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Abstract

Certain numerical methods have been well developed for solving one-dimensional
two-phase flow (e.g. gas and liquid) problems in the literatures during the last
two decades. Based on the existing methods, the present work compares the
computational efficiency, accuracy, and robustness of various numerical schemes
by predicting the numerical solutions of fluid properties for a specific case to
find the proper numerical method.

One of the numerical schemes introduced in this work is a practical, semi-
implicit upwind method used for fluid flow simulations in different flow patterns,
stratified flow and slug flow. This method implements the iterative and non-
iterative schemes using a two-fluid model that consists of sets of non-hyperbolic
equations. A numerical error term is applied in the pressure equation to maintain
the volume balance of the two-phase flow model. If the temperature varies, the
discretised energy equations use similar error terms as in the pressure equation.
In some cases, the small values of the numerical errors are negligible and do
not influence the numerical results. These errors are, however, important
factors to consider when maintaining the stability and robustness of the above
numerical schemes for strong non-linear cases. The computational efficiency of
the non-iterative scheme, where the inner iterations are deactivated, is better
than the iterative scheme.

Different grid arrangements are compared with respect to computational
accuracy and efficiency. A staggered structured grid implements the same semi-
implicit upwind method as in the non-iterative scheme; the non-staggered grid
arrangement uses an existing flux-splitting scheme (Evje and Flatten, 2003) as
a reference.

All the above schemes produce numerical solutions with a single precision
that normally satisfy the requirements of computational accuracy of industrial
two phase pipe flows. However, if one pursues a higher-order accuracy scheme,
e.g. a Roe-averaged algorithm, the governing equations should be strictly
a hyperbolic system of partial differential equations, which is achieved by
introducing the nonviscous force terms in the two-fluid model (LeVeque, 2002).
By properly incorporating the non-conservative terms in the formulation of the



numerical fluxes, the capability of the Roe-averaged algorithm is demonstrated
by capturing shock waves.

Results from the present research include the following. A one-dimensional
scheme that solves a system of discretised equations with the staggered semi-
implicit upwind method is presented and validated for its computational effi-
ciency and robustness. This scheme can be widely used in the industry with
sufficient accuracy. The other first-order semi-implicit numerical schemes pro-
duce stable numerical results, especially in the dynamic cases of two-phase
flow, except when the gas phase nearly disappears or appears in pipes. The
Roe-averaged algorithm is recommended due to the high-resolution numerical
results obtained, but at the costs of computational time and effort.
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X Nomenclature

R Gas constant [ J/mol/K]
s Wave speed [m/s]
t Time [s]
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Cm,g Coefficient of gas mass in gas continuity equation [s7Y]
Cm,  Coefficients of liquid mass in liquid continuity equation [s7Y
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Qg Volume fraction for gas [—]
ag Volume fraction for phase k [—]
Q Volume fraction for liquid [—]
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1) Numerical error term
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Vectors and Matrices

A
A
B
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Jacobian matrix of conservative fluxes F
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Nomenclature

xi

Non-conservative terms introduce by non-viscous interfacial friction force

b Known terms vector

C Coefficient matrix in Section 3.4.1
F Vector of fluxes

Q Vector of conservative variables
R Right eigenvector of matrix A
R~! Left eigenvector of matrix A

S Vector of sources

U Vector of non-conservative variables
\% Vector of primitive variables

X Unknown variables vector

F Vector of non-conservative fluxes
F Vector of conservative fluxes
Superscripts

! Correction of variables

+ Positive, see equation (4.46)

— Minus, see equation (4.46)

* Fluxes solved semi-implicitly

1 Time step n or n + 1

i Guessed values of variables

i Iterative step in inner loop

nt Interfacial

L Left state

n Time level

nv

P Coefficient of pressure

D Pressure gradient term

Right state



xii Nomenclature

Ug Coeflicient of gas velocity
ug Coefficient of liquid velocity
v Viscous

Subscripts

+ Forward, see equation (4.43)
- Backward, see equation (4.44)

0 Initial

g Gas

I Interface flux, see equation (4.45)
J Spatial index at interface, same as j — 1/2
J Spatial index at cell centre

k Gas or liquid

L Left state in sections 4.1 and 4.2

l Liquid

P Pressure equation

R Right state in sections 4.1 and 4.2
t Derivative with respect to time

U Momentum equation

w Wall

x Derivative with respect to space

Mathematical Symbols
A Computational interval/change in

0 Partial derivative
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1. Introduction

1.1. Two-phase flow in pipes

Two-phase flow occurs frequently in many industrial applications. Separating,
storing, and transporting oil and gas is of particular importance in offshore
oil/gas recovery. The flow systems become complex because of the existence of
various flow regimes. Large scale transient flow can be activated by a start-up
or a shut-down operation. Severe riser slugging is a slow phenomenon, and
pressure propagation is a rapid phenomenon. Different flow patterns depend
on the combinations of the flow rates, pipe geometry, and fluid properties
(Ishii and Hibiki, 2006). The general classifications include separated flows
(including stratified flow), transitional or mixed flows (including slug flow), and
dispersed flows (Ishii and Hibiki, 2006). In this work, stratified flow is primarily
considered, for simplicity, and the transition to slug flow is explored in one
instance. Slug flow forms from unstable stratified flow or in bends.

It is summarised in the thesis of Munekjord (Munekjord, 2006) how the
mathematical models of two-phase flow are established by averaging the single-
phase flow model. Some numerical methods have been well developed for
solving two-phase flows (Prosperetti and Tryggvason, 2009). The goal is to
establish a robust, efficient, and accurate numerical scheme. In this work,
these three advantages cannot exist simultaneously in one numerical scheme;
however, it remains an ambition for the future. A useful numerical scheme can
be recommended to other researchers.

The choice of the numerical method partially depends on the flow character-
istics, including compressibility of the fluids, the flow patterns, the complexity
of geometries, etc. Certain methods can be applied to specific phenomena, such
as different flow regimes, phase appearance and disappearance, and interface
tracking in droplets and liquid films, while the numerical capabilities of other
methods are impeded in those situations.

In the present work, while neglecting the difficulties introduced by different
flow patterns, finite-volume methods are applied on the partial differential
equations of compressible transient two-phase flows in one-dimensional domains.



4 1. Introduction

During the linearisation procedure, the integrals of the partial differentiation
with respect to time can be estimated implicitly or explicitly. In the explicit
numerical schemes, the stability requires the time step to satisfy the Courant-
Friedrichs-Lewy (CFL) condition. However, the fully implicit schemes increase
computational cost due to introduced non-linear terms, but provide uncondi-
tional stability. One compromise is the utilisation of a semi-implicit scheme
that is capable of violating the CFL condition, and with or without inner
iterations at one time step. The semi-implicit schemes are stable and robust,
even when using large time steps, which is beyond the capability of explicit
schemes (Prosperetti and Tryggvason, 2009). An upwind method is widely
used to solve the diffusive fluxes because of its simplicity, and a “false diffu-
sive” (Versteeg and Malalasekera, 1995) profile can be obtained by this method
when there is a contact discontinuity or shock occurring in the fluid flows. At
such a point, some high-resolution schemes have been developed and validated,
such as the flux limiter and Roe-averaged algorithms. Because of the strong
coupling between pressure and velocity, or between mass and velocity in the
numerical computation of multiphase flow, the staggered and non-staggered
grid arrangements (Versteeg and Malalasekera, 1995) produce slightly different
profiles of fluid properties along the pipes with inclinations.

1.2. Comparisons of numerical schemes

In the comparison of the accuracy, robustness, and computational efficiency of
the existing numerical schemes for the two-fluid model, we focus primarily on
three numerical issues based on the assumpation of constant temperature:

e The non-iterative versus iterative schemes using the semi-implicit upwind
method. In this numerical issue, cases involved with energy equation are
tested except for constant temperature cases, and a sub-issue, simultane-
ous versus sequential schemes, is dicussed.

e Staggered (semi-implicit upwind method) versus non-staggered (Evje and
Flatten, 2003) grid arrangements.

e The first-order explicit scheme (FORCE2 scheme with Lax-Friedrichs
flux and Richtmyer flux) versus high-resolution scheme (Roe-averaged
algorithm with MUSCL-Hancock procedure).

The robustness and efficiency of the non-iterative scheme is validated, and
it is not as accurate as the iterative scheme. The staggered grid arrangement
generates more diffusive profiles than the non-staggered grid arrangement at
the discontinuities in fluid flows. The high-resolution scheme demonstrates an
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accuracy improvement, compared with the first-order schemes. Additionally,
numerical tests have been made on single-phase isothermal flow, single-phase
thermal flow, and two-phase thermal flow in a one-dimensional domain.

1.3. Overview of thesis

This thesis is organised in the following manner. A short introduction is pre-
sented in this Chapter. The next chapter introduces the governing equations
of two-phase flow models. The relevant numerical methods for solving the
mathematical models are described in Chapter 3 and Chapter 4. Chapter 5
presents the results and the discussion. Chapter 6 provides the concluding
remarks. Appendix A describes the expressions of the friction forces used in the
two-phase flow computation. The LU-factorisation method is briefly presented
in Appendix B. All three parts of the nonviscous interfacial forces that ensure
the existence of real eigenvalues and eigenvectors are described in Appendix C.
Appendix D presents the details of the matrices required for the Roe-averaged
algorithm used in the two-phase flow model.






