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Abstract 
 

Non-renewable energy sources cover the majority of today’s energy demand. However, due to 

uncertainty of available petroleum reserves and great environmental impacts associated with 

the use of petroleum, renewable energy sources are of growing importance. Biomass is one of 

the main energy sources available, and bio-oils derived from biomasses can be converted to 

fuels, be used in heat and electricity production, or be used as a source of chemicals. Pyrolysis 

is regarded as the most efficient process for biomass conversion, and the pyrolysis oil yield may 

be as high as 80% if fast pyrolysis is used. Pyrolysis oils are complex mixtures of compounds, 

where content and properties depend on the biomass feedstock, process type and conditions. 

Even though pyrolysis oils are considered environmental friendly compared with petroleum 

oils, increasing production and application of these oils hasten the importance to assess their 

hazard in the environment. 

 

The aim of this master’s project was to determine if the pyrolysis oils generated from fast 

pyrolysis of three different wood feedstocks, namely poplar, beech and spruce, exerted any 

toxic and/or genotoxic effects in an Allium cepa chromosomal aberration assay. It was 

hypothesized that the toxicity and the genotoxicity of the different pyrolysis oils would vary 

with the feedstock used for making the oils and would increase with increasing concentrations 

of the oils tested. 

 

To achieve the aim, an Allium cepa test was performed on different concentrations of the three 

pyrolysis oils. Since the oils were diluted with water to gain the different concentrations, only 

the water-soluble fraction of the oils was tested in this assay. First, a root inhibition test was 

conducted, where the roots of Allium cepa onions were exposed directly to the different 

solutions of the oils. The roots were measured after exposure, and dose-response curves were 

made. Root inhibition can be seen as a measure of general toxicity. Further, roots exposed to 

three concentrations of the different oils were selected for microscopic examination, consisting 

of determination of the mitotic index and scoring of chromosomal aberrations. These can be 

seen as measures of cytotoxicity and genotoxicity, respectively.   

 

The toxicity-curves for the three pyrolysis oils were somewhat different; however, all showed 

a sigmoid shape: decreasing relative root length with higher concentrations. The mitotic index 

was significantly lower for onion roots exposed to all the oils and concentrations of oils 
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compared with negative control. The frequency of damaged dividing cells, in total and within 

the phases of division, was, in general, higher in onion roots exposed to all the concentrations 

of the different oils compared with negative control; however, a concentration-dependency was 

lacking for the ones exposed to the spruce-oil. The poplar-oil, followed by the beech-oil, 

seemed to have the highest genotoxic potential. The chromosomal aberrations largely 

contributing to the high frequency of damage, were those that are usually induced by chemicals 

exerting effects on the spindle apparatus during cell division.  

 

The results indicate that all the three pyrolysis oils exert a toxic, cytotoxic and genotoxic effect. 

Different “fingerprinting” techniques have revealed strong similarities between the oils; 

however, some differences are seen in the abundance of different compounds or groups of 

compounds. The differences in toxicity and genotoxicity between the oils are probably due to 

these variations in chemical composition, as a result of the different biomass feedstocks used 

in the pyrolysis oils. 

  

The results from the Allium cepa test are presumed to be a sensitive indicator of toxicity and 

genotoxicity, and may be seen as an early warning to other biological systems. However in this 

case, further studies should be carried out to evaluate the effects of the whole complement of 

the oils, and to identify compounds, or interactions between compounds, responsible for the 

observed effects. In this way, pyrolysis oils may be manufactured to cause less hazard in the 

environment. Additionally, the pyrolysis oils tested in the present master’s project are 

considered to be crude bio-oils that need further upgrading prior to application. Thus, the 

toxicity of refined oils, that may have a different composition of compounds compared with 

crude oils, should also be tested. Furthermore, other test systems may be used to test differences 

in toxicity between fossil oils and pyrolysis oils, and thus, get a comparable measure of toxic 

effects exerted by oils derived from non-renewable energy sources and the alternative, oils 

derived from renewable energy sources.  
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Sammendrag 
 

Ikke-fornybare energikilder dekker majoriteten av dagens energibehov, men grunnet usikkerhet 

knyttet til tilgjengelighet av petroleumreserver og store miljøpåvirkninger assosiert med bruken 

av petroleum, vokser betydeligheten av fornybare energikilder. Biomasse er en av de viktigste 

tilgjengelige energikildene, og bio-oljer derivert fra biomasser kan bli omdannet til brensel, 

brukt i varme- og elektrisitetsproduksjon, eller bli brukt som en kilde til kjemikalier. Pyrolyse 

er sett på som den mest effektive prosessen for biomasse omdanning, og pyrolyseolje-utbyttet 

kan bli så høyt som 80% hvis rask pyrolyse blir brukt. Pyrolyseoljer er komplekse blandinger 

av forbindelser, hvor innholdet og egenskapene avhenger av råmaterialet av biomasse, 

prossesstype og forhold. Selv om pyrolyseoljer er sett på som miljøvennlige sammenlignet med 

petroleumsoljer, vil økt produksjon og bruk av disse oljene fremskynde viktigheten av å 

evaluere deres risiko for miljøet. 

 

Hensikten med denne mastergradsoppgaven var å bestemme om pyrolyseoljene laget fra rask 

pyrolyse av tre forskjellige råmaterialer av tre, poppel, bøk og gran, hadde noen toksiske 

og/eller genotoksiske effekter i en Allium cepa kromosomaberrasjonstest. Det ble utarbeidet 

hypoteser om at toksisiteten og genotoksisiteten av de forskjellige pyrolyseoljene ville variere 

med råmaterialet brukt for å  lage oljene og ville øke med økte konsentrasjoner av oljene som 

ble testet. 

 

En Allium cepa test ble utført på de forskjellige konsentrasjonene av de tre pyrolyseoljene. 

Siden oljene ble fortynnet med vann for å oppnå ulike konsentrasjoner, var det kun den 

vannløselige delen av oljene som ble testet i denne analysen. Først ble en rotinhibisjonstest 

utført, hvor røttene av Allium cepa løk ble eksponert direkte for de forskjellige løsningene av 

oljer. Røttenes vekst ble målt etter eksponering, og dose-respons kurver ble laget. Inhibering av 

røttenes vekst kan bli sett på som et mål på generell toksisitet. Videre ble røtter som hadde vært 

eksponert for tre konsentrasjoner av de forskjellige oljene, valgt for mikroskopisk analyse, som 

bestod av bestemmelse av mitotisk indeks og deteksjon av kromosomaberrasjoner. Dette kan 

bli ansett som mål på henholdsvis cytotoksisitet og genotoksisitet.   

 

Toksisitetskurvene for de tre pyrolyseoljene var noe forskjellig, men alle viste en sigmoid form, 

der relativ rotvekst minket med økte konsentrasjoner. Mitotisk indeks var signifikant lavere for 

løkrøtter eksponert for alle oljene og konsentrasjoner av oljer sammenlignet med negativ 
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kontroll. Frekvensen av skadede celler i deling, totalt og innenfor de forskjellige delingsfasene, 

var generelt sett høyere for alle konsentrasjoner av de forskjellige oljene sammenlignet med 

negativ kontroll, selv om konsentrasjons-avhengighet manglet for røttene eksponert for gran-

oljen. Poppel-oljen, fulgt av bøk-oljen, syntes å ha det høyeste genotoksiske potensialet. De 

kromosomaberrasjonene som i stor grad bidro til den høye frekvensen av skade, var de som 

vanligvis blir indusert av kjemikalier som utøver effekter på spindelapparatet under celledeling. 

 

Resultatene indikerer at alle tre pyrolyseoljene utøver en toksisk, cytotoksisk og genotoksisk 

effekt. Forskjellige «fingeravtrykk»-teknikker har avslørt en sterk likhet mellom oljene, men 

noen forskjeller kan bli sett i mengden av ulike kjemiske forbindelser eller grupper av 

forbindelser. Forskjellene i toksisitet og genotoksisitet mellom oljene kan komme av disse 

variasjonene i kjemisk innhold, som et resultat av de forskjellige biomasse råmaterialene brukt 

i pyrolyse oljene.  

  

Resultatene fra Allium cepa testen er antatt å være en sensitiv indikator på toksisitet og 

genotoksisitet og kan bli sett på som en tidlig advarsel til andre biologiske systemer. I dette 

tilfellet bør imidlertid flere studier bli utført for å studere effekter av hele komplementet av 

oljene, og for å identifisere forbindelser, eller interaksjoner mellom forbindelser, ansvarlig for 

de observerte effektene. På denne måten kan pyrolyseoljer bli framstilt slik at de fører til mindre 

fare for miljøet. I tillegg er pyrolyseoljene som ble testet i denne mastergradsoppgaven ansett å 

være råoljer som trenger oppgradering før de kan anvendes. De raffinerte oljene kan ha ulik 

komposisjon av forbindelser sammenlignet med råoljer, og derfor bør også toksisiteten av disse 

bli testet. Videre bør andre testsystem bli brukt for å teste forskjeller i toksisitet mellom fossile 

oljer og pyrolyseoljer, og dermed få et sammenlignbart mål på toksiske effekter utøvd av oljer 

fra ikke-fornybare energikilder og alternativet, oljer fra fornybare energikilder.   
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1 Introduction 
 

 

1.1 Bio-oil – a renewable energy source 

 

Non-renewable energy sources, such as petroleum, coal and natural gas, cover the majority of 

today’s energy demand. However, the uncertainty of available petroleum reserves in a world 

with rapid growth in energy consumption has led to concern. Additionally, environmental 

impacts, resulting in increased health risk and the threat of global climate change, are a negative 

consequence of fossil fuel usage (Omer, 2008, Cherubini, 2010, Ng et al., 2010). Climate 

change is one of the primary concerns for humanity in the 21st century (Tingem and Rivington, 

2009), and in particular global warming caused by emissions of carbon dioxide and other 

greenhouse gases (GHGs) (Panwar et al., 2011). 

 

Renewable energy is of growing importance in satisfying concerns over the use of fossil fuel.  

In 2009, renewable energy sources supplied 14% of the total world energy demand, and in 

future aspects, it is expected that the fossil oil production will decrease, while production and 

application of renewable energy sources, like bio-oil from biomass, will increase (Demirbas, 

2009) (Fig. 1.1). Biomass, or organic material, is one of the main renewable energy sources 

available, and today biomass supplies approximately 10% of the global annual primary energy 

consumption (World Energy Council, 2010). The most important benefit of renewable energy 

sources is the decrease of environmental pollution, particularly reduced greenhouse gas 

emission (Charters, 2001, Kalogirou, 2004, Dijkman and Benders, 2010, Jagoda et al., 2011). 

Renewable energy sources have massive energy potential, but they are generally not fully 

accessible, with distinct regional variability, which give rise to technical and economical 

challenges. However, by improving the collection and conversion efficiency, the cost may be 

lowered, and increased reliability and applicability may be obtained (Kalogirou, 2004).  
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Figure 1.1. Future predictions of fossil oil production and biofuel consumption. Future predictions 

of global fossil oil production as percentage (%) of today’s production (a), and biofuel consumption as 

percentage of the total automotive fuel consumption (b) in the world (modified from Demirbas 

(2006a) and Demirbas (2009)). 

  

1.1.1 Applications 
 

Bio-oils derived from biomasses can be converted to fuels, be used in heat and electricity 

production, or be used as a source of chemicals (Bridgwater et al., 1999, Mohan et al., 2006), 

as illustrated in figure 1.2. Liquid bio-oils are attractive high density energy carriers allowing 

low cost storage, handling and transport (Celaya et al., 2012). The production of fuels and 

chemicals from biomass is not a new concept. Biomass has been used as a source of energy all 

over the world since ancient times (Demirbas, 2006b). Since the 1800’s biomass-based 

chemicals have been used in a variety of different products, like paint and glue. However, in 

the 1930’s and 40’s petrochemicals started to displace chemicals and products from biomass 

(Demirbas, 2006b), and became the preferred energy resources.  
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Figure 1.2. Applications of bio-oils (Bridgwater et al., 1999). 

 

The use of biofuel as an alternative for petroleum-derived fuel is environmental beneficial. 

Biomasses from plants emit approximately the same amount of carbon during conversion as is 

taken up during plant growth, thus, the use of plant biomass does not contribute to a build-up 

of CO2 in the atmosphere (McKendry, 2002). Furthermore, biofuels derived from biomasses 

have a higher oxygen content for improved combustion efficiency (Demirbas, 2007), and 

contain lower amounts of aromatic, sulphur, nitrogen and metal compounds compared to fossil 

fuels (Pütün, 2002, Kalam et al., 2003), causing less emissions of pollutants like oxides of 

sulphur (SOx), oxides of nitrogen (NOx), carbon dioxides (CO2) and particulate matter (PM) 

(Kalam et al., 2003, Mohan et al., 2006, Zhang et al., 2007).  

 

Although bio-oils may be promising and environmental beneficial as fuel constituents, most of 

the oils should be considered as crude bio-oils that need further upgrading (Eide and Neverdal, 

2014). Today, bio-fuel prices are high relative to fossil fuel prices due to high production costs, 

and only tax credits make bio-fuel commercially viable (Ng et al., 2010, Sadeghinezhad et al., 

2014). However, with development of techniques, standardization and increased volume of 

production, these costs can be significantly reduced (Ryan et al., 2006, Ng et al., 2010), making 

an enhanced commercialization of biofuels possible.  

 

1.1.2 Plant biomass 

 

Plant biomass is the only current renewable source of carbon that can be used directly for liquid 

fuels and chemicals (Huber et al., 2006). Wood biomass accounts for 87% of the total bio-
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energy produced today (World Energy Council, 2010). Wood and other plant biomasses, like 

bark, nuts and seeds, essentially consist of oxygen-containing organic polymers, and these large 

amounts of oxygen in plant carbohydrate polymers differ substantially from fossil feeds 

(Mohan et al., 2006). Generally, the order of abundance of the major organic content in 

terrestrial whole-plant biomass is cellulose, hemicellulose and lignin (McKendry, 2002, Klass, 

2004, Huber et al., 2006, Mohan et al., 2006). The cellulose, hemicellulose and lignin polymers 

make up 40-80, 15-30 and 10-25 wt.% of terrestrial biomass, respectively (Huber et al., 2006). 

The lipid and protein fractions are normally much less abundant than the carbohydrate 

components (Klass, 2004).  

 

Lignin can bind cellulose and hemicellulose, making up lignocellulose compounds (Huber et 

al., 2006). These create more tightly bound fibres in the plant biomass. The amounts of lignin, 

cellulose and hemicellulose differ between different types of lignocellulosic materials. Woody 

plants, composed of tightly bound fibres, contain a higher proportion of lignin than herbaceous 

plants, composed of more loosely bound fibres (McKendry, 2002). The relative amount of 

cellulosic and lignin content also varies between softwood (gymnosperms) and hardwood 

(angiosperms); the lignin to cellulose and hemicellulose ratio is found to be higher in softwoods, 

as compared to the hardwoods (Pandey, 1999). Cellulose and hemicellulose are polysaccharides 

made up of sugar monomers, while lignin is an aromatic biopolymer, a polyphenol with a 

complex, random structure. Cellulose and hemicellulose may be broken down (hydrolyzed) into 

sugars. The lignin fraction, on the other hand, is nonfermentable (Wyman et al., 2005, Huber et 

al., 2006, Mohan et al., 2006). Hence, the biodegradability of cellulose is greater than that of 

lignin, and the overall conversion of carbon-containing plant biomass present as cellulose is 

greater than for plants with a higher proportion of lignin. This makes some plant species more 

suitable for processing as energy crops than others (McKendry, 2002). 

  

1.1.3 Pyrolysis processes 

 

Pyrolysis is regarded as the most efficient process for biomass conversion and the most 

promising technology to compete with, and maybe even replace, non-renewable fossil fuel 

resources (Demirbas, 2001). Biomass pyrolysis is the chemical decomposition, 

depolymerization and fragmentation of organic material, usually wood (lignocellulose) or just 

lignin. This happens through the application of heat (375-525°C) in absence of oxygen or when 

significantly less oxygen is present than required for complete combustion (Huber et al., 2006, 
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Mohan et al., 2006, Cordella et al., 2012), as illustrated in figure 1.3. During the process, 

biomass is converted to liquid products (pyrolysis oils), a solid residue (char), and several light 

gaseous compounds (e.g. carbon dioxide, carbon monoxide, hydrogen, light hydrocarbons) 

(Cordella et al., 2012). 

 

Conventional slow pyrolysis is not a new invention, but dates back to ancient Egyptian times. 

Since then, this pyrolysis process has been improved and is widely used in charcoal and coke 

production (Mullaney et al., 2002). In the 1980’s, researchers found that the pyrolysis liquid 

yield could be increased using fast pyrolysis to replace traditional slow pyrolysis processes, 

which have a much lower yield and where char is the main product (Mullaney et al., 2002). In 

fast pyrolysis the biomass is heated at moderate temperatures (around 500°C) at a rapid rate, 

and the vapors produced are cooled and condensed rapidly, achieving yields of liquid products 

as high as 80% (Bridgwater and Peacocke, 2000). Process conditions that favor liquid products 

are moderate temperatures, fast heating rates, and short hot vapor residence times to minimize 

secondary reactions (Huber et al., 2006, Celaya et al., 2012). 

 

 
Figure 1.3. Overview of conditions and products from a pyrolysis process.  

 

1.1.4 Pyrolysis oils 

 

Pyrolysis oils are usually dark brown, free-flowing liquids with a distinctive smoky odor, and 

are particular attractive because they present a much better opportunity for high-efficiency 

energy production compared to other biomass fuels (Czernik and Bridgwater, 2004, Mohan et 

al., 2006). The yield and properties of the oils depend on the biomass feedstock, the process 

type and conditions, and the product collection efficiency (Czernik and Bridgwater, 2004).  

 

The pyrolytic breakdown, depolymerization and fragmentation of wood produce a large number 

of chemical substances (Mohan et al., 2006), and consequently pyrolysis oils are composed of 
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a wide mixture of compounds, containing carbon, hydrogen and oxygen, like acids, esters, 

alcohols, ketones, aldehydes, phenols, sugars, furans, miscellaneous oxygenates, alkenes and 

aromatics (Rue and Breton, 2006). Pyrolysis oils contain 45-50 wt.% oxygen, and oxygen is 

present in most of the identified compounds in the oils (Oasmaa and Czernik, 1999). This is the 

main reason for differences in properties and behavior between fossil oils and biomass pyrolysis 

oils. The most abundant compound in the pyrolysis oils is water. Other major groups of 

compounds are hydroxyaldehydes, hydroxyketones, sugars, carboxylic acids and phenolic 

compounds, mostly present as oligomers (Oasmaa and Czernik, 1999, Mohan et al., 2006). 

 

Pyrolysis oils are not yet commercial products due to several challenges. The high oxygen 

content of pyrolysis oils makes them poorly miscible with petroleum-based liquids, and there 

are problems using them as a fuel in standard equipment constructed for combustion of 

petroleum-derived fuels, mainly due to poor volatility, high viscosity, chemical instability, 

coking, and corrosiveness (Czernik and Bridgwater, 2004). Fast pyrolysis oils contain a 

significant amount of aldehydes, ketones and carboxylic groups, which are unstable and 

undergo a number of reactions during storage. To improve storage stability, crude fast pyrolysis 

liquids therefore need mild upgrading to reduce the amount of these compounds (Toven et al., 

2013, Eide and Neverdal, 2014). A significant effort is being spent on research and development 

directed to the application of pyrolysis oils for heat and power, and for the use as a transport 

fuel (Czernik and Bridgwater, 2004). 

 

 

1.2 Toxicity of pyrolysis oils 

 

Even though pyrolysis oils are considered environmental friendly compared with petroleum 

oils, increasing production and eventually application and commercialization of pyrolysis oils 

hasten the importance to assess their hazard in the environment. Pyrolysis oils can reach the 

environment through accidental releases and/or routine losses associated with use or transport 

(Leme et al., 2012), and may produce adverse effects on the environment, animals and humans. 

However, it should be noted that, compared with petroleum oils, biomass pyrolysis oils are less 

persistent in the aquatic and soil environment, due to a higher biodegradability (Blin et al., 

2007, Oasmaa et al., 2012). 
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1.2.1 Toxicity studies of pyrolysis oils 

 

Pyrolysis oils have been shown to exert eco-, cyto- and genotoxic effects on living organisms 

and cells, as shown in the studies below. The studies resulted in different toxicity results. This 

is probably due to the use of different biomass feedstocks and different pyrolysis conditions, 

leading to different composition of compounds in the pyrolysis oils, as well as the use of 

different toxicity tests and endpoints.  

 

1.2.1.1 Toxicity studies – eco- and cytotoxicity 
  

Ecotoxicological effects may among others be detected through survival or inhibition of growth 

of living organisms. Chatterjee et al. (2013) observed a dose-dependent decrease in survival of 

the nematode Caenorhabditis elegans after exposure to slow pyrolysis oils generated from two 

different biomass feedstocks (rice straw and sawdust of oak tree). Pimenta et al. (2000) and 

Park et al. (2008) detected immobilization of the freshwater crustacean Daphnia magna after 

exposure to a slow pyrolysis oil produced from Eucalyptus grandis wood and a fast pyrolysis 

oil produced from radiata pine, respectively. Moreover, Pekol et al. (2012) observed a 

significant concentration-dependent inhibition in root growth of the onion Allium cepa when 

exposed to a fast pyrolysis oil from hazelnut shell. However, within the Biotox project, 21 

pyrolysis oil samples (19 obtained from fast pyrolysis and 2 from slow pyrolysis) from different 

feedstocks showed no ecotoxicological effects, apart from inhibition of algal growth at high 

concentrations (Girard et al., 2005). Additionally, Oasmaa et al. (2012) selected one of the oils 

from the Biotox project for further analysis, namely a fast pyrolysis bio-oil from spruce, and 

did not detect inhibition of algal growth or immobilization of D. magna after exposure. 

  

Park et al. (2008) and Chatterjee et al. (2013) detected cytotoxic effects linked to the pyrolysis 

oils tested. A dose-dependent increase in cytotoxicity and apoptosis in cultured cell systems 

was observed when testing toxicity of the slow pyrolysis oils produced from rice straw and 

sawdust of oak three (Chatterjee et al., 2013), and a decrease in cell viability was observed with 

higher concentrations of the fast pyrolysis oil derived from radiata pine (Park et al., 2008). 

Cytotoxicity may damage cell function, which results in inability of cells to proliferate. These 

disturbances may appear before genotoxic effects, or even in the absence of the latter, hence, 

the cytotoxic effect may be considered an earlier indication of cellular damage (Park et al., 

2008). 

