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Abstract

The social micro-blog site Twitter grows in user base each day and has
become an attractive platform for companies, politicians, marketeers, and
others wishing to share information and/or opinions. With a growing user
market for Twitter, more and more systems and research are released for
taking advantage of its informal nature and doing opinion mining and
sentiment analysis.

This master thesis describes a system for doing Sentiment Analysis on
Twitter data and experiments with grid searches on various combinations
of machine learning algorithms, features and preprocessing methods to
achieve so. The classification system is fairly domain independent and
performs better than baseline.

This system is designed to be fast enough to classify big amounts of data
and tweets in a stream, and provides an application program interface
(API) to easily transfer data to applications or end users.

Three visualisation applications are implemented, showing how to use the
API and providing examples of how sentiment data can be used.

The main contributions are:

C1 A literary study of the state-of-the-art for Twitter Sentiment Analy-
sis.

C2 The implementation of a general system architecture for doing Twit-
ter Sentiment Analysis.

C3 A comparison of different machine learning algorithms for the task
of identifying sentiments in short messages in a fairly semi-independent
domain.

C4 Implementations of a set of visualisation applications, showing how
to use data from the generic system and providing examples of how
to present sentiment analysis data.
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Sammendrag

Den sosiale mikrobloggingsnettstedet Twitter er i kontinuerlig vekst og
har blitt et attraktivt verktøy for bedrifter, politikere, markedsførere og
andre som ønsker å dele informasjon og/eller meninger. Med økende
brukermasse, kommer det ut flere og flere systemer og forskningsresul-
tater relatert til Twitter, sentimentanalyse og meningsmålinger.

Denne masteroppgaven definerer et system for å utføre sentimentanalyse
på data fra Twitter og oppnår dette ved å eksperimentere med parameter-
søk på forskjellige kombinasjoner av maskinlæringsalgoritmer, funksjoner
og preprosesseringsmetoder. Det utviklede systemet er forholdsvis domene-
uavhengig og har bedre ytelse enn baseline.

Dette systemet ble designet for å takle store mengder data og klassifisere
tweets i datastrømmer. For å enkelt tilby data til sluttbrukeren, ble et
"application program interface" (API) definert.

Et sett med visualiseringsapplikasjoner ble implementert for å vise bruken
av API-et og hvordan sentiment data kan bli brukt og presentert.

Hovedbidragene fra oppgaven er følgende:

C1 Oppgaven definerer en state-of-the-art for Twitter Sentimentanalyse
(TSA).

C2 Et generelt systemarkitektur for TSA ble utviklet og implementert.

C3 Forskjellige maskinlæringsalgoritmer er satt i mot hverandre for
å best finne sentiment i korte meldinger på en relativt domene-
uavhengig måte.

C4 Visualiseringsapplikasjoner er implementert, og viser hvordan en
kan bruke dataen fra det generelle systemet og hvordan sentimenter
kan bli presentert og brukt.
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Chapter 1

Introduction

The introduction chapter first defines the task description. Background
and Motivation for this task is given in section 1.2, followed by an overview
of the project goals in section 1.3 and in section 1.4 the project contribu-
tion is summarised. During the project, we participated in a workshop,
which is described in section 1.5. In the last section of the introduction,
an overview of this report is described.

This report is the result of a Master thesis at Department of Computer and
Information Science, NTNU, 2013.

1.1 Task Description

The task was given by Björn Gambäck and Lars Bungum at IDI, NTNU

Sentiment Analysis using the Twitter Corpus
In recent years, micro-blogging has become prevalent,

and the Twitter API allows users to collect a corpus from
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their micro-blogosphere. The posts, named tweets are lim-
ited to 140 characters, and are often used to express positive
or negative emotions to a person or product.

In this project, the goal is to use the Twitter corpus to
do Sentiment Analysis and develop tools for visualising the
results. Pak and Paroubek (2010) have shown how to do
this using frameworks like Support Vector Machines (SVMs)
and Conditional Random Fields (CRFs), benchmarked with
a Naïve Bayes Classifier baseline. They were unable to beat
the baseline, and the goal of this project will be to experi-
ment with these and other machine learning frameworks as
Maximum Entropy learners to try to beat the baseline.

1.2 Background and Motivation

Twitter has become a popular social media service often referred to as a
micro-blogging site. On Twitter users can post messages of maximum
140 characters, called tweets, on their own timeline. A timeline is a col-
lection of all user submitted tweets and all tweets from the other users that
a user is connected to (following). Tweets can be categorized by using
hashtags. A hashtag can, for instance, look like #happy or #obama2012.
By annotating the tweets with this tag, users can find similar tweets across
Twitter. Tweets often also contain references to other users by using the
@-character followed by the user name (e.g., @obama) or references to
pictures or articles via URLs.

Twitter has grown very rapidly and the usage statistics is ever changing.
In June 2012, there were posted over 400 million tweets every day [All
Twitter, 2012]. With over 500 million users, where about 170 million of
these are active ones [WebProNews, 2012], it is safe to say that Twitter
offers a lot of data.

The growth in Twitter users and status updates (tweets) over the last years
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has made Twitter an attractive platform for companies, marketeers, politi-
cians and others who are looking for feedback. Manually collecting in-
formation like this is a tedious if not impossible task.

The informal nature of Twitter leads to a lot of sentiments being posted
and this has made Twitter a gold mine for sentiment analysis (SA). Many
systems have used Twitter as corpus for SA. The first one to really use
Twitter as a corpus was Sentiment140 (previously known as TwitterSen-
timent) by a group of Stanford students [Go et al., 2009]. After this pa-
per, and as Twitter grew in popularity, many other systems have been
developed. Some of the later ones are TwiSent and C-Feel-IT [Mukherjee
et al., 2012], Tweenator [Saif et al., 2012] and MSAS [Chamlertwat et al.,
2012].

Many systems are using a single step, three way, classification for sen-
timents. Another approach is to do a two step classification, where the
subjectivity is classified first, and in step two, the polarity is predicted.
Subjectivity classification is the task of classifying a tweet as subjective
or objective. Pak and Paroubek [2010] counted word frequencies in a
subjective vs an objective set of tweets; the results showed that interjec-
tions and personal pronouns are the strongest indicators of subjectivity.
If the tweet is classified as objective (or neutral), no further classification
is required. If the tweet is subjective, however, it requires polarity clas-
sification. Polarity classification will classify between positive and neg-
ative tweets. Kouloumpis et al. [2011] experimented with different solu-
tions for tweet polarity classification, and found that the best performance
came from using n-grams together with a lexicon and micro-blog features.
Interestingly, performance dropped when a part-of-speech (POS) tagger
was included. They speculate that this can be due to the accuracy of the
POS tagger itself, or that POS tagging just is less effective for analysing
tweet polarity. Gimpel et al. [2010] showed that POS taggers designed
specifically for tweets can increase the accuracy.

The informal texts on social media represent challenges for traditional
natural language processing systems. These texts are short, and often con-
tain misspellings, slang and abbreviations. The challenge of handling

3



such a vocabulary has only been researched over the last few years.

Another interesting feature is that Twitter messages offer a lot of meta
data and information about their origin, such as location, language, and
more. These data could, for example, be used to filter out and classify
tweets from a certain event, like a festival or a conference.

For visualising sentiment data, not as much has been done. Sentiment140,
by Gimpel et al. [2011], has some rudimentary visualising with pie and
bar charts.1 Kamvar and Harris [2011] developed an emotional search
engine with different advanced techniques for visualising mood, but not
for three-way classification for sentiment on Twitter.

1.3 Project Goals

In this section, the main goals of this project are described.

G1 Experiment with different models for doing sentiment analysis
Design and implement different models for doing sentiment analy-
sis. Experiment with these models and find the model with highest
accuracy and beating the baseline the most.

G2 Develop tools for visualising sentiment classified tweets
Data is wasted if it is not used for anything. Data needs proper,
usable, summarising and visualisation tools to be of use. One of
the goals of this project is to come up with, plan and develop tools
that are useful for showing the real value of sentiment classified
tweets. To be able to make visualisation applications, we also need
a way to distribute the data through a documented interface.

1http://www.sentiment140.com/
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1.4 Contributions

C1 A literary study of the state-of-the-art for Twitter Sentiment Analy-
sis.

C2 The implementation of a general system architecture for doing Twit-
ter Sentiment Analysis.

C3 A comparison of different machine learning algorithms for the task
of identifying sentiments in short messages in a fairly semi-independent
domain.

C4 Implementations of a set of visualisation applications, showing how
to use data from the generic system and providing examples of how
to present sentiment analysis data.

1.5 SemEval’13

During the course of this project, a workshop for semantic analysis sys-
tems, called SemEval’13, was held. The workshop had several different
shared tasks, amongst others a task for building a message polarity clas-
sification system. In relation to this workshop, data sets were published
to the participants. To take advantage of this and to formally test our
system, we participated in the workshop and submitted a paper. This pa-
per was accepted for publication in the proceedings of the SemEval’13
conference [Selmer et al., 2013].

1.6 Thesis Structure

In Chapter 2, the existing solutions and current state-of-the-art are de-
scribed. In Chapter 3, data sets and machine learning theory are de-
scribed. The system architecture and model is presented and documented
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in Chapter 4. Chapter 4 also has a complete description of the visualisa-
tion application architecture and how the applications work. The experi-
mental setup is covered in Chapter 5 and the results in Chapter 6. Chapter
7 includes evaluation and discussions of the results. In Chapter 8 the re-
port is concluded and future work is proposed.
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Chapter 2

State-of-the-Art

A systematic literature review (SLR) was conducted to establish the state-
of-the-art of a Twitter Sentiment Analysis (TSA) system. The method and
results is documented in this chapter. The first section, Section 2.1, covers
the introduction and defines our research questions. The review method
is described in Section 2.2 and the results in Section 2.3.

As a workshop on TSA was conducted after defining the state-of-the-art,
a lot of additional work has been done in the field. Updates to the state-
of-the-art can be found in Section 2.4. Related work in visualisation is
described in Section 2.5.

2.1 Introduction

SLRs are still new in the field of Computer Science. There are few ex-
amples of an SLR in practice. The method we used is heavily inspired
by the documentation paper by Kofod-Petersen [2012] and the Master’s
thesis by Lillegraven and Wolden [2010].
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We defined our research questions (RQ) as the following:

RQ1 What are some of the existing solutions for SA (sentiment analysis)
in the Twitter Corpus?

RQ2 How does the different solutions found by addressing RQ1 compare
to each other with respect to micro-blogs like Twitter?

RQ3 What is the strength of the evidence in support of the different so-
lutions?

RQ4 What implications will these findings have when creating the appli-
cation/system?

2.2 Review Method

In this section we will describe our process step by step according to
the systematic literature review protocol as defined by and shown in Ap-
pendix A.

2.2.1 Planning

1. Identification of the need for a review
Assumed that a review is needed for this project.

2. Commissioning a review
Assumed to be commissioned for this project, so no commission
report was produced.

3. Specifying the research question(s), RQs
We defined the RQs based on what we felt needed to be researched
when finding the state-of-the-art for sentiment analysis systems on
Twitter. The RQs can be seen in Section 2.1.

8



4. Developing a review protocol
The systematic literature review protocol SLRP was developed in
the early stages of the project. After the first revision, it was eval-
uated by the project supervisor. The protocol was revised several
times during the execution of the review.

5. Evaluating the review protocol
The protocol was evaluated by the project supervisor.

2.2.2 Conducting

1. Identification of research
We defined a series of keywords and synonyms to construct a search
string to use. The search string was defined to find papers relevant
to our research questions. The development of this search string is
documented by Appendix A. The search string we used was:

("Sentiment Analysis" OR "Sentiment
Classification" OR "Opinion Mining")
AND (Twitter OR Microblog)

For the search domain, we used Google Scholar. Google Scholar
accumulates results from several different sources and gave many
results for our search. A lot of the results given corresponded to the
studies handed out by the project supervisor, a domain expert.

We limited the search to only give papers released after 2008. This
is due to Twitter being as new as it is.

The search resulted in 1060 papers, but after the first 8 pages of
results (with 10 papers per page), we found that the papers were
mostly irrelevant and we had limited resources and time for hand-
ling all 1060 papers. This resulted in a set of 80 papers, ready to go
through the selection process.
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2. Selection of primary studies
First, we defined a set of primary inclusion criteria. These criteria
were applied to the title and abstract of the study. If a paper did not
pass the criteria, it was dropped from the set. In addition we defined
secondary inclusion criteria. These criteria were checked against
the full text of the study. These inclusion criteria are documented
in the protocol in Appendix A.

After both selection processes, we had a set of 23 papers.