2. Mathematical equations for the
two-phase flow model

The governing equations are generalised for two-phase flows in one-dimension
as follows:

0Q  OF

Ea T
where Q is the vector of conservative variables, F is the flux vector, and S is
the source vector containing a mass source in the mass conservation equation
and forces in the momentum equation.

S (2.1)

2.1. Single-phase flow model

The single-phase flow model uses the mass and momentum equations for one-
dimensional compressible isothermal flows. The expanded form of equation
(2.1) is presented as follows:

O P [ P

The two-phase flow model can be derived by averaging the single-phase flow
model over the pipe cross sections.

2.2. Non-hyperbolic two-phase flow model

The two-phase flow is derived from the mass and momentum conservation
equations for each phase (in the two-fluid model). This mathematical model,
containing two separate sets of conservation equations for each phase, is written
as:

m MEUg 0
@ [ } [ myuj, + aP ] > [ Gy + fi" (ug — w) + frug

(2.3)
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The mass per unit pipe volume my is equal to the product of the volume
fraction ay and the density pr. Expressions of the friction forces f; and f,z”t
are presented in Appendix A.

The volume balance is required in the two-phase flows:
agt+a =1 (2.4)

All the governing equations in (2.3) are non-hyperbolic, and cannot be solved
by a high-resolution scheme, e.g. the Roe-averaged algorithm. As a consequence,
the hyperbolic equations are strictly required to solve two-phase flow problems
if Roe averages are used.

2.3. Hyperbolic two-phase flow model

In a hyperbolic two-phase flow model, the complex form of the interfacial
friction F; é”t is used, and the mathematical model is written as follows:

_ mg _ MU ' | 0
Q_{mkuk]F_{mku%—i—akP—Fém]S_{Gk] (2.5)

The interfacial friction term contains two parts, a viscous force F}! neglected
in certain cases, and a nonviscous force. The nonviscous interfacial force is
represented (Stadtke, 2006) as follows:

o Oug  Ouy ou oy,
Fg = —ozgozl(agpg-i—ozlpl)k <8tg_at+UZ8xg —Ugax>

ou 8ul
+agay(cgpg — agpr)(ug — uy) ((9; - 8:1:>
_ oy (e 9Py, 1 Op
agal(pg +pl)(ug Ul) (pg 8t + pl 8t
Q9 9Pg 01O
g,og Ox p1 Ox
oo
—agaq(pg + pi)(ug — ul)287$g (2.6)
and F" = —F, ;“’. The value of the virtual mass coefficient & varies with the

flow type (Stadtke, 2006), i.e. k is zero for stratified flow, k is approximately
equal to 1/2 for dispersed droplet or bubbly flow, & > 0.5 will indicate churn-
turbulent flow, and if one phase disappears, the value of k approaches infinite,
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and (ug —u;) — 0. (For a detailed description of the nonviscous interfacial
forces, refer to Appendix C.)

In the stratified flow regime, the nonviscous interfacial friction force in the
mathematical model described by equation (2.5) can be simplified as follows:

o Ou oy
Fg = —agal(ug - UZ)(PQT; + Pl%) (2.7)

2.4. Equations of state

The non-linear state equations can induce large numerical errors because of the
incorrect compressibility factor introduced in the pressure equation. Methane
(gas) and water (liquid) are considered as testing fluids for some numerical tests
and are assumed to be immiscible in this work.
The state equation for water with varying pressures is defined by the website
The Engineering ToolBox as follows:
. P10
"I (P-R)K

(2.8)

where the initial density of water p;o = 1000 kg/m3, the pressure Py =
101325 Pa, and the bulk modulus fluid elasticity K = 2.15 x 107N - m—2.

For the gas-phase methane, the virial state equation (Prausnitz et al., 1999)
is applied under a constant temperature (273.15 K):

P = RT, (Ap} + Bp + Cpy) (2.9)

where the gas constant R = 8.31451J -mol~! - K~! and the coefficients are
A =53/18/163, B = —53/162, and C' = 1000/16, which are taken from the
work of Douslin (1962) on methane (Prausnitz et al., 1999).

State equations (2.8) and (2.9) are used for the first two numerical issues
mentioned in the introductory Chapter 1.

For the last numerical issue, the linear equations of state for each phase are
implemented as follows:

P
Pg =2 (2.10)
g
where the speed of sound cg =10°m/s. And
P— P
mszijﬂ (2.11)

l

where the speed of sound ¢; = 103m/s. The parameters pio and Py are the
same as in equation (2.8).






3. First-order numerical methods:
semi-implicit fluxes

In the numerical computations of two-phase flows, a one-dimensional domain
is normally subdivided into a finite number N cells of grid sizes Ax1, ..., Azy.
A uniform grid is adopted for simplicity, resulting in Az = ... = Azy = Ax.
Alternatively, an irregular grid is used for computational convenience in certain
cases to implement finite volume methods. Based on the uniform grid, using
equation (2.1) and neglecting the source terms, a regular form of discretisation
equations can be written as follows:

1 * *
Q" - Qp N Fivye = Fjp _ 0
At Az

(3.1)

This equation is shown to be conserved by LeVeque, where the discretised
equations were derived from the integral forms of the conservation equations.

If the flux term, F;‘ +1/20 is evaluated explicitly, the computational capability
will be limited because the scale of the direct moving distance of substances,
At|u|, must be less than Az, the size of each cell. Hence, the CFL condition is

prescribed as follows:

%maxj|u| <1 (3.2)
Although the CFL condition can be violated when the fluxes are specified fully
implicitly, it will cost a large amount of computational effort to calculate the
resulting non-linear terms. A different way to compromise is to discretise the
fluxes semi-implicitly using simple numerical methods, where large time steps
can be imposed in contrast to the explicit schemes.

The upwind and other first-order precision methods are easy to implement
and are capable of producing stable results. A system of linearised algebraic
equations can be obtained by applying the finite volume methods to discretise
the conservation equations. A general survey of two important numerical issues
will be presented before applying the specific numerical methods.

11



12 3. First-order numerical methods: semi-implicit fluzes

3.1. Ilterative versus non-iterative numerical schemes

When the word “iterative” is mentioned in the field of the computational fluid
dynamics (CFD), we normally think of the numerical schemes marching in
time or direct solvers converging to a solution. An additional understanding of
“iterative” can be that iterations, typically called inner loop, repeat an algorithm
in one time step to achieve a converged solution.

In this work, the iterative numerical scheme utilises the inner loop, but the
other schemes do not. In the iterative scheme, the calculation repeats until the
numerical errors are negligibly small or the converged numerical solutions are
obtained at one time level. Alternatively, the numerical errors can be treated
as source terms in the linearised pressure equations in the non-iterative scheme.
The algorithms in this numerical issue are illustrated conceptually in Figure
3.1, and the inner loop is marked at the iterative step ¢ by using the primitive
variable u as an example.

( BEGIN ) BEGIN

u" u”
\ \ ]
Solve the system of Solve the system of
the linearised the linearised
equations No [equations
unJrl
END

END

Figure 3.1.: Non-iterative (left) versus iterative (right) schemes

3.1.1. Convergence criterion for the iterative scheme

The convergence criterion for the iterative scheme is established on the basis of
two steps. The first step is specified as follows. The maximum volume error is
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limited by a pre-assigned small number ¢, (e.g. 1079):

i

vt <e (3.3)
There are times when the above condition cannot be satisfied, i.e. when the

solutions of the linear equations have already converged. In those instances,

the additional convergence criterion is imposed (using gas velocity uy as an

example):

i+1 i
u'T — U <e€ 3.4
g.j+1/2 9.3+1/2|, o = U (3.4)

This avoids additional iterations.

The computation is carried out with single precision and is stopped if one of
the criteria is satisfied in this work. To ensure the accuracy of predicted results,
the first criterion has a higher priority.

3.2. Staggered versus non-staggered grid
arrangements

The governing equations are discretised on the basis of simplified uniform grid
cells in one-dimension, as shown in Figure 3.2. The index j, located at the cell
centre, is marked by a cross. The index j 4+ 1/2 is located at the cell interface
(staggered grid is marked by a dashed line).

j—1 J Jj+1

X

j—1/2 j+1/2
Figure 3.2.: Grid structure.

Dependent variables, including velocities, masses, and pressure, can be stored
at the cell centre, or alternatively, at the interface. For instance, if all the
variables of a mathematical model are defined at the cell centre, an inappro-
priate pressure gradient value participating in the numerical computation of
momentum equations may lead to an irregular ‘checker-board’ pressure field
but a uniform velocity field (Versteeg and Malalasekera, 1995). Similarly, the
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same values of pressure at the cell centres contribute zero momentum sources in
the discretised equations as a uniform pressure field, whereas the real pressure
field can have spatial oscillations. These false behaviours can be remedied
by applying a staggered grid to the velocities and pressure components, i.e.
the scalar variable of velocity is stored at the cell centre, and the pressure
is prescribed at the cell interface. A similar situation occurs when the grid
structures of velocity and mass are non-staggered. Hence, the grid arrangement
plays an important role for simulating the fluid flows in the inclined pipelines
governed by the two-fluid model.