 



1 Introduction 

8 

1.2.1.2 Genotoxicity studies 
 

Genotoxicity of environmental contaminants is of great concern, due to the capability of genetic 

damage to cause health problems and affect future generations, since these damages may be 

inheritable (Bickham et al., 2000). Genotoxicity studies have been conducted for both whole 

pyrolysis oil samples and fractions of the oils. Pimenta et al. (2000) found no observable 

mutagenic activity of liquid products from slow pyrolysis of Eucalyptus grandis wood in 

MicrotoxTM bioassays; however, when taking the polycyclic aromatic hydrocarbon (PAH) 

fraction of the pyrolysis oil, genotoxic effects were shown. Cordella et al. (2012) also suggested 

a carcinogenic potential of oil fractions generated from slow pyrolysis of different biomass 

samples (corn stalks, poplar and switchgrass). In this case, carcinogenicity was associated with 

11 compounds (i.e. catechol and PAHs) found in the oils. 

 

Whole sample studies have revealed genotoxic potential of different types of pyrolysis oils. 

Pekol et al. (2012) showed mutagenicity associated with a pyrolysis oil obtained from fast 

pyrolysis of hazelnut shell (HS) in an Allium cepa test, in the form of chromosomal aberrations, 

and Park et al. (2008) detected DNA damage, particularly DNA strand breaks, after exposure 

to a bio-oil from the fast pyrolysis of radiata pine, using a single-cell gel electrophoresis (comet) 

assay. Chatterjee et al. (2013) found a dose-dependent increase in genotoxicity of cultured cell 

systems in a comet assay linked to pyrolysis oils from slow pyrolysis of rice straw and sawdust 

of oak tree.  

 

Within the Biotox project, the 21 selected pyrolysis oils were tested for mutagenicity using a 

bacterial reverse mutation assay (Ames test) and a micronucleus test in vivo and in vitro on 

mice cells (Girard et al., 2005). In the Ames test, all the fast pyrolysis oils showed a positive 

indication of mutagenicity, and the two slow pyrolysis oils tested were too toxic for the bacteria 

to give a result. The micronucleus test also indicated a potential for slight mutagenicity; 

however, the authors concluded that further testing was needed. Oasmaa et al. (2012) detected 

mutagenicity in a bacterial reverse mutation assay with and without metabolic activation of the 

fast pyrolysis oil derived from spruce feedstock, which indicated that the oil contained both 

direct acting mutagens and compounds that were mutagenic active after metabolic 

transformation. Micronucleus testing on mice cells, however, indicated a lack in ability of the 

oil to induce chromosome changes or damage to the mitotic apparatus (Oasmaa et al., 2012).  
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1.2.2 Toxicity of single pyrolysis oil components 

 

Hazard assessment of single pyrolysis oil components has been conducted (Diebold, 1997, 

Zhou et al., 2010, Cordella et al., 2012); however, this information may be misleading. It is 

important to keep in mind that pyrolysis oils are complex mixtures composed of a wide variety 

of compounds, as mentioned earlier, making it difficult to identify single toxic components and 

their behavior. The chemicals may undergo synergistic or antagonistic interactions by altering 

metabolism or transport characteristics, and this may have a significant effect on toxicity 

(Donnelly et al., 1995).  

 

The possible presence of PAHs in pyrolysis oils, however, should be given attention due to 

their known genotoxic effects. PAHs need to be metabolically activated to cause damage. 

Biotransformation of PAHs is usually catalyzed by cytochrome P450 enzymes and creates 

PAH-epoxides that can form adducts with DNA (Hall and Grover, 1990, Boström et al., 2002, 

Parkinson and Ogilvie, 2007). Incomplete repair of these adducts may give rise to mutations 

(Boström et al., 2002). Additionally, some types of PAH metabolites may generate reactive 

oxygen species (ROS) and indirectly cause DNA damage (Bolton et al., 2000). Fortunately, 

pyrolysis oils generated with temperatures at around 500oC contain small amounts of PAHs 

(Williams and Horne, 1994, Williams and Horne, 1995, Diebold, 1997); however, the 

qualitative and quantitative amounts of PAHs may vary between various pyrolysis oils, due to 

different pyrolysis conditions and feedstocks (Tsai et al., 2007, Lu et al., 2009). Furthermore, 

it is evident that a high quantity of PAHs may be formed during possible upgrading of the oils 

by zeolite catalysts to produce refined bio-fuels (Williams and Horne, 1994, Williams and 

Horne, 1995, Vitolo et al., 2001). 

 

1.2.3 Chromosomal aberrations 

 

Sensitive genetic endpoints for exposure of mutagens can range from point mutations to 

chromosomal aberrations (CA) in cells of different organs and tissues (Preston and Hoffmann, 

2007). Chromosomal aberrations are defined as any departure from the normal in chromosomal 

structure or number (Preston and Hoffmann, 2007). These aberrations may be detected in both 

mitotic and meiotic cell divisions (Grant, 1978). In the normal process of mitotic division, 

chromosomes in metaphase should be organized in the metaphasic plate in the middle of the 

cell; in anaphase, the centromeres connect with the spindle apparatus which causes a pull of the 

chromatids of each chromosome to the opposite pole of the cell; in telophase, the daughter 
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chromosomes arrive and assemble at each pole, and in cytokinesis, the cell divides into two 

identical daughter cells (Fig. 1.4). 

 

 
Figure 1.4. Mitosis in a  plant cell (Stern, 2000). 

 

Mutagenic chemicals may induce many different types of chromosomal aberrations. The 

chromosomal aberrations may arise directly from clastogens, mutagens that create DNA strand 

breaks with subsequently survival or misrepair of the damage, or indirectly from breaks created 

from unravelling, synthesis and repair processes (Bignold, 2009). The breaks can occur anytime 

(pre-synthesis, synthesis or post-synthesis) in the cell cycle (Bignold, 2009). The majority of 

breaks induced in interphase, are repaired by rejoining to the original configuration. However, 

repair-failure of single breaks may give rise to chromosomes from which a portion has been 

broken off, called fragments. Two or more repair-failed breaks in the same cell may occur, 

either in the same or in different chromosomes. This may lead to multiple fragment appearance, 

or the multiple breaks may interact, if they are in close spatial and temporal proximity, and 

sometimes form bizarre chromosomes, called rearrangements or exchanges (Savage, 1976, 

Bender et al., 1988). One of the most observed rearrangements in microscopic analyses is 

bridges, and this aberration is often seen together with fragments (Rank, 2003). Figure 1.5 

shows how chromatid breakage and rejoining can result in these aberrations. 

 

http://www.google.no/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=h02gI57DYUDZ7M&tbnid=3LyZ8zsCYL8f8M:&ved=0CAUQjRw&url=http://www.mhhe.com/biosci/pae/botany/botany_map/articles/article_05.html&ei=mHdiUsK0NeiM4ASsiYCgBw&psig=AFQjCNF27g83T-oGHH-nKTpfwTzhCWcsmQ&ust=1382198567407480
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Figure 1.5. Formation of a bridge and a fragment. Chromatid breakage and rejoining during mitosis 

resulting in the formation of a bridge and a fragment (Rank, 2003). 

 

Mutagenic chemicals may also induce chromosomal aberrations by affecting the spindle 

apparatus or the centromere-regions during cell division, and this may affect the organization 

in metaphase and the ability to segregate the sister chromatids to separate daughter cells 

(Preston and Hoffmann, 2007). Colchicine-mitosis (c-mitosis) was first described by Levan 

(1938) as random scattering of condensed chromosomes due to an inactivation of the spindle 

apparatus in colchicine-treated cells. Colchicine, and other c-mitotic chemicals, may prevent 

formation of the mitotic spindle by inducing microtubule depolymerization (Caperta et al., 

2006). If some sign of assembling of the chromosomes outside the metaphase plate is detected 

in the cell, it is defined as a disturbed metaphase cell. Disturbed metaphases, laggard 

chromosomes, a lag observed in the chromosomal migration to the poles (Akintonwa et al., 

2009), and vagrant chromosomes, chromosomes that are not organized to a specific stage of the 

mitotic division (Akintonwa et al., 2009), may be caused by weak c-mitotic disturbances, in 

which the spindle is made somewhat ineffective but is not totally inhibited (Levan, 1947). The 

induction of c-mitotic effects may lead to the separation of an unequal number of chromosomes 

in the daughter nuclei, which can result in cells that contain multiples of the normal complement 

of chromosomes (polyploidy) or cells that contain up to a few more or a few less chromosomes 

than the normal complement (aneuploidy) (Albertini et al., 2000). Disturbances of the spindle 

apparatus may also result in chromosome configurations like ‘star anaphase’, in which 
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chromosomes are drawn into an area at the poles in a star-like aggregation (Vaughn and Lehnen, 

1991). 

 

Another type of chromosomal aberration is stickiness. Sticky chromosomes lose their normal 

appearance, and they are seen as agglomerations of chromosomes adhered to each other. This 

may happen if chromosome fibers fail to condense properly in preparation of mitosis. Then 

inter-chromosomal chromatin fibres may be trapped in and tangled with fibers of other 

chromosomes, resulting in stickiness, sub-chromatid connections between chromosomes 

(McGill et al., 1974). Sticky chromosomes indicate that the agent is affecting the organization 

of the chromatin, which is related to a disturbed balance in the quantity of histones or other 

proteins responsible for controlling the proper structure of nuclear chromatin (Radić et al., 

2010).  Stickiness may be associated with chromatin breaks (McGill et al., 1974) and with the 

formation of bridges (Radić et al., 2010), which may occur when sticky chromosomes separate 

during anaphase and telophase. During cell division, sticky chromosomes may also produce 

aneuploid or polyploid cells (Onwuamah et al., 2014). 

  

Examples of different kinds of chromosomal aberrations in meta-, ana- and telophase are shown 

in figures 1.6, 1.7 and 1.8, respectively. 

 

 

Figure 1.6. Chromosomal aberrations in metaphase. Illustrations of different kinds of chromosomal 

aberrations that may be observed in meristematic cells in metaphase of Allium cepa roots. A: Normal 

metaphase. B: C-metaphase. C: Disturbed metaphase. D: Fragments. E: Sticky metaphase. F: Vagrant. 

G: Polyploid cell.  

 

 

Figure 1.7. Chromosomal aberrations in anaphase. Illustrations of different kinds of chromosomal 

aberrations that may be observed in meristematic cells in anaphase of Allium cepa roots. A: Normal 

anaphase. B: Bridges. C: Laggards. D: Vagrants. E: Fragments. F: Star anaphase. 
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Figure 1.8. Chromosomal aberrations in telophase. Illustrations of different kinds of chromosomal 

aberrations that may be observed in meristematic cells in telophase of Allium cepa roots. A: Normal 

telophase. B: Bridges. C: Laggards. D: Vagrants. E: Fragments. 

 

It is also important to recognize that chromosomal aberrations may arise spontaneously, and 

consequently, it will always be a background level of “naturally” occurring aberrations (Bender 

et al., 1988). 

 

1.2.4 The Allium cepa test 

 

The Allium cepa test is a plant test system used to examine both toxicity and genotoxicity. The 

basic steps of the A. cepa test are measurement of root length, determination of the mitotic 

index (the proliferation status of a cell population, MI) and observation of chromosomal 

aberrations of the common onion, Allium cepa, after exposure to a test solution. The root 

appearance and root length can be used as measures of toxicity (Fiskesjö, 1985), the mitotic 

index can be used to evaluate cytotoxicity, and chromosomal aberrations can be used to verify 

genotoxicity of different chemicals (Leme and Marin-Morales, 2009). The Allium cepa test was 

introduced by Levan in 1938 (Levan, 1938), demonstrating disturbances in the mitotic spindle 

due to colchicine exposure, and later Levan (1945) showed that inorganic salt solutions of 

different concentrations induced chromosomal aberrations in root cells of Allium cepa (Leme 

and Marin-Morales, 2009). Since then, technical modifications of the test have been made to 

create a more comprehensive assessment of chemicals in the complex mixtures of 

environmental samples (Grant, 1982, Fiskesjö, 1985, Rank et al., 1993, Ma et al., 1995, Rank 

and Nielsen, 1997, Rank, 2003, Matsumoto et al., 2006, Fernandes et al., 2007, Leme et al., 

2008). 

  

Many researchers have used the test, mainly as a bioindicator of environmental pollution. Single 

components considered hazardous environmental pollutants, like metals (Liu et al., 1995, Seth 

et al., 2008, Yıldız et al., 2009), pesticides (Ateeq et al., 2002, Bolle et al., 2004) and aromatic 

hydrocarbons (Fiskesjö, 1981), as well as waste effluents from pollution sources (Odeigah et 

al., 1997, Rank and Nielsen, 1998, Grover and Kaur, 1999, Chandra et al., 2005, Bagatini et al., 

2009) and environmental samples, as water and soil samples, from polluted areas (Smaka-Kincl 
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et al., 1996, Kovalchuk et al., 1998, Cabrera and Rodriguez, 1999, Leme and Marin-Morales, 

2008, Souza et al., 2009) have been evaluated in the Allium cepa test. As earlier mentioned, 

PAHs need to be metabolically activated by cellular enzymes (cytochrome P450-dependent 

mixed function oxidases (MFO) system) before exerting their biological effect (Parkinson and 

Ogilvie, 2007), and the Allium cepa onion has mechanisms involving these enzymes (Fatima 

and Ahmad, 2006, Tabrez and Ahmad, 2013). 

 

Even though the Salmonella mutagenicity assay (Ames test) is the most commonly applied 

genotoxicity test for complex mixtures (Claxton et al., 1998), the Allium cepa test is sensitive 

to heavy metals (Fiskesjö, 1988), and there are many benefits using Allium cepa onions as test 

organisms; they are easy to store and handle, they have many and equivalent roots that do not 

branch, they mostly have good chromosome conditions, such as large and few chromosomes 

(2n=16), and they can be exposed directly to the test samples in the laboratory. In this short-

term in vivo model, the roots grow in direct contact with the substance of interest, and since the 

cells in the root tips are in constant mitotic division, the toxic effects and alterations occurring 

over a cell cycle can be identified (Tedesco and Laughinghouse IV, 2012). The results may 

serve as a warning to other biological systems, since the target is DNA, common to all 

organisms (Leme and Marin-Morales, 2009), and have shown to be comparable with results 

from other tests performed in mammalian systems (Grant, 1978, Fiskesjö, 1985, Rank and 

Nielsen, 1994, Chauhan et al., 1999). The test has been recognized as a sensitive, reliable, 

simple, cheap and rapid bioassay (Fiskesjö, 1985, Rank and Nielsen, 1993, Rank and Nielsen, 

1994, Rank, 2003). 

 

 

1.3 Complex mixtures 

 

A complex mixture is defined as a mixture that consists of tens, hundreds or thousands of 

chemicals, and of which the composition is qualitatively and quantitatively not fully known 

(Feron et al., 1998). 

  

1.3.1 Combined actions 

 

The combined action in complex mixtures is any outcome of exposure for two or more 

chemicals, and may be ‘no interaction’ (additivity), ‘more than additivity’ (synergism, 

potentiation), or ‘less than additivity’ (antagonism) (Könemann and Pieters, 1996).  
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If no interaction between components in a mixture occurs, the terms dose addition and response 

addition are used. Response additivity describes a situation where the chemicals in a mixture 

are functionally independent, and the grades of effect are adding up. This will only occur if the 

individual compounds exceed their own thresholds of tolerance (Könemann and Pieters, 1996). 

With dose additivity the chemicals all act on the same biological site, by the same mechanisms, 

and differ only in their potencies. The toxicity of these mixtures can be estimated by summing 

up the doses of the components after adjustment for their potency (Könemann and Pieters, 1996, 

Groten, 2000). No threshold exists for dose additivity (Könemann and Pieters, 1996). 

 

Interaction between chemicals may result in a stronger effect (synergism, potentiation) or 

weaker effect (antagonism) than expected on the basis of additivity (Groten, 2000, Feron and 

Groten, 2002). A synergistic effect occurs when the combined effect of two chemicals is larger 

than the sum of the effect of each individual chemical (Eaton and Gilbert, 2007). Potentiation, 

a form of synergism, occurs when a compound that is not toxic itself, increases the toxicity of 

another chemical on a particular organ or system (Eaton and Gilbert, 2007). Antagonism occurs 

when two chemicals inhibit the effect of each other, or when one chemical inhibits the effect of 

the other (Eaton and Gilbert, 2007). The interaction may be of physiochemical and/or biological 

nature, and might occur in the toxicokinetic phase (i.e. processes of uptake, distribution, 

metabolism and excretion) or/and in the toxicodynamic phase (i.e. effects of the chemicals on 

the receptor, cellular target or organ) (Groten, 2000, Groten et al., 2001). This makes it difficult 

to identify toxic compounds and their behavior in complex mixtures. 

 

1.3.2 Strategies for evaluations: experimental design 

 

It can be distinguished between whole-mixture analysis, also known as top-down approach, and 

component joint action or interaction analysis, also known as bottom-up approach (Feron and 

Groten, 2002). In the case of top-down approaches, test systems are exposed to the whole 

mixture and exposure-response studies are conducted to evaluate the nature and magnitude of 

the hazard associated with the mixture (Mauderly, 1993). The results give no information about 

the individual compounds or interactions between them (Eide, 1996, Groten et al., 2001).  

 

The bottom-up approach, however, makes it possible to analyze the effect of individual 

components or groups of components. By fractionation, the mixture is separated into individual 
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constituents or families of constituents, and further tested for biological activity (Mauderly, 

1993). Interactions may also be detected in a bottom-up approach by the use of synthetic 

mixtures. In these mixtures it will be necessary to vary the composition of the mixture and the 

relative amounts of the different compounds, and compare the effects of the mixture to the 

effects of the individual constituents. These studies usually begin with two agents and stepwise 

use increasingly complex combinations of agents to get an enhanced understanding of the 

causative agents, or mechanisms, of the effects of the complete mixture (Mauderly, 1993). 

 

In practice a bottom-up approach for studying the toxicology of complex mixtures is nearly 

impossible (Groten, 2000); however, combinations of top-down and bottom-up approaches are 

often used to study the toxicology of mixtures (Feron and Groten, 2002). 

 

 

1.4 Aims and hypotheses 

 

The aim of this master’s project is to study if the pyrolysis oils, generated from fast pyrolysis 

of three different wood feedstocks, exert any toxic and/or genotoxic effects in an Allium cepa 

chromosomal aberration assay. The following hypotheses are made: 

 

- The toxicity and the genotoxicity of the different oils will vary with the feedstock used 

for making the oils. 

- The toxicity and the genotoxicity of the different oils will increase with increasing 

concentrations of the oils.
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2  Materials and methods 
 

 

2.1 The test organism Allium cepa 

 

Small, non-treated bulbs (2.0-4.0 cm in diameter) of the common onion, Allium cepa (2n=16) 

were provided from the farm “Hveem Nord Østre”, Toten, Norway. The onions were harvested 

in the end of August/beginning of September, and needed a couple of months to gain ability to 

grow roots. Prior to initiating the test, the yellow shallows of the bulbs, and the dry, brownish 

bottom plate, were removed without destroying the root primordia. The peeled bulbs were put 

into fresh tap water during the cleaning procedure to protect the primordia from drying. Dried 

and mould-attached, as well as poorly growing, onions were discharged. The onions should not 

have started shooting of green leaves (Fiskesjö, 1985), since the energy used for this growth 

may compete with the downward root growth. During the experiment, the onions were kept in 

a dry, dark closet at room temperature.  

 

 

2.2 The pyrolysis oils 

 

The samples of pyrolysis oils used in this experiment were received from the Paper and Fibre 

Research Institute (PFI), and were generated from fast pyrolysis of different whole wood 

feedstocks (100% wood), spruce (Picea abies), beech (Fagus sylvatica) and poplar (Populus 

tremula). The samples from beech and spruce were made at the University of Aston (Celaya et 

al., 2012, Toven et al., 2013, Eide and Neverdal, 2014). The spruce-, beech- and poplar-oil were 

made in 2011, 2012 and 2009, respectively. The wood materials were collected from different 

countries; the spruce was from Norway, the poplar was from Canada and the beech was 

collected from the United Kingdom. The oils were kept in dark at 4°C.  

 

The oils were heated for one hour at 50°C to homogenize them, as advised by Gunhild Neverdal, 

Statoil (pers. comm.). Further, the oils were added 0.1% dimethyl sulfoxide (DMSO) and 

diluted with tap water prior to the A. cepa test, to gain seven different concentrations, namely: 

0.00001, 0.00004, 0.0001, 0.0004, 0.001, 0.004 and 0.04 (or 0.01) ml pyrolysis oil/ml of 

solution (tap water+DMSO). Picture 2.1 illustrates the appearance of a pyrolysis oil generated 

from poplar feedstock (Pic. 2.1a), and five poplar solutions of different concentrations (0.04, 

0.004, 0.0004, 0.00004 and 0.00001 ml oil/ml solution) (Pic. 2.1b). The DMSO of 0.1% was 

chosen as a dominance of literature demonstrate that DMSO concentrations <0.1% cause no 
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toxic effects in neither in vitro nor in vivo studies (Stratton, 1987, Blancaflor et al., 1998, 

Vijayan et al., 2004, Pagan et al., 2006, Iakimova et al., 2008, Quinn et al., 2008, Yuan et al., 

2012), and a quantity of <0.25% DMSO has been suggested to be appropriate in an earlier 

conducted Allium cepa study (Chauhan et al., 1999). Since the possible toxic and genotoxic 

effects, that may influence the interpretation of the results, are tested in the present master’s 

project using ‘blind’ solutions (tap water+DMSO; 0.1%), reliably observations of the effects of 

exposure are conducted. Water was gradually added to the oils, and the solutions were shaken 

thoroughly between each adding on a vortex mixer. None of the oils were phase separated. Only 

the water-soluble part of the oils was used for further exposure. The pH of all concentrations of 

the different oils was measured, and adjusted to approximately pH=7.5 every 24 hours.  

  

 

Picture 2.1. Pyrolysis oil generated from poplar feedstock and poplar-oil solutions Appearance of 

a pyrolysis oil generated from poplar feedstock (a), and five concentrations of the poplar-oil (0.04, 0.004, 

0.0004, 0.00004 and 0.00001 ml oil/ml solution (tap water+dimethyl sulfoxide, DMSO)) (b). 

 

2.2.1 Composition of the oils 

 

The oil samples obtained from poplar, beech and spruce feedstocks have been characterized at 

Statoil’s Center for Research, Development and Innovation, using different chemical 

“fingerprinting” techniques: positive and negative electrospray ionization-mass spectrometry 

(ESI-MS), Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass 

spectrometry (GC-MS) (Eide and Neverdal, 2014). The oils were analyzed after they were 

produced. The chemical information in the analyses is associated with molecular size and 

functional groups. Positive ESI-MS detects mostly polar compounds containing oxygen, 

nitrogen or sulfur, negative ESI-MS primarily detects organic acids, FTIR detects functional 

groups, and GC-MS detects hydrocarbons and other organic compounds sufficiently volatile 

for the GC (Eide and Neverdal, 2014). Chemical “fingerprinting” is used as an initial step to 
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provide a compositional overview, without identifying and quantifying every individual 

compound in the sample (Eide and Zahlsen, 2005, Eide et al., 2011).   

