
Cross-Device Application Mobility
Investigating and showcasing the feasibility of

a generic, cross-Device Session Mobility

Platform for Applications

Øystein Wethe Hanssen
Dimitrios Tsigouris

Master of Science in Communication Technology

Supervisor: Peter Herrmann, ITEM
Co-supervisor: Humberto Castejon, Telenor

Department of Telematics

Submission date: June 2013

Norwegian University of Science and Technology

Problem Description

Name of students: Dimitrios Tsigouris and Øystein Wethe Hanssen

More and more devices, such as smartphones, smart TVs and tablets, are nowadays able

to run applications. Unfortunately, the applications written for one device are not always

compatible with other devices, nor does it always allow you to move a running

application from one device to another, while resuming the session on the target device

from where you left off on the source device.

Lately, a number of solutions have been proposed for service session handover across

devices. These solutions are in most cases service specific. The aim of this project is to

find generic mechanisms for service session handover across devices. We anticipate that

a universal solution, applicable to all types of services, will most probably not be

feasible, and envision a solution combining both a generic part, and a service-specific

part, which will be different for each (type of) service. The project will propose such a

solution. For this, existing commercial and academic solutions for different kind of

services will be analyzed, as well as the real needs of end-users.

To validate the proposed solution, a proof of concept will be implemented for a selected

service/app.

Assignment given: 17. Cross-device mobility for HTML5 applications

Supervisor: Humberto Castejón, Telenor Research and Future Studies

ii

iii

Abstract

Today, cross-device capabilities has become the de facto standard among most

applications, enabling users to access an application, and in some cases, resume their

previous session, from a various of devices. While this allows the user to run the same

application on different devices, there still exists no widespread solution providing the

ability to transfer an ongoing application session from one device to another, continuing

the ongoing session immediately. As users we’ve asked have considered such

functionality to be of potential great value, this is definitely something worth exploring.

In this thesis, we have investigated and proved that a generic, cross-device session

mobility platform is possible and feasible, but not without a certain level of application

modification, which we believe is a reasonable requirement.

A truly generic cross-device session mobility platform should work with any application,

irrespective of the type of the application and the type of terminal it is running on. This

becomes a challenge, considering that the nature of an application may vary a lot from

application to application.

Our proposed solution, the Migration Platform (MP), is realized as a centralized peer-to-

peer architecture. It consists of two entities; the Migration Server (MS) and the

Migration Client (MC), the latter installed as a software on each device. Together, the MS

and MC will provide any application with cross-device session mobility capabilities.

Upon switching device (i.e. upon a migration), a direct data channel between source and

target device is established. The state of the application about to be migrated is

transferred over this data channel, and passed to the application on the target device.

This enables the application to resume the application session from where it was left off

on the source device. By suggesting a workaround, we also make this scheme viable for

real-time communication applications.

The applications that are to utilize the capabilities provided by the MP need to

implement an interface to the MC, as well as a user interface enabling the user to trigger

migration functions from the application. This way, the application can invoke migration

functions provided by the MC, and the MC can invoke the application-specific functions

specified in the interface. By having the application developers implement the required

functions, we provide them with complete freedom when it comes to how they want to

apply the migration functionalities, both when it comes to behavior and appearance.

We implemented a proof of concept in the web environment, primarily based on the

bleeding edge technology, WebRTC, an API currently being drafted, enabling browser to

browser communication. Using the exact same generic scripts, we implement session

mobility features in four, arguably different, demo applications; a HTML5 video

streaming application, a YouTube streaming application, a videochat application and a

iv

Chrome browsing extension. With this, we showcased the behavior of the session

mobility features, as well as proved the viability of our proposed solution.

v

Sammendrag

I dag er det vanlig med applikasjoner som er tilgjengelige på tvers av enheter. Dette

tillater en bruker å aksessere en applikasjon, og, i noen tilfeller, fortsette en tidligere

sesjon fra en rekke forskjellige enheter. Selv om dette tillater en bruker å kjøre samme

applikasjon på forskjellige enheter, finnes det fortsatt ingen utbredt løsning som tilbyr

muligheten til å overføre en pågående applikasjonssesjon fra en enhet til en annen, hvor

man fortsetter sesjonen umiddelbart. Da brukerne vi har spurt anser at en slik

funksjonalitet vil ha potensielt stor nytteverdi, er det noe som defintivt er verdt å

utforske videre. I denne masteroppgaven har vi undersøkt og bevist at en generisk,

kryssenhetssesjonsmobilitetsplattform både er mulig og gjennomførbart, men ikke uten

en viss grad av applikasjonsmodifikasjon, noe vi mener er rimelig.

En virkelig generisk kryssenhetssesjonsmobilitetsplattform burde fungere med enhver

applikasjon, uavhengig av applikasjonstype og/eller hva slags enhet den kjører på. Dette

skaper en utfordring, da applikasjoner (og enheter) kan være svært forskjellige av natur.

Vår foreslåtte løsning, Migreringsplattformen (MP), er realisert som en sentralisert peer-

to-peer-arkitektur. Den består av to entiteter; Migreringsserveren (MS) og

Migreringsklienten (MC), hvor den siste blir installert som programvare på hver enhet.

Til sammen skal de gi enhver applikasjon kryssenhetssesjonsmobilitetsevner.

Ved bytting av enheter (i.e. ved en migrering), opprettes det en direkte datakanal

mellom kildeenheten og målenheten. En beskrivelse av tilstanden/sesjonen til den

kjørende applikasjonen (som er i ferd med å bli migrert) blir overført over denne

datakanalen, og blir gitt til applikasjonen på målenheten. Vi har også gjort denne

metoden anvendelig for sanntidskommunikasjonsapplikasjoner ved å foreslå en

ytterligere, men liten applikasjonsmodifikasjon.

Applikasjonene som skal benytte funksjonalitene tilbudt av MPen må implementere et

grensesnitt til MCen, i tillegg til et brukergrensesnitt som gjør at brukerne av

applikasjonen kan trigge de ulike migreringsfunksjonene. På denne måten kan

applikasjonen kalle på migreringsfunksjonene som tilbys av MCen, samtidig som MCen

kan kalle på applikasjonsspesifikke funksjoner spesisifert via grensesnittet. Ved å kreve

at applikasjonsutviklerne må implementere noen av funksjonene, gir vi dem full frihet

når det kommer til hvordan de ønsker å anvende migreringsfunksjonene, både med

tanke på oppførsel og utseende.

Vi implementerte et “proof of concept“ i weben, primært basert på WebRTC, et API under

utarbeidelse som muliggjør direkte kommunikasjon mellom nettlesere. Ved å bruke de

samme generiske scriptene, implementerte vi sesjonsmobilitet i fire relativt forskjellige

demowebapplikasjoner; en HTML5-videostrømmingsapplikasjon, en YouTube-

videostrømmingsapplikasjon, en videochatapplikasjon, og en nettlesingsutvidelse. Med

vi

dette har vi vist hvordan de ulike migeringsfunksjonene kan fungere, samt bevist at vår

foreslåtte løsning både er anvendelig og levedyktig.

vii

Preface

 The purpose of this report is to document and present the process of our work, in the

field of cross-device session mobility. The project that we have undertaken was proposed

by the Department of Telematics at NTNU, and by Telenor, as part of NTNU’s Master’s

thesis suggestion list for Spring 2013. Originally, the proposed project was a study of

cross-device mobility within the limits of HTML5. When we undertook the project in

January 2013, we decided to widen the project’s focus to a more generic study of cross-

device session mobility.

 Our report consists of a theoretical analysis of the state of the art technology and

related work within the field of session mobility, a theoretical approach in our effort to

design and propose a solution, and finally an implementation of the essential parts of

our design, as a proof of concept. We feel that we have provided a sufficient overview of

the existing technologies and solutions, and have identified what is and what is not

applicable for a generic cross-device session mobility solution. Our solution design, as

well as our proof of concept, has certain limitations, but we feel that we have surpassed

the capabilities of other existing session mobility solutions, which we are very pleased

with.

 In our effort, we got significant help from Humberto Martinez Castejón and Frode

Kileng from Telenor Research and Future Studies, who helped us a lot with their insight

and knowledge, both on our theoretical and practical approaches.

viii

ix

Contents

List of figures ... 1

List of tables ... 3

List of acronyms ... 5

1 Introduction .. 8

1.1 Problem and motivation .. 8

1.2 Goals and methodology ... 8

1.3 Outline .. 9

2 Background .. 10

2.1 Introduction .. 10

2.2 Useful definitions/terms .. 10

2.3 Exploring a generic session mobility platform .. 11

2.3.1 Application categories .. 11

2.3.2 Application type implications .. 12

2.4 Conclusion.. 13

3 State-of-the-art cross-device technology .. 14

3.1 Introduction .. 14

3.2 Cloud Computing ... 14

3.3 HTML5 ... 15

3.4 State of the art application technology ... 17

3.4.1 Category 1: Web browsing .. 17

3.4.2 Category 2: Multimedia .. 18

3.4.3 Category 3: Business ... 19

3.4.4 Category 4: Communication ... 20

3.4.5 Category 5: Games.. 21

3.5 Conclusion.. 22

4 Related work .. 23

4.1 Introduction .. 23

4.2 Live migration solutions ... 24

4.3 Cold migration solutions .. 30

4.4 Conclusion.. 33

5 User Study, Use Cases and Requirements ... 34

5.1 Introduction .. 34

x

5.2 User study .. 34

5.2.2 Office Discussion ... 34

5.2.3 User Survey ... 35

5.3 Use cases ... 36

5.4 Requirements ... 39

5.5 Conclusion.. 41

6 Design discussion .. 42

6.1 Introduction .. 42

6.2 Migration .. 43

6.2.1 Common ground ... 43

6.2.2 Live migration approach .. 45

6.2.3 Cold migration approach ... 49

6.2.4 Migration conclusion .. 51

6.3 Architecture ... 52

6.3.1 Network-centric .. 52

6.3.2 Device-centric (peer-to-peer based) .. 53

6.3.3 Architecture Conclusion .. 55

6.4 Design Conclusion ... 57

7 Solution design ... 58

7.1 Introduction .. 58

7.2 The Migration Server ... 61

7.3 The Migration Client .. 61

7.4 Call flows .. 67

7.4.1 Client-server and application connection/disconnection 67

7.4.2 Migration negotiation ... 72

7.5 Conclusion.. 79

8 Proof of concept .. 81

8.1 Introduction .. 81

8.2 Technology ... 82

8.2.1 WebRTC .. 83

8.2.2 Node and socket.io ... 89

8.3 Setup .. 92

8.3.1 The WebMS ... 93

8.3.2 The WebMC ... 93

xi

8.3.3 The demo applications ... 94

8.4 Execution .. 96

8.4.1 Connection/disconnection ... 96

8.4.2 Migration ...100

8.5 Results ...113

9 Conclusion ..114

10 Future Work ...118

11 References ..119

12 Appendix ... i

12.1 User survey.. i

12.2 Content adaptation analysis .. ii

12.2.1 Introduction to content adaptation, or transcoding .. ii

12.2.2 Content adaptation in a live migration solution .. v

12.2.3 Conclusion ... vii

12.3 Proof of concept documentation.. viii

12.3.1 WebRTC interoperability notes .. viii

12.3.2 Deployment .. ix

12.3.3 Code documentation .. x

12.3.4 Diagrams ... xvi

12.4 A how-to-demo tutorial ... xxvi

12.4.1 HTML5 video streaming ... xxvi

12.4.2 YouTube video streaming .. xxviii

12.4.3 Videochat .. xxix

12.4.4 Browsing ...xxx

1

List of figures

Figure 1. A platform providing generic, cross-device session mobility for applications. . 11

Figure 2. A variety of entities can take part in Cloud Computing. Taken from (7). 14

Figure 3. A HTML5-promoting logo taken from w3c (16). The small symbols (from top

left) represents HTML5’s semantics, CSS3, multimedia, graphics&3D, device access,

performance, offline & storage and connectivity selling points. .. 16

Figure 4. The Netflix Architecture. Taken from (29)... 19

Figure 5. CiiNOW’s Cloud Gaming solution. Taken from (42). .. 22

Figure 6. Architecture overview, showing the Relocation Manager and the adapter

components.Taken from (48). ... 26

Figure 7. The Migratory Service Platform. Taken from (3). ... 28

Figure 8. Steps in basic migration procedure provided by the MSP. Taken from (3). 29

Figure 9. DIAL application launch. Taken from (53). .. 31

Figure 10. The Application Mobility Manager (A2M). Taken from (55). 32

Figure 11. A simplified, proxy-based live migration approach ... 48

Figure 12. A simplified cold migration approach. Here, the MP is a potential Migration

Platform entity. Messages may or may not go via this entity, depending on the

architecture of the solution. ... 50

Figure 13. The Migration Platform (MP) and its two entities; the server-based Migration

Server (MS) and the client-based Migration Client(MC). ... 58

Figure 14. The solution architecture. Each device has a device-specific MC installed, with

several applications interfacing to it. The MC connects to the MS and establishes direct

data channels with other MCs upon migration. .. 60

Figure 15. The Migration Client and its modules ... 62

Figure 16. Device connection/disconnection and device discovery ... 68

Figure 17. Heartbeat messages and timeout ... 70

Figure 18. Application registration and application-MC communication 71

Figure 19. A successful full migration of App. X from source device to target device........ 73

Figure 20. External view session establishment and requests ... 75

Figure 21. External view, finish and exit flow. Here, source and target are already in an

external view session .. 76

Figure 22. The proof of concept, the Web Migration Platform and its two entities; the

Node/socket.io-based WebMS and WebRTC/socket.io-based WebMC. 81

Figure 23. WebRTC architecture. Taken from (66). ... 85

Figure 24. Example of an RTCPeerConnection session establishment with a

MediaStream. Taken from (67). .. 86

Figure 25. NAT traversal in WebRTC using ICE. Taken from (66).. 88

Figure 26. The Proof of Concept Architecture, showing a Web Migration Platform

realized with WebRTC and Node/Socket.IO. .. 92

Figure 27. The WebMC and its two scripts. These scripts acts as a migration extension to

a web application. ... 94

Figure 28. The “Migration GUI” in our Youtube-video demo application. The user simply

is displayed a login form in order to connect to the WebMS. .. 97

2

Figure 29. The “Migration GUI” after a user has logged in. .. 97

Figure 30. Device connection/disconnection & discovery in our proof of concept 98

Figure 31. Heartbeat and timeout functionality in our proof of concept100

Figure 32. Simplified sequence diagram for a full migration in our proof of concept.101

Figure 33. Videochat demo. User A and B in a videochat (and private chat) session.103

Figure 34. Videochat demo. Videochat app at B displaying a message about user A’s

migration ...103

Figure 35. Videochat demo. User A has resumed the session from his mobile device,

keeping the private chat from the previous device. ..104

Figure 36. Browsing extension demo. User A at “source” device upon migration105

Figure 37. Browsing extension demo. Launching at “target” device.105

Figure 38. Browsing extension demo. The very same tabs are launched.106

Figure 39. Browsing extension demo. Console log at “target”. ..107

Figure 40. Proof of concept external view establishment and external view requests ...108

Figure 41. Proof of concept external view finish and exit flow ...109

Figure 42. YouTube external view demo. User is choosing to establish an external view

session with target. ..110

Figure 43. YouTube external view demo. Controlling view with external controls111

Figure 44. YouTube external view demo. Controlled view. No controls.111

Figure 45. YouTube external view scenario. Controlling playback on TV via smartphone.

 ...112

Figure 46. A master file that is scaled down to adaptive bit rates. Taken from (91). iv

Figure 47. WebMC state machine, heavily based on the RTCPeerState Enum, specified in

the WebRTC draft, at http://dev.w3.org/2011/webrtc/editor/webrtc.html#rtcpeerstate-

enum ... xviii

Figure 48. The inExternalView submachine state. ..xix

Figure 49. WebRTCPeerConnection Setup ..xxi

Figure 50. Proof of concept WebRTCPeerConnection migration .. xxiii

Figure 51. The browser extension icon ...xxx

3

List of tables

Table 1. Scenario 1 use cases ... 37

Table 2. Scenario 2 use cases ... 38

Table 3. Solution requirements ... 41

Table 4. Solution architecture analysis ... 56

Table 5. Launch parameters ... 65

Table 6. MC’s actions upon a migration request, given the application’s state 78

Table 7. WebRTC API differences ... viii

4

5

List of acronyms

API Application Programming Interface

AP Access Point

CIO Chief Information Officer

CC Cloud Computing

CSS Cascading Style Sheets

DC (WebRTC) Data Channel

DIAL DIscover And Launch

GUI Graphical User Interface

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

ICE Interactive Connectivity Establishment

IM Instant Messaging

IP Internet protocol

JS JavaScript

JSEP Javascript Session Establishment Protocol

JSON JavaScript Object Notation

LAN Local area network

NAT Network Address Translation

OS Operating System

P2P Peer-to-Peer

PC (WebRTC) Peer Connection

SDK Software Development Kit

SDP Session Description Protocol

SIP Session Initiation Protocol

SOTA State of the Art

SRTP Secure Real-time Transfer Protocol

SSDP Simple Service Discovery Protocol

STUN Session Traversal Utilities for NAT

6

TCP Transmission Control Protocol

TURN Traversal Using Relays around NAT

UI User interface

UPnP Universal Plug and Play

WebRTC Web Real-Time Communication

XML Extensible Markup Language

7

8

1 Introduction

1.1 Problem and motivation

Today, it is common to see applications being available across most, if not all, types of

devices, such as smartphones, tablets, computers, video game consoles and smart TVs.

Many of these applications also provide the opportunity to resume a session from where

you left off the last time you ran the application. Such functionalities are becoming the de

facto standard across a broad range of application categories, be it file storage, document

editing, web browsing, multimedia or communication applications. It is a result of the

ubiquitous nature of Internet connectivity, and is realized by utilizing technologies such

as Cloud Computing, and cross-platform development and user interface tools such as

HTML5.

While this allows you to run the same application on different devices, only a few

applications offer the ability to transfer an ongoing application from one device to

another, continuing the ongoing session immediately. This type of mobility we denote as

session mobility, and it will be the main subject of research in this thesis. Due to the

ever-increasing cross-device availability, such functionality is of potential great utility,

but there is not yet any widespread solution providing this. Thus, in this project we

investigated the feasibility of designing a cross-device session mobility platform.

Before investigating the feasibility, however, we need to check if such a solution already

exists. There has been, and currently is, a lot of research in the field of session mobility. A

number of solutions have been proposed, though these solutions are in most cases

service specific. But a few try to find a more generic, universally applicable solution. We

will present to you the various proposed approaches, and discuss and compare their

advantages and disadvantages.

1.2 Goals and methodology

Our main goal is threefold:

1. To investigate and determine the feasibility of a generic, cross-device session

mobility platform

2. To find and propose a solution to the challenge

3. To showcase the viability of the solution design by implementing a proof of

concept, along with a couple of demo applications

Before starting to design a solution, we need to determine whether a generic session

mobility platform is feasible or not, and if so, identify the application categories that can

benefit from session mobility.

9

In order to derive use cases and requirements, we will conduct a user study to identify

the wants and needs of the actual end user. There, we ask the end users what would be

considered useful by them, and as such derive a general idea of which functionalities are

seen as attractive, and which are not.

Based on our findings, both from existing solutions and related work, as well as the

derived use cases and requirements, we can start discuss and finally develop the design

of our own solution.

With the proposed solution design as a backbone, we can choose a development

environment on which to implement a proof of concept, as well as demo applications,

showcasing the viability of the proposed solution.

1.3 Outline

In Chapter 2, we will introduce the reader to useful definitions and terms used

throughout the report, we will also explore what a generic session mobility platform

actually is, and what it entails. Here, we will also identify the application categories that

can benefit from session mobility.

In Chapter 3 we will present state-of-the-art technologies frequently used within each of

the application categories we have identified in Chapter 2. We will also see how they are

applied to provide the most popular cross-device applications.

In Chapter 4 we will look at the related work, as well as existing solution, within the field

of session mobility, which we will later use for inspiration when discussing our design.

Chapter 5 presents the results from our user study, which are used to derive use cases

and finally requirements for our solution.

Chapters 6 and 7 are used to discuss and present the design of our solution, respectively,

using the results and information gathered from the previous chapters, while Chapter 8

presents our implemented proof of concept.

Finally, we conclude our work and summarize our results in Chapter 9, before we discuss

any further work in Chapter 10.

10

2 Background

2.1 Introduction

In this chapter we will introduce useful definitions and terms that we will use

throughout this paper. These definitions and terms are in the context of a cross-device

session mobility platform, i.e. some type of platform providing the ability to transfer an

ongoing application session from one device to another.

We will also explore what a generic session mobility platform entails, and introduce the

application categories we’ve identified, as well as discuss application type implications.

2.2 Useful definitions/terms

 Session Mobility

The transfer of an ongoing session from one device to another. (1)

 Cross-device:

Referring to an application, or a service, available on multiple devices, e.g.

smartphones, tablets, computers, smart TVs, set top boxes and/or video game

consoles.

 Terminal mobility:

Allowing a device to change location (i.e. change its access point) and still be able to

communicate, i.e. without terminating the ongoing session. (2)

 Personal Mobility:

The ability to access a given service the same way from different terminals. (3)

 Cross-domain:

In which two clients located in different security domains are able to communicate

and send/receive data to each other.

 Migration:

The process of moving something from one place to another. In this paper, this is

referring to the process of moving an application session’s state from one device to

another.

 State:

Describes the ongoing system or entity session at a given instant in time.

11

2.3 Exploring a generic session mobility platform

 When we consider a generic session mobility platform for applications, we refer to a

solution that should work with any type of application on any type of terminal/device.

That is, it should be a service/platform providing session mobility irrespective of both

the terminal/device (i.e. cross-device) and the application (i.e. generic). See Figure 1.

Session Mobility
Platfrom

Device 1

App. X

Device 2

App. X

Figure 1. A platform providing generic, cross-device session mobility for applications.

In later chapters we will discover there are several potential ways to create such a

platform, as well as several ways to realize session mobility. We will examine and

discuss in depth these various possibilities. For now it is sufficient to know the concept

of a cross-device session mobility platform.

2.3.1 Application categories

Although a generic solution should be able work with any type of application, we need to

consider and understand the different types of applications, as they can be very different

in nature. Thus, we find it necessary to classify applications into different categories

based on their functionality. Inspired by the application categories in Google’s Play (4)

and Apple’s App Store (5), we ended up with the following 5 (aggregated) application

categories.

12

1. Browsing applications:

This category refers to all applications based on retrieving/pulling and presenting

information from the World Wide Web. This can be anything from a web-site to e.g. a

weather forecast app.

2. Business applications:

 In this category, E-mail, document viewing and editing applications are included.

3. Multimedia applications:

 This category includes all applications for mostly viewing and sometimes modifying

multimedia, such as photos, videos and audio clips. The multimedia being

viewed/played can be either a file residing locally on the device viewing it or

streamed/downloaded from a remote server.

4. Communication applications:

This category includes all applications used for communication between users, such

as chat, voice and video calling.

5. Gaming applications:

 In this category video gaming applications are included.

2.3.2 Application type implications

 Since we are considering a generic session mobility platform that should be able to

work with any given application regardless of type or real-time requirements, it stands

to reason to consider the possible implications this might have.

Real-time vs. non-real-time consideration

We need to take into account the differences between real-time and non-real-time

applications. If we are to provide a truly generic solution, the platform has to be able to

work with both real-time and non-real-time applications, despite their differences. Can a

session transfer be handled in the same way on both types of applications, or do they

need to be differentiated?

In real-time applications, the information exchanged is “live”. I.e. information is sent

immediately upon capture from the input device (e.g. web camera and microphone),

directly to the receivers, satisfying strict real-time time constraints. The real-time

requirement is most likely to be found in the context of live streaming and

communication applications.

13

 Consider e.g. a video chat between two persons. Here, there are strict time constraints

that need to be met in order for the persons to be able to communicate properly.

Non-real-time applications, however, usually communicate with application servers, not

remote peers. As such, there is no “live” element, whether that is live-streaming or live-

communication. It is usually based on a client-server paradigm, with no real-time time

constraints. Consider e.g. a video streaming application. In this case, buffering of the

video can be allowed (although it is desirable to avoid), as the video played is not real-

time. Additionally, a user can stop and/or pause a stream at any time he/she pleases, as

there is no other person on the other endpoint.

Protocol consideration

Another implication to consider, is that different applications use different technologies

(e.g. network, transport and application layer protocols). Additionally, the very same

application may use different protocols depending on the device it is running on. To

provide a cross-device session mobility platform for any application, we are required to

work with all these applications. Thus, the platform has to either be independent of the

technology an application uses, or to support all of them.

Architecture consideration

Finally, we need to consider the architecture of the application. While some applications

may follow a client-server paradigm, others may be peer-to-peer. Should the application

server and/or peers be made aware of a session transfer or not? I.e. we need to consider

the other endpoint of an application session, whether it’s an application server or a

remote peer.

2.4 Conclusion

A truly generic cross-device session mobility platform should work with any application,

irrespective of type and the terminal it is running on.

We have classified applications into categories, as well as distinguished between real-

time and non-real-time application types. But we have yet to determine whether or not

these different types/categories can benefit from session mobility or not. To help

determine this, we rely on end user’s input, both from a user discussion and a public

user-survey, whose findings will be discussed in chapter 5.

Before that, however, we should learn more about the technologies utilized to provide

cross-device services, as well as the various ways one can perform session mobility. This

is done in chapter 3 and 4, respectively.

14

3 State-of-the-art cross-device technology

3.1 Introduction

 In this chapter we will start by introducing you to two technologies frequently being

used by the most popular cross-device application categories we’ve identified, Cloud

Computing and HTML5. We will then see how, or if, these technologies are applied to

provide applications with cross-device functionality, by looking at examples of

application software within each application category identified in 2.3.1.

3.2 Cloud Computing

In essence, Cloud Computing (CC) is when computing becomes a utility. It has received a

lot of attention, and has been one of the top priorities for CIOs worldwide the last few

years.

“The cloud” consists of ubiquitous and universally available resources that are pooled

and provisioned to the consumers on demand, optimizing resource use, without

requiring any human interaction. One of its selling points is its rapid elasticity, or

scalability, making a cloud service able to handle a fluctuating amount of requests by

monitoring the system and reacting immediately to consumer’s demand. Another is the

fact that the service becomes universally available, provided you have Internet

connectivity. (6)

Figure 2. A variety of entities can take part in Cloud Computing. Taken from (7).

15

With CC, everything is stored and kept up to date in “the cloud”, potentially making it

accessible from any device at any time. A cloud service is usually accessed via a thin

client running on the end user’s device (e.g. computer, tablet, smartphone). Commands

are sent from this client, but the actual execution (and thus the main workload) are

being carried out in the back end – the cloud. This allows both high-end and low-end

devices, with e.g. low-performing CPUs and GUPs, to utilize the same cloud services (see

Figure 2).

An example of a cloud service is DropBox (8), a personal online storage you can access

from a variety of devices, where you can upload and download the files you want. I.e.

your files are stored in “the cloud” instead of locally on you device. Another example is

Google AppEngine (9), a platform offered by Google where you can both develop and

host your own web applications. When deployed, AppEngine helps your application to

automatically scale and thus meet the current consumer demand at any time.

In the context of a session mobility platform, we see that CC has met both the cross-

device challenge, by having “the cloud” doing the work, as well as partly solved the

session mobility challenge, by having the cloud reflecting the current state of your

session at any time.

3.3 HTML5

When working with cross-device applications/services, it is important to take into

account the various differences of the devices. There needs to exist some sort of device-

specific User Interface (UI), ensuring that the interface of the application is properly

adapted to the device being currently in use. When focusing on the UI, there are

especially two important factors that should be taken into consideration, in order to

satisfy an underlying requirement of being user-friendly:

1. The screen size (dimension and resolution)

2. How the user interacts with the device (i.e. the user input)

E.g. there are great differences between a 6” smartphone controlled from a touchscreen,

a 15” PC controlled from a mouse and a keyboard, and a 42” TV controlled from a remote

control.

HTML5 is the next major revision of the HTML standard, currently under development

(though already supported by the major browsers). HTML5’s main task is to structure

and present content from the WWW. When we talk about HTML5 in this section, we

mean not only the markup language HTML5, but also the style sheet language CSS3 and

the scripting language JavaScript. Unlike its predecessors, many features of HTML5 “have
been built with the consideration of being able to run on low-powered devices such as

16

smartphones and tablets.” (10). It allows creating applications that can be run on any

device with an HTML5-compatible web browser/renderer (or operating system).

According to a recent survey, commissioned by Telerik’s Kendo UI, “the majority of
developers now prefer to work with HTML5 instead of native apps for their cross-
platform development.” (11).

One of the major new features (and selling points) of HTML5 is the addition of its new

syntactic features, such as the video, audio and the canvas elements. These features are

designed to make it easy to enable and handle multimedia and graphical content without

having to resort to proprietary plugins and APIs (such as Microsoft Silverlight or Adobe

Flash). Additionally, there are several new APIs (10) (some of which was originally part

of the HTML5 specification, but now are in separate specifications) that can be used with

JavaScript. In this section we will shortly mention a few of them, some of which we will

revisit later in this report.