Initially, simulation tests on the staggered arrangement, called staggered
gas and liquid velocities (SGL), are run with a semi-implicit upwind method.
Then, as a comparison, the liquid velocity is prescribed on the non-staggered
grid (staggered gas velocity and non-staggered liquid velocity (SGNSL)), based
on the SGL numerical scheme. A sub-model, called steady gas equation, is
used to calculate the numerical values of the pressure gradient term in the
liquid momentum equation. Finally, the non-staggered grid (non-staggered
gas and liquid velocities (NSGL)) for the velocity and mass components is
implemented . The strongly implicit mixture flux method combined with an
advection upstream splitting method (SIMF-AUSMD) developed by Evje and
Flatten, is applied in the NSGL grid arrangement.

3.3. Discretisation equations

Equation (2.3), describing the mathematical model, consists of two sets of
partial differential equations for the two-phase compressible flow; each phase
includes two conservation equations, the mass and momentum balance equations.
In some numerical methods, the governing equations alone cannot predict the
pressure implicitly through the momentum equations: for those cases, a derived
pressure equation is introduced in the following section.

3.3.1. Pressure equation

The pressure equation, derived from the volume balance and mass balance
equations, can be used in the numerical computation of the two-phase flow.
The pressure equation for the two-fluid model (2.3) is derived in the following
manner.

The phasic mass per unit volume at the time level n + 1 is expressed as the

following product:

mptt = ot it (3.5)
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Discretising the volume fraction aZ“ = o} + day, and the density pZH =

pi + dpy, of the product of mass in equation (3.5) is expressed as follows:

mptt = o pi + aftdpy + pitdog + dprday, (3.6)

where doy = —doy.

In the non-iterative scheme, the second order term, dpgday, is neglected, but
it can be included in the iterative scheme by updating the volume fraction in
the inner loop. By dividing equation (3.6) by p} and reorganising the resulting
equation, the following equation is obtained:

my ! altd dprdo
g E APk PrAQ
- — dak BT —

af = ——
R pp pr

(3.7)

Recalling the volume balance equation (2.4) and substituting equation (3.7)
into it, we obtain a balance equation for the iterative scheme:

I _ (a?+day) L2 — da, + —(af +day) L —day =1 (3.8)
pg pg pl pl
Because day = —doy, equation (3.8) becomes the following:
I (af +dayg) Lo T (af 4 dog) P =1 (3.9)
pg pg pl pl

For the non-iterative scheme, the terms including da; are neglected in the
above equation (3.9), resulting in the following:

mn+1 n+1

dp m dp;

g n g l n

—« + -« =1 (3.10)
Py ! rg ol : ot

In equations (3.9) and (3.10), the mass m} " is obtained from the discretised

continuity equation for each phase.

In the equations of state, the density py is a function of the pressure P:

Ipr
= — P 1
dpi (ap)de (3.11)
n+1

Substituting m;™" and dpy into equation (3.9) and (3.10), the pressure
equation becomes as follows:
d(mgug)

1 1
Xpdp + At— 4 ag L dlmw)

=4 3.12
pg dx p dx Y ( )
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The compressibility factor x, is defined as follows:

agdpy  apdp
Xp=——>+——. 3.13
P pg dp oy dp (3.13)
and the volume error dv is prescribed as follows:
Sv=9 T (3.14)
Pg Pl

Neglecting the volume error term, we obtain exactly the same pressure equation
as the one used by Flatten (2003).

If the non-linear state equations are employed, the incorrect compressibility
factor, dpy/OP, is introduced because this factor is inconsistent with the
accurate gradient dpp/dP (if dP # 0). In figure 3.3, it is shown that an
inaccurate pressure (marked by the dashed line) can be obtained with the
analytical expression dpy/OP, while the real value should be P"*!. In the

P
EOS

dP

dp
Pn+1

aP\"
iTrLLchclcumte ------------------ — ( dp )
P
m P
p p’I’IﬁFl

Figure 3.3.: Pressure deviation for non-linear equation of state (EOS).

non-iterative scheme, the gradient dpg /P is applied in the pressure equation,
and this inconsistency is overcome by treating the volume error as a source
term. For the iterative scheme, the compressibility factor is calculated correctly
by using the following expression for each phase at the iterative step ¢ in the
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inner loop:
p=p" :
dp . if P*#£ P™
oF ) Pi—pr
ap @ otherwise 19
oP

Simultaneously, the volume fraction ay can also be updated in equation (3.13)
in the inner loop.

3.3.2. Non-uniform structure of grid

A uniform grid Az is popularly used in many numerical studies. However,
a flexible non-uniform grid is constructed in one of the present test cases,
namely, slug flow in S-shaped pipelines, and it will not change the discretisation
equations. The non-uniform grid specifies the average values of mass at the
cell interface by the weighted average operator:

mjAx; + mj1 AT

3.16
Ax; 4+ Azxjiq ( )

mjy1/2 =

xj is equal to ;41 in the uniform cells. In this work, the uniform grid arrange-
ment is used to discretise the governing equations in the following sections for
simplicity.

3.3.3. Linearised equations for the staggered grid arrangement

The variables of velocities uy and u; are prescribed at the cell interface, j+1/2;
the pressure P and masses my and m; are stored at cell centre, j (refer to
Figure 3.2). Therefore, the staggered grid structure exists in the coupling of
pressure and velocity and in mass and velocity. The discretised equations are
the following:

Gas momentum equation

n+1

T NN ) n
Mgj—1/2Y%g,5-1/2 ~ Mgj-1/2%g,j-1/2 n
At
2\k 2\ % n+1l _ pn+l
(mu?)g; — (mu”)g ;4 +anPj Pty
Azx 9 Ax

),

_ +1 wnt,n —+1 +1
= Jgi-1y24g 52172+ Fo 012 (g5 maye = Wi p0) + Gy jorje (3:17)
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Liquid momentum equation

T n+1 _aon n
My i12%5-1/2 ml,j—l/Qul,j—1/2+
At
2\ % 2 n+1
(mu )lj (mu )z] 1 g P
P + Of?
Az Az

_ n+1 int,n n+1
_fl,j—l/Z“l,j71/2+fg 1/2( 9,5—1/2 “z,] 1/2)+Gl] 1/2

Pressure equation

At m T y n+1 / T / n+1 y

Pn+1 Pn) 4 — 9,J+1/2 g,]+12 9,0 — 124 g,J— 12+

I A
T n+1 T n+1
At M2 g41/2 ~ Mg-1/2"5-1/2 oo
PL Az ’
Gas continuity equation
+1
Mgy — Mg 4 (mn+1uT)g,j+1/2 - (mnH“T)g,j—l/2 _gn.
At Ax 9>

Liquid continuity equation

(3.18)

(3.19)

(3.20)

(3.21)

The volume fraction at the cell interface can be defined as the arithmetic

average, ay j_1/2 = (g j—1 + agj)/2.

3.3.4. Linearised equations for the non-staggered liquid velocity

The liquid velocity is redefined at the cell centre based on the staggered grid
arrangement and the coupling of liquid velocity corresponding to the masses

and pressure changes in the non-staggered structure.

The liquid momentum equation is discretised at the cell centre as follows:

T n+1
UURLIN: ml ul

At +

Pn+1 n+1

(mu?); 1,j+1/2 — (mu?); lj—1/2 j+1/2 — 12

+ + o

At
_ n  n+l int,n n+1 n+1 n
= Jigu o+ fiy gy =) + G

Azx

(3.22)



3. First-order numerical methods: semi-implicit fluzes 19

Equation (3.22) is sensitive to the pressure gradient term because of the non-
staggered grid arrangement used for the liquid velocity. If the pressure at
the cell interface is solved using the arithmetic average of the values at the
centres of the neighbouring cells, the strong coupling between pressure and
liquid velocity induces an instability because both variables are stored at the
cell centre. A sub-model is introduced in the liquid momentum equation to
rectify this issue.

First, the summation of the two-phase momentum equations provides a
mixture momentum equation by cancelling the interfacial friction terms. Then,
a steady gas equation is obtained from the mixture momentum equation by
assuming a gas velocity constant with time (steady gas flow):

omyy, N 0 (mguf] + mlu?) opP
ot Ox Oox

= Gg + fgug + G + fiw (3.23)
Disctretising the above equation obtains the following equation:

(miu

n+1)l7j (mu)m . (mu2) Lit1/2 — (muQ) Lj—1/2
At Az

n+1 n+1
n (mu?); 9.j+1/2 (mUQ) 95— 1/2+P]+1/2 P
Ax Ax
_ flq?] n+1+fgj n+1+Gl]+Gn (3.24)

Through reorganisation of equation (3.24), the pressure drop in the liquid
momentum equation (3.23) results in the following:

+1 +1
anAPjn+1 Pn i o (mTun—H)l,j (mu)l’] -
bi Ax T At
2 2
o (M) = (M) 1y
Li Ax
2 2
o (U)o — (MUT) 5
— Oél +
J Ax

+ap [t 4 o frult + af ,GE + af G (3.25)

The pressure drop equation (3.25) is substituted into the liquid momentum
equation (3.22) to avoid the strong pressure-velocity (liquid) coupling:
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Ligquid momentum equation

T, ntl no,n 2\ * _ 2\ %
or ity "M s (M) 10 = (M) 9 _
2\ * _ 2\ *
_ an'(mu )9,j+1/2 (mu )g,j—1/2 _ ”,u”‘H _ an‘ "Au”""l +
lL,j Ax — Y93/l %,5 L,379,9%9,5
mntn n+l ) n+tl n mn _ n m
+hy gy — ) g Gl —apGa o (3.26)

Another method found in the literature (H. Paillére and Cascales; Liou) to
eliminate this instability is to use an ASUM+ scheme for the pressure gradient
term in the non-staggered liquid momentum equation. This ASUM+ scheme
requires fine meshes, which are not available for our cases at this time. Large
grid sizes are tested in the existing numerical schemes, which are more efficient
and preferable for practical and real applications.