 

In the ESI-MS analysis, there is one distinct line per integer mass number (m/z). The lines 

represent those parent compounds (unfragmented) that have become ionized. Electrospray 

ionization typically occurs by the addition or loss of a proton, but sometimes positive ionization 

occurs by adducts. Non-polar hydrocarbons, such as paraffins and aromatics, are not ionizable 

and as a consequence not detectable in the ESI-MS analysis (Gellerstedt et al., 2008, Kleinert 

et al., 2011, Eide and Neverdal, 2014), and non-volatile, less-polar compounds may not be as 

efficiently ionized as others (Smith et al., 2012, Olcese et al., 2013). Thus, ESI-MS spectra 

represent detection of mostly polar, water-soluble components, as are present in the test 

solutions in this master’s project. Figure 2.1a shows a positive ESI-MS of the three pyrolysis 

oils generated from poplar, beech and spruce, and illustrates a quite similar pattern, with 

dominant masses in the range 100-900 m/z. The pyrolysis oils also show a somewhat similar 

pattern in the negative ESI-MS (Fig. 2.1b), with dominant masses in the range 100-700 m/z, 

especially at lower mass numbers. Even though the oils follow the same trend throughout both 

spectra, some differences are seen between the oils for the lines at different mass numbers. 

 

Fourier transform infrared spectroscopy allows analysis of groups of compounds, and do not 

allow identification of individual pyrolysis oil components (Eide and Zahlsen, 2005, Staš et al., 

2013). Characterization of the entire pyrolysis oil sample is conducted, regardless of the 

volatility of the compounds (Staš et al., 2013). The absorption bands that can be found in FTIR 

spectra of pyrolysis oils are presented in Table 2.1. Fourier transform infrared spectroscopy 

analysis of the three pyrolysis oils revealed strong similarities between the samples; however, 

some differences are seen at the different signal clusters (Fig. 2.1c). The first peak in the spectra 

contain the wavenumber interval 3600-3200 cm-1, and partly the interval 3100-3000 cm-1, and 

is corresponding to groups of compounds like phenols, alcohols, water, carboxylic acids, 

amides, amines and aromatics. Within this peak, the pyrolysis oil generated from poplar shows 

the highest absorbance, followed by beech and spruce, respectively. Within the wavenumber 

interval 1850-1580 cm-1, some higher absorbance is observed for the poplar- and beech-oil 

compared with the spruce-oil, and this interval corresponds to chemical compounds like 

aldehydes, ketones, carboxylic acids, esters and alkenes. The beech- and spruce-oil show the 

highest tendency of absorbance within the wavenumber interval 1550-950 cm-1 compared with 

the poplar-oil. This interval corresponds to classes of compounds like nitrogenous compounds, 
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aromatics, alkanes, alcohols and ethers, where the spruce-oil is partly dominating in the interval 

corresponding to alcohols and ethers. For the wavenumber interval 915-700 cm-1, 

corresponding to aromatics, the three oils have a somewhat similar absorbance. However, the 

spruce-oil is showing a weakly higher absorbance with wavenumbers close to 915 cm-1, and the 

poplar- and beech-oil are showing a weakly higher absorbance with numbers approaching 700 

cm-1. 

 

GC-MS can be used for the analysis of the chemical composition of the pyrolysis oils (Staš et 

al., 2013); however, chromatographic separation and curve deconvolution may become 

complicated with the complex oils. Additionally, large molecules (with boiling points of > 400-

450 °C) are difficult to analyze (Eide and Zahlsen, 2005). Gas chromatography is also unable 

to characterize the non-volatile compounds present, like sugar and lignin oligomers (Staš et al., 

2013). The GC-MS spectra of the three different pyrolysis oils used in this project (Fig. 2.1d) 

illustrate some similarity of pattern; however, the oils show differences in abundance at the 

different retention times. 
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Figure 2.1. Fingerprinting spectra. Positive electrospray ionization-mass spectrometry (ESI-MS) 

spectra (a), negative ESI-MS spectra (b), Fourier transform infrared spectroscopy (FTIR) spectra (c) and 

gas chromatography-mass spectrometry (GC-MS) chromatogram (d) of pyrolysis oils made from poplar 

(blue), spruce (red) and beech (green) feedstocks. New spectra were obtained from Eide and Neverdal 

(2014). 

 

Table 2.1: Absorption bands in FTIR spectra. Absorption bands in fourier transform infrared 

spectroscopy (FTIR) spectra of pyrolysis oils (Pütün et al., 1999, Lu et al., 2008, Staš et al., 2013).

Wavenumber (cm-1) Type of vibration Classes of compounds 
3600-3200 O-H, N-H stretching Phenols, alcohols, water, carboxylic acids, amides, amines 

3100-3000 C-H stretching Aromatics 

2980-2870 C-H stretching Alkanes 

2350-2000 C≡C stretching Alkynes, cyanides 

1850-1650 C=O stretching Aldehydes, ketones, carboxylic acids, esters 

1650-1580 C=C stretching Alkenes 

1550-1490 NO2 stretching, N-H bending, aromatic C=C stretching Nitrogenous compounds, aromatics 

1470-1350 C-H bending Alkanes 

1300-950 C-O stretching, O-H bending Alcohols, ethers 

915-650 C-H in-plane bending Aromatics 
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2.3 The Allium cepa test 

 

2.3.1 Root inhibition test 

 

The root inhibition test was carried out in collaboration with the MSc student Serina Beate 

Engebretsen (Engebretsen, 2014).  

 

2.3.1.1 Chemicals, equipment and consumption materials 

 

2.3.1.2 Method 
  

Prior to exposure, peeled bulbs of Allium cepa onions were placed in 150 ml glass beakers filled 

with tap water for 48 hours. Further, three replicates of the onions were placed in 50 ml glass 

test tubes with their respective treatment-solutions (Photo 2.2a); seven different pyrolysis oil 

concentrations, seven ‘blind’ solutions (tap water+DMSO), one for each concentration, a 

negative control (tap water of good quality) and a positive control (methyl methanesulfonate, 

MMS, 10 mg/l), for 72 hours. The ‘blind’ solutions were made in the same way as the oil-

solutions; however, the oils were replaced by tap water. Every 24 hours the test solutions were 

Chemicals Product number Producer 

Dimethyl sulfoxide (DMSO, ≥99.8%) 1.02950.0500 Merck 

Methyl methanesulfonate (MMS, 99%) M4016-25G Sigma 

   

Equipment and consumption material Product number Producer 

Blade handles, No. 3  Swann-Morton 

Carbon steel surgical blades, No. 11 0203 Swann-Morton 

Chemical thermometer, 100 °C 3201 Assistent 

Erlenmeyer flask, 250 ml 4980-250 Pyrex 

Glass beakers, 150 ml   

Glass bottle with top, 500 ml  Schott & Gen, Mainz 

Glass test tubes, 50 ml   

Measuring cylinder, 250 ml  Brand Blaubrand Eterna 

Pipette tips 

100µl 70.760.502 Sarstedt 

1000µl 70.762.100 Sarstedt 

2500µl   

5000µl   

Pipettes; 100µl, 1000µl, 2500µl, 5000µl  Eppendorf 

Plastic ruler, 15 cm 560 01-15 Staedtler 

Termostatic water bath D3165 Köttermann 

Vortex Vibrofix VF1 Electronic  Janke & Kunkel 

  Ika Labortechnik 
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replaced by fresh solutions and all the roots of each onion were measured with a plastic ruler 

(Photo 2.2b). The average root length was calculated for each onion. At the end of each 

experiment the appearance of the roots was observed and noted. The experiments were 

conducted separately for each treatment-group.  

 

For further discussion, all the different solutions tested (negative control, positive control, seven 

different concentrations of pyrolysis oils and ‘blind’ solutions) are referred to as “treatment-

groups”, while the oil-solutions alone are referred to as “exposure-groups”. 

  

Toxicity curves for each oil were generated and displayed as oil concentration against root 

length inhibition. Root length inhibition was measured as mean root length gained during the 

72 hours exposure period as a percentage of the root length of onions exposed to the lowest 

concentration of the respective oil. From the regression curve half maximal effective 

concentrations (EC50s), concentrations of the solutions that reduce the growth of the roots by 

half, were calculated using Sigma Plot (SYSTAT Software Inc.). 

 

 

Picture 2.2. Onion setup and root measurement. Setup (a) and measure of root lengths (b) of the 

onion Allium cepa.  

 

2.3.2 Pre-treatment and fixation 

 

2.3.2.1 Chemicals, equipment and consumption materials 
 

Chemicals Product number Producer 

8-hydroxyquinoline (C9H7NO) 1.07098.0250 Merck 

Acetic acid (CH3COOH, 100%) 1.00063.1000 Merck 

Ethanol absolute (CH3CH2OH, 96%) 20821.310 VWR International 
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Equipment and consumption material Product number Producer 

Glass pasteur pipettes, 150 mm 612-1701 VWR International 

Tweezers  Comaco 

Snap-cap vials   

 

2.3.2.2 Method 
 

After 72 hours of exposure, root tips (~ 1.0 cm in length) were pinched off and collected in 

snap-cap vials containing distilled water. The water was subsequently replaced by 8-

hydroxyquinoline (saturated solution in distilled water), and the vials were kept cold (4°C) in a 

refrigerator for five hours. After five hours, the root tips were washed three times with distilled 

water, before fixated in Carnoy’s solution (3:1 ethanol/acetic acid solution), and the vials were 

kept cold for 70 minutes. The ethanol/acetic acid solution was subsequently replaced by 70% 

ethanol and the vials were stored cold, not longer than two months, until microscope slide 

preparation was carried out.  

 

2.3.3 Microscope slide preparation 

 

2.3.3.1 Chemicals, equipment and consumption materials 

Chemicals Product number Producer 

Acetic acid (CH3COOH, 100%) 1.00063.1000 Merck 

Ethanol absolute (CH3CH2OH, 100%) 20821.310 VWR International 

Eukitt (C13H22O4)  O. Kindler GmbH 

Hydrochloric acid (HCl, 37%) 1.00317.1000 Merck 

Liquid nitrogen (N2, -196 °C)  AGA 

Orcein, Synthetic (C28H24N2O7) 07380 Sigma-Aldrich 

   

Equipment and consumption material Product number Producer 

Aluminium blocks   

Balance, type AE 260 S 2524 GK Mettler 

Blade handles, No. 3  Swann-Morton 

Blade handles, No. 4  Swann-Morton 

Carbon steel surgical blades, No. 11 0203 Swann-Morton 

Carbon steel surgical blades, No. 22 0208 Swann-Morton 

Cover slips, 18 x 18 mm VD1 1818 Y100A Knittel Gläser 

Cover slips, 24 x 32 mm BB024032A1 Menzel-Gläser 

Ethanol burner   

Filter paper circles, 70 mm 10300008 Schleicher & Schuell 

Glass pasteur pipettes, 150 mm 612-1701 VWR International 
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2.3.3.2 Method 
 

For every onion, 3 mm of a minimum of 3 root tips were cut off and placed in a snap-cap vial 

with 2 ml acetic acid (45%)/hydrochloric acid (HCl; 1 M) (9:1) and heated for 5 minutes at 

50°C. Thus, the root cells became fixed and macerated. Further, the acetic acid/HCl solution 

was immediately replaced by 2 ml 45% acetic acid in order to stop the reaction. The root tips 

were then placed on pre-labelled microscope slides. Two drops of filtrated 2% orcein solution 

were added to the root tips on each slide. The orcein solution was made from 2 g orcein solved 

in 100 ml acetic acid (60%), which was shaken and filtrated prior to use. Further, cover slips 

were placed on the root tips and the slides were placed above an ethanol burner for a couple of 

seconds. The slides were allowed to absorb stain for 5-10 minutes. Afterwards, the cells were 

spread evenly in a monolayer by gently pressing the cover slips down with the thumb and 

tapping with a pencil. Prepared slides were subsequently placed upon flat aluminium blocks 

precooled in liquid nitrogen (N2), and the cover slips were removed with a sharp scalpel. Once 

the cover slips were removed, the slides were immediately, whilst still frozen solid, placed into 

glass troughs with 70% ethanol for 5 seconds, 96% ethanol for 8 seconds, 100% ethanol for one 

minute and a second glass trough with 100% ethanol for further 5 minutes. The slides were then 

allowed to air dry for at least 30 minutes, before gluing on the final cover slips with eukitt.  

 

2.3.4 Microscopic examination 

 

2.3.4.1 Equipment and consumption material 
 

Equipment and consumption material Product number Producer 

Digital camera Coolpix 990 Nicon 

Hand tally counter FM40047 Tamaco 

Microscope ECLIPSE E400 Nicon 

 

Glass trough with cover, 9 x 7 x 6.5 cm 1205/1 Assistent 

Incubator  Julabo 

Measuring cylinder, 10 ml  Assistent 

Measuring cylinder, 100 ml  Hirschmann 

Microscope slides 631-1554 VWR International 

Pencil  120-2 Staedtler 

Snap-cap vials   

Tray of stainless steel, for 10 slides 1205/5 Assistent 

Tweezers   
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2.3.4.2 Method 
 

The microscopic analysis includes calculation of the mitotic index (MI) and scoring of 

chromosome aberrations in meta-, ana- and telophase cells. The initial screening analysis was 

examined in a microscope at 400x magnification. The mitotic index is a measure of the 

proliferation status of a cell population, and was found by counting all stages of mitotic cells 

(pro-, meta-, ana- and telophase) out of 1000 cells (Rank, 2003). MI is calculated as: 

  

𝑀𝐼 =
total number of dividing cells

total cell number
𝑥100 

 

At least 100 cells in meta-, ana- and telophase were scored for chromosomal aberrations for 

each individual onion, within each treatment-group. As many slides as needed to get over 

hundred cells in division for each individual, were made. One type of chromosomal aberration 

was only detected once for each aberrant cell. Where damage was observed, photos of the cell 

were taken for documentation (600x magnification), and the coordinates were noted. The cells 

uncertain to have a damage, were analyzed by two persons (Bingham, pers. comm.) before the 

final decision was made. Cells of bad quality, where it was difficult to judge whether a damage 

was present or not, were excluded from the results. Bad quality may, among others, be due to 

poorly staining of the cells, overlapping cells, or mechanical damages. The microscopic slides 

were coded and examined blindly, due to expectations that may affect the results.  

 

Identification character of a cell in metaphase was condensed chromosomes that laid in, or were 

heading to, the metaphase plate. Cells with chromosomes segregating to each pole, with a 

clearly “finger”-form, were detected as cells in anaphase. Cells assembled to each pole, without 

any chromosome “fingers”, were detected as cells in telophase. For the counting of the mitotic 

index, cells were classified as a cell in interphase if single chromosomes could not be detected. 

The other cells were classified as dividing cells.  
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2.4 Statistics 

 

2.4.1 Evaluation of toxicity 

 

Statistical differences among treatment-groups were tested using a two-sample Student t-test. 

The SPSS 21.0 statistical package was used for this analysis. For all the tests the level of 

significance was set at p<0.05. 

 

To conduct a statistical comparison between two different sets of toxicity data (T1 and T2), a 

null-hypothesis was assumed: H0: T1=T2. These evaluations were made under the assumptions 

that the experimental single value was normally distributed around the estimates, T1 and T2, and 

that a Student t-test could be used. If the probability was less than 5% (P(T1=T2)<0.05), the H0 

was rejected, and the anti-hypothesis H1: T1≠T2 was assumed; it is a statistical significant 

difference between T1 and T2. 

 

The conclusion of the statistical comparisons of T1 against T2 vary in strength after which 

degree of probability it can be claimed that H0 is correct. Dependent on the level of P, the 

conclusion can be graded as in Table 2.2, and will in the results be presented as the implicated 

symbols. 

 

Table 2.2: Two-tailed t-test of a null-hypothesis in the form H0: T1=T2. The conclusions are made by 

the combination of column ‘Δ’, the difference T1-T2 (bigger (+) or smaller (-) than zero), and ‘P’, the 

interval the levels of the probability P fall within (dependent on the t-value sizes and the number of 

degrees of freedom). P is the probability of H0 being fulfilled (5% significant level, two-tailed test). The 

symbols are the ones used for presentation of statistical conclusions. 

Δ P Conclusion Symbols 

-               P < 0.001 T1 is strongly significant less than T2 --- 

-  0.001 < P < 0.01 T1 is clearly significant less than T2 -- 

-    0.01 < P < 0.05 T1 is weakly significant less than T2 - 

+ and -    0.05 < P T1 and T2 is not significantly different is 

+    0.01 < P < 0.05 T1 is strongly significant larger than T2 + 

+  0.001 < P < 0.01 T1 is clearly significant larger than T2 ++ 

+               P < 0.001 T1 is weakly significant larger than T2 +++ 
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3 Results 
 

In this chapter, the results are presented in the same order as they were performed in the 

laboratory (Chapter 2). Firstly, the results from the root inhibition test are presented, showing 

dose-response curves and the associated half maximal effective concentrations. Results from 

the microscopic examination include scores of mitotic index, percentage of damaged dividing 

cells (displayed both in total and within the different phases of division), distribution of dividing 

phases and the specific chromosomal aberrations observed in the dividing cells. 

 

 

3.1 Root inhibition test 

 

The average length of roots was measured for three parallels of onions, exposed to seven 

different concentrations of pyrolysis oils (0.00001, 0.00004, 0.0001, 0.0004, 0.001, 0.004, and 

0.01 or 0.04 ml oil/ml solution), generated from fast pyrolysis of poplar (Fig. 3.1a), spruce (Fig. 

3.1b) and beech (Fig. 3.1c) feedstocks, as a percentage of the lowest concentration (0.00001 ml 

oil/ml solution). All the three dose-response curves had sigmoid shapes, with decreasing 

percentage of root length with increasing concentrations of the oils.  

  

The four lowest concentrations of the poplar-derived oil contribute to the plateau of its curve 

(~53-134%). Then the curve has a significant decrease (Appendix D) down to the 0.001-

concentration (~12-30%). The five lowest concentrations contribute to the plateau of the dose-

response curve of the spruce-derived oil (~44-167%), and then the curve decreases significantly 

(Appendix D) down to the 0.004-concentration (~3-13%). The dose-response curve of the 

beech-derived oil decreases gradually from the 0.00001-concentration (69-127%) to the 0.01-

concentration (9-17%). For all the three dose-response curves, the percentage of root length 

reaches the stationary phase at the 0.004-concentration. 

 

A dose-response curve for percentage of root length as a function of concentration is also 

generated for the roots exposed to the ‘blind’ test solutions (tap water+DMSO) (Fig. 3.1d). The 

curve does not have a significant decrease or increase with increasing “concentrations” 

(Appendix D). The root growth of onions exposed to MMS was not lower compared with 

negative control (Appendix A). 
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Dose-response curves obtained between the concentrations of the pyrolytic oils and relative 

Allium cepa root growth determined the EC50-values as 0.000605, 0.000364 and 0.001816 ml 

oil/ml solution for pyrolysis oils derived from poplar, beech and spruce, respectively (Table 

3.1). 

 

Raw data for the root lengths after exposure to different treatments are presented in Appendix 

A. 

 

Figure 3.1. Dose-response curves. Mean values for root length of onions (Allium cepa) as a function 

of concentrations of the tested pyrolysis oils (ml pyrolysis oil/ml solution (tap water+dimethyl sulfoxide, 

DMSO)) made from fast pyrolysis of poplar (a), beech (b), and spruce (c) feedstocks, and a ‘blind’ 

control (tap water+DMSO) (d) after 72 hours of exposure. The data are given as percentage (%) of the 

lowest concentration of the pyrolysis oils, and as root growth (cm) for the ‘blind’ solutions. Three 

parallels of onions and a regression line are included for each treatment concentration. Each dot 

represent one individual, and the lines are sigmoid four parametric curves, R2=0.85 (a), 0.83 (b), 0.70 

(c) and -6.61*10-13 (d). 
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Table 3.1: EC50-values. Toxicity of the tested pyrolysis oils, made from poplar, beech or spruce 

feedstocks, expressed as the half maximal effective concentration (EC50), which is the effect 

concentration for 50% inhibition of the root length.  

Pyrolysis oil feedstock EC50 (ml oil/ml solution) 

Poplar 0.000605 

Beech 0.000364 

Spruce 0.001816 

 

The roots of the onions exposed to different pyrolysis oils for 72 hours showed no apparent 

difference in quality when exposed to the same concentrations; however, between different 

concentrations the appearance differed. The roots became gradually more brown, viscous and 

soft with increasing concentrations (Picture 3.1). The colour change was more apparent at the 

root tips, except at the highest concentrations (0.004-0.04 ml oil/ml solution), where the colour 

was evenly brown throughout the whole root. Additionally, the roots exposed to the highest 

concentrations were vulnerable, fragile and more easily damaged. Roots exposed to negative 

control, positive control, ‘blind’ solutions and the two lowest concentrations of the oils 

(0.00001-0.00004 ml oil/ml solution) for 72 hours, on the other hand, were fresh, stiff, light, 

and easy to handle.  

 

 

Picture 3.1. Appearance of roots of the onion Allium cepa after a 72 hour exposure to four different 

concentrations (0.00004 (a), 0.0004 (b), 0.004 (c) and 0.04 (d) ml oil/ml solution) of a pyrolysis oil 

generated from poplar feedstock.  

 

 

3.2 Mitotic index (MI) 

 

The mitotic index was determined by examination on microscopic slides prepared from roots 

of triplicates of onions exposed 72 hours to three different concentrations (0.00004, 0.0004 and 

0.001 ml oil/ml solution) of pyrolysis oils produced from poplar (Fig. 3.2a), beech (Fig. 3.2b) 

and spruce (Fig. 3.2c) feedstocks. The mitotic index of a ‘blind’ solution was included for each 

concentration (Fig. 3.2d), as well as for triplicates of onions exposed to tap water (negative 
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control) and methyl methanesulfonate (positive control) to compare with the MI of the 

exposure-groups.  

 

The MI of the different concentrations of pyrolysis oils, as well as the MI of MMS, were weakly 

significant lower than the MI of the negative control. There are no clear decrease in MI with 

increasing concentrations of the different pyrolysis oils; however, the mitotic index seem to be 

decreasing slightly with higher concentrations. The MI of the ‘blind’ solutions was not 

significantly different from the MI of the negative control. 

 

Values of the mitotic index are presented in Appendix B. 
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d)  

 

Figure 3.2. Mitotic index (MI). MI values of root tip meristems of Allium cepa onions exposed 72 

hours to pyrolysis oils generated from fast pyrolysis of poplar (a), beech (b) or spruce (c) feedstocks at 

different concentrations (0.00004, 0.0004 and 0.001 ml oil/ml solution (tap water+dimethyl sulfoxide, 

DMSO)). MI values for onion roots exposed to a ‘blind’ solution (tap water+DMSO) for each 

concentration (0.00004, 0.0004 and 0.001 ml/ml, respectively) were inluded, as well as values for 

negative control (tap water)- and positive control (methyl methanesulfonate, MMS)-exposed onion roots 

for comparison. Three parallels of onions are included for each treatment, one column representing one 

individual. Different symbols denote the means of the different treatment-groups that are not 

significantly different (ns) or significantly different (weakly (-/+), clearly (--/++) or strongly (---/+++)) 

from the mean of negative control using a two-sample (independent group) t-test (p<0.05). 