3. Study quality assessment
Using the description of Kofod-Petersen [2012] we defined a set of
10 quality criteria. All of the criteria are documented in the pro-
tocol in Appendix A. Each of the papers in our set was assessed
according to all of these criteria. If the paper met the criteria, it
would get 1 point; if it partially met them, it would get 0,5 points;
and if it did not meet the criteria, it would get 0 points.

The papers with the lowest score did not get taken as much into
consideration when defining the state-of-the-art.

4. Data extraction and monitoring
We defined a set of fields and information categories we thought
were important in order to answer our research questions. These
data features were used to generate a table of information. The
information was retrieved by reading the papers and manually ex-
tracting the data we needed.

5. Data synthesis
This step was included in the data extraction step.

2.2.3 Reporting

1. Specifying dissemination strategy
As this is for a master thesis, the result of the SLR is presented in
this report.
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2. Formatting the main report
The SLR was written as a section in this project report.

3. Evaluating the report
It is mandatory for an expert to review this report as well as a project
supervisor, as it is a report for a master thesis.

2.3 Results

In this section the result of the systematic literature review is presented.
In Section 2.3.1 all of the extracted data from the selected studies are
presented. The assessed quality of the articles is also documented here.

Section 2.3.2 answers the research questions given as a part of the SLRP.

2.3.1 Selected studies

All of the selected studies are presented in table format as a part of the
data extraction step in the SLR. The results can be found in Table 2.1.
In addition to the data features defined in the review protocol, the total
quality is added to be a part of the extraction table.
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In Table 2.2 all the individual points for the quality criteria are presented.
The criteria are defined as a part of the review protocol. The average
criterion score was 8.0.

2.3.2 Twitter Sentiment Analysis: State-of-the-Art

This section presents some of the state-of-the-art Twitter Sentiment Anal-
ysis (TSA) approaches, and the techniques that are used. The vocabulary
used on Twitter makes it hard for traditional natural language processing
systems to understand, because they are usually trained on a more formal
language. This has made researchers exploit some of the special features
that the web language, and Twitter give us, e.g., abbreviations and emoti-
cons.

2.3.2.1 Data Collection and Preprocessing

Most of the data used in TSA research is collected through the Twitter
API, either by searching for a certain topic/keyword or by streaming real-
time data. Some datasets from related research on the Twitter platform has
also been made available for other research projects, as an alternative to
collecting a complete data set from scratch. Some approaches specialize
on certain domains, while others query for tweets containing emoticons
(’:)’, ’:)’) to train a cross-domain classifier [Go et al., 2009]. The idea
behind the emoticon approach is to make sure that the collected tweets
contain subjectivity, but these training sets alone are limited to binary
classification only (positive/negative classification).

After the data has been collected, it commonly goes through a filtering
process. First, all non-English tweets are removed, then the Twitter spe-
cific symbols and functions described in Table 2.3 would normally be fil-
tered out. As mentioned, a study by Go et al. [2009] used ’:)’ and ’:(’ as
a label for the polarity in their training data, and thus they did not remove
these emoticons, but the URLs and usernames were replaced by a nomial
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#ID QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8 QC9 QC10 Total

S1 1.0 0.5 1.0 0.5 1.0 1.0 0.5 0.5 0.5 1.0 7.5

S2 1.0 1.0 1.0 0.5 1.0 1.0 1.0 0.5 0.5 1.0 8.5

S3 1.0 1.0 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0 9.0

S4 1.0 1.0 0.5 0.5 1.0 1.0 1.0 0.5 0.5 1.0 8.0

S5 1.0 0.5 0.5 0.5 1.0 1.0 0.0 0.5 1.0 0.5 6.5

S6 1.0 0.5 0.5 0.5 0.0 0.5 0.0 0.5 1.0 1.0 5.5

S7 1.0 1.0 1.0 0.5 0.5 1.0 1.0 1.0 1.0 1.0 9.0

S8 1.0 1.0 0.5 1.0 1.0 1.0 1.0 0.5 0.5 1.0 8.5

S9 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 0.5 1.0 9.0

S10 1.0 1.0 0.5 1.0 1.0 1.0 0.5 0.5 0.5 0.5 7.5

S11 1.0 0.5 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 8.5

S12 1.0 1.0 0.0 1.0 0.5 1.0 0.0 1.0 1.0 1.0 7.5

S13 1.0 1.0 1.0 1.0 0.5 0.5 0.5 1.0 1.0 1.0 8.5

S14 0.5 0.5 0.5 1.0 0.0 0.5 0.5 0.5 0.5 1.0 5.5

S15 1.0 0.0 0.0 0.5 1.0 1.0 0.0 0.0 0.0 0.5 4.0

S16 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 9.5

S17 1.0 1.0 1.0 1.0 1.0 1.0 0.5 0.5 0.0 0.5 7.5

S18 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10,0

S19 1.0 1.0 0.5 0.5 1.0 1.0 0.5 1.0 1.0 1.0 8.5

S20 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10,0

S21 1.0 1.0 1.0 0.5 1.0 1.0 0.5 0.5 0.5 1.0 8.0

S22 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10,0

S23 0.5 1.0 1.0 0.5 0.5 0.5 0.5 1.0 1.0 1.0 7.5

Avg 8.0

Table 2.2: Quality Assessment for the studies. Each QC can give 0, 0.5
or 1 point. The average score is 8.0
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RT Retweet Reposting another user’s tweet
@ Mention Tag used to mention another user
# Hashtag Hashtags are used to tag a tweet to a certain

topic. Have become popular recently, and is
also used on other platforms

:),:-),∧∧ Emoticon Hashtags are used to tag a tweet to a certain
topic. Have become popular recently, and is
also used on other platforms

URL URL Typically a link to an external resource, e.g a
new article or a photo

Table 2.3: Features that are usually removed from the tweets.

(’URL’ or ’USERNAME’). They also removed the query term from the
text so that it would not affect the classification.

Kouloumpis et al. [2011] used a hashtagged data set (HASH) in addi-
tion to an emoticon data set (EMOT) from http://sentiment140.com. The
hashtagged set is a subset of the Edinburgh Twitter corpus which consists
of 97 million tweets [Petrovic et al., 2010].

Some approaches have also experimented with normalizing the tweets,
and removing redundant letters, e.g ”loooove” and ”crazyyy”, that are of-
ten used in tweets. Redundant letters like these are sometimes used to
express a stronger sentiment, and it has therefore been experimented with
trimming down to one additional redundant letter(’loooove’ = ’loove’ in-
stead of love), so that the stronger sentiment can be taken into considera-
tion by a score/weight adjustment for that feature.

Part-of-speech tagging

Part-of-Speech (POS) tagging is a well-known process for marking the
words of a sentence. Adjectives, adverbs and personal pronouns have
been shown to be good indicators for subjectivity, which has made POS
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tagging a good technique for filtering out objective tweets before the po-
larity classification. Early research on TSA showed that the challeng-
ing vocabulary made it harder to tag the tweets with a good accuracy;
however, in 2010 Gimpel et al. [2011] made a POS tagger that aimed at
marking tweets. It performed very well in their experiments (almost 90%
accuracy).

2.3.2.2 Subjectivity Classification

The most used strategy for TSA is a two-step strategy where the first step
is subjectivity classification and the second step is the polarity classifica-
tion. The goal for the subjectivity classification is to separate subjective
and objective tweets.

One of the most used techniques for this task is POS tagging. Pak and
Paroubek [2010] found several indicators of subjectivity by counting word
frequencies in a subjective set versus an objective set. They found that in-
terjection and personal pronouns were the strongest indicators of subjec-
tivity in their set. In their paper, Pak and Paroubek [2010] concluded that
utterances were a strong indicator of subjectivity, but referring to the tag
UH. According to the Wall Street Journal mark-up guidelines [Santorini,
1990], the tag UH is, however, not utterances, but rather interjections.
Jiang et al. [2011] used normalization, POS tagging, word stemming, and
syntactic parsing for the subjectivity classification task. The idea was that
normalization of features would give better recall. According to their ex-
perimental results, their approach greatly improves the performance of
sentiment classification.

Previous research has also explored the use of noisy data and distant
supervised methods such as emoticons and hashtags for the subjectiv-
ity classification, where any match from a given lexicon will classify the
tweet as subjective.
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2.3.2.3 Polarity Classification

The final part of the analysis is the polarity classification (positive/negative).
While TSA is not yet considered mature, SA for longer texts, i.e., docu-
ments and reviews, has been explored for years, see, e.g., Pang and Lee
[2008] for an overview. Different techniques and algorithms that have
proven worthy for longer texts have also been applied to sentence level
SA with various success. Among these techniques, supervised learning
methods like Naïve Bayes classification (NB), maximum entropy (Max-
Ent) and support vector machines (SVM) are the most used. The limited
amount of attributes in tweets makes the feature vectors shorter than in
documents. For that reason there is no guarantee that algorithms that
perform well on document-level SA will be the best alternatives for clas-
sifying short texts like tweets. Among the machine learning algorithms
that perform well on TSA are NB, SVM and MaxEnt, see section 3.2.
While the SVM technique normally beats NB and MaxEnt on longer
texts, it seems to have some trouble with outperforming the NB when
the feature vectors are shorter, i.e., on shorter texts. Bermingham and
Smeaton [2010] have shown this in their comparison of SVM and NB for
microblogs.

Some approaches have also experimented with a combination of lexicon-
based methods and machine learning [Mudinas et al., 2012]. They per-
formed an entity-level sentiment analysis as the first step. Then they used
tweets that are likely to be opinionated in a lexicon-based method. The
last step of their process is to train a classifier to assign the sentiment
value. This approach makes it possible to train the classifier without man-
ually labeling the data, as they are using the data from the lexicon-based
method.

Kouloumpis et al. [2011] tried different solutions for the polarity classi-
fication, and found that the best performance came from using n-grams
feature selection together with lexicon features and microblog features.
Interestingly, the performance dropped when they included a POS tagger.
They do not explain the reason for this, but speculate that it can be the ac-
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curacy of the POS tagger itself, or just that POS tagging is less effective
for analysing the polarity of tweets.

Supervised learning

Supervised learning methods require some sort of training data to create
an inferred function for classification tasks. These data would prefer-
ably be manually annotated texts, but as this can be a labour-intensive
task, some research has experimented with emoticons or a collection of
hashtags as labels for positive/negative tweets. This is done by making
assumptions, such as that all tweets containing positive emoticons are
positive, and that all that contain negative emoticons are negative.

Unsupervised learning

The lexicon-based method seems to be the most used approach of the
unsupervised methods in TSA. This technique requires a lexicon with a
sentiment score for each word. When using such lexica the classifier can
look up all the words in the feature vector, e.g., a bag of words, and check
the sentiment score if the feature exists in the lexicon. Hence it will not
need any training beforehand.

Popular sentiment lexica are SentiWordNet and the General Inquirer. Some
researchers have also made custom extensions of these lexica that include
manually annotated emoticons and hashtags as well as words. Nielsen
[2011] made a sentiment lexicon called AFINN, specialized for Twitter.
It contains a lot of words from the vocabulary used in social networks.
AFINN supports slang and abbreviations, e.g., ’n00b’, ’lol’ and ’wtf’.
This lexicon was made as a response to the ANEW lexicon which works
better for document level SA since it does not support the Twitter lan-
guage [Nielsen, 2011].

Another lexicon made specifically for Twitter is the NRC-Canada Lexi-
con, developed for the SemEval’13 shared tasks. See more information
below.
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2.4 State-of-the-Art Post SemEval’13

The SLR was performed before the SemEval’13 tasks [Nakov et al., 2013].
This means that a lot of work has been done on TSA after the state-of-the-
art was defined. Many of the points are still relevant, but some additional
information can be extracted.

In relation to SemEval’13, Mohammad et al. [2013] defined and imple-
mented a state-of-the-art system. The system implemented by Moham-
mad et al. [2013], is described as the strongest system by Nakov et al.
[2013], showing the highest F-measure on both tweets and SMS. Hence
we will describe it in further detail below.

2.4.1 Sentiment Lexicon

The system developed by Mohammad et al. [2013], used lexica to help
classify sentiment. In addition to using existing general lexica like the
NRC Emotion Lexicon [Mohammad and Turney, 2010, Mohammad and
Yang, 2011], the MPQA Lexicon [Wilson et al., 2005], and the Bing Liu
Lexicon [Hu and Liu, 2004], Mohammad et al. [2013] also used Twitter
specific lexica. One Twitter specific lexicon was developed for the system
by streaming from the Twitter API from April to December 2012, using
78 different seed words as hash tags [Mohammad et al., 2013]. In addition
to their own Twitter specific lexicon, the Sentiment140 lexicon created
by Go et al. [2009] was used.