3.3.5. Linearised equations of the non-staggered structure for
mass and velocity (SIMF-AUSMD)

The variables of the masses and velocities, prescribed on the cell centre, indicate
the non-staggered grid arrangement between them. By combining with the
Lax-Friedrichs method in the pressure equation, a staggered pressure is taken
into account by Flatten:

Pressure equation

+1 1
Pg‘n+1/2 - §(P]” + Pjn-&-l)

n
Xj+1/2 AL
n—+1 n+1 n+l _ yn+tl
1 Igaj"!‘l B IQ»j + 1 Ilaj"!‘l Il J _ 0 (3 27)
P Az n Az N '
9.j+1/2 Prj+1/2

Gas momentum equation

+1 * * n+l _ pn+l
Iy — 13 N (I”)g,jﬂ/z_(fu)g,jflﬂ+anpj+1/2 PiT

At Az g Az

1 1 1
= fogtyy — fijlugy —ul )+ Gyy (328)
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Liquid momentum equation

1 +1 +1
=1 N )10 = U5 1y N anjjan+1/2 Pl
At Az ! Az
_ +1 +1 +1
= flyuy + fiylugy —wy ) + Gy (3.29)
Gas Continuity equation
n+1 * T
9,J B m;LaJ 4 Igvj+1/2 Igvj_1/2 — Sn (3 30)
At Az 9:J '
Liquid Continuity equation
+1
mi; My n Tgrie ~ lig-1ye _ gn. (3.31)
At Az Li '
The mass fluxes are expanded as I = miug. In addition, the velocity

components in the friction terms are treated as UZ'H = I,?H/ mj;. The reason
for keeping the integrated form of mass fluxes is for computational convenience
when utilising the flux-splitting method.

3.4. Algorithm of the semi-implicit upwind scheme

A drawback of the upwind numerical method is the “diffusive-like” (mentioned
by Versteeg and Malalasekera) profiles, especially for a shock tube, but this
effect can be improved by grid refinement.

By recalling equations (3.17), (3.18), and (3.19) with a staggered grid ar-
rangement, the fluxes are solved as follows:

ton ) n+1 : n n
(mu2)z7j _ { (Mg o1 y2ups—yje ULy HUg 1y >0 (3.32)

I AT n+1 .
(m'u )k,g+1/2uk,j+1/2 otherwise

The mass at the cell interface is defined as the arithmetic average of the
masses at the neighbouring cell centres in the momentum equations, my, ;1 1/5 =
(mk,; + mi j4+1)/2, and the same method is applied to the volume fraction,
aji1/2 = (kg + Qkja1)/2.

In the discretised pressure equation (3.19), the continuity equation (3.20),
and equation (3.21), the mass flux term, (mu)y j11/2, at the cell interface, is
similarly defined as follows:

ka‘ if uk,j+1/2 >0

Mkj+1/2 = { my j+1 otherwise (3.33)
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The robustness of the numerical scheme can be strengthened by calculating
the fluxes semi-implicitly, which permits violating the CFL condition, in contrast
to completely explicit schemes.

3.4.1. System of linear equations

We reorganise all the discretised equations in section 3.3.3, and convert those
equations into completely linearised forms. In the programming codes, notation
for the cell interface uses a capital letter J instead of j — 1/2 for computational
convenience. The index J counts from 1 to N + 1, and the cell centre index j
counts from 1 to N, where the longitude space is divided into N grid cells.

Gas momentum

UG\ p+1 ug,R +1 ug,L +1
(i) st + (ci™) gl + (cig™) ity +

(Cul )n n+1 + (CPR) Pn+1 (CPL) Pn+1 — (bu,g)q} (334)

Liquid momentum

u,l

()t (C) e () B = .39

u,l w,l

(ci) i+ (™) sty + (i) it +

Pressure equation

(CB); Byt (i ™) gty + (i) st +

n
+ (c}ﬁﬂ)] upho+ () uist = e (3.36)
Gas continuity equation

(Conyg) g i+ (Co )T ity 4 (Cog) T M 52y = (i) (3.37)
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Liquid continuity equation

(Cr )Tyt + (cg;,l)j mi Tl + (c,%%l);? mi T = ()", (3.39)

Pressure equation (3.36), gas momentum equation (3.34), and liquid momen-
tum equation (3.35) are assembled as a system. The system of linear equations
is written in the form of Cx = b, where C is a coefficient matrix, x is the
unknown vector, and b contains all the residual known terms.

The coefficient matrix C for the pressure-velocity coupling (a hepta-diagonal
matrix) is a sparse banded matrix that can be decomposed into a lower quad-
rangular matrix and an upper quadrangular matrix using the LU factorisation
method (Karris, 2007). Certain elements of the diagonal are highlighted by
underlines at the cell j in the matrix in equation (3.38). The coefficients of the
mass continuity equations are organised in the similarly as a typical tri-diagonal
matrix with a bandwidths of three.

The pressure-velocity coupling gives the following:

_ -4 n+1

Ug,1
U1
Py

Ug,J
X" =1y (3.40)
‘Pj

Py
Ug,N+1
L UI,N+1

The mass for each phase is arranged as follows:

r qn+1
mE1

)

Mk,j—1
X" = my, (3.41)
mg j+1

mp N
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3.4.2. Non-iterative scheme

The computational sequence for the non-iterative scheme, with a staggered grid
structure and the volume error included as a source term when 1 = n. The
computational sequence is as follows:

e Assemble and solve the system of linear equations (3.18), (3.17), and

(3.19) (pressure-velocity coupling) for PJTL'H, u;‘jil /9 and u?;lll Jo-
+1

p is solved for each phase with the updated velocity uzJﬁl /2

The density pk(P)?H is obtained using the state equation with the

pressure at the new time level

e The mass m;,

The volume error dv can be obtained from equation (3.14).

Advance to the next time level by one time step.

3.4.3. lterative scheme

In this scheme, the volume error is excluded from the pressure equation in the
inner loop with § = ¢; this error can be included in the computation prior to
the inner loop when { = n to accelatrate the convergence rate in some cases.
The numerical expression of the compressibility factor, x,, is applied rather
than the gradient, Op /0P, in the inner loop, as discussed in section 3.3.1. The
computational sequence is:

e Execute the computational procedure of the non-iterative scheme once
before continuing the inner loop when t = n (Numerical errors terms are
optionally included or not in this step).

e Assemble and solve the system of the linear equations (pressure-velocity

coupling) for Pf, ug7j71/2

e The mass m}'a ;s solved for each phase with the updated velocity u;w._l /2

i
and Uy i1/

e The density pk(P)?Jrl is obtained using the state equation with the

pressure at the new time level.
e The volume error can be obtained with the updated mass mZJ]r.l and the

density pk(P)?H.

e In the inner loop, the above steps are repeated until the convergence
criterion is satisfied, and then the values of the variables [my, ug, P]7>"*!
are set equal to [my, uy, P]*. During the inner loop iterations, the fluxes
are solved fully implicitly by introducing the values [my, ug, P]* at t = 1.

e Advance one time step to the next time level.
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3.4.4. Non-staggered liquid velocity

In the temporary work, the upwind method is employed for calculating the
semi-implicit fluxes; a similar algorithm is used for the non-iterative scheme in
section 3.4.2. In the interfacial friction term, the gas velocity at the cell centre
j is calculated by averaging the left and the right states:

1
r n+1 +1 r n+1 n+1 n+1

In the linear part of the friction term f; ;, the gas velocity is equal to the
right state ug 11/ at the jth cell interface when the fluid flows in the positive
direction, i.e. ug; > 0, otherwise, the gas velocity is equal to wug;_1/9, if
Ug,j < 0.

3.5. SIMPLE

As a reference scheme to the iterative algorithm, the semi-implicit method of
pressure-linked equations (SIMPLE) scheme is briefly introduced in this section,
using the discretised equations in Section 3.3.3.