 

 

3.3 Damaged dividing cells 

 

3.3.1 Frequency of damaged dividing cells 

 

Damaged Allium cepa root cells in division (meta-, ana- or telophase) as percentage of total 

dividing cells were determined from the microscopic slides of each treatment-group. Onions 

exposed to pyrolysis oil from poplar feedstock had a clearly significant higher percentage of 

damaged cells compared with those exposed to negative control, and had apparent increases of 

damage with increasing concentrations (Fig. 3.3a). 

 

Onions exposed to pyrolysis oil from beech feedstock had a similar trend as for the ones 

exposed to the poplar-oil, with clearly significant and concentration-dependent increases in 

frequency of damaged cells compared with negative control (Fig. 3.3b). However, the 

percentage of damaged cells was slightly lower for the ones exposed to the beech-oil within all 

the three concentrations. The percentage of damage for onions exposed to the two highest 

concentrations of the poplar- and beech-oil was not significantly different from positive control 

(Appendix D).  
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The onions exposed to the pyrolysis oil from spruce feedstock showed a significantly higher 

frequency of damage for all the concentrations compared with negative control (Fig. 3.3c). 

However, no apparent differences in percentage of damaged cells with increasing 

concentrations were observed, and the percentage for all the concentrations was clearly 

significant different from positive control (Appendix D). Moreover, the onions exposed to the 

lowest concentration of this oil had a similar percentage of damage as for the two other oils, 

while the onions exposed to the two highest concentrations had a percentage of damage that 

was clearly lower compared with the other oils.  

 

The percentage of damage in onions exposed to the ‘blind’ solutions was not significantly 

different from the once exposed to negative control (Fig. 3.3d), and positive control was clearly 

significant different from negative control.  

 

Raw data for the total number of damaged and normal dividing cells for each of the treatment-

groups are presented in Appendix B. 
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c)  
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Figure 3.3. Damaged dividing cells. Damaged dividing cells observed in meta-, ana- and telophase of 

root meristems of Allium cepa onions after 72 hours exposure to pyrolysis oils generated from fast 

pyrolysis of poplar (a), beech (b) or spruce (c) feedstocks at three different concentrations (0.00004, 

0.0004 and 0.001 ml oil/ml solution (tap water+dimethyl sulfoxide, DMSO)). The data are given as 

percentage (%) of total dividing cells. The percentage of damaged cells for onions exposed to a ‘blind’ 

solution (tap water+DMSO) for each concentration (0.00004, 0.0004 and 0.001 ml/ml, respectively) was 

also included, as well as the percentage for negative control (tap water)- and positive control (methyl 

methanesulfonate, MMS)-exposed onion roots for comparison. Three parallels of onions are included 

for each treatment, one column representing one individual. Different symbols denote the means of the 

different treatment-groups that are not significantly different (ns) or significantly different (weakly (-

/+), clearly (--/++) or strongly (---/+++)) from the mean of negative control using a two-sample 

(independent group) t-test (p<0.05). 

 

3.3.2 Distribution of dividing phases 

 

The distribution of metaphase, anaphase and telophase was examined on the microscopic slides 

made from Allium cepa roots exposed to the different treatment solutions (negative control, 

different concentrations of pyrolysis oils generated from poplar, beech and spruce feedstocks, 

a ‘blind’ control for each concentration and a positive control) (Fig. 3.4). Three onions were 

pooled for each treatment-group, except for the ‘blind’ solutions (one onion per concentration). 

The distribution of phases from onions exposed to all the different treatments showed a similar 

pattern, with metaphase, and partially telophase, being the dominant phases (~42-59 and 30-

44%, respectively), while the anaphase contributed to a small part of the total phases (~7-16%). 
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Raw data for the number of cells in the different division stages are presented in Appendix B. 

 

 

Figure 3.4. Distribution of dividing phases. The distribution of dividing phases (meta-, ana- and 

telophase) observed in root tip meristems of Allium cepa onions after 72 hours exposure to different 

treatment-groups; a negative control (tap water), pyrolysis oils generated from fast pyrolysis of poplar, 

beech and spruce feedstocks at different concentrations (0.00004, 0.0004, 0.001 ml oil/ml solution (tap 

water+dimethyl sulfoxide, DMSO)), a ‘blind’ solution (tap water+DMSO) for each concentration, and 

a positive control (methyl methanesulfonate, MMS), respectively. Results from three parallels of onions 

are pooled for each treatment-group, except for the ‘blind’ treatments (one onion per concentration). 

 

3.3.3 Frequency of damaged dividing cells within the dividing phases 

 

The percentage of damaged dividing cells in meta-, ana- and telophase was analyzed for 

triplicates of onions exposed to pyrolysis oils from poplar, beech and spruce feedstock of 

different concentrations, namely 0.00004, 0.0004 and 0.001 ml oil/ml solution. A ‘blind’ 

solution for each concentration was included (one onion for each concentration), as well as 

triplicates of onions exposed to a negative control (tap water) and a positive control (MMS) for 

comparison.  

  

3.3.3.1 Metaphase 
 

The frequency of damaged cells in metaphase of onions exposed to all the three types of 

pyrolysis oils was apparently higher than negative control and lower than positive control, and 

the positive control had a clearly significant higher frequency compared with negative control.  
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The frequency of damaged cells in metaphase for the onions exposed to pyrolysis oil from 

poplar feedstock was approximately similar for the two lowest concentrations (weakly 

significant higher compared with negative control), and then had a slight increase to the highest 

concentration (clearly significant higher compared with the negative control and almost as high 

as for the positive control) (Fig. 3.5a).  

 

The percentage of damaged cells in metaphase for the onions exposed to the pyrolysis oil from 

beech feedstock seemed to be higher for the lowest concentration compared with negative 

control, although not significantly (Fig. 3.5b). The percentage of damage for onions exposed to 

the two highest concentrations was clearly significant higher than negative control and almost 

as high as positive control. 

 

The onions exposed to the pyrolysis oil made from spruce feedstock showed a somewhat 

different pattern (Fig. 3.5c). The ones exposed to the lowest and highest concentrations showed 

a weakly significant higher frequency of damaged cells in metaphase compared with negative 

control, while the ones exposed to the 0.0004-concentration, although appearing to be higher, 

showed no significantly differences compared with negative control. 

 

The percentage of damaged cells in metaphase for the onions exposed to the different 

concentrations of ‘blind’ solutions was not significantly higher compared with negative control 

(Fig. 3.5d). 
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Figure 3.5. Damaged dividing cells in metaphase. Damaged dividing cells observed in metaphase of 

root meristems of Allium cepa onions after 72 hours exposure to pyrolysis oils generated from fast 

pyrolysis of poplar (a), beech (b) or spruce (c) feedstocks at three different concentrations (0.00004, 

0.0004 and 0.001 ml oil/ml solution (tap water+dimethyl sulfoxide, DMSO)). The data are given as 

percentage (%) of total dividing cells in metaphase. The percentage of damaged cells for onions exposed 

to a ‘blind’ solution (tap water+DMSO) for each concentration (0.00004, 0.0004 and 0.001 ml/ml, 

respectively) was also included, as well as the percentage for negative control (tap water)- and positive 

control (methyl methanesulfonate, MMS)-exposed onion roots for comparison. Three parallels of onions 

are included for each treatment, one column representing one individual. Different symbols denote the 

means of the different treatment-groups that are not significantly different (ns) or significantly different 

(weakly (-/+), clearly (--/++) or strongly (---/+++)) from the mean of negative control using a two-

sample (independent group) t-test (p<0.05). 
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3.3.3.2 Anaphase  
 

All the onions exposed to different pyrolysis oils and concentrations of oils had an apparently 

higher percentage of damaged cells in anaphase compared with negative control. However, for 

all the oils, no pattern of increase in damage was found with increasing concentrations. A 

relatively high variation in percentage of damaged cells in anaphase was found between the 

onions within each treatment-group compared with the other cell-division phases. The positive 

control had a clearly significant higher frequency compared with negative control. 

 

The percentage of damaged cells in anaphase was clearly significant higher for the onions 

exposed to the lowest and the highest concentrations of poplar-oil compared with negative 

control (Fig. 3.6a). The onions exposed to the 0.0004-concentration seemed to have a higher 

frequency of damaged cells in anaphase compared with negative control, although not 

significantly due to a high variation between the onions. 

 

For the onions exposed to the pyrolysis oil from beech feedstock, the lowest and highest 

concentrations had a clearly significant higher percentage of damaged cells in anaphase, and 

the ones exposed to 0.0004-concentration had a weakly significant higher percentage, compared 

with negative control (Fig. 3.6b). 

 

For the onions exposed to the spruce-oil, the percentage of damaged cells in anaphase for the 

lowest concentration was strongly significant higher than for the negative control-group (Fig. 

3.6c). The onions exposed to the two highest concentrations, however, had a clearly significant 

higher percentage compared with negative control. 

 

The onions exposed to a ‘blind’ solution of each concentration showed a weakly significant 

higher percentage of damaged cells in anaphase compared with negative control, with a 

decreasing trend of damage with increasing “concentrations” (Fig. 3.6d). 
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Figure 3.6. Damaged dividing cells in anaphase. Damaged dividing cells observed in anaphase of root 

meristems of Allium cepa onions after 72 hours exposure to pyrolysis oils generated from fast pyrolysis 

of poplar (a), beech (b) or spruce (c) feedstocks at three different concentrations (0.00004, 0.0004 and 

0.001 ml oil/ml solution (tap water+dimethyl sulfoxide, DMSO)). The data are given as percentage (%) 

of total dividing cells in anaphase. The percentage of damaged cells for onions exposed to a ‘blind’ 

solution (tap water+DMSO) for each concentration (0.00004, 0.0004 and 0.001 ml/ml, respectively) was 

also included, as well as the percentage for negative control (tap water)- and positive control (methyl 
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methanesulfonate, MMS)-exposed onion roots for comparison. Three parallels of onions are included 

for each treatment, one column representing one individual. Different symbols denote the means of the 

different treatment-groups that are not significantly different (ns) or significantly different (weakly (-

/+), clearly (--/++) or strongly (---/+++)) from the mean of negative control using a two-sample 

(independent group) t-test (p<0.05). 

 

3.3.3.3 Telophase 
 

The percentage of damaged cells in telophase was relatively low compared with the other cell-

division phases. The percentage of damage for the positive control showed a high variation 

between the three onions, and was weakly significant higher compared with negative control. 

 

The percentage of damaged cells in telophase of onions exposed to pyrolysis oil from poplar 

feedstock was weakly significant higher for the lowest and the highest concentration, and was 

clearly significant higher for the 0.0004-concentration, compared with negative control (Fig. 

3.7a). The variation in percentage of damaged cells was relatively high for onions exposed to 

the highest concentration. 

 

For the onions exposed to the pyrolysis oil from beech feedstock, the percentage of damaged 

cells in telophase was not significant higher, clearly significant higher and weakly significant 

higher for the lowest, middle and highest concentrations, respectively, compared with negative 

control (Fig. 3.7b). 

 

For all the concentrations, the percentage of damaged cells in telophase for onions exposed to 

spruce-oil was not significantly higher compared with negative control, although it appeared 

higher for the ones exposed to the two highest concentrations compared with the lowest 

concentration (Fig. 3.7c). 

 

For the onions exposed to ‘blind’ solutions of different concentrations, the percentage of 

damaged cells in telophase was not significantly higher compared with negative control (Fig. 

3.7d). 
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Figure 3.7. Damaged dividing cells in telophase. Damaged dividing cells observed in telophase of 

root meristems of Allium cepa onions after 72 hours exposure to pyrolysis oils generated from fast 

pyrolysis of poplar (a), beech (b) or spruce (c) feedstocks at three different concentrations (0.00004, 

0.0004 and 0.001 ml oil/ml solution (tap water+dimethyl sulfoxide, DMSO)). The data are given as 

percentage (%) of total dividing cells in telophase. The percentage of damaged cells for onions exposed 

to a ‘blind’ solution (tap water+DMSO) for each concentration (0.00004, 0.0004 and 0.001 ml/ml, 

respectively) was also included, as well as the percentage for negative control (tap water)- and positive 
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control (methyl methanesulfonate, MMS)-exposed onion roots for comparison. Three parallels of onions 

are included for each treatment, one column representing one individual. Different symbols denote the 

means of the different treatment-groups that are not significantly different (ns) or significantly different 

(weakly (-/+), clearly (--/++) or strongly (---/+++)) from the mean of negative control using a two-

sample (independent group) t-test (p<0.05). 

 

3.3.4 Specific chromosomal aberrations observed in dividing cells 

 

The mean number of different chromosomal aberrations (bridges, c-metaphases, disturbed 

metaphases, fragments, laggards, polyploids, star anaphases stickiness and vagrants), as 

percentage of total dividing cells, was measured from triplicates of onions exposed to pyrolysis 

oils generated from fast pyrolysis of poplar, beech or spruce feedstocks at three different 

concentrations (0.00004, 0.0004 and 0.001 ml oil/ml solution) (Table 3.2). The percentage of 

aberrations for onions exposed to a ‘blind’ solution of each concentration (one onion per 

concentration) was also included, as well as the mean percentage of triplicates of onions 

exposed to negative control (tap water) and to positive control (MMS) for comparison. 

 

The most dominant aberration in all treatment-groups was disturbed metaphases. Other 

dominant damages were vagrants, laggards and c-metaphases. All these types of aberrations 

had a clearly higher frequency for the onions exposed to their positive control compared with 

their respective negative control. Most of the frequency-values of these aberrations for the 

exposure-groups of onions lay within the values of their respective negative- and positive 

control-group. Fragments, polyploidy and star anaphases contributed to a very low frequency 

of the total number of dividing cells for all of the treatment-groups. 

 

For onions exposed to the pyrolysis oil generated from poplar feedstock, the frequency of 

disturbed metaphases, fragments, laggards, vagrants and polyploidy was increased with higher 

concentrations. The poplar-oil did not induce a significantly increase in frequency of fragments 

or c-metaphases compared with negative control (Appendix D). The frequency of bridges was 

only significantly higher for onions exposed to the lowest concentration of poplar-oil compared 

with negative control (Appendix D). Within the disturbed metaphase-, laggard-, and vagrant-

types of aberrations, the poplar-oil induced an apparent higher frequency compared with 

negative control, and the frequency of vagrants was apparently higher for the onions exposed 

to the poplar-oil compared with the frequency for the onions exposed to the two other oils. The 

frequency of stickiness was significantly higher for onions exposed to all the concentrations of 

the poplar-oil compared with negative control (Appendix D). A few polyploid cells and cells 
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with star anaphases were found for onions exposed to the highest and lowest concentration of 

poplar-oil. 

 

The frequency of fragments, laggards, vagrants, polyploidy and stickiness was increased with 

increasing concentrations of the pyrolysis oil generated from beech feedstock. For the bridge- 

and fragment-types of aberrations, the beech-oil did not induce a significantly higher frequency 

compared with negative control (Appendix D). The onions exposed to the beech-oil appeared 

to have a higher frequency of c-metaphases, disturbed metaphases and laggards compared with 

negative control, although not significantly for most of the concentrations (Appendix D). The 

frequency of vagrants was significantly higher for the onions exposed to all the concentrations 

of beech-oil compared with negative control (Appendix D). A few polyploid cells were found 

in onions exposed to the two highest concentrations of the beech-oil. No star-anaphases were 

detected. Stickiness was found at a higher frequency for onions exposed to the two highest 

concentrations of beech-oil compared with negative control, although only significantly for the 

ones exposed to the 0.0004-concentration (Appendix D). 

 

Only the frequency of polyploidy and star anaphases was increased with increasing 

concentrations for the onions exposed to the pyrolysis oil generated from spruce feedstock. The 

frequency of bridges and fragments was not higher for onions exposed to spruce-oil compared 

with the ones exposed to negative control. The frequency of c-metaphases was apparently 

higher only for onions exposed to the lowest concentration of the spruce-oil compared with 

negative control. Disturbed metaphases seemed to exhibit a higher frequency in onions exposed 

to the lowest and highest concentration of the spruce-oil compared with negative control; 

however, the onions exposed to the two highest concentrations had a lower frequency compared 

with the respective ones from the poplar- and beech-oil. The frequency of laggards was 

significantly higher for the onions exposed to the two highest concentrations of the spruce-oil 

compared with negative control (Appendix D); however, it was apparently lower compared 

with the respective ones from the two other oils. Within the vagrant-type of aberration, the 

onions exposed to the two highest concentrations of spruce-oil had a significantly higher 

frequency compared with negative control (Appendix D). Some polyploidy and star anaphases 

were found for onions exposed to the two highest concentrations of the spruce-oil. No apparent 

increases were found in frequency of stickiness for onions exposed to the spruce-oil compared 

with negative control, except for a weakly significant increase for the 0.0004-concentration 

(Appendix D).  
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No clear pattern of increasing frequency within the types of chromosomal aberrations with 

increasing “concentrations” of the ‘blind’ solutions was observed, except for the c-metaphase. 

The onion roots exposed to ‘blind’ solutions had no significant higher frequency of 

chromosomal aberrations compared with those exposed to negative control, except for a weakly 

significant larger frequency for the vagrant aberration type (Appendix D). 

   

The different types and numbers of aberrations detected within each treatment-group, and 

pictures of different types of aberrations observed during the microscopic examination period 

of this master’s project are presented in Appendix C and Appendix E, respectively. 
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Table 3.2: Specific chromosomal aberrations. Mean (±SEM) number of specific chromosomal aberrations (CAs) as a percentage (%) of total dividing cells 

found in root meristems of Allium cepa onions after 72 hours exposure to pyrolysis oils generated from fast pyrolysis of poplar, beech and spruce feedstocks at 

different concentrations (0.00004, 0.0004, 0.001 ml oil/ml solution (tap water+dimethyl sulfoxide, DMSO)). The percentage in onions exposed to a ‘blind’ 

solution (tap water+DMSO) for each concentration (0.00004, 0.0004 and 0.001 ml/ml, respectively) was also included, as well as the percentage for negative 

control (tap water)- and positive control (methyl methanesulfonate, MMS)-exposed inion roots for comparison. Results from three parallels of onions are pooled 

for each treatment-group, except for the ‘blind’ treatment (one onion per treatment).  

Treatment Conc. 
Specific aberrations as % of total dividing cells 

B. C-M. D.M. F. L. P. Star S. V. 

Poplar 

0.00004 9.61 (±0.11) 4.09 (±1.57) 19.87 (±3.22) 2.17 (±0.90) 8.47 (±1.30) 0.00 (±0.00) 0.32 (±0.32) 8.11 (±0.98) 15.88 (±4.50) 

0.0004 2.69 (±0.39) 3.40 (±0.76) 25.22 (±6.07) 2.53 (±1.22) 12.67 (±0.82) 0.00 (±0.00) 0.00 (±0.00) 10.37 (±1.83) 16.20 (±2.73) 

0.001 6.69 (±2.44) 4.40 (±2.71) 28.14 (±8.58) 2.88 (±1.12) 15.64 (±6.36) 0.62 (±0.62) 0.00 (±0.00) 9.56 (±2.05) 23.30 (±6.60) 

Beech 

0.00004 6.69 (±1.36) 8.02 (±1.55) 21.84 (±2.95) 1.83 (±0.08) 6.33 (±0.62) 0.00 (±0.00) 0.00 (±0.00) 0.28 (±0.28) 9.89 (±1.69) 

0.0004 4.00 (±1.57) 15.04 (±3.32) 27.18 (±4.55) 2.96 (±0.57) 11.49 (±4.11) 0.52 (±0.52) 0.00 (±0.00) 3.74 (±0.74) 11.88 (±0.92) 

0.001 5.22 (±2.15) 9.47 (±2.88) 26.40 (±5.43) 3.63 (±0.57) 15.82 (±3.27) 1.91 (±1.05) 0.00 (±0.00) 5.17 (±1.93) 16.67 (±3.67) 

Spruce 

0.00004 4.58 (±2.08) 16.13 (±2.58) 20.07 (±1.14) 4.00 (±0.73) 6.37 (±2.26) 0.00 (±0.00) 0.00 (±0.00) 0.92 (±0.58) 7.77 (±1.92) 

0.0004 4.57 (±2.28) 5.39 (±1.02) 12.44 (±0.87) 1.59 (±0.37) 10.16 (±1.45) 0.33 (±0.33) 0.28 (±0.28) 4.89 (±1.49) 15.79 (±1.22) 

0.001 1.75 (±0.09) 6.62 (±0.69) 19.25 (±1.02) 2.24 (±1.17) 6.66 (±1.07) 3.16 (±0.39) 0.57 (±0.29) 2.32 (±1.32) 12.76 (±0.39) 

Blind 

0.00004 7.38 1.64 13.11 0.82 4.10 2.46 1.64 1.64 9.84 

0.0004 8.82 6.86 13.73 1.96 5.88 0.00 0.00 0.00 10.78 

0.001 4.67 12.15 9.35 0.93 2.80 0.00 0.00 2.80 5.61 

Neg. ctr.   4.32 (±0.40) 5.68 (±2.84) 15.08 (±3.78) 2.70 (±0.98) 2.54 (±0.22) 0.31 (±0.31) 0.00 (±0.00) 0.54 (±0.28) 3.00 (±0.59) 

Pos. ctr.   11.63 (±3.40) 13.45 (±2.96) 36.73 (±3.57) 2.40 (±1.27) 15.94 (±2.37) 0.29 (±0.29) 1.29 (±0.64) 1.54 (±0.29) 20.50 (±3.29) 

 

B., bridge; C-M., c-metaphase; D.M., disturbed metaphase; F., fragment; L., laggard; V., vagrant; P., polyploidy; Star, star anaphase; S., stickiness 
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4 Discussion 
 

In this chapter the results will be discussed in the same order as presented in Chapter 3. Firstly, 

evaluation and possible explanations of the different results will be conducted, followed by 

relating the trends of (geno)toxic damage to the composition of the pyrolysis oils. Further, 

optimalization and evaluation of the method will be conducted in the same order as presented 

in Chapter 2. Finally, the relevance of testing pyrolysis oils in an Allium cepa test will be 

evaluated. 