2.4.2 Classifier and Features

As with many previous systems (e.g., Bermingham and Smeaton [2010],
Chamlertwat et al. [2012], Zhang et al. [2011], Asiaee T et al. [2012]),
used Mohammad et al. [2013] supervised learning with SVM. The clas-
sification was done in one step, classifying three ways (neutral, positive
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and negative).

URLs and user names were normalised to placeholder text (http://someurl
and @someuser) and the tweets were tokenized and part-of-speech tagged
using a tool for doing natural language processing on Twitter by Gimpel
et al. [2010].

The features used were word ngrams, character ngrams, number of words
in all caps, POS tags, hashtags, lexica, punctuations, emoticons, the num-
ber of elongated words (e.g., goooood), clusters, and the number of negated
contexts. Mohammad et al. [2013] found that using all these features gave
the best performance.

2.5 Visualisation: State-of-the-Art

The distribution and visualisation of sentiment data has not been given
as much focus as the actual classification of the data. Sentiment140,1

the system developed by Go et al. [2009], uses searching with bar charts
and pie charts to visualise positive and negative sentiment. In addition it
shows all tweets the sentiment is calculated from, even the neutral tweets.

TweetFeel2 is also a popular site for visualisation of Twitter sentiment. It
was used by Barbosa and Feng [2010] to generate a data set for their ex-
periments. TweetFeel shows a textual stream of tweets matching a given
search query. The matched query or keyword in the tweet text are high-
lighted as either green or red, depending on the sentiment.

Another system, using a different presentation, is SMM.3 SMM is a Sen-
timent Analysis tool developed as a open source project and distributed at
Github.4 The visualisation of SMM is a bit more complex than the previ-

1http://www.sentiment140.com/
2http://www.tweetfeel.com/
3http://smm.streamcrab.com/
4https://github.com/cyhex/smm
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ous systems. The user can choose whether or not to stream data, and there
are five different views used to plot sentiment. Three views have plots fo-
cusing on showing negative, positive and neutral tweets developed over
time, where the x-axis indicates seconds and the y-axis shows accumu-
lated score. Another view in SMM shows a pie chart with percentage of
neutral, positive and negative tweets. The last view shows the individual
tweets and their sentiment score as defined by a number between -1 and 1.

Although WeFeelFine, by Kamvar and Harris [2011] is not a SA system
like the previously noted systems, it is worth mentioning as it focuses a lot
on visualising data partly collected from Twitter. WeFeelFine is a system
that has tracked feelings from blogs and Twitter since 2005. The feelings
can be anything from hunger to sleepiness. The data is presented in a
creative way, where a collection of moving graphical nodes, float around
on the page, represents each feeling felt. One can search and filter on
feelings, gender, weather, location and date. When clicking on a node,
the text that the feeling was extracted from is shown.
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Chapter 3

Material and Methods

This chapter covers the material and theory for the methods used in this
thesis. The first section describes the data that was used to train and eval-
uate the models that were developed. Most of the data was given by an
ongoing workshop, SemEval’13, who hosted a shared Twitter SA task. It
is also described how a smaller in-house data set was collected. The last
section explains the machine learning algorithms used in the experiments.

3.1 Data sets

Manually collecting information from Twitter would be a tedious task, but
Twitter offers a well documented Representational State Transfer Appli-
cation Programming Interface (REST API) which allows users to collect
a corpus from the microblogosphere. Most of the data used in TSA re-
search is collected through the Twitter API, either by searching for a cer-
tain topic/keyword or by streaming realtime data. Four different data sets
were used in the experiments described below. Three were supplied by
the organisers of the SemEval’13 shared task on Twitter sentiment anal-
ysis [Nakov et al., 2013], in the form of a training set, a smaller initial
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development set, and a larger development set. All sets consist of man-
ually annotated tweets on a range of topics, including different products
and events.

Tweet-level classification (Task 2B) was split into two subtasks in Sem-
Eval’13, one allowing training only on the data sets supplied by the organ-
isers (constrained) and one allowing training also on external data (uncon-
strained). To this end, a web application1 for manual annotation of tweets
was built and used to annotate a small fourth data set (’NTNU’). Each of
the 461 tweets in the ’NTNU’ data set were annotated by one person only.

The distribution of target classes in the data sets is shown in Table 3.1.
The data was neither preprocessed nor filtered, and thus contain hash-
tags, URLs, emoticons, etc. However, all the data sets provided by Sem-
Eval’13 had more than three target classes (e.g., ’objective’, ’objective-
OR-neutral’), so tweets that were not annotated as ’positive’ or ’negative’
were merged into the ’neutral’ target class.

Training Dev 1 Dev 2 NTNU
Class Num % Num % Num % Num %

Negative 1288 15 176 21 340 26 86 19
Neutral 4151 48 144 45 739 21 232 50
Positive 3270 37 368 35 575 54 142 31
Total 8709 688 1654 461

Table 3.1: The data sets used in the experiments

Due to Twitter’s privacy policy, the given data sets do not contain the
tweet text, but only the tweet ID which in turn can be used to down-
load the text. The Twitter API has a limit on the number of downloads
per hour, so SemEval’13 provided a Python script to scrape texts from
https://twitter.com. This script was slow and did not download the texts
for all tweet IDs in the data sets, so a faster and more precise download

1https://github.com/mikaelbr/tweetannotator
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script2 for Node.JS was implemented and submitted to the shared task
organisers.

3.2 Algorithms

The following section covers some theory for the machine learning al-
gorithms that are used in the experiments for this thesis. First the Naïve
Bayes classifier is described, and then Maximum Entropy and Support
Vector Machines are covered. At the end of the section, two ensemble
methods, bagging and boosting are explained.

3.2.1 Naïve Bayes Classification

The Naïve Bayes (NB) classifier is a practical Bayesian learning model
that is easy to understand and implement. For some classification tasks,
it has proven to be equally performing to more complex machine learn-
ing algorithms like artificial neural networks and decision trees [Mitchell,
1997]. NB is used for learning tasks where an instance x consists of a
number of attribute-value pairs, and the target function f(x) consists of a
finite number of values from a set V .

The NB classifier is based on the assumption that all the attribute values
are conditionally independent given the target value of the instance.

vNB = arg max
vjεV

P (vj)
∏
i

p(ai|vj) (3.1)

To classify an instance, the classifier uses the Maximum Likelihood Esti-
mation (MLE) method to find the ratio of an attribute value and a given
target value on the same instance in the training corpus. This means that
it has to calculate the probability estimate P for each attribute ai, given

2https://github.com/mikaelbr/twitscraper
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the target value vj , as shown in equation 3.1. It then assigns the target
value as the one that gives the highest product from multiplying all the
probabilities P from the training data.

The assumption of conditionally independent attributes makes this clas-
sifier best suited for handling bag-of-words models, which are composed
by collections of unigrams.

3.2.2 Maximum Entropy

Maximum Entropy (MaxEnt) is a multinomial logistic regression model
that allows for classification with more than two discrete classes. It has
been used for various natural language tasks, such as POS tagging and
text segmentation [Nigam et al., 1999].

The principle in MaxEnt is to model all that is known and assume nothing
about that which is unknown. In other words, if you have some knowledge
about a domain, choose a model that is consistent with the knowledge, but
otherwise as uniform as possible.

The MaxEnt models are feature-based, and in binary classification sce-
narios it is the same as general logistic reasoning. Unlike NB it has no as-
sumptions of conditionally independence, and can therefore be used with
feature selection methods like n-grams and extended unigrams (unigrams
with negation support) [Go et al., 2009].

3.2.3 Support Vector Machines

Support Vector Machines (SVM) are often called the large margin classi-
fiers because SVM try to separate learning data with the highest possible
margin [Fletcher, 2009]. By separating classes in the training data with a
high margin, it will obtain a better accuracy when classifying unobserved
instances. Basically, SVM can only classify binary problems, however by
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dividing the problem into several subclassifications, SVM can be used for
multi-class tasks also.

Figure 3.1: The hyperplane lin-
early separates the data into two
classes. The points closest to the
hyperplane are the support vec-
tors.

Figure 3.2: An example of a non-
linear problem. A kernel func-
tion is used to map these data
points into a higher dimensional
feature space.

The equation for the separating hyperplane is defined by the closest points
to the margin, as seen in Figure 3.1 These points are called support vec-
tors. In cases where the data is non-linear, as in Figure 3.2, a kernel
function is used to project the data into a high-dimensional space where
it is linearly separable.

3.2.4 Ensemble Learning

Ensemble Learning is a process where multiple models are used in an en-
semble to solve a problem. The thought behind using an ensemble of clas-
sifiers is to reflect how we make choices in our real lives. A normal proce-
dure is to collect the opinion from several others, sometime even experts,
to support our decisions. This is also what an Ensemble Learning clas-
sifier does. Ensemble Learning is itself a supervised learning algorithm,
since it is trained and used to make predictions. An Ensemble learner can
be a combination of different algorithms, and need not necessarily consist

29



of one specific type. There are mainly two complementary approaches to
training these individual classifiers: bootstrap aggregating (bagging) and
boosting. The main difference is how the classifiers in an ensemble use
their training data. Each classifier in bagging is trained on a subset of
the training data, while in boosting, all classifiers are trained on the same
original data set [Bauer and Kohavi, 1999].

3.2.4.1 Bootstrap Aggregating

In the bagging variant, each classifier has an equally weighted vote. To
obtain variance in the ensemble, the individual classifiers are trained on
a different dataset, called "bootstrap replicate", that is randomly drawn
from the original training data set, with replacement. Thus, for a training
set with n samples, the bootstrap replicate would also have n samples,
but some samples may appear several times and some samples from the
original set may not appear at all.

3.2.4.2 Boosting

Boosting is a method that is used to increase the accuracy of several weak
learners. Each classifier in a boosting algorithm is trained on the same
dataset. Weights are added to each training instance in the learning set.
The weights indicate the importance of an instance to the current classi-
fier [Freund and Schapire, 1997].

When a classifier fails to predict the correct class for an instance, the
weight for that particular instance is increased. So when training the next
hypothesis, it will have an increased chance to successfully handle that
instance.

In the process of generating hypotheses for the ensemble, each of the
classifiers are evaluated and given a weight, as an indicator of its accuracy.
When new queries are sent to the boosting algorithm, a voting takes place.
Each hypothesis recommends a classification for the query instance, then

30



the weights are summed up and the target class with the highest total
weight is chosen.
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Chapter 4

Architecture

This chapter defines the architecture for the generic Twitter Sentiment
Analysis system, and the implemented visualisation applications. Sec-
tion 4.1 describes the architecture for the API layer as well as the senti-
ment classifier server. Section 4.2 documents how the visualisation appli-
cations are implemented and how the finished product works.

4.1 TSA Architecture

This section describes the overall architecture and how the system works.
First the general system will be described, then the Application Program-
ming Interface (API) Layer and classification server in turn.

To make the system as modularized and responsive as possible, the API
Layer was written in Javascript, on the Node.js platform, and the senti-
ment classifier in the Python programming language. Both systems are
continuously running servers. This allows multiple services to run simul-
taneously, both for the API layer and the classifier. The idea is to make
the system horizontally scalable.
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Figure 4.1: Architectural overview of the system. The client retrieves
data from the Twitter API and uses the classification server for sentiment
classification.

A client makes a request to the API Layer, with the same interface as
the Twitter API service. From there the API Layer will retrieve informa-
tion from the Twitter API with Hypertext Transfer (or Transport) Proto-
col (HTTP) requests, iterate over all tweets received, and send them in
parallel to the classification server. When the classification server is done
processing and classifying the tweet, it is sent back to the API Layer.
When the API layer has received all the tweets, it responds to the client
with the same JavaScript Object Notation (JSON) data structure as the
Twitter API sends out, only with an additional attribute noting the tweet’s
sentiment. This architecture and application flow can be seen in Fig-
ure 4.1.
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4.1.1 API Layer Extension

To be able to have a scalable and responsive solution, the API Layer was
written using the Node.js platform. Since Node.js uses JavaScript as pro-
gramming language, the JSON data retrieved from the Twitter Represen-
tational state transfer (REST) and Streaming API are easily manipulated
and passed around.

The API Layer works as a thin layer extending the Twitter API. This
means that the interface used by Twitter, with all defined options and
appropriate methods, is reflected through the API Layer. The main benefit
is that all documentation for the Twitter API also documents most of this
extended API Layer.

For authentication, an application is registered with a developer account at
the Twitter Developer site. This creates OAuth credentials, which are used
to identify the application [Hammer-Lahav, 2010], and to gain access to
the Twitter data. For this implementation, the data is retrieved using the
OAuth access for the application, not at user level.

