
Master of Science in Informatics
December 2011
Agnar Aamodt, IDI

Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Enabling an automated monitor layer
for RDF using integrity constraints

Øyvind Valen-Sendstad

Abstract

The Semantic Web has introduced several innovations to the existing field
of Integrated Operations and sparked a shift in the development of the ISO
15926 standard. Industries that want to implement ISO 15926 need to pre-
serve a high level of data quality while opening for free data exchange with its
peers. The ISO 8000 standard defines three important concepts that define
data quality, namely; syntax, semantic and pragmatic data quality - which
has been used as a measure. The existing tools and methods is currently
not capable of performing the required level of data validation. A new ap-
proach has recently been suggested that uses a method of hybrid reasoning
to validate data by applying a local Closed World Assumtion (CWA). This
enables the possibility of augmenting the ISO 15926 Ontology with Integrity
Constraints (IC) where data dependencies needs to be expressed. The work
of this thesis shows that the IC approach is applicable to the fundamental
Life-cycle dependency of ISO 15926.

0.1 Acknowledgments

This thesis has been made possible by the encouragement of my father,
Magne which has introduced me for the ISO 15926 community at Det Norske
Veritas (DNV). This work would not be possible without the help of Johan
Klüwer and his support for my work. I would like to thank Morten Rørvik
Strand for his patience when helping me with the SPARQL database when
I needed it the most. And Christian Mahesh Hansen for opening my eyes
for the possibilities of the Jena framework. At last I would like to thank
Agnar Aamodt for his comments, interesting discussions and especially for
making this thesis possible.

iii

Contents

Abstract i

Acknowledgments iii

Table of Contents vii

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Problem statement . 1

1.1.1 Original problem statement 1

1.1.2 Changes . 1

1.2 Motivation . 1

1.3 Goal . 2

1.3.1 Personal goal . 3

1.4 Thesis guide . 3

2 Technical Background & Concepts 5

2.1 ISO 15926 . 9

2.1.1 ISO 15926 Parts . 9

2.1.2 Industry requirements 9

2.1.3 Conceptual data model 12

2.1.4 Overall design requirements 13

2.1.5 Architecture . 14

2.1.6 Data model design/EPISTLE principles 15

2.1.7 Some aspects related to the use of ISO 15926 16

2.1.8 Representation of ”Attributes” using ISO 15926 . . . 17

2.1.9 Conditions for membership 19

2.1.10 Key ISO 15926 Terms and definitions 19

2.2 The Semantic Web . 23

2.2.1 Potential of integrated operations 24

2.2.2 Benefits . 24

v

2.2.3 State of the art . 26

2.3 The Semantic Web Stack . 27

2.3.1 URI/IRI . 28

2.3.2 XML . 29

2.3.3 RDF . 29

2.3.4 RDF-S . 31

2.3.5 Ontology: OWL . 32

2.3.6 Rule: RIF . 33

2.3.7 SPARQL . 34

2.3.8 Unifying Logic . 35

2.3.9 Proof . 35

2.3.10 Trust . 35

2.3.11 User Interface & Applications 36

2.3.12 Crypto . 36

2.3.13 Issues not covered . 36

3 Information quality 37

3.1 ISO 8000 . 37

3.1.1 ISO 15926 & ISO 8000 - Master data 38

3.1.2 Syntactic quality . 39

3.1.3 Semantic Quality . 40

3.1.4 Pragmatic quality . 40

3.1.5 Provenance . 42

3.2 Related work . 42

4 Validation of ISO 15926 data in the Semantc Web architec-
ture 43

4.1 Ontologies . 43

4.1.1 Representing ISO 15926 in OWL 44

4.1.2 Reification . 45

4.1.3 Reasoners . 46

4.1.4 Open vs. Closed World Assumption 47

4.1.5 Integrity constraints 48

4.2 Validation Tools & Software 49

4.2.1 On-line validators . 49

4.2.2 Jena Eyeball . 49

4.2.3 ODEval . 49

4.2.4 HermIT . 50

4.2.5 Fact++ . 50

4.2.6 Pellet Integrity constraint validation 50

4.3 Development configuration . 51

4.3.1 Jena . 51

4.3.2 OWL API . 51

vi

5 Validation Test Case and Results 54
5.1 The Life Of An electric Motor 54
5.2 Integrity constraint - Test cases 58
5.3 Life-cycle test case . 58
5.4 Results . 59

6 Conclusions, Current & Future Work 61
6.1 Further work . 61

7 Appendix 63
7.1 Quality Criteria for RDF representations of installations de-

scriptions according to ISO15926 part 8 64
7.2 Integrity constraints for the pipeline commissioning life-cycle 71

List of Terms 81

List of Abbreviations 85

Bibliography 86

vii

List of Figures

2.1 Silo perspektivet - Oil & Gas engineering systems 6
2.2 Activity model of the process plant life-cycle. 12
2.3 Three schema architecture from the conceptional model of

ISO15926 based on ISO/TR 9007, reprinted from ISO 15926-
1 with permission of POSC Caesar association. 13

2.4 The generic data model of th ISO 15926 Architecture, reprinted
from ISO 15926-1 with permission of POSC Caesar association. 14