 Server-sent events. A technology for providing push notifications from a server to

a browser client (12).

 WebSocket Protocol. This API enables web pages to take part in a full-duplex

(two-way) communication over a single TCP connection (13).

 WebRTC. Enables direct browser to browser communication, used for e.g.

video/voice chat and peer-to-peer file sharing.

 Web storage. Provides behavior similar to cookies, but with larger storage and a

better programmatic interface.

 Offline Web Applications. Enables a web application to work offline.

Gartner expects HTML5 to make a big impact, as they believe over half of the mobile

apps by 2016 will be HTML5 native or hybrid (14). Thus, they urge businesses to

prepare for the arrival of HTML5. The importance of HTML5 has already been

recognized by application developers, mobile device manufacturers, Telco operators and

Internet players, and the adoption of HTML5 is being done with collaboration among the

biggest tech players (15).

Figure 3. A HTML5-promoting logo taken from w3c (16). The small symbols (from top left)
represents HTML5’s semantics, CSS3, multimedia, graphics&3D, device access,
performance, offline & storage and connectivity selling points.

17

Currently, there are ongoing projects to develop HTML5-compatible OSs, such as

FirefoxOS (17) and Tizen (18). While other mobile operating systems are incorporating

HTML5 technology as they go along, Firefox, along with Tizen, are the first to build

mobile platforms on HTML5 from the ground up. As such, the HTML5 application is able

to run natively on the OS, unlike today, where it is run inside the web browser. “This
means that all of the phone features, including calling, messaging, games and more can
be an HTML5 application.” (19)

We also see trend towards adoption of HTML5 among other, more stationary devices as

well. With e.g. Windows 8, we see a trend towards native (or hybrid) HTML5 support

among the PC operating systems. In Windows 8, developers can build HTML5, Metro

Style apps. (20). Additionally, many members of the TV community (producers of smart

TVs, Gaming consoles, Blu-ray players, set-top boxes and the like) have started to

contribute to standardization efforts in relevant W3C groups, with focus on HTML5. (21)

(22). This give reason to believe HTML5 not only will be the dominant among mobile

apps in the future, but among all apps, across all devices. See Figure 3.

3.4 State of the art application technology

In this section we will present various examples of software solutions we regard as state-

of-the-art, or SOTA, within each application category previously identified in section

2.3.1. We regard the following software as SOTA on the basis of them being of the most

popular applications in the cross-device market. As with most digital products, providing

the highest level of service is of upmost importance in order to gain a consumer’s

interest.

3.4.1 Category 1: Web browsing

Chrome Sync

Google Chrome is currently the most popular browser by far (23). Chrome is available on

almost every device and platform as of today. Besides being a web-browser supporting

many different technologies and APIs, its “Sync” feature is what makes it the state of the

art software when it comes to web-browsing.

Functionality

 The “Sync” feature of the Chrome web-browser allows the user to synchronize his/her

Google services (currently open tabs, bookmarks, browsing history, extensions etc.) to

the user’s phone, tablet, and desktop programs so that it is accessible across any device

(24).

18

(It should be noted that both Firefox and Opera offers similar functionality as well, with

Firefox Sync (25) and Opera Link (26), respectively.)

Technology:

To make this sync infrastructure scale to millions of users, Google developers decided to

leverage existing XMPP-based Google Talk servers to give them "push" semantics, rather

than only depending on periodically polling for updates. “This means when a change
occurs on one Google Chrome client, a part of the infrastructure effectively sends a tiny
XMPP message, like a chat message, to other actively connected clients telling them to
sync” (27).

3.4.2 Category 2: Multimedia

Netflix

 Netflix is a popular, online, on-demand video streaming service, currently supporting

over 400 different devices. Its software works on several devices such as smartphones,

tablets, computers, streaming set-top boxes, blu-ray players, smart TVs, video game

consoles etc. (28)

Functionality

With Netflix, a user can watch a movie or a TV show while logged into his Netflix account

on the device he is currently using. If the user stops/pauses the stream or closes the

application, he can resume the same video playback from the point he/she left off from

the same or another device – as long as he is logged into his account.

Technology

Netflix claims that “up to 70% of their code across all their cross-platform experiences is
composed of shared code at every level of the stack in the form of infrastructure libraries
and a UI framework”. We divide the Netflix technology into two main categories:

1. Architecture/UI

2. State management

Netflix is dynamically adapting the UI depending on the different types of devices it

serves. In short, this is done using HTML5 and Qt/WebKit (their own browser rendering

engine), as well as specific formatting and delivery engines (adapters – currently written

in Groovy) on top of a generic Java API (29). See Figure 4.

19

The Netflix architecture “splits” the UI from the video player and low-level components.

Netflix’s technology of choice was HTML5. “Because of it, Netflix can change their user
interface easily anytime without redistributing a new client binary image or dealing with
a review process” (30).

Figure 4. The Netflix Architecture. Taken from (29).

Netflix is based on a state management primitive called the “card”. Each card manages

the state of one or more views, which in turn contains components. The cards are firmly

JavaScript-based, and can be stacked and traversed via the UI. This way, Netflix allows a

user to retain his/her session across devices.

3.4.3 Category 3: Business

Google Docs (Drive)

 Google Docs is a web-based office suite, provided by Google. It is housed by Google

Drive, a file storage and synchronization service. It is cross-device, available on

smartphones, tablets, and PCs (via the web browser).

Functionality

With Google Drive and Docs, a user is able to access his/her documents or files from any

device he/she pleases. The user can edit documents in both offline and online mode, and

has the option to take part in real-time collaboration with other users.

20

Technology

Google Docs uses Java on the server side, and is a web application with its own rendering

engine, enhanced by HTML5 and JavaScript on the client side, while the files are kept at

Google’s Database. Unfortunately, Google doesn’t reveal the details of their file storage

system and the technologies they use. (31)

3.4.4 Category 4: Communication

There are a variety of very popular, cross-device communication applications, such as

Skype and ooVoo. We chose Microsoft Lync, especially popular in the enterprise sector,

due to the fact that it already provides session mobility, and as such is the closest related

to our project’s scope. Also, following Microsoft’s acquirement of Skype in 2011, it is

reported that Microsoft already has begun integrating Lync with Skype (32).

Microsoft Lync

 Microsoft Lync (formerly known as “Office Communicator”) is a voice, video, chat and

document collaboration over IP software. It supports a wide range of devices, such as

Windows PCs, Windows Phone, iOS, and Android smartphones.

Functionality

Lync enables a user to (33):

 Connect to the service with any device, from anywhere

 Have an automatically updated presence information (e.g. updated when you’re

away, in a call etc.)

 Communicate with one or several other users (friends, colleagues, partners etc.)

in whatever way is best suited

o IM

o Video/voice chat

o Audio call

o Document collaboration

 Switch, forward or transfer calls to other devices without disruption to the

conversation (34).

Technology

Lync implements the Session Initiation Protocol (SIP). SIP is used to establish

multimedia sessions, as well as it provides session mobility (1). The actual telephone

21

and unified communication services provided by Lync is done via SIP trunking, a Voice

over IP and streaming media service based on SIP (35). We will revisit SIP later in this

chapter when discussing it in the related work section 4.2 (36).

Lync uses open media standards, such as H.264 Scalable Video Coding to provide “a high-
quality video experience on a wide range of devices” (33). It is also believed Microsoft

has plans of integrating Skype with Lync, as previously mentioned.

Lync Server requires a substantial infrastructure, consisting of many components, such

as the mediation server, the edge server and the media gateway, which we will not cover

in this paper. However, we can mention that Microsoft offers to deploy this in their cloud

(Office 365), making it possible to connect to the service via the Lync Client from

anywhere, without acquiring the infrastructure yourself (37).

3.4.5 Category 5: Games

Although Sony and Microsoft may offer the true state-of-the-art video gaming technology

and experience with their coming video game consoles, PlayStation (PS) 4 and Xbox One,

we choose to focus on another aspect of video gaming, namely cloud gaming. Though, it

should be noted that Microsoft also has cloud gaming plans (38).

While it is common to see the same video games being available on PS, Xbox and

computers, you will have to buy three different copies to play it on all these devices.

Additionally, you can’t resume your computer-saved game from the Xbox or PS, or vice

versa. With cloud gaming, however, the idea is to provide the same video game

experience to the subscriber, but giving the user the ability to choose between his/her

devices.

Since 2010 there has been many new entrants in the fairly new market of cloud gaming.

Wikipedia keeps a fairly good overview of these actors (39). One of the most used cloud

gaming services, focusing on cross-device capabilities, is CiiNOW. (Another exciting

cloud gaming service is NVidia’s GRID (40)).

CiiNOW

CiiNOW (41), a cloud gaming platform, provides a cloud gaming service for Windows,

Mac OSX, Linux, Android and a set-top-box. According to CiiNOW, they actually provide a

17% faster online gaming experience compared to local consoles.

22

Functionality

CiiNOW enables a user to play a variety of popular video games on whatever device the

user wants, e.g. a smartphone, tablet, PC/Mac or TV Set Top Box.

However, we don’t know of any feature allowing a user to automatically and immediately

transfer his/her video game session between his/her devices with CiiNOW (or any other

cloud gaming provider for that matter). Thus, the user has to manually launch the video

game (or cloud gaming client) on each client in order to switch device.

Technology

CiiNOW, as well as other cloud gaming providers, utilizes Cloud Computing to provide

“gaming on demand”. The user accesses and interacts with the video game through a thin

client installed on the device. This thin client captures the user’s input and sends it to

CiiNOW’s hosting platform, or “cloud”, where the actual game is stored, the user

commands are executed, and the graphic is rendered. A video representing the state of

the game is then created, adapted and streamed back to the device (42) . See Figure 5.

Figure 5. CiiNOW’s Cloud Gaming solution. Taken from (42).

3.5 Conclusion

We’ve identified and seen that Cloud Computing and HTML5 are frequently utilized

among the most popular cross-device and state-of-the-art application solutions.

Knowing what type of applications a cross-device session mobility platform should work

with, we will move on to present both existing solutions and related research/work in

the field of session/application mobility and see how they apply.

23

4 Related work

4.1 Introduction

 In this chapter we will present both existing solutions and research within the field of

session/application mobility. There is a lot of research focusing only on one application

type/category (e.g. multimedia), possibly due to the different nature of applications.

Fortunately, there are also some work proposing more generic solutions, i.e. a solution

that should work with multiple application categories.

Common for all the proposed solutions we’ve encountered is a concept of session

transfer, or session migration. An application session migration happens between the

source device, i.e. the device currently being used, and the target device, i.e. the device

the user wants to switch do. It entails some sort of transfer mechanism of the

application’s session/state on the source device to the target device, allowing the

corresponding target device application to resume the session from where it was left off

on the source device. Exactly how this migration is supposed to take place varies from

solution to solution. Of the proposed solutions we have encountered, we can generally

divide between two types of approaches:

1. Live migration

2. Cold migration

Live and cold migration are terms we have borrowed from the virtual machine

community (43).

In the context of application session mobility, a live migration’s goal is to retain the

application session (with the other endpoint) throughout the migration, whereas a cold
migration stops the execution of the application on the source device, and makes a new

request (to the other endpoint) to start a new session from the target device. We will see

that the chosen migration approach also influences the solution architecture to some

extent, e.g. what entities are involved and where they reside.

According to (44), an architecture for a session mobility can be either network centric or

device centric. In a network-centric approach, the network is responsible for taking care

of the session migration from one device to another. “The role of the user and the device
is restricted to just providing some preferences and maybe advertise themselves.” (2). In

a device-centric approach, however, the mechanisms and functions for realizing session

mobility is put on the device, “using the network as more or less an unintelligent
infrastructure for data transfer”. While a network-centric approach requires high

deployment cost as the complexity is put in the network, a device-centric approach

requires more complex and capable devices and applications, but with a vastly reduced

network dependency. This results in a trade-off situation. Where do we want the

complexity to reside?

24

In the following two sub sections we will present and evaluate several solutions using a

live migration and a cold migration approach, respectively.

4.2 Live migration solutions

In this section we will look at a couple of proposed solutions focusing on retaining the

application session throughout the migration. Here, the goal is to avoid interruption of

the original session with the other endpoint (e.g. application server), and to somehow

transparently transfer this session from the source device to the target device. We will

cover three types of approaches; first examine the implications of implementing support

for SIP, then an adapter-based middleware-approach, and finally a proxy-based

approach.

Session Initiation Protocol

 SIP already supports session mobility, and has the capability of reconciling capability

differences between the devices, i.e. codec, display resolution and bandwidth differences.

It is an application-layer control (signaling) protocol for creating, modifying, and

terminating multimedia sessions with one or more participants. These sessions include

Internet telephone calls, multimedia distribution, and multimedia conferences. SIP runs

on top of several different transport protocols. In total, SIP as an underlying application-

level protocol can offer terminal, personal and service mobility. RFC 5631 (45) describes

SIP’s session mobility capabilities, while RFC 5589 (46) describes SIP’s call transfer

capabilities.

 Using SIP, however, either requires both communicating endpoints to support SIP, or a

SIP proxy would have to be used to interact with non-SIP application servers.

Additionally, SIP only offers session mobility in regards to a media session, i.e. there are

no additional state parameters sent during the session handoff, and thus SIP by itself

cannot be used for stateful transitions for all types of applications (e.g. web sessions

where among others, the history and cookies are important for a complete, stateful

transition).

 As many application servers are currently not equipped with the required SIP

infrastructure to support SIP, some papers investigated solving the problem of session

mobility using a SIP proxy approach (i.e. where the client is SIP-enabled, but the

application server is not). The paper Converged multimedia services in emerging Web
2.0 session mobility scenarios (47) presents a hybrid-based architectural framework

that uses a SIP integrated web client and a Converged (SIP and HTTP) Application

Server. The paper presents technical contributions of a SIP-based hybrid architecture

that leverages SIP, HTTP and XML to provide converged services. The solution is a

25

Mozilla Firefox-extension, named TransferHTTP, implemented as a SIP-stack. The SIP

stack is implemented in both the client and the proxy. Upon session transfer, “the session
data of a Web session transfer request is sent in an XML format using the SIP MESSAGE
method, and it could consist of a URL, cookies and session tokens depending on the kind
of request.”

 Thus, by implementing an extension utilizing the SIP MESSAGE, SIP can be used to

provide session mobility for applications that require additional state information. Such

a solution requires a SIP-based deployment environment, i.e. the clients need to be SIP-

enabled.

Evaluation:

 We argue that the value of SIP lapses if you only can use it within a proxy domain.

Additionally, SIP alone does not support complete session mobility for all types of

applications (only media sessions), thus one would have to implement an extension to

provide this, along with defining a device discovery protocol, as that is outside the scope

of SIP. Another drawback of session mobility through SIP is that the signaling is relatively

heavy and requires text messages of considerable size. Thus, we argue it is not the ideal

basis for a generic session mobility solution.

Middleware-approach

A Flexible Framework for Complete Session Mobility and Its Implementation (48)

provides session migration while retaining the original session with the other endpoint.

Their solution is middleware-based, where each device has a central component, the

Relocation Manager (RM), which coordinates the application session transfer between

two devices, using three adapter components (see Figure 6):

1. The network adapter triggers an update of the IP address to redirect traffic,

utilizing e.g. Mobile IP, Host Initiation Protocol and/or a shim.

2. The transport layer adapter extracts all transport layer specific info from the OS.

In case of the TCP transport adapter all necessary state information is extracted

from the OS in order to re-establish the socket on the other device.

3. The application adapter takes care of state extraction from the applications. This

requires the application to provide an application adapter specific interface for

state export and import.

26

Figure 6. Architecture overview, showing the Relocation Manager and the adapter
components.Taken from (48).

Required of the applications that were to utilize the migration functionalities provided

by the RM, was to:

 implement an interface to the application layer adapter, and subsequently a UI

enabling the user to trigger migration functions.

 support session extract and import methods, which, depending on the

application, could mean application modification on both client and server-side.

Evaluation:

Using low-level operating middleware, the original application session is transferred,

providing a seamless and transparent migration. However, the authors identified the

following unresolved issues:

 Since switching of IP addresses in active TCP connections is uncommon in today’s
IP networks, entities in the network that track the connection state (firewalls,
NATs) cannot associate address switched TCP packets with connections and will
block traffic

 They considered transfer of TCP state with Linux only, while transferring TCP

state between operating systems with different stack implementation demands

for suitable transformation of state information in order to work correctly.

 Uncertainty regarding performance and security issues

Additionally, the prototype was tested and verified in a homogeneous environment

(Linux-Linux) only. If the solution is to support cross-device mobility we have identified

the following points which the authors fail to discuss:

27

 How content adaptation will be handled. As the target device may have different

capabilities than the source device, we see the need for a potential adaptation of

the application data content sent from/to the other endpoint (e.g. the application

server).

 Who should be responsible for this content adaptation? Is it feasible, or even

possible, to have the adapter components on the device do this, or do we need to

introduce an external entity?

Thus, their solution has potential, but certain issues need to investigated and solved

before it can be regarded as applicable to use in a cross-device session mobility solution.

Proxy-based approach

In Proxy-based Hand-off of Web Sessions for User Mobility (49), they present a protocol

built atop HTTP to provide session mobility for web sessions, exploiting a proxy-based

architecture. Here, a proxy entity is placed between the clients and the application

servers. The authors of the paper chose the proxy approach to have “a minimal
invasiveness on the legacy distributed application”. When a user is authenticated by the

proxy, a unique dummy agent is generated for him, which is used to represent the user

and his devices to the application server. The servers see the client as that unique

dummy agent representing the device, even when the client migrates from a device to

another.

A similar, but more generic approach is proposed in Session mobility solution for client-
based application migration scenarios (3). It presents a Migratory Service Platform

(MSP), a middleware platform for migratory applications based on the OPEN project

(50) (51). The MSP contains a server-side where all the common migration functions are

located (keeping them centralized), and a lightweight client-side running on the end-

users device. The client-side is kept lightweight by interacting with the platform and

thereby does not have to contain migration functions themselves. The migratory
applications interact with the MSP through a specifically defined interface. The Migration

Server (MS) may reside anywhere (e.g. on any device or accessible via the Internet) as

long as it’s reachable by all clients. See Figure 7.

28

Figure 7. The Migratory Service Platform. Taken from (3).

In the MSP architecture they introduce a SOCKSv5-based proxy (52), which serves as a

Mobility Anchor Point (MAP) to provide mobility support. It is controlled by the MS and

handles seamless handover of connections during a migration, which consequently are

kept transparent to the remote application servers.

The paper argues the MSP provides all the three major aspects within application

migration; context change (“where context is any information that can be used to
characterize the situation of an entity”), adaptation (based on context information) and

continuity. To achieve those goals, the MSP of the OPEN framework is based on a series

of components that focus on the following aspects independently:

1. User interface adaptation

2. Application logic reconfiguration

3. Mobility support (Network components)

4. Context management

5. Migration orchestration

6. Trigger management.

 An application migration is then done either manually by the user, or as a reaction to

contextual changes. MSP supports both full and partial migration. A partial migration

could e.g. be the migration of only the user interface to another device. When migrating,

the application is paused on the source device, the state is retrieved by the MSP, then the

application is initialized at the target device, where it receives the adapted state by the

MSP and the application is resumed, and the session is continued. Additional mobility

support (redirection of network traffic) is also done at the MSP. See Figure 8.

29

Figure 8. Steps in basic migration procedure provided by the MSP. Taken from (3).

Evaluation:

The proposed proxy-based solution adds components that take care of necessary

adaptation to make migration possibly despite network and device constraints. However,

the migratory application has to fulfil a number of requirements to work with OPEN, i.e.

it needs to implement the OPEN application interface to interact with the MS, as well as

implement network connections in order to interface to the MAP. An obvious drawback

of using SOCKSv5 is that it only works for TCP and UDP transport protocols.

However, we consider the proposed solution design interesting for our use. But we argue

one should especially investigate the feasibility of the UI adaptation, logic

reconfiguration and context management modules. Is it feasible to provide proper

adaptation and context management in a generic context, i.e. for all types of

applications? Additionally, the authors don’t really discuss how they handle the

migration with respect to the application servers. Since the migration is kept transparent

to the application servers, the session is never stopped. What happens to the application

data sent from the application servers during and after a migration, in the case of

switching to a new device with new capabilities?

We also identify the need for investigating the security aspects of having a proxy act on

the behalf of the user agent. If the solution is to work with applications working with

sensitive information, we need to ensure the platform’s, and especially the proxy’s,

security and privacy levels.

30

4.3 Cold migration solutions

In this section we will look at a couple of proposed solution where the application

session is not retained throughout the migration, i.e. where the original application

session with the other endpoint (e.g. application server) is terminated on the source

device and started again from the target device (cold migration). Here, the goal is to

enable the application on the target device to launch in a “stateful” manner, i.e. to make

the application start from the point it was terminated on the source device. An approach

like this is used in (2), where a video conference session is allowed to be migrated

between (heterogeneous) devices. However, that solution is specifically designed for a

video conference service, and thus fails to be generic.

We will first take a look at an existing solution, DIAL, with interesting, relatively generic

session mobility functionality. Though, designed as a 2nd-screen protocol, DIAL has its

limitations. We will then present another proposed solution, which, unlike DIAL, is

designed for application mobility.

DIAL

DIAL (53) (Discovery And Launch), developed by Google and Netflix, is a 2nd screen
protocol for discovery and launch of applications. DIAL “enables 2nd screen applications
to discover and launch 1st screen applications on 1st screen devices”. It is based on SSDP
(Simple Service Discovery protocol) as defined in UPnP and HTTP. DIAL is an interesting
solution, as it already has secured support from key consumer electronics makers,
content services and app makers, according to (54).

Service/functionality example:

 Use your Android* smartphone or tablet to search for a video on www.youtube.com .

Play the video on either your handheld device or migrate it to your Google TV* and use

your Android device as a remote. Note that the latter remote-like functionality is

application-specific and outside the scope of DIAL.

*Available soon on additional devices.

In DIAL, the migration of an application works by having the source (2nd-screen) device

send an argument string describing the application’s state, to be passed to the target

(1st-screen) device application on launch (see Figure 9). The format of the argument,

and how the argument is passed, is application specific, and thus of the scope of DIAL.

http://www.youtube.com/

31

Figure 9. DIAL application launch. Taken from (53).

Evaluation:
They way DIAL handles the migration, by having the application developer implement

and define functionality for retrieving, describing and importing the state, is very

interesting. This way, the solution becomes very generic, as it is up to the application

developer to implement it as they see fit, while DIAL only provides the device discovery

and communication parts. Using DIAL will require application modification, but after

seeing how many actors were willing to conform to DIAL’s standard in order to use its

functionality, we believe this is a reasonable requirement.

However, mainly due to the fact that it is designed as a 2nd-screen protocol, DIAL has its

limitations when it comes to being a complete session-mobility solution:

 It works only between devices in the same LAN environment, i.e. not cross-

domain.

 The migration is one-way, i.e. it can only occur from a “small screen” (2nd-screen)

to a “big screen” (1st-screen) device, but not the other way around. This means

the devices an application can migrate to and from are pre-defined.

A2M

In Context-aware Application Mobility Support in Pervasive Computing Environments
(55) they present a novel architecture, Application Mobility Manager (A2M), to provide

seamless, cross-device and cross-domain application mobility. Using A2M, they let an

32

application follow a user while he/she roam between several networks and devices. The

A2M is divided into three components (see Figure 10):

1. The Migration Manager (MM). The MM is the system’s foundation, and provides a

generic interface to the application running on top of it. It is installed on each

device and is responsible for device advertisement and discovery, for context

collection and for carrying out the actual migration.

2. The Application Adapter (AA). The AA encapsulates the application and provides

it with semantics such as state information. It is responsible for adapting the

application based on the device’s specifications/capabilities.

3. The GUI Adapter (GA). The GA is responsible for modifying the application’s GUI

to best fit the device currently in use.

Figure 10. The Application Mobility Manager (A2M). Taken from (55).

In A2M, the devices are connected to each other in a peer-to-peer manner, where at all

times one of the devices acts as the “host”, or the server component. This allows for a

decentralized architecture, where at the same time devices can advertise themselves, as

well as discover each other.

Upon a migration, the source and target device establish a TCP socket connection over

which the application is migrated. The migration procedure proposed in the paper is

based on the concept of (Java) Reflection. Reflection enables you to examine and/or

modify an object at runtime (56). Here, Reflection is used to retrieve a file (or files)

33

describing the application’s current state/runtime, which subsequently is transferred to

the target device over the socket connection. Consequently, by Java Reflection, “the newly
downloaded application can be started on the new device from where it was suspended
on the previous device”.

Evaluation:

We identify several issues with the A2M when considering it in the context of a generic,

cross-device session mobility solution, especially regarding the Reflection-based

migration approach and the layered design. First of all, the Reflection-based session

migration approach puts constraints on the applications the solution can work with,

both on their development environments and their design. I.e. they require the

applications to be developed in a programming language supporting reflection, which

not all programming languages do. Secondly, due to the Application Adapter and GUI

Adapter components, they place significant constraints on the way the applications are

to be developed. We argue these constraints conflict with a generic solution, and should

be avoided.

However, we consider the Migration Manager component, and especially its peer-to-peer

and socket connection modules interesting. With this, they are able to “provide users
with seamless video Experience” with their Mobile YouTube Player demo application,

using a scheme which is effectively stopping the application on the start device,

transferring it over this socket connection, and starting it again on the target device,

resuming at the exact same point.

4.4 Conclusion

We’ve differentiated between two overall approaches when it comes to a session

mobility solution - live and cold migration - and we’ve seen that they affect the

architecture of the solution to a degree. In a live migration the original application

session is retained throughout the migration. While this may be the most generic

approach, we’ve identified potential issues in regards to content adaptation and security.

In a cold migration, the original session is terminated on the source device, and started

again on the target device. While this can be an effective, lightweight scheme, we need to

investigate its application applicability when it comes to being generic, given certain

implications that an application type can pose on us, such as real-time communication

applications.

When discussing our solution design, we will revisit and take inspiration from many of

the concepts introduced in this chapter. However, before we start the design discussion,

we want to identify the wants and needs of those who actually are going to use the

potential solution. What functionality is important to the user?

34

5 User Study, Use Cases and Requirements

5.1 Introduction

Before designing a solution, we should ensure ourselves that the solution we are about

to design (and later implement) is something the end users deem valuable, i.e. a solution

providing functionality the end users both want and need. E.g. what application

categories and types does the end user think benefit from session mobility?

That’s why we decided to carry out a user study, both by holding an office discussion

with some fellow students, as well as performing a user survey on a carefully selected

group of people. From the user’s input we’ve derived use cases, and consequently

requirements that together create the backbone for our solution design.

5.2 User study

 Before creating the survey, we sat down and talked with ten other students from our

university – all of which come from a technological study background. We did this to find

out what they believed a cross-device session mobility platform entailed, as well to help

us get an idea of how end users may perceive the idea of providing this to applications.

Based on the conclusions from the office discussion, we created a user survey and

performed it on selected users from different backgrounds.

5.2.2 Office Discussion

The office discussion was very open, and everyone contributed with their own opinions

and ideas. During the discussion we covered most aspects of a cross-device session

mobility platform. Summarizing, the following are the major conclusions from the office

discussion.

General applicability notes

 Its use was deemed most, if not only, applicable for local areas, like at home, or
possibly, at work, where you have multiple devices in the vicinity. In other
situations, e.g. when commuting, or when you only have one device, a manual
resume was preferred.

 Although closely located, some devices, typically mobile, are not necessarily
connected to the LAN at all times. As such, the need for a cross-domain capability
was identified. Having the service being cross-domain was seen as especially
useful in cases where a user either enters or leaves a “home environment”, and
wants to transfer his currently running application session from or to his mobile
device, respectively.

35

Application category consideration

 Cross-device session mobility was thought to primarily be beneficial for
commercial entertainment services, especially multimedia streaming.

 Business and communication applications can also benefit from session mobility.
 Browsing was deemed good as it is now, with Chrome’s Sync feature mentioned

as a good example.
 Cross-device videogame mobility was unwanted in general, due to suspected

problems with resolution, control mechanisms and performance.

Wanted features:

 An “External view” feature, i.e. a partial migration feature, was wanted for
document presentation/viewing, multimedia streaming, and photo album
viewing. This entails remotely controlling the view of an application, e.g.
controlling a video streaming application displayed on the TV via the
smartphone.

 A “full migration” feature was wanted for multimedia streaming and voice/video
calls, i.e. the ability to completely transfer, or migrate, an application session from
one device to another.

 Ease of use should be emphasized, i.e. it should be easy and intuitive for a user to
start either an “external view” or a “full migration” session. As such, it was argued
that the controls for doing this should be available via the applications UI.

 The application on the target device should be fired up automatically upon an
incoming migration request. It should not be required that the application is
already running on the device.

5.2.3 User Survey

To gather input from people with different backgrounds, as well as ensuring we would

get replies, we personally contacted and requested a selection of friends and family to

answer the survey. We chose people of different ages, technical background, education

etc., in order to hopefully emulate a normal user demography.