4.1.1.1 Architectural Flow

When a request from a client is made, the request gets processed by the
server and the routing module determines what the client is looking for.
When the proper service is found, the client-specified parameters are sent
directly to the Twitter API, using the Twitter Data Handler module (TDH).
The TDH module then iterates over all found tweets, and sends them in
parallel to the classification server. When a tweet has been processed
by the classification server, the classified sentiment is sent back to the
TDH module and the original tweet object is extended to contain a prop-
erty with the sentiment. When all tweets are classified, the TDH module
passes the extended twitter data to the render module. The render module
renders the JSON data and sends it to the client with appropriate HTTP
headers set. This application flow can be seen in Figure 4.2.
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Figure 4.2: Architectural overview of the API Layer. A request is handled
by the server, sending it to routing where it is processed and sent to service
look-up. If a service is found, a request is sent to the Twitter API and the
received data is extended by the Twitter Data Handler module to contain
a sentiment. When all of the Twitter data are extended, the data is given
as a response to the requesting client.

If there is an error during any part of the process, the error is caught by the
routing module, and the error is rendered as a JSON object, in the same
manner as it would be by the Twitter API.

When using both the Twitter REST API and Streaming API, there is a
high level of asynchronism. Especially when streaming, it is impossible
to predict when the next tweet is received. Due to this the system designed
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needs to be able to handle this dynamic data flow. Node.js is an event-
driven platform and has a natural support for asynchronous data.

All internal and external message passing in the API Layer is asynchronous.
When requesting Twitter for data, an event is triggered when that data is
ready and all tweets are separately sent to the classifier. By sending all
tweets separately in parallel, classification of the entire set of tweets does
not take much longer than classifying only one tweet.

When streaming, the TDH module opens a connection to the Twitter API,
but never closes it. There is a continuously open connection to the Twitter
server, which is feeding the TDH module with single tweets as they get
stored in the Twitter system. From the first received tweet, a connection
to the requesting client is opened by the render response module. This
connection will also remain open. In this way there is an open connection
between the client and the API Layer as well as between the API Layer
and the Twitter API. The API Layer works as a middleman, taking in
tweets, classifying them, and streaming them to the client. By running this
entire process asynchronously, the system can process data independently
of when it is published.

4.1.2 Sentiment Analysis Classifier

Python is computationally stronger than Node.js in many ways. Addition-
ally, it is much more mature. There are a lot of well documented packages
for handling various tasks. Scikit-learn1 (sklearn) is one of these pack-
ages. sklearn is a package built on top of the Python packages numpy,
scipy and matplotlib. sklearn integrates machine learning algorithms as
SVM, NB, MaxEnt, and more. sklearn implements solutions for doing
feature extraction, grid searching, cross validation, and a lot more for
analysing text. Thus it is a good choice for the process of sentiment anal-
ysis. As a dynamic typed language, Python allows for rapid development

1http://scikit-learn.org/
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and prototyping. These attributes are some of the reasons for why Python
is a good fit for the present system.

The Sentiment Analysis Classifier system runs as a server waiting for
requests. The HTTP method POST is used for a client to send a stringified
tweet object to the server. Stringify is a JSON method for returning a
serialized object represented by a string. The classification server converts
this string to a Python dictionary. The response will be a string with the
sentiment classification, that is, either positive, neutral or negative. The
classification scheme can be extended if necessary.

The classifier server can be initialized with different settings for classifi-
cation strategy, what port to run at, what training data to use, and whether
or not to show debug data. This allows for multiple servers running at
the same time, with different settings. Running multiple server instances
makes it easier to compare different classification strategies. Two servers
could run side by side, and a test framework could use the two servers to
classify the same tweets for a comparison.

When the server is initiated, the selected model is trained and made avail-
able for the classification server.

The classification server uses a pool of child processes. For each receiving
tweet, it spawns a new child from this pool and in this process the tweet is
classified. This way the classification server can process several tweets in
parallel, which helps the one-to-one relationship between a tweet on the
classification server and the same tweet on the API Layer.

4.1.2.1 Architectural Flow

The Sentiment Provider module from the API Layer makes a request to
the classifier’s POST Server. The POST server translates the string to
a Python dictionary and passes the information down to the Child Pro-
cess Spawner. A new process is spawned and, using the module gener-
ated when initiating the server, the tweet is classified and returned to the

38



API Layer.

When the classification model is trained on the server initialization, var-
ious text filters, normalizations and other pre-processing methods can be
utilized, as seen in figure 4.3. The model can be generated as either a
one-step process, two-step process or a combination using boosting.

If a one-step model is used, one algorithm is used to classify the tweet as
either negative, neutral or positive. If a two-step model is used, the tweet
is first classified as either subjective or neutral in the subjectivity classi-
fication step. If it is neutral, the model returns with the classification. If
the result is subjective, the tweet is sent to the polarity classification step,
where the result can either be negative or positive. The end classification
is returned to the API Layer.

When using the boosting model, a set of sub-models is generated and
all used in conjunction to predict a sentiment of a tweet. All sub-models
predicts and sends the classification to a weighted voting mechanism. The
final classification is the result of the vote. This process is visualised in
figure 4.4.

4.1.2.2 Classification Model Structure

The classification models are implemented by wrapping machine learning
algorithms from sklearn in a inheritance-based class structure. By having
every model inherit from a base model, the interface is the same across
every model, and the system can use the model without having knowl-
edge of which kind of algorithm it uses. An overview of this structure is
presented in figure 4.5.

The base parent model implements methods for training the machine
learning algorithm and for predicting either a set of documents or one doc-
ument. For one-step algorithms as NB, SVM and MaxEnt, these generic
methods can be used, but the two-step and boosting models have their
own implementation.
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Figure 4.3: Architectural overview of the classification server. On server
start, a model for predicting sentiment is generated. When a request from
the API Layer is made to the POST Server, a child processes is spawned.
The tweet text is extracted and sent into the model for classification. If
the classification model is a one-step process, the classifier returns to the
sentiment provider with either a neutral, positive or negative classifica-
tion. If the generated model is two-stepped, the tweet is first classified as
either neutral or subjective. If it is neutral, it is returned to the API Layer,
if it is subjective, it is sent to the next step and the result from that step is
returned to the sentiment provider.
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Figure 4.4: Architectural overview of the classification server with boost-
ing. On server start, the boosting model for predicting sentiment is gen-
erated with a set of sub-models. When a request from the API Layer is
made to the POST Server, a child processes is spawned. The tweet text is
extracted and sent into the model for classification. Each model predicts
a sentiment and sends the sentiment to voting. For voting the boosting
model selects the sentiment with highest score and returns this to the API
sentiment provider.
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Figure 4.5: Overview of how the models are built and connected. There is
a base model class implementing a method for predicting and training. All
models extend from this base model. The models for Naïve Bayes, SVM
and MaxEnt use the base model’s implementation of train and predict,
whilst the TwoStep and boosting models overrides the default one. The
interface for each model is the same.
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4.2 Visualisation Applications

To test and give examples of how to use the generic system, three different
visualisation applications were implemented: SentiMap which presents
geo-location based streams, SentiGraph which is a method for displaying
tweet sentiment in a combined pie and bar chart, and SentiStack which
helps visualising the twitter data as a bar stack per search query. Each of
these applications is described in their own subsection. The subsections
are in turn divided into describing how the applications are implemented
and the finished product.

4.2.1 SentiMap: Geo-location Based Streams

To show how the streaming API and geo-location can be used to analyse
sentiments for a location in real-time, SentiMap was developed. Senti-
Map is a visualisation tool showing the distribution of sentiments across
the states of USA with or without a search query. When a new tweet is
posted, within the USA, it is used to change the colour of the state it orig-
inated from. SentiMap can show the specifics of a state, with the number
of positive and negative tweets, and the total of tweets registered.

SentiMap also tracks changes in sentiment in the entire USA per second.
If a major event happens, the time line could show a change in sentiment
across the country. The sentiment difference is calculated by taking the
number of positive tweets subtracted by the number of negative tweets in
a given moment.

4.2.1.1 Implementation

Most of the application is implemented on the client side, and thus run-
ning in the browser. There is a thin server side code base running, hand-
ling the stream. In this section, the server will be described first, then all
details of the client implementation are covered.
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Server side implementation
The client side (browser), cannot connect to a Twitter stream by itself.
So to be continually fed tweets in real-time, a server implementation is
necessary. SentiMap’s server handles the following:

1. Connect to the API Layer stream.

2. Open a WebSocket connection for clients to connect to.

3. Start a HTTP server, serving HTML, JavaScript (JS), Cascading
Style Sheets (CSS), images and other resources.

4. Serve the clients connected to the WebSocket with tweets.

Since the API layer is designed as a thin layer on top of the official Twitter
API, the interface is the same. This means that programming libraries
designed to interact with the Twitter API, can also communicate with the
API Layer. SentiMap uses a forked (branched/copied an open sourced
project) Node.JS module called nTwitter.2 The only alteration made on
nTwitter is to change the base URL for the API location from pointing to
Twitter’s servers and directed to the API Layer server instead.

The server opens a WebSocket connection to allow clients to stream tweets
from the forked nTwitter module. WebSockets3 is a technology used to
accomplish a full-duplex connection over the Transmission Control Pro-
tocol (TCP). This means that a server can push information to a client,
without the client requesting it first, as with regular HTTP connection.
There are two channels of communication opened for the WebSockets.
One channel for streaming all tweets from the US, and one channel used
to transmit tweets related to a search. All clients share a connection to the
non-query based stream, but for a search each client has its own connec-
tion. If there are no clients connected to the non-query based stream, the
connection to the API Layer is closed, and only opened again if a client
connects to the WebSocket.

2https://github.com/AvianFlu/ntwitter
3http://en.wikipedia.org/wiki/WebSocket
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The server uses a simple Node.js HTTP module to serve static file content
to clients. The static content is HTML files, JavaScript libraries and code
bases, images and styling files.

When a client connects to the WebSocket, on either channel, it gets fed
tweets in real time. The clients receive full tweet objects directly from the
API Layer. This way the clients themselves can choose what to do with
the tweets and use them for multiple purposes at once. All logic regarding
computation of sentiment statistics, graphing and logging is handled by
each client.

Client side implementation
The client side uses a MV* design pattern to accomplish modularity and
structure. A Model-View-* (MV*) design pattern resembles a classical
Model View Controller (MVC) pattern, but uses no controllers. Instead
it relies more on views to handle the logic. To help with this design pat-
tern, a JavaScript framework called Backbone.js4 is used. In later years
Backbone has become a very popular framework to use on the client side
for achieving structure in large-scale applications. Backbone is a small
framework and works in smaller applications as well as big corporate
ones.

Every application function is its own independent module, and as such
is pluggable. To support this modularity, the code is separated into three
different code structures:

1. Models

2. Collections

3. Views

Models holds values and operations to interact with these values. For the
SentiMap application, there are three different models; State, Timeline−
Stats, and TweetCount.

4http://backbonejs.org/
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The TimelineStats model holds a two-dimensional array with time stamps
and sentiment difference as value, and an operation to append attributes to
this value. When a set of time stamp and sentiment difference is added to
the array, the model broadcasts this change to any listeners, using events.

The TweetCount model operates in the same way as TimelineStats,
but instead of having an array as a value, it simply stores an integer.
TweetCount offers operations to increase by one or reset the integer.
When the integer is changed, the model announces so through events.
Both the TimelineStats and TweetCount models are only intended to
be initiated once, unlike the State model.

For each state in the USA, an object is created from the State model. This
model holds values for state ID (name abbreviation, e.g., NY for New
York), number of positive and negative tweets for the given state. The
model has operations for increasing both the negative and positive counter
values by one. The model triggers an event when the values change.

A collection is simply a collection of models. In the SentiMap applica-
tions, the only collection is states which holds all the state model objects.
Collections offers operations for fetching objects based on ID. This way,
a collection can retrieve the model object for New York, based on the
abbreviated name.

Views handles most of the logic and interactions with the end user. A view
can represent a model or collection, but is not required to do so. A view is
coupled with an HTML element in the Document Object Model (DOM)
and can be used to render the contents of a model or collection of models
into this DOM structure. A view can be looked at as a pluggable module.
SentiMap consists of several views. Below is a list of the essential ones
and a description of the view’s role in the system.

App
The App view is the heart of the application. It loads and initiates all
modules (views). When App is initiated, the map, timeline, tweet
counter and stream view are initiated as well. The App view has
an operation (method) for switching between a query-based stream
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(search) or non-query based.

PublicStreamView
The PublicStreamView and SearchView are strongly related. Public-
StreamView handles the streaming of tweets when no search query
is defined. PublicStreamView connects to the non-query based chan-
nel of the server’s WebSocket, and attaches an operation to respond
when the server pushes a new tweet. This response operation reads
the tweet and based on the tweet location property, determines what
state the tweet originates from. Using the ID for the state, the state
model object is fetched from the state collection. Depending on
whether the sentiment classification of the tweet is positive or neg-
ative, the response operation triggers the increase negative or posi-
tive tweet method on the model.