First, the corrected expressions for the pressure and velocities are provided
in the literature (Versteeg and Malalasekera, 1995):

P = P4 P (3.43)
Ug,j—1/2 = u]i,j—l/Q + dk,jfl/Q (Pj - ijl) (3.44)

And the expression of the corrected term d is equal to:

At 1
dk,j—l/? = Exak,j—l/2(

e T — 4
Csfk)j—l/Z (349)

Using the pressure equation (3.19), instead of the continuity equations (Ver-
steeg and Malalasekera, 1995), and substituting equation (3.44) into the pressure
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equation, results in:

i 1 / !
/ At Mg jt1/2 [ug,j+1/2 + dg,j+1/2 <Pj+1 - PJ)]

n
P = _
Xpgty + o Az
i t F
At My i-1/2 [ug,j—1/2 +dgj-1/2 <Pg - ij)]
- +
Pg.j Az
i t / /
N At My [ul,j+1/2 SCRERYE <Pj+1 - P]ﬂ B
Pl Az
-|- i ’ /
At ™M j-1/2 [ul,j—l/Q tdijo1y2 <Pj - Pj—lﬂ e
P Az
Reorganise the above equation (3.46):
m! dg i m! dg
[y At My iv172%,5+1/2 At My 5 1/9%,j-1/2
i\ Xpi T Ap o T Ar o -
9. 9.
ﬁm;r,j—f—l/leJﬂLl/Q ﬁm;qudl,jfl/?
N T
T i
L p ﬁmg,jﬂ/zdg,jﬂ/? n ﬁmz,jﬂ/zdl,ﬂl/?
7 Az Py.j Az PL
T T
4P ﬁmg,jfl/2d97j—1/2 N gml,jfl/leJ—l/Q
7\ A Py.j Az Pl
T 1 T 1
_on = Dt Meg1/2te g2 | AT 1/0Y 51/
T Ae Py.i Az Py.i
T 1 T 1
AL 195 ALY 1 oWy
Lit1/2%g1/2 At 12012 (3.47)

Az Pl Az Pl

Based on the computational sequence presented by Versteeg and Malalasekera,
the SIMPLE algorithm is:
e Solve the system of momentum equations (3.17) and (3.18) to obtain ui

e Solve the pressure correction equation (3.47) for the corrected term P'.

e Correct the pressure and velocities.
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e Solve the mass continuity equations (3.20) and (3.21) for each phase.
e Repeat the above steps until the convergence criterion is satisfied in the
inner loop.

e Advance one time step to the next time level.

3.6. Strongly implicit flux splitting method
(SIMF-AUSMD)

The method of strongly implicit mixture flux (SIMF) and an advection upstream
splitting method (AUSMD), developed by Evje and Flatten (Evje and Flatten,
2003, 2005, 2006), are briefly introduced in this section. The SIMF-AUSMD
scheme is applied to solve the two-fluid model on a non-staggered arrangement
for the coupling of masses and velocities. This algorithm behaves well for
stratified flow, which is the primary focus of this work.

With respect to the discretised equations in section 3.3.5, the compressibility
factor is:

ag0pg oy Opy
Xp=—"—F> +——F— 3.48
P pg Op i Op (348)
The arithmetic average of volume fraction is expressed, as usual:
1
Ak j1/2 = 5+ Qjir1) (3.49)

The pressure, at the cell centre j, is computed by the volume balance equation:

mg my
po(P) " i(P)

The density is a function of the pressure in the equations of state. Because
the nonlinear state equations (2.8) and (2.9) are too complex to apply in this
scheme, a simpler method is used to obtain the values of J,p) from equations
(2.8) and (2.9). The relations of the density and pressure are linearised as
follows:

=1 (3.50)

Opi
=p)+ Ep-—p° 51

where P’ = 1 bar, pg = 0.706 kg/m?, and p) = 1000 kg/m?> for the cases in
this study.

Substituting equation (3.51) into equation (3.50), a quadratic equation with
the unknown P is obtained, and the pressure is solved as a positive root of the
second-order polynomial.
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The convective momentum flux terms in the SIMF scheme are written as

follows:

* 1 — 1
(Iu)k:,j-f—l/Q = Uk ]I]?j Uk ]+1In7j+1 (352)

The convective mass flux is split into a diffusive flux FP and a mass flux F4,
associated with the volume fraction calculation. The hybrid mass fluxes F}, (i.e.
I}t in the continuity equations) are expressed as follows:

1 (a,0 o 0 oy 0
Fugnip == (205D + SEA L S0P _ FY))  353)

Xp\pg Op ¢  prOp 7  p Op
and:
a; Opy Qg apg A ap Ipy D A >
F = —(—=2LFP+ F L S 2 3.54
W2 (pz dp 2 O L T pg 82?( s —Fy) (3:54)

The diffusive flux FP in the SIMF scheme describes the following:

1 1A
FP S I ) b S it -t (3.55)

kj+1/2 7 9 k,j+1 4 At( ki — Mijit
and the flux component F4 is as follows:
F’fj—l—l/Q Uy gmﬁl + U ]+1kajr+1 (3.56)
Then, U + are given as:

1 2
+ _{ 40?_“/2( k,j +c +1/2) if ‘uk:j‘ <c +1/2
kg —

%(u}g,j + |ug ;1) otherwise

J+1/2

U-
%(UZJ-_H = |k 41l otherwise

1 n _.n 2 n n
{ — 1o (U 1 Cj+1/2) if Jug ;4 < Civ1/2
kj+1

Less diffusive formulae for U* are employed with the modified coefficient Xp as
described in Evje and Flatten’s articles (Evje and Flatten, 2005).

The speed of sound at the cell interface is ¢; /5 = maz(cj, cj+1), and the
approximate mixture speed of sound c is defined as:

c= PL + Py (3.57)
Oppgpictg + Opprpgy

This scheme introduces instability when one phase nearly disappears or
occurs in the pipelines. The authors (Evje and Flatten, 2005) present some
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modifications to improve those results in the single-phase region, but the phase
appearance and disappearance models are too complex to be incorporated in
this numerical formulation. Other feasible methods are employed when only
liquid phase exists in a pipe (H. Paillére and Cascales, 2003; Bestion, 2000).
This will not be included in the present research work, but it is worthy of study
and would be an interesting topic to explore in the future.

3.7. Boundary conditions
The primitive variables (ax, ug, p)? are preferable as boundary condition
to the conservative variables ). At the inlet of a pipe, all the variables are
imposed with specific values; the velocities at the inlet are zero at a closed end.
At the outlet boundary, the velocities can be computed by the algorithms in
the staggered arrangement (at the cell interface); the values of the velocity,
prescribed at the cell centre, are extrapolated from the neighbouring cells. In
some scheme, the conservative variable myuy is extrapolated by the known
values at neighbouring cell.

In some cases, the liquid cannot flow backward at the outlet. Numerically,

the volume fraction of the liquid at the outlet boundary is set equal to zero to
ensure this condition.



4. A high-resolution scheme

A two-step MUSCL-Hancock procedure, including a Roe-averaged algorithm,
can achieve second-order accuracy. The non-conservative terms in the hyperbolic
equations present the most difficulty, arising from the pressure gradient terms
and the nonviscous interfacial friction. The primitive variables are stored at
the cell centres, and the computational domain is divided into N uniform grid
cells. For simplicity, only stratified flow is considered in the present work.

4.1. The FORCE2 scheme: explicit fluxes

Before addressing the Roe-averaged algorithm, a first-order scheme is introduced
as a comparison to the high-resolution scheme. The first-order centred with two
stages (FORCE2) scheme is added in this section because the same mathematical
model, equation (2.5), introduced in section 2.3, is used.

Rewriting equation (3.1) using explicit fluxes and neglecting source terms,
the equation for the FORCE2 scheme is developed (Toro, 2006):

At
n+1 n R L
Qi - Qf + Ax (Fj+1/2 - Fj—1/2> =0 (4.1)

The fluxes are solved by the Lax-Friedrichs (LF) scheme and Richtmyer scheme
(Toro, 2006; Munekjord, 2006).

The continuity equations are discretised in a general form:

1
mza—; B mzﬂ + Ikaj+1/2 B Ik7j_1/2 — 0 (4 2)
At Az ’
The discretised momentum equation for each phase yields the following:
1 R L
(mu)Z} - (mu)Z,j " Frjrye — gy —0 (4.3)
At Ax '
4.1.1. Lax-Friedrichs scheme
For mass fluxes, the LF scheme gives the following:
1 1 Ax
Ly = 5 |(mu); + (mu)z,frl} + 5 Ag [Mhg — Mg (4.4)

31
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In the LF scheme, the momentum fluxes can be derived directly from the
discretised momentum equation with the simplified expression (2.7) and the
simplified nonviscous force for stratified flows. By using central differentiation
in the momentum equation, substituting the expression (mu)"Jrl into equation
(4.3), and, sequentially, splitting the resulting equation into two formulae, the
right state of interface flux is written as follows:

1
R
Figrie = Frjije + 5005 [P + Pl +
1
+ Sag oty (ugy —uiy) (P [ug; +ug ] + el [uiy + uija])(4.5)
and the left state of fluxes is written as follows:

1
L
Frjrie = Fjrae + §a2,j+1 [P} + Py] £

1
n n n n 7 n n
+ 5ag 00 (g e = vigi) (Pge [ug +ug ] +

+phj (Ui + ullja]) (4.6)
apart from the non-conservative terms:
Fjriz =35 [(m“ )p; T (mu )k,j+1} +t 5 AL {(mU)Z,j - (mu)Z,jJrl} (4.7)

where the plus sign is for the gas, and minus sign for the liquid phase in
equations (4.5) and (4.6).