For carrying out the user survey, we used an online questionnaire. In the hope of

gathering as many answers as possible, we tried to keep the survey short and simple,

giving the users the choice to reply briefly, or, if wanted, to provide longer answers. First,

we shortly introduced the reader to the concept of cross-device session mobility. The

actual survey consisted of 7 questions, three of which we simply used to gather statistics

of the replying users. The last four questions was divided into two parts.

The first part consisted of two grading questions related to the identified application

categories, as well as functionalities and features related to a type of migration. Here, we

introduced to the reader two types of migrations:

36

1. Full migration: The process of moving an application to a new device while

terminating it at the device it was originally running.

2. External View: The process of moving an application to a new device, while

controlling it from the device it was originally running.

In the second part we asked for the user’s input - how did they imagine/want an

application transfer to take place? Could they think of any other situations where session

mobility could be useful?

For more information about the survey tool we used, or if you want to take a look at the

survey, we refer to appendix, section 12.1.

Results

Rather surprisingly, document editing and viewing applications scored highest on

usability, followed by browsing. However, the rest of the application categories scored

almost as high, except from online video games. Thus, we will not focus on video game

applications when developing our use cases and requirements to the solution.

Of the functionality grading, both the “full migration” and the “external view” features

scored high, with “external view” scoring highest. This shows that such a feature is

especially attractive, and thus should be given a high priority in a complete solution.

As expected, the replies when prompted to answer with text was usually very brief, but

at the same time comprehensive. When asked about how they wanted an application

transfer to take place, the two most frequent words amongst the answers were

“automatic” and “wireless”. We chose to interpret this as a general need for a simple,

automatic migration functionality, e.g. by having most of the migration procedure to

execute automatically upon a user trigger.

5.3 Use cases

 In this section, we present two scenarios, containing several use cases, describing how

our solution should work. These use cases are derived and based on the needs and wants

of the users, as well as the other research we have done. The use cases will in turn help

us to identify both the functional and non-functional requirements of our solution.

37

Scenario 1: Immediate Transfer

Actors: User

Prerequisites:

 The user running an application on a source device (e.g. desktop

computer, laptop, mobile, tablet)

 Both source and target devices are turned on and have internet

connectivity.

Description:

1. The user decides to use the “Migrate” command and gets a list of all

the active devices registered to the same user who are able to run the

application he is currently running on his device.

 1.1 The user decides to use the “Immediate External View” option

on a selected target device to transfer and launch the current active

application session to this target device, while maintaining the

control of the application at the source device.

The application is launched on the target device, and resumes the

application session immediately. The user can now control it with

input from his source device.

 1.1.1 The user sends an application-specific command from the

source device to the target device, which is executed on the

target device application

1.1.2 The user decides to “Exit” the “External View” session,

which transfers back the current view from the target device

and resumes the application on the source device. The

application on the target device is closed.

1.1.3 The user decides to “Finish” the “External View” session to

finish/complete the migration to the target device. The

application on the source device is closed, and the user can use

normal input methods on the target device to control the

application.

 1.2 The user decides to use the “Immediate Full migration” option

on a selected target device to transfer and launch the current active

application session to this target device.

The application is launched on the target device, and resumes the

application session immediately. The application on the source

device is closed, thus the user can only control the application from

the target device.

Applicable

for:

Video/Voice chat, Web-browsing, Document Viewing and Multimedia

applications when the target device is in the same room.

Table 1. Scenario 1 use cases

38

Scenario 2: Suspended Transfer

Actors:

User

Prerequisites:

 The user running an application on a source device (e.g.

desktop computer, laptop, mobile, tablet)

Both source and target devices are turned on and have

internet connectivity.

Description:

2 Same as in scenario 1, step 1

 2.1 The user decides to use the “Paused External View”

option on a selected target device to transfer and launch

the current active application session to this target device.

The application is launched on the target device, but

resumes in a paused mode. The user can now control it

with input from his source device.

 2.1.1 Same as in scenario 1, step 1.1.1

 2.1.2 Same as in scenario 1, step 1.1.2

 2.1.3 Same as in scenario 1, step 1.1.3

 2.2 The user decides to use the “Paused Full migration”

option on a selected target device to transfer and launch

the current active application session to this target device.

The application is launched on the target device, and

resumes the application session in a paused mode. The

application on the source device is closed, thus the user

can only control the application from the target device.

Applicable

for:

 Non-real-time applications, where the target device is not

necessarily in relative proximity.

Table 2. Scenario 2 use cases

39

5.4 Requirements

 Based on the use cases, as well as the existing solutions and related work we’ve visited,

we have derived a set of requirements for our solution. Since we want a generic solution,

we use common ground between applications belonging to the same application

category when we phrase the requirements for a certain application category.

Table 3 lists the identified requirements for a generic, cross-device, cross-domain

session mobility platform.

ID Short name Description Priority

Mob1 Session

Mobility

The solution must provide a transfer mechanism

enabling the user to transfer his active application’s

session between devices upon request.

H

Mob1.1 ImmPaused The solution must be able to perform a migration in

either a paused or an immediate mode, upon user

request.

H

Mob1.2 ExtView The solution must be able to establish an external

view session, where the target device application is

controlled from the source device application

H

Mob2 Cross-

device

mobility

The solution must be able to work cross-device, or

cross-platform, i.e. it must be able to work on

multiple computing platforms (mobile, desktop,

stationary etc.), provided the application can run

on the devices.

H

Mob2.1 Cross-

device

Mobility21

The solution needs to be able to identify the

available devices that have installed the application

currently running on the source device.

H

Mob3 Auto-

launch

The solution must be able to launch the requested

application even if it’s not currently running on the

target device.

H

Mob4 Cross-

domain

mobility

The solution must be able to work cross domain, i.e.

devices associated with different access points

H

40

and/or security domains must still be able to see

and migrate to each other

Mob5 Real-time

Mobility

The user should be able to use real time

applications and change terminal/device anytime,

without violating the real-time application’s time

constraints.

H

Hist1 Cross-

device

History 1

The user should be able to trace back his past

actions in the application after changing device, if

applicable.

H

Dis1 Device

discovery

The solution must provide a way for the device to

advertise itself as well as discover other devices

registered to the same user.

H

Int Application

Interface

The solution has to provide the applications with

an interface the application developers have to

implement in order to access the various migration

functions. This entails enabling the users to trigger

migration functions directly from the application’s

(preferably intuitive) UI.

H

Wb1 Web-

browsing 1

The relevant files (e.g. cookies, browsing history

and bookmarks) from the source device’s

application must be transferred to the target

device.

H

Wb2 Web-

browsing 2

The service needs to be aware of how many active

sessions the user has (logged in, submitted forms,

tabs, scrolling loc.)

M

Mul1 Multimedia

1

A message with information about the currently

playing media file’s ID and its current position/time

must be sent to the new device. If the application

on the source device has a play queue, this should

also be transferred to the target device.

H

Mul2 Multimedia

2

The multimedia playback must be paused/stopped

during the process of migration to ensure it starts

on the correct time at the target device, after the

migration is completed.

M

41

Doc1 Document

1

A document’s revision history must be available to

both source and target devices. If the document and

document revision history lie locally in a device, the

solution will take care of the file transfer to the new

device.

M

Com1 Communica

tion 1

The transfer of a communication session needs to

be handled in a way that maintains the connection

between the two parties and doesn’t affect the

other endpoint’s experience during the

migration/call transfer.

H

Com2 Communica

tion 2

The message History of an IM application needs to

be available on both source and target devices after

a transfer.

L

Com3 Communica

tion 3

The session handover of an ongoing call has to

occur without significant delay.

H

Table 3. Solution requirements

5.5 Conclusion

Based on our findings from the user’s input, we have concluded that a cross-device

session mobility platform certainly provides functionalities the users will value. It is

perhaps of must use in the home environment of a user, where he/she has several

devices available in the near vicinity. As such, it would be natural to think it will

primarily be used for entertainment purposes, i.e. multimedia applications, though all

application categories (except for the gaming category) was thought to benefit from

session mobility in one way or another.

The users valued both the “full migration” and the “external view” features, finding the

latter especially attractive.

From the results from the user input, we derived use cases, and consequently

requirements for our solution, where we’ve tried to prioritize the different

functionalities and features following the user’s wants and needs. Our solution design

will be based on these requirements, where we will aim to satisfy each requirement.

42

6 Design discussion

6.1 Introduction

 We’re after a generic, cross-device, cross-domain session mobility platform solution.

The solution should be a mechanism that allows you to select among other available

devices on which you want to continue your ongoing application session. The actual

migration should happen seamlessly, and the application should start automatically on

the target device, continuing the session. The latter would require some sort of

background service running on the device, capable of receiving the session transfer

request, and consequently launch the requested application.

 One of the overall goals of the project is to make it as generic as possible. I.e., not only

should it work with different types of applications, but it should preferably work with

various types of applications within each category as well. E.g. two video streaming

applications may be implemented in very different ways. We want our solution to work

with both of these.

 Another goal is to create a solution that requires minimal modification of the actual

application. Though, in order to be user friendly, we argue the user should be able to

trigger the various migration functions via the application’s UI. This will require some

modification of the existing application client, e.g. implementation of an interface to the

session migration functions. Our hope is that this will open the possibility of our solution

working with third party applications as well. While an existing third-party application

would have to be modified, new third-party applications can be developed to work with

our solution in the first place, and thus will require no actual modification per se.

In order to design and specify a solution, we will take inspiration from, and discuss

possible adjustments to, both the existing and proposed solutions we presented in

chapter 4. We will try to extend or combine the ideas to reach our goal of providing a

generic, cross-device, cross-domain session mobility platform, satisfying the

requirements specified in chapter 5. We will weigh their advantages and disadvantages,

and finally make a well informed decision.

We divide the design discussion into two parts:

1. Migration. The solution must provide a way of realizing the actual migration,
having the target device application continuing the session from where the
source device application left off. This also includes having the target device
automatically launching the requested application. We will present one live and
one cold migration approach. Here we will assume there is an overall architecture
supporting the migration, but we will not discuss it in detail, unless there are
central components that need to be introduced.

2. Architecture. The solution must include a way for devices to connect/register to
the solution, where they can advertise themselves, as well as discover other

43

devices. Additionally, upon a migration, the solution must provide a platform for
communication/transfer between the target and source devices. We will discuss
the alternative architectures and chose an architecture we believe is most suited
to our chosen migration approach.

6.2 Migration

 The migration phase entails the transfer of the application session from source device

to target device. We will differentiate between the so-called live and cold migration

approaches, as introduced in the related work sections 4.1 and 4.2. While these

approaches vary a lot, they do have some common ground.

In the following subsections, we will first discuss these common parts, before we present

various ways of realizing live and cold migrations, with the goal of providing a generic

cross-device, cross-domain session mobility platform. We will discuss their applicability

and feasibility, and if needed, investigate possible workarounds. Throughout this section

we will assume there exists an overall architecture/platform supporting device

discovery, session transfer etc. Finally, we will conclude this section with the migration

approach of our choice. Then, we’ll try to find the most suitable architecture to support

such a migration.

6.2.1 Common ground

We have identified the following common ground between the live and cold migration

approaches:

 Session/state depiction. There needs to be some sort of application session/state

description to be transferred and passed to the target device application in order

for it to prepare and/or continue/resume the session

 Automatic launch. The target device needs to be able to launch the requested

application, even if it’s not running, as well as pass to it the state/session

depiction.

State/session depiction

Whether it’s live or cold migration, the target device application needs to be informed

about the session it is about to resume and/or the state it is about to enter. Thus, some

sort of session/state depiction needs to be communicated to the target device

application upon launch.

We’ve seen several ways of doing this, from low-level (network, transport and

application layer) state export/import to Java Reflection to an application-specific

String-representation (DIAL). Although the latter may impose application modification,

we argue it is the most generic approach, as it becomes up to the application developers

44

to retrieve and depict the application session/state, as well as to launch upon this

depiction. Hence, we will base our solution on this scheme.

To prove our point, consider developing a generic session/state template to which all

applications working with our solution have to conform to. First off all, developing such

a generic template could become a very complex task, considering the different nature of

applications. Secondly, it will still require modification of the application, without the

freedom of implementing it in the way that is best suited to the given application.

Unlike DIAL, which sets an argument string size limit of 4KB, as well as format restraints
(e.g. the character encoding shall be UTF-8 (53)), we’d like to:

 Set no state/session depiction size limit (though we would urge the application
developers to restrict the size as much as possible, as it directly affects the time it
will take to migrate).

 Set no constraints on the format of the state/session object(s), or data
structure(s), except requiring that it has to be serialized before it is transmitted
over the network.

We argue this will allow for a high degree of freedom for the application developers, as
they now can depict the session/state, as well as implement the retrieval and launch
methods, in any format and way they see fit.

Automatic launch

 One of the requirements for the solution is that the application on the target device is

to be automatically launched upon a migration. This requires either the application to be

already running on the target device, or some sort of background service to be running,

able to launch the application upon request. We argue that in most cases the requested

application will not be running on the target device, and that requiring it to do so will

lead to the applicability of the solution to lose its meaning.

Thus, in order to launch a non-running application we need our solution to interface to

the native features (hardware, OS, etc.) of the device, thus requiring the client-part of our

solution to be native as well. While it may be cumbersome to implement a native clients

for each device, we argue it is necessary, if we want out solution to provide the

“automatic-launch” feature.

45

6.2.2 Live migration approach

 A live migration keeps the original session alive throughout the migration. In chapter 4

we saw that this can be realized by either:

 Making the application “migration-aware” by adding session mobility support to

the application, e.g. by adding SIP support on all entities involved

 Making the migration happen transparently to the other endpoint (e.g.

application server or remote peer), with e.g. a middleware- or a proxy-based

approach.

We don’t find SIP applicable for our solution, as it would require substantial application
modification by adding SIP support on both client- and server-side. This clearly
contradicts with our goal of minimizing the amount of application modification.
Additionally, it only supports session mobility for media sessions, and would need to be
extended should it provide a more generic session mobility.

A possible workaround to a “migration-aware” approach is to make the migration
procedure transparent to the non-migrating endpoint. This way, our solution does most
of the work, and we minimize application modification.
In chapter 4, we presented a middleware-approach where adapters on the network,
transport and application layers were utilized to seamlessly and transparently transfer
an application session from one device to another. However, the solution had several
issues, regarding NAT/firewall traversal, security and last, but not least, cross-device
compatibility. If used to migrate cross-device, we identified the need for an entity that
may have to perform content adaptation, but no such need nor entity was presented.
We argue performing content adaptation on the device is not feasible. It is unlikely it
supports all formats it may have to transcode between, but regardless, it is unwanted, as
it can be very heavy, at least for a low-end devices. Thus, we would need an external
entity performing the content adaptation. That way it makes sense to move the
migration functions near the entity as well, moving the complexity away from the device.
In chapter 4.2, we presented a proxy-based approach, based on the OPEN project. This
will serve as our main inspiration when considering a live migration solution.

Proxy-based live migration approach

In a proxy-based approach, a proxy entity is introduced, placed between the devices and

the other endpoint, with the following main responsibilities:

 It should act on behalf of the devices by generating a unique dummy agent for

each user, and all his/her devices. Thus, the other endpoints see the client as that

unique dummy agent representing the device, even when the client migrates from

a device to another.

 It should orchestrate application migration between devices, transparently to the

other endpoint.

46

The other endpoint may either be an application server (e.g. video streaming server) or

a remote peer (e.g. a videochat peer). As the migrations are performed within the “proxy

domain”, they will happen transparent to the other endpoint.

Let’s consider what happens during a migration. Upon migration, the user, from the
source device’s application UI, selects a target device to which he/she wants to continue
the application session. Since the proxy is to orchestrate this migration, it is naturally to
have the signaling go through the proxy as well. The target device will receive the
migration request, as well as an application-specific session/state depiction, enabling
the target device application to continue/resume the ongoing session. When the
application is ready to resume the session, the proxy gets notified. Now, application data
sent from the other endpoint gets forwarded to the target device instead of the source
device, and the application session is continued without the other endpoint knowing
about the migration event. In chapter 4, we identified two issues with such a scheme:

1. Application session handling during a migration
2. The potential need for content adaptation

Application session handling during a migration
First of all, it is important to retain the session during the migration, i.e. the proxy may
have to send signaling/control data to the other endpoint throughout the migration. This
is especially true for RTC-apps, as we need to take into account the user experience of
the remote user. This can be handled by e.g. not stopping the application on the source
device before the target device application is ready to resume, which should ensure a
natural flow of messages throughout the migration. But what happens with application
data content sent from the other endpoint? We can consider two alternative ways of
minimizing application loss during a migration:

1. Having the proxy cache incoming data during the migration, if applicable. This
requires application profiling, so that the proxy knows which application data to
cache and not (e.g. there are no use in caching real-time comm. data, and in this
case some RTC data will be lost).

2. Having the source device app. send a pause/hold request before migrating (if
applicable), pausing/holding the session until the target device app. is ready and
will send a play/resume to resume the session. This will ensure lossless
migration, as well as being a less complex and proxy-demanding solution when
compared to caching. It may require some applications to implement these
pause/play features if they don’t already have them, but we argue these are
common features in both streaming and communication applications, and as such
modification will not generally be the case.

Hence, we should be able to retain the application session fairly well during the
migration procedure, by pausing/holding the application session upon trigger, and by
not stopping the source device application before the target device is ready to resume.

Content adaptation
The second thing we need to investigate is the potential need for content adaptation.
After successful migration, there is now an application session between the target device
and the other endpoint. As we want a cross-device solution, this target device’s

47

capabilities and properties may be very different from those of the source device, when
it comes to e.g.:

 Device and screen size
 CPU and GPU abilities
 Format/codec support

Since the session with the other endpoint is never stopped, and since the other endpoint
is blissfully unaware of the preceding migration, it will continue to send application data
in a format suited to the source device. Thus, there may be need for adaptation of this
content before it is sent to the target device. Similarly, there may be a need for
adaptation of the content sent from the target device as well. E.g. in the case of a
videochat session, to avoid content loss, this content adaptation has to be performed in
real-time. To perform the appropriate content adaptation, the proxy needs to keep track
of context information regarding the connected devices and their applications, i.e. their
capabilities and properties, supported protocols, formats, codecs etc. We argue content
adaptation mainly will be used for transcoding between media formats, hence the proxy
will have to implement a codec library, as well as mux (multiplexing) and demux
(demultiplexing) libraries, which supports transcoding between the various media
formats. Figure 11 shows a simplified sequence diagram where a proxy performs
content adaption following a migration.
In appendix, section 12.2, we investigate the feasibility of content adaptation in a proxy-
based approach. We concluded that, although it may be possible in some cases, it is not
desirable to have a proxy perform content adaptation, due to, among other, the following
reasons:

 Even though performing real-time content adaptation may be possible, by e.g.
utilizing cloud technology and a large mux, demux and codec library, the content
won’t necessarily be optimally suited to its new context. E.g. in the case of a video
streaming where the client endpoint is a mobile phone (connected to a mobile
cellular network), the video quality (and format negotiated) used may be low.
When the session is migrated to e.g. a Smart TV, since the proxy only receives this
low quality video, it can’t be upgraded to HD, which will result in a poor video
quality.

 Potential big and complex overhead at the proxy, as it has to keep track of all the
needed context information in order to perform the appropriate content
adaptation

 Potential bottleneck and scaling issues, considering a proxy performing real-time
content adaptation on multiple concurrent application sessions

 The proxy may have to implement server-like functionality if it is to provide
clients with the adaptable/scalable features originally provided by an application
server

48

User Source Target

Other
endpoint

Forward: App data

Proxy

App data

«MIGRATE TO TARGET» PAUSE/HOLD PAUSE/HOLD

Retrieve state

Migration Request(state,target)

Migration request(state)

Prepare(state)

Ready

OK

Terminate app. PLAY/RESUME PLAY/RESUME

App. data

Adapt(App. Data)

Forward: adapted app. data
App. data

Adapt(app. Data)

Adapted app. data

«APP UI»

«APP UI»

Figure 11. A simplified, proxy-based live migration approach

Evaluation
The proxy-based live migration approach we’ve presented should be able to provide
cross-device session mobility for any type of application. By implementing the migration
functions in (or near to) the proxy, we both avoid substantial application modification, as
well as minimize the complexity and workload done on the devices. Though, following a
transparent migration, the proxy may have to perform real-time content adaptation,
which will require it to have sufficient context information about the users, devices and
applications it serves. This requires a high-performance proxy with a potential huge
overhead, and may still cause a non-optimal user experience from the target device.
Thus, the proxy-based live migration approach remains a potential option, but with an
undesirable content adaptation element.

When considering the various application categories and types the solution is to work
with, the goal of retaining the original session (i.e. the live migration approach) arguably
only strongly applies to real-time communication applications, where we have to
consider the user experience of a remote user. In the case of non-real-time applications
(e.g. a video streaming application), however, we don’t need to account for this. In those
applications, a simple workaround can be to avoid content adaptation altogether, by e.g.
stopping the session on the source device, and continuing it from the target device via a
new request. This new request should specify the state to start from (e.g. the position in

49

a video streaming playback). This is actually the approach of a cold migration. This way,
the target device and the other endpoint will negotiate and establish the most suitable
session parameters, hence no content adaptation will be needed. We will discuss and
evaluate the cold migration approach in the next section, and especially its viability
when it comes to working with RTC-apps.

6.2.3 Cold migration approach

Cold Migration is the case where the application is stopped and then started again.

Under this scenario, the user can experience some downtime that occurs from stopping

a session and practically establishing a new one. Though, arguments should be provided

upon launch, ensuring that the “new” session starts where the previous one was left off.

In a cold migration approach, we don’t require the migration to be kept transparent to

the other endpoint. Thus, we avoid the need for a proxy-like entity, and consequently we

avoid the need for content adaptation. Whenever an application session is migrated, a

completely new session establishment between the target device application and the

other endpoint is established, and the appropriate session parameters are negotiated.

After the user requests a migration from one device to another, the source device

application should retrieve its session’s state and transmit it to the target device. The

target device then launches the requested application by passing this state as an

argument, ensuring a “stateful” launch. This should provide a seamless migration from

the end user’s point of view, which we argue is the most important thing to consider. See

Figure 12.

50

User Source Target
Other

endpoint

App data

MP

«MIGRATE TO TARGET»

Retrieve state

Migration Request(state, target)

Launch(state)

«APP UI»

«APP UI»

Terminate app.

OK

SESSION ESTABLISHMENT

App. Data

Figure 12. A simplified cold migration approach. Here, the MP is a potential Migration
Platform entity. Messages may or may not go via this entity, depending on the architecture of
the solution.

RTC-consideration

However, we have to consider how such a migration approach may be perceived at the

other endpoint as well. In the case of real-time communication (RTC) applications

there’s usually a person at the other endpoint, not an application server. We need to

consider that person’s point of view when performing a migration as well.

Consider e.g. a videochat session with a remote peer/user. Now, we want to migrate the

videochat session to another target device. If we simply stop the application on the

source device and start it again on the target device, the remote person will perceive it as

you first hang up and then call him/her up again. This is an undesirable behavior. Thus,

we suggest the following workaround for RTC-apps:

 Before an upcoming migration, the application sends an application-specific

notification message to the remote peer/application

 The remote application/peer receives the notification, where it is made aware of

the upcoming migration, and can consequently handle it appropriately, e.g. by

communicating it to the user and entering a “wait” state, waiting for a new call

from the migrating peer.

 Once the remote application has responded appropriately, it sends a message

acknowledging the upcoming migration. When this is received by the migrating

peer, a normal cold migration procedure is executed.

 The “stateful” launch in this case could be having the target device application

calling up the remote peer. When receiving this call, the remote peer validates

51

that the call is from the same user, accepts the call, and a normal media session

negotiation and establishment is performed, before the videochat session is

resumed.

In order to avoid too much session disruption, the above should occur without much

delay. The workaround will require some additional application modification, but we

argue it is minor, as there’s likely already a communication channel established between

the peers over which the notification message can be sent.

Evaluation
The cold migration approach we’ve presented should be able to provide cross-device
session mobility for any application, though with the need for requiring an additional,
but minor, application modification on RTC-applications. It is based on a relatively
simple scheme, where the application session is terminated on the source device, and
started again on the target device. As such, there is no need for introducing complex
entities, and the solution should be fairly lightweight.

6.2.4 Migration conclusion

After examining the possibilities of both live and cold migration, we have seen the

benefits of each approach, in conjunction with the difficulty and complexity of its

implementation. We’ve considered a proxy-based live migration approach and a cold

migration approach, where the first retains the original session throughout a migration,

while the latter terminates the application session from the source device, before it’s

resumed from the target device. Both are dependent on some sort of transfer

mechanism, through which the source device application can send a session/state

depiction to be passed to the target device application. In the case of live migration, this

will help prepare the application to resume the ongoing session, while in case of a cold

migration, it will enable the application to perform a “stateful launch”.

In the proxy-based live migration approach, all application data goes through a proxy

entity, which, if needed to, performs real-time content adaptation. This creates a rather

complex solution, with high performance requirements on the proxy. We’ve argued that

the live migration approach only is justifiable in the case of RTC-applications, while in all

other cases, a cold migration approach is just as good, if not better, as we don’t have to

consider a remote user’s experience. Hence, as building a solution based on adapting,

proxying and forwarding data between devices will increase the complexity and

deployment cost of a solution without offering significant benefits, we argue a cold

migration approach is the best option for a cross-device session mobility platform. For

the scope of our solution, cold migration provides us with the same functionality that

live does – a seamless session migration from the user’s point of view – with the

52

exception of RTC applications, for which we’ve suggested a workaround, requiring a

relatively minor additional modification. This is why we conclude that implementing our

session migration with a cold migration scheme (stop, transfer and start) is our best

option.

The next thing we need to consider is the architecture actually supporting the cold

migration solution. I.e. an overall architecture supporting both device discovery and

session transfer. What entities are needed, what are they responsibilities, and where will

the complexity reside?

6.3 Architecture

 In the following subsections, we are going to discuss the general architecture of our
solution. Before a migration can take place, a way for registering the user, the device and
the various applications must be established. It should be possible to discover other
devices currently associated with the platform, and it should provide a way of
communicating migration requests, as well as provide means for transmitting the
session/state depiction object(s), between the devices. In addition, we need to decide
where the logic of our solution (e.g. the components realizing the migration functions) is
going to reside. We will analyze our options and try to choose the best architecture
supporting the chosen cold migration scheme.
 As mentioned in in chapter 4, an architecture for session mobility can be either
network-centric or device-centric. The main difference between these architectures is
where the migration functions, and thus the complexity of the system, reside. In a
network-centric approach, the complexity is moved away from the end devices, towards
entities that reside in the network, while in a device-centric approach, the logic and
complexity is implemented mainly in the end devices.
In the following sub sections, we will evaluate both approaches, before we make a choice
of architecture.

6.3.1 Network-centric

 In a network-centric approach, the migration is at large handled by the network. The
role of the user and the device is restricted to minor tasks, like advertising themselves
and implementing interfaces to the migration functions in the network. Thus, according
to Movable-multimedia: session mobility in ubiquitous computing ecosystems (44), it is
associated with vast complexity within the network and high deployment costs.
Therefore they argue this approach may be most suitable for small, localized session-
mobility-based systems, with regard to the complex and costly infrastructure.
 A network centric approach will need a centralized entity – for example a server –
where the users authenticate and register their devices and applications. This server will
keep track of all the registered users, their devices, and the applications available on
each device. In a pure server-approach, the server must be able to send a list of available
devices when requested to do so, as well as forward appropriate migration

53

requests/responses between devices when prompted to do so. As such, everything goes
via the server. This approach results in little complexity implemented on the device.

 Keeping everything centralized can make the resource management and monitoring
more effective, which is an advantage from many perspectives. However, as everything
goes via the server, we have a single point of failure, making the system not very robust.
We can overcome this problem by introducing backup servers, although this will result
in a higher deployment cost. Additionally, adding users, devices and/or applications can
induce in scaling problems, as it will both increase the complexity of user/device
tracking and increase the general workload and bandwidth consumption.

The performance of a network centric approach is dependent on the actual location of

the server/network entity. We will consider two alternative deployments of a network-

centric migration platform; a globally available server and a private server for each LAN.

Global and LAN-based Migration Platforms

 When talking about a global migration platform, we mean the case where one or more

globally available servers are used, to which all users register to. While this approach

minimizes the deployment costs for a server-based (network-centric) approach, it can

lead to scaling issues depending on the amount of registered users. At the same time,

having one centralized server introduces a single-point of failure. However, by e.g.

utilizing cloud computing, this issue would not pose a serious problem.

 A LAN-based migration platform will only be used by the owners of the LAN. At first
thought, this should drastically reduce the complexity of user tracking, the workload and
the bandwidth requirements on the server, compared to a global migration platform
approach, as there likely won’t be that many devices connected to it. The problem with
this approach is that if we wish to implement cross-domain migrations as well (which is
possible by collocating the migration platform with the Access Point (AP), giving it a
global IP), the platform has to support device discovery in two different ways. One for
devices inside the LAN and one for external devices. Additionally, by collocating the
migration platform with the AP, it should ensure high performance within the LAN, but
could produce delay when working cross-domain. That is why we believe that a global
migration platform is a preferable alternative.