The PublicStreamView module also has methods for disconnecting
from the server WebSocket, and removing the generated HTML
view from the DOM.

The response handler broadcasts a global event each time a new
tweet is received.

SearchView
The SearchView works in almost exactly the same way as the Public-
StreamView. If the App triggers a change between modes (from
non-query based to search), the SearchView connects to the search
channel on the WebSocket and communicates on which query it
would like to receive tweets related to. The SearchView and Public-
StreamView share the response handler on a new tweet.

MapView
To render out a map of the USA and connect each state with a view,
the MapView is initiated. The MapView is the view of the states
collection. When initiated, the MapView renders out a map of the
USA consisting of individual parts for each state. MapView creates
a StateView object per state in the map and attributes these objects
with their corresponding state models.
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StateView
A state view is created by the MapView, and has two attribute val-
ues; a state HTML object from the map, and the state model object.

On initialization, the StateView listens for any events on the at-
tached model. If a state model changes its polarity (either positive
or negative values are increased or reset), two operations get trig-
gered: change colour on the map for the given state and if the state
specific statistics is visible, update the statistics.

The state view also handles the presentation of the state specific
statistics. If a state on the map is clicked, the StateView of that state
hides the current detailed statistics (if any), and shows the statistics
for the clicked state. Before showing the chart, it makes sure that
the details are up to date.

TweetCountView
The TweetCountView is a simple view, initiated by the App view.
On initialization, the TweetCountView attaches a view render op-
eration on the new tweet event broadcasted by the public stream
and search stream response handlers. This view renderer updates a
counter on the site, informing the end user on how many tweets the
SentiMap has registered on the current map.

TimelineStatsView
The TimelineStatsView is initiated from the App view, and has the
TimelineStats model attached to it. The TimelineStatsView ren-
ders an empty graph when it is initialized. When new sentiment
difference data is pushed to the attached model, the generated graph
is updated to reflect these changes. The TimelineStatsView graph
is updated every second.
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Figure 4.6: Screen shot of the SentiMap system running.

4.2.1.2 Working Product

The SentiMap applications consists of three main components: an input
box for search, a map of the USA with an optional details view, and a
timeline graph (see Figure 4.6). Per default, the search box is empty
which results in the map being updated with tweets without any con-
straints regarding topic or query. If a query is typed into the search box
and the return key is pressed, the map view is cleared for any colour and
statistics, and the map is updated with sentiments from tweets related to
the submitted query (see Figure 4.7).

When a tweet is received, the state from where the tweet has its origin
updates its colour, to reflect the change in sentiment based on the classi-
fication of that given tweet. A state where there are only negative tweets
has a deep red colour, and a state with only positive tweets is clear green.
If there is the same amount of positive and negative tweets, the colour of
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Figure 4.7: Screen shot of the SentiMap when searching for a query.

the state will be light grey. For more positive or negative a state is, the
deeper is the colour of the state, i.e., if a state is 55% positive it is filled
light green, and if a positive tweet from that state is registered, the state
colour changes to a slightly darker green.

By default, no details from a specific state is shown. But if a user clicks
on a state, a pie chart is added to the right of the U.S. map. This pie chart
shows the details of sentiment on a given state, and the total of tweets
registered from that state. This pie chart also updates in real time.

The timeline graph at the bottom of the page reflects the sentiment dif-
ference over time in the entire U.S. This graph is updated every second,
so if on that second there is registered 18 positive tweets and 12 negative
tweets, the graph will show the value 6. If there are no tweets registered
for a given time, the graph shows the value 0. Hovering over a point on
the x-axis of the graph will show the details of that value, as seen in Fig-
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ure 4.8.

Figure 4.8: Showing the sentiment difference (positive minus negative
sentiments) on that exact second from the streamed data.

The SentiMap always starts from scratch on initialize. So refreshing the
page or when opening it for the first time, the map has no values and the
time line is set to nil. All statistics and colours reflect sentiments from the
second a user initializes the application.

As the SentiMap application is designed to be open over a long period of
time, the background image of the application changes to a random nature
photography every 30 seconds. This to give an extra visual stimuli and to
make the application prettier.

4.2.2 SentiGraph: Tweet Sentiment Chart

The Twitter Search API is a popular service that allows for developers
to search the Twitter corpus for recent tweets on a given keyword or
topic. To show how to use this Search API with our classification server, a
demonstration application called SentiGraph was developed. SentiGraph
consists of a chart and a Twitter timeline that shows the sentiment for
each of the tweets in the chart. The chart is a combination of a pie chart
and a bar chart, where both are divided into positive, neutral and negative
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tweets. The sentiment of the tweets is indicated with red (negative), blue
(neutral) and green (positive) colours.

4.2.2.1 Implementation

SentiGraph is a light-weight web application that runs exclusively in the
client’s web browser. It consists of three main views: a search field, a
combined chart, and a Twitter timeline. The communication between
the application and the API Layer is through Asynchronous JavaScript
and XML (AJAX) technologies. AJAX is used to request and receive
responses from the classification server. By using AJAX for communica-
tion, the views can be updated with new data without reloading the entire
application.

The tweets shown in the timeline include the tweet text, the date it was
published, the author’s profile picture and the sentiment classification.
All these data are extracted from the tweet JSON object provided by the
API layer. The tweets are returned from Twitter API in a chronological
order, so when the tweets are rendered they are prepended to the HTML
container element to show the most recent tweet first.

A JavaScript library called Highcharts was used to render the combined
pie and bar chart. Highcharts offers intuitive and interactive charts written
in HTML and JavaScript, and was a good fit for this task.

The application uses CSS for responsiveness, so it fits different screen
sizes. On large screens and resolutions, the presentation is divided into
two columns, but when the browser window is minimized to below 1080
pixels, the timeline in the right column is moved to the left, so it appears
below the chart view.
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Figure 4.9: Screen shot of the SentiGraph system working, the same day
as Manchester United confirmed Sir Alex Fergusons retirement. Showing
overwhelming positive tweets.

4.2.2.2 Working Product

SentiGraph allows the user to define a search query and the number of
tweets to be returned. The maximum limit supported by the Twitter API
is 100 tweets per query. The returned tweets are processed in JavaScript,
and for the timeline view, each tweet’s HTML container element is given a
CSS colour code to indicate its sentiment. This can be seen in figure 4.11.
In addition to colouring the container, the script also inserts the author’s
profile picture, and the date and time the tweet was published. The script
waits for all data in each tweet container to be completely downloaded
before it renders them in a chronological order. While the application is
downloading the data, a loading screen appears in the timeline view. This
is mainly to avoid collapsing HTML elements and design flaws because
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Figure 4.10: Screen shot of the SentiGraph plot close up. The Screen shot
is taken the same day as Manchester United confirmed Sir Alex Fergusons
retirement. Almost 50% of all the tweets show a positive sentiment, and
less than 10% negative.

of missing data, but it is also an indication that the application is busy.

The combined pie and bar chart supports some interaction from the user.
When clicking one of the bars in the bar chart, it shows how many tweets
that are predicted as the selected class. By clicking one of the sectors in
the pie chart it will display the percentage of tweets in that class.

An overview of all the views and the application can be seen in figure 4.9.
The top has the query input box, and on the left side the plots are visible
(seen in detail in figure 4.10). All the tweets that form the plots can be
seen in detail in the timeline displayed in figure 4.11.
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Figure 4.11: Screen shot of the tweet list on the SentiGraph application.
Screen shot taken the same day as Manchester United confirmed Sir Alex
Fergusons retirement. The tweets shown are an excerpt of the entire list of
tweets. The tweets have different background colours according to their
sentiment.

4.2.3 SentiStack: Comparing Queries

SentiStack is an application to easily compare sentiments between an ar-
bitrary amount of search queries. SentiStack uses the Twitter Search API
to retrieve data, and visualises the data as a bar stack per search query.
If there are three queries, three bar stacks will be presented in the graph.
A bar stack consists of three values: neutral tweets, positive tweets and
negative tweets. See a screen shot of the final product in figure 4.12.

55



Figure 4.12: Screen shot of the SentiStack system. Showing a comparison
of iPhone, Android and Windows Phone. The graph indicates that there
are most positive tweets about Android.

4.2.3.1 Implementation

Like SentiGraph, SentiStack is a client side application, and does not re-
quire any server side code base. This means that the application can be
easily distributed and run locally without any server running to execute
the code.

There are two different aspects to the SentiStack code: input queries,
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and output graphs. Communication with the input form happens through
events. When the SentiStack system is initiated, it listens for three events:
a new query is requested, the "toggle input boxes" button is clicked, and
the "Compare" button is triggered. If one of these events is triggered, an
attached method will respond and execute appropriate code; either append
input box, hide input boxes or initiate comparison and present the result
as a graph.

When the "Compare" button is pressed, the system extracts each query
from the input boxes, and constructs a query list. This query list will
be iterated and a total of 200 tweets from each query will be retrieved
from the Search API using AJAX. As the API responds in JSON, the
data can be easily parsed and manipulated. All results from the queries
are accumulated in a hash map using the query as a key and a list of the
sentiment distribution for that query (e.g., 70 neutral, 70 positive and 60
negative) as a value. When every API request is done, the presentation
method is triggered.

The presentation method uses the accumulated data hash map as a source
and generates a graph based on that information. For each key in the hash
map, a bar stack is generated with the value as distribution for the parts of
the stack. The search queries (hash map keys) are used as labels for the
graph.

If the compare event is triggered again, the system will reset (clearing the
data hash map and query list) and start the entire process again.

4.2.3.2 Working Product

When opening the SentiStack system, an empty input box is shown, with-
out any graph. The graph will only appear when requested by the "Com-
pare" button. When entering queries in the input boxes and pressing
"Compare" the graph will be generated and presented as shown in fig-
ure 4.12.
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To add a new query to the system, the "Add Query" link is used. When
pressing the link, the last input box is cloned and the cloned box is ap-
pended to the list without any value. This process is shown in figure 4.13.
There are no limitations of the number of queries that can be added, but if
there are many of them, the query labels can be hard to read in the graph.
If there are many queries, the graph will be pushed down on the page. To
avoid this, the "Toggle hide" button can be used. This button toggles the
visibility of all except the first input boxes.

Figure 4.13: Screen shot of the SentiStack system when adding a new
query. Figure shows the system after "Add Query" is pressed. The added
input box gains focus and is ready to receive query.

Details for the different queries is visible by hovering over a given bar
stack in the graph. The details consist of the number of positive, negative
and neutral tweets, as well as the percentage for each of these classifica-
tions. This detailed view can be seen in figure 4.14.
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Figure 4.14: Screen shot of the SentiStack system when hovering over a
bar stack and showing the details for a given query.
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Chapter 5

Experimental Setups

To experiment with different solutions for sentiment analysis, a system
testing platform and code base was developed. This testing system gen-
erates and trains different models based on input arguments as default
values for algorithms and type of algorithm. The architecture and flow of
this system is described as a part of section 4.1.2.

The testing system can take in a set of parameters to use for an algorithm,
like pre-processor methods, whether or not to use inverse document fre-
quency (IDF) or stop words, and so on, or a grid search flag can be set.
If the grid search option is activated, a model is generated with the best
possible parameters set for the given algorithm. The grid search is con-
ducted using k-fold cross validation, and the set of parameters to search
across. The parameter search space is reflected in table 5.1. The following
parameters were included in the search. Three binary (Y es/No) param-
eters: UseIDF , UseSmoothIDF , and UseSublinearIDF , together
with ngram (unigram/bigram/trigram). SVM and MaxEnt models
in addition included C and NB models alpha parameters, all with the
value ranges [0.1/0.3/0.5/0.7/0.8/1.0]. MaxEnt models also had penalty
(L1/L2).

61



NB SVM MaxEnt
penalty - - L1 or L2
alpha/C <0.1, 0.3, 0.5, 0.7, 0.8, 1.0>

ngram Unigram, Bigram or Trigram
Remove Stop Words Yes or No

Use IDF Yes or No
Use Smooth IDF Yes or No

Use Sublinear IDF Yes or No

Table 5.1: Overview of parameter search space for the grid searches con-
ducted in the experiments.

5.1 Pre-processing and Feature Selection

This section describes the different pre-processing implementations used;
what placeholders, negation attachment and reducing letter duplications
is.

To find the best features to use and what kind of pre-processing was the
best, a set of 8 different combinations of pre-processing methods was
designed. The different methods include no pre-processing, where all
characters are included as features; full remove where all special Twitter
features like user names, URLs, hash tags and emoticons are stripped;
and one where the Twitter features are replaced with placeholder texts
to reduce vocabulary. A full overview of the pre-processing methods is
given in table 5.2.