4.1.2. Richtmyer scheme

There are two stages in this scheme: conserved variables are estimated at the
first stage (which can be referred to as the half-time level at n + 1/2 or the
predictor step in the thesis of Munekjord), and the fluxes are solved at the
second stage with values obtained at the first stage.

Deducing the values of my and (mu)y at the cell interface from the discretised
mass and momentum equations:

n+1/2 1 n n 1 Az n n
mk’j+/1/2 =5 [mj + ijrJ + AL [(mu)j — (mu)jﬂ} (4.8)

1 1Az o\ 7 o\n
(i, = 5 | )} + (ma) | + 557 | ()] = (ma), | +
1Az
[P} = Pfa] £ §Ea§,j+1/2afj+1/2 (“Z,j+1/2 - “7,]‘+1/2>

(p;j+1/2 [ugy — ug ] + Pljt1/2 [utl; — “Zj+1])(4'9)
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Solving equations (4.8) and (4.9) leads to the full time level computation
with the updated variables at n 4+ 1/2 at the second stage (corrector step in
the thesis of Munekjord). Then, the mass flux is calculated as follows:

+1/2
Ik7j+1/2 = (mu)zj‘_i_/l/g (4.10)

The momentum flux of the right state is written as follows:

R _ 9\n+1/2 n pntl/2
Fijrae = (mus) o + o i Py s +

1 n+1/2 n+1/2
+ 5“240% (ug, —uiiy) (pg,jug,j—i-lﬂ + plrfj“l,j+1/2) (4.11)

and the left state of the fluxes is written as follows:

L _ 2\n+1/2 n n-+1/2
Fijprye = (mu) 5 5 o ja Pl iy &
1
n n n n n n+1/2 n n+1/2
+ 5y 10l (g — Uija) (pg,j+1ug,j+1/2 + Pl )0 ) (412)

4.1.3. FORCE2

The conservative variables are solved as follows:

At

n+1 n R L
Q) =Q) - 5 (Flun—Flp) (4.13)

The fluxes are formulated as follows:
Iy Rich
Fipp =7 (FEF o + P, (4.14)

The mass flux I uses equations (4.4) and (4.10). The momentum flux employs
the formulae (4.5) and (4.11) as the right state, and the left state of fluxes are
presented in equations (4.6) and (4.12).

4.2. Roe-averaged algorithm for the two-phase flow
model

Based on the previous work (Kamath and Du, 2009) for a granular-gas model,
the existing Roe-averaged algorithm is added to the two-phase flow model con-
taining non-conservative terms. The parameter k is retained in the nonviscous
interfacial forces to complete the matrices, and & is equal to 0 for stratified flow
(Stadtke, 2006).
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Reorganising the nonviscous terms in the momentum equations and adding
all the non-conservative terms in the flux:

ou  oOF
—+—=S 4.15
ot + ox ( )
The primitive variables can be arranged according to the programmer’s
preference because no specific rules exist. It is prescribed as V = [p, ug, u;, ag]T
for this application. In this case, the above equation (4.15) is rewritten as

follows: OV  dV dF OV dV
ot T AU AV ox — au> (4.16)

The Euler-like governing equations, obtained from equation (4.16), are ex-
pressed as a function of the conservative variables, Q, as follows:
0Q 07 (Q) 0Q oQ _

ot tTar TBQ@7, tBTQG,

The source vector in the above equation is defined as Sg = (dQ/dU)S. The
above terms are expanded as follows:

So (4.17)

QgPg QgPgUg
arp; Q Py
Q _ F = 4.18
QgPgllg agpgty (1.18)
arpru; arpru;

The matrix BP, arising from the pressure gradient term, «;-9p/dz, is treated as
a non-conservative term in the momentum equations; the other non-conservative
terms in the matrix, B™, are introduced by the nonviscous interfacial friction
and they can be written in a compact form as B = B? + B™.

4.2.1. Roe-averaged algorithm
The linearised governing equation is written as follows:

Q +AQ, +BQ, =0 (4.19)

where the Jacobian matrix of the flux vector A is defined as A = dF/dQ (All
the details refer to Appendix B). The expanded form of the matrix A is as
follows:

o 0 1 0
0o o0 0 1
A= —ul 0 2uy 0 (4:20)
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The matrix BP is written as follows:

0 0 00
0 0 00
c? c?
B = layp-2 agp,-2 0 0 (4.21)
q
apr—  oapg— 0 0
L s Ps i
The nonviscous part (Stadtke, 2006) is described as:
I 0 0 0 0 |
0 0 0 0
c? c
B" = Aagpl—o + aqugAu Aagpg—o +aguAu —yAu —agAu
Ps Ps
P) 2
Aalplc—o — qugAu Aal,ogc—o —aguAu  qAu o Au
L s Ps i
(4.22)
with N
2 QgpPr T QPg
= Qupr Py (4.23a)
c2 c
ps = agpr+ aipy (4.23b)
Au=ug —y (4.23c)
Aag = ay — ay (4.23d)
Aal = dl — Oy (4.236)
where
k
&y = agpg o1 + k(agpy + alPZZ)] (4.24)
pgp1 + k(agpg + cupr)
pgp1+ k(agpg + cupr)?
The equations obey the laws of conservation of volume.
g +a; =1 (4.26)
For the stratified flow, k = 0, and a4, and &; are reduced to oy and oy,

respectively.
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The matrices A and B, are evaluated at the Roe-averaged states, and the
eigenvalues and their corresponding eigenvectors (the matrix of right eigenvec-
tors R and its inverse matrix R~!) of the matrix A + B, can be solved:

Al =Ug; Ada =13 A3=Us+¢ M =1us—¢ (4.27)
The mixture velocity us and mixture speed of sound c¢ are expressed as follows:

e — PgPl (agug + o) +k (agpg + aipy) (agpgug + aypruy)

4.28
’ pgpi + k(agpg + cupr)? (4.28)
and
=02 — AU? (4.29)
where
2 Qgpr+ Qipg Qgp| + Qpg
Co = QgL + Q1 Pg 14 1 9Py + aip (4.30)
c2 c?
g l PgPl
and

[Pg +k (O‘gpg +aipr)] o1+ k (agpg + aipy)]

AU? = agoypgpr (ug — ul)2 12
PgP1 + k (agpg + alpl) }
(4.31)

The Rankine-Hugoniot jump condition should be obeyed across the isolated
discontinuities with velocity s(z,t) (Kamath and Du, 2009):

5(Qn — Qi) = F(Qr) — F(Qu) + 5 [B(@n) + BQ1)] (Qr — Qu) (432

In the above formula, the matrix B(Q) arising from the non-conservative terms
should be bounded in a sufficiently small neighbourhood. In the linearised
governing equations, the wave propagation speed s is the eigenvalue of the
matrix A + B:

(A +B)(Qr —Qu) = F(Qr) ~ F(Qr) + 5 [B(@Qx) + B(Q1)] (Qr ~ Q1)
(4.33)
The above equation can be split into two expressions, one of which is the
balance equation of the non-conservative terms:

A(Qr—QL) = F(Qr)—F(Qr) (4.34)
B(Qr-Qr) = =[B(Qr) +B(Qn)](Qr—-Qr) (4.35)

DN |
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The Roe-averaged states can be determined by the above conditions for consis-
tency. In addition, the variables &, p, and 4 should be determined accordingly
for each phase. The roe-averaged 4 can be solved directly from equation (4.34):

varprur + \/ARpRUR
VOLPL + \/ORPR

U=

(4.36)

For the consistency of equation d(apu) = apdu + ad(ap), the following average
should be obeyed:

&b:./aRpR-./aLpL (4.37)
The influence of the average ap can be neglected with no loss in the accuracy of
results with the forms of averages & and p. One way is defined by Munekjord:

& = w (4.38)
5 = PLJFTPR (4.39)

Equation d(ap) = adp + pda is established by substituting the above averages,
but these averages contrast with equation (4.37). Hence, the variables & and p
can also be prescribed by equation (4.37):

= Jarar (4.40)
p = PLPR (4.41)

The average (m) is obtained:

[oN

(p> — { BroPL (4.42)
dp ap otherwise
dp

Equation (4.33) can be decomposed as follows:

].:A{j{"'R_l = .F(QR) — F](Ql, QR) + BTWQR + %BP(QRXQR - QL) (4'43)

RA-R ™' = F(Qr) + F1(Q,,Qr) — B™Qy + %BP(QL)(QR -Qr) (4.44)

and A* is the diagonal matrix of eigenvalues that can be decomposed into a
positive matrix A1 and a negative one A~.

For the nonviscous part of equation (4.35), the expression B"”(Q r—Qr)
is submitted in the above decomposition. In the matrix BP, the approximate
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integral 3 [BP(Qr) + BP(Q1)] (Qr — Q1) in equation (4.35) is implemented in
the formula of the interface fluxes.