 

 

4.1 Discussion of results  

 

4.1.1 Root inhibition test 

 

As expected, all the dose-response curves for the onions exposed to the three different pyrolysis 

oils, generated from poplar, beech and spruce feedstocks, showed a sigmoid shape, with a 

decreasing percentage of root length with increasing concentrations, indicating the presence of 

toxic substances in the oils having sub lethal effects on plants. Sustained root growth is 

regulated by cell division in the division zone of the apical meristem and by cell elongation in 

the elongation zone (Obroucheva, 2008, Shishkova et al., 2008). These events occur 

simultaneously in the root tips of Allium cepa onions. Thus, chemical agents affecting any part 

of these processes, like metabolism, protein/DNA/RNA synthesis, spindle functionality etc., 

may inhibit root growth. Since the pathways leading to root growth inhibition are many, it is 

difficult to discover which mechanisms the oils exhibit that are causing the toxic effects on the 

roots. 

 

Supporting our results, Pekol et al. (2012) also detected reduction in growth of A. cepa roots 

with increasing concentrations of liquid products obtained from the pyrolysis of hazelnut shell. 

Other studies have also indicated toxic effects of different pyrolysis oils, like decreased survival 

(Chatterjee et al., 2013) and immobilization of living organisms (Pimenta et al., 2000, Park et 

al., 2008). It should be noted, however, that there are conflicting reports on the toxicity of 

pyrolysis oils. Within the Biotox project, ecotoxic effects, like inhibition of growth and 

immobilization, were tested in algal cultures and in Daphnia magna, respectively, after 

exposure of different pyrolysis oils (Girard et al., 2005). Twenty-one pyrolysis oils were tested, 

19 from fast pyrolysis and two from slow pyrolysis. Twelve pyrolysis oils showed no ecotoxic 
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effects, eight pyrolysis oils showed very weak ecotoxic effects, and one pyrolysis oil showed 

ecotoxic effects (slow pyrolysis sample). The variable results from different studies are 

probably due to the use of different pyrolysis oils derived from different pyrolysis processes 

and biomass feedstock, resulting in different chemical compositions, as well as the use of 

different toxicity tests and concentrations. 

 

The sigmoid shapes of the dose-response curves for the three oils were different from each 

other, which indicates a somewhat different toxicity of the oils. Both the poplar- and the spruce-

oil showed steep decreases in percentage of root length between two concentrations (0.0004 to 

0.001, and 0.001 to 0.004 ml oil/ml solution, respectively), indicating that the threshold for 

toxic effect of these oils lay in-between these concentrations. The dose-response curve of the 

beech-oil, however, showed a gradually decreasing pattern, which corresponds to a gradually 

increase in toxicity between all the concentrations. This indicates that the beech-oil already has 

reached its threshold for toxicity at the lowest concentration (0.00001 ml oil/ml solution), or 

that the threshold is absent. For all the oils, a threshold for reaching the maximum response is 

obtained at the 0.004-concentration, and from here, no additional decrease in percentage of root 

length (increase in toxicity) is observed with increasing concentrations. 

 

The root growth of onions exposed to the ‘blind’ solutions showed no significant difference 

with increased “concentrations”, which suggests that the DMSO present in the oil-solutions 

does not affect the interpretation of the comparisons between oils and concentrations of oils, 

even if they induced a slight root growth inhibition. The root growth of onions exposed to MMS 

was not inhibited, as might be expected since MMS clearly disturbs proliferation in the root 

meristem (Section 4.1.2). This may be due to the possible continuing of roots to grow due to 

elongation of pre-existing cells, and emphasize that MMS can not be used as a positive control 

when detecting toxic effects in a root inhibition test. 

  

Toxicity expressed as the half maximal effective concentration, calculated from the dose-

response curves obtained for each of the pyrolytic oils, seemed to be lowest for the spruce 

derived oil, with a concentration of 0.001816 ml oil/ml solution needed to reduce the relative 

root growth by 50%. The poplar- and beech-oil seem to exert more toxicity, with concentrations 

of 0.000605 and 0.000364 ml oil/ml solution, respectively, needed to reduce the relative root 

growth by half. Caution should be taken, however, when comparing the EC50 values between 

the oils. The curves for the poplar- and spruce-oil have a steep decrease only between two of 
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the measured concentrations, and thus, increasing concentrations in-between these two 

concentrations cause a relatively great increase in inhibition of the root growth compared with 

the beech-oil that exerts a gradually increase between all the concentrations. 

 

The appearance of the roots did vary between different concentrations of the oils, with changes 

from fresh, stiff and light roots to a gradually higher degree of brown and soft roots with higher 

concentrations. At treatments causing high toxicity, the roots will be softer, slacken and die, 

and the root tips may turn brownish due to toxic effects causing cell death (Fiskesjö, 1985). 

This, along with the root inhibition results, support a higher toxicity with increasing 

concentrations of the oils. The evenly brown colour throughout the whole root at the highest 

concentrations of the oils (0.004-0.04 ml oil/ml solution) may indicate that all the cells in these 

roots were dead, and this assumption corresponds well with the root inhibition results, showing 

no relative root growth at concentrations above 0.004 ml oil/ml solution. 

 

4.1.2 Mitotic index (MI) 

 

As expected, all of the different types and concentrations of pyrolytic liquid exposures resulted 

in a reduction of the mitotic index in the Allium cepa root tips compared with negative control. 

Inhibition of mitotic activity can be used as a measure of cytotoxicity (Linnainmaa et al., 1978, 

Smaka-Kincl et al., 1996, Leme and Marin-Morales, 2009), due to the cytotoxic effects on cell 

function resulting in an inability of cells to proliferate (Park et al., 2008). Hence, these results 

illustrate a cytotoxic potential of fast pyrolysis oils derived from poplar, beech and spruce 

feedstocks. Cytotoxic effects may be considered as an early indication of cellular damage, 

because these disturbances frequently appear long before genotoxic effects manifest, or even in 

the absence of the latter (Park et al., 2008). 

 

A mitotic index significantly lower than negative control may indicate alterations, deriving 

from the chemical action, in the growth and development of exposed organisms (Leme and 

Marin-Morales, 2009). Reduction in the mitotic index could be due to inhibition of DNA 

synthesis at S-phase (Sudhakar et al., 2001), or inactivation or repression of control sites (G1- 

or G2-stage), by direct or indirect actions of chemicals, may prolong interphase and prevent the 

cell from entering mitosis (Van't Hof, 1968, Webster and Davidson, 1969). Such mito-

depressive effects may also be due to the inhibition of RNA- (González-Fernández et al., 1974, 

Chauhan et al., 1998) and protein synthesis (Rost, 1984), or deficiency of DNA and RNA 
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contents in the nucleus of dividing cells (El-Ghamery et al., 2000). In addition, the rate of 

mitosis has been shown to be related to the ATP level (Epel, 1963), and in this sense, 

compounds in the pyrolytic oils may function as inhibitors of energy metabolism, and thus, 

disturb mitosis. 

  

Similar effects on mitotic index were described by Pekol et al. (2012) studying the effect of 

liquid products obtained from the pyrolysis of hazelnut shell on an Allium cepa test system. 

Morever, Park et al. (2008) observed a decrease in cell viability in a mammalian cell line 

exposed to a fast pyrolysis oil from radiata pine compared with control cells, and Chatterjee et 

al. (2013) showed an increase in cytotoxicity in cultured cell systems when testing toxicity of 

a slow pyrolysis oil produced from biomasses of rice straw and sawdust of oak three compared 

with an untreated control. However, Park et al. (2008), Pekol et al. (2012) and Chatterjee et al. 

(2013) observed dose-dependent cytotoxicity. This is in conflict with the results in this study, 

which showed no clear pattern of decrease of mitotic index with increasing concentrations, with 

quite similar index values between different oils and concentrations of oils. The absence of a 

concentration-dependent cytotoxicity might be due to the concentrations being too close to each 

other, making it difficult to detect any clear difference in mitotic index. It should be noted that 

even though a clear pattern of concentration-dependent increase was not detected, the mitotic 

index seemed to be decreasing with higher concentrations. Pekol et al. (2012) observed a much 

clearer concentration-dependency after exposure to the hazelnut-pyrolysis oil for 24 hours, 

compared with the dependency after 48 hours of exposure, which is the normal exposure period 

in an Allium cepa test. This indicates that the differences are diminishing with increasing 

exposure times, and that the concentration-dependent decrease of the mitotic index might have 

been higher in the present master’s project at exposure times lower than 72 hours. 

  

As expected, the mitotic index for the ‘blind’ solutions was not significantly different from 

negative control, indicating that DMSO did not show any significant cytotoxic effects on the 

Allium cepa test system. The MI for the positive control, however, was weakly significant lower 

compared with negative control, and quite similar to the MI for the onions exposed to different 

concentrations of the three different pyrolysis oils. Other studies have shown contradictory 

results when comparing the MI for MMS (10 mg/l) and negative control in an Allium cepa test, 

where some authors have found a decreased MI (Rank and Nielsen, 1997, Rank et al., 2002, 

Rank, 2003, Bolle et al., 2004, Grisolia et al., 2004, Barbosa et al., 2010, Tabrez and Ahmad, 

2011, Tabrez and Ahmad, 2012), some have found an increased MI (Evandri et al., 2003, 
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Siddiqui et al., 2011) and others have found both decreased and increased MI (Rank and 

Nielsen, 1994, Rank and Nielsen, 1998, Promkaew et al., 2010) compared with negative 

control. This implies that the MMS can not with certainty be used as a positive control when 

testing for cytotoxic effects, as is also the case when testing the toxic effects in the root 

inhibition test. 

 

4.1.3 Damaged dividing cells 

 

4.1.3.1 Frequency of damaged dividing cells 
 

The onions exposed to all the concentrations of the different pyrolysis oils had a significant 

higher percentage of damaged dividing cells compared with negative control. These results 

correspond well with the cytotoxicity results, showing significant decreases in mitotic index for 

all the concentrations of poplar, beech and spruce pyrolysis oils, and were expected, as whole 

sample studies of different types of pyrolysis oils have revealed genotoxic potential. Pekol et 

al. (2012), who to my knowledge are the only ones who have studied the genotoxicity of a 

pyrolysis oil in an Allium cepa test, showed a concentration-dependent increase in the 

percentage of chromosomal aberrations in onions after exposure to fast pyrolysis oil from 

hazelnut shell. Park et al. (2008) showed that the liquid fraction of a fast pyrolysis oil from 

radiata pine seemed to have a genotoxic property in a comet assay; however, no genotoxic effect 

was observed for the tar fraction at any of the concentrations studied. This may indicate that the 

liquid fraction of the oil, as examined in this study, has the highest genotoxic potential. 

Additionally, Chatterjee et al. (2013) found a dose-dependent increase in genotoxicity of 

cultured cell systems in a comet assay after exposure to pyrolysis oils from slow pyrolysis of 

rice straw and sawdust of oak tree. 

 

The onions exposed to the different pyrolysis oils exhibited a different pattern in their 

percentage of damage. The ones exposed to poplar- and beech-oil showed a concentration-

dependent increase in damage, as did Pekol et al. (2012) and Chatterjee et al. (2013), while the 

spruce-oil showed no apparent differences in percentage of damage with increasing 

concentrations. This resembles the root inhibition results, which show somewhat similar 

percentage of root growth for all of the three concentrations (0.00004, 0.0004 and 0.001 ml 

oil/ml solution) of onions exposed to spruce-oil, while much clearer differences is observed 

between the three concentrations for the onions exposed to the poplar- and beech-oil. This might 

suggest that concentrations resulting in a steep increase for both toxicity and genotoxicity not 
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yet have been reached at the highest concentration (0.001 ml oil/ml solution) for the onions 

exposed to the spruce-oil.    

 

While the percentage of damage was fairly similar between onions exposed to the three different 

oils at the lowest concentration, the onions exposed to the two highest concentrations of the 

poplar- and beech-oil had a percentage of damage that was not significantly different from 

positive control. The onions exposed to the two highest concentrations of the spruce-oil, on the 

other hand, had a percentage of damage that was clearly lower than for the other oils, and had 

a significantly lower percentage of damage compared with positive control. This indicates a 

high genotoxic potential of the poplar- and beech-oil at these concentrations. Additionally, 

exposure of the poplar-oil caused a higher percentage of damage at these concentrations 

compared with exposure to the beech-oil, indicating that the poplar-oil exerted the highest 

percentage of damage. 

 

The percentage of damage in onions exposed to the ‘blind’ solutions was not significantly 

different from the once exposed to negative control. This was expected as, with few exceptions, 

a large battery of in vitro and in vivo studies have confirmed a lack of genotoxic potential of 

DMSO (McCann et al., 1975, Latt et al., 1981, Leifer et al., 1981, Heidelberger et al., 1983, 

Lee et al., 1983, Brockman et al., 1984, Valencia et al., 1984). The positive control induced a 

clearly significant higher frequency of damaged cells compared with negative control, as 

expected since MMS often is used as a positive control in mutagenicity testing, and is a potent 

inducer of chromosomal aberrations (Rank and Nielsen, 1997).  

 

4.1.3.2 Distribution of dividing phases 
 

The distribution of phases from onions exposed to different treatments showed a similar pattern, 

with metaphase dominating (~42-59%), followed by telophase (~30-44%), while anaphase 

contributed to a small part of the dividing phases (~7-16%). Cell division takes approximately 

the same time in cells of the same cell type, provided that the cells are from individuals of the 

same species, and that the cell cycle is not affected by genotoxic compounds. The similar 

pattern of the different oils and the negative control indicates that components in the oils do not 

affect the distribution of the cell phases. The duration of different dividing phases has been 

determined for A. cepa roots, and has here been modified to gain percentage of duration time 

for the meta-, ana- and telophase in the DNA-division cycle. The metaphase contributed to 



4 Discussion 

53 

24%, the anaphase to 18% and the telophase to 59% of total dividing cells (in meta-, ana- and 

telophase) (Utrilla et al., 1993). Comparing with these numbers, too many cells are present in 

metaphase, and too few are present in telophase. The underestimated number of cells in 

telophase may be due to difficulty of detecting these cells. Cells in telophase are the ones that 

are most similar to cells in interphase, especially when other cells are partially covering them, 

or when cells are indistinct.  

 

Pekol et al. (2012) found a more similar pattern of distribution of phases as observed in this 

study. For normal cells, the negative control value was 35-38%, 23-24% and 38-42% for meta-

, ana- and telophase, respectively, and the distribution showed no apparent trend of changes 

after onions were exposed to different concentrations of hazelnut-pyrolysis oil. This may 

indicate that the process of preparing microscopic slides, and/or difficulties of detecting some 

of the phases during slide examination, cause differences in the distribution of phases compared 

with the original time duration of the different phases.  

 

4.1.3.3 Frequency of damaged dividing cells within the dividing phases 
 

The frequency of damaged dividing cells in metaphase had a more similar pattern with the 

frequency in total compared with the two other phases. This is due to the distribution of dividing 

phases in the different treatment-groups, in which metaphase are clearly dominating, and thus, 

contributes to a larger part of the total. Most of the damage types are easiest to detect in 

metaphase, due to the chromosomes being more tightly assembled in anaphase and telophase, 

which may result in covering of the area of damage. This makes it difficult to detect specific 

damages within these phases. Thus, damage in metaphase probably gives the most correct 

picture of the relatively different genotoxic potential of each pyrolysis oil. 

 

The frequency of damaged cells in metaphase of onions exposed to all the three concentrations 

of the different types of pyrolysis oils was apparently higher compared with negative control, 

indicating a toxic effect on the metaphase of cell division. The onions exposed to the lowest 

concentration of the oils showed quite similar percentage of damaged cells in metaphase; 

however, not significant higher for those exposed to the beech-oil compared with negative 

control. At the two highest concentrations, the spruce-oil seemed to exert the lowest percentage 

of damaged cells in metaphase compared with the two other oils. Additionally, a concentration-

dependent increase in percentage was lacking, as discussed for the frequency of total damaged 
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dividing cells (Chapter 4.1.3.1). The two highest concentrations of the beech-oil and the highest 

concentration of the poplar-oil exerted a clearly significant higher frequency of damage 

compared with negative control, with frequency almost as high as for positive control. This 

indicates a high disturbance of cells in metaphase at these concentrations. As expected, the 

positive control had a clearly significant higher percentage of damaged cells in metaphase, and 

the ‘blind’ solutions showed no significant difference in frequency compared with negative 

control. 

 

Looking at the frequency of damaged cells in anaphase, the variation of the three replicates of 

onions in each treatment-group was high. This is due to the low contribution of anaphase to the 

total mitotic phases (meta-, ana- and telophase), which resembles the low number of anaphases 

detected for each treatment-group (Appendix B). The results from the frequency of damaged 

cells in anaphase are, thus, not as reliable as those for the cells in metaphase and telophase. The 

high variation makes it difficult to make comparisons, and to clearly state a conclusion about 

differences between the oils and the different concentrations of the oils. However, it is a clear 

pattern of higher frequency of damaged cells in anaphase of onions exposed to different 

concentrations of pyrolysis oils, as well as for the positive control, compared with negative 

control. This suggests that the pyrolysis oils can affect the anaphase-stage of cell division. The 

frequency of damaged cells for the onions exposed to the ‘blind’ solutions is weakly significant 

higher than negative control, but due to a high variation of frequency between the onions 

exposed to these solutions, and a low number of anaphases detected in these onions, this will 

not be further discussed. 

 

The frequency of damaged cells in telophase was in general clearly lower than the frequency 

of damaged cells in metaphase and anaphase. It may be speculated in that spindle effects 

generated in metaphase may proceed into anaphase; however, that the cell fails to segregate the 

chromosomes into two poles, thereby the aberration is detected in anaphase. Due to the 

relatively short time duration of the anaphase stage of mitosis (Utrilla et al., 1993), healthy cells 

in metaphase are quite rapidly converted to cells in telophase, and thus, a higher frequency of 

normal cells in telophase is observed relatively to the two other phases. The onions exposed to 

the poplar-oil appeared to have the highest frequency of damaged cells in telophase compared 

with the ones exposed to the other oils, with a significantly higher frequency of damage at all 

the concentrations, and an apparent increase in frequency of damage from the lowest to the two 

highest concentrations. The onions exposed to the beech-oil had a significantly higher 
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frequency of damage at the two highest concentrations. The ones exposed to the spruce-oil, 

however, did not have a significantly higher frequency of damage at any concentrations, 

although the two highest concentrations appared to exert a higher frequency compared with the 

lowest concentration. This indicates that the spruce-oil, at these concentrations, may lack an 

effect or have a weak effect on damage of cells in telophase in the mitotic cell division. As 

expected, the positive control had a significantly higher percentage of damaged cells in 

telophase, and the ‘blind’-solutions were not significantly different compared with negative 

control. 

 

4.1.4 Specific chromosomal aberrations observed in dividing cells 

 

The most dominant aberration in all treatment-groups was disturbed metaphases, followed by 

vagrants, laggards and c-metaphases. All of these aberrations indicate complete or partly 

inhibited spindle mechanisms. Since these types of aberrations also were dominating in the 

negative control-group, this indicates that the spindle apparatus in the Allium cepa system may 

be particularly sensitive to spontaneously occurring damage. Fragments, polyploid cells and 

star anaphases contributed to a very low frequency of the total number of dividing cells for all 

the treatment-groups, indicating that these aberrations are relatively rarely induced, both 

spontaneously and by chemicals, in Allium cepa cells. Due to the low number of cells 

possessing these types of aberrations, the results within these groups will not be emphasized 

further in the discussion. 

 

The tendency of increasing frequency of different types of chromosomal aberrations with 

increasing concentrations for the onions exposed to the poplar- and beech-pyrolysis oil was 

higher compared with the ones exposed to the spruce-oil. This resembles the results above 

indicating that the onions exposed to spruce-oil were lacking a dose-depending increase in 

frequency of damaged dividing cells. Only the frequency of polyploidy and star anaphases was 

increasing with increasing concentrations of the spruce-oil. However, these results are not valid 

due to a very low number of cells detected within these types of aberrations. A clear lack of a 

dose-response relationship is observed in the bridge-group, which may be due to a low effect 

on this group of all the tested concentrations of pyrolysis oils. The lack of a relationship between 

concentrations and percentage of c-metaphases for all the different oils may be due to 

misinterpretation. The detection of effect of spindle inhibiting substances may appear at other 

types of aberrations, like disturbed metaphases. Thus, it might be beneficial to look at 
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chromosomal aberrations induced by spindle inhibitors, like c-metaphases, disturbed 

metaphases, laggards and vagrants, as one group, and for the same reason, chromosomal 

aberrations induced by clastogens, like bridges and fragments, as another.  

 

No clear pattern of increasing frequency with increasing “concentrations” of ‘blind’ solutions 

was observed within the types of chromosomal aberrations. Additionally, no significant 

increases in frequency of different types of chromosomal aberrations were detected in roots of 

onions exposed to the ‘blind’ solutions compared with negative control, except for a weakly 

significant increase for the vagrant aberration type. These findings suggest that the DMSO 

added in the pyrolysis oils did not contribute to an enhanced frequency of chromosomal 

aberrations, and that the results from the onions exposed to the different pyrolysis oils may be 

directly compared with the ones from the onions exposed to negative control. 

 

Clastogenic compounds can cause breakage in a DNA-strand, which may create fragments or 

interact with breakages on other chromosomes or chromatids and create bridges (Savage, 1976). 

For the onions exposed to the spruce- and beech-oil, no apparent higher frequency of fragments 

or bridges was observed compared with negative control, which indicates a lack of clastogenic 

compounds present in these oils. The onions exposed to the poplar-oil did not show increases 

in frequency of fragments compared with negative control. However, a strongly significant 

higher frequency of bridges was observed for the lowest concentration, implying a clastogenic 

potential for this oil. It should be mentioned that the frequency of fragments may have been 

underestimated. Fragments in both meta- and anaphase may have been present without 

detection, due to covering of other chromosomes.  

 

A higher frequency of chromosomal aberrations that indicate effects on the spindle apparatus 

was observed for onions exposed to the different pyrolysis oils compared with negative control. 

A higher frequency of disturbed metaphases, laggards and vagrants indicates that substances in 

the oils have interfered with the spindle apparatus of the dividing Allium cepa cells and caused 

a weak c-mitotic effect, affecting the organization in metaphase and the ability to segregate the 

chromosomes to the poles (Preston and Hoffmann, 2007). A higher frequency of c-metaphases 

indicates a complete inhibition of the spindle apparatus, resulting in a random scattering of 

chromosomes in the cell. This was only observed for the beech-oil and the lowest concentration 

of the spruce-oil compared with negative control. The lack of this higher frequency for the 

onions exposed to poplar-oil is, as explained above, probably not due to less substances in this 
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oil interacting completely with the spindle apparatus, but rather a distribution of detection of 

effect at other types of aberrations. The detection of polyploid cells at the highest concentrations 

of the different oils may reflect the c-mitotic effect, which can result in cells that contain 

multiples of the normal complement of chromosomes (Fiskesjö, 1981, Wierzbicka, 1994, 

Albertini et al., 2000, Gadeva and Dimitrov, 2008). Some star-anaphases were also seen for 

onions exposed to the poplar- and spruce-oil, further indicating interactions with the spindle 

apparatus. Substances present in the different pyrolysis oils may prevent formation of the 

mitotic spindle by inducing microtubule depolymerization (Caperta et al., 2006). 