6.3.2 Device-centric (peer-to-peer based)

 In a device-centric architecture, the mechanisms and functions for realizing session
mobility are placed on the device, using the network as more or less an unintelligent
infrastructure for data transfer. This vastly reduces network dependency, though it
requires more capable and complex applications and devices.
 When this kind of functionality is put on the end device, it minimizes the complexity on
the server entity, or even eliminates the need for a server entity at all. The device-centric
architectural scheme we will examine in this section is a peer-to-peer (P2P) based
architecture for communication directly between devices.
 A peer-to-peer based networking scheme enables peers to communicate directly to

each other, unlike a client-server based scheme, where communication has to go via a

54

server. There are several existing P2P paradigms for device discovery and connection

initiation between the peers, with varying implementational complexity. For use in our

solution, one such appropriate paradigm will be used to which devices can

connect/register to, enabling them to discover the available devices they can migrate an

application session to. Upon a migration, a direct peer-to-peer connection

(data/signaling channel) will then be established between the source and target device,

over which e.g. the application session/state will be transmitted.

For our approach we will consider two alternative schemes; a centralized and a pure

peer-to-peer scheme (57).

Centralized peer-to-peer
In a centralized peer-to-peer scheme, a central server is used for indexing functions and
to bootstrap the entire system. Although this has similarities with a structured
architecture (an architecture where peers get addresses and are inter-connected via a
server), the connections between peers are not determined by any algorithm. In a
typical P2P application, the main use of this server though is mostly associated with
indexing (keeping track of which files lie in which peer) in a p2p network. This can be
adapted in our case, to track other useful information, such as user- and device-
associations.

Evaluation:
 A Centralized P2P is less robust compared to other P2P schemes, due to the
introduction of and heavy reliance on the bootstrap server, which leads to having a single
point of failure. The benefits of this approach are that it provides easy peer discovery
and registration and allows us to manage the peers as we see fit (e.g. with creating
logical groups of peers), which is not the case in unstructured P2P schemes.

Pure peer-to-peer
In a pure peer-to-peer scheme, the entire network consists solely of equipotent peers,
meaning peers that have “equal rights and equal responsibilities” inside the network.
There is only one routing layer, as there are no preferred nodes with any special
infrastructure function, which means that there are no “special” nodes. This category can
be further divided in structured and unstructured p2p networks, but we will not go into
a detailed analysis of the two.

Evaluation:
 A Pure P2P scheme is more robust than the centralized P2P scheme, because of the lack
of a centralized server. Instead, every peer acts as both client and server. This leads to
slower discovery and registration/deregistration, because of the nature of overlay
networks and the nature of overlay routing. Sometimes, when nodes become inactive or
get disconnected, the discovery of this event can take time. In overlay networks every
node acts as a “router” with its routing table being changed constantly and updating
other nodes about its changes. So in the case of one node disconnecting, the neighboring
nodes might be aware of this almost instantly, but others might need more time to
discover it. This property can be a nuisance for users in our system. (58)

55

Pure vs Centralized P2P comparison
 Since our solution will focus on small “logical” groups of peers (e.g. the devices owned
by a user, or a household) and we wish for every peer to know the address of every other
peer in its group, a centralized P2P design with a server maintaining address and
grouping lists of peers would be the best option. This way, by following a centralized P2P
architecture, we move complexity away from the end-device as much as possible and we
keep the disadvantage of having a single point of failure at a minimum.

6.3.3 Architecture Conclusion

 For the purpose of addressing, we will need a server either way, where the devices can
register as we explained in previously. The central server will allocate/lease “logical”
addresses (such as UIDs) to every peer after the user registers his device. Based on the
provided information upon registration, the device will also join a group consisting of all
the available and active devices registered to the same user.
 In order for a node to know where it can migrate to, it has to maintain a list of
addresses much like a routing table. Regardless of whether we choose a network-centric
or device-centric architecture, a routing table will need to be kept and updated at the
server.
 Both architectures can provide the discovery and addressing mechanisms we need for
the cold migration to work. In Table 4, we compare how a device-centric (centralized
peer-to-peer) and a network-centric (client-server) approach perform in key areas in
order to decide which scheme works best for our solution.

56

Centralized P2Pvs Client-Server
Scalability P2P networks are by default very scalable, which makes them the

better candidate based on this criteria. A server-based solution has

a limit to the number of clients it can serve at a time by default.

This issue can be addressed by Cloud Computing and its automatic

scaling mechanisms. Still, all things considered, P2P is a better

option for scalable systems.

Robustness Both approaches use a server, which means that we have a single

point of failure. The advantage though, goes to P2P. This is because

the server is used only for addressing and discovery, meaning that

already existing peer connections, will not be affected by the

failure, unlike a client-server scheme1.

Deployment

cost&complexity

 In this regard, the deployment complexity is relatively straight-

forward for both alternatives. A server used for addressing is

needed for both approaches, while in the “client-server” approach

the server will also implement the migration functions and logic,

rendering it slightly more complex and costly.

Performance A (centralized) P2P scheme would in theory have the same

performance as a client-server scheme when it comes to peer

discovery, since the “addressing” server performs the exact same

functions in both cases. Regarding network performance, the P2P

scheme avoids network bottlenecks by connecting peers directly to

each other instead of sending all traffic via server, which makes it

the better candidate.

Table 4. Solution architecture analysis

 Based on our analysis, presented in Table 4, we argue a centralized P2P architecture
works best for our solution, due to its advantage in key factors as scalability, robustness
and performance. Given that mobile devices (which are the poorest devices,
performance-wise) are able to run complex applications and are becoming more and
more powerful as of today, we do not think that any devices will be excluded from using
our solution if we choose to follow a P2P scheme.

1 Here, Cloud Computing can be utilized to mitigate this issue, by auto scaling and ensuring availability at
any time given any demand. However, this will lead to a higher deployment cost.

57

6.4 Design Conclusion

 In this chapter we have analyzed and discussed the possible alternatives when it comes

to how an actual migration should be performed, and then, on the basis of our choice,

we’ve evaluated alternative architectures supporting the given migration approach.

When comparing live and cold migration, we’ve concluded that a cold migration

approach constitutes the best option of the two. They provide more or less the same

functionalities, except that in the case of RTC-apps, a cold migration approach requires

an additional application modification. By avoiding migration transparency, we

consequently avoid content adaptation, allowing the migration to be achieved in a much

simpler and efficient way.

When discussing the architecture, we analyzed and compared the benefits and

drawbacks of implementing the main logic of our solution on the server-side (network-

centric) and on the client-side (device-centric). Based on a comparison of the two

alternatives in areas such as performance, scalability and robustness, we saw that

following a device centric paradigm would yield better performance in most areas for

our solution.

 To summarize, through this theoretical discussion and analysis we have concluded that

our solution will provide session mobility based on cold migration approach. The main

logic of our solution though, will reside on the end-devices which are going to

communicate in a peer-to-peer fashion with the help of a centralized addressing server.

In the next chapter, we will use these findings to realize and present our solution design.

58

7 Solution design

7.1 Introduction

In the previous chapter, we discussed and deducted the most suitable design aspects of a

generic cross-device, cross-network session mobility platform for applications. In this

chapter we build on the conclusions made in the previous chapter, and present our

proposed solution design.

Our proposed solution, the Migration Platform (MP), will consist of two entities (see

Figure 13):

 The server-based Migration Server(MS)

 The client-based Migration Client (MC)

MP

MC MC

MS

Figure 13. The Migration Platform (MP) and its two entities; the server-based Migration
Server (MS) and the client-based Migration Client(MC).

While the MS’s main responsibility will be to interconnect the various devices, the MC’s

main responsibility will be to provide and establish a platform for application state

transfer between devices. Together, the MC and MS will enable an application session to

be migrated between devices. The actual migration is done in a ‘stop-and-start’ fashion

(cold migration), as described in the previous chapter.

59

Each device will have to install a device/platform-specific MC, which connects the device

to the MS (and advertises it to the other connected devices). The applications that are to

utilize the capabilities offered by the Migration Platform need to implement an interface

to the MC. Thus, all messages related to migration will be done between the MS and MCs.

Application-specific signaling will remain as before, i.e. the solution should not require

any server-side modification. See Figure 14.

60

Figure 14. The solution architecture. Each device has a device-specific MC installed, with
several applications interfacing to it. The MC connects to the MS and establishes direct data
channels with other MCs upon migration.

61

In the following sub sections we will look at the MS and the MC (as well as its interface to

the applications) in more detail. Lastly, we will show how the MP actually works, by

displaying various sequence diagrams showing the message flows between the entities

involved.

7.2 The Migration Server

As discussed in the previous chapter, we believe a centralized peer-to-peer architecture

would be the best option for our solution. Thus, the Migration Server (MS) should act as

a bootstrap server, indexing and creating associations dependent on the device’s user id

and applications.

The MS’s main responsibilities will be to:

 Bootstrap the entire system, providing connectivity for the MCs. As many

different devices, with different capabilities, are to connect to the same MS, the

MS may have to be able to support multiple transport mechanisms in order for all

devices to be able to connect to it.

 Keep track of associations (users, devices and applications)

 Aid in setting up peer connections between devices upon a migration

Deployment

The MS will reside on server-side, deployed in a cloud-like fashion, ensuring that the

server has the capability to scale on-demand. As such, the server will be globally

available, ensuring that the cross-domain mobility requirement will be met. Additionally,

by implementing back-up server(s) we can avoid the single point of failure problem.

By utilizing the properties of Cloud Computing, mentioned in 3.2, we ensure that the

server will be able to handle a continuously fluctuating amount of requests, and thus

react immediately to a consumer’s demand. This happens on-demand by pooling, scaling

up and scaling down resources, optimizing resource use.

7.3 The Migration Client

The Migration Client (MC) is a client that is installed natively on every device. It connects

the device to the Migration Server and enables users to migrate running applications

between his/her devices.

62

We argue we should try to minimize the required user-interaction with the MC. The user

should set his/her user credentials (and optional settings) upon installation of the MC,

but the user shouldn’t be required to interact with the MC after this, unless she wants to.

Thus, the MC will run as a background service, transparent to the user. The only user

interaction related to migration after this will go through the various applications’ user

interfaces.

The MC consists of four modules (see Figure 15):

 The Signaling module. Responsible for signaling and communicating with the MS.

 The Peer Connection(PC)-module. Responsible for establishing and maintaining

peer connections used in migrations.

 The Application-interface-module. Responsible for providing an interface to the

applications that are to use the service.

 The Native module. Responsible for interfacing to the device’s hardware and

launch applications.

......................
App.

1
App. 1 App. 2 App. 3 App. n

MIGRATION CLIENTMIGRATION CLIENT

Signaling module
Peer Connection

module

Native module

Application-interface module

DEVICE A

Peer connection

MS signaling

DEVICE BDEVICE B

MS

Figure 15. The Migration Client and its modules

We will now explain each module and its responsibilities in more detail.

63

The signaling module

The signaling module should be responsible for providing connectivity, connecting and

registering the user, and advertising the device (and its applications) to the Migration

Server. It should listen to both local requests from the various registered applications,

and remote requests received from the MS. It will also help establishing peer

connections for migration operations by sending migration offer/answer messages via

the MS (i.e. before a direct path has been established).

The signaling module is responsible for continuously maintaining the device’s

connectivity (by sending so-called heartbeat messages to the MS on predetermined

intervals) as long as the device has Internet connectivity. The MC should also be able to

maintain the device’s connection to the MS upon terminal mobility, i.e. a change in access

network.

Finally, if the user installs/registers (or uninstall/unregisters) a “migratory” application,

this update should be communicated to the MS - and consequently all other connected

devices registered to the same user.

The Peer-Connection module

The Peer-Connection (PC) module is responsible for setting up and maintaining a peer

connection between two devices during a migration session. It should try to establish a

direct data channel between two devices, where messages will be sent. If no such direct

path can be established (e.g. due to NAT/firewall issues and/or device interoperability

issues), the data will be sent via a relay server. We differentiate between two different

migration possibilities:

1. Full migration

2. External view

In a full migration, the entire session is to be transferred from the source to the target

device. After a successful state transfer, the peer connection, as well as the source

device’s application, should be terminated. The application should then be launched (in

a stateful manner) on the target device, resuming the session from the point where it

was left off in the source device.

In an external view session, however, the peer connection must remain open even after

the state is transferred and the application is launched on the target device. In this

scenario, the source device will act as a controlling device whereas the target device will

act as a controlled device. Hence, the user will be able to control the view on the target

device from the source device (e.g. controlling the TV from the smartphone).

64

The Application-interface module.

The application-interface module is responsible for

 Registering an application to the Migration Client

 Providing the interface that the applications have to implement

Application registration

First of all, the application needs to register itself to the Migration Platform. This can be

done e.g. during installation of the application, or later. Each unique application needs a

unique identifier in order to differentiate between them. Those unique identifiers should

be kept in an application registry at the MP, much like DIAL’s Application Name registry

(59). This will ensure that the identifier for each application is well-defined, hence

avoiding any naming/identifier conflicts. The registry should be issued and maintained

by the MP, and made available to anyone implementing or using the service.

Application interface

For an application to be able to utilize the migration capabilities provided by the

Migration Platform, the application has to implement an interface to the MC. The

application-interface module gives the application access to all the migration functions

provided by the Migration Platform. However, it is required that the application

developers implement a couple of application-specific functions. There are two essential,

mandatory functions that need to be implemented:

 State retrieval – upon a migration, the application on the source device needs to

retrieve its current state to be sent to the target device. How the state should be

described is completely up to the application developer. The only requirement is

that the state is serialized, so that it can be sent over a data channel. If need be, it

can be sent over several messages, i.e. it can be any size the application developer

seems fit.

 Stateful launch – the application should be able to launch upon the received state

argument, resulting in the application resuming the application session from

where it left off on the target device. Two optional parameters, Immediate and

ExternalView, will also decide how the application should be launched. If

immediate is true, the application is started immediately. If it is false, it starts in a

paused mode. If ExternalView is true, an external view session is established. If it

is false, a full migration is performed. See Table 5 for the detailed explanation of

a stateful launch.

65

Optional launch parameters Immediate

True False

External View True Immediate,

external launch.

The application

should enter a

controlled view and

resume

immediately.

Paused, external

launch. The

application should

enter a controlled

view in a paused

mode

False (i.e. perform a

full migration)

Immediate launch.

The application

should resume the

application session

immediately.

Paused launch. The

application should

resume the

application session

in a paused mode.

Table 5. Launch parameters

Additionally, the application should provide a dynamic user interface with respect to the

“migration state”, such as the following:

 A “migration GUI” showing the available migration controls and the available

devices, if any.

 Appropriate feedbacks upon a migration request trigger.

 Appropriate views (and controls) for the controlling and the controlled devices

(for external view sessions).

How exactly this “migration GUI” is to be implemented is up to the application

developers as they see fit.

Non-real-time vs. real-time applications consideration

As discussed, we need to take into account the different nature between non-real-time

applications (e.g. streaming and browsing applications) and real-time applications (e.g.

videochat and real-time gaming applications). While non-real-time applications easily

can be stopped on one device and started on the other, the same isn’t necessarily true for

real-time applications. Here, we need to take into account the remote user at the other

endpoint of the application session. If we suddenly stop such a session without giving a

warning, that person is likely to interpret it as a session interruption, or an error. Thus,

we suggest that the relevant real-time applications should send a message notifying the

other endpoint about an upcoming migration. Consequently, the application can notify

the person and go into a “wait” state until the session is resumed from the new target

66

device. We argue this is a rather simple, but very efficient way of ensuring a seamless

migration in a real-time scenario.

The native module.

The native module is the module in the MC that is responsible for interfacing to the

device’s hardware. Upon reception of an application state, it is the native module’s

responsibility to launch the correct application, providing the state as an argument.

Why native?

In order to automatically launch applications, the MC needs to be able to interface to the

device’s native features, information and hardware (60). Consequently, the MC will have

to be native. As such, for each different application development platform (e.g. iOS and

Android), the MC will require its own development process, as each application

development platform has its own native programming language (e.g. Android uses Java,

iOS uses Objective-C), and often provides standardized Software Development Kits

(SDKs), development tools and user interface elements.

As a result, compared to non-native applications, the MC will be more expensive to

develop and maintain, and will require maintenance of multiple code bases. However,

there are many available tools and frameworks for cross-device/OS development that

can help streamlining this process. At least, since the MC will serve the exact same

purpose on every device, we argue the actual development of the various native MCs will

follow very similar design patterns.

Additionally, it is an advantage having the MC being native when you want it to run as a

background service. Then you can just auto-start the MC at login/boot, and the MC will

be active and listen for incoming requests without any required user interaction.

Automatically launch

Upon reception of the state data, the target device should automatically launch the given

application, passing the state data as an additional launch argument. This is done by

invoking the application via e.g. the device’s native terminal, passing the state as an

additional argument. The state launch, is, as stated previously, application specific, and

thus out of the scope of our solution.

67

7.4 Call flows

Here we present a more or less framework showing how the solution should work in a

generic and abstract manner, i.e. on any device. When using and/or implementing the

MC on a specific device, there will be device-specific implementations that differ from

one another. These device-specific parts will become clearer when we present similar

call flows for our proof of concept in the next chapter.

In the following subsections we will present how the solution should work, by showing

the flow of messages between the different entities involved. First, we will look at the

client-server interaction, i.e. how a device and its applications connects (and stays

connected) to the service. Then we’ll look at the message flows in actual migrations

between two devices, both full migrations and external view migrations.

7.4.1 Client-server and application connection/disconnection

When installed, the Migration Client should run as a background service on the device,

automatically connecting to the Migration Server upon boot (given that the device has

Internet connectivity). In order to migrate between devices, their respective MCs must

be associated with the same user id (e.g. a unique user name). Additionally, in order for

a user to be able to differentiate between his/her devices, each device should be given a

unique name (e.g. ‘smartphone’, ‘laptop’, ‘TV’ etc.). Hence, upon connecting to the MS, the

MC should inform the MS about its associated user id, its device name, and its installed

applications. This way, the MS is able to keep track of its association groups, and will

know who to inform upon connection, disconnection and other events. This results in

MCs always having the most up-to-date association list.

Figure 16 shows what happens when a device connects/disconnects to the migration

server, i.e. how a device advertises itself and how device discovery is done.

68

MC
(app 1)

MC
(app 2)

MS

Connect(user, device, apps)

Connection info

MC
(apps 1&2)

MC
(apps 1,2&3)

Device/MC start-up

MULTICAST(associations)

Device/MC start-up

Connect(user, device, apps)

Connection info
Device/MC start-up

Connection info

MULTICAST(associations)

Device/MC start-up

Connect(user, device, apps)

Connection info

MULTICAST(associations)

MULTICAST(associations)

MULTICAST(associations)

Device shut down

alt

[timeout]

[disconnect]
Disconnect

MULTICAST(associations)

MULTICAST(associations)

Connect(user, device, apps)

Disconnect device

Device timeout

Disconnect evice

MULTICAST(associations)

dA1 dA2 dA3 dB1

Figure 16. Device connection/disconnection and device discovery

Assume that there’s initially no devices connected to the MS, i.e. dA1 becomes the first

connection. Devices dA1, dA2 and dA3 belong to user A, while device dB1 belongs to

user B. The devices currently have the migration-enabled applications shown in

parenthesis installed.

69

As we see, upon boot, the MC in dA1 connects to the MS with User A’s user id, a device id

and a list of applications. This gets stored in the MS. The MS responds with connection

information, e.g. a connection identifier that serves as a unique id for this device. Since

there’s no other connected devices at this time, the MS will also respond with an empty

list of associations, via a multicast message. That way, the MC knows it can’t migrate to

any other devices at this time.

The same happens when dA2 and dB1 connects to the MS. Naturally, dB1’s connection is

not communicated to User A’s devices, as they are registered to different users. But as we

see, even dA2’s connection is not communicated to dA1 as they don’t have any of the

same applications installed. This first happens when dA3 connects to the MS. Device dA3

has both applications 1&2 installed, i.e. both dA1 and dA2 can migrate to it.

Consequently, the MS sends a multicast message to dA1 and dA2 informing about dA3’s

connection, as well as an association list containing devices dA1 and dA2 to the MC in

dA3.

As with new connections, associated devices must be informed whenever one of their

associated devices disconnects. A disconnection can happen in two ways; either a

normal disconnect (i.e. a device shutdown or a manual MC disconnect), or by a timeout

(e.g. as a result from a client crash or from losing Internet connection). Both alternatives

are shown in Figure 16.

Heartbeat timeout

To ensure that the connected devices are available and active, the MC should send so-

called heartbeat messages (61). This enables the MS to identify if and when the MC fails

or is no longer available. See Figure 17.

70

MC MS

Connection info

Device/MC start-up

MULTICAST(associations)

Connect(user, device, apps)

Timeout

Heartbeat

Set timer

Reset timer

Reset timer

Timeout

Heartbeat

Heartbeat

Timeout

Timeout

Disconnect device

MULTICAST(associations)

Other MCs

Device
crashes

Figure 17. Heartbeat messages and timeout

We see that the MC sends heartbeat messages at a predetermined interval, indicating

that it’s still around and active. For every time the MS receives a heartbeat, it resets a

timer. Thus, the MC’s heartbeat interval should be shorter than the MS’s timeout timer. If,

for any reason, MS’s timer times out, the MS interprets it as a client disconnection. It

communicates the disconnection to the disconnected device’s associated devices, and

removes the MC from its list of connections.

Application registration

Since the MC serves multiple applications, it needs to be able to continuously

register/deregister applications. Whenever an application implementing the MC-

interface is installed on the device, this should be communicated to the MC’s associated

devices. Figure 18 shows such an application registration scenario.

71

MC MS

Device start-up

App X

"Install"

Register

ACK

Update connection

MC

Connect(user, device, apps)

Connection info

MULTICAST(associations)

Update(apps)

MULTICAST(associations)

Install

"Launch"

Active

ACK

Update associations

Updated associations

dA1 dA2

User

Assoc.

Figure 18. Application registration and application-MC communication

Here, devices dA1 and dA2 are associated to the same user, User A. Assume device dA2

already has App. X installed. Upon installation of App. X at device dA1, we see that the

application registers to the MC. When the installation is done, the MC updates its list of

applications to the MS, which communicates the new association between dA1 and dA2

to the two MC’s. Similarly, the opposite should happen whenever a user decides to

uninstall a “migration-application”.

We also see that when the application becomes active, it receives an association list from

the MC. This way, the user has access to an updated (app-specific) association list via the

application’s UI (up to the application developer), telling which, if any, devices the user

can migrate to.

72

7.4.2 Migration negotiation

Now we know how the devices advertise themselves and how they discover each other.

Via an application’s UI, a user should be able to trigger a migration to another device, if

available. This migration request can either be to do a full migration, or to establish an

external view session between the devices, as previously explained. Additionally, the

user should be able to decide whether the application on the target device should launch

immediately or in a paused mode.

Essential in such a migration is the state transfer. The application on the source device

has to retrieve its current state and pass it to the MC to be transferred to the target

device’s MC, consequently resulting in a stateful launch on the target device.

The actual migration, i.e. the state transfer (and a potential external view session), is

done in a peer-to-peer manner, i.e. over a direct data channel. Before this, however, we

need to establish such a peer connection. First, it is likely the devices are heterogeneous,

and as such, they will have to negotiate and agree to a common data channel format.

Secondly, the devices can possibly be located behind one or several firewall(s) and/or

NAT(s), and as such they will have to find a way of traversing it/them to establish a

direct path. If no such path is possible, the data channel will have to go via a relay server

(see Figure 14).

Once a peer connection is established, the MC’s can communicate to each other in a peer-

to-peer manner, i.e. not via the MS. If the request was for a full migration, the peer

connection gets closed after the state is successfully received. Else, if the request was for

an external view migration, the peer connection is kept open, as the source (or

controlling) device now is to send requests to the target (or controlled) device.

We will now look at two migration scenarios; a full migration scenario and an external

view scenario.

73

Full migration

App. X App. X MS OE

"Full migration"

User MC1 MC2

Device 1 (source) Device 2 (target)

Alt

[non-RTC app., e.g. streaming]

[RTC-app, e.g videochat]

App. DataApp. Data

«migrating»
ACK

Wait

pause

MR(appId,im,ev)
Check(MR)

OKOK
prepare

Alt

[state remote]

[state local]
Retrieve state

Retrieve state

Request state
Response(state)

ACK

State State

Launch(state,im)
ACKACK

Close app

Alt

[non-RTC app]

[RTC-app]

launch

Request(opt. Data)

Response (opt. Data)

Wait

Validate request

«Migrating»

launch

Request(opt. Data)

Response (opt. Data)

Alt

[if immediate is FALSE]

pause

App. data
«Resuming from here»

«Resuming..»

ACK

Peer connection setup
Peer connection setupPeer connection setup

«migrating»

MR(im,ev)

Handle request

Figure 19. A successful full migration of App. X from source device to target device.

74

Figure 19 shows a scenario in which a full migration of a running application, “App. X”,

from source device 1 to target device 2 is being executed. Here, both devices are

registered to the MS with the same user.

We see that at the time the migration is triggered, App. X is in an application session with

“OE” (other endpoint). The OE can be either an application server (e.g. video streaming

server) or a remote peer (e.g. videochat peer). Dependent on the type of the application,

i.e. non-RTC or RTC-app, the user’s migration request should be handled differently, as

previously mentioned. We see that in the case of a RTC-app, the applications sends a

“migrating” message to the remote peer to notify about an upcoming migration, whereas

in the case of a non-RTC-app, the application is simply paused (we don’t need to take

into account any remote user’s experience). We see that the remote RTC-app enters a

“wait” state upon reception of the “migrating”-message. Here, the application sets a

timer and waits for a new request (from the target device) to continue the session.

During this time, the application ignores other calls, and only waits for a call from the

same user to continue the session. If the timer goes out, the application will go back to a

“normal” state. What we described here is an example of how a migration can be handled

by an RTC-app.

When the MC receives the migration request, specifying the wanted target device and

application (and Boolean parameters ‘imm’ and ‘ev’ corresponding to ‘immediate’ and

‘external view’), it establishes a peer connection between the devices, with initial setup

help via the MS. Once a peer connection is established, which also acts as an

acknowledgment from the target device to the source device’s migration request, the

state can be transferred over the data channel.

Before the state can be sent, it has to be retrieved by the source application. The source

MC requests the application to retrieve the state, and, dependent on the whereabouts of

the state (local or remote), the application handles this state retrieval locally and/or

with remote calls. Remember, this is app-specific, and up to the application developer to

implement. Either way, the application returns the state (as a serialized object) to the

MC, which sends it over the data channel to the target MC. Upon reception of the state

from the application, the MC acknowledges it, and the application terminates on the

source device.

Simultaneously, on the target device, the MC awaits the state object. Upon successful

reception of the state, the target MC sends an acknowledge message back over the data

channel, and invokes the application to launch, passing the state and the type of

migration (immediate, external view). In this case, external view is set to false, i.e. the

application should perform a normal launch, starting in an immediate or paused mode.

Once again, we see the distinction between non-RTC and RTC-apps (even though in both

cases, the application will eventually continue the session on the target device from

where it left off on the source device). In both cases, a request is sent to resume a session

(or start a new session, but from a certain point), but in the case of an RTC-app, the

request is first validated by the remote peer to see that it’s the same user it is waiting for.

75

Again, this is just a suggested way to perform migration-handling on an RTC-app. It is up

to the app developer to implement such a feature.

Since this is a full migration, and no additional data is to be sent between the MC’s, the

peer connection is closed as soon as the source MC receives an ACK on the state.

External view

In the case of an external view, however, the peer connection will not be terminated after

a successful state transfer and stateful launch. See Figure 20 and Figure 21.

App. X App. X
MS OE

User MC1 MC2

Device 1 (source) Device 2 (target)

State State

Launch(state,im)

ACKACK

Paused migration

[if immediate is FALSE]

pause

External view launch Request(opt. Data)

Response (opt. Data)

Ready

«Controlling view»

«Controlled view»

Enter controlling view

ACK

opt

[External view request]

«Action X» Request(X)

Do(X)

«X happened»

Request(X)

Request(X)

Opt. Request

Opt. response

ACK

ACK

ACKACK

App. Data

App. Data

Figure 20. External view session establishment and requests

76

App. X App. X
MS OE

User MC1 MC2

Device 1 (source) Device 2 (target)

opt

[Exit request]

«Exit» Exit req.

Exit request

Exit request

ACK

ACK

ACK

pause

Retrieve state

State

ACK

State

State

ACK

Close app

ACK

launch

«Resuming here.»

opt

[Finish request]
«Finish»

ACK

Finish request

ACK

Finish

Close app.

«Migrating» Finish request

ACK

Take control

«Resuming here»

Request (opt. Data)

Response (opt. Data)

App. Data

App. Data

Figure 21. External view, finish and exit flow. Here, source and target are already in an
external view session

77

Here, both devices are registered to the MS with the same user id. The user has

requested an external view migration from source device to target device. Assume the

target device’s MC already has acknowledged the request, i.e. the peer connection

between the devices is established (see Figure 19).