2.5 Data Catalog, reprinted from ISO 15926-1 with permission of
POSC Caesar association. 16

2.6 (ISO 15926-1:2004, Types of classes) - The position of a class
relative to the top and base of the triangle indicates the degree
of definition. Classes at the top are general and have few re-
strictions on membership, whereas those at the base are more
specific. Classes at the base of the triangle are specializations
of the ones above, and so on up the triangle. 22

2.7 Estimated gain of implementing IO in the Norwegian conti-
nental shelf. 25

2.8 A classic Gartner hype cycle for the Semantic Web. 27
2.9 The Semantic Web Stack. 28
2.10 A single triple shown in W3C RDF style diagram. 30
2.11 Example of a Triple. 31
2.12 Knowledge representation languages. 33

3.1 Example of data sheet mapping, the process of moving data
is known as Lifting & Lowering. 39

4.1 The diagram shows zero, first and second orders classes when
following one of the three vertical paths. 44

4.2 The software configuration. 52

5.1 The life cycle stages of an electric motor. 54
5.2 The mapping between ISO 15926 and IEC 61346. 56
5.3 This EXPRESS diagram shows the pipeline class and its

relations to its life-cycles. 59

viii

List of Tables

2.1 The published ISO 15926 parts. 10

3.1 The published ISO 8000 parts. 38

4.1 Current data validation software. 50
4.2 Hardware configuration. 53

ix

Chapter 1

Introduction

1.1 Problem statement

1.1.1 Original problem statement

The candidate shall examine existing tools and methods accompanied with
the Semantic Web stack in order to achieve automated reasoning on the ISO
15926 architecture. Alternatively a new method can be devised. First, the
method or tool should be able to perform data validation on a syntactic
level. This includes verifying that the data conforms to the data fields and
syntax definitions in the ontology. Second, the method or tool should be able
to perform checks on the ontology for semantic level inconsistencies, circular
dependencies, hierarchy inheritance violations and data type violations.

1.1.2 Changes

It was discovered that the existing reasoners and frameworks already sup-
ported the described data validation needs, and that it easily could inte-
grated into the ISO 15926 environment. However, a new approach to data
validation was discovered where a local CWA could be applied to parts of
the ontology (where there are data dependencies) that can not be evaluated
with the general OWA concept of the Semantic Web. In addition, studying
the ISO 15926 foundation and documentation proved to take longer time
than expected. This work has therefore been included as part of this thesis.

1.2 Motivation

The shift of ISO 15926 towards W3C implementations opens a new world of
tools and technologies that has accelerated the implementation of ISO 15926.
This development has sparked a renewed momentum from not only the
oil & gas industry, but also from several other industries that understands
the potential of Integrated Operations. With this growing interest there

1

comes a concern of risks from the automation of data integration and the
interoperability with collaborating and competing parties. The companies
involved have huge investments in their information systems that they wish
to protect while adopting to the new technology. In order to compensate
for this there is a need for an underlying control mechanism that validates
the data, ensuring high data quality.

1.3 Goal

Automated reasoning is a crucial part of the Semantic Web, both for ver-
ifying data correctness, preserving the information quality and processing
business logic. These concepts have been throughly established in ISO 8000
that provide standard definitions for information quality. We will therefore
define three levels of checking and processing according to the standard,
namely syntactic, semantic and practical.

Syntactic data quality implies the need to verify that input values are
correct according to the respective classes given by the ontology. This in-
volves checking that numerical ranges are within their boundaries, strings
comply to their required patterns and object references are valid. As a state-
ment example, the relationship between a father and son has a series of
constraints attached to it that needs to be evaluated. The syntactic checking
will have to verify that the father is older than the son, and that none of
them have a negative age.

Semantic data quality goes one step further by evaluating if two classes
are equivalent and investigating if the relationships of the entities within the
data is reasonable. The reasoning will involve entailing that the two persons
are derived from a valid ontology class, in this case, the class person. The
same applies to other mammals like monkeys where the reasoner needs to
be able to verify that both are from the same species.

The data quality part of pragmatic is related to ISO 15926 reference
logic and the incorporation of data dependencies that can not be expressed
in an Ontology. (The pragmatic level also includes general measures that
indirectly affects the use of ISO 15926).

This thesis seeks to answer the following questions:

1. Is there any suitable data validation tools accompanied with the Se-
mantic Web that is suitable for ISO 15926?

2. Is it possible to apply Semantic Web tools in ISO 15926 and fulfill the
ISO 8000 requirements of:

Syntactic information quality

Semantic information quality

Pragmatic information quality

2

1.3.1 Personal goal

From my perspective the ISO 15926 standard has potential reaching far
beyond the oil & gas industry. It is therefore a great opportunity to learn
how it works and get first hand experience with the implementation of ISO
15926.

1.4 Thesis guide

This thesis has been written in a industrial context using experimental data
provided from DNV related to a project for VNIIAES (All-Russian Scientific
Research Institute for Nuclear Power Plant Operation), internally known
within DNV as RAPOC. Source code is presented in indented plain text
indicating that

t h i s i s a source code l i s t i n g

classes are represented in bold lower case like this, this is a class.

individuals are represented with quotation marks like this, ”instance”.

properties are written in italics like this, authorOf

ISO 15926 originates from the European oil & gas and process industries.
Therefore the background materials, examples etc. presented here reflects
experiences and challenges from these industries, and in particular their
challenges related to cost effectiveness, HSE requirements etc. It is also
worth noting that ISO 15926 is developed by the industry as a response to
industrial needs, as opposed to e.g. OWL and sematic web tools that orig-
inates from more research related areas. Since the start of the last decade
the similarities between the two has however become more evident, and it
is exciting to see how these two complement each other, and that OWL
and Semantic Web offers an enormous potential for adding capabilities to
support the take-up of ISO 15926.

The basic similarity is the use of triples and logic. Since its conception
ISO 15926 has been based on the distinction between a class and individuals
(as in first order logic), organizing the classes in super-subtype hierarchies,
and replacing attributes by relationships. Hence the model is based on
object-relationship-object. Therefore ISO 15926 is ideal for use with Se-
mantic Web tools.

A key element in the use of semantic web tools to perform checks of
data implemented according to ISO 15926 is to understand the industry
requirements and how they are implemented in order to apply the appropri-
ate checking tools, and what can be achieved with today’s tools and levels

3

of implementations. A substantial part of this thesis has been devoted to
understand and describe this.

The full title of ISO 15926 is ”Integration of life-cycle data for process
plants including oil and gas production facilities”. The two important as-
pects here are ”integration” and ”life-cycle”, and I intend to show how RDF
and semantic web tools can be applied to support this.

4

Chapter 2

Technical Background &
Concepts

The introduction of computer systems in all phases of design, fabrication,
operation and decommissioning of oil & gas installations from the early
eighties and onwards not only introduced new opportunities, but also new
challenges to the whole industry. From the mid 1980’s a typical portfolio
of computer systems could be as in the Figure 2.1 below which shows the
systems used by Aker Engineering when designing the Snorre and Sleipner
platforms. In addition to the systems there is also a network of data ex-
change, both within the silos, and across silos. The general picture is the
same today, even if some integration has taken place.

Typically the systems can be divided by technology and applications,
made of systems for scientific analysis and simulations, data bases for ob-
jects with attributes and values, 2D Computer-Aided Design (2D CAD)
drafting systems (with or without associated alphanumeric data), 3D CAD
systems for spatial design, management and administrative systems and of-
fice applications.

Information about one object is typically stored in many of these sys-
tems, and to have the complete picture of the status of an object one will
need data from multiple systems, so the need for integration is obvious. E.g.
to have the full information about a pump and its driver, e.g. an electric
motor, you will need data from all groups of systems. In addition, data
about an object is spread across many systems that has proprietary data
definitions and different sets of applications across companies and between
life-cycle stages of a plant. This causes severe problem for the interoperabil-
ity between different applications, companies and life-cycle stages.

As can be seen from Figure 2.1 the complete set of documentation for
oil & gas installation or a process plant is complex interconnected data that
require a substantial effort to hand over. Most of the data that is to be used
during operation is defined during engineering or during later design stages

5

Figure 2.1: Silo perspektivet - Oil & Gas engineering systems

when modifications to the plant are designed. A key aspect of all design
work is to make drawings, diagrams and sketches. During the early 1970’s
several companies started to offer 2D CAD design/drafting systems that
would revolutionize the industry. These early systems were often a comput-
erized version of paper-based documents, drawings and artifacts made up of
proprietary formats.

Later vendors started to combine graphics and alphanumeric data by
relating alphanumeric data to the graphics representing a particular object,
often duplicating data that originated from other systems. This was even
less standardized. Some systems attached the alphanumeric data to the
graphical symbols, and later adding a 3D representation as well (like CADDS
4X) where as others defined the objects as objects in a database and related
geometric representations to these, which again was used to generate the
graphics. This resulted in an even more complex picture. As experience
with such systems grew more and more capabilities were added to such
systems, some were company specific systems and some were customizations
of Commercial Off The Shelf (COTS) systems. So not even using systems
from the same vendor would guarantee interoperability.

All the systems shown in Figure 2.1, as described above, were based on
proprietary data models and data definitions, often poorly documented, thus
making exchange of data between systems extremely difficult. This quickly
proved to be a problem for the companies in the industry that wanted to
share their work not only internally, but also with their contractors. The

6

industry was at the mercy of its vendors and application developers, and
in particular of the CAD vendors as in this area there were very few in-
house developed systems. The CAD vendors had few incentives to help
resolve this problem, so this dependence continued to grow and eventually
turned out to be a serious problem. In 1979, during a two-day meeting at
the Society of Manufacturing Engineers (SME) an engineer from General
Electric (GE) challenged the vendors to create a neutral exchange format
for 2D graphics. The following day, when the vendors confirmed that the
solution was feasible, there was no way to stop the momentum of enthusiasm
from the industry. As a result the Initial Graphics Exchange Specification
(IGES) [15] format was developed.

The IGES initiative was an initial effort driven by the need for a common
data format that could enable translations of 2D graphics between differ-
ent Computer-Aided Design (CAD) systems, but it was never intended to
become a standard. And it was not intended to address 3D geometry and
related alpha-numeric data which had become increasingly popular and re-
quired by the industry. Therefore four years later, in 1983, a standard that
addressed this, namely ISO10303, known as STandard for the Exchange
of Product model data (STEP) was initiated by ISO Technical Commit-
tee 184, Sub Committee 4, Industrial Data (ISO TC184/SC4). Its aim
was to provide a mechanism that would be capable of describing product
data throughout the life-cycle of a product, independent from any system.
This vision would involve not only the once important CAD systems, but
also the Computer-Aided Manufacturing (CAM), Computer-Aided Engi-
neering (CAE), Product data management/Engineering Data Management
(PDM/EDM) and any other computer-aided systems, commonly referred to
as Computer-Aided technologies (CAx). This would then cover the systems
used in the oil & gas and process industries as shown on Figure 2.1.

The STEP standard proved very successful in the automobile, aircraft
and space industry with respect to exchange of geometric information show-
ing a particular design, i.e. at a snapshot in time, and the U. S. National
Institute of Standards and Technology (NIST) wanted to extend the stan-
dard with this important notion, a fourth dimension, time. This would allow
engineers to model the entire life-cycle of a process plant in a data model.
Having such a data model would enable engineers to hand over a completed
process plant to any given customer, allowing the customer to continue using
the data model for maintainability, and ultimately demolition of the process
plant. This was however never fully implemented in STEP.

STEP also got some take-up in the oil & gas and process industries, but
only limited to some applications, snapshots of data, and within particular
geographical regions. In the oil & gas industry it got more attention in
Asia than in Europe. One of the key elements of STEP is the concept of
an Application Protocol (AP), which is a subset of STEP dealing with a
particular type of application, and at a snapshot as time never was incorpo-

7

rated into STEP. As described earlier, applications and their usage changes
with companies and life-cycle stages, and it is therefore vital to be able to
integrate data across applications. This was to become a big issue when the
oil & gas and process industry proposed what was to become ISO15926 for
standardization.

Towards the end of the 1980’s these problems received a lot of attention,
and in 1991 the European Strategic Program on Research in Information
Technology (ESPRIT) commissioned a project named ProcessBase. This
was an initiative aiming at establishing a data model for life-cycle infor-
mation of a facility (process plant or oil & gas installation) that would
suit the requirements of the industries. The results from this project were
later picked up and further developed by European Process Industries STEP
Technical Liaison Executive (EPISTLE), a body originally formed to coor-
dinate activities from European industry towards STEP. Initially EPISTLE
had individual companies as members, but later this changed into a sit-
uation where three national consortia were the only members: PISTEP
(UK), POSC Caesar (Norway), and USPI-NL (Netherlands). Later PIS-
TEP merged into POSC Caesar, and USPI-NL was renamed to USPI.

As described before, the documents and drawings on which the applica-
tions originally were based traditionally represented one discipline view of
the data related to a plant item. Hence to get the full view of the data about
a plant item information from many documents, listings and drawings had
to be compiled. These drawings and documents were usually defined and
maintained separately by many disciplines or groups of users, resulting in
duplicated and conflicting data that cannot easily be shared either within
an enterprise or with business partners of an enterprise. Data exchange and
handover therefore often defaulted to printed drawings and reports using
the source document layout as the format even if electronic versions were
available. This is still often the case, with pdf-files and Excel or tabular
files as a wide-spread documentation and exchange format. This therefore
does not provide much benefit over the use of paper for documentation and
exchange regarding ”intelligence” other than that the preparation of the
documentation might benefit from the company internal systems and how
they are integrated. One could therefore not fully benefit from the oppor-
tunities provided by the introduction of computers. As an illustration of
these difficulties we experienced that to be able to maintain the data after
handover the owners/operators sometimes had to accept the handover of
complete installations of hardware and software.

To develop methods and tools to overcome this, the ”Caesar Offshore”
research pro- gram initiated by DNV and co founded by the Research Coun-
cil of Norway (NFR) was established in 1992. Other member companies were
Statoil, Norsk Hydro, Saga, BP, Elf, Aker, Kværner and Brown and Root.
The aim of this initiative was to develop neutral formats for the exchange
and integration of data among companies involved in oil & gas development

8

projects and operations [38]. In 1995 this was reorganized to become the
POSC Caesar project with the same objective. In 1997 this was followed
by the POSC Caesar Association (PCA), an industry association aiming at
further developing ISO15926.

One particular task in the Caesar Offshore program was to propose a
data model suitable for data exchange and data integration. This resulted
in the selection of the EPISTLE framework and data model, which was based
on work done by the ProcessBase project and by Shell International [38].
This model was also used as the basis by two similar initiatives, PISTEP in
UK and USPI-NL in the Netherlands, and cooperation with these initiatives
was established under the EPISTLE umbrella.

The model defined in the EPISTLE framework Version 2.0 was over the
next years simplified and further developed by POSC Caesar to become
the POSC Caesar Snapshot A-E data models. In 1997 the POSC Caesar
Snapshot E model was proposed for standardization in ISO TC184/SC4
as the first draft of ISO 15926-2. This was later further developed with
the partners in EPISTLE to become EPISTLE ECM V4.5.1, which then
was standardized as ISO 15926-2:2003; the current version of the model.
Even though ISO 15926 has been developed to suit the needs of the process
and oil & gas industries, pilot projects have been conducted that prove
that the standard can also support the needs of other industries. Such
pilots includes modeling of ship propulsion systems, integration of reference
data with DNVs ship application NAUTICUS, and modeling of life-cycle
assessment data according to ISO 14048; Environmental management - life-
cycle assessment – Data documentation format and modeling of building
data. Lately it has also sparked an interest in the nuclear power plant
industry.

2.1 ISO 15926

2.1.1 ISO 15926 Parts

Døpes om til ISO 15926 today og flyttes? The diagram in figure 2.11 showed
one property of a class of pressure transmitter represented in the EXPRESS
notation used in Part 2 of the ISO 15926 standard. At the time of writing
7 parts have been published. Part 5 has been replaced by a generic ISO
TC184/SC4 standard procedure parts,

2.1.2 Industry requirements

As mentioned above the information concerning the engineering, construc-
tion and operation of process plants and oil & gas facilities is created, used
and modified by many different organizations throughout a plants life. Eco-
nomic, safety and environmental considerations demand that this informa-

9

Part Description

1 Introduction, information concerning engineering, construc-
tion and operation of production facilities is created, used
and modified by many different organizations throughout a
facility’s lifetime. The purpose of ISO 15926 is to facilitate
integration of data to support the life-cycle activities and pro-
cesses of production facilities

2 Data Model. a generic 4D model that can support all disci-
plines, supply chain company types and life-cycle stages, re-
garding information about functional requirements, physical
solutions, types of objects and individual objects as well as
activities

3 Reference data for geometry and topology

4, 5, 6 Part 4, is the initial, Part 5 is a procedure for how to extend
Part 4 (currently an ISO standard procedure is used), and
Part 6 is the procedure describing technical requirements to
Part 4 and its extensions.

7 Implementation methods for the integration of distributed sys-
tems, defining an implementation architecture that is based on
the W3C Recommendations for the Semantic Web

8 Implementation methods for the integration of distributed sys-
tems – Web Ontology Language (OWL) representation

Table 2.1: The published ISO 15926 parts.

10

tion is available to owners and operators of facilities, contractors, and reg-
ulatory bodies in a consistent, integrated form. This requirement can be
satisfied by specifications that prescribe the structure and meaning of the
data that is shared by organizations and disciplines involved in all stages of
a plants life-cycle. The need to increase the cost efficiency of process plants
is leading to business practices that depend on the efficient integration and
sharing of plant information in a computer processable form. These business
practices include the following.

1. Many users’ needs now span more than one of the traditional infor-
mation views. Safety and environment are two examples of this.

2. Concurrent engineering requires design work to progress in parallel,
with the state of the design being available electronically, in computer
processable form, to other engineering, planning, purchasing and lo-
gistical activities.

3. Significant cost savings are expected from standardization of compo-
nent specifications. The information about these specifications is re-
quired in computer processable form for easy incorporation into plant
designs and requirements.

4. In the past, hand-over of plant design information was often restricted
to design drawings and paper documents. Use of this information in
managing the operation and modification of the plant was restricted
to manual processes, or the information had to be redefined in a for-
mat suitable to the required application. Having the plant design and
equipment information in computer processable form increases the ef-
ficiency and effectiveness of the operational phase of the plant.

5. Accurate computer processable information about a plants perfor-
mance throughout its lifetime is of high value, for optimizing future
modifications to the plant and for designing new plants on the basis
of experience with existing plants.

6. By using a consistent context for data definitions, the information used
in the various aspects of the plants life-cycle can be brought together.
This allows information to be integrated, shared and exchanged in a
consistent, computer processable form.

In order for ISO15926 to accomplish these goals the data quality is very
important, both in the context of interoperability and in the integration of
existing technologies.

The scope of business activities that are supported by ISO 15926 is
illustrated in Figure 2.2 below, (reprinted from ISO 15926-1 with permissions

11

Figure 2.2: Activity model of the process plant life-cycle.

from the POSC Caesar association) which shows the main activities and data
flows associated with the life-cycle of a plant.

The life of process plants etc. typically is 30 years and more, and in
the case of the Troll A platform it is expected that the life time will be 70
years. All the data required to operate the plant will have to be available
throughout its life. Computers typically last for 3-5 years, applications will
typically need an upgrade at least every 5-10 years, and database systems
etc. all come in new versions. Therefore multiple migrations of data will
be required over the lifetime of the plant. If this is still to be based on
proprietary data definitions the consequences for both cost and data quality
is huge over the lifetime of the plant. The data should therefore be defined
independent of particular implementations.

2.1.3 Conceptual data model

To meet the challenges related to data integration and life-cycle data the
data model specified in ISO 15926-2 [18] is a conceptual data model as
described in the three schema architecture of ISO/TR 9007 [17]. The three
schema architecture identifies three types of data models:

1. External model: the data structure corresponds to a view of data
for a particular purpose that includes rules about the data that are
appropriate to the particular purpose.

2. Conceptual data model: a neutral model that is capable of support-
ing any valid view that falls within its scope. Such models can only
include rules for data that are universally true across its entire scope
for the envisaged life of the model. As a consequence most rules or
constraints arising from particular business uses of data are excluded
from conceptual data models.

12

3. Physical model: a definition of the way data is stored. The entity data
types reflect things that are important for storage and access and not
the business meaning of the data.

Figure 2.3: Three schema architecture from the conceptional model of
ISO15926 based on ISO/TR 9007, reprinted from ISO 15926-1 with per-
mission of POSC Caesar association.

These concepts are illustrated in Figure 2.3.

2.1.4 Overall design requirements

Based on the scope of business activities defined in Section 2.1.2, the overall
design requirements that follow are:

1. Meet the data requirements for integration of facility life-cycle data.

2. Be clear and unambiguous

3. Be stable in the face of changing data requirements

4. Be flexible in the face of changing business practices

5. Be reusable by others

6. Be consistent with other models covering the same scope

13

7. Be able to reconcile differences with conflicting data models

Data integration means combining information derived from several inde-
pendent sources into one coherent set of data that represents what is known.
Because the independent sources often have overlapping scopes, combining
their data requires the common things to be recognized, duplicate informa-
tion to be removed, and new information represented. To succeed in the
role of integration, the data model must have a context that can include all
the possible data that might be wanted or required.

To be able to provide such capabilities ISO 15926 specifies a data model
that defines the meaning of the life-cycle information in a single context
independent of a particular view, but supporting all the views that process
engineers, equipment engineers, operators, maintenance engineers and other
specialists may have as described above. It is worth while recognizing that
”integration” necessarily also involves exchange/import of data from exter-
nal sources as there currently are no ”native” ISO 15926 systems covering
the need of the industry.

2.1.5 Architecture

The architecture that underlies ISO 15926 is illustrated in Figure 2.4.

Figure 2.4: The generic data model of th ISO 15926 Architecture, reprinted
from ISO 15926-1 with permission of POSC Caesar association.

By the term ”generic data model” we mean that it is independent of any
industry. The data model entities represent the persistent nature. Subject
area (industry) terminology is added as Reference Data (RD) in an Refer-
enceData Library (RDL), which is an extension of the ontology defined in
the data model. Therefore additional subject areas can be included by ex-
tending the RDL. To enable integration of information and to give a stable

14

and flexible model with respect to developing and changing business prac-
tices, the model excludes all business rules that are appropriate to specific
applications. Required business rules can where required be incorporated in
Reference Data. Process plant life-cycle data is structured according to the
data model and is divided into:

1. Data about an individual process plant or part thereof, (see left-hand
side of Figure 2.4) which conforms to the data model and references
the Reference Data.

2. Reference Data (RD) (bottom right-hand part of Figure 2.4), which
represents information that is common to many process plants or of
interest to many users.

The data model specified in ISO 15926-2 supports exchange and integra-
tion of data but does not provide sufficient specific meaning of data to enable
unambiguous communication. Data about an individual process plant can
be shared and exchanged only if both the sender and the receiver use the
same reference data. This reference data shall be sufficient to ensure unam-
biguous communication between parties. Reference data is divided into the
following:

1. Instances that represent reference individuals, for example the Euro-
pean Datum of 1950 (ED50) located at the geodetic observatory at
Potsdam near Berlin is a reference individual.

2. Instances that represent reference classes.

There is a variety of RD required to meet the requirements for life-cycle
data, and in order to group and allocate the responsibility for definition
and maintenance of the RD with the appropriate parties a classification
system for RD applicable in a process plant context has been introduced by
ISO15926.

2.1.6 Data model design/EPISTLE principles

The ISO15926 data model is designed in accordance with data modeling
principles developed by EPISTLE. These principles control the use of entity
data types, attributes and relationships when defining a conceptual data
model. Some of the effects of these principles are as follows.

1. The model entity data types are part of a universal subtype/supertype
hierarchy of entity data types.

2. Entity data types are generic, representing and being named after the
persistent nature of their members.

15

3. Attribute information is usually expressed by references to entity data
types. The only mandatory attribute in ISO 15926-2 is ”thing.id”.
Any other attribute information is expressed using relationships.

4. Relationships and activities are represented by entity data types. This
is because of the need for separate metadata, e.g. from a data man-
agement and data quality perspective it is required to record who
established a relationship, and what is its status. See section on data
quality and ISO 8000. Note: This causes huge challenges when in-
terfacing with external models. The question always is ”what type of
relationship represents a given attribute in traditional models?”

2.1.7 Some aspects related to the use of ISO 15926

By applying these design principles to industrial data the RD or ontology
of ISO15926 spans from very generic concepts, or classes, down to very pre-
cisely defined classes representing catalog type data as shown in the Figure
2.5 below. A classification system for the ontology is formalized by the types
of classes defined in ISO 15926-1, Reference data.

Figure 2.5: Data Catalog, reprinted from ISO 15926-1 with permission of
POSC Caesar association.

The work done in the EPISTLE and ISO 15926 communities have shown
that all concepts, or types of objects, used in the oil & gas and process indus-
tries can be organized into such an ontology. ”Characteristics” or ”attribute
values” common to class members are defined once as computer processable
data related to the relevant class and ”inherited” down the hierarchy.

16

In fact all the generic concepts and product specifications developed
by standardization bodies (ISO, International Electro technical Commission
(IEC), American Society of Mechanical Engineers (ASME)) can be defined
in an ontology that is independent of any particular project or organization.
The intent is that this shall be standardized in ISO 15926-4, Reference Data.
Parts of it will as a step in the standardization process be held in the POSC
Caesar RDL as an ”industry ontology” before being standardized by ISO.
These ontologies can be referred to as the ”Background ontology” for a
project. As there will be many interrelated ontologies the intent is to store
this as ”linked data”.

As these ontologies will be used by many projects and will be vital to the
industry, quality becomes an issue, both technical and from a management
point of view. So in addition to ISO 15926, ISO 8000 is also expected to
play a vital role.

For the technical quality the use of automated checking will be vital in
the definition and maintenance of these Background Ontologies, and also in
the process of checking a particular project design against the background
ontology.

As the ISO 15926 model is a generic entity model where most of the
meaning that is of interest in a particular domain is expressed in the Refer-
ence Data. Therefore only the basic structure can be checked using generic
tools. To be able to perform domain data checking the Reference Data and
project data has to be represented in such a way that it can be used by
reasoners. This is what we can call ”computer sensible data”.

To understand which standard checks that can be used with ISO 15926
and for which purpose, and for the design of new checks, it is important to
understand how data is modeled in ISO 15926, and how ISO 15926 complies
with and uses OWL and RDF. OWL, UML and ISO 15926 are all based on
triples and can be represented in RDF. The key difference is in the use of
triples. In particular it is important to understand the modelling related to

1. Properties

2. Attributes

3. Characteristics

as the way these are dealt with is significantly different than for e.g.
traditional UML models. See section 2.1.8, Representation of ”Attributes”
using ISO 15926 regarding the representation of attributes.

2.1.8 Representation of ”Attributes” using ISO 15926

Traditional ”attributes” or ”characteristics” can be subdivided into two
main groups.

17

The first group is the ”characteristics” or ”properties” that refers to a
property expressed as a number and a Unit of Measure (UoM). The name of
the attribute maps to a member of ISO 15926-2 ”class of indirect property”,
whereas the value maps to a ”property” that is classified by a member of ISO
15926-2 ”single property dimension”. The UoM is represented by a ”scale”.

The other main group is the ”Attributes” where the value is a text. This
is of a different nature, as in this case the text either

1. is a statement about something,

2. or identifies something else

In the first case one need to identify what the statement is about and
the nature of the statement, in the second case the challenge is to identify
what the text identifies, and how this is related to the thing that ”has the
attribute”. As there are no attributes in ISO 15926 one have to determine
the nature of the relationship. This is one of the most challenging parts
when it comes to mapping external data on to ISO 15926, i.e. express the
meaning in ISO 15926 terms.

The reason for choosing what was to become ISO 15926, i.e. the EPIS-
TLE framework, was that it was identified that in order to achieve the goals
(exchange and integration of life-cycle data), data had to be modeled in-
dependently of existing applications, and one had to separate what things
are from how they are used and represented. In short one had to concern
oneself with the underlying nature of things, which is one of the foundations
for EPISTLE/ISO 15926.

In traditional modeling one starts from a particular view of the world, not
considering other possible views. Based on this starting point one defines
what are the types of objects of interest and their attributes. The most
common starting point is to start from a ”functional” view of the world, i.e.
you start from what the thing ”does” or ”is”, e.g. a pump, a pipe a cup or a
chair, and then everything else is an attribute of that type of object. In other
views of the data one might find that what is an attribute in one view is a
class in another view. E.g. ”steel” is often seen as the value of an attribute
(”material of construction”) of ”steel pipe”. This is in conformance with
a piping designers view of the world, but in conflict with material expert’s
view of the world. They see this as a lump of steel with a particular shape.
And if you have a piece of steel pipe you can examine it, you will then find
that it possesses all the ”properties” of a pipe and also those of ”steel”, and
in the case of process design and pipe stress calculations you need both.

As described above the value of a ”text attribute” normally identifies
another object, and if the ”properties” or ”attributes” of this is of interest
to you, (and it normally is in the context of process plants) you will have to
define this somewhere else to be able to record data about it. You then have
the same object at least twice, once as a class and once as a test string, and

18

these needs to be coordinated. In ISO 15926 this is dealt with as 3 classes,
”pipe”, ”steel object”, and ”steel pipe”, where ”steel pipe” is a subclass of
”pipe” and ”steel object”. (It inherits both sets of properties as described
above). This allows us to record what is known about a ”thing” one place
and refer to it, avoiding duplicate information.

2.1.9 Conditions for membership

One important aspect related to automated checking based on ”attributes”
is the fact that these can be divided into two groups, one group is the
”attributes” that are used to define membership in the class (”conditions
for membership”), the other group are ”descriptive attributes”.