 

Of the three oils, the poplar- and the beech-oil showed the highest induction of different types 

of spindle-affecting chromosomal aberrations. C-metaphases were most frequently observed in 

onions exposed to the beech-derived oil, except for the lowest concentration of spruce-oil, while 

vagrants were most frequently observed in onions exposed to the poplar-oil. Additionally, both 

within the disturbed metaphase- and the laggard-type of aberration, the highest concentrations 

for the pyrolysis oils from poplar and beech feedstocks showed the highest frequency. These 

findings indicate that all the three oils exert a spindle effect on dividing Allium cepa cells; 

however, the potency of spindle-toxicity was highest for the poplar- and beech-oil.    

 

The onions exposed to poplar-oil showed a significantly higher frequency of stickiness, while 

the ones exposed to the beech- and spruce-oil only showed a slight increase in frequency of 

stickiness for the two highest concentrations compared with negative control. Observation of 

sticky chromosomes suggest an entanglement effect of inter-chromosomal chromatin fibers 

(McGill et al., 1974), revealing a failure of condensation of the chromosome fibers as a result 

of exposure to substances in the pyrolysis oil derived from poplar feedstock. This is probably 

due to an effect on the organization of the chromatin (Radić et al., 2010), and reflects the present 

of highly toxic substances, which probably will cause cell death (Fiskesjö, 1985, Liu et al., 

1992). Stickiness between chromosomes may cause the formation of bridges during the 

separation in anaphase (Radić et al., 2010). This may have contributed, together with a 

clastogenic effect, to a higher frequency of observed bridges for the onions exposed to the 

lowest concentration of poplar-oil compared with the frequency of the two other pyrolysis oils. 

Kong and Ma (1999) actually suggest that bridge formations without accompanying fragments 

indicate that they are formed from adherence. Additionally, stickiness may contribute to the 

observed polyploid cells, since sticky chromosomes may not separate properly during cell 

division (Onwuamah et al., 2014). 



4 Discussion 

58 

 

Pekol et al. (2012), who also detected specific types of aberrations after exposure to a pyrolysis 

oil from hazelnut feedstock in an Allium cepa test, found c-metaphases and stickiness to be 

major aberrations at all concentrations. Since they lack a group called disturbed metaphases, it 

may be assumed that they have been scored as c-metaphases. Taking these two aberrations 

together, this group is also the dominating aberration detected in the present study. This implies 

that compounds exerting colchicine-like effects are common in fast pyrolysis oils derived from 

different kinds of feedstocks. Stickiness, however, was only found to be a dominating group in 

the onions exposed to poplar-oil, which indicates that the poplar-oil may share, to a higher 

degree than the beech- and spruce-oil, some mutual, highly toxic compounds with the hazelnut-

oil that induces stickiness in Allium cepa cells. Pekol et al. (2012) did not detect any increase 

in bridges and fragments in onions exposed to different concentrations of the hazelnut-oil 

compared with negative control. This further indicates a lack of clastogenic chemicals present 

in fast pyrolysis oils from different feedstocks. Contradictory to the results in this thesis, Pekol 

et al. (2012) did not detect any increase in vagrants and laggards compared with negative control 

after exposure. However, since a high amount of c-metaphases were found, and laggards and 

vagrants indicate a weak c-mitotic effect, the potential of the hazelnut-oil to induce these types 

of aberrations is present. 

 

4.1.5 (Geno)toxic damage related to composition of the pyrolysis oils 

 

The pyrolysis oils used in this master’s project have been characterized by the use of different 

chemical “fingerprinting” techniques (Section 2.2.1). The different oils show essentially the 

same major trend in all the spectra, although there are minor differences between the oils in 

abundance of compounds or classes of compounds. This is, however, not surprising because 

the oils are expected to have some diversity in composition due to their generation of different 

feedstocks. Additionally, they are from different geographic locations, with some differences 

in climate and soil conditions, which may cause differences in chemical composition (Pettersen, 

1984). Since the oils were analyzed after they were produced, and they were produced at 

different times (Section 2.2), storage of the oils may have altered their composition. Thus, the 

spectra may have shown a even larger variety if analyzed prior to utilization in this master’s 

project.  
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From the positive and negative ESI-MS spectra, compound identification of the lines detected 

at different mass number is not provided, thus, a detailed discussion on chemical differences 

between the oils is impossible to execute. Nevertheless, a various intensity in some of the mass 

numbers are detected between the different oils, indicating a somewhat difference in the content 

of polar compounds containing oxygen, nitrogen or sulfur and organic acids. All the lines 

detected in the spectra are most likely to be water-soluble, due to a low ionization of non- or 

less-polar hydrocarbons (Smith et al., 2012). Thus, the water-soluble part of the various 

pyrolysis oils tested in this project probably contains different amounts of some compounds, 

and this may explain some of the differences observed in the toxic and genotoxic effects tested. 

As earlier mentioned, Park et al. (2008) found that the liquid fraction of a fast pyrolysis oil 

generated from radiata pine wood seemed to be more cyto- and genotoxic compared with the 

tar fraction. Main components in the liquid fraction of the pine-oil, which may have contributed 

to these effects, were acetic acids and phenols. These compounds may represent some of the 

lines in the present ESI-MS spectra that exhibited differences between the oils.  

 

The findings of the liquid fraction of a pyrolysis oil being the most genotoxic (Park et al., 2008) 

might not be expected, since pyrolysis oils generated with temperatures around 500°C, which 

is the temperature used in fast pyrolysis (Bridgwater and Peacocke, 2000), are expected to 

contain a small amount of water-insoluble PAHs (Williams and Horne, 1994, Williams and 

Horne, 1995, Diebold, 1997). Polycyclic aromatic hydrocarbons are known to exert genotoxic 

effects through their biotransformation to reactive epoxide-species (Hall and Grover, 1990, 

Boström et al., 2002, Parkinson and Ogilvie, 2007). Pimenta et al. (2000) found genotoxic 

effects of the PAH fraction of a slow pyrolysis oil from Eucalyptus grandis wood; however, 

the whole oil showed no genotoxic potential. Cordella et al. (2012) also found a genotoxic 

potential associated with, among others, the PAH fraction of slow pyrolysis oils from different 

biomass feedstocks. Even though the amount of PAHs may vary between different pyrolysis 

oils, due to the use of different pyrolysis conditions and feedstocks (Tsai et al., 2007, Lu et al., 

2009), it might be speculated in that fast pyrolysis oils in general exhibit amounts of PAHs that 

are under the detection limit of genotoxicity. However, possible upgrading of the pyrolysis oils 

by zeolite catalysts to produce refined bio-fuels may produce a high quantity of PAHs (Williams 

and Horne, 1994, Williams and Horne, 1995), and thus, increase the genotoxic potential of the 

oils.  
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In contrast to the ESI-MS spectra, FTIR allows analysis of the entire pyrolysis oil sample and 

detects functional groups of compounds (Eide and Zahlsen, 2005, Staš et al., 2013). Thus, some 

of the groups of compounds detected may not be representing the compounds dissolved in the 

water-fraction of the pyrolysis oils tested in this master’s project. Furthermore, it is difficult to 

anticipate if small amounts of less water-soluble groups of compounds have dissolved in the 

0.1% DMSO added in the oil-solutions. Although the FTIR analysis revealed strong similarities 

between the pyrolysis oil samples, some differences were detected at the different signal 

clusters. The poplar- and spruce-oil show the highest and lowest absorbance, respectively, 

within the spectral ranges representing O-H and N-H stretching (phenols, alcohols, water, 

carboxylic acids, amides and amines). Additionally, within the spectral ranges representing 

C=O and C=C stretching (aldehydes, ketones, carboxylic acids and esters), a higher absorbance 

was observed for the poplar- and beech-oil compared with the spruce-oil. Since the spruce-oil 

seems to exhibit a lower and less concentration-dependent genotoxicity compared with the two 

other oils, the compounds detected at a higher rate for the poplar- and beech-oil within the 

spectra, especially the more soluble ones, may contribute to the difference in genotoxicity 

observed. The spectral ranges dominated or partly dominated by the spruce-oil, masking the 

presence of nitrogenous compounds, aromatics, alkanes, alcohols and ethers, might represent 

less important substances contributing to genotoxicity of the oil-solutions generated in this 

master’s project. 

 

As for the ESI-MS spectra, compound identification for the peaks detected at different retention 

times is not provided in the GC-MS chromatogram, thus, a detailed description of the difference 

in chemical composition detected between the oils is not performed. The whole composition of 

the oils can be examined, except some large molecules and non-volatile compounds, which may 

be difficult to analyze (Eide and Zahlsen, 2005, Staš et al., 2013). The GC-MS is the one of the 

four spectra showing the highest variability between the oils, with quite clear differences in 

abundance of compounds at a dominant of the retention times. This further emphasize that even 

though the pyrolysis oils, which are all made of whole wood and with fast pyrolysis, naturally 

contain a lot of the same compounds, some differences in abundance of compounds are present, 

which may cause a difference in toxicity and genotoxicity between the oils.  

 

Nina Holteberg, a MSc student at the Environmental Toxicology program, tested the 

genotoxicity of the same whole wood spruce-oil as tested in this master’s project, using a Ames 

Salmonella assay (Holteberg, 2014). She found that the test solutions induced a positive 
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mutagenic concentration-dependent response in the bacterial strain TA98 with S9 as well as the 

bacterial strain TA100 with and without S9; however, not in the TA98 without S9. The most 

prominent responses were observed in TA100 with S9, and in both strains an increased toxicity 

was observed in the presence of S9. This indicates that the spruce-oil particularly exert its 

mutagenic effects after metabolic activation, and that the effect is primarily related to base-pair 

substitution, and to a lesser degree, frame-shift mutation. Allium cepa onions also contain 

metabolic systems that may create secondary toxicants (Fatima and Ahmad, 2006, Tabrez and 

Ahmad, 2013). Nevertheless, a dose-response relationship in genotoxicity of the spruce-derived 

oil evaluated in the present Allium cepa test was not shown. This might be due to different 

endpoints tested in the Ames test and the Allium cepa test. Even within the Ames test, a 

difference in mutagenic endpoints (base-pair substitution and frame-shift mutation) was 

observed. Additionally, Holteberg (2014) tested the whole complement of the oils, and the 

secondary toxicants may have been non-soluble compounds, like PAHs, that were not present 

in the oil-solutions tested in the Allium cepa test performed in this master’s project. Moreover, 

different concentrations were used within the different tests. Higher concentrations, or a larger 

interval between the concentrations, of the spruce-oil might have caused a dose-dependent 

genotoxicity. However, this was not possible in the present Allium cepa test, due to a lack of 

root growth at higher concentrations.  

 

It has been shown that softwood contains a higher lignin to cellulosic ratio compared with 

hardwood (Pandey, 1999). Since the water-insoluble fraction of pyrolysis oils is originally 

composed of lignin-derived material (Oasmaa and Czernik, 1999), this indicates that the spruce-

oil, which is produced from softwood, contains a higher amount of water-insoluble compounds 

compared with the two other oils, which are produced from hardwood. Thus, the amount of 

compounds solved in the water-soluble fraction of the oils tested in the present Allium cepa 

assay is probably higher for the poplar- and beech-oil compared with the spruce-oil, and this 

might be the reason for the lower genotoxicity and the lacking concentration-dependency 

observed for the spruce-oil. This does not imply, however, that the whole complement of the 

spruce-oil is less toxic than the whole complement of the two other oils. Since a concentration-

dependent increase in mutagenicity was seen in the Ames test (Holteberg, 2014), and the 

spruce-oil probably contains a higher amount of water-insoluble compounds, it might be 

speculated in that the water-insoluble fraction of the spruce-oil may exert higher genotoxicity 

compared with the two other oils.  
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Even though characterization of specific compounds or groups of compounds was not 

conducted through this thesis, it is important to emphasize that caution should be taken during 

hazard assessment of single pyrolysis oil components. Attempts to identify single toxic 

compounds and their behavior may be difficult and/or misleading. Pyrolysis oils are complex 

mixtures composed of a wide variety of compounds, and interactions between the different 

chemicals in the oils can affect the response. The chemicals may undergo synergistic or 

antagonistic interactions, which may have a significant effect on the toxicity (Donnelly et al., 

1995) (Section 1.3.1). 

 

 

4.2 Optimalization and evaluation of the method 

 

4.2.1 The test organism Allium cepa 

 

In the beginning of the experimental period of this master’s project, onion (Allium cepa) bulbs 

were purchased from different grocery stores; however, these onions were quite large in 

diameter (7.0-10.0 cm), and the root growth was limited and highly variable between onions. 

The large diameter made the experimental setup and storage difficult, and the variable and 

limited root growth made both statistical comparison and accomplishment of the experiment 

difficult or impossible. Later, we came in contact with a farmer from “Hveem Nord Østre”, 

Toten, Norway, who provided us with small bulbs (2.0-4.0 cm in diameter) of Allium cepa 

onions. The onions had a great and uniform root growth, with little variation between the 

onions. These findings emphasize the importance to be aware of individual variations when 

biological assays are carried out. It also states that the conditions and storing of the onions are 

crucial factors for obtaining adequate root growth to go through with an Allium cepa assay.  

 

For the onions purchased from the grocery stores, chemical agents were probably employed, 

inhibiting the root growth of the onions. This was not the case for the onions purchased from 

Toten, where ecological agriculture was emphasized. In general, Norwegian onion production 

does not use chemical spraying during cultivation. However, since the onions were not 

cultivated under controlled conditions in our laboratory, they may have been exposed to 

contaminants or radiation sources in the soil prior to being used in the present experiment. The 

harvesting of onions in Norway happens late August/early September, and the onions need a 

couple of months to create roots. This restricts the time period for running an Allium cepa test, 

when using onions harvested in Norway. Storing of onions is an additional factor that may 
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affect the root growth. The onions should be stored in the dark under dry conditions at +10-

20°C (Fiskesjö, 1985). In this experiment, the onions were kept in a dry, dark closet at room 

temperature, and the duration of storage between the first and last exposure of different 

treatments, was approximately three months. This duration time may have resulted in a different 

root growth of onions exposed to the different treatments. However, since the root growth in 

this thesis was measured as relative root growth compared with the lowest concentration of the 

respective oil, this should not affect the results. 

 

4.2.2 The pyrolysis oils 

 

Prior to the experiment, the pyrolysis oils were diluted with water and 0.1% DMSO to gain 

different concentrations of the oils. This dilution-process was quite hard to conduct, due to 

difficulties with solving the oils in water. Heating the oils (50°C) and adding DMSO improved 

the solving process. However, a mass of undissolved matter assembled in the bottom of the 

bottle when water was added, and thoroughly mixing and grinding were needed to solve as 

much as possible. Even though the three pyrolysis oils were attempted treated the same way, 

some differences in the solving-processes may have occurred, resulting in more or less water-

soluble compounds present in the different oils. This may explain some of the differences 

observed in (geno)toxicity between the oils; however, to a small degree since the oils were 

mixed and grinded for several minutes until the matter in the bottom was virtually impossible 

to dissolve any further.  

 

Attempts were made to dissolve most part of the oils by extraction with dichloromethane 

(DCM), which makes the oils more soluble. The mixture of oil and DCM was placed in an 

ultrasound bath, centrifuged, and added additional DCM. This was repeated twice, and the 

DCM-extract was evaporated to dryness in an atmosphere of pure nitrogen. When drying was 

complete, DMSO was added to dissolve the DCM residue. The oils were subsequently added 

water to gain the different concentrations of oil-solutions, and after mixing and heating, they 

were quite well dissolved. However, when comparing the root growth inhibition after exposure 

from the two different methods explained above, using only water and 0.1% DMSO gave a 

much higher root-inhibition after oil-exposure compared with the “same” concentration of oil 

extracted with dichloromethane. Thus, a decision to use the prior method was made, resulting 

in a higher concentration of toxic compounds for the same amount of oil.  
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The pH of all concentrations of the different oils was adjusted to approximately pH=7.5. High 

concentrations of pyrolysis oils may be very acidic, and the highest concentration tested in the 

present master’s project measured a pH of below 3.0. Fiskesjö (1985) showed that a pH below 

3.5 caused growth restrictions of Allium cepa onion roots. The pH should, thus, be adjusted to 

the same level to be able to compare toxicity of different concentrations of oils that is due to 

toxic chemical compounds present, and not due to the differences in pH.    

 

The spruce-, beech- and poplar-oil were made in 2011, 2012 and 2009, respectively. The 

pyrolysis oils contain compounds that during storage can react with themselves to form larger 

molecules. These reactions result in an increase in average molecular weight, and thus, 

viscosity. With the increase in growth of molecular weight, an increase in the amount of the 

water-insoluble fraction, originally composed of lignin-derived material, has been observed 

(Oasmaa and Czernik, 1999). The ageing rate depends on the oil composition, and thus, 

feedstock and pyrolysis conditions (Oasmaa and Czernik, 1999). Since the different pyrolysis 

oils are all made from fast pyrolysis of wood feedstocks, and seem to be of quite similar 

composition, the ageing of the oils should be fairly similar. Since the ageing seems to increase 

the water-insoluble fraction of the oils, less of the water-soluble fraction should be present in 

the oldest poplar-oil compared with the two other oils, and thus, a lower toxicity might be 

expected for this oil. However, age did not seem to affect the toxicity in this experiment, since 

the poplar-oil showed the highest tendency of genotoxicity. An even higher genotoxicity might 

have been observed in the Allium cepa test for the poplar-oil, as well as for the two other oils, 

if they were synthesized more recently.  

 

4.2.3 The Allium cepa test 

 

4.2.3.1 Root inhibition test 
 

Due to the small variation in root growth of the onions used in this experiment, only three 

parallels of onions were used for each treatment-group. To further decrease the variation, three 

additional onions for each exposure experiment were added. This made it possible to discharge 

onions with damages, like the ones damaged during removal of the bottom plate with a scalpel, 

or dried or mould-attached onions, and to choose the onions with the greatest and most even 

root growth prior to exposure (after 48 hours growth in tap water). 
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To decide whether onions have been exposed to toxic compounds in the tested oils, it is 

important to compare the damage in the exposed groups with a control-group. Background-

values from other studies should not be used, due to differences in storage, size and conditions 

of the onions, and differences in the Allium cepa test procedures. Additionally, chromosomal 

aberrations may appear spontaneously, thus, an aberration frequency of zero should not be used 

as a reference value. 

 

Root length inhibition for the different oils was presented as percentage of root length of onions 

exposed to the lowest concentration of the respective oil, and not as a percentage of negative 

control, as is more commonly used in literature (Fiskesjö, 1985, Rank and Nielsen, 1998, Ateeq 

et al., 2002, Radić et al., 2010, Onwuamah et al., 2014). In this experiment, the negative control-

exposure and the different pyrolysis oil-exposures were conducted separately, due to an 

expectation of the onion root growth not to be affected with time of storage. A negative control-

exposure was carried out at the end of the experiment period, to test for differences with the 

prior control-exposure (performed at the beginning of the experiment period), and no apparent 

difference in root length was found. This indicated that it was reasonable to measure the root 

length of onions exposed to different pyrolysis oils as percentage of negative control. However, 

the curves obtained had a different percentage of root length prior to reaching the threshold of 

effect. Since this area is consistent over several concentrations (at least for the poplar- and 

spruce-oil), it indicates that these concentrations exert no effects on the root growth, and should 

be approximately equal to the tap water control, which was not the case for the oils tested. A 

negative control for each oil-exposure experiment probably should have been used, and thus, a 

decision was made to compare toxicity against the lowest concentration of the respective oils 

instead. For the same reason, it was decided to interpret the root growth of onions exposed to 

‘blind’ solutions as length (cm), and not as percentage of negative control. 

 

From the toxicity curves, onion roots exposed to three concentrations (0.00004, 0.0004 and 

0.001 ml oil/ml solution) of pyrolysis oils were picked to be used further in the microscopic 

preparation and examination. The 0.001-concentration was the highest of the seven 

concentrations used in the root inhibition test that contained a sufficient amount of dividing 

cells for the cyto- and genotoxic evaluations after exposure for all three oils. Additionally, roots 

exposed to concentrations above 0.001 ml oil/ml solution were very vulnerable, fragile and easy 

to damage, making the microscopic slide preparation harder to conduct. For the onions exposed 

to the poplar- and beech-derived oil, the 0.001-concentration resulted in a low relative root 
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growth. The 0.00004-concentration represented a low concentration, where no or a small toxic 

effect were observed for the oils. The 0.0004-concentration represented an intermediate 

concentration, that was in the middle of (for onions exposed to the beech-oil) or just above (for 

onions exposed to the poplar- and spruce-oil) the steep region of the toxicity curve. 

  

4.2.3.2 Pre-treatment and fixation 
 

Similar to colchicine, pre-treatment with 8-hydroxyquinoline may cause inactivation of the 

spindle apparatus. Still, 8-hydroxyquinoline should keep the chromosomes at the same place 

during squashing by increasing the viscosity of the cytoplasm (Tjio and Lavan, 1950). 

Nevertheless, the viscosity may not have been equal through all of the cytoplasm, or in all of 

the cells, which may have resulted in some of the specific spindle effect damages observed. 

However, since all the exposure- and control-groups were treated with the same agent, this will 

only contribute to the background-level of aberrations, and will not interfere with the 

interpretation of the results. Additionally, exceeding of the critical temperature of 15-18°C may 

cause stickiness (Tjio and Lavan, 1950, Östergren and Heneen, 1962). In this study the roots 

were exposed for 5 hours to the 8-hydroxyquinoline, at a temperature of approximately 4°C, 

hence it should not have any effect on the frequency of damage within this type of chromosomal 

aberration.  

 

4.2.3.3 Microscope slide preparation 
 

Some of the slides in this study were difficult to analyze. When the cover slips were removed 

with a scalpel, sometimes the root cells followed the cover slips, resulting in damaged areas on 

the slides. Some slides contained cells with chromosomes that were difficult to examine, 

probably due to poorly spreading of the cells. This was especially the case for hard roots that 

probably were not sufficiently softened during the macerating process. The difficulty of 

detecting chromosomes may also have been due to the dye-quality, which may have been 

affected by a too short (weakly stained) or too long (strongly stained) treatment-time with 

orcein. Additionally, some slides could not be analyzed due to mechanical damage caused by 

too hard tapping and squashing. A last error in the microscope slide preparation was the gluing. 

Too much glue could cause a blurry appearance when observing the cells in the microscope, 

and insufficient amounts of glue caused bad observation conditions at the border and edges of 

the cover slip. However, slides or area of slides with bad scoring conditions did not affect the 
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results in this study, since they were excluded, and new slides of good quality were made until 

100 cells in division were detected at each individual of the treatment-groups. 