As with the full migration, the state gets transferred and gets acknowledged, but the

source application is not closed, and the peer connection is not terminated. We see that

the MC invokes the application to launch externally (i.e. to launch into a ‘controlled’

state). When the controlled application has launched externally, the MC sends a “ready”-

message to the ‘controlling’ MC/application. The controlling application then enters a

controlling view, which is displayed to the user. Now, the user is able to control the target

device’s application via external controls on the source device’s application. From here,

the user should be able to do the following:

1. Do external application requests (external view requests).

2. Exit the external view

3. Finish/complete the migration

External view requests are shown in Figure 20, while exit and finish flows are shown in

Figure 21.

External view requests

External view requests are actually normal application requests, or actions, e.g. playback

requests on a video player. By interacting with the controlling application’s UI, the user

can request actions that are to be executed on the controlled application (think e.g. using

a smartphone as a remote control for the TV). The external view request is sent over the

data channel via the MC’s peer connection. On the target device, upon reception of an

external view request, the MC simply forwards the request to the application, which

executes the wanted action (“Do(X)”).

Exiting the external view

The user should also be able to exit the external view at any time he/she pleases. With

‘exiting’, we mean retrieving the view on the controlling device. This also means

transferring the state of the controlled application back to the controlling application,

which means that exiting an external view session becomes very similar to a full

migration procedure.

First, the controlling device sends an ‘exit’ request. The controlled device acknowledges

the request, retrieves the state, stops the application, and sends the state back to the

controlling device. The controlling device can then launch upon this state, and the peer

connection, and thus the external view session, between the two devices is terminated.

We’re back to a ‘normal view’ on the target device.

78

Finish/complete migration

The user can also choose to go the other way, i.e. finishing (or completing) the migration

to the controlled device. This is simply done by sending a “finish” request over the data

channel (triggered by the user via the application’s UI). We don’t need to send any state,

since the current state is already at the controlled device. Upon reception of the “finish”

request, the target device’s MC acknowledges the request, and notifies the application to

‘take control’. The application on the target will then enter a ‘normal view’, resuming the

session, while the source device’s application gets closed. The user can now continue the

application session from the target device.

Target application state handling

In order to avoid errors, or misconceptions of errors, during a migration, we need to take

into account possible scenarios that can occur, and set rules that apply to each of them.

Thus, Table 6 shows the actions the MC should do, depending on the current state of the

application on the target device.

Application

state

Action(s)

Not running Acknowledge migration request

 Start application with provided state

argument and launch parameters

Starting Send to source: “Application starting”

 No action locally

Running Acknowledge migration request

 Provide new argument(s) to application

Migrating Send to source: “Application already in a

migration session”

 No action locally

Table 6. MC’s actions upon a migration request, given the application’s state

Since the initial migration request from source to target device contains the application

identifier, the MC can examine the state of the given application, and see whether it is

available or not. I.e. it can decide whether the migration session (i.e. state transfer etc.)

should continue or not.

A migration-application can take the following states:

 Not running.

 Starting. The application is just starting up.

79

 Running. The application is running normally, either in an idle or an active

application session state.

 Migrating. The application is currently in a migration session, either migrating

from, being migrated to, or in an external view session.

In most cases, we argue the application is either not running or running normally. In

these cases, the application is available. To indicate this, the MC responds to the source

with an acknowledgement, indicating that the peer connection can be established.

Otherwise, the application is either starting or already in a migration session. In these

cases, we don’t want to terminate those sessions. Rather, we respond with messages

telling the source MC that the application is starting or already in a migration session.

This should be communicated appropriately to the user as well.

Thus, in the cases where the MC responds with an error-message, the peer connection is

not established between the devices, and the error message should be displayed to the

user (or at least logged). Otherwise, the peer connection is established, and the

migration continues normally.

By having the MC’s sending heartbeat messages we’re almost assured that the device we

want to migrate to is available, but there is the possibility that the device has become

unavailable during the short heartbeat time interval, i.e. before the MS’s timer has timed

out. Thus, unless the source MC receives a response to the migration request within a

certain time, the MC will assume that the target device has become unavailable. This

should be communicated to the user via the application. Similar handling can be done

during an external view session.

7.5 Conclusion

In this chapter, we have proposed a solution providing a generic cross-device, cross-

domain session mobility platform for “any” type of application, though requiring an

additional, but minor, application modification on RTC-apps.

The solution is based on a centralized peer-to-peer architecture with two central

entities; the Migration Server (MS) and the Migration Client (MC). All MCs connect to the

MS, which aids in keeping track of associations as well as setting up peer connections

upon migration. The MC is installed (natively) on every device, and provides an interface

which applications wanting to utilize the migration functions have to implement. This

requires application-specific implementation of certain functions, e.g. for retrieving the

state, launching upon state, and for creating/executing external view requests/actions.

Otherwise, the MCs and the MS provides and executes all migration functions. Upon a

migration, the MCs create and establish a direct peer connection over which the state

(with more) is sent. In an external view session this peer connection (data channel) is

80

kept open for sending/receiving of external view requests, while in the case of a full

migration, the peer connection is closed after a successful migration.

In the next chapter we will present our proof of concept, showcasing the viability of the

solution design presented in this chapter, by implementing a session mobility platform

in the web environment.

81

8 Proof of concept

8.1 Introduction

Our proof of concept – the Web Migration Platform (WebMP) - leverages bleeding and

cutting edge technologies to provide a generic, cross-device (PC/mobile), cross-domain

session mobility platform for web applications and extensions.

The WebMP is heavily based on WebRTC (62), a free, open project supported by Google,

Amazon and Opera, that “enables web browsers with Real-Time Communication
capabilities via simple Javascript APIs”. WebRTC is used in our proof of concept to create

the Peer Connection module (see previous chapter). Here, we especially utilize

WebRTC’s RTCDataChannel API, which establishes a direct data channel between two

browsers.

The WebMP is also based on a Socket.IO- (63) and Node (64)-based signaling part,

where Socket.IO is used to create the Signaling Module, and both Socket.IO and Node are

used to create the MS. These are both cutting edge technologies based purely on

JavaScript (JS).

Thus, our JS-based WebMP, like the MP, consists of two entities (see Figure 22):

 The server-based Web Migration Server (WebMS)

 The client-based Web Migration Client (WebMC)

WebMP

WebMC
(WebRTC/Socket.IO)

WebMC
(WebRTC/Socket.IO)

WebMS
(Node/Socket.IO)

Figure 22. The proof of concept, the Web Migration Platform and its two entities; the
Node/socket.io-based WebMS and WebRTC/socket.io-based WebMC.

82

The WebMC connects to the WebMS. Together, they enable a web application’s session to

migrate between devices. The WebMC is in essence a client-side JS-library which needs

to be included by every web application that wants to utilize the migration features

offered. This way, we extend the web application with migration capabilities.

We have created several demo applications that include the WebMC, as well as

implement some application-specific methods, and thus are enabled to migrate.

Specifically, we have created the following four demo applications:

1. A HTML5 video streaming application

2. A YouTube video streaming application

3. A WebRTC videochat application

4. A Chrome browsing extension

By having the WebMP working with all these, arguably different, applications, we show

that it is possible to create a generic session mobility platform. Additionally, by using

existing solutions, such as YouTube’s player API and Google Chrome’s API, we prove that

such a solution is usable by third-party applications.

We’re also the first to create such a generic session mobility platform (in a web

environment), and the first (as we know of) that utilizes WebRTC to provide session

mobility functionality.

In this chapter we will first take a deeper look into WebRTC, Socket.IO and Node, and

why we chose to use these technologies. Then we’ll explore the WebMP and its entities,

as well as the demo applications, in more detail. Finally, we will take a look at how the

implementation actually works, both by showing flow diagrams, as well as screenshots

from the various demo applications.

8.2 Technology

As mentioned, our proof of concept is heavily based on the WebRTC’s JavaScript API as

specified in (65)2. Upon a migration, we use WebRTC to establish a peer connection

(RTCPeerConnection), including a data channel (RTCDataChannel), between the two

devices involved in the migration session.

In order to set up such an RTCPeerConnection, however, WebRTC needs a mechanism to

coordinate and exchange initial information between the devices, a process known as

signaling. The signaling methods and protocols are actually not specified by WebRTC,

2 Note that this is the W3C’s Editor’s Draft published 22 March 2013. The latest editor’s draft was
published 03 June 2013, during which time we were finished developing the proof of concept.

83

instead it is up to the app developers to choose whatever signaling/messaging protocol

they prefer. This led us to choose Socket.IO, a JS-library for real-time applications with a

client-side library running in the browser and a server-side library for Node (which runs

JS). We chose this since we wanted a lightweight, but at the same time efficient and

scalable service.

First, we’ll take a deeper look at WebRTC. What it is, how it works, and why we chose it

as a basis for our proof of concept.

8.2.1 WebRTC

In 3.3 we talked about HTML5 and how it looks like it will become one of the dominant

among applications in the future. This, and the fact that HTML5 makes it easy to deploy

cross-device (mobile and PC) applications, made HTML5, and thus the web environment

a good choice for our proof of concept.

Due to its dynamic and asynchronous nature, JS pointed itself out as the natural basis for

our proof of concept implementation. Luckily, there’s a lot of JS-libraries available, and

we were happy to see that WebRTC, a JS-API still being drafted, looked promising. With

its Peer-to-Peer API, enabling browser-to-browser data channel communication,

WebRTC pointed itself out as a natural choice for our Peer Connection module. It was

also a great motivation to take part in a ‘bleeding edge technology’.

WebRTC overview

WebRTC is a free, open (ongoing) project supported by Google, Mozilla and Opera, with

the following mission: “To enable rich, high quality, RTC applications to be developed in
the browser via simple Javascript APIs and HTML5.” (62)

According to HTML5 Rocks: “The APIs and standards of WebRTC can democratize and
decentralize tools for content creation and communication—for telephony, gaming,
video production, music making, news gathering and many other applications.
Technology doesn't get much more disruptive than this.” (66).

The WebRTC APIs

WebRTC implements the following three APIs:

1. MediaStream, used to access and create a local media stream, such as from the

device’s camera and microphone.

2. RTCPeerConnection, used to establish a direct (browser-to-browser) connection

between peers
3. RTCDataChannel, used to send (arbitrary) data between the peers in an

RTCPeerConnection

http://en.wikipedia.org/wiki/Disruptive_innovation

84

The MediaStream API (a.k.a. GetUserMedia), includes methods for an application to take

control of media input devices through the operative system in order to record the input

and create a media stream. It also includes methods to convert that stream to an object

URL (in order to make it accessible and pass it to a <video/> HTML element).

The RTCPeerConnection is the WebRTC component that handles stable and efficient

communication of streaming data between peers. It is used for peer discovery, session

initiation and session establishment between two peers. Further, it can be used to

connect a stream from the MediaStream API and to negotiate parameters such as codec

control, encryption and bandwidth management for the connection between the peers.

The RTCDataChannel allows for peer to peer exchange of arbitrary application data with

low latency, high message rate/throughput, built-in security (DTLS) and congestion

control, and optionally reliable or unreliable semantics. This functionality can be used

for many real world use-cases such as gaming, real-time texts and file transfer,

complementing and leveraging the RTCPeerConnection setup, which focuses on creating

the connection. The RTCDataChannel API’s methods are deliberately similar to

WebSocket (which we’ll look into later), but works a lot faster since the communication

occurs directly between the browsers.

Signaling

In order to establish a direct browser-to-browser communication (the

RTCPeerConnection), with, optionally, a direct data channel (RTCDataChannel), one

needs a signaling protocol to help initialize, coordinate, control and establish this

connection. See Figure 23.

WebRTC is protocol agnostic, i.e. this signaling protocol is not specified by WebRTC.

Instead, it is up to the app developer to choose whatever signaling protocol they prefer,

e.g. SIP, XMPP, WebSocket etc. Here, we chose a Socket.IO/Node-based signaling setup,

which we’ll get back to later in this chapter.

85

Figure 23. WebRTC architecture. Taken from (66).

Peer connection establishment

WebRTC follows an Offer/Answer model when establishing peer connections. In

principle it works as follows (see Figure 24):

1. The initiating peers sends an “offer”-message to the remote peer (via the

signaling server), including its supported configurations/capabilities), transport

addresses and other related metadata for the session.

2. The remote peer receives the offer and creates and sends an “answer” (via the

signaling server) containing the supported configurations that is compatible with

the parameters supplied in the offer, as well as its transport addresses and other

related metadata.

3. The initiating peer receives the answer, and a direct RTCPeerConnection is

established between the peers. The rest of the session data is now sent directly

between the peers.

86

Figure 24. Example of an RTCPeerConnection session establishment with a MediaStream.
Taken from (67).

This Offer/Answer model is called JavaScript Session Establishment Protocol (JSEP).

JSEP allows for full control of the signaling state machine from JS. As we can see from

Figure 24, this mechanism effectively removes the browser from the core signaling flow,

and the only interface needed is a way for the application to pass in the local and remote

session descriptions negotiated by whatever signaling mechanism is used. (68).

JSEP specifies a generic protocol needed to generate an Offer/Answer model based on

the Session Description Protocol (SDP). SDP (RFC 4566) is a format for describing

multimedia sessions/streams. “It provides a general purpose, standard representation
to describe various aspects of multimedia session such as media capabilities,transport
addresses and related metadata in a transport agnostic manner, for the purposes of
session announcement,session invitation and parameter negotiation.” (69) (70).

Hence, an RTCPeerConnection is established by sending SDP-blobs containing offers and

answers between the peers, via the signaling server. When creating either offers or

answers, SDP blobs is generated containing the supported configurations for the session

(or in the case of an answer, supported configurations that is compatible with the

parameters supplied in the offer), including, if applicable, descriptions of the local

MediaStreams attached to the RTCPeerConnection, the codec/RTP/RTCP options

supported by the implementation, and any transport candidates/information gathered

in order to establish a direct channel. “While the SDP format is not optimal for
manipulation from Javascript, it is widely accepted, and frequently updated with new
features.” (71).

NAT traversal

One of the main challenges that WebRTC had to face in order to provide a direct peer-to-

peer connection between browsers, was the challenge of NAT traversal. The following

RFC specifications were defined to solve this exact problem:

 RFC5389 – Session Traversal Utilities for NAT (STUN)

87

 RFC5766 – Traversal Using Relays around NAT (TURN): Relay Extensions to

Session Traversal Utilities for NAT (STUN)

 RFC5242 - Interactive Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal for Offer/Answer Protocols

WebRTC takes advantage of all the above protocols to solve the problem of peer

connectivity and NAT traversal.

STUN was a set of “tools” defined to solve the problem of NAT traversal by allowing a

client to discover what kind of NAT lies between itself and the Internet (with the help of

an external STUN server) and using its IP address and ports for itself. In order to

communicate with another peers though, the other party has to also implement the

STUN protocol and to be able to provide a public IP address (either their own or their

NAT's). STUN soon was discovered to be insufficient to be a deployable solution for the

problem of NAT traversal in some situations and led to the creation of other protocols,

tools and mechanisms (72).

TURN is the successor and extension of the STUN protocol. STUN has a similar

functionality, but several problems were noticed with specific NATs that STUN wasn’t

able to traverse. Consequently TURN was created to provide universally applicable NAT

traversal (73).

TURN is a protocol that allows the host to control the operation of the relay and to

exchange packets with its peers using the relay. TURN differs from some other relay

control protocols because it allows a client to communicate with multiple peers using a

single relay address.

The requirements for a typical TURN implementation include a TURN server with a

public IP address which is accessible by everyone, whether a client lies behind a NAT or

not. The client talks to the server through a mechanism called “transport address” which

is a combination of IP and port, and is used both for the client and the server. Even

though TURN offers a solution for NAT traversal, it does so in a very costly manner. It

requires a server that will constantly work as an addressing server and route messages

from one peer to the other.

Finally, we have the ICE protocol. ICE makes use of both STUN and TURN and it serves as

a tool for other protocols to implement to achieve NAT traversal. ICE was originally

meant to be used for UDP-based media streams and the SIP protocol, but it can also be

extended to handle other transport protocols (such as TCP) as long as the session

negotiation follows the Offer/Answer model. Since ICE makes use of two other

protocols/mechanisms (STUN and TURN) to achieve the goal of Interactive Connectivity

between two end-points, it should be referred to as a methodology rather than a pure

protocol (74).

88

In WebRTC, the two peers in an RTCPeerConnection has an ICE agent each. These ICE

agents are responsible for negotiating the connection path with the remote peer (with

help from STUN/TURN servers) and create a list of potential connection points, so-called

ICE candidates. These candidates actually constitutes all the various transport addresses

(IP/port) to reach the peer. The goal is to establish a direct path, but if no direct path can

be established, ICE uses an intermediary (relay) TURN server. See Figure 25. (You can

read more about the WebRTC ICE interface, as well as look at a sequence diagram, in

appendix, section 12.3.4.2)

Figure 25. NAT traversal in WebRTC using ICE. Taken from (66).

WebRTC in our proof of concept

In our proof of concept, the WebMP, we use the following APIs:

 The RTCPeerConnection API. To establish a peer connection between the devices

that are to participate in a migration session

 The RTCDataChannel APIs. To do the actual migration, i.e. transfer the state (and

possible external view requests).

The RTPeerConnection API is going to be the basis of our solution. We are going to use

the PeerConnection capabilities in conjunction with a signaling mechanism (explained in

the next sub section 8.2.2) to ensure device discovery and establish an RTCDataChannel

between the devices.

89

In order to use WebRTC’s NAT traversal (ICE), and hence establish a direct data path, we

are going to need a STUN and/or TURN server. We can use one of the many available free

STUN servers (75), and chose to use one of Google’s public STUN server. However,

acquiring the resources needed for a dedicated TURN server was harder, even though we

could have used an open-source server software available from Google Developers (76).

However, according to Google, 92% of connection attempts performed using ICE can take

place directly and without using a relay server such as TURN (77). This is why we find it

acceptable and feasible to leave TURN functionality out of our proof of concept

implementation, while still being able to showcase how our solution works.

Once an RTCPeerConnection has been established, thanks to the signaling server and the

ICE agents, there will be an open, direct (or relayed) data channel between the devices.

Now, the RTCDataChannel API will be used for the actual migration, i.e. state transfer and

possible external view communication. Via this data channel, we can send any kind of

data as long as it is in binary, serialized form. The technology used for serialization is not

relevant or restricted by WebRTC. It depends on the underlying application and the

technology it uses. For our proof of concept we are going to use JSON, which is a

standard method for representing objects and serializing them, supported by JS by

default (78).

WebRTC interoperability notes

For our proof of concept, we chose to limit ourselves to the Chrome environment, i.e. the

proof of concept is currently only working on the PC and Android versions of Chrome.

We chose Chrome because, unlike Firefox, WebRTC is available in its stable versions.

Additionally, as of today, there is no complete interoperability between the different

platforms. More specifically, the WebRTC DataChannel between Firefox and Chrome is

not interoperable (http://peerjs.com/status). As such, there was no incentive in working

on both platforms. However, it is fair to assume complete interoperability between all

major browsers (and possibly other platforms as well) once the WebRTC standard is

finalized (79). See appendix section 12.3.1 for more on WebRTC interoperability.

8.2.2 Node and socket.io

As mentioned, WebRTC is dependent on, but does not specify, a signaling protocol for

both peer discovery and peer connection setup. Thus we were required to create such a

signaling protocol. Fortunately, we had the freedom to implement it in any way we saw

fit.

We want a centralized peer-to-peer architecture, as described in the solution design in

chapter 7. While WebRTC takes care of the peer-to-peer part, we now have to create a

globally available server that is responsible for connecting the devices, keep track of

(and communicate) the associations, and aid in peer connection setup. As we are

90

potentially working with real-time applications with strict time constraints, the server

should also be efficient (and scalable).

We ended up with the Node/Socket.IO combination, which we believe satisfied all of the

above requirements, while at the same time utilized cutting edge technology.

Additionally, it is implemented 100% in JS, which helped in lowering the barrier to entry,

as we only had to adhere to JS. We ended up with the following signaling setup:

 Server-side: A Socket.IO-based web server running on Node (the WebMS)

 Client-side: A Socket.IO-based client/script (the WebMC)

Node

Node.js is a server-side platform built on Chrome’s JS-runtime (the V8 environment

(80)). It was released in 2009, and have since received a lot of attention. Node is based

on an event-driven, non-blocking (or asynchronous) I/O model “that makes it
lightweight and efficient, perfect for data-intensive real-time applications that run across
distributed devices” (64).

The event-driven, non-blocking model of Node is due to the fact that Node is JavaScript,

which is based on asynchronous functions. I.e. instead of using separate threads and

waiting for I/O operations, a function is attached to the finish events, creating an event

loop, where events are “fired” whenever a function is finished. Thus, Node can still make

use of its processing power when the server is waiting for any other operation. This

results in an optimized performance while avoiding a multithreaded overhead, and

“makes Node.js scalable to millions of concurrent connections.” (81).

Hence, Node clearly has the scalability capabilities we need in our centralized peer-to-

peer model. Our Node server (the WebMS) should be able to handle multiple concurrent

connections, and be able to aid in establishing peer connections upon migrations,

satisfying real-time constraints.

The next challenge was to find a way to connect the clients and the server. By leveraging

the fact that Node runs on JS, we ended up with Socket.IO, a Node.JS-project based on the

WebSocket API, for real-time web applications. This way, we could easily create a JS-

based socket connection between clients and server.

Socket.IO

As mentioned, Socket.IO is based on the WebSocket API. WebSocket is developed as part

as the HTML5 initiative, and is the “next generation method of asynchronous
communication from client to server.” (82), compared to Comet and Ajax. It defines “a
full-duplex single socket connection over which messages can be sent between client and

91

server“ (58), which enables unprovoked bi-directional message pushing between client

and server, (unlike e.g. AJAX, which requires that a request is made by a client).

Like Node, WebSocket is event-based, which creates a very simple API for the developer.

E.g. whenever a socket client receives a message, an event “onmessage” is triggered, and

the script does whatever the developer has specified.

Socket.IO builds on the WebSocket API, but adds additional features that are not

provided by the WebSocket API out of the box, e.g.:

 Fallback transports. In order to provide real-time connectivity to every browser

(PC or mobile), Socket.IO selects the most capable transport mechanism at

runtime. Should the client not support WebSocket, Socket.IO can select another

transport protocol (e.g. Flash Socket, AJAX long polling, JSONP polling etc.). Thus,

Socket.IO is “blurring the differences between the different transport
mechanisms.” (63).

 Heartbeats, timeouts and disconnection supports. Socket.IO helps specify values

and configurations for keeping track of a connection, assuring that a client is alive

and active, by having it send so-called heartbeats at predetermined intervals.

(83) (84)

Socket.IO has two parts; a client-side JS-library and a server-side JS-library, with APIs

that are “nearly identical” (85). This was a great advantage to us when using Node, as we

could create nearly identical client- and server-side code, assisting in a faster

deployment.

Node and Socket.IO in our proof of concept

To summarize, Node is used to run a scalable, efficient, event-based Socket.IO Migration

Server (WebMS). On client-side, a Socket.IO-based script (WebMC’s Signaling Module) is

used to connect to the WebMS.

This socket connection enables a device to advertise itself and discover other devices. In

order to keep connected, the client needs to send heartbeats to the server. Whenever a

new connection or disconnection (e.g. a timeout) event occurs, the WebMS is

responsible for multicasting this update to the relevant devices, ensuring an up-to-date

association list at every client at any time.

In addition to enabling device discovery, the WebMS will assist in initial

RTCPeerConnection establishment, by acting as the signaling server. I.e. it will forward

the initial Offer/Answer messages between the devices that are to participate in a

migration session. When the peer connection has been established, the devices

communicate directly with each other, i.e. the not via the WebMS anymore. In addition to

speeding up the peer-to-peer communication, this also relieves the WebMS for

additional workload (state transfer etc.).

92

8.3 Setup

Figure 26. The Proof of Concept Architecture, showing a Web Migration Platform realized
with WebRTC and Node/Socket.IO.

93

Figure 26 shows the architecture of our implemented proof of concept, the WebMP. It

realizes cross-device, cross-domain session mobility for web applications (in the web

environment) and consists of the WebMC clients and the WebMS server. The server, as

well as the demo applications, are hosted by Telenor. For more about the deployment,

see appendix, section 12.3.2.

8.3.1 The WebMS

The Web Migration Server (WebMS) has similar responsibilities as the MS described in

the previous chapter. It is purely built in JS, and runs in the Node.js platform. The WebMS

uses Socket.IO to establish and control socket connections with the application

clients/devices. It is responsible for:

 Registering user's devices/applications to the migration server

 Keeping the connected devices/applications updated about the other connections

 Serve as a WebRTC signaling server for setting up WebRTC peer connections

between the clients, used for session transfer and/or external view session

establishment

We refer to appendix, section 12.3.3.1 for additional WebMS code documentation.

8.3.2 The WebMC

The Web Migration Client (WebMC) has similar responsibilities as the MC described in

the previous chapter. However, unlike the MC, we do not implement any native module.

This requires that the application must be running on the target device. For our proof of

concept, we argue that the implementation of the actual session mobility/migration

features is of more importance, thus we focused solely on this. If one should continue

working with our proof of concept, adding a native module can be appropriate further

work.

The WebMC is implemented as a JS-library consisting of two scripts (see Figure 27):

 Migration_signaling.js. Connects to and communicates with the WebMS by using

Socket.IO. This enables the application to advertise itself and discover other

devices.

 Migration_peerconnection.js. Creates the RTCPeerConnection and the

RTCDataChannel between the devices upon a migration.

94

App. 1
Application./extension.

(«appspecific.js»)

MIGRATION CLIENTWEB MIGRATION CLIENT

migration_signaling.js

migration_peerconnection.js

CHROME

RTCPeerConnection

WebMS signaling

Figure 27. The WebMC and its two scripts. These scripts acts as a migration extension to a
web application.

The two scripts together constitute a “migration API”, with methods the application

developer can call in order to migrate the application from one device to another. The

Application-Interface Module now becomes this interaction, as well as the application-

specific JS-methods that we require the application developer to implement.

We refer to appendix, section 12.3.3.2 for additional WebMC code documentation.

8.3.3 The demo applications

In order to showcase our implementation, we implemented some demo applications that

were to include the above-mentioned client-side scripts and implement some

application-specific methods to make it work. All these demo applications includes and

uses the exact same scripts (migration_signaling.js and migration_peerconnection.js),

showcasing the generic property of our implementation. What makes it work is the

implementation of the required application-specific part, such as state retrieval and

stateful launch. Se appendix, sections 12.3.3.3 and 12.4 for code documentation of the

application-specific script, and a “how-to-demo” tutorial, respectively.

95

We developed the following demo applications:

o A HTML5 video streaming application

o A YouTube-video streaming application

o A WebRTC-videochat application

o A Chrome browsing-extension

HTML5 video streaming

A simple HTML5 video streaming application, using HTML5’s <video/> element (86),

i.e. not requiring any plugin for playing a video. We provide a list of videos the player can

play, but you can play any HTML5-supported video by providing an URL.

We implemented the following migration features on this demo application:

o Full migration. The ability to transfer an ongoing HTML5 video playback from

one device to another, in a paused or immediate mode.

o I.e. we create a state object containing the URL of the currently playing

video, as well as the current time and the current volume of the playback.

This is read on the receiving side and results in the target device

continuing the video playback from the exact same position as it was left

off at the source device.

o External view. The ability to transfer an ongoing video playback (paused or

immediate) to a target device, while controlling the playback from the source

device. At any time, the user can either finish the migration to the target device,

or exit it, retrieving the view on his/her source device.

YouTube video streaming

The YouTube player is very similar to the HTML5 video streaming application. Only here,

we replace the HTML video element with an embedded YouTube-player using

SWFObject (87), a JavaScript Flash Player and embed script, and access and manipulate

the player via YouTube’s JavaScript API (88).

WebRTC-videochat

In the videochat demo application, we have created a simple videochat application using

WebRTC (thus also utilizing WebRTC’s MediaStream API).

We implemented the full migration-feature in the videochat application. This enables a

user to migrate an ongoing videochat session from one device to another. As previously

mentioned, we have suggested that RTC-apps implement an additional migration

handling mechanism in order to make the migration seamless from both point of view.

Our videochat application migration works in the following way:

96

1. Assume two clients/devices, A1 and B1 (user A and user B), are in a videochat

session using our videochat application. User A now wants to migrate to device

A2.

2. Before migrating, the videochat application sends a notification (via the

videochat signaling server) from A1 to B1 to notify about the migration. Hence,

B1 is made aware of the migration. It communicates this to user B, and waits for a

new call from user A (now on device A2).

3. Simultaneously, device A1 and A2 uses the WebMC to establish a peer connection

and transfer the state (i.e. the URI of B1, as well as the private chat log history).

A2 then launches, i.e. displays the private chat log and calls B1.

4. The session is continued between user A and B on devices A2 and B1,

respectively, keeping the users well-informed throughout the migration.

Chrome browsing extension

We also implemented a Chrome browsing extension (89), using Chrome’s API.