5.1.1 Removing Features

To reduce the vocabulary and to get more precise classification, some fea-
tures were omitted. User names are most likely to be considered noisy,
but in some cases they may be relevant for a text’s sentiment. The same
goes for URLs, RT-tags and emoticons. Some methods, like P1, P2, P4,
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None P1 P2 P3 P4 P5 P6 P7
Remove Usernames x x x x x

Username placeholder x
Remove URLs x x x x

URL placeholder x
Remove Hash-tags x x
Hash-tags as words x

Hash-tag placeholder x
Remove RT -tag x x x

Remove emoticons x x
Reduce letter duplicates x x x x

Attach negation x x x

Table 5.2: Description of the pre-processing methods used for the ex-
periments. Some functions remove entities, other replace them with a
placeholder text. The hash-tag as word transforms a hash-tag to a regu-
lar word and uses the hash-tag as a feature. "Reduce letter duplicates",
reduces redundant letters to a maximum of three.

P5 and P7 consider the user names noisy and remove them from the text.
Removing features will remove all notion of the feature, unlike when re-
placing it with a placeholder.

5.1.2 Replacing with Placeholders

There might be a chance that URLs or user names are relevant for the sen-
timent. Not necessarily the value of the name or URL itself, but the fact
that there are references to URLs and user names. To make these features
more informative for the machine learning algorithms, a pre-processing
method (P3) was implemented for replacing them with placeholder texts.
This means that a user name like @someuser is replaced by the text ||U ||.
||U ||was chosen as it is very unlikely that it would be a part of the original
tweet. Hash-tags (#hash) are replaced by ||H|| and URLs by ||URL||.
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5.1.3 Reducing Letter Duplication

By reducing and normalizing excessive letter duplications like "I’m sooo-
ooo happyyyyyyyy!!!!!!", the vocabulary is reduced and the classification
can perform better. However, there might be that the word "sooooo" is
more sentimentally charged than the proper form of the word "so". The
sentence "I’m sooooooo happyyyyyyyy!!!!!!" is more positive polar than
the statement "I’m so happy!".

To reduce the vocabulary but not lose information, all duplicates of more
than three consecutive characters are reduced to exactly three duplica-
tions. So "I’m sooooooo happyyyyyyyy!!!!!!" would be changed to "I’m
sooo happyyy!!!", and the same goes for "I’m sooooooooooooooo hap-
pyyyyyyyy!!!!!!". This way the additional sentiment is preserved.

5.1.4 Attaching Negation

The negation word "not" can change the polarity of an entire sentence.
The sentence "I am happy" is obviously positive, and "I am not happy"
negative. If using unigrams, the features of the second sentence would
have been (′I ′,′ am′,′ not′,′ happy′) and for the first one (′I ′,′ am′,′ happy′).
Both having the word "happy" in them, and if that were to be a significant
feature for positive classification, the negative sentence could be classified
as positive.

By attaching the negation word to the preceding and the following word,
the features will also reflect the change in polarity. So the features for the
negative sentence would be (′I ′,′ am− not′,′ not− happy′).
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5.2 SemEval’13

The system from this Master’s Thesis participated in a workshop with fo-
cus on semantic analysis systems. SemEval’131 had several shared tasks,
but we only took part in Task 2B; building a message polarity classi-
fication system in Twitter. The task had two parts: unconstrained and
constrained systems. The unconstrained system allowed for a training
set in addition to the one provided by SemEval’13, while the constrained
system could only use the provided set. To test the systems beyond Twit-
ter, SemEval’13 also evaluated the systems using a Short Message (or
Messaging) Service (SMS) test set. Thus, there were a total of four dif-
ferent deliveries to SemEval’13: Twitter unconstrained and constrained,
and SMS unconstrained and constrained.

5.3 Visualisation Applications

To test the visualisation applications, an experiment to predict the out-
come of the Eurovision Song Contest (ESC) was conducted.

Eurovision Song Contest is a popular annual cross-Europe song contest.
Each country participates with their selected song, and every country vote
for their favourite song to win the contest. A country cannot vote on their
own song. In addition to tele-voting in each country, a country also has a
panel of judges giving expert opinions.

ESC has historically been criticized for being too political, but research
can indicate otherwise. Ginsburgh and Noury [2008] show that the amount
of vote trading is rather minimal and that the voting is more cultural and
geographical than political. Furthermore, Ginsburgh and Noury [2008]
suggest that immigration can have some impact on voting. In any case,
it may be plausible that the amount of tele-voters for ESC is equal to the
amount of people tweeting about a given country contribution.

1http://www.cs.york.ac.uk/semeval-2013/
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To predict the outfall of ESC, the SentiStack application was used. This
allows for several Twitter Search queries to be compared to each other,
and thus see what may be considered as favourites. The predictions were
carried out before the ESC final, but after the semi-finals.
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Chapter 6

Experimental Results

The experimental results is split into four different sections. In the first
section, the full grid search results are defined. In the second, a detailed
comparison of the best algorithms can be found. Section 6.3 describes the
result from SemEval’13, and Section 6.4 covers the ESC experiment.

6.1 Full Grid Search

As described above, an extensive grid search was conducted. This search
cycled through different algorithms, parameters and preprocessing tech-
niques. Figure 6.1 displays the precision, recall, F1-score and accuracy
for each of the classifiers with dev 1 as evaluation data. We notice that
most of the classifiers that involve the NB algorithm have a bad perfor-
mance, both for accuracy and F1-score. Further, we can see that the Max-
Ent classifier has the best accuracy, while SVM has a slightly better F1-
score.

Two-step models with SVM-based subjectivity classification exhibit the
same basic behaviour. The one-step MaxEnt model classifies more tweets

67



as neutral than the other classifiers. Using MaxEnt for subjectivity clas-
sification and either MaxEnt or SVM for polarity classification performs
well, but is too heavy on the positive class. Boosting does not improve
and behaves in a fashion similar to two-step MaxEnt models. All combi-
nations involving NB tend to heavily favour positive predictions; only the
two-step models involving another algorithm for polarity classification
gave some improvement for negative tweets.

We can also see that all the classifiers with SVM tend to give a better
confusion matrix than the others. This is shown in Figures 6.2 - 6.14.
The figures show what classifications that were correct. The columns are
[negative, neutral, positive]. This means that, in the figures, the top
left box is how many tweets that were classified as negative, and actually
were negative, the box to the right is how many tweets were classified
as neutral, but was negative, etc. The blue colour indicate low number
of tweets, and the red colour indicate a high number. What we would
like to see is a red colour on the diagonal. The confusion matrices that
include SVM indicate that it has a more precise classification of negative
instances than the others. In tests where NB is used, the system leans
much more to the positive class than the other models.

As a part of the grid search, the system applied all the different prepro-
cessing methods for each classifier. Figure 6.15 shows that P2 (removing
user names, URLs, hash- tags prefixes, retweet tokens, and redundant
letters) is the preprocessing method which performs best (gives the best
accuracy) and thus used most often (10 times). Figure 6.15 also indicates
that URLs are noisy and do not contain much sentiment, while hashtags
and emoticons tend to be more valuable features (P2 and P7 — remov-
ing URLs — perform best, while P4 and P5 — removing hashtags and
emoticons in addition to URLs — perform badly).
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Figure 6.2: Confusion matrix for
the model using SVM. Performs
well on both neutral and pos-
itive predictions, but somewhat
poorly on negative.

Figure 6.3: Confusion matrix for
the model using MaxEnt. Per-
forms especially good on neutral
tweets, but seems to be classify-
ing neutral too much.

Figure 6.4: Confusion matrix for
the model using NB. Performs
very well for positive tweets, but
seems to favour them too much.

Figure 6.5: Confusion matrix for
the two-step model using NB for
both subjectivity/objectivity and
polarity classification. Shows the
same trend as when using NB
in a one-step model: the model
favours positive predictions.
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Figure 6.6: Confusion matrix
for the two-step model using NB
for subjectivity/objectivity clas-
sification and SVM for polarity.
Shows the same trend as when
using NB in a one-step model:
the model favours positive pre-
dictions but is performing better
for negative tweets.

Figure 6.7: Confusion matrix
for the two-step model using NB
for subjectivity/objectivity clas-
sification and SVM for polarity.
Shows the same trend as when
using the NB -> SVM model:
the model favours positive pre-
dictions but is performing better
for negative tweets.

Figure 6.8: Confusion matrix
for the model using SVM and
NB. Performs well for positive
tweets, but not as well for neutral
and negative.

Figure 6.9: Confusion matrix
for the model using SVM and
SVM. Performs well across the
board, and shows a good diago-
nal colour profile in the plot.
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Figure 6.10: Confusion matrix
for the model using SVM and
MaxEnt. Performs well for neu-
tral and positive tweets, but not
too well on negative tweets.

Figure 6.11: Confusion matrix
for the model using MaxEnt and
NB. Performs well for positive
tweets, but not too well on neg-
ative and neutral tweets.

Figure 6.12: Confusion matrix
for the model using MaxEnt and
SVM. Performs well but is too
heavy on the positive classifica-
tion.

Figure 6.13: Confusion matrix
for the model using MaxEnt and
MaxEnt. As with MaxEnt ->
SVM, this model performs well
but is too heavy on the positive
classification.
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Figure 6.14: Confusion matrix
for the model using Boosting.
Showing the same trend as the
MaxEnt -> SVM and MaxEnt ->
MaxEnt models: it tends to clas-
sify too many tweets as positive.
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Figure 6.15: Statistics of pre-processing usage. Removing all usernames,
URLs, hash-tag characters, RT-tags and excessive letters seem to give best
performance.
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SVM MaxEnt
ngram_range 1,1 1,1
sunlinear_tf True True

preprocessor P2 P3
use_idf True True

smooth_idf True True
max_df 0.5 0.5

stop_words None None
C 1.0 0.3

penalty L1

Table 6.1: The parameters selected for SVM and MaxEnt models through
extensive grid search.

6.2 SVM vs MaxEnt

From the full grid search, the best parameters on SVM and MaxEnt were
extracted and more detailed tests were carried out only using SVM and
MaxEnt, without grid searching. The best parameter setting for the SVM
model was using unigram, the P2 preprocessing method, not removing
stop words, and a C value of 1.0. For the MaxEnt model, the P3 prepro-
cessing method was used, along with unigrams, IDF, not removing stop
words, and 0.3 as C value. The penalty for MaxEnt was selected to be
L1. Full parameter selection for SVM and MaxEnt is visible in table 6.1.
The SVM and MaxEnt models, with these parameters, were tested with
an additional development set (the data set Dev 2; see table 3.1).

The results for both the SVM and MaxEnt classifiers with Dev 1 are
shown in figure 6.16. With Dev 2, SVM’s performance is much better
than MaxEnt’s, as seen in table 6.2. Dev 1 contains more neutral tweets
than Dev 2, which gives us a reason to believe that it favours the MaxEnt
classifier. In MaxEnt’s confusion matrix from the first search, shown in
Figure 6.3, we can see that it classifies more neutral tweets than the other
classifiers.
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Figure 6.16: Best performance plots for SVM and MaxEnt. MaxEnt has
better Precision and Accuracy, but SVM scores higher on F1-score and
Recall.

Figure 6.17: Confusion Matrix for SVM and MaxEnt. MaxEnt favours
neutral classification, and performs worse than SVM on both positive and
negative classifications.

To even out the distribution of the different classes, we did a grid search
with a reduced training set. Figure 6.21 and 6.20 show SVM’s results
when reducing the training set to a maximum of 1000 and 2000 tweets
per class. The accuracy of SVM is highest on the original training set,
but the F1-score and Recall improves when reducing the training set to
maximum 2000 per class. See complete effects of reducing training set
in table 6.3. The negative classification improves when reducing the train-
ing set to maximum 2000 tweets per class, but the accuracy for neutral and
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Data set Dev 1 Dev 2
Learner SVM MaxEnt SVM MaxEnt

Precision 0.627 0.647 0.700 0.561
Recall 0.592 0.578 0.726 0.589
F1-score 0.598 0.583 0.707 0.556
Accuracy 0.638 0.645 0.728 0.581

Table 6.2: Best classifier performance (bold=best score). Shows that using
Dev 1, MaxEnt has better accuracy and precision, but SVM performs bet-
ter in regards to F1-score and recall. For Dev 2, SVM has higher measures
across the board.

Figure 6.18: Best performance plots for SVM and MaxEnt using Dev 2.
SVM outperforms MaxEnt with 0.728 in accuracy versus 0.581. SVM
performs better according to all measures.

positive tweets decrease. Similar observation can be made when reducing
the data set to 1000. Negative tweets perform better, but positive and neu-
tral performance are worse. This can be deduced from figures 6.17, 6.20
and 6.21.