 

4.2.3.4 Microscopic examination 
 

The microscopic evaluation is a subjective analysis, and efforts were made to avoid incorrect 

judgment of damages. Prior to microscopic slide preparation and examination, slides prepared 

from Allium cepa onions in another project were screened for chromosomal aberrations. This 

was to get familiar with the different dividing phases and types of aberrations that can be 

observed in Allium cepa cells. In the beginning of an experiment, phases of division, damaged 

and normal cells, and different types of aberrations may be difficult to separate from each other. 

Thus, this minimized the possible difference in interpretation early and late in the microscopic 

examination period. Brøgger et al. (1984) showed that one of the greatest variations between 

different laboratories in the evaluation of human lymphocyte chromosomal aberrations were 

related to the existence of an aberration. Thus, in this experiment, two persons (Bingham, pers. 

comm.) analyzed cells that were uncertain to have a damage, before the final decision was 

made. This increased the probability of damages being evaluated equally throughout the 

working period, and at the same time, the probability of misjudgment was reduced. 

Additionally, the slides were examined blindly, which minimized expectations that might have 

affected the results. 

 

Due to difficulties of detecting possible abnormalities within different cell division phases, 

Rank and Nielsen (1993) proposed an analysis of abnormalities only in anaphase and telophase 

to obtain a more sensitive method of scoring, and later, Rank (2003) published another study 

using only anaphases and telophases to conduct chromosomal aberration analysis in an Allium 

cepa test. However, the analysis within all phases of the cell cycle may give a more 

comprehensive and accurate evaluation, due to the greater analysis material, and promotes a 

better investigation of the action mechanisms of the chemicals in the oils, and the resulting 

effects of these actions (Leme and Marin-Morales, 2009). Even so, detection of damage in 

prophase was not included in this study. Few studies include damages in prophases, and the 

ones that have included them, found a very low percentage of abnormalities within this stage 

(Badr, 1981, El-Shahaby et al., 2003, Fisun and Rasgele, 2009). This might be due to difficulties 

of separating normal and damaged prophases with certainty, since the chromosomes are not yet 

condensed and are distributed over the whole cell, or difficulties with separating early prophases 
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from interphases in some cases. Some underestimation of damaged cells is probably found 

within all the dividing phases when conducting an Allium cepa test; however, this might be 

greater for the prophase. Thus, inclusion of prophase may result in an incorrect estimation of 

the frequency of damage.  

  

The number of slides needed to detect over 100 dividing cells was increasing with slides 

prepared from onion roots exposed to increasing concentrations of pyrolysis oils. This indicates 

that the proliferation of cells in the onion roots was decreasing with exposure to higher 

concentrations of the different pyrolysis oils. This was not reflected by the mitotic index, a 

measure of the proliferation status of a cell population, which showed no clear pattern of 

decrease with increasing concentrations. When scoring the mitotic index, only areas where cell 

division was detected were used, to exclude cells that were not a part of the meristematic region 

undergoing mitosis. Areas of limited cell division may have been in the mitotic region; 

however, inhibited by toxic compounds present in the oil. This may have resulted in an 

overestimation of mitotic index for the onion roots exposed to the highest concentrations of the 

pyrolysis oils.  

  

The number of dividing cells registered for chromosomal aberrations has varied between 

different scientists, even within the last few years. Among others, Radić et al. (2010) and Pekol 

et al. (2012) recorded chromosomal aberrations in approximately 300 dividing cells, Herrero et 

al. (2012) and Musanovic et al. (2013) in 100 dividing cells, and Ozakca and Silah (2013) 

analyzed chromosomal aberrations in 400-500 dividing cells for each test group. In the present 

study, at least 100 dividing cells were screened for chromosomal aberrations per onion bulb 

(Appendix B). A higher number of mitotic cells for each treatment would have given a more 

certain result; however, the analyses were time-consuming and to analyze an additional amount 

of cells was not possible within the timeframe of this master’s project.  

 

There are some variation in types of chromosomal damages registered in different studies 

conducting an Allium cepa test. All the chromosomal aberrations registered in this study are 

common damages that have been detected by several authors (Roychoudhury and Giri, 1989, 

Kovalchuk et al., 1998, Turkoglu, 2007, Caritá and Marin-Morales, 2008, Udengwu and 

Chukwujekwu, 2008, Kumari et al., 2009, Patlolla et al., 2012, Pekol et al., 2012); however, 

some chromosomal aberrations registered in other studies were not detected here, like 

multipolarity and c-anaphases (Caritá and Marin-Morales, 2008, Leme et al., 2008, Mustafa 
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and Arikan, 2008). This may be due to the chemical composition of the oils not affecting these 

types of aberrations; however, the main reason may be that these chromosomal aberrations 

occur with a low frequency or that there are difficulties of detecting them. 

 

4.2.4 Relevance of testing pyrolysis oils in an Allium cepa test 

 

The Allium cepa test was used in this study due to its many benefits; onions are easy to store 

and handle, they have good chromosomal conditions, they can be exposed directly to the test 

solution and they possess CYP-enzymes that make it possible to detect secondary toxicants. 

However, the relevance of the exposure to onions may be questioned. Can the results from this 

study be extrapolated to humans or wildlife?  

 

In a laboratory experiment, exposure doses, pH and other factors that may influence the 

experiment can be controlled for, which makes it easier to detect toxic actions and responses 

that are directly caused by the examined exposure. However, since the experiment is performed 

under controlled conditions, the results cannot immediately be extrapolated to natural 

conditions. In nature, other pollution sources or compounds found naturally in the environment 

may interact with the oil chemicals, causing an enhanced or minimized toxicity, and/or affecting 

bioavailability. Additionally, extrinsic factors, like pH, salinity and temperature, may affect the 

toxicity of the oils. In this aspect, the present laboratory in vivo study to some degree describes 

the mechanisms and effects of the oils on living organisms; however, in situ experiments are 

needed to further be able to evaluate the effects on plants and animals in their natural habitat.  

 

In this experiment, only the compounds solved in water were tested for (geno)toxic effects, 

because the onions needed water to grow, and organic solvents are toxic for the root growth. 

Even though the present experiment did not test the entire complement of the pyrolysis oils, it 

can be argued that the water-soluble part of the oils makes the greatest environmental threat. If 

the oils reaches the environment through accidental releases and/or routine losses associated 

with the use of oils, the compounds that are dissolved and bioavailable in water will due most 

harm to aquatic plants and animals. However, it should be noted that the compounds with the 

highest water solubility have a higher biodegradability in the aquatic and soil environment (Blin 

et al., 2007, Oasmaa et al., 2012), while the more insoluble ones are more persistent. Thus, 

further testing should be conducted for the whole pyrolysis oils or the water insoluble part of 

the oils in another test system (e.g. Ames test). 
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It may be questioned whether the cellular damages observed in the Allium cepa test after 

exposure to different pyrolysis oils and the possible induction of chromosomal aberrations may 

be extrapolated to mammals and other animals. Leme and Marin-Morales (2009) pointed out 

that since the target is DNA, common to all organisms, the results may serve as a warning to 

other biological systems. Besides, the test has shown to be comparable with other tests 

performed in mammalian systems (Section 1.2.4). However, animals may contain different 

mechanisms and defense systems, as well as a different organization and types of tissues, 

compared with plants. Thus, an indication of similar effects may be anticipated; however, the 

response between different organisms are likely to be somewhat different. 

 

In the current test, chromosomal aberrations were detected as a response of exposure to 

pyrolysis oils; however, how is this relevant for the cell- and the individual-level? Aberrations 

may cause cell death by preventing cell division or by losses of vital genetic material. If the 

cells are chronically affected by toxic chemicals, a great part of the cell population may die or 

cell division may be blocked, causing reduced supply of new cells contributing to growth of an 

organism. Earlier studies have shown a correlation between the frequency of chromosomal 

aberrations, mitotic index and the root growth in an Allium cepa test (Fiskesjö, 1988, Liu et al., 

1992, Smaka-Kincl et al., 1996). If the aberration is stable, it can give permanent alterations in 

the genetic material, which can be transferred through several cell generations, becoming a 

mutation. Mutations can cause a range of effects on living organisms, like cancer, impairments 

in enzyme function, altered protein turnover, impairment in general metabolism, inhibition of 

growth and impairments in immune response and reproduction (Kurelec, 1993). The effect 

mutations are having on the cell and individual may depend on the type of mutation and how 

important the changed genetic information is for the cell function. Mutations in germ line cells 

can cause hereditary defects, and this is of concern in ecosystems with respect to adverse effects 

(Wurgler and Kramers, 1992, Bickham et al., 2000), although these mutations may be selected 

against and be lost through generations. An increased frequency of chromosomal aberrations in 

peripheral blood lymphocytes in humans have been linked to an increased frequency of cancer 

(Hagmar et al., 1994, Bonassi et al., 2008). Thus, the pyrolysis oils tested in this master’s project 

exerted (geno)toxic effects on the Allium cepa onions, and may cause sub-lethal effects on 

plants and animals in wildlife. However, caution should be taken if using the present result to 

estimate the risk to populations. Appropriate assessment of the genotoxic potential of an 
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exposure requires use of different assays to evaluate various genetic events in several cell types 

(Park et al., 2008).  
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5 Summary and conclusion 
 

The aim of this master’s project was to determine the toxic and the genotoxic potentials of 

pyrolysis oils generated from three different wood feedstocks, namely poplar, beech and spruce, 

by evaluation in an Allium cepa chromosomal aberration assay. It was hypothesized that these 

potentials would vary with the feedstock used for making the oils and would increase with 

increasing concentrations of the oils. 

  

The results showed: 

- A toxic, cytotoxic and genotoxic potential of all the three pyrolysis oils. 

- That the order of genotoxicity of the oils was pyrolysis oils derived from poplar, beech 

and spruce feedstocks, respectively. 

- A concentration-dependency in genotoxicity for the poplar- and beech-oil; however, not 

for the spruce-oil. 

- That the genotoxic potential of the oils was mainly linked to chromosomal aberrations 

induced by chemicals exerting effects on the spindle apparatus. 

 

The differences in toxicity between the oils are probably due to some variation in the chemical 

composition of the oils. The results from this master’s project could constitute an important 

knowledge of the aquatic toxicology of pyrolysis products. However, further studies should be 

carried out to investigate the effects of the whole compliment of the oils and to identify 

compounds, or interactions of compounds, responsible for the observed toxicity. In this way, 

pyrolysis oils that exert minor hazard on the environment may be manufactured. Additionally, 

the pyrosysis oils tested in the present master’s project are considered to be crude bio-oils, and 

many steps of refinement may be needed prior to application. Thus, comprehensive toxicity and 

genotoxicity studies should also be conducted on upgraded oils. Furthermore, other test systems 

can be conducted to test differences in toxicity between fossil oils and pyrolysis oils. Thus, a 

comparable measure of toxic effects exerted by oils derived from non-renewable energy sources 

and the alternative, oils derived from renewable energy sources, may be achieved.  
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Appendix A: Root Lengths 
 

Table A: Average root length (cm) per individual of Allium cepa onions was determined after 48 

hours exposure to tap water and 72 hours exposure to the respective treatment-group. The treatments 

were negative control (tap water), pyrolysis oils generated from fast pyrolysis of poplar, beech and 

spruce feedstocks at seven different concentrations (0.00001, 0.00004, 0.0001, 0.0004, 0.001, 0.004 and 

0.01/0.04 ml oil/ml solution (tap water+dimethyl sulfoxide, DMSO)), a ‘blind’ solution (tap 

water+DMSO) for each concentration, and a positive control (methyl methanesulfonate, MMS). Six 

parallels of onions were exposed to negative control, whereas three parallels of onions were included 

for all the other treatments and concentrations. The difference in average root length after exposure to 

72 hours of treatment and 48 hours of tap water was also included for all the treatment-groups. The 

average of the differences for all the six individuals of onions exposed to negative control was measured, 

and the root length differences of the onions exposed to the various treatment-groups was calculated as 

a percentage (%) of this average.  

Treatment Conc. Ind. 
Root length (average per individual) 

48 h water 72 h water 72h-48h 72h-48h (avg.) 

Neg. ctr.   1 0.136 1.207 1.071 

0.946 

    2 0.263 1.273 1.010 

    3 0.307 1.193 0.886 

    4 0.233 1.071 0.838 

    5 0.288 1.315 1.027 

    6 0.135 0.980 0.845 

Treatment Conc. Ind. 
Root length (average per individual) 

48 h water 72 h treatment 72h-48h % of neg. ctr. (avg.) 

Poplar 0.00001 1 0.251 0.300 0.049 5.153 

    2 0.639 0.679 0.040 4.209 

    3 0.996 1.056 0.060 6.295 

  0.00004 1 0.710 0.709 -0.001 -0.058 

    2 0.379 0.450 0.071 7.487 

    3 0.523 0.572 0.049 5.152 

  0.0001 1 0.389 0.655 0.266 28.165 

    2 0.590 0.742 0.153 16.152 

    3 0.781 0.890 0.109 11.538 

  0.0004 1 0.727 1.443 0.716 75.697 

    2 0.600 1.107 0.507 53.619 

    3 0.705 1.607 0.902 95.352 

  0.001 1 0.724 1.206 0.482 50.936 

    2 0.610 1.477 0.867 91.592 

    3 0.793 1.490 0.698 73.762 

  0.004 1 0.152 1.224 1.072 113.283 

    2 0.181 1.158 0.977 103.236 

    3 0.172 0.960 0.788 83.303 

  0.04 1 0.329 1.181 0.853 90.105 

    2 0.405 1.048 0.643 68.002 

    3 0.935 2.139 1.204 127.241 

Beech 0.00001 1 1.494 1.605 0.111 11.744 

    2 0.764 0.825 0.061 6.431 



Appendix A 

 

    3 1.045 1.120 0.075 7.879 

  0.00004 1 0.638 0.734 0.097 10.239 

    2 1.152 1.147 -0.006 -0.604 

    3 0.928 0.976 0.048 5.065 

  0.0001 1 0.563 0.741 0.178 18.808 

    2 1.023 1.230 0.207 21.897 

    3 0.993 1.116 0.123 12.963 

  0.0004 1 0.568 0.780 0.212 22.400 

    2 1.138 1.574 0.436 46.041 

    3 0.577 0.913 0.336 35.538 

  0.001 1 1.076 1.548 0.472 49.903 

    2 0.707 1.067 0.361 38.129 

    3 0.893 1.310 0.417 44.049 

  0.004 1 0.534 0.920 0.385 40.723 

    2 0.743 1.410 0.667 70.483 

    3 0.747 1.341 0.594 62.825 

  0.01 1 0.646 1.473 0.827 87.461 

    2 0.446 0.900 0.454 48.015 

    3 0.947 1.628 0.680 71.910 

Spruce 0.00001 1 0.740 0.830 0.090 9.562 

    2 1.017 0.980 -0.037 -3.861 

    3 0.600 0.648 0.048 5.045 

  0.00004 1 0.800 0.872 0.072 7.633 

    2 0.665 0.685 0.020 2.121 

    3 0.930 1.004 0.074 7.776 

  0.0001 1 0.823 1.224 0.401 42.337 

    2 0.832 1.424 0.592 62.560 

    3 0.632 0.943 0.310 32.810 

  0.0004 1 0.475 0.978 0.503 53.141 

    2 0.666 1.296 0.630 66.634 

    3 0.641 1.030 0.388 41.046 

  0.001 1 0.771 1.311 0.539 57.009 

    2 0.446 0.827 0.381 40.218 

    3 1.094 1.487 0.393 41.549 

  0.004 1 0.640 1.286 0.646 68.316 

    2 0.552 1.092 0.539 56.996 

    3 0.805 1.602 0.796 84.171 

  0.04 1 1.562 2.493 0.931 98.403 

    2 0.904 1.153 0.249 26.344 

    3 0.408 0.900 0.492 51.990 

Blind 0.00001 1 0.429 0.687 0.257 27.209 

    2 0.424 1.096 0.672 71.033 

    3 0.544 1.094 0.550 58.154 

  0.00004 1 0.443 0.921 0.479 50.582 

    2 0.552 1.337 0.785 82.953 

    3 0.504 1.127 0.622 65.783 

  0.0001 1 0.373 1.318 0.945 99.907 

    2 0.451 1.313 0.862 91.061 
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    3 0.349 1.066 0.717 75.743 

  0.0004 1 0.308 0.623 0.315 33.273 

    2 0.527 1.071 0.544 57.511 

    3 0.847 1.690 0.843 89.081 

  0.001 1 0.251 0.905 0.654 69.092 

    2 0.442 1.219 0.777 82.150 

    3 0.360 0.976 0.616 65.066 

  0.004 1 0.451 1.205 0.753 79.628 

    2 0.667 1.609 0.942 99.586 

    3 0.384 0.674 0.291 30.730 

  0.01 1 0.809 1.807 0.998 105.443 

    2 0.737 0.933 0.196 20.768 

    3 0.373 1.167 0.794 83.914 

  0.04 1 0.568 1.187 0.620 65.496 

    2 1.224 2.137 0.912 96.411 

    3 1.484 2.534 1.051 111.064 

Pos. ctr.   1 0.559 3.125 2.566 271.166 

    2 0.747 3.211 2.464 260.392 

    3 0.765 2.521 1.757 185.674 
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Appendix B: Mitotic Index and Number of Cells in Division 
 

Table B: The mitotic index and number of cells (in total, normal cells and damaged cells) observed in division, and in different stages of division (meta-

, ana- and telophase) in root meristems of Allium cepa onions after 72 hours exposure to pyrolysis oils generated from fast pyrolysis of polar, beech and 

spruce feedstocks at three different concentrations (0.00004, 0.0004 and 0.001 ml oil/ml solution (tap water+dimethyl sulfoxide, DMSO)). The values for onions 

exposed to a ‘blind’ solution (tap water+DMSO) for each of the concentrations were included, as well as the values in negative control (tap water)- and positive 

control (methyl methanesulfonate, MMS)-exposed onion roots for comparison. Three individuals were included for each treatment-group. 

Treatment Conc. Ind. MI 

#cells in division  

(meta-, ana-, telophase) 
#metaphase #anaphase #telophase 

Tot. N D Tot. N D Tot.  N D Tot. N D 

Poplar 0.00004 1 11.7 117 59 58 51 16 35 15 5 10 51 38 13 

    2 12.1 113 51 62 64 21 43 13 6 7 36 24 12 

    3 10.1 103 43 60 39 9 30 22 3 19 42 31 11 

  0.0004 1 9.4 107 41 66 58 19 39 12 1 11 37 21 16 

    2 8.3 102 29 73 67 15 52 5 1 4 30 13 17 

    3 12.9 121 54 67 58 20 38 7 5 2 56 29 27 

  0.001 1 9.4 104 26 78 33 9 24 20 1 19 51 16 35 

    2 9.3 104 21 83 60 9 51 19 1 18 25 11 14 

    3 9.8 107 32 75 75 14 61 8 2 6 24 16 8 

Beech 0.00004 1 10.1 103 59 44 59 25 34 5 0 5 39 34 5 

    2 9.8 107 57 50 61 24 37 12 3 9 34 30 4 

    3 8.2 119 72 47 52 26 26 8 2 6 59 44 15 

  0.0004 1 8.2 101 42 59 60 14 46 7 4 3 34 24 10 

    2 10.9 127 40 87 76 14 62 14 2 12 37 24 13 

    3 7.1 102 40 62 59 13 46 12 6 6 31 21 10 

  0.001 1 8.9 100 46 54 39 9 30 14 3 11 47 34 13 

    2 5.6 105 31 74 60 12 48 16 1 15 29 18 11 

    3 10.7 128 40 88 77 8 69 10 3 7 41 29 12 

Spruce 0.00004 1 11.3 133 64 69 82 26 56 13 3 10 38 35 3 

    2 11.2 146 78 68 77 27 50 16 3 13 53 48 5 
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    3 10.1 100 60 40 56 21 35 6 2 4 38 37 1 

  0.0004 1 10.2 117 70 47 41 19 22 21 11 10 55 40 15 

    2 10.1 102 65 37 49 27 22 13 5 8 40 33 7 

    3 9.3 102 59 43 48 23 25 13 7 6 41 29 12 

  0.001 1 8.7 109 57 52 50 16 34 16 3 13 43 38 5 

    2 7.5 127 62 65 57 16 41 13 6 7 57 40 17 

    3 7.8 108 59 49 53 19 34 13 6 7 42 34 8 

Blind 0.00004 1 15.6 122 84 38 57 34 23 12 4 8 53 46 7 

  0.0004 1 10.1 102 67 35 42 21 21 14 6 8 46 40 6 

  0.001 1 14.2 107 74 33 52 25 27 10 7 3 45 42 3 

Neg. ctr.   1 14 108 73 35 58 29 29 19 17 2 31 27 4 

    2 22.5 142 107 35 80 53 27 20 16 4 42 38 4 

    3 13.8 146 105 41 68 39 29 22 20 2 56 46 10 

Pos. ctr.   1 10.5 116 34 82 56 5 51 25 7 18 35 22 13 

    2 11.1 104 15 89 60 2 58 12 1 11 32 12 20 

    3 9.6 103 26 77 61 3 58 10 3 7 32 20 12 
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Appendix C: Specific Chromosomal Aberrations 
 

Table C: The number of specific types of chromosomal aberrations observed in meristematic root 

cells in meta-, ana- and telophase of Allium cepa onions after 72 hours exposure to pyrolysis oils 

generated from fast pyrolysis of poplar, beech and spruce feedstocks at three different concentrations 

(0.00004, 0.0004 and 0.001 ml oil/ml solution (tap water+dimethyl sulfoxide, DMSO)). The types and 

numbers for onions exposed to a ‘blind’ solution (tap water+DMSO) for each of the concentrations were 

included, as well as for the negative control (tap water)- and positive control (methyl methanesulfonate, 

MMS)-exposed onion roots for comparison. Three parallels of individuals were included for each of the 

treatment-groups.  