As with the videochat, we only implemented the full migration-feature in the browsing

extension. This enables a user to migrate an ongoing browsing session from one device

to another. More specifically, the browsing state we made is an object containing of all

the open tabs, as well as all the cookies and the history elements. When received, the

target device continues the browsing session by opening all the tabs, and storing the

cookies and history elements.

During implementation of this extension, we stumbled upon size and bandwidth

limitations in the RTCDataChannel. This resulted in us having to send the state over

several packets, in a controlled speed (to avoid exceeding the bandwidth limitations).

See appendix, section 12.3.3.4.

8.4 Execution

In this section, we will present both diagrams and screenshots showcasing how our

proof of concept works. We will clarify where our proof of concept differs from the

proposed solution design mentioned in the previous chapter, and why. Implementation-

specific parts will also be explained.

8.4.1 Connection/disconnection

In our proof of concept, there is no single, common migration client for every

application. Instead, every web application is required to include the WebMC JS-library,

as well as implement some required, application-specific methods.

97

When a user starts a migration-enabled web application (i.e. loads the page or

extension), he/she should be prompted to provide his/her “migration user” credentials

in order to log in to the WebMS, and thus carry out the various migration functions

offered. See Figure 28 and Figure 29 for examples of how this is done in our YouTube-

video demo application. This will result in the WebMC connecting to the WebMS,

advertising the device, as well as continuously updating the application with the

available devices.

Figure 28. The “Migration GUI” in our Youtube-video demo application. The user simply is
displayed a login form in order to connect to the WebMS.

Figure 29. The “Migration GUI” after a user has logged in.

In Figure 29 we see that the “Migration GUI” displays its connection information and a

list over available devices to which the user can migrate to. Here, the user is given many

alternative migration alternatives.

98

WebMC connect/disconnect

WebMC@
app1

WebMC@
app1

WebMS

Connect()

userData(id)

WebMC@
app2

WebMC@ap
p1

Page/extension load

MULTICAST(peerList)

Page/extension load

Connect()
userData(id)

Page/extension load

userData(id)

MULTICAST(peerList)

Page/extension load

Connect()

MULTICAST(peerList)

Page/extension unload

alt

[timeout]

[disconnect]

Disconnect

MULTICAST(peerList)

Disconnect device

Device timeout

Disconnect device

Connect()

login(username, devicename, appId)

login(username, devicename, appId)

MULTICAST(peerList)

login(username, devicename, appId)

MULTICAST(peerList)

userData(id)

login(username, devicename, appId)

dA1 dA2 dB1

"login"

Figure 30. Device connection/disconnection & discovery in our proof of concept

Figure 30 shows how devices/applications connect to the WebMS. In the context of the

web environment, since each web application/extension includes the generic WebMC

script, every open tab or extension constitute a single socket connection with the

WebMS.

99

Devices dA1 and dA2 belong to user A, while device dB1 belongs to user B. Each device

may have several active applications, shown in parenthesis (in this scenario dA1 has

two; app1 and app2). Assume that there’s initially no other devices connected to the

server.

In the diagram, we see that the user provides his/her credentials and logs in. This

triggers a WebMC-initiated Socket.IO connect(), which the WebMS responds to with the

socket connection’s id. This id is later used when initiating migrations

(RTCPeerConnections) between devices. Socket.IO connection events gets fired as soon

as the TCP connection is established, i.e. there is no way to send additional data when

connecting. This is why the WebMC emits a “login”-after the socket is established, which

is the actual login. This login-message passes the user- and device name, as well as the

application id to the WebMS, which stores the information and multicasts the new

connection to its relevant, associated connections. Upon a WebMC socket disconnection,

the WebMS removes the connection and notifies its relevant associations. As such, other

than the initial connection, the WebMP connection/disconnection & device discovery

works similar to the proposed solution design (Figure 16).

100

WebMC heartbeat/timeout

WebMC WebMS

userData(id)

Page/extension load

MULTICAST(peerList)

Connect()

Timeout

Heartbeat

Set timer

Reset timer

Reet timerTimeout

Heartbeat

Heartbeat

Timeout

Timeout

Disconnect device

MULTICAST(peerList)

login(username, devicename, appId)

App. X

Log in(username, devicename)

Device/Chrome

Other WebMCs

Device
crashes

Figure 31. Heartbeat and timeout functionality in our proof of concept

Figure 31 shows the heartbeat and timeout functionality in the WebMP, which uses built-

in Socket.IO-functionality (the heartbeat/timeout functionality in the solution design is

actually inspired by this Socket.IO-functionality). Here, we used default Socket.IO

configuration values (90), which sets heartbeats to true by default. Additionally,

Socket.IO sets reconnect to true, which means the Socket.IO client will automatically

reconnect should it detect a dropped connection or timeout.

8.4.2 Migration

In the WebMP, the WebMC, with initial setup help from the WebMS, establishes an

RTCPeerConnection with an RTCDataChannel. The actual migration session happens

over this data channel.

As in the solution design chapter, we will look at two migration scenarios; a full

migration and an external view migration. We also refer to appendix, section 12.3.4.1, for

101

the WebMC state machine, specifying the states, and the events that triggers state change

during a migration. In addition to showing call flows, we will also display screenshots

from our demo applications.

Full migration

Figure 32. Simplified sequence diagram for a full migration in our proof of concept.

102

Figure 32 shows a simplified sequence diagram where a user fully migrates “App. X”’s

session from source to target device. The diagram omits the details of the

WebRTCPeerConnection setup, as well as certain WebRTC-specific details that happens

during the actual migration. We refer to appendix, section 12.3.4.2 for more detailed

sequence diagrams.

Assume the two WebMCs are connected to the WebMS, and that both are registered to

the same user. When the user requests a migration to the target device, “App. X” is in an

ongoing application session. We divide between RTC-apps (i.e. the videochat app) and

non-RTC-apps (i.e. the video streaming apps and the browsing extension). If “App. X” is

one of the non-RTC-apps, it is simply paused before migration, if applicable. Else, we are

going to migrate a videochat session. In our videochat demo application, we send a

“migrating” message (via the videochat server) to the remote videochat peer, notifying

about the upcoming migration. This triggers the remote peer to enter a “wait” state,

displaying a message to the remote user about the ongoing migration (see screenshots

later in this section).

A “createConnection”-method is then called from the appspecific script, specifying the

target device’s id, and the type of migration (i.e. Boolean parameters corresponding to

immediate and external view). The createConnection method sets up the

RTCPeerConnection and RTCDataChannel, using the corresponding WebRTC APIs. Here,

the source sends an Offer to the target via the WebMS. The target receives this offer,

creates and responds with an Answer-message (also via the WebMS). These messages

contain SDP-blobs, specifying the type of offer/answer, the capabilities of the device for

data channel establishment, as well as the ICE candidates that the ICE agents (working

in the background) has gathered.

Once the source WebMC receives the Answer, the RTCPeerConnection can been

established (and the RTCDataChannel can be opened), and the state transfer can start.

The WebMC calls the application-specific retrieveState() method, which gathers and

returns the state of “App. X”’s session. This state is serialized (using JSON) and sent over

the data channel. Upon reception of this state, the target WebMC passes the state to the

application, which checks and sets the state. If the state is OK, the target replies with an

“ACK” over the data channel, before it tells “App. X” to launch and resets the

RTCPeerConnection. Simultaneously, the source WebMC tells “App. X” to stop (reset) and

resets its RTCPeerConnection upon reception of the “ACK”.

103

Videochat migration

FIGURES 1, 2 and 3 show how a migration in the videochat demo application is done.

Figure 33. Videochat demo. User A and B in a videochat (and private chat) session.

Figure 34. Videochat demo. Videochat app at B displaying a message about user A’s
migration

104

Figure 35. Videochat demo. User A has resumed the session from his mobile device, keeping
the private chat from the previous device.

In Figure 33, user A and B are in a (desktop/desktop) videochat session (with a private

chat/IM). Now, user A is on the move, and wants to migrate to his mobile device to

continue the videochat from there.

Upon triggering the migration, a message is sent from A’s videochat app to B’s videochat

app, notifying about the upcoming migration. This triggers B’s videochat app to enter a

“wait” state, as well as to display a message to user B about the ongoing migration. See

Figure 34.

Using the WebMP, user A’s desktop device creates a peer connection with the mobile

device and transfers the state. The mobile device launches upon this state by filling in

the private chat log and calling User B. The videochat application at User B answers the

call, and the videochat session continues. Figure 35 displays the resumed session from

user A’s mobile device. Here, we can see that the very same private chat log is

transferred.

105

Browsing migration

Figure 36, Figure 37 and Figure 38 show a migration of a Chrome browsing session,

using the Chrome browsing demo extension.

Figure 36. Browsing extension demo. User A at “source” device upon migration

Figure 37. Browsing extension demo. Launching at “target” device.

106

Figure 38. Browsing extension demo. The very same tabs are launched.

In Figure 36, User A is browsing on his “source” device, having three tabs open. Now,

User A wants to continue this browsing session, keeping his cookies and history files,

from the “source” device. He/she opens the Chrome demo extension, logs in with device

name “source”, and selects the “target” device. Then, by using the WebMP, the “source”

device creates a peer connection with the “target” device, and transfers all the tabs,

cookies and history files to the stationary device. When the stationary device have

received all these files, it launches, storing the cookies and history files, as well as

opening the tabs. Figure 37 is a screenshot of the moment when the tabs are opened at

the “target” device, and Figure 38 shows that these in fact are the very same tabs that

were open at the “source” device.

107

Figure 39. Browsing extension demo. Console log at “target”.

What’s special with the browsing migration compared to the other demo applications, is

the need for sending the state over several messages, in a controlled matter. This must be

done to avoid exceeding the RTCDataChannel’s size and throughput limits (see appendix,

section 12.3.3.4). Figure 39 shows the console log output on the receiving side. After

having received and stored every history object, cookie and tab, the extension copes the

history and cookie files and opens the tabs.

108

External view

App. X App. X
MS

Video
streaming

serverUser MC1 MC2
Device/Chrome 1 (source) Device/Chrome 2 (target)

Paused migration

[if immediate is FALSE]
pause

opt

[External view request]

«Action X»

«X happened»

Dc.send(request X)

handleExtViewRequest(X)

Opt. Request

Opt. response

ACK

App. Data

Dc.send(type:extView,state,imm)

Dc.send(«extViewStarted»)

launch

Launch(imm, TRUE)

stateValid()

retrieveState

state

true

Request(video)

Response(media stream)

«External view»

«Controlling view»

enterExternalView()

sendExtViewRequest(X)

Figure 40. Proof of concept external view establishment and external view requests

109

App. X App. X
MS

Video
streaming

serverUser MC1 MC2
Device/Chrome 1 (source) Device/Chrome 2 (target)

opt

[Exit request]
«Exit»

Dc.send(exitRequest)

retrieveState()

state

Dc.send(ACK)

pause

Launch(imm,FALSE)

«Resuming here.»

opt

[Finish request]
«Finish»

sendFinishExtView() Dc.send(finishRequest)

Dc.send(«extViewFinished»)

Dc.send(ACK)

App. Data

Dc.send(state)

Launch()

stateValid()

true

Dc.send(ACK)

exitExternalView()

«Normal view»

stopApp()

reset()

reset()

takeControl()

«Control from here»

stopApp()

Reset() Reset()

App. Data

sendExitExtViewRequest()

Figure 41. Proof of concept external view finish and exit flow

Figure 40 and Figure 41 show how an external view migration is done in our proof of

concept, which in fact is very similar to the proposed solution design. In this case, the

source device has already entered a so-called “controlling view”. When the target device

receives an external view migration request, it will enter an external view (or “controlled

view”) upon launching. Note, how the controlled (and controlling) view should be is

entirely up to the application developer (e.g. in our video streaming demo applications,

we removed all the controls and just displayed the video player). Since we’re now in an

external view session, the RTCPeerConnection between the source and target device is

not closed, but kept open in order for the source (or controlling) device to send external

110

view requests. Now, the user is be able to do the following (as explained in the previous

chapter):

1. Send external application (action) requests (e.g. video playback actions).

2. Exit the external view

3. Finish/complete the migration

We differentiate between these in the WebMC with JSON, giving the messages sent over

the data channel different “type” attributes (in the external view case, we have the

message types “request”, “exit” and “finish”). Figure 40 shows how external action

requests are done, while Figure 41 shows how the finish and exit flows are executed.

External view in YouTube-video player

We implemented external view in both the HTML5- and YouTube-video streaming demo

applications. The figures below show an external view session in the YouTube-

application.

Figure 42. YouTube external view demo. User is choosing to establish an external view
session with target.

111

Figure 43. YouTube external view demo. Controlling view with external controls

Figure 44. YouTube external view demo. Controlled view. No controls.

Figure 42 shows a user choosing to do an immediate external view migration of an

ongoing YouTube video playback from his “source” device to his “target”-device. Using

WebMP, the “source” device creates a peer connection with the “target” and transfers the

state. The “target” then launches externally, i.e. continues the video playback, but in a

“controlled” view. Figure 43 shows the “controlling” view at the “source”, while Figure 44

shows the “controlled” view at the “target”. The user is now able to control the video

playback at the “target” from his mobile device, as well as finish or exit the migration

session at any time.

112

Figure 45. YouTube external view scenario. Controlling playback on TV via smartphone.

Figure 45 shows a typical scenario in which external view would be a useful feature – the

user controlling an HTML5 video playback at the TV from his smartphone, just like a

remote control.

113

8.5 Results

With our proof of concept and demo applications, we have showcased a generic, cross-

device, cross-domain session mobility platform for both web applications and browser

extensions, with similar functionality and behavior as the proposed solution design.

Developing the different demo applications worked more or less in a “plug-and-play”-

fashion, by including the exact same generic client-side “migration scripts” (WebMC) on

every application, and implementing the required application-specific functions. We

absolutely believe this can be done on existing web applications, as it requires little (in

the case of RTC-apps) or none modification of the existing application code, working

more or less as an extension to the original application. Also, by having the app

developers define the required functions, we provide them with complete freedom when

it comes to how they want to apply the migration functionalities, both when it comes to

behavior and appearance.

As of today, the WebMP only works for Chrome. But this is only temporarily, should we

believe the WebRTC project. Once WebRTC is finalized, we can expect interoperability

between all the major browsers, and possibly other platforms as well (WebRTC also has

native APIs). Thus, WebRTC stands out as a potential interesting solution base not only

for a proof of concept.

During testing, the proof of concept performed great, producing very little delay in our

demo applications. This is especially important in RTC-apps, such as the videochat

application. However, we haven’t conducted any performance evaluation of our

implementation, so we can’t make any well-informed conclusions about its performance.

Hopefully, as promised by Node, the implementation should perform and scale well to

more intense workloads as well.

114

9 Conclusion

 Today, cross-device capabilities has become the de facto standard among most

applications, enabling users to access an application and resume his/her previous

session from almost any device. This has become a reality due to the ubiquitous nature

of Internet connectivity, and is realized by utilizing technologies such as Cloud

Computing, and cross-platform development and user interface tools such as HTML5.

Additionally, low end devices continuously become more powerful, enabling them to do

much more than before. While this allows you to run the same application on different

devices, there still exists no widespread solution providing the ability to transfer an

ongoing application from one device to another, continuing the ongoing session

immediately. Since the users we’ve asked have considered such functionality to be of

great value, this is definitely something worth exploring. Hence, one of the main goals of

this project has been to investigate and determine the feasibility of a cross-device

session mobility platform.

 A truly generic cross-device session mobility platform should work with any

application, irrespective of the type of the application and the type of terminal it is

running on. This becomes a challenge, considering that the nature of an application may

vary a lot from application to application. We have identified five application categories

in our effort to categorize them based on their functionality: browsing, business,

multimedia, communication and gaming applications. Out of these five, users we’ve

asked considered all categories except from video gaming as possible beneficiaries of

session mobility – some more than others.

 Additionally, we’ve identified three application type implications that need to be

considered; whether an application is real-time or not, the set of protocols it uses, and its

architecture. When it comes to real-time communication applications, it’s important to

remember that the remote endpoint usually is a person. Thus, we need to take into

account his/her user experience as well when designing the session mobility

mechanism.

 Before designing our solution, we needed to analyze and evaluate the various

approaches used in related work and existing solutions, as these would serve as our

inspiration. Our goal was to find and propose a feasible solution to the challenge of

creating a generic, cross-device session mobility platform that would also satisfy the

requirements we derived from our user study.

When we started the theoretical approach of our solution, we focused on the actual

migration procedure, where we stood between a live migration and cold migration

approach. In a live migration, the goal is to retain the session throughout a migration.

Here, a proxy entity was introduced, which acted on the behalf of its connected

devices/applications. This way, the migration was kept transparent to the other

115

endpoint, but as a result could lead to the need for performing real-time content

adaptation, or live transcoding, which we’ve deemed undesirable. During our

comparison of the two alternatives, we concluded that the need for retaining a session is

only justifiable when considering real-time communication applications, because of the

remote user’s experience. For other applications, a workaround could simply be to stop

the application on the source device, transfer the state of the application session to the

target device, and then launch the application there, passing the transferred state as an

argument. This is the approach of cold migration. We still needed to solve the problem

with real-time communication applications, though.

Our proposed solution, the Migration Platform, is realized as a centralized peer-to-peer

architecture. It consists of two entities; the Migration Server (MS) and the Migration

Client (MC). Together, the MS and MC will provide any application with cross-device

session mobility capabilities, including both the “external view” (i.e. a partial migration

where the application view on one device is controlled from another device) and “full

migration” features.

 The MS becomes the connection point for all the MCs, its main responsibilities being to

provide connectivity, device discovery, and keep track of associations, as well as aid in

setting up peer connections between devices upon a migration.

 The MC is software that has to be installed on each device. It is responsible for

connecting to the MS via a signaling module, as well as executing the actual migration via

a Peer Connection (PC) module, by establishing a direct data channel between source

and target device. The state of the application about to be migrated is transferred over

the data channel, with little or none restrictions to the size or structure of the state

object. In order to launch applications not currently running on the device, the MC also

has to be able to interface to the device’s hardware, meaning it has to be native.

 The applications that are to utilize the capabilities provided by the MP need to

implement an interface to the MC, as well as providing a user interface for the migratory

functions, enabling the user to trigger migration functions from the application. This

way, the application can invoke migration functions provided by the MC, and the MC can

invoke the application-specific functions specified in the interface. The most important

application-specific functions we require the application to implement for the migration

procedure, are a state retrieval function, a stateful launch function, and functions for

sending and executing actions when in an external view session. During a normal

migration scenario, the state retrieval function should return a state object, representing

the current state of the application on the source device. The state is transferred to the

target device, where it will be passed as an argument upon launching the application.

This stateful launch should ensure that the application session resumes from where it

left off in the source device.

 The behavior of the MP (i.e. the peer connection setup, session transfer etc.) is kept

transparent to the application developer, who only has to implement the interface,

making our solution work in a 'plug-and-play'-fashion. By having the application

developers implement the required functions, we provide them with complete freedom

116

when it comes to how they want to apply the migration functionalities, both when it

comes to behavior and appearance.

 The main limitation of our proposed scheme is the inability to seamlessly migrate real-

time communication applications. But it is a limitation that can be overcome with slight

application modification. The suggested workaround is to have the migrating peer send

an application-specific message to the remote peer upon a migration request, notifying it

about the upcoming migration. As such, the remote peer can react appropriately, by e.g.

enter a wait state and communicate this to the end user, maintaining his/her user

experience. We argue such a modification should be minor, and thus acceptable. This

way, our solution is able to work with both real-time and non-real time applications,

rendering it (almost) generic.

Compared to DIAL, which was mentioned as perhaps the most complete available

solution for session mobility, we offer a number of improvements, on top of the already

explained session mobility. Instead of requiring all devices to be connected to the same

LAN, our solution is cross-domain, meaning devices are able to communicate as long as

they have Internet connectivity. Our solution also offers bidirectional migration

(meaning that the transfer can occur from any-to-any device, unlike the 1st screen-to-2nd

screen scheme DIAL uses). Additionally, our solution offers the “external view” feature

out of the box, while such functionality is out of the scope of DIAL.

 With our proof of concept, the goal was to showcase the viability of our proposed

solution design, with the help of a couple of demo applications. We implemented it in the

web environment, providing a generic cross-device (Android/PC) session mobility

platform for web applications and extensions. We chose the web environment due to the

promising future of HTML5, as well as the fact that HTML5 makes it easy to deploy cross-

device applications. Our implementation was heavily based on the bleeding edge

technology WebRTC, as well as the cutting edge technologies Node and Socket.IO, all

purely JavaScript-based. WebRTC is an API currently being drafted that enables web

browsers with real-time communication capabilities.

Conforming to the solution design, the proof of concept platform consisted of two

entities, the Web Migration Server (WebMS) and the Web Migration Client (WebMC).

The WebMS was implemented as a Socket.IO server entity, running on Node. The WebMC

connected to the WebMS via a Socket.IO-based signaling module. The Peer Connection

module of the WebMC was built around WebRTC. We utilized its PeerConnection and

DataChannel APIs to create and establish the peer connection, as well as the data

channel for session transfer. The logic of the solution was implemented in JavaScript.

The applications that were to utilize the capabilities provided by our proof of concept

needed to include the generic scripts (thus implementing the functions of the “WebMC”),

and implement some application-specific functions. We implemented four demo

applications; two video streaming applications (HTML5 and YouTube) that implemented

both “full migration” and “external view”, a videochat application (also built in WebRTC)

117

and a Chrome browsing extension. The videochat application had to implement an

additional notification message, which we showed could be done as a minor client-side

modification, thus strengthening our argument of the viability for real-time

communication applications working with our solution. Having the proof of concept

work with all these different types of application, even third-party APIs (YouTube and

WebRTC) clearly showcases the generic property of our solution.

The Migration Client in our proof of concept differed in two ways from the proposed

solution. Firstly, we didn’t implement any native module that would allow a background

service running in OS level in order to launch an application on the target device upon

migration. Instead, it required the target application to be up and running on the target

device. Secondly, we included a separate Migration Client for each web application, not a

common one. This was due to security implications with Chrome. Though, for a proof of

concept we argue these sidesteps are acceptable, as we still succeeded in proving the

viability of a generic, cross-device session-mobility platform.

With our proposed solution design, as well as our implemented proof of concept,

showing its viability, we argue that we have proved that a generic, cross-device session

mobility platform is both possible and feasible, but not without a certain level of

application modification, which we believe is a reasonable requirement. Working with a

bleeding edge technology like WebRTC has been both very challenging and interesting,

and by looking at the developer’s feedback, critics’ reviews and the general enthusiasm

about it in the technology world, we do believe that after its full development and

hopefully widespread adoption by web-application developers, our solution’s value and

applicability will increase even more.

118

10 Future Work

There are several things we have identified as opportunities for future work.

First, we did not perform any thorough security assessment of our proposed solution

design, and as such identify this as perhaps the most critical thing that needs to be done.

First of all, this entails doing a study to identify the security vulnerabilities and risks in

regards to our solution. When this is identified, the necessary security measures, such as

implementing appropriate user/device authentication and encryption must be

implemented.

We have also identified a couple of additional, potentially useful, features which we did

not include in our use cases, requirements and solution design. These are:

 The ability to identify the connected devices that have not installed the

application currently running on the source device, but are capable of running it.

Thus, if the requested application is not installed on the target device, the

solution needs to point out a way for the device to download and install it before

the migration can take place. This is inspired by a similar feature in DIAL (53).

Though, before including such a functionality, we need to evaluate its viability and

usability, as it will require considerably more overhead and context management.

 Trigger management. With trigger management, the solution should be able to

decide when a migration should occur, and make it happen automatically, thus

minimizing user effort and hopefully enhancing the user experience. Consider e.g.

an automatic migration of a movie playback from the TV in the living room to the

TV in the kitchen once the user moves. This is inspired by a similar module in the

OPEN project (51).

Before implementing such additional features, however, we believe it’s more attractive to

start implement the solution as-is, e.g. by starting with the most popular platforms. Or,

we could focus on enhancing the proof of concept.

When it comes to our proof of concept, the obvious further work will be to make it

interoperable between all the major browsers once WebRTC is finalized and/or allows

for this. At this point, one should make an assessment of the applicability/usability of

WebRTC’s use outside the web environment as well, as WebRTC has a native API.

Although the demo applications performed well, we have yet to execute any performance

evaluation of the proof of concept. Unfortunately, we didn’t have the necessary

equipment to do any thorough testing on the mobile platform either, except assuring it

did work cross-device. Thus, a performance evaluation (and/or simply a bug test)

focusing on the mobile platform could be desirable.

119

11 References

1. Shacham, R, et al. Session Initiation Protocol (SIP) Session Mobility. ietf.org. [Online]

Network Working Group. [Cited: 3 13, 2013.] http://tools.ietf.org/html/rfc5631.

2. Johansson, D. Session mobility in multimedia services enabled by the cloud and peer-
to-peer paradigms. 2011.

3. Højgaard-Hansen, Kim, Nguyen, Huan Cong and Schwefel, Hans-Peter. Session mobility
solution for client-based application migration scenarios. s.l. : 2011 Eighth International

Conference on Wireless On-Demand Netwrok Systems and Services, 2011.

4. Google. Google play. [Online] Google. [Cited: 1 25, 2013.]

https://play.google.com/store.

5. Apple. Apple. From the app store. [Online] Apple. [Cited: 1 25, 2013.]

http://www.apple.com/iphone/from-the-app-store/.

6. Hanssen, Øystein Wethe. Actors and ecosystem in the cloud computing market.
Trondheim : NTNU, 2012.

7. Tantow, Martin. Cloud Computing: Current Market Trends and Future Opportunities.

CloudTimes. [Online] CloudTimes. [Cited: 05 29, 2013.]

http://cloudtimes.org/2011/06/22/cloud-computing-its-current-market-trends-and-

future-opportunities/.

8. DropBox. DropBox. DropBox. [Online] DropBox. [Cited: 5 29, 2013.]

https://www.dropbox.com/.

9. Google. Google AppEngine. Google AppEngine. [Online] Google. [Cited: 5 29, 2013.]

https://developers.google.com/appengine/.

10. Wikipedia. HTML5. [Online] Wikipedia. [Cited: 2 12, 2013.]

http://en.wikipedia.org/wiki/HTML5.

11. Lardinois, Frederic. Survey: Most Developers Now Prefer HTML5 For Cross-Platform

Development. Tech Crunch. [Online] Tech Crunch. [Cited: 03 13, 2013.]

http://techcrunch.com/2013/02/26/survey-most-developers-now-prefer-html5-for-

cross-platform-development/.

12. Wikipedia. DOM_events. Wikipedia. [Online] [Cited: 4 3, 2013.]

http://en.wikipedia.org/wiki/DOM_events.

13. WebSocket.org. About HTML5 WebSockets. WebSocket.org. [Online] Kaazing. [Cited:

4 24, 2013.] http://www.websocket.org/aboutwebsocket.html.

14. Sutherland, Ed. Gartner: more than half of mobile apps will be HTML5/native hybrids

by 2016. idownloadblog. [Online] 2 4, 2013. [Cited: 3 20, 2013.]

http://www.idownloadblog.com/2013/02/04/gartner-mobile-apps-2016/.

120

15. Ness. Gartner Hype Cycle Report Predicts HTML5 Still Years Away. Ness Blog. [Online]

8 29, 2012. [Cited: 2 13, 2013.] http://blog.ness.com/spl/bid/81824/Gartner-Hype-

Cycle-Report-Predicts-HTML5-Still-Years-Away.

16. W3C. TAKE CONTROL — YOUR WEB, YOUR LOGO. W3C. [Online] W3C. [Cited: 5 15,

2013.] http://www.w3.org/html/logo/.

17. Mozilla. Firefox OS. Mozilla Developer Network. [Online] Mozilla. [Cited: 2 22, 2013.]

https://developer.mozilla.org/en/docs/Mozilla/Firefox_OS.

18. Tizen. Tizen. Tizen. [Online] Linux Foundation. [Cited: 2 22, 2013.]

https://www.tizen.org/.

19. Tode, Chantal. HTML5-based mobile operating systems may change the face of

mobile marketing. MobileMarketer. [Online] 7 6, 2012. [Cited: 2 15, 2013.]

http://www.mobilemarketer.com/cms/news/software-technology/13254.html.

20. Tuominen, Timo. Metro on Windows 8 with “Native HTML5”. futurice blog. [Online] 3

7, 2012. [Cited: 2 16, 2013.] http://blog.futurice.com/metro-on-windows-8-with-native-

html5.

21. Samsung. HTML 5 Specification. samsungdforum. [Online] [Cited: 3 12, 2013.]

http://www.samsungdforum.com/upload_files/files/guide/data/html/html_3/referenc

e/browser%20spec_html5.html.

22. Daoust, Francois. Adopting HTML5 for Television: Next Steps. s.l. : W3C.

23. w3schools.com. Browser Statistics. w3schools.com. [Online] [Cited: 5 23, 2013.]

http://www.w3schools.com/browsers/browsers_stats.asp.

24. Google. Google Sync. www.google.com. [Online] Google. [Cited: 3 13, 2013.]

http://www.google.com/sync/index.html.