The features in table 6.4 are the most informative features from each of the
classifiers in the second grid search. Some features are represented among
the top 15 for both SVM and MaxEnt, and most of these features make
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Figure 6.19: Confusion Matrix for MaxEnt and using dev set 2. The per-
formance difference between SVM and MaxEnt is visible in the confusion
matrices as well. SVM shows a solid diagonal colour.

Data size Original 2000 1000

Precision 0.627 0.612 0.570
Recall 0.592 0.618 0.586
F1-score 0.598 0.614 0.563
Accuracy 0.639 0.630 0.569

Table 6.3: Effects on SVM trained with reduced training sets

sense. As we did not normalize the features, we can see that some words
appear in different forms and degrees (e.g., "worse", "worst" and "don’t",
"didn’t"). For both MaxEnt and SVM, emoticons are listed among the
most informative features. In the case of SVM, the exclamation mark is
an informative feature for positive classification.

We see that for the most part the features seem to make sense, but we
see some anomalies. Both SVM and MaxEnt show ’why’ as a negative
feature, which is normally incorrect. In addition, the most informative
positive feature for SVM is ’wait’, which is not a particularly positively
charged word.
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Figure 6.20: Performance of SVM when reducing the dataset to maxi-
mum 2000 per class. Showing better recall and F1-Score than without
reduction, but poorer accuracy and precision. Somewhat better perfor-
mance on negative tweets, but poorer on neutral and positive.

Figure 6.21: Performance of SVM when reducing the dataset to maxi-
mum 1000 per class. Showing better performance on negative tweets,
but worse on neutral and positive. Performance is generally poorer than
without reduction.
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SVM
Negative Neutral Positive

no wear wait
didn’t tallahassee nice

cancelled 15th interesting
don’t 26 awesome
worse at cool
why trip amazing
bad joe fun

worst theres !
hate arrows :)
shit murphy, excited
sad question happy

sorry plan love
not set best
fuck 8th great

:( paterno good

MaxEnt
Negative Neutral Positive

no center glad
don’t royal nice
why plan thanks
bad joe cool
shit nov awesome

injury george interesting
cancelled theres amazing

hate arrows :)
worst trip fun
worse set best
fuck question excited
sorry at love
not url happy
sad 8th good
:( paterno great

Table 6.4: Top 15 of the most informative features for SVM and MaxEnt
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Twitter SMS
NTNU- NTNUC NTNUU NTNUC NTNUU

Precision 0.652 0.633 0.659 0.623
Recall 0.579 0.564 0.646 0.623
F1-score 0.590 0.572 0.652 0.623
F1 pos/neg 0.532 0.507 0.580 0.546

Table 6.5: NTNUC and NTNUU in SemEval’13

6.3 SemEval’13 Results

Based on the information from the grid search, two systems were built for
SemEval’13. Since one-step SVM-based classification showed the best
performance on the training data, it was chosen for the system partici-
pating in the constrained subtask, NTNUC. The pre-processing was also
the one with the best performance on the provided data, P2 which in-
volves lower-casing all letters; reducing letter duplicates; using hash-tags
as words (removing #); and removing all URLs, user names and RT -tags.

Given the small size of the in-house (’NTNU’) data set, no major im-
provement was expected from adding it in the unconstrained task. Instead,
a radically different set-up was chosen to create a new system, and train
it on both the in-house and provided data. NTNUU utilizes a two-step
approach, with SVM for subjectivity and MaxEnt for polarity classifica-
tion, a combination intended to capture the strengths of both algorithms.
No preprocessing was used for the subjectivity step, but user names were
removed before attempting polarity classification.

As further described by Nakov et al. [2013], the SemEval’13 shared task
involved testing on a set of 3813 tweets (1572 positive, 601 negative, and
1640 neutral). In order to evaluate classification performance on data
of roughly the same length and type, but from a different domain, the
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evaluation data also included 2094 Short Message Service texts (SMS;
492 positive, 394 negative, and 1208 neutral).

Table 6.5 shows the results obtained by the NTNU systems on the Sem-
Eval’13 evaluation data, in terms of average precision, recall and F-score
for all three classes, as well as average F-score for positive and negative
tweets only (F1 + / –; i.e., the measure used to rank the systems partici-
pating in the shared task).

The NTNU system ranked at 24th of 36 on constrained and 10th of 15
on unconstrained. For the SMS task, the NTNU system ranked 5th of 28
constrained systems and 6th of 15 unconstrained.

6.4 Visualisation Results

During the experiment a screen shot of the SentiStack system was taken
to document the results (see figure 6.22).

The application was run before the final, but after the semi-finals. The
goal was to predict as much of the top-10 list as possible. By sheer guess-

work, one could expect to get
10

26
= 0.3846 ≈ 38.5%1 of the top-10

finalists.

In figure 6.22, the prediction results is shown. By the graph, it is clearly
visible that Ireland was predicted to be the winner, followed by Germany,
Malta, Finland and Denmark.

Table 6.6 shows an overview of the predictions and the actual results of
the ESC 2013. Only 5 of the predicted top-10 actually resulted amongst
the top-10; thus the system had an accuracy of 50%.

110 out of 26 participants.
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Place Prediction Result
1. Ireland Denmark
2. Germany Azerbaijan
3. Malta Ukraine
4. Finland Norway
5. Denmark Russia
6. Ukraine Greece
7. Iceland Italy
8. Sweden Malta
9. Hungary Netherlands

10. Azerbaijan Hungary

Table 6.6: The results of the Eurovision Song Contest versus the predic-
tions from using the SentiStack visualisation application. From the table,
it is visible that 50% of the countries predicted in the top-10, resulted in
a position among the top-10. The countries shared between the lists are
marked in bold.
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Figure 6.22: Screen shot of the SentiStack application running before the
Eurovision Song Contest Final. The order of the bar stacks is equal to
the running order: France, Lithuania, Moldova, Finland, Spain, Belgium,
Estonia, Belarus, Malta, Russia, Germany, Armenia, The Netherlands,
Romania, United Kingdom, Sweden, Hungary, Denmark, Iceland, Azer-
baijan, Greece, Ukraine, Italy, Norway, Georgia and Ireland.
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Chapter 7

Discussion

In the introduction two main goals were introduced for this Master’s The-
sis:

G1 Experiment with different models for doing sentiment analysis

G2 Develop tools for visualising sentiment classified tweets

This chapter will discuss whether or not we succeeded in reaching these
goals, and the solutions in general. The first section handles G1 and the
second section discusses G2. The generic system architecture is an im-
portant part of developing the visualisation applications, and thus it is
included in the latter section.

7.1 G1: Experiment with different models for
doing sentiment analysis

In this section we will discuss whether we succeeded with our first goal
or not, and how it was conducted. The first goal stated that we should
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try different models for classifying sentiment on short messages, such as
tweets.

The experiment description from section 5 shows that we used grid search-
ing on different machine learning algorithms and combinations of algo-
rithms to classify sentiment. A total set of 13 different models were thor-
oughly tested with a large training set. Our system generated graphs and
plots comparing the different models, both on accuracy, F1-score, recall,
precision and their confusion matrices. This comparative view allowed us
to find out which model performed best.

In our experiments we found that MaxEnt and SVM perform best in terms
of accuracy. By conducting the experiments as stated, and finding the
models with the highest accuracy, we succeed with the first goal.

The data that was used to train and evaluate the different models was
given by SemSeval’13, that also provided a test set with SMS messages
for the second part of the task. We considered this part of the task an
opportunity to test if the system really was domain semi-independent.
The results from the task indicate that the system performed well both
for the constrained and the unconstrained versions. The system ranked
5th of 28 constrained systems and 6th of 15 unconstrained systems on
SMS classification, which is an encouraging result in terms of domain
semi-independence. A part of the strategy to obtain good classifications
on several domains was to use general feature selection methods. When
looking at our feature selection for the SMS constrained, we see that no
Twitter specific features are used. User names, hash-tags as words, URLs,
RT-tags, etc, are removed. What we have left is essentially the same con-
tent as an SMS would have; text with emoticons. For the unconstrained
system, some Twitter specific features are included, such as hash-tags,
RT-tags and URLs, but even with these features a tweet is similar to an
SMS message. Both tweets and SMS messages are short (respectively
140 and 160 characters), and contain similar language.

Some of the preprocessing methods are to be considered naïve, such as
the negation handling. In these experiments we only utilized unigram
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feature selection with a simple negation support. This simple method
binds all appearances of the word ’not’ to the next and previous word in
the sentence, e.g., ’is not bad’ would be merged into the unigram [’is-not’,
’not-bad’]. This is a very naïve approach which in some cases may extend
the vocabulary with little informative features.

From the listed features, emoticons are among the most informative, both
for SVM and MaxEnt. However, we did not use any placeholders to nor-
malize these emoticons. By using placeholders, the emoticons that are not
frequently used would gain information. Another potential improvement
is support for Emoji1, which have very similar semantics as emoticons,
but are implemented in Apple products as an own character set (rather
than constructed from ASCII characters such as ’:)’ and ’:D’, etc). There
are reasons to believe that these Emojis would provide informative fea-
tures, and could either be converted to ASCII characters or placehold-
ers to merge them with the emoticons. When not supported, the Emojis
would show up as ASCII squares: ’�’

While the focus for this goal was to experiment with different models for
SA, there are still some interesting approaches that remain unexplored.

The data sets used to train our models were not evenly distributed among
the different target classes. This may have affected the results for some
of the algorithms that were used. The data has a large amount of neutral
tweets, which seemed to favour especially MaxEnt when classifying neu-
tral tweets. To even out the distribution in the data set, we tried to limit
the number of tweets per class. The results when limiting to 2000 tweets
per class gave better recall and F1-measure, but a small decrease in both
accuracy and precision. The confusion matrix also indicates better ability
to successfully classify negative instances. This was an expected result
since the classifier was trained on a more balanced data set. But the data
set was still missing some (about 800) negative training instances to be
perfectly balanced. The decreased accuracy and precision may be a con-
sequence of lacking training data across all classes. This theory is backed

1http://en.wikipedia.org/wiki/Emoji
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up by the decreasing performance when limiting to 1000 tweets per class,
and the increasing accuracy when classifying negative tweets.

7.2 G2: Develop tools for visualising sentiment
classified tweets

We achieved goal 2 by implementing three different applications for vi-
sualising sentiment analysis data, and by designing and using a generic
system for classifying tweets.

We are satisfied with the way the generic system architecture is built. By
just extending the Twitter API, no API documentation is needed, and if
you are familiar with the Twitter API, you do not have to re-learn any-
thing. In addition, if there is a system allready integrated with Twitter
data, the migration to our system is simple: just swap the entry URL
point from the Twitter API base URL to our system’s base URL.

The current implementation of the API Layer is simplified with regards
to authentication. The API Layer has no OAuth server, but rather uses its
own credentials to connect to Twitter. This means, if 10 different users do
30 requests each, Twitter’s request limit will engage and our API Layer
will be put on hold until next window of requests. A better solution would
have been to implement a mirror of Twitter’s OAuth server and pass on
the received credentials to Twitter. This way each end-user or application
client would have their own pool of requests.

One important point when designing the generic system was to make it as
fast as possible. This to be able to handle large amounts of tweets when
streaming or simply searching with a high count limit. In some cases a
client can request 1000 tweets at once. This required a system that can
operate in parallel and handle asynchronous connections. The way our
system was built, the API layer works independently of the classification
server and each request is parallel and asynchronous. This maximizes the
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number of tweets we can handle and reduces the collected wait time for
the client. This solution works great for the applications we have built
and for up to 5 clients running simultaneously, but the system has not
been tested with any more clients or stress-tested in any way. A stress-test
might show a bottleneck or a weakness in the system that is not apparent
at this point.

7.2.1 SentiMap

The SentiMap application shows interesting information and distribution
of tweets across the USA. It is capable of handling at least 50 tweets per
second, and updates the map’s colour scheme for each tweet. Every tweet
is grouped by state, so the system looses some information with regards
to locality. It could have been interesting to add more details to the map,
showing the exact origin of a tweet in addition to it changing the state
sentiment indication colour.

When opening SentiMap now, you start out from scratch. There is no
history or storage for the tweets. If you were to open SentiMap and have
it classify 1000 tweets, refreshing the application will remove these 1000
tweets. Adding a local storage for these tweets, could provide some use-
fulness. Also concatenating search data with stream data could be useful,
starting the application with some initial data. If some big event hap-
pens now, a user has to be quick to open SentiMap to see the sentimental
development.

There is no automatic way of plugging in a different country to the Senti-
Map application, but the architecture allows for easy system extension.
By having defined a clear MV* architecture, each module is fairly inde-
pendent of each other, and can thus be replaced with different modules.
To make this even easier, a plug-in system could have been designed and
documented.