Treatment Conc. Ind. Phase Classification of damage #damages 

Poplar 0.00004 1 Metaphase C-metaphase 7 

        Disturbed 17 

        Fragment 1 

        Sticky 11 

      Anaphase Bridge 7 

        Laggard 5 

        Vagrant 10 

      Telophase Bridge 4 

        Laggard 5 

        Vagrant 7 

    2 Metaphase C-metaphase 6 

        Disturbed 29 

        Fragment 2 

        Sticky 7 

        Vagrant 1 

      Anaphase Bridge 5 

        Laggard 2 

        Vagrant 5 

      Telophase Bridge 6 

        Laggard 5 

        Vagrant 4 

    3 Metaphase C-metaphase 1 

        Disturbed 20 

        Fragment 2 

        Sticky 9 

      Anaphase Bridge 8 

        Fragment 2 

        Laggard 7 

        Star 1 

        Vagrant 17 

      Telophase Bridge 2 

        Laggard 4 

        Vagrant 8 

  0.0004 1 Metaphase C-metaphase 3 

        Disturbed 19 
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        Fragment 2 

        Sticky 15 

        Vagrant 2 

      Anaphase Bridge 3 

        Laggard 7 

        Vagrant 8 

      Telophase Laggard 5 

        Vagrant 13 

    2 Metaphase C-metaphase 5 

        Disturbed 38 

        Fragment 5 

        Sticky 9 

      Anaphase Bridge 2 

        Laggard 3 

        Vagrant 3 

      Telophase Laggard 10 

        Vagrant 12 

    3 Metaphase C-metaphase 3 

        Disturbed 25 

        Fragment 1 

        Sticky 10 

      Anaphase Bridge 1 

        Vagrant 1 

      Telophase Bridge 3 

        Laggard 17 

        Vagrant 14 

  0.001 1 Metaphase Disturbed 12 

        Fragment 3 

        Sticky 11 

        Vagrant 1 

      Anaphase Bridge 5 

        Laggard 9 

        Vagrant 14 

      Telophase Bridge 7 

        Fragment 2 

        Laggard 20 

        Vagrant 18 

    2 Metaphase C-metaphase 4 

        Fragment 2 

        Disturbed 34 

        Sticky 13 

      Anaphase Bridge 4 

        Fragment 1 

        Laggard 7 

        Vagrant 18 

      Telophase Laggard 6 

        Vagrant 11 

    3 Metaphase C-metaphase 10 
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        Disturbed 43 

        Polyploid 2 

        Sticky 6 

      Anaphase Bridge 4 

        Fragment 1 

        Laggard 2 

        Vagrant 6 

      Telophase Bridge 1 

        Laggard 5 

        Vagrant 5 

Beech 0.00004 1 Metaphase C-metaphase 8 

        Disturbed 26 

        Fragment 1 

      Anaphase Bridge 4 

        Fragment 1 

        Laggard 2 

        Vagrant 2 

      Telophase Bridge 1 

        Laggard 4 

        Vagrant 5 

    2 Metaphase C-metaphase 11 

        Disturbed 26 

        Fragment 1 

      Anaphase Bridge 9 

        Laggard 3 

        Vagrant 9 

      Telophase Bridge 1 

        Fragment 1 

        Laggard 3 

        Vagrant 2 

    3 Metaphase C-metaphase 6 

        Disturbed 19 

        Fragment 2 

        Sticky 1 

      Anaphase Bridge 5 

        Laggard 3 

        Vagrant 6 

      Telophase Bridge 2 

        Laggard 6 

        Vagrant 9 

  0.0004 1 Metaphase C-metaphase 20 

        Disturbed 22 

        Fragment 1 

        Sticky 4 

      Anaphase Bridge 2 

        Laggard 3 

        Vagrant 3 

      Telophase Fragment 2 
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        Laggard 4 

        Vagrant 8 

    2 Metaphase C-metaphase 11 

        Fragment 2 

        Disturbed 46 

        Polyploid 2 

        Sticky 3 

      Anaphase Bridge 9 

        Fragment 2 

        Laggard 12 

        Vagrant 11 

      Telophase Fragment 1 

        Laggard 13 

        Vagrant 3 

    3 Metaphase C-metaphase 17 

        Disturbed 24 

        Fragment 2 

        Sticky 5 

      Anaphase Bridge 3 

        Laggard 4 

        Vagrant 5 

      Telophase Laggard 4 

        Vagrant 9 

  0.001 1 Metaphase C-metaphase 5 

        Disturbed 16 

        Polyploid 4 

        Sticky 5 

      Anaphase Bridge 3 

        Fragment 1 

        Laggard 10 

        Vagrant 9 

      Telophase Fragment 2 

        Laggard 10 

        Vagrant 8 

    2 Metaphase C-metaphase 9 

        Disturbed 36 

        Fragment 2 

        Polyploid 1 

        Sticky 2 

      Anaphase Bridge 9 

        Fragment 3 

        Laggard 15 

        Vagrant 14 

      Telophase Bridge 1 

        Laggard 4 

        Vagrant 10 

    3 Metaphase C-metaphase 19 

        Disturbed 37 
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        Fragment 3 

        Polyploid 1 

        Sticky 11 

        Vagrant 1 

      Anaphase Bridge 2 

        Fragment 1 

        Laggard 6 

        Vagrant 6 

      Telophase Bridge 2 

        Laggard 6 

        Vagrant 7 

Spruce 0.00004 1 Metaphase C-metaphase 28 

        Disturbed 27 

        Fragment 7 

        Sticky 1 

      Anaphase Bridge 6 

        Laggard 7 

        Vagrant 9 

      Telophase Laggard 3 

        Vagrant 3 

    2 Metaphase C-metaphase 18 

        Disturbed 32 

        Fragment 4 

      Anaphase Bridge 12 

        Laggard 12 

        Vagrant 10 

      Telophase Laggard 2 

        Vagrant 5 

    3 Metaphase C-metaphase 15 

        Disturbed 18 

        Fragment 4 

        Sticky 2 

      Anaphase Bridge 1 

        Laggard 2 

        Vagrant 3 

      Telophase Vagrant 1 

  0.0004 1 Metaphase C-metaphase 4 

        Disturbed 15 

        Fragment 1 

        Sticky 3 

      Anaphase Bridge 8 

        Laggard 8 

        Star 1 

        Vagrant 9 

      Telophase Laggard 7 

        Vagrant 12 

    2 Metaphase C-metaphase 6 

        Disturbed 14 
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        Fragment 2 

        Sticky 2 

      Anaphase Bridge 5 

        Laggard 6 

        Vagrant 8 

      Telophase Bridge 2 

        Laggard 4 

        Vagrant 6 

    3 Metaphase C-metaphase 7 

        Disturbed 11 

        Fragment 1 

        Polyploid 1 

        Sticky 6 

      Anaphase Laggard 4 

        Vagrant 5 

      Telophase Fragment 1 

        Laggard 4 

        Vagrant 11 

  0.001 1 Metaphase C-metaphase 6 

        Disturbed 20 

        Polyploid 3 

        Sticky 5 

      Anaphase Bridge 2 

        Laggard 7 

        Star 1 

        Vagrant 11 

      Telophase Laggard 2 

        Vagrant 3 

    2 Metaphase C-metaphase 10 

        Disturbed 23 

        Fragment 3 

        Polyploid 5 

        Sticky 3 

      Anaphase Bridge 2 

        Laggard 2 

        Star 1 

        Vagrant 5 

      Telophase Fragment 2 

        Laggard 7 

        Vagrant 12 

    3 Metaphase C-metaphase 7 

        Disturbed 23 

        Fragment 1 

        Polyploid 3 

        Vagrant 1 

      Anaphase Bridge 2 

        Fragment 1 

        Laggard 2 
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        Vagrant 5 

      Telophase Fragment 1 

        Laggard 3 

        Vagrant 7 

Blind 0.00004   Metaphase C-metaphase 2 

        Disturbed 16 

        Polyploid 3 

        Sticky 2 

      Anaphase Bridge 6 

        Laggard 2 

        Star 2 

        Vagrant 8 

      Telophase Bridge 3 

        Fragment 1 

        Laggard 3 

        Vagrant 4 

  0.0004   Metaphase C-metaphase 7 

        Disturbed 14 

        Fragment 1 

      Anaphase Bridge 3 

        Laggard 5 

        Vagrant 8 

      Telophase Bridge 6 

        Fragment 1 

        Laggard 1 

        Vagrant 3 

  0.001   Metaphase C-metaphase 13 

        Disturbed 10 

        Sticky 3 

        Vagrant 1 

      Anaphase Bridge 2 

        Fragment 1 

        Laggard 3 

        Vagrant 3 

      Telophase Bridge 3 

        Vagrant 2 

Neg. ctr.   1 Metaphase C-metaphase 4 

        Disturbed 22 

        Fragment 5 

        Polyploid 1 

        Sticky 1 

        Vagrant 1 

      Anaphase Bridge 1 

        Laggard 1 

        Vagrant 1 

      Telophase Bridge 4 

        Laggard 2 

        Vagrant 1 
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    2 Metaphase C-metaphase 16 

        Disturbed 11 

      Anaphase Bridge 3 

        Fragment 1 

        Laggard 1 

        Vagrant 2 

      Telophase Bridge 2 

        Fragment 1 

        Laggard 2 

        Vagrant 1 

    3 Metaphase C-metaphase 3 

        Disturbed 25 

        Fragment 3 

        Sticky 1 

      Anaphase Bridge 2 

        Vagrant 2 

      Telophase Bridge 5 

        Laggard 4 

        Vagrant 4 

Pos. ctr.   1 Metaphase C-metaphase 11 

        Disturbed 37 

        Fragment 2 

        Polyploid 1 

        Sticky 2 

      Anaphase Bridge 12 

        Fragment 2 

        Laggard 14 

        Vagrant 18 

      Telophase Bridge 5 

        Fragment 1 

        Laggard 9 

        Vagrant 13 

    2 Metaphase C-metaphase 20 

        Disturbed 36 

        Fragment 1 

        Sticky 2 

      Anaphase Bridge 8 

        Fragment 2 

        Laggard 9 

        Star 2 

        Vagrant 9 

      Telophase Bridge 8 

        Laggard 8 

        Vagrant 11 

    3 Metaphase C-metaphase 12 

        Disturbed 45 

        Sticky 1 

      Anaphase Bridge 4 
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        Laggard 5 

        Star 2 

        Vagrant 5 

      Telophase Bridge 1 

        Laggard 7 

        Vagrant 11 
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Appendix D: Statistics 
 

Table D: Results from a two-sample Student t-test (p<0.05), including critical t-values and degrees 

of freedom (df), testing if the mean (root length, mitotic index, damaged cells (%), chromosomal 

aberrations (%)) of three individuals of onions is equal between two different treatment-groups (1 and 

2). Different symbols denote the means of the different treatment-groups that are not significantly 

different (ns) or significantly different (weakly (-/+), clearly (--/++) or strongly (---/+++)). 

Root inhibition test 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Bl. - 0.00004 Bl. - 0.00001 0.729 4.000 0.506 ns 

Bl. - 0.0001 Bl. - 0.00001 0.859 4.000 0.439 ns 

Bl. - 0.0004 Bl. - 0.00001 1.313 4.000 0.259 ns 

Bl. - 0.001 Bl. - 0.00001 1.477 4.000 0.214 ns 

Bl. - 0.004 Bl. - 0.00001 0.138 4.000 0.897 ns 

Bl. - 0.01 Bl. - 0.00001 1.501 4.000 0.208 ns 

Bl. - 0.04 Bl. - 0.00001 2.079 4.000 0.106 ns 

Bl. - 0.0001 Bl. - 0.00004 0.002 4.000 0.999 ns 

Bl. - 0.0004 Bl. - 0.00004 -0.080 4.000 0.940 ns 

Bl. - 0.001 Bl. - 0.00004 0.335 4.000 0.754 ns 

Bl. - 0.004 Bl. - 0.00004 -0.715 4.000 0.514 ns 

Bl. - 0.01 Bl. - 0.00004 0.133 4.000 0.901 ns 

Bl. - 0.04 Bl. - 0.00004 0.628 4.000 0.564 ns 

Bl. - 0.0004 Bl. - 0.0001 -0.100 4.000 0.925 ns 

Bl. - 0.001 Bl. - 0.0001 0.385 4.000 0.720 ns 

Bl. - 0.004 Bl. - 0.0001 -0.874 4.000 0.431 ns 

Bl. - 0.01 Bl. - 0.0001 0.158 4.000 0.882 ns 

Bl. - 0.04 Bl. - 0.0001 0.737 4.000 0.502 ns 

Bl. - 0.001 Bl. - 0.0004 0.716 4.000 0.513 ns 

Bl. - 0.004 Bl. - 0.0004 -1.922 4.000 0.127 ns 

Bl. - 0.01 Bl. - 0.0004 0.531 4.000 0.624 ns 

Bl. - 0.04 Bl. - 0.0004 1.428 4.000 0.226 ns 

Bl. - 0.004 Bl. - 0.001 -1.642 4.000 0.176 ns 

Bl. - 0.01 Bl. - 0.001 -0.347 4.000 0.746 ns 

Bl. - 0.04 Bl. - 0.001 0.377 4.000 0.725 ns 

Bl. - 0.01 Bl. - 0.004 1.918 4.000 0.128 ns 

Bl. - 0.04 Bl. - 0.004 2.485 4.000 0.068 ns 

Bl. - 0.04 Bl. - 0.01 0.893 4.000 0.422 ns 

P. - 0.001 P. - 0.0004 4.318 4.000 0.012 - 

S. - 0.004 S. - 0.001 4.468 4.000 0.011 - 

Mitotic index 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Blind Neg. ctr. 1.820 4.000 0.143 ns 

B. - 0.00004 Neg. ctr. 4.321 4.000 0.012 - 

B. - 0.0004 Neg. ctr. 4.293 4.000 0.013 - 

B. - 0.001 Neg. ctr. 4.176 4.000 0.014 - 

Pos. ctr. Neg. ctr. 3.984 4.000 0.016 - 

P. - 0.00004 Neg. ctr. 3.605 4.000 0.023 - 
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P. - 0.0004 Neg. ctr. 3.878 4.000 0.018 - 

P. - 0.001 Neg. ctr. 4.369 2.013 0.048 - 

S. - 0.00004 Neg. ctr. 3.822 4.000 0.019 - 

S.-  0.0004 Neg. ctr. 4.214 4.000 0.014 - 

S. - 0.001 Neg. ctr. 4.895 4.000 0.008 -- 

Damaged cells (%) 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Pos. ctr. B. - 0.0004 -2.682 4.000 0.055 ns 

Pos. ctr. B. - 0.001 -1.836 4.000 0.140 ns 

Blind Neg. ctr. -1.486 4.000 0.212 ns 

B. - 0.00004 Neg. ctr. -4.760 4.000 0.009 ++ 

B. - 0.0004 Neg. ctr. -9.039 4.000 0.001 ++ 

B. - 0.001 Neg. ctr. -6.332 4.000 0.003 ++ 

Pos. ctr. Neg. ctr. -9.769 4.000 0.001 ++ 

P. - 0.00004 Neg. ctr. -7.649 4.000 0.002 ++ 

P. - 0.0004 Neg. ctr. -6.606 4.000 0.003 ++ 

P. - 0.001 Neg. ctr. -12.964 4.000 0.000 +++ 

S. - 0.00004 Neg. ctr. -4.330 4.000 0.012 + 

S.-  0.0004 Neg. ctr. -3.935 4.000 0.017 + 

S. - 0.001 Neg. ctr. -7.016 4.000 0.002 ++ 

Pos. ctr. P. - 0.0004 -2.182 4.000 0.095 ns 

Pos. ctr. P. - 0.001 -0.389 4.000 0.717 ns 

Pos. ctr. S. - 0.00004 -5.494 4.000 0.005 ++ 

Pos. ctr. S. - 0.0004 -7.860 4.000 0.001 ++ 

Pos. ctr. S. - 0.001 -6.085 4.000 0.004 ++ 

Damaged cells in metaphase (%) 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Blind Neg. ctr. -0.940 4.000 0.400 ns 

B. - 0.00004 Neg. ctr. -2.341 4.000 0.079 ns 

B. - 0.0004 Neg. ctr. -6.596 4.000 0.003 ++ 

B. - 0.001 Neg. ctr. -6.068 4.000 0.004 ++ 

Pos. ctr. Neg. ctr. -9.253 4.000 0.001 ++ 

P. - 0.00004 Neg. ctr. -4.535 4.000 0.011 + 

P. - 0.0004 Neg. ctr. -4.259 4.000 0.013 + 

P. - 0.001 Neg. ctr. -6.007 4.000 0.004 ++ 

S. - 0.00004 Neg. ctr. -4.183 4.000 0.014 + 

S.-  0.0004 Neg. ctr. -1.464 4.000 0.217 ns 

S. - 0.001 Neg. ctr. -4.518 4.000 0.011 + 

Damaged cells in anaphase (%) 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Blind Neg. ctr. -3.308 4.000 0.030 + 

B. - 0.00004 Neg. ctr. -7.784 4.000 0.001 ++ 

B. - 0.0004 Neg. ctr. -3.383 4.000 0.028 + 

B. - 0.001 Neg. ctr. -6.743 4.000 0.003 ++ 

Pos. ctr. Neg. ctr. -8.169 4.000 0.001 ++ 

P. - 0.00004 Neg. ctr. -5.400 4.000 0.006 ++ 

P. - 0.0004 Neg. ctr. -2.720 2.125 0.106 ns 

P. - 0.001 Neg. ctr. -10.065 4.000 0.001 ++ 
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S. - 0.00004 Neg. ctr. -11.196 4.000 0.000 +++ 

S.-  0.0004 Neg. ctr. -6.450 4.000 0.003 ++ 

S. - 0.001 Neg. ctr. -5.103 4.000 0.007 ++ 

Damaged cells in telophase (%) 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Blind Neg. ctr. 0.758 4.000 0.491 ns 

B. - 0.00004 Neg. ctr. -0.647 4.000 0.553 ns 

B. - 0.0004 Neg. ctr. -6.430 4.000 0.003 ++ 

B. - 0.001 Neg. ctr. -4.544 4.000 0.010 + 

Pos. ctr. Neg. ctr. -3.696 4.000 0.021 + 

P. - 0.00004 Neg. ctr. -4.280 4.000 0.013 + 

P. - 0.0004 Neg. ctr. -7.806 4.000 0.001 ++ 

P. - 0.001 Neg. ctr. -3.699 4.000 0.021 + 

S. - 0.00004 Neg. ctr. 2.132 4.000 0.100 ns 

S.-  0.0004 Neg. ctr. -2.576 4.000 0.062 ns 

S. - 0.001 Neg. ctr. -1.160 4.000 0.311 ns 

Specific chromosomal aberration as percentage of total dividing cells 

Bridge 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Blind Neg. ctr. -2.064 4.000 0.108 ns 

B. - 0.00004 Neg. ctr. -1.678 4.000 0.169 ns 

B. - 0.0004 Neg. ctr. 0.192 4.000 0.857 ns 

B. - 0.001 Neg. ctr. -0.413 4.000 0.701 ns 

P. - 0.00004 Neg. ctr. -12.821 4.000 0.000 +++ 

P. - 0.0004 Neg. ctr. 2.895 4.000 0.044 - 

P. - 0.001 Neg. ctr. -0.961 4.000 0.391 ns 

C-metaphase 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Blind Neg. ctr. -0.298 4.000 0.781 ns 

B. - 0.00004 Neg. ctr. -0.725 4.000 0.509 ns 

B. - 0.0004 Neg. ctr. -2.146 4.000 0.098 ns 

B. - 0.001 Neg. ctr. -0.940 4.000 0.401 ns 

P. - 0.00004 Neg. ctr. 0.489 4.000 0.650 ns 

P. - 0.0004 Neg. ctr. 0.776 4.000 0.481 ns 

P. - 0.001 Neg. ctr. 0.324 4.000 0.762 ns 

Disturbed metaphase 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Blind Neg. ctr. 0.746 4.000 0.497 ns 

B. - 0.00004 Neg. ctr. -1.409 4.000 0.232 ns 

B. - 0.0004 Neg. ctr. -2.044 4.000 0.110 ns 

B. - 0.001 Neg. ctr. -1.711 4.000 0.162 ns 

Fragment 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Blind Neg. ctr. 1.392 4.000 0.236 ns 

B. - 0.00004 Neg. ctr. 0.878 4.000 0.430 ns 

B. - 0.0004 Neg. ctr. -0.228 4.000 0.831 ns 

B. - 0.001 Neg. ctr. -0.822 4.000 0.457 ns 
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P. - 0.00004 Neg. ctr. 0.398 4.000 0.711 ns 

P. - 0.0004 Neg. ctr. 0.104 4.000 0.922 ns 

P. - 0.001 Neg. ctr. -0.118 4.000 0.911 ns 

Laggard 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Blind Neg. ctr. -1.869 4.000 0.135 ns 

B. - 0.00004 Neg. ctr. -5.798 4.000 0.004 ++ 

B. - 0.0004 Neg. ctr. -2.173 2.011 0.161 ns 

B. - 0.001 Neg. ctr. -4.054 2.018 0.055 ns 

S. - 0.00004 Neg. ctr. -1.682 4.000 0.168 ns 

S. - 0.0004 Neg. ctr. -5.196 4.000 0.007 ++ 

S. - 0.001 Neg. ctr. -3.772 4.000 0.020 + 

Polyploidy 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Blind Neg. ctr. -0.582 4.000 0.592 ns 

Star anaphase 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Blind Neg. ctr. -1.000 2.000 0.423 ns 

Stickiness 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Blind Neg. ctr. -1.099 4.000 0.334 ns 

B. - 0.00004 Neg. ctr. 0.651 4.000 0.551 ns 

B. - 0.0004 Neg. ctr. -4.046 4.000 0.016 + 

B. - 0.001 Neg. ctr. -2.369 4.000 0.077 ns 

P. - 0.00004 Neg. ctr. -7.444 4.000 0.002 ++ 

P. - 0.0004 Neg. ctr. -5.300 4.000 0.006 ++ 

P. - 0.001 Neg. ctr. -4.357 4.000 0.012 + 

S. - 0.00004 Neg. ctr. -0.588 4.000 0.588 ns 

S. - 0.0004 Neg. ctr. -2.870 4.000 0.045 + 

S. - 0.001 Neg. ctr. -1.315 4.000 0.259 ns 

Vagrant 

Treatment (1) Treatment (2) t df Sig. (2-tailed) Symbol 

Blind Neg. ctr. -3.388 4.000 0.028 + 

B. - 0.00004 Neg. ctr. -3.858 4.000 0.018 + 

B. - 0.0004 Neg. ctr. -8.098 4.000 0.001 ++ 

B. - 0.001 Neg. ctr. -3.679 4.000 0.021 + 

S. - 0.00004 Neg. ctr. -2.377 4.000 0.076 ns 

S. - 0.0004 Neg. ctr. -9.450 4.000 0.001 ++ 

S. - 0.001 Neg. ctr. -13.811 4.000 0.000 +++ 
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Appendix E: Pictures of chromosomal aberrations 
 

 

Figure E. Different chromosomal aberrations detected in meristematic root cells of Allium cepa 

onions after exposure to different treatment-groups. A: Bridge found in anaphase within an onion 

exposed to tap water. B: C-metaphase found in an onion exposed to beech-oil (0.0004 ml oil/ml 

solution). C: Disturbed metaphase found in an onion exposed to poplar-oil (0.0004 ml oil/ml solution). 

D: Fragment found in a disturbed metaphase within an onion exposed to poplar-oil (0.0004 ml oil/ml 

solution). E: Laggards found in telophase within an onion exposed to poplar-oil (0.00004 ml oil/ml 

solution). F: Polyploid cell found in an onion exposed to beech-oil (0.0004 ml oil/ml solution). G: Star-

anaphase found in an onion exposed to spruce-oil (0.001 ml oil/ml solution). H: Sticky metaphase found 

in an onion exposed to poplar-oil (0.00004 ml oil/ml solution). I: Vagrants found in telophase within an 

onion exposed to poplar-oil (0.00004 ml oil/ml solution).
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