The interface flux, F;(Qr,Qr), is found by solving equations (4.43) and
(4.44):
Fi(Qr.Qr) = 5 [F(QL) + F(Qr) + [B*(Qr) — B*(Q1)] (Qr — QL)

+B"(Qr + Qn)| - 5 (RIAR™(Qr— Qu)) (449)

| =

1
2
The Roe-averaged state Q = Q(Qr,Qr) is a function of the left and right
states. The left and right states of the primitive variables in the above equations
are solved using the limited gradients, V., that are obtained with the min-mod
limiter:

1
Az
and ® is a limiting function of the associated forward (AV') and backward
(A_V) difference with the limiting performed on the primitive variables for
simplicity:

V,= —®(A,V,A_V) (4.46)

Az
(VL)j+12 = Vj+7(vx)j (4.47)
Az
(VR)j+12 = Vjn —T(Vx)jﬂ (4.48)

More details, related to the Roe-averaged algorithm, can be found in Appendix
D.

4.2.2. The MUSCL-Hancock procedure

Using the two-step MUSCL-Hancock procedure, the two-phase flow model can
be solved with high resolution by performing the Roe-averaged algorithm. In
the first step, the derivatives of conservative variables with respect to time at
computational cell j are expressed as follows:

. 75 Biip Qi —Qf BjiL1p,Q7-Q

n __ ;L+1/2 Y j-1)2 ?—1 n
(Qt)j - Azx B 2 Ax B 2 + SQ
(4.49)

Then, the values of the primitive variables at the half-time level are updated:

V(z,t) =V} + (x—z;) (V)] + ({—1") (V)] (4.50)

with -rj—l/Q <z < $j+1/2 and t" <t < tn+1, where (Vt)? = (dV/dQ);L(Qt)?
and (Qq)j are obtained from equation (4.49).
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The second step is as follows:

QG -Qr g
— A (Q1); (4.51)

4.3. Boundary conditions

The primitive variables, V, are established at boundaries by imposing certain
values or by linearly extrapolating the known values at the correspondingly
neighbouring cells.






5. Numerical Issues

Three numerical issues are presented in this chapter. Through the comparison
of the numerical results, the profiles are analysed by capturing two-phase flows
in pipes: stratified flow is the primary focus, and the severe slugging type of
flow is investigated in one example.

5.1. Ilterative versus non-iterative schemes

In this section, cases are tested to quantify advantages of the inner loop iteration.
The goal is to determine if the iterative scheme improves the accuracy without
costing unbearable computational effort compared to the non-iterative scheme.
Articles 1 and 2 show the numerical results predicted by the two schemes,
and an analysis of the comparison indicates that the non-iterative scheme is
more efficient, the iterative scheme exihibits an advantage in the accuracy
(however, not very great), and the iterative scheme consumes many times more
computational time and greater effort contributed by numerators than the
non-iterative scheme.

In this numerical issue, thermal cases are tested. And a sub-issue, where the
energy balance equation can be involved in the computation simultaneously or
sequentially, is discussed. The simultaneous scheme is more accurate and it is
described in Article 2.

5.2. Staggered versus non-staggered schemes

The non-staggered schemes avoid the false phenomena caused by the staggered
grid arrangement. The SIMF-AUSMD (Evje and Flatten, 2006) method is
more accurate than the other two schemes with an efficiency similar to a single
precision method; the staggered semi-implicit upwind method (SSUM) is the
most robust scheme studied in this work. More specifically, the SSUM scheme
is stable even when the pipeline is completely filled by the liquid, while the
other schemes are unreliable in this situation, e.g. the volume fraction of water
exceeds 0.8 at the lower section of the pipe. For more details, refer to the
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corresponding Article 3.

5.3. Second-order versus first-order schemes

As discussed in Chapter 4, the Roe-averaged algorithm and the FORCE2 scheme
are compared for numerical accuracy.

5.3.1. Large relative velocity shock tube

The initial values (Evje and Flatten, 2003) in this large relative velocity shock
tube test case are as follows:

p 265000 Pa
|y 65m/s
Vi = w | 1m/s (5.1)
Qg 0.29
p 265000 Pa
g | 50m/s
Vir = w |~ 1m/s (5.2)
Qg 0.3

The length is 100 m and the initial discontinuity is located at 50 m. The domain
is divided into 1000 computational grid cells with a time step of 10™%s.

The comparison between the Roe-averaged algorithm and the FORCE2
scheme is shown in Figures 5.1 and 5.2.
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Figure 5.1.: Large relative velocity shock tube at 0.1s
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The Roe-averaged algorithm completely achieves second-order precision in
contrast to the FORCE2 scheme. The capability has been demonstrated by
capturing shocks. The non-conservative terms are consistently incorporated
with the conservative flux terms in the flux formula.
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Figure 5.2.: Phase velocities in large relative velocity shock tube at 0.1s






6. Remarks

When the advantages and disadvantages of a numerical scheme are discussed,
the intention is always to assess its robustness, computational efficiency, and
accuracy. This short summary will thus focus on these aspects.

6.1. Robustness

Based on the test cases, the staggered semi-implicit upwind method receives
five stars for robustness. The semi-implicit schemes are more stable than the
other schemes tested because of the allowance for the violation of the CFL
criterion. Even though this method is diffusive with a coarse grid, its robustness
cannot be matched by the other numerical schemes used in this work.

6.2. Computational efficiency

The non-iterative schemes, certainly, are more efficient than the schemes that
include inner loops; the high-resolution algorithm requires more computational
time in contrast to the first-order numerical schemes. Despite the computational
ability of computers has been greatly increased in the recent years computational
time is still an obstacle in the field of CFD. Even if one day computer technology
shall advance to a point that the computation time becomes less critical, the
staggered semi-implicit upwind method can still be implemented as a robust
and efficient rehearsal for the formal simulations to predict the profiles of fluid
flow properties without redundant effort in programming and numerics.

6.3. Accuracy

The flux-splitting method is more accurate than the staggered upwind method.
The second-order precision scheme has the advantage of finer computed res-
olution. This level of computational accuracy is not normally required in
most large scale pipelines utilised in the industry. However, in some small
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scale applications, the computational accuracy is necessary to help engineers
understand the physics better.
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A. Friction forces

In single-phase flow, the friction force is expressed in a simple way as fy,u =
—Aplulu/2D, where X is the friction factor and D is the pipe diameter. The
friction factor A is an empirical constant associated with different flow regimes.

Similarly, the friction force frug equals to —Agpagpg |ug| uk/2D in two-phase
flow.

Then, the interfacial friction F| g”t can be written as follows:

) , 1
F = f Mg — ) = — g aipghi lug —wi] (ug —w) (A1)

The interfacial friction factor A; is normally given as an empirical value.
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B. The LU factorisation

To understand this method, an example with a simple matrix is used. In the
pressure-velocity coupling system of the single-phase flow model, the coefficients
matrix C is a penta-diagonal with two super-diagonals and two sub-diagonals
that can be decomposed into a lower triangular matrix C*¢" and an upper
triangular matrix C*PP¢" (Karris, 2007).

Simply, the linearised equations are written as a system:
C-x=b (B.1)
and the matrix C is split into C*¢" and C"PPe". Then, we have the following:
Clower | cupper |y _ 1 (B.2)
It is assumed that y = C"PP¢" . x, and the following equation is solved:
Clover .y = b (B.3)
The variables are then obtained:

Cr . x =y (B.4)

The method itself is not complex, but the size of the coefficients matrix often
increases the computational effort, requiring patience to program the codes.
Other methods can be considered instead of the LU factorisation, but the
present method is more efficient compared to the two other methods introduced
in the textbook written by Karris.
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C. Nonviscous interfacial forces for
hyperbolic two-phase flow model

As depicted in the literature, there are three contributions in the nonviscous
part of the interfacial force, F; ,i"t, with some postulations (Stéadtke, 2006):

FpY = FJ™ + FpP 4 Fgom™ (C.1)

The virtual mass force formula suggested by Drew et al. can be written as
follows:

om dug Oy dug Oy
Fy™ = pCom [(67& S “ax)

H(A = 1) (ug — ) (%{‘Ug - a@?ﬂ (C.2)

where the parameters Cy,, and A are dependent on the gas volume fraction ay.
It is found that the value of C,,;, varies according to the shapes of the particles
(Drew et al., 1979); the parameter A should be determined by an empirical test.
The following form is proposed by Stadtke:

o Oug  Ouy ou oy,
Fg = —agal(agpg + alpl) |::I€ <8tg - E + Ulail‘g - Ugax>

The compressibility effect contributes to the form:

com op dp Ipy Ipu
g = —aga(uy—w) {Tg (atg * “gaxg> t <8t M
(C.4)

The pressure difference between phase and interface influences the interfacial
forces as follows:

Oa
FgAp = —agay(agpg + aipr)e(ug — Ul)zaixg (C.5)
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The parameters d, ry, r;, and e are obtained on the basis of the eigen-structure
and physical meanings simultaneously (Stéddtke, 2006):

d = QAPg — QgpP]

QgpPg + P

.~ (ot o)
g9 pg

B al(pg + Pl)

r = —
pi

e = _Potn (C.6)

Qgpg + Qup;



D. Roe-averaged algorithm

D.1. Pressure gradient

An additional way to solve the pressure gradient term is recommended by
Stadtke:

dp  Oayp Oay
50~ or Do (D-1)

The conservative flux becomes the following:

QgPglg

QP
F = D.2
ozgpgug + agp ( )
alplu% + ap

Then, the matrix A and the matrix B can be rewritten as follows:

i 0 0 1 T
0 0 0 1
2 2 2 2
0 a1 G 2 0] Qg G
A= |agp— +p—5——u QgpPg— — P— — 2u 0 D.3
7 Ps 012 Ps g I gps c2 Ps g ( )
2 2 2
¢ o c C Qg C
ap> —p5—2  apL4pFL—u 0 2y
L Ps Cr Ps Ps Cy Ps d
The matrix BP is used as follows:
0 0 0 07
0 0 0 0
o G ag G
B? = —P5— P 5 0 0 (D.4)
Cr Ps Cy Ps
o c3 ay
5 TP 00
L €] Ps Cy Ps i
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The non-viscous part is written as:

[ 0 0 0 0
0 0 0 0
B™W = |A Cg ~ C% . - 5
= agPl; + aqugAu Aoagpgp— + aguAu  —qAu  —agAu

S S
D) b

Aoqplc—ﬂ — qqugAu Aalpg@ —aguAu  qAu  agAu

L Ps Ps

(D.5)
The interface flux formula (4.45) and BP can be solved either in this way or as
mentioned in section 4.2.1.