By using WebSockets to provide data from the API Layer, a continuous
connection is established. This means that if the API Server goes down,
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or the visualisation application back-end server restarts, the application
will automatically reconnect without any user action. E.g., if you open
SentiMap on a laptop, closes this laptop, and then re-open it, SentiMap
will reconnect and start showing data again. This means that you can have
the client open over a long, long time, if necessary.

7.2.2 SentiGraph

SentiGraph was developed as a light-weight JavaScript application that
runs entirely in the client’s web browser. This makes the application both
fast and compatible with most platforms. It demonstrates how the API
Layer (and the Twitter API) can be used to search for different topics or
keywords. It would, however, be possible to combine this with a stream-
ing service to append incoming tweets to the search result. But that would
require a small server side application to push the streamed tweets to the
client, and thus break the concept of having the entire application running
in the browser.

SentiGraph is a good application for visualising the sentiment data that are
generated by the sentiment classifier. However, there are definitely room
for more features, such as comparison of keywords and, of course, several
different graphs and charts. A graph that showed changes in sentiment
over time could be a useful tool to visualise trends, and possibly changes
caused by certain events or happenings.

7.2.3 SentiStack

SentiStack gives a good comparative view between several different Twit-
ter search queries. Without defining any domain for the queries, the ap-
plication can be used to compare anything, from products to ESC partici-
pation songs. This can also be its downfall, as it might get too generic and
not perform as well as an application specifically designed to do product
comparisons.
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A big limitation of the SentiStack system is the number of requests to the
Twitter API. The Twitter Search API has a limitation of the number of
requests that is allowed each 15 minutes. SentiStack does two requests
per query (to retrieve the total of 200 tweets). This means that if there
are a total of 25 queries, 50 requests will be made each time "Compare"
is pressed. Only 180 requests can be made every 15 minutes. So when
having 25 queries, one can only update the comparative view 3 times
every 15 minutes. To solve this problem, a more sophisticated OAuth
solution is required on the API Layer. The API Layer needs to receive
and pass along OAuth credentials to the Twitter API. This way the request
limitations will be per end-user and not global amongst the users of the
API Layer.

7.2.3.1 Predicting ESC

By looking at the results from predicting the winners of ESC, it is clear
that SentiStack did not perform too well. Only 5 of the finalists predicted
to be among the top 10 were correct. This is marginally better than the
baseline of 38.5%, but not enough to draw any conclusions.

Ireland was picked as a clear winner by SentiStack, but in fact ended up in
decidedly last place with only 5 points.2 It is difficult to say why Ireland
did so poorly when it shows a large amount of positive tweets. It could
seem like the assumption of tweets being representative for the tele-voting
on ESC is wrong. One important aspect is that since Ireland is an English
speaking country, their tweets are visible to the SenitStack system, unlike
most of the other countries. This can lead to many biased tweets being
registered from Ireland and thus skewing the results. Since people in one
specific country are not allowed to vote for that country’s song, it would
make sense to geographically filter the tweets per country.

SentiStack only fetches 200 tweets per query, this is because of the limi-

2http://en.wikipedia.org/wiki/Eurovision_Song_Contest_
2013
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tation of the number of requests from the Twitter API. This might be too
few tweets to get a representative picture to predict or analyse statistical
outcomes. A better solution might be to mine for data over a long period
of time using the Stream API.

It may seem as SentiStack is too generic to predict the outcome of a con-
test as complex as ESC. A more sophisticated application specifically
designed to predict the outcome of ESC could have used prior knowl-
edge and expert opinions in addition to sentiment analysis, and accumu-
late opinion data over a larger period of time. ESC is not, as mentioned,
entirely up to tele-voters, and relies on a panel of judges for 50% of the
votes3; this has a large impact on the results.

3http://en.wikipedia.org/wiki/Voting_at_the_Eurovision_
Song_Contest
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Chapter 8

Conclusion

We tested three different base machine learning algorithms: Naïve Bayes,
SVM and MaxEnt, in addition to combining them for doing two-step clas-
sification and boosting with voting for sentiment. From experimenting
with these setups, we found that machine learning algorithms perform
well for domain semi-independent classification of sentiment.

Our experiments show that SVM and MaxEnt in a single step classifi-
cation performs best. Given the confusion matrices and results on dif-
ferent data sets, it seems that SVM performs better than MaxEnt. But
the neutral-heavy development set caused MaxEnt to perform better than
SVM while doing a complete full grid search across multiple values.

Notably, both systems perform well on the out-of-domain data repre-
sented by the SMS messages, which is encouraging and indicates that
the approach taken really is domain semi-independent. This was also
reflected in the rankings of the two systems in the shared task of Sem-
Eval’13: both were on the lower half among the participating systems on
Twitter data (24th/36 resp. 10th/15), but near the top on SMS data, with
the constrained system being ranked 5th of 28 and the unconstrained 6th
of 15.
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As emoticons were proven informative features, support for Emojis as
feature would be an improvement. This would give better performance to
applications like SentiMap, that processes only tweets with a geolocation
attached to it, i.e., it supports only tweets sent from a mobile device, and
possibly an Apple product that uses these Emojis.

By reducing the training set, we obtained better classification for negative
and positive tweets separately, but when the number of instances was re-
duced to a perfect balance between positive, neutral and negative classes,
the total number of tweets was too low to train a well-performing clas-
sifier. A larger dataset would reveal if training with more balanced data
would give a better performing classifier.

The architecture proposed for this system performs well on regular REST
API requests, but is also capable of streaming and classifying several
tweets per second in real-time. By extending the Twitter API and hav-
ing the same end point interface, no additional documentation is needed
for the API. Existing libraries and programming language specific API
wrappers can be used to retrieve information from our API Layer by only
changing their URL connection point.

We found that the sentiment data can be used for visualisation in differ-
ent practical views. Since Twitter has a lot of meta data attached to each
tweet from the REST API, the possibilities for making visualisation appli-
cations are huge. With relatively simple steps, one can make applications
for showing accumulated sentiments based on a search query, or show
changes in sentiment across a country.

The SentiStack visualisation application can be used to compare senti-
ments on different queries, but seems too generic to handle predictions
of such a complex contest as Eurovision Song Contest. ESC has many
different aspects as some voting trading and panels of judges that make
it difficult to predict the outcome by only using Twitter data. The Senti-
Stack system also just uses 200 tweets per query, to accommodate for the
Twitter API request limit, which seems too little to be representative.
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8.1 Contributions

In this project we have defined the state-of-the-art for Twitter Sentiment
Analysis systems, and implemented a generic system with an architec-
ture capable of classifying many tweets per second in a live stream. We
found that, by extending the Twitter API and just attaching a value for
sentiments, the data can easily be used to implement visualisation appli-
cations, or extending existing Twitter-based systems.

We have tested different machine learning algorithms, reported to work
well with Twitter Sentiment Analysis, and found that SVM and MaxEnt
performs well on domain semi-independent short messages.

The development of the visualisation applications shows how Twitter sen-
timent can be used to get opinions on different topics, keywords or from
certain locations. It also shows how the combination of the Twitter API
and a generic architecture can be used to easily develop different applica-
tions that utilize the data produced by the classification system.

8.2 Future Work

An obvious way to extend this work would be to add other classification
algorithms to the grid search, e.g., Conditional Random Fields or more
elaborate ensembles. There are also several features and feature selection
methods that could be investigated, such as POS-tagging, like Pak and
Paroubek [2010], and a less naïve way of handling negation. Rather than
the simple treatment of negation used here, an approach to automatic in-
duction of scope through a negation detector [Councill et al., 2010] could
be used. Relational features could also be added, as shown by Karlgren
et al. [2010] and Johansson and Moschitti [2012].

To improve the classification on tweets, one can make the system less
domain independent by adding more Twitter-specific features, e.g., by
utilizing automatic phrase-polarity lexicon extraction [Velikovich et al.,
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2010], or by adding lexica like the AFINN word list by Nielsen [2011]
that is developed specifically for social media or the Twitter-oriented word
lists created by Mohammad et al. [2013].

While developing the visualisation application SentiMap, a wide use of
Emojis was shown in the tweet stream. As the tweets were restricted by
geographical location, most of them originated from hand held devices,
such as Apple’s iPhone. By translating these Emojis to common place-
holders like ||Happy|| or ||Sad||, they could be used as features.
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Appendix A

Systematic Literature Review
Protocol

A.1 Introduction

This SLR protocol is developed during the specialization project of the
fall semester 2012. This protocol will be used in both the specialization
project and the master thesis.

Twitter is a microblogging platform used by millions of people all over the
world. In contrast to other social media platforms, the Twitter messages,
called tweets, are limited to a maximum length of 140 characters.

The goal of this project is to implement a bare-bone, modular and highly
customizable application for doing sentiment analysis on tweets. In addi-
tion an extension of the existing Twitter API (Application Programming
Interface) will be developed. This will be achieved by mimicking the API
interface and passing on the query to the Twitter API. By simply extend-
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ing the API, the sentiment analysis data will be easy to use for existing
Twitter developers, and already be heavily documented by the Twitter API
team.

The focus for this SLR is to search for papers with existing solutions for
sentiment analysis on the Twitter corpus, in order to uncover the different
performances and how the problem has been solved by other researchers.

A.2 Research Questions

RQ1 What are some of the existing solutions for SA (sentiment analysis)
in the Twitter Corpus?

RQ2 How does the different solutions found by addressing RQ1 compare
to each other with respect to micro-blogs like Twitter?

RQ3 What is the strength of the evidence in support of the different so-
lutions?

RQ4 What implications will these findings have when creating the appli-
cation/system?

A.3 Search Strategy

The domain used for the search will be Google Scholar. Google Scholar
aggregates results from different domains, and has some built in functions
for searching over synonyms and sorting by citations.

A set of terms is defined closely based on the first research questions
(RQ1). The terms are split into groups where each group consists of
words that are synonyms or have similar semantic meaning.

All search terms are placed in a table with the groups as columns and the
search term as a row. The entire search string will be constructed by using
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Boolean notation. All terms in a group are concatenated by the keyword
OR, and the groups themselves are concatenated by the keyword AND.
This search string is represented by the following formula:

([G1, T1] OR ([G1, T2] OR [G1, T3])
AND ([G2, T1] OR [G2, T2])

Group 1 Group 2
Term 1 Sentiment Analysis Twitter
Term 2 Sentiment Classification Microblog
Term 3 Opinion Mining

Table A.1: Search terms and groupings

All results found by using the search string, will be collected in a docu-
ment, and reduced by removing duplicated papers, the same studies pub-
lished from different sources and studies published before the year 2008.

A.4 Selection of Primary Studies

To reduce the studies even more, they are assessed using three differ-
ent screenings; primary, secondary and by quality. The primary and sec-
ondary inclusion criteria are used to filter out the non-thematically rele-
vant studies. The primary criterion is used on meta data such as title and
abstract, while the secondary is used on the full text paper. The quality
screening is also used on the full text as the last step of selection.

A.4.1 Primary Inclusion Criteria

IC1 The study’s main concern is Sentiment Analysis.

IC2 The study is a primary study presenting empirical results.

IC3 The study focuses on sentiment analysis on the English language.
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A.4.2 Secondary Inclusion Criteria

IC4 The study focuses on the Twitter corpus.

IC5 The study describes an implementation of an application.

All studies that make it through the primary and secondary selection cri-
teria will be passed on to the quality assessments.

A.5 Study Quality Assessment

To further filter the papers and assess the quality of the different papers, a
set 10 of quality criteria is defined. The first two criteria are used in qual-
ity screening, to assess whether the papers include basic research data.

Each study should be classified according to all 10 quality criteria. They
can either be classified as "Yes" (1 point), "Partly" (1/2 point) or "No" (0
points).

QC1 Is there a clear statement of the aim of the research?

QC2 Is the study put into context of other studies and research?

QC3 Are system or algorithmic design decisions justified?

QC4 Is the test data set reproducible?

QC5 Is the study algorithm reproducible?

QC6 Is the experimental procedure thoroughly explained and reproducible?

QC7 Is it clearly stated in the study which other algorithms the study’s
algorithm(s) have been compared to?

QC8 Are the performance metrics used in the study explained and justi-
fied?

QC9 Are the test results thoroughly analysed?
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QC10 Does the test evidence support the findings presented?

A.6 Data Extraction

From each paper, the following data will be extracted for the SLR:

• Study identifier

• Name of author(s)

• Title

• Year of publication

• Name of system

• Type of machine learning algorithm

• Data set source

• Findings and conclusions

The data will be presented in table format. Whereas the data type is di-
vided into columns, and each paper is on its own row.
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