25. Mozilla. Firefox Sync - Take your bookmarks, tabs and personal information with you.

Mozilla support. [Online] Mozilla. [Cited: 3 13, 2013.] http://support.mozilla.org/en-

US/kb/firefox-sync-take-your-bookmarks-and-tabs-with-you.

26. Opera. Opera Link. www.opera.com. [Online] Opera. [Cited: 3 13, 2013.]

http://www.opera.com/link.

27. Google. Sync. The Chromium Projects. [Online] Google. [Cited: 3 13, 2013.]

http://www.chromium.org/developers/design-documents/sync.

28. Galbraith, Ben. Coping with Over Four Hundred Devices: How Netflix Uses HTML5 to

Deliver Amazing User Interfaces. FunctionSource. [Online] FunctionSource. [Cited: 2 19,

2013.] http://functionsource.com/post/netflix-feature.

29. Jacobsen, Daniel. The Netflix Tech Blog. Embracing the Differences : Inside the Netflix
API Redesign. [Online] Netflix. [Cited: 2 1, 2013.]

http://techblog.netflix.com/2012/07/embracing-differences-inside-netflix.html.

121

30. Galbraith, Ben. Function Source. Coping with Over Four Hundred Devices: How
Netflix Uses HTML5 to Deliver Amazing User Interfaces. [Online] Fucntion Source, 2011.

[Cited: 1 31, 2013.] http://functionsource.com/post/netflix-feature.

31. Strickland, Jonathan. How Google Docs Works. How stuff works. [Online] [Cited: 3 1,

2013.] http://computer.howstuffworks.com/internet/basics/google-docs5.htm.

32. Russell, Jon. Microsoft begins to integrate its enterprise-focused Lync service with

Skype. thenextweb. [Online] TNW. [Cited: 3 6, 2013.]

http://thenextweb.com/microsoft/2013/04/17/microsoft-begins-to-integrate-its-

enterprise-focused-lync-service-with-skype/.

33. Microsoft. Lync Top Features. office.microsoft.com. [Online] Microsoft. [Cited: 3 11,

2013.] http://office.microsoft.com/en-001/lync/microsoft-lync-top-features-video-

conferencing-and-instant-messaging-FX103789488.aspx.

34. —. Microsoft Lync How‐to Guide. [Online] Microsoft. [Cited: 3 12, 2013.]

http://ecenter.custhelp.com/ci/fattach/get/270619/1344868514/redirect/1/session/

L2F2LzEvdGltZS8xMzY5ODI5ODEwL3NpZC96NUJKT29ybA==/filename/Microsoft%20

Lync%20How%20To%20Guide.pdf.

35. Wikipedia. SIP Trunking. Wikipedia. [Online] Wikipedia. [Cited: 3 13, 2013.]

http://en.wikipedia.org/wiki/SIP_Trunking.

36. Rosenberg, J, et al. SIP: Session Initiation Protocol. ietf.org. [Online] Network Working

Group. [Cited: 3 13, 2013.] http://www.ietf.org/rfc/rfc3261.txt.

37. Microsoft. Lync Server 2013. Lync. [Online] Microsoft. [Cited: 3 14, 2013.]

http://office.microsoft.com/en-us/lync/lync-server-2013-features-video-conferencing-

and-instant-messaging-FX103789592.aspx.

38. Warren, Tom. Microsoft explains Xbox One cloud gaming in an effort to justify online

requirement. The Verge. [Online] The Verge. [Cited: 4 2, 2013.]

http://www.theverge.com/2013/5/24/4361730/xbox-one-cloud-gaming-part-of-

online-requirement.

39. Wikipedia. Cloud gaming. Wikipedia. [Online] Wikipedia. [Cited: 4 4, 2013.]

http://en.wikipedia.org/wiki/Cloud_gaming.

40. Nvidia. NVIDIA GRID. Nvidia. [Online] Nvidia. [Cited: 5 29, 2013.]

http://www.nvidia.com/object/cloud-gaming.html.

41. CiiNOW. CiiNOW. CiiNOW. [Online] CiiNOW. [Cited: 5 19, 2013.]

http://www.ciinow.com/.

42. CiiNow. Cloud gaming technology. CiiNow. [Online] CiiNOW. [Cited: 4 18, 2013.]

http://www.ciinow.com/cloud-gaming-service-technology/.

43. VirtualMeshTest. Cold Migration and Live Migration. wiki.umiacs.umd.edu. [Online]

VirtualMeshTest. [Cited: 4 2, 2013.]

https://wiki.umiacs.umd.edu/VirtualMeshTest/index.php/Cold_Migration_and_Live_Mig

ration.

122

44. Mate, Sujeet, Chandra, Umesh and Curcio, Igor D. Movable-multimedia: session
mobility in ubiquitous computing ecosystem. 2006.

45. DoCoMo Euro-Labs. Session Initiation Protocol (SIP) Session Mobility. s.l. : Network

Working Group , 2009.

46. Sparks, R, Johnston, A and Petrie, D. Session Initiation Protocol (SIP) Call Control -

Transfer. tools.ietf.org. [Online] [Cited: 3 18, 2012.] http://tools.ietf.org/html/rfc5589.

47. Adeyeye, Michael, Ventura, Neco and Foschini, Luca. Converged multimedia services in
emerging Web 2.0 session mobility scenarios. 2011.

48. Barisch, Marc, Kögel, Jochen and Meier, Sebastian. A Flexible Framework for Complete
Session Mobility and Its Implementation. Stuttgart : Institute of Communication

Networks and Computer Engineering, Universität Stuttgart, 2009.

49. Canfora, G., et al. Proxy-based Hand-off of Web Sessions for User Mobility. 2005.

50. Partners, Open. OPEN Project . s.l. : NEC Europe , 2009.

51. Nickelsen, Anders, et al. OPEN: Open pervasive environments for migratory
interactive services. s.l. : iiWAS2010 Proceedings, 2010.

52. Wikipedia. SOCKS. Wikipedia. [Online] Wikipedia. [Cited: 2 26, 2013.]

http://en.wikipedia.org/wiki/SOCKS#SOCKS5.

53. Netflix. DIAL - Discovery and Launch protocol specification. Version 1.6.4. s.l. : Netflix,

2012.

54. Roettgers, Janko. The story behind DIAL: How Netflix and YouTube want to take on

AirPlay. GigaOM. [Online] GigaOM. [Cited: 2 15, 2013.]

http://gigaom.com/2013/01/23/dial-open-airplay-competitor/.

55. Åhlund, Andreas, et al. Context-aware Application Mobility Support in Pervasive
Computing Environments. s.l. : Proceedings of the 6th International Conference on

Mobile Technology, Application & Systems, 2009.

56. Wikipedia. Reflection (computer programming). Wikipedia. [Online] Wikipedia.

[Cited: 3 7, 2013.] http://en.wikipedia.org/wiki/Reflection_(computer_programming).

57. G. Camarillo, Ed. RFC5694: Peer-to-Peer (P2P) Architecture: Definition, Taxonomies,

Examples, and Applicability. [Online] 2009. [Cited: 4 7, 2013.]

http://tools.ietf.org/html/rfc5694.

58. Wikipedia. Peer-to-Peer. Wikipedia. [Online] [Cited: 4 7, 2013.]

http://en.wikipedia.org/wiki/Peer-to-peer.

59. Netflix. About the Registry. DIAL. [Online] Netflix, Google. [Cited: 5 22, 2013.]

http://www.dial-multiscreen.org/dial-registry.

60. Mudge, JT. Native App vs. Mobile Web App: A Quick Comparison. Six Revisions.
[Online] Six Revisions. [Cited: 5 22, 2013.] http://sixrevisions.com/mobile/native-app-

vs-mobile-web-app-comparison/.

123

61. Wikipedia. Heartbeat message. Wikipedia. [Online] Wikipedia. [Cited: 5 23, 2013.]

http://en.wikipedia.org/wiki/Heartbeat_message.

62. Google. WebRTC. WebRTC. [Online] W3C WebRTC Working Group. [Cited: 3 1, 2013.]

http://www.webrtc.org/.

63. Rauch, Guillermo. Socket IO. Scoket IO. [Online] LearnBoost. [Cited: 4 10, 2013.]

http://socket.io/.

64. Joyent. Node JS. Node JS. [Online] Joyent. [Cited: 5 1, 2013.] http://nodejs.org/.

65. Bergkvist, Adam, et al. WebRTC 1.0: Real-time Communication Between Browsers.

dev.w3.org. [Online] W3C WebRTC Working Group. [Cited: 3 25, 2013.]

http://dev.w3.org/2011/webrtc/editor/archives/20130322/webrtc.html.

66. Dutton, Sam. Getting Started with WebRTC. html5rocks. [Online] 7 23, 2012. [Cited: 3

25, 2013.] http://www.html5rocks.com/en/tutorials/webrtc/basics/.

67. Pfeiffer, Silvia. Implementing Video Conferencing in HTML5. [Online] 2012. [Cited: 4

3, 2013.] http://html5videoguide.net/presentations/WebDirCode2012/#page3.

68. Uberti, J and Jennings, C. Javascript Session Establishment Protocol. tools.ietf.org.
[Online] Network Working Group. [Cited: 4 9, 2013.] http://tools.ietf.org/html/draft-

ietf-rtcweb-jsep-03.

69. Handley, M, Jacobsen, V and Perkins, C. SDP: Session Description Protocol. [Online]

Network Working Group. [Cited: 4 9, 2013.] http://tools.ietf.org/html/rfc4566.

70. Nandakumar, S and Jennings, C. SDP for the WebRTC. [Online] Network Working

Group. [Cited: 4 11, 2013.] http://tools.ietf.org/id/draft-nandakumar-rtcweb-sdp-

01.html.

71. Uberti, J and Jennings, C. Javascript Session Establishment Protocol. [Online] Network

Working Group, 2 25, 2013. [Cited: 4 15, 2013.] http://tools.ietf.org/html/draft-ietf-

rtcweb-jsep-03.

72. Rosenberg, J, et al. Session Traversal Utilities for NAT (STUN). [Online] Network

Working Group . [Cited: 5 30, 2013.] http://tools.ietf.org/html/rfc5389.

73. Mahy, R, Matthews, P and Rosenberg, J. Traversal Using Relays around NAT

(TURN):Relay Extensions to Session Traversal Utilities for NAT (STUN). [Online]

Network Working Group. [Cited: 5 30, 2013.] http://tools.ietf.org/html/rfc5766.

74. Rosenberg, J. Interactive Connectivity Establishment (ICE): A Protocol for Network

Address Translator (NAT) Traversal for Offer/Answer Protocols. [Online] Network

Working Group. [Cited: 5 30, 2013.] http://tools.ietf.org/html/rfc5245.

75. VOIP-info. STUN. Voip-Info.org. [Online] VIOP-info. [Cited: 4 2, 2013.]

http://www.voip-info.org/wiki/view/STUN.

76. Google. Free open source implementation of TURN and STUN Server.

code.google.com. [Online] Google. [Cited: 4 2, 2013.]

https://code.google.com/p/rfc5766-turn-server/.

124

77. —. Important Concepts. developers.google.com. [Online] Google. [Cited: 4 2, 2013.]

https://developers.google.com/talk/libjingle/important_concepts.

78. Crockford, D. The application/json Media Type for JavaScript Object Notation (JSON).

[Online] Network Working Group. [Cited: 4 10, 2013.]

http://tools.ietf.org/html/rfc4627.

79. W3C WebRTC Working Group. Interop Notes. WebRTC. [Online] W3C WebRTC

Working Group. [Cited: 5 2, 2013.] http://www.webrtc.org/interop.

80. Google. V8 JavaScript Engine. v8. [Online] Google. [Cited: 5 3, 2013.]

https://code.google.com/p/v8/.

81. Paul, Geo. Beginner’s Guide To Node.Js (Server-Side JavaScript). Hongkiat.com.
[Online] Hongkiat. [Cited: 4 5, 2013.] http://www.hongkiat.com/blog/node-js-server-

side-javascript/.

82. Walsh, David. WebSocket and Socket.IO. The David Walsh Blog. [Online] David Walsh.

[Cited: 5 3, 2013.] http://davidwalsh.name/websocket.

83. LearnBoost Labs. FAQ. Socket IO. [Online] LearnBoost Labs. [Cited: 5 4, 2013.]

http://socket.io/#faq.

84. LearnBoost. Configuring Socket.IO. GitHub. [Online] LearnBoost. [Cited: 5 5, 2013.]

https://github.com/LearnBoost/Socket.IO/wiki/Configuring-Socket.IO.

85. Wikipedia. Socket.IO. Wikipedia. [Online] Wikipedia. [Cited: 5 3, 2013.]

http://en.wikipedia.org/wiki/Socket.io.

86. w3schools. HTML5 Video. w3schools. [Online] w3schools. [Cited: 5 10, 2013.]

http://www.w3schools.com/html/html5_video.asp.

87. Google. swfobject. code.google.com. [Online] Google. [Cited: 5 16, 2013.]

https://code.google.com/p/swfobject/.

88. —. YouTube JavaScript Player API Reference. developers.google.com. [Online] Google.

[Cited: 5 11, 2013.] https://developers.google.com/youtube/js_api_reference.

89. —. What are extensions? developer.chrome.com. [Online] Google. [Cited: 5 3, 2013.]

http://developer.chrome.com/extensions/index.html.

90. LearnBoost. Configuring Socket.IO. GitHub. [Online] LearnBoost. [Cited: 5 22, 2013.]

https://github.com/LearnBoost/Socket.IO/wiki/Configuring-Socket.IO.

91. Kaltura. Best Practices For Multi-Device Transcoding. Kaltura. [Online] Kaltura.

[Cited: 4 3, 2013.] http://knowledge.kaltura.com/best-practices-multi-device-

transcoding.

92. Wikipedia. Streaming media. Wikipedia. [Online] Wikipedia. [Cited: 4 7, 2013.]

http://en.wikipedia.org/wiki/Streaming_media.

93. FFmpeg. FFmpeg. FFmpeg. [Online] FFmpeg. [Cited: 4 7, 2013.]

http://www.ffmpeg.org/.

125

94. PeerJS. PeerJS. PeerJS. [Online] PeerJS. [Cited: 5 2, 2013.] http://peerjs.com/status.

95. Google. FAQ. developers.google.com. [Online] Google. [Cited: 5 29, 2013.]

https://developers.google.com/chrome/mobile/docs/faq.

96. Wikipedia. Application Programming Interface. Wikipedia. [Online]

http://en.wikipedia.org/wiki/Application_programming_interfaces.

97. —. Web Applications. Wikipedia. [Online]

http://en.wikipedia.org/wiki/Web_application.

98. Anne van Kesteren, Simon Pieters. HTML5 differences from HTML4. W3C. [Online]

http://www.w3.org/TR/html5-diff/.

99. Wikipedia. HTML5 in mobile devices. Wikipedia. [Online]

http://en.wikipedia.org/wiki/HTML5_in_mobile_devices.

100. Rowinski, Dan. HTML5: Don't Believe the Hype Cycle. ReadWrite. [Online] August

21, 2012. http://readwrite.com/2012/08/21/html5-ready-for-prime-time-dont-

believe-the-hype-cycle.

101. —. Mobile Devs Interested in Google Over Facebook for Social Mobile Apps.

ReadWrite. [Online] March 19, 2012. http://readwrite.com/2012/03/19/mobile-devs-

increasingly-inter.

102. Google. Sync. The Chromium Projects. [Online]

http://www.chromium.org/developers/design-documents/sync.

103. Uno, Rave. Peer-to-Peer Vs. Client Server Networks. Buzzle. [Online] 2011.

http://www.buzzle.com/articles/peer-to-peer-vs-client-server-networks.html.

104. Wikipedia. SOCKS. Wikipedia. [Online] http://en.wikipedia.org/wiki/SOCKS.

i

12 Appendix

12.1 User survey

We used SurveyMonkey (http://www.surveymonkey.com/), a free online survey

software and questionnaire tool, to create the user survey.

The survey can be found here (in Norwegian):

http://www.surveymonkey.com/s/92TRBZQ

http://www.surveymonkey.com/
http://www.surveymonkey.com/s/92TRBZQ

ii

12.2 Content adaptation analysis

In this section, we will investigate the feasibility of performing real-time content

adaptation in the proxy-based live migration approach, discussed in section 6.2.2. Here, a

proxy is placed between the application clients and the other endpoint (i.e. the

application server or the remote peer). This proxy is responsible for orchestrating a

migration of an ongoing application session, while at the same time keeping the other

endpoint transparent of this migration. Hence, the proxy may have to perform real-time

content adaptation of the data being sent both from and to the new client device, as this

device may not have the same capabilities as the previous device did.

In this section we will first introduce the reader to what this content adaptation actually

entails. What type of content adaptation is needed, and how is it done? Finally, we will

analyze the feasibility of including such a real-time content adaptation in a solution

design.

12.2.1 Introduction to content adaptation, or transcoding

Formats and codecs

In order for a file to be interpreted, it needs to follow rules that describe how data

should be stored in the file. The rules are determined by a container format, while the

file itself is both encoded and decoded (interpreted) by a codec.

The container format, tells you which type of container the file uses as a transport

medium. The format/standard determines how a valid bitstream has to look like. This

may be defined by standards such as AVI (Audio Video Interleaved), .mpg, .mov, etc.

Thus, the container format determines the way the information is stored and delivered.

A container family is used to provide a single file format to the user, even though the

container actually consists of multiple, different files. A popular family of containers is

found for use with multimedia file formats. Here, audio and video streams may be

combined (multiplexed) in the same container. Later, these streams can be individually

selected (demultiplexed) for decoding.

The codec (compressor, decompressor), such as x264, XviD and DivX, is the algorithms

used to compress the information for delivering and storing, and to decompress the

information for displaying it. I.e. the codec is software that does the actual

compression/decompression of the information in accordance with a container format

standard. For a certain format, there may exist many codecs capable of

encoding/decoding it. While their algorithms for encoding/decoding differ, they all

should produce a valid format bitstream that can be decoded by any of the codecs that

supports decoding of that format.

iii

Focus area

Both codecs and formats play an important role for determining the file size and quality

of the file. Thus, different codecs and container formats may be applicable for different

devices, as e.g. screen sizes and bandwidth may vary a lot. This results in different

support of formats and codecs among the devices, and thus the need for conversion

(transcoding) between these.

We have identified the need for real-time content adaptation (or live transcoding) in a

live migration solution. What this entails is the need for real-time format transcoding of

incoming (and outcoming, in the case of RTC apps.) data, in order to meet the

requirements of the receiving entities (e.g. the endpoints of a video conference).

We argue data traffic from streaming and real-time communication applications mostly

will be the subject to content adaptation. Hence, multimedia data will be the main

subject to transcoding. But how is transcoding of multimedia in a cross-device

environment actually done?

Best practices for multi-device transcoding (related to streaming video)
Today, many streaming services are available across devices. This creates a challenge for

the service provider: to find the right balance between bit rate and resolution as it

relates to the end user’s connection speed and system ability. Here, there are many

variables to account for. Of the most obvious, are:

 Device and Screen size

 Internet Service Provider Connection Speed or Cap

 Bandwidth available through the wireless router due to distance or usage

 Network traffic to and from the server hosting the video

 The CPU and GPU abilities on the playing device

 Browser brand and version

 Available plugins such as Flash and Silverlight

 Other programs running in the background

(91).

The overall goal will be to address the above variables in a way that provides immediate,

uninterrupted, and smooth playback in the highest quality possible. Today, it has become

more and more common to address this challenge with so-called adaptive streaming.

iv

Adaptive streaming

Transcoding always starts with a master file. The transcode can never be of a better

quality than the master, and it’s often too big to even play back on most computers and

transcode from (consider an uncompressed 4k piece of video). Thus, the master file

must be converted to different bit rates that may even scale down in resolution (see

Figure 46) - adaptive bit rates.

Adaptive streaming is a technique for detecting and adjusting to a user’s bandwidth

capabilities in real-time. It works by having multiple bit rates available that the player or

server can pull based on the user’s connection speed and ability. Thus, multiple streams

are actually available to the user, and may be seamlessly switched to if their connection

drops lower or improves.

Figure 46. A master file that is scaled down to adaptive bit rates. Taken from (91).

An adaptive set is a package of transcodes for the same content (e.g. video) that span

multiple bit rates and resolutions, and are meant to find a balance between connection

speed and resolution. For stationary devices (e.g. set top boxes or computers), the frame

rates, key frame intervals, audio sample rates, and so on should be the same within a set

so that the player switches between bit rates as smooth and seamless as possible. For

mobile devices, however, the connection/signal strength may fluctuate widely, thus the

adaptive sets for mobile does not follow the adaptive sets for stationary devices. Here,

“hard shifts” down in bit rates may be required to avoid mobile player crash and/or

disengagement from content. I.e., since every device has different requirements for an

ideal adaptive set, you need many versions of your content files to be playable across

multiple devices. Depending on the target device and the context, the best transcoding

practices vary a lot cross-device, which we can see from the charts in (91).

There are also other considerations that should be (and are) taken into account in

relation to multi-device transcoding, which we will not discuss any further in this paper.

These are:

 The transcoding method. Should the file be transcoded in constant or variable bit

rates?

 Bitrate vs resolution considerations

v

 Resolution vs dimension considerations

 Buffer size.

 Profiles and levels

12.2.2 Content adaptation in a live migration solution

Live transcoding is transcoding of a stream encoded in one format to another stream

encoded in another format, performed in real-time. This is what the proxy will have to

do in a proxy-based live migration approach. There are two reasons why the transcoding

should be done on the proxy, and not on the device itself:

1. We can’t assure that the device actually supports the needed codec and/or format
2. Transcoding can be heavy on the CPU, and should at least be avoided on low-end

devices (e.g. mobile phones)

Arguably, live transcoding will be most applicable in the following two types of

applications:

 (Multimedia) streaming applications

 Video conferencing/chat applications

These are applications that deal with audio/video streams which may need to be

converted following a migration.

12.2.2.1 Requirement considerations

The proxy/content adaptor will require a lot of context information

For each application, the content adapter entity (collocated with the proxy) needs to

know what formats (and codecs) that are used, and which formats are associated with

which devices. Additionally, it has to keep track of the currently active application

sessions, and the devices associated with each session. Thus, upon a migration of a

session, the content adapter needs to be informed about these parameters, and uses this

information to decide the appropriate transcoding that has to be done. Thus, after a

migration, the appropriate format transcoding of the session data will be performed, in

real-time.

Such a content adapter will need to be able to work with various formats, and to convert

between these. As previously described, this will require the content adapter to have a

codec library, with several codecs that together, hopefully, supports all the various

formats. It will also need a mux and demux library, with several multiplexers and

demultiplexers capable of multiplexing and demultiplexing the various combinations of

streams in container families.

vi

The proxy may have to implement server-like functionality

Remember for instance Netflix’s specific formatting and delivery engines, specifically

adapted to the device it is serving. That way, content will be optimized for each

requesting device. But if we introduce a proxy entity in this case, Netflix will continue to

send optimized content to the device it thinks it is serving, since the server isn’t aware of

any migration. Thus, following a migration, the proxy may have to convert the content,

ensuring it is compatible with the new device’s capabilities. Thus, the proxy may have to

implement server-like functionality (in this case it has to implement Netflix-like

formatting and delivery functionality) if it is to provide clients with the

adaptable/scalable features originally provided by the application server.

Strict time constraints leads to strict performance requests, and potential scaling issue

As mentioned, the proxy must be able to perform content adaptation in real-time (live

transcoding) for the solution to be viable. Compared to streaming applications, real-

time/interactive applications have stricter time constraints, as e.g. buffering can’t be

allowed in a real-time environment. If the latency of an RTC-app exceeds only 200 ms,

the users will experience a loss of fidelity (92). If the latency exceeds 500 ms, it will

result in an annoying, and possibly a destructive delay. Hence, in order for our solution to

be tolerable, the total delay should not exceed 500 ms.

When using a live migration/proxy approach, we have to add the time it will take for the

proxy to

 Process the packet (and possibly decrypt the media stream)

 Demultiplex, transcode and multiplex the media stream (in accordance with the

target device/application’s capabilities)

 Properly encapsulate (and encrypt) the packet before transmitting it

We see that encryption and decryption is mentioned in the points above. Many

videoconferencing applications encrypt the audio/video stream to protect against

potential eavesdroppers. Consequently, if the proxy has to do transcoding of such an

encrypted media stream, it first has to decrypt it. And to ensure real end-to-end security,

the proxy has to encrypt the converted media stream before sending it to the device. This

adds up the total amount of work the proxy have to do in real-time, which puts even

higher demands on its performance capabilities.

The time it will take for the proxy to do transcoding is obviously dependent on the

proxy’s CPU, workload etc. Here we also have to consider a potential scaling issue; the

more users the proxy is serving, the more potential simultaneous live transcoding is

needed. It’s easy to see that this can put very high, possibly infeasible, performance

requirements on the proxy.

vii

12.2.3 Conclusion

Even though there is a trend towards similar formats and codecs across

devices/platforms, we can’t assume there will be a complete overlap, at least not in the

near future. As the other endpoint is not made aware of a migration, the session

parameters negotiated for the original session are maintained even after a migration.

Thus, we may have to perform real-time content adaptation of both incoming and

outgoing data following a migration. Here, we have identified several potential

parameters the proxy will need to take into account, e.g.:

 The format (file and container) and codec

 Profiles and levels

 Application layer protocols (e.g. RTSP/RTP vs. HTTP)

 Encryption

The proxy is also responsible for gathering the needed context information about its

connected devices and applications, as well as their capabilities, which may result in a

substantial overhead.

Depending on the context, the proxy may have to perform adaptation (potentially by

implementing server-like functionality) in one or several of the above-mentioned

parameters, in real-time, which we argue may put infeasible high demands on the

performance of the proxy, at least when considering a proxy that is to serve multiple

concurrent sessions.

Even though such a live adaptation may be theoretically possible (e.g. by utilizing cloud

technology and a cross-platform multimedia handler such as FFmpeg (93), we argue it

can affect, or damage, the quality of the content. Consider e.g. a stream suited to a small-

screen device, connected to a cellular network. If this stream is to be converted to fit a

large-screen device, residing in a high-speed network, it will still be limited to the best

bit rate, resolution etc. available in the original stream context. Hence, the stream,

although adapted to conform to the new entities involved, will not necessarily be

optimally suited to its new context.

Thus, we don’t find a proxy-based live migration approach, dependent on a content

adaption part, to be a desirable solution.

viii

12.3 Proof of concept documentation

12.3.1 WebRTC interoperability notes

The WebRTC API is not yet finalized, i.e. it is still being drafted by the W3C WebRTC

Working Group. As such, there is not yet complete interoperability between the

browsers implementing WebRTC, which is why we only implemented the proof to work

with Chrome. Fortunately, the WebRTC project keeps developers updated with

interoperability news via their website, at: http://www.webrtc.org/interop.

We strongly recommend visiting this page should you be interested in developing an

interoperable WebRTC-service (at least before it’s finalized).

Interop notes

Currently, only Firefox Nightly (as of 1/30/13) and Chrome M25 Beta and later are

interoperable, but require a small degree of adaptation on the part of the calling site.

This Chrome/Firefox-interoperability, however, only refers to the MediaStream and the

RTCPeerConnection APIs, not the RTCDataChannel API, as the creators of the PeerJS

library have announced: "DataChannel is available today in Chrome stable and Firefox
Nightly. WebRTC DataChannels are not interoperable between Chrome and Firefox" (94).

The current API-differences are:

W3C Standard Chrome Firefox

getUserMedia

webkitGetUserMedia mozGetUserMedia

RTCPeerConnection webkitRTCPeerConnection mozRTCPeerConnection

RTCSessionDescription RTCSessionDescription mozRTCSessionDescription

Table 7. WebRTC API differences

 “Firefox and Chrome both prefix their interfaces and are likely to continue to do so until
the standard is more finalized” (79).

The WebRTC interop page also report other constraints/configuration issues one need to

take into account, such as:

 Creation of local media streams

o Chrome: element.src = webkitURL.createObjectURL(stream);

o Firefox: element.mozSrcObject = stream;

OR element.src = URL.createObjectURL(stream);

http://www.webrtc.org/interop

ix

 DTLS-SRTP

o “Chrome does not yet do DTLS-SRTP by default whereas Firefox only does
DTLS-SRTP. In order to get interop, you must supply Chrome with a PC
constructor constraint to enable DTLS”

Finally, Firefox offers a data channel on every offer by default (this is a stopgap till the

data channel APIs are complete). Chrome mishandles the data channel m-line. In order

to suppress the Firefox data channel offer, you need to supply a mandatory constraint to

Firefox on CreateOffer. E.g.,

 {'mandatory': {'MozDontOfferDataChannel':true}}.

However, in our solution this is not that relevant, as we require a datachannel.

WebRTC polyfill

Once WebRTC is finalized, we think it’s safe to assume WebRTC will be interoperable

between all major browsers. At that time, there may not be that much configuration

needed to make it interoperable, though it’s likely there still will be some platform-

specific differences. Fortunately, WebRTC provides a polyfill to help insulate from these

differences. It “takes care of all these issues and lets developers write to the unprefixed
W3C standard names”.

The polyfill library can be found here:

https://code.google.com/p/webrtc/source/browse/trunk/samples/js/base/adapter.js

12.3.2 Deployment

The Proof of Concept index page can be reached at:

 http://b2g.tele.no/

Telenor hosted our proof of concept, both the server, as well as the demo applications.

Specifically, we were provided with an Ubuntu server hosted in a Virtual Machine at

Telenor’s data center, with the domain name b2g.tele.no and the IP address

193.156.17.80.

To host our platform, we used an Apache2 web server, to provide a basic web-site as an

index for our services, which are all web-based. We also installed Node and its modules

socketio and daemon which were necessary to run our Node server scripts. At this point,

it was possible to manually login to our Ubuntu server and run the Node server scripts

to start-up our services.

https://code.google.com/p/webrtc/source/browse/trunk/samples/js/base/adapter.js
http://b2g.tele.no/

x

We also needed an automation mechanism that would start our servers automatically

when the Virtual Machine started up, as well as some sort of periodical error control to

make sure that the servers were restarted if an error occurred. In order to take care of

that, we developed two more scripts. The first script is responsible for starting the Node

servers (the migration server and the videochat server) and the second is responsible

for stopping them (actually killing all processes related to “node”). Then we scheduled

the execution of those scripts – first killing the node processes and then starting them –

using the Cron System Daemon, so that it runs the scripts every day at a specific time.

This way, if the servers encounter an error, they will be restarted.

12.3.3 Code documentation

You can inspect the full source code for all the generic scripts, both server- and client-

side from here:

http://193.156.17.80/generic_parts/

The scripts are well documented throughout the code. Thus, if you find the need for a

more thorough code documentation than we provide in this appendix, we refer to the

above link.

12.3.3.1 The WebMS (migration_server.js)

The migration_server.js is the WebMS, a Socket.IO-JS running on Node. It is responsible

for:

 Registering user's devices/applications to the migration server

 Keeping the connected devices/applications updated about the other connections

 Serve as a WebRTC signaling server for setting up WebRTC peer connections

between the clients, used for session transfer and/or external view session

establishment

The migration server is able to serve multiple applications, devices and users, and able

to differentiate between these

By default, the transport mechanism is set to WebSocket in Socket.IO. Note that with

Socket.IO we can set various fallback transport mechanisms if someone doesn't support

WebSocket, by e.g. writing “io.set ('transports', ['websocket','flashsocket','htmlfile','xhr-

polling','jsonp-polling']);”

http://193.156.17.80/generic_parts/

xi

Since establishing a WebSocket relies on the HTTP Upgrade mechanism, we needed to

set up an HTTP server. Then we created the Socket.IO server, and instructed it to listen to

the HTTP server we created.

The WebMS creates dynamic lists of currently connected clients and their properties in

order to keep track of the associations. In our proof of concept, each application has its

own WebMC, and thus creates its own socket connection to the WebMS. However, the

WebMS is already implemented in a manner where the WebMC can represent multiple

applications. Thus, each socket connection is associated with one user, but can be

associated with multiple apps.

12.3.3.2 The WebMC (migration_signaling.js and migration_peerconnection.js)

As mentioned, the WebMC consists of two scripts; migration_signaling.js and

migration_peerconnection.js. Below, we will present the content of the two scripts, and

what they do.

The migration_signaling.js script

This is the client-side migration signaling script. It should:

 Connect the client to the WebMS automatically (once the user has provided user-

and device name)

 Help establish an RTCPeerConnection session (and RTCDataChannel) between

two clients by sending/receiving WebRTC offer/answer messages via the WebMS

o When the client receives WebRTC-messages, we call the appropriate

message handler in migration_peerconnection.js

It depends on the following methods in migration_peerconnection.js:

 handleMessage(from, data)

It depends on the following application specific methods/attributes (up to the

application developer to implement):

 appId - a unique application identifier

 updateUser()

 updateConnections()

xii

The migration_peerconnection.js script

This is the client-side peer connection script. It is responsible for:

 Creating an RTCPeerConnection between a source device and target device

(peers)

 Creating a bidirectional RTCDataChannel on this peer connection for

o state transfer and/or

o an external view session

This script enables an application to do the following:

 Full migration. Transfer a running application from one device to another

(session mobility). This can happen either

o immediately, i.e. the application resumes immediately on the target device,

or

o paused, i.e. the application resumes in a paused mode on the target device

 External view. Establish an external view session between two devices, i.e. only

transfer of the “view”, where

o The source device first transfers the state to the target device, which is

then launched on the target device

o The target device's view can be controlled from the source device

o When completed, the user can choose to either:

 Finish the migration, i.e. give control to the target device.

 Exit the session, i.e. retrieve the view (state) back to the source

device.

Depending on the application, it may be necessary to transfer the state over several

packets. This script supports this by having the application developer specifying a

boolean variable 'more'.

Upon full migration, this script:

 creates a peer connection (with a data channel) between the source and target

 transfers the state over the data channel (over one or several messages)

o the state is transferred to the application-specific script to be launched

 closes the peer connection between the devices when the target device has

received, acknowledged and launched upon the state

Upon external view, this script:

o creates a peer connection (with a data channel) between the source and target

o transfers the state over the data channel (over one or several messages)

o the state is transferred to the application-specific script to be externally
launched

o the target device receives, acknowledges and launches (externally) upon

the state

xiii

o the data channel is kept open for the source device to

 send external view (e.g. playback) requests to the target device

 finish migration to target device

 exit the external view

The script depends on the following methods in migration_signaling.js:

o sendMessage(to, message)

The script depends on the following application specific methods/attributes (up to the

application developer to implement):

o retrieveState() - returns a representation of the state of the application

o stateValid(state) - checks if state is valid, sets the state, and returns true if valid,

false otherwise

o launch() - launches the application upon the state(s) received via stateValid

o exitExternalView - exits the external view (called after an 'exit external view'

request)

NB! Only needs to be implemented on an application that plans to use the

external view feature

o takeControl() - makes it possible to control the application from this device

(called after a 'finish' request in an external view session).

NB! Only needs to be implemented on an application that plans to use the

external view feature

12.3.3.3 Appspecific.js

“Appspecific.js”

Each application has to implement certain application-specific methods needed to make

the application able to migrate.

Mandatory migration-specific variables to set:

o appId - a unique application identifier

Mandatory 'migration-specific functions' to be implemented in order to use the

'migration platform':

o updateUser() - should be used to e.g. display the user name and/or id to the user

o updateConnection() - should be used to e.g. display all the connected devices (to

which the application session can be migrated) to the user.

o retrieveState() - called when the user wants to migrate from this device. Should

retrieve the state of the current application session, to be sent to the target

device.

o stateValid(state) - should be used to check if the given argument is a valid state. It

should set the state and return true if valid, false if not valid.

xiv

o launch() - should be used to launch the state given the verified state argument.

Should resume the app. session like it was on the other device

o stopApp() - stops the application session. This is called when a successful

migration has completed from this device.

Optional functions to implement (NB! required if the application are to support external

view):

o exitExternalView() - used by a controlling device to exit an external view (mostly

GUI). Should return from an external view to a 'normal, local view'

o takeControl() - used by a controlled (external view) device after a completed

migration to this device. Should enable controls and start a 'normal, local session'

on this device.

o handleExtViewRequest(request) - used by a controlled device to execute the

requested action, e.g. a playback action

o sendFinishRequest() - sends a request to finish the external view session, i.e.

transfer the control to the target device currently being controlled. It should

eventually call sendFinishExtViewRequest() in migration_peerconnection.js,

which sends the request over the data channel.

o sendExitRequest() - sends a request to exit the external view session, i.e. transfer

back the view to the source device. It should eventually call

sendExitExtViewRequest() in migration_peerconnection.js, which sends the

request over the data channel

o send<X>Request - sends an external view request, “X”, in an external view

session, e.g. a playback request to the target device currently being controlled. It

should eventually call sendExtViewRequest() in migration_peerconnection.js,

which sends the request over the data channel.

Optional variables to set:

o more - a boolean variable used by migration_peerconnection

o default: false - entails that the entire state will be sent over one message

(in the data channel). This means that the retrieveState() method only will

be called one time.

o if true - the application has to send the state over multiple packets. This

means that the retrieveState() method will be called several times until

the whole state is sent. Then, 'more' must be set to false.

Recommended variables to implement:

o state - recommended to be used to set the state in stateValid() (if the state is

valid), and then use this variable in the launch() method. However, if the

application developer wants to implement this logic in another way, he is free to

do so.

Recommended functions to implement:

xv

o startMigration(remoteId,imm,extView) - a function triggered by the user to start

a migration of type (imm, extView) to the target device identified by 'remoteId'.

This is recommended to be used to e.g. change the GUI of the application. It

should eventually call the method createConnection(id, imm,extView) in

migration_peerconnection.js that actually starts the migration.

NB! In the case of RTC (real-time communication) apps:

In order to ensure a seamless and user-friendly migration in an RTC-app, e.g. a videochat

app, we recommend to implement the following functionality upon a migration trigger:

o a notify()-function that sends a notification from the migrating user to the non-

migrating user (via the app. server or the app. peer connection)

o upon this notification, the non-migrating client executes a wait()-function,

waiting for a new call, and notifies the user about the situation

Example scenario:

o Assume two clients/devices, A1 and B1 (user A and user B), are in a RTC-session

using application X. The app has implemented the migration client, and user A

now wants to migrate to device A2.

o Before migrating, application X sends a notification (directly or via the app

signaling server) from A1 to B1 to notify about the migration. Hence, B1 is made

aware of the migration, communicates this to user B, and waits for a new call

from user A (now from device A2).

o Simultaneously, device A1 and A2 uses the migration client to transfer the state

(i.e. the address of B1), resulting in A2 calling B1.

o The session is continued between user A and B on devices A2 and B1,

respectively, keeping the users well-informed throughout the migration.

The appspecific script depends on the following methods in

migration_peerconnection.js:

o createConnection(remoteId, immediate, extView) - called to start a migration of

type (immediate,extView) to 'remoteId'

 ..if external view is to be supported (see above):

o sendExtViewRequest(request)

o sendFinishExtViewRequest()

o sendExitExtViewRequest()

It also depends on the following method in migration_signaling.js:

xvi

o connectoToMigrationServer(userName,deviceName) - connects to the migration

server, enabling this application to advertise itself, discover other devices, and

migrate.

Additionally, our implementation utilizes jQuery(http://jquery.com/). Thus it is

required that the applications also include JQuery.

12.3.3.4 RTCDataChannel comment

When we started testing our Chrome extension, we noticed that upon using the data

channel to transfer the required data, some of the packets were dropped and the data

channel was closed before the transfer was complete. The documentation of WebRTC is

very limited as of today, especially when it comes to RTCDataChannel, as it is still under

development. What we managed to find about this issue, though, came from discussions

amongst other developers at various developers.google.com forums. Many appear to

have run on the same issue and what appeared to solve it, was limiting the data

throughput of the DataChannel. After finding out about this, we adjusted our extension

to use an algorithm for sending, that tries to not exceed the sending rate of 3kbps. This

has solved our issue of dropping packets and closing the channel. Unfortunately, we

cannot base this choice on official documentation, as there is currently none on the

subject.

Hopefully, official documentation regarding data channel size and throughput limits will

be published in the future. It’s not unlikely WebRTC will provide a built-in data

transmission control functionality, eliminating the need for us implementing it.

12.3.4 Diagrams

12.3.4.1 WebMC state machine

When establishing an RTCPeerConnection, the clients (the WebMCs) pass through a

variety of different states. Since our implementation is created in such a way that the

migration should be automatically handled by the WebMC, we need to differentiate

between the initiator (i.e. the source) and the target as well, as they shall act differently.

The source should transfer the state while the target should receive it and launch upon

it. We also need to be aware of the type of migration, as a full migration should result in

closing the peer connection, while an external view migration should keep the peer

connection open.

Figure 47 and Figure 48 show the state machine of the WebMC from an idle mode (i.e.

being logged in to the WebMS, but not in any migration session) and during a migration

http://jquery.com/

xvii

procedure. As we can see, it differentiates between source and target, as well as full and

external view migrations.

xviii

Figure 47. WebMC state machine, heavily based on the RTCPeerState Enum, specified in
the WebRTC draft, at http://dev.w3.org/2011/webrtc/editor/webrtc.html#rtcpeerstate-enum

xix

In Figure 47, the inExternalView state is a submachine state, i.e. a composite state whose

internal details are not visible. Figure 48 shows the internal states of inExternalView.

Figure 48. The inExternalView submachine state.

xx

12.3.4.2 Full migration sequence diagram

In full migration call flow diagram presented in section 8.4.2, we simplified the following

two subparts, which we will display and explain in more detail here:

1. WebRTC Peer Connection Setup

2. WebRTC Peer Connection Migration

xxi

WebRTCPeerConnection Setup

User App. X WebMC App. X WebMC WebMS iceServers

Device/Chrome 1 (source) Device/chrome 2 (target)

createConnection(id,im,ev)

Pc = New RTCPeerConnection(iceServers)

Dc = pc.createDataChannel()

createOffer(gotOffer)
Alloc

Ips and ports
Callback: gotOffer(offer)

setLocalDescription(offer)
offer

offer

Pc = New RTCPeerConnection(iceServers)

setRemoteDescription(offer)

Ondatachannel event

Dc=event
createAnswer(gotAnswer)

Alloc

Ips and Ports
Callback: gotAnswer(answer)

answer
answer

setRemoteDescription(answer)

Permission Permission
ICE check

ICE check

DTLS
DTLS

SCTP/Data
SCTP/Data

SRTP
SRTP

ICE check

ICE candidate
ICE candidate

addicecandidate

SRTP without relay

Event:onicecandidate

Event:onicecandidate
ICE candidate

ICE candidate
addicecandidate

event onicecandidate

[the other MC's ICE agent has a new ICE candidate]

[the MC's ICE agent has a new ICE candidate]

Figure 49. WebRTCPeerConnection Setup

Figure 49 shows how the two devices (i.e. the WebMCs) set up the peer connection using

the WebRTC API. It is based on the instructions in the current (as of this writing)

WebRTC API draft. Assume the user already has requested a migration from source to

target device.

xxii

First, the source device creates a new RTCPeerConnection (pc), passing the address of

Google’s STUN server (iceServers). I.e., in our case, it says that Google’s STUN server

should assist us in creating a direct path of communication between source and target

browser/MC. Since we are to establish a data channel between the devices, the source

MC creates a data channel (dc) on the pc (dc = pc.createDataChannel(…)) as well. The

source MC then wants to create and send an offer to the target. This offer must of course

contain the request to open a data channel between the peers, but also the means of

establishing that direct data path, i.e. one or several ICE candidate(s). That’s why the MC

sends an “Alloc” request to the iceServers, which responds with IPs and ports, i.e. ICE

candidate(s), representing the alternative ways the target can reach the source. The

source device sets the offer as its local description and sends it to the target, via the

signaling server (since no direct path has yet been established).

When the target receives this offer (sent via the signaling server), it creates its own, local

RTCPeerConnection (also passing the address of iceServers), and sets the remote

description to be the offer. Since the offer contains a request to establish a data channel,

an “ondatachannel” event also triggers, where the data channel is set to be that event.

Similar to the source, the target does an “Alloc” request to the iceServers, which

respond(s) with IPs and port values (ICE candidates / transport addresses). This, as well

as potential data channel media negotiation parameters is set as the target’s local

description and sent to the source device as an answer, via the signaling server.

Upon reception of this answer, the source device sets it remote description to be the

answer. Now it’s time to establish the direct path, if possible. This phase we denote the

ICE interface.

ICE interface

Remember that each peer, or MC, has its own ICE agent, as previously explained. It is

responsible of finding one or several candidate pairs (communicating with the

iceServers) for each MediaStream track (in our case: the data channel track) that form a

valid connection. If at least one connection has been found for each media stream track,

the ICE setup has completed, and a direct (or relayed) path has been established.

This is done in an incremental fashion, where different transport protocols are tested,

and so-called ICE checks are performed, first with the iceServers, then directly between

the peers. Should the ICE agent gather new ICE candidates (fired by an event

“onicecandidate”), these are immediately communicated to the remote peer, where it is

added.

Hopefully, the ICE Agents (with help from the iceServers) are able to create a direct path

between the devices. If not, a relay server may have to be used.

For more about ICE, we recommend reading the WebRTC API draft (65). There you can

e.g. read more about the RTCIceServer types, the different RTCIce state definitions, and

the RTCIceCandidate types and events.

xxiii

WebRTCPeerConnection Migration

Figure 50. Proof of concept WebRTCPeerConnection migration

xxiv

Figure 50 shows a migration from source to target device over the RTCDataChannel. As

such, assume an RTCPeerConnection already has been established between the devices.

We created the migration by utilizing JavaScript’s event-driven nature. I.e. the “onopen”

event on the source device’s data channel (dc) triggers the WebMC to invoke the

application-specific retrieveState()-method, which returns the state of the application’s

session. The source then serializes this state object and sends it over the data channel,

along with the type of message (“migration”) and type of migration (imm/ev). On the

target device, however, the “onopen” event doesn’t trigger anything particular. This

differentiating between source and target (or migrator and non-migrator) is determined

by a Boolean value “migrator”, which is false by default, but set to true if the

createConnection() method of the WebMC is called.

Upon reception of the message, the target parses it, and, knowing it’s a migration request

with a state object, sends the state to the application to be set and validated. If the state

is deemed valid, the WebMC sends an “ACK” message over the data channel to confirm a

successful migration. The target WebMC then invokes the application-specific

launch(imm,ev)-method, which launches the application upon the state argument in a

fashion as determined by the imm/ev parameters.

If the request was for a full migration (i.e. not external view), the reception of the “ACK”

message will result in the WebMC to close the peer connection and stop the app (via

pplication-specific stopApp()). The migration has now ended successfully. Similarly will

the target WebMC close the peer connection if the request was for a full migration. The

only thing that remains is to launch the application upon the received state. This launch

is application-specific, and not provided by our solution. However, we have developed a

few demo applications that do implement this launch-function. One of which is the

videochat application, also built on top of WebRTC.

Videochat-WebRTCPeerConnection setup

One of the demo applications we created, is the videochat application, also using

WebRTC to establish a videochat call between peers. In Figure 50, we write “Videochat-

WebRTCPeerConnection setup” for launching in the videochat case. Since our demo

application is implemented in WebRTC, this setup is pretty similar to the WebRTC setup

we’ve presented, but it also has to set up a media path for the local streams (i.e. the

media captured from the web camera and/or microphone). As such, there are additional

things happening in the videochat peer connection setup compared with the migration

peer connection setup.

Section 10.4 in the current WebRTC Editor’s draft (65) includes an example call flow

between two browsers establishing a peer connection with media streams. As such, we

regard it as a good example of the WebRTC setup between the two peers in our

videochat demo application, though not entirely complete: “This does not show the
procedure to get access to local media or every callback that gets fired but instead tries
to reduce it down to only show the key events and messages.”. However: “This example
flow needs to be discussed on the list and is likely wrong in many ways.”

xxv

The diagram can be found here:

http://dev.w3.org/2011/webrtc/editor/webrtc.html#simple-peer-to-peer-example

(section 10.4 – Call Flow Browser to Browser). Or you can access the direct link to the

image here:

http://dev.w3.org/2011/webrtc/editor/images/ladder-2party-simple.svg

http://dev.w3.org/2011/webrtc/editor/webrtc.html#simple-peer-to-peer-example
http://dev.w3.org/2011/webrtc/editor/images/ladder-2party-simple.svg

xxvi

12.4 A how-to-demo tutorial

In this section we will provide you with simple instructions on how you can test each

demo application, and thus get a feel of the behavior of our implemented proof of

concept.

You can reach the index page of our proof of concept here:

http://b2g.tele.no/ or http://193.156.17.80

Before you’re demoing, please make sure you fulfill the following device/platform

prerequisite:

Supported devices/platforms: Chrome’s stable versions on both PC and mobile

(Android) versions. To be safe, make sure you have the latest Chrome version, and

ensure WebRTC is enabled by visiting this URL: chrome://flags/

Note: If you’re experiencing problems on your mobile device, we urge you to test it on PC

only, as we unfortunately haven’t had the necessary equipment to do any testing on the

mobile platforms.

12.4.1 HTML5 video streaming

Immediate/paused migration

1. Go to http://193.156.17.80/streaming_HTML5/ on two devices (or open two tabs in

the same browser window).

2. Push the “Show migration GUI”-button. Log in with the same username on both

devices, but with different device names, e.g. "device1" and "device2" (or any two

different names).

3. On “device 1”: Play any video (from the drop-down list or by providing an URL to a

HTML5-supported video).

4. On “device 1”: Next to “device2” in the list of available devices in the migration GUI,

push the “(Immediate migration!)” to migrate immediately to “device2”.

The video playing session should now have been migrated to “device2” immediately, i.e.

the video should continue playing on “device2”.

5. On “device 2”: Next to “device 1” in the list of available devices in the migration GUI,

push the “(Paused migration!)” to migrate paused to “device1”.

The video playing session should now have been migrated to “device 1” in a paused

mode, i.e. the video should start in a paused mode at the time it was stopped at “device

2”.

http://b2g.tele.no/
http://193.156.17.80/
chrome://flags/
http://193.156.17.80/streaming_HTML5/

xxvii

External view

1. Go to http://193.156.17.80/streaming_HTML5/ on two devices (or open two

tabs in the same browser window).

2. Push the “Show migration GUI”-button. Log in with the same username on both

devices, but with different device names, e.g. "device1" and "device2" (or any two

different names).

3. On “device 1”: Play any video (from the drop-down list or by providing an URL to

a HTML5-supported video).

4. On “device 1”: Next to “device2” in the list of available devices in the migration

GUI, push the “(Immediate external view!)” OR the “(Paused external view!)”

button to perform an immediate OR paused external view migration to “device2”.

The video playing session should now have been migrated to “device2” immediately OR

paused, i.e. the video should be loaded on “device2”, either resuming playback

immediately OR in a paused mode. Additionally should “device 1” display “External

controls”, and “device 2” should only display the video player, i.e. no controls.

5. Perform any amount of playback actions of your choosing to control the external

video playback, e.g. play, pause, mute, unmute, video seek, load another video etc.

6. Finish or exit

a. Finish: Push the “Finish” button to complete the migration to “device 2”.

b. Exit: Push the “Exit” button to exit the external view session, i.e. retrieve

the external video playback on “device 2” to “device 1”.

The video playing session should now have been either fully migrated to “device2”, or

retrieved at “device 1”. Both devices should display a “normal view”, in the sense that

there are no ongoing peer connection and/or external view session between the devices.

Note on use:

The HTML5 video streaming demo application can be used in two “modes”:

1. Public. By logging in with the migration username “public”, the user can see any

other user logged in as “public” as well, and is able to send a video to any other

user logged in as “public”, which kind of makes the application a “public video

sharing” application.
2. Private. By logging in with another migration username, e.g. “private”, the device

will only be visible by other devices logged in as “private” as well, which makes it

a private HTML5 video migration application.

http://193.156.17.80/streaming_HTML5/

xxviii

12.4.2 YouTube video streaming

Immediate/paused migration

1. Go to http://193.156.17.80/streaming_youtube/ on two devices (or open two

tabs in the same browser window).

2. Push the “Show migration GUI”-button. Log in with the same username on both

devices, but with different device names, e.g. "device1" and "device2" (or any two

different names).

3. On “device 1”: Play any video (from the drop-down list or by providing an URL to

a HTML5-supported video).

4. On “device 1”: Next to “device2” in the list of available devices in the migration

GUI, push the “(Immediate migration!)” to migrate immediately to “device2”.

The video playing session should now have been migrated to “device2” immediately, i.e.

the video should continue playing on “device2”.

5. On “device 2”: Next to “device 1” in the list of available devices in the migration

GUI, push the “(Paused migration!)” to migrate paused to “device1”.

The video playing session should now have been migrated to “device 1” in a paused

mode, i.e. the video should start in a paused mode at the time it was stopped at “device

2”.

External view

1. Go to http://193.156.17.80/streaming_youtube/ on two devices (or open two

tabs in the same browser window).

2. Push the “Show migration GUI”-button. Log in with the same username on both

devices, but with different device names, e.g. "device1" and "device2" (or any two

different names).

3. On “device 1”: Play any video (from the drop-down list or by providing an URL to

a HTML5-supported video).

4. On “device 1”: Next to “device2” in the list of available devices in the migration

GUI, push the “(Immediate external view!)” OR the “(Paused external view!)”

button to perform an immediate OR paused external view migration to “device2”.

The video playing session should now have been migrated to “device2” immediately OR

paused, i.e. the video should be loaded on “device2”, either resuming playback

immediately OR in a paused mode. Additionally should “device 1” display “External

controls”, and “device 2” should only display the video player, i.e. no controls.

5. Perform any amount of playback actions of your choosing to control the external

video playback, e.g. play, pause, mute, unmute, video seek, load another video etc.

6. Finish or exit

a. Finish: Push the “Finish” button to complete the migration to “device 2”.

http://193.156.17.80/streaming_youtube/
http://193.156.17.80/streaming_youtube/

xxix

b. Exit: Push the “Exit” button to exit the external view session, i.e. retrieve

the external video playback on “device 2” to “device 1”.

The video playing session should now have been either fully migrated to “device2”, or

retrieved at “device 1”. Both devices should display a “normal view”, in the sense that

there are no ongoing peer connection and/or external view session between the devices.

Note on use:

The YouTube video streaming demo application can be used in two “modes”:

1. Public. By logging in with the migration username “public”, the user can see any

other user logged in as “public” as well, and is able to send a video to any other

user logged in as “public”, which kind of makes the application a “public video

sharing” application.
2. Private. By logging in with another migration username, e.g. “private”, the device

will only be visible by other devices logged in as “private” as well, which makes it

a private video migration application.

12.4.3 Videochat

Videochat migration

1. Go to http://193.156.17.80/videochat/ on three devices (or open three tabs in

the same browser window).

2. ALLOW(!) access to web camera and microphone when prompted to do so.

3. Log in as migration AND videochat user: "A" on two devices/tabs, and “B" on the

third, with device names “A1”, “A2” and “B1”, respectively.

Now, the “A “videochat peers should be able to see one “B” videochat peer, and the “B”

should be able to see two “A” videochat peers.

4. From “A1”: Call “B”

Now, user “A“, at device ”A1” should be in a videochat session with user “B” at device “B1”.

5. Write something in the private chat from both the users in the active videochat

session.

6. From “A1”: Push the “Show migration GUI”-button, and push the “(MIGRATE TO

THIS)” hyperlink next to “A2” in the list of available devices.

The videochat call AND private chat should now be migrated to device “A2”. During this

migration, user “B” should be displayed a message “migrating….please hold” until device

“A2” calls “B1” and resumes the videochat session.

7. Hang up from any device.

http://193.156.17.80/videochat/

xxx

Note on use:

The videochat application can be used in two “modes”:

1. Public. By logging in with the migration username “public”, the user can see any

other user logged in as “public” from the migration GUI as well. Thus, he/she is

able to transfer a videochat call/session to any other migration user logged in as

“public”, which kind of makes the application a “public call transfer” application.

In this case, not very usable, but still showcasing an implementation of call

transfer in WebRTC!
2. Private. By logging in with another migration username, e.g. “private”, the device

will only be visible by other devices logged in as “private” as well, which makes it

a private videochat migration application.

12.4.4 Browsing

Before you can test the browsing extension (i.e. migrate a browsing session from one

device to another), you need to download and install the Chrome extension. To do this,

follow the following setup instructions:

Setup:

1. You need two (2) computers with Chrome installed

On both computers:

2. Download the extension (zip-file) at

http://193.156.17.80/browsing_extension/extFinal.rar

3. Unzip the file. You will get a folder named "extFinal"

4. Open Chrome

5. Go to chrome://extensions/

6. Check "Developer mode"

7. Click "Load unpacked extension..."

8. Browse to and choose the "extFinal" folder you just downloaded.

The extension should now be accessible as an extension/icon (see Figure 51) on the top

right part (to the right of the URL input field).

Figure 51. The browser extension icon

http://193.156.17.80/browsing_extension/extFinal.rar
chrome://extensions/

xxxi

Browsing migration

You’re now ready to test the browsing extension. To perform a migration of a Chrome

browsing session, do the following:

1. Open Chrome on both devices.

2. From your chosen “source” device: open a few tabs of your choosing (these will

be transferred to the target device upon migration).

3. Open the extension (push the extension symbol located in the top right of the

browser window) on both devices.

4. Log in with the same migration username, but different device names, e.g.

“source” and “target”.

You should now see the other device appear in the list of available devices.

5. From “source” device: Choose to migrate "immediate" to the other device.

Watch as the “target” device loads the same tabs that are open in the source device. In

the background (visible from the console log – CTRL+SHIFT?+i), the “source” device

also receives and stores cookies and history files.

NB! Note that the browsing extension only works in a PC environment, as Chrome apps

and extension currently are not supported on mobile. Google has said that they have no

plans to announce extensions on mobile at this time (95).