D.2. Coefficient matrices for the Roe-averaged
algorithm

Recalling equation (4.15) in section 4.2.1:

ou  oOF
42 8 D.
ot + ox (D-6)
The expanded terms are as follows:
QgPg
apl
U= —om _ D.7
agpgug + XUk (ug — ) + Xpp (D7)
auprug — XUk (ug — w) = X¢p
with
Xo= @g@l(dgﬁg + aupr) (D.8)
_ e o L
¥ = aga(pg+ p) g —u)—— o (D.9)

F including the non-viscous part can be written as follows:

QgPglg
F— B B B Oé_lﬂluz B ) )
agpgul + agp + X "k (lug — tguy) + Xrag + X% (ug — w) + Xap
agpruf + ap — XUk (tgug — gug) — Xhog — Xe(ug — ) — Xop

(D.10)
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where
Xo = agai(pg+ pi)(ag —w)’ (D.11)
Xo = Qgau(agp — upg)(tg — Ur) (D.12)
— e N _ Qqgtlg 1 apuy 1
Xb = agau(pg + pi) (g — ) ( == _> (D.13)
T g g g 3 cf, o

Considering the primitive variable V = [p, ug4, u, ag]T, the equation becomes:

oV dV dF OV dV
Tt D.14
ot * dUdV ox dU ( )
and the matrix dU/dV becomes:
- a —
ch 0 0 Pg
g
5 0 0 i
2
s R 019
V CT + Xt agpg + vak —vak pgug
oty
% -xt X"k ap Xk
L G J
and dV /dU, the inverse of the above matrix, can be written:
-, ) :
p 0 p, 0 0 0
Ps Ps
v g, PEadke ko
ﬂ — ! ? «Q ﬁQ ﬁ2 (D 16)
U | g v @ pg + cukp '
3 4 52 52
p ap
OZ[C() . O[gcg 0 0
2 2
LCiPs  CgPs _
where
v, - _aupi(pg + p)Au ug(p+ agkp)
pgﬁQ O‘gﬁz
v, - _alpgt+p)du  kpy
2 = - p2 - 2
Te — ag(pg + pr)Au _ kpug
3= 52 52
p p
U, = agpg(pg + p1)Au _ w(pg + cukp)

p1p?

52
Qgp
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and

Qgpg + Qpy
= pgpr+ k(agpg + alﬂl)2
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(0z'Q)

(61°Q)
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bosd , sd 5 sd b sd o
n [ S _ R
%0dno W 05 101000 % bdinbo » nyholo
. J. g ¥
204 %Q (dy + Bd)bd50 dy + bd
4 d < | 2
0 otV P
(dy + 1d)1d1o 04 Smu dy + 1d
—— 7 gt g il
" — 0 — 0 L___n
% v % % oom%d V-
‘Sunninsqus pue {(900g ‘BPPRIS) AP/4P - NP/AP =
PX = In1d— Pny,, X + 2X 4 Inldlog Mo X — nX—
PX + Onbd gy X — X — MY X + 2X 4 Snbdbog
nld— 1d1o 0
bn by 0 bdb0

No

ax — Tt
In,
mo 6 6
X+ 2="0+ "0
6
n
¢ 1
2
:Mw@@
P29
bpbo

dy7 ‘0InyeIol] oY} WO

AP
4p

ST AP/4p XLIyewl ueiqode[ o) pue (OT'(]) Ul USAIS ST 4 XN[J JO 10300A 9T,
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(rea) i S L =4
nyld— 1d10— =g £ _1n
ld ~ ny
by %
nyPd —1dbo— b0 L= by
! bd ny |

AV = v g Suialos £q
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s
6 6
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where
2 ~9
@
A = - 7gpf4plpl Au?
p
2 ~2
«@
s = 02—%Au2
p
5C2 pyC2
Ap = 2P0 _ 2Pg%0
p Qg Cg l 012
and:
ps = ps + kp

A diagonal matrix € is yielded by solving the product of R]f -R,, resulting in:

w = alAu?’p—;—Au@NS;
& Pg

wy = ongugp—;—Au@[)s;
€0 pi

ws = 2p°psc(c+ dyAu)(c — aAu);
wy = 2p%psc(—c+ d,Au)(c+ aAu) (D.25)

Rewriting the matrix RI% = [R1,R2, R3, Ra]” (R; represents the ith row, where
i=1,2, 3, or4.), and R;l can be obtained:

Rl / w1
1| Ra/wo
Ra/wy
The Euler-like governing equations for the compressible two-fluid model can
be written as: 9Q 9Q
—+C,— =S D.2
ot + p or Q ( 7)
The coefficients matrix, C, = A + B, can be written as:
= dQA v (D.28)

A T )
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(r1e'q)

(0g'q)

(62°Q)
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nyfo—

T
0

nyio

0
T

5d 5d T
in —nyinfo — -Idio ny’nio — o~1dlo
m,Q NU NU WQ
nylo —fng  nyinfo + fdfn fn—nyfulp + ol = dg
4 ¢
0 0
0 0 i
st 4y xuyewr oy Jo wioy popuedxo oY,
sd% B sd b 1
0 0 9560 9510
Id1o oo ¢
I O T 0 _or
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0 — 0 e
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2
Id— 0 0 o or
mo
L bp

:POATOS A[1001Ip 9q ued Ap/¢Hp Xuyew o) ‘uoryenbs oroqe o) UJ



D. Roe-averaged algorithm 65

By recalling equation (D.23), the matrix C, can be rewritten as:

d av
Cp:R.A.Rlzdngp.A.RpldQ (D.32)

Similarly, the matrix of right eigenvectors, R = dQ/dV-R,, = [R1, Ra, R3, R4],
and R; is the ith column (where i =1, 2, 3, and 4):

[ alAu2% — Py ] [ QgPg ]
0 a,Aul=E — o
B Py B g 2 9Pl
Rl o Ps R2 - 0
alugAu2c—2 — Qpglg QgPgUi
0 a,uAUrE — agpru
I arprug | I gl 6(2) gPIU] |
[ Qg Pg Pl Qg Pg Pl
Qg PgPl QgPgPl
R; = _arart Ry = ~ gr9 - D.33
’ agpgpi(c + ug — arAu) ! agpgpi(—c+ug — Au) ( )
| agpgpi(c+up + agAu) agpgpi(—c 4w + agAu)

And its inverse R™! = R;l -dV /dQ = [R] w1, R Jwe, RE w3, RE Jwy]T and
R/ is the ith row (where i = 1, 2, 3, and 4.):

RE = [—uy, 2022y, ﬂp] ;
L A PgPL A1Pg Pl
Ré _ _alpgpf o Uy, O‘lpgpf 7 _1] :
QgPg Pl QgPg Pl
r ~2
R, = [C22(c+ ayAu—uy) + psugAu(—c + &Au),
L Pg

~2
Cg%(c — qAu — ) + pswAu(c + agAu),
I

~2 ~ ~2 ~
- (C% + cAupgg)S) , r <c% — cAuplf;Sﬂ ;
p p

Pg pL
=2
Rl = [CSZ(—C + agAu — ug) + psugAu(c + aAu),
g
ﬁ2
C3=(—c— &du — w) + pswAu(—c + dgAu),
P
~2 ~ ~9 ~
r <c§ - cAupsi§S> ) L (C% + cAupig‘S’)} ; (D.34)
Py ) p

The matrix arising from the non-conservative terms can be obtained by B =
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C — A (A is given in (4.20)):

_
QgpPr—
Ps

~ C ~
alplp—o — augAu

S

0 0
0 0
2
+ qqugAu 0

s
2

S

~ C ~
alpgp—o — aguAu

0
0

dgpgp— +aguAu  —qAu

dlAu

The matrix dQ/dU = dQ/dV - dV /dU is given as:

aQ _
dU

where

—agAu

agAu

0 0

0 0
pg(pL + agkp) agpgkp

2 7

cuprkp pi(pg + cikp)
2 P
k
_ azgzz Py agazpzégg 00 A
k

_ _ageg Pul _ agupg(pg + pl)Au

2

F2

(D.35)

(D.36)
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