when using the BWRS equation of state in order to
match the GERG 2004 results.

It is shown by example how the heat exchange between the gas and the
surroundings should be modeled using an unsteady heat transfer model which
accounts for heat accumulation in the ground. Results in Fig.15 for the out-
let temperature illustrate how a steady heat transfer model over predicts
the amplitude of temperature changes in the flow, while the unsteady heat
transfer model shows a better agreement with measured values. Heat accu-
mulation in the ground is only considered important where the pipeline is
buried under ground, and not where it exposed to sea water. In the examples
above, the pipeline was only buried under ground at the beginning and end
of the pipeline where the gas leaves the processing terminal and arrives at
the receiving terminal. Both of these lengths are approximately 25 km. Even
for such a short section of pipeline, an unsteady heat transfer model should
be used. In the example in Section 4.3, the relation between heat conduction
and heat storage can be determined by considering the Fourier number. The
thermal diffusivity of the soil is approximately 1.2 · 10−6. The characteristic
length, in this case the burial depth, is 1.5 m, while the characteristic time
is the time for the ramp up and ramp down to occur in Fig.13. With this
being approximately 50 hours, the Fourier number is determined to be 0.1.
The physical meaning of this is that the heat conduction rate is an order
of magnitude less than the heat storage rate, and the transient thermal re-
sponse upon the change in the mass flow rate is predominantly dictated by
the heat storage effect, even on a two day time scale as is the case here. For
shorter characteristic time scales, the larger the effect of heat storage com-
pared to the effect of heat conduction. This underlines that the steady state
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approach for heat transfer is not valid, and that an unsteady heat transfer
model should be used.

For the model validation case in Section 4.5, the computed inlet pressure
and mass flow agree well with measured values. For the outlet temperature,
an unsteady heat transfer model gives better results for the amplitude of
temperature changes in the flow compared to a steady heat transfer model.
However, the modeled temperature lies slightly below the measured temper-
ature. The reason for this deviation between measured and modeled temper-
ature arises either because of an incorrect ambient temperature or that the
assumed burial depth is not correct. As it is an offshore pipeline, the ambient
sea bottom temperature along the pipeline is determined from oceanographic
models. In order to accurately model the flow, it is important to know the
correct ambient temperature along the whole pipeline.

6. Conclusion

The flow of natural gas through high pressure offshore pipelines is modeled
by numerically solving the governing equations for unsteady one-dimensional
compressible viscous heat conducting flow. The numerical discretization er-
rors are shown to be small, and discrepancies between modeled and mea-
sured flow values is most likely due to physical approximation errors, and
not numerical errors. The selection of the equation of state for high pressure
pipelines is studied in detail. The different equations of state gave different
results for inlet pressure, with the recently developed GERG 2004 believed to
be the best reference. However, as it is computationally demanding to solve,
the BWRS equation of state is still used for compressibility factor calcula-
tions in offshore pipelines. The difference in computed inlet pressure between
GERG 2004 and the tuned BWRS was approximately 0.1 MPa. This differ-
ence can be compensated for by tuning the equivalent sand grain roughness in
order to match the modeled inlet pressure when using the BWRS and GERG
2004 equations of state. It is shown by example how an unsteady heat trans-
fer model which takes into account heat accumulation in the ground greatly
improves the modeled outlet temperature compared to a steady heat trans-
fer model which has traditionally been used when modeling the flow through
offshore pipelines. Some discrepancies between the modeled and measured
outlet temperature are still present, which most likely are due to an incorrect
ambient temperature.

26



Acknowledgment

This work has been funded by the Norwegian gas operating company
Gassco as part of a project to improve flow modeling in offshore natural gas
pipelines. The contributions of Willy Postvoll (Gassco) are greatly acknowl-
edged.

References

Abbaspour, M., Chapman, K.S., 2008. Nonisothermal Transient Flow in Nat-
ural Gas Pipeline. Journal of Applied Mechanics 75, 031018.

Chaczykowski, M., 2009. Sensitivity of pipeline gas flow model to the selec-
tion of the equation of state. Chemical Engineering Research and Design
87, 1596-1603.

Chaczykowski, M., 2010. Transient flow in natural gas pipeline - The effect of
pipeline thermal model. Applied Mathematical Modelling 34, 1051-1067.

Colebrook, C., 1939. Turbulent flows in pipes, with particular reference to
the transition region between the smooth and rough pipe laws. J. Inst.
Civil Eng. 81, 133-156.

Gersten, K., Papenfuss, H.D., Kurschat, T.H., Genillon, P.H., Fernandes
Perez, F., Revell, N., 2000. New transmission-factor formula proposed for
gas pipelines. Oil and Gas Journal Feb 2000, 58-62.

Jaeschke, M., Audlbert, S., Caneghem, P.v., Humphreys, A.E., Rosmalen,
R.J., Pellel, Q., Schouten, J.A., Michels, J.P.J., 1991. Accurate Predic-
tion of Compressibility Factors by the GERG Virial Equation. Society of
Petroleum Engineers Aug 1991, 343-349.

Kiuchi, T., 1994. An implicit method for transient gas flows in pipe networks.
International Journal of Heat and Fluid Flow 15, 378-383

Kunz, O., Klimeck, R., Wagner, W., Jaeschke, M., 2007. The GERG-2004
Wide-Range Equation of State for Natural Gases and Other Mixtures.
GERG Technichal Monograph.

Langelandsvik, L.I., Postvoll, W., Svendsen, P., Øverli, J.M., Ytrehus, T.,
2005. Evaluation of the friction factor formula based on operational data.
In Proceedings of the 37th PSIG Annual Meeting, San Antonio Texas 2005.

27



Langelandsvik, L.I., Kunkel, G.J., Smits, A.J., 2006. Flow in a commercial
steel pipe. Journal of Fluid Mechanics 595, 323-339.

Langelandsvik, L.I., Postvoll, W., Aarhus, B., Kaste, K.K., 2009. Accurate
calculations of pipeline transport capacity. Proceedings to 24th World Gas
Conference, Buenos Aires Argentina.

McKeon, B.J., Zagarola, M.V., Smits, A.J., 2005. A new friction factor re-
lationship for fully developed pipe flow. Journal of Fluid Mechanics 538,
429-433.

Modisette, J.L., 2000. Equation of state tutorial. In Proceedings of the 32nd
PSIG Annual Meeting, Savannah Georgia 2000

Osiadacz, A.J., Chaczykowski, M., 2001. Comparison of isothermal and non-
isothermal pipeline gas flow model. Chemical Engineering Journal 81, 41-
51.

Peng, D.Y., Robinson, D.B., 1976. A New Two-Constant Equation of State.
Ind. Eng. Chem., Fundam 15, 59-64.

Piggott, J., Revell, N., Kurschat, T., 2002. Taking the Rough with the
Smooth - a new look at transmission factor formulae. Proceedings to 34th
PSIG Annual meeting Portland Oregon.

Ramsen, J., Losneg̊ard, S.E., Langelandsvik, L.I., Simonsen, A.J., Postvoll,
W., 2009. Important Aspects of Gas Temperature Modeling in Long Subsea
Pipelines. Proceedings to 40th PSIG Annual meeting Galvestone Texas.

Shockling, M.A., Allen, J.J., Smits, A.J., 2006. Roughness effects in turbulent
pipe flow. Journal of Fluid Mechanics 564, 267-285.

Soave, G., 1972. Equilibrium constants from a modified Redlich-Kwong equa-
tion of state. Chemical Engineering Science 27, 1197-1203.

Starling, K.E., 1973. Fluid Thermodynamic Properties for Light Petroleum
Systems. Gulf Publishing Company 1973.

Thorley, A.R.D., Tiley, C.H., 1987. Unsteady and transient flow of compress-
ible fluids in pipelines - a review of theoretical and some experimental
studies. International Journal of Heat and Fluid Flow 8, 3-15.

28