As an example, the basis for membership of a ship in the class VLCC
(Very Large Crude Carrier) is that it can carry 200,000–320,000 tons of crude
oil. Nothing is stated about its overall length or width. So load carrying
capacity is used to establish class membership, overall length is not included
in the definition of class membership (unless the class definition is changed
to include a maximum length, in which case we will have a subclass, e.g.
VLCC with a maximum length xxx meters.) This distinction is vital when
it comes to the use of automated reasoning for defining class membership.

A complicating factor is that an ”attribute” does not necessarily belong
in the same category over the lifetime of the object it is related to. Say
if a type of valve is selected based on capabilities, but not considering its
length. If you need to replace it the length suddenly becomes a criterion for
selection of a new one.

Another example is to say that a car shall have an engine, and that a
petrol car shall have a petrol engine and a diesel car shall have a diesel engine.
In this case one will have to define the classes engine, diesel engine, petrol
engine, car, diesel car and petrol car, including the relationships between
them as ”conditions for membership” and to express this in a ”computer
processable form” to be able to reason over the data. This applies both
to the structure of the ontology, and to determine class membership. An
ontology would typically be as shown below. In addition comes the different
ignition and fuel systems that apply to diesel and petrol engines which are
not shown.

2.1.10 Key ISO 15926 Terms and definitions

The following key terms and definitions apply to ISO 15926. One should in
particular note the definitions of instance and individual which often leads
to confusions.

19

2.1.10.1 class

A category or division of things based on one or more criteria for inclusion
and exclusion. A class need not have any members (things that satisfy
its criteria for membership). Note: ”class of individual” (1st order) and
”class of class” (2nd order) are subtypes of ”class”.

2.1.10.2 conceptual data model

A data model in the three schema architecture defined by ISO/TR 9007,
in which the structure of data is represented in a form independent of any
physical storage or external presentation format

2.1.10.3 individual

A thing that exists in space and time. In this context existence is based
upon being imaginable within some consistent logic, including actual, hy-
pothetical, planned, expected, or required individuals. A pump with serial
number ABC123, Battersea Power Station, Sir Joseph Whitworth, and the
Starship ”Enterprise” are examples of individuals.

2.1.10.4 instance

Data that represents, in computer processable form, some real-world thing

2.1.10.5 Reference Data (RD)

Process plant life-cycle data that represents information about classes or
individuals which are common to many process plants or of interest to many
users

2.1.10.6 Reference Data Library (RDL)

Managed collection of reference data. Classes are organized in a super/-
subtype hierarchy (taxonomy) based on rules as described above. Based on
information about who is responsible for the definition of the conditions for
membership the classes are grouped as e.g. ”core”, ”standard” or ”man-
ufacturer”. The ”core” classes are the most generic, with few restrictions,
located near the top of the taxonomy, and the ”manufacturer” classes, with
an often extensive set of conditions for membership, are at the bottom”.
Membership of individuals in classes, and super/subclass relationships are
in all cases established based on the ”conditions for membership”.

For management purposes and to place the responsibility for defining
and maintaining reference data with relevant organizations, the reference
data is further subdivided into the following categories:

20

core class is a class that is a commonly used subdivision corresponding to
terms used in common language. The conditions for membership are often
not formally defined. Pipe, floor, pump, and light bulb are all core classes.

de facto class is a class corresponding to common natures that are widely
recognized, but not formally agreed or defined. De facto classes may be
formalized by international, national, or industry agreement. An example
is a manufacturer may choose to make a product of similar specification to
that of another manufacturer in order to compete for the market share by
choosing to conform to some characteristics of the other product.

standard class is a class whose specification for membership is owned
or controlled by a standardization body and is publicly available. Standard
classes result from the work of national, international, or industry standard-
ization bodies and cover sizes, shapes, materials, performance, and manu-
facturing processes of equipment and materials. The rules for exclusion and
inclusion (or conformance) are agreed by an open, consensus process and are
made publicly available. A standard class may only constrain one particular
aspect and often be insufficient to determine usage or full manufacturing
specifications. Examples are the ASME B16.9 standard constrains the di-
mensions and shapes of steel butt-welding pipe fittings and the IEC 60079-1
standard which specifies constraints on electrical equipment to ensure stan-
dard degrees of explosion proofness.

manufactured product class is a class whose members are individuals
produced by a manufacturing process. The members of a manufactured
product class may be discrete or may be batches or continuous flows, such
as process fluids. ”Lightbulbs 60 W 230 V E27” is an example of a manufac-
tured product class whose members are discrete. ”BS4040 Leaded Petrol” is
an example of a manufactured product class whose members are continuous.
Note that a manufactured product class may correspond to a specification
that has not been realized, such a product specification for which no prod-
ucts have yet been made.

commodity product class is a manufactured product class whose mem-
bers conform to open agreed standards. Commodity product classes have
sufficient characterization to indicate suitability of use. They are specializa-
tions of one or more de facto classes, standard classes, or both. The resulting
specification is non-proprietary as no one organization controls it. The type
of lightbulb known as 60 W 230 V E27 is a commodity product class.

proprietary class is a class whose specification for membership is owned,
controlled, or protected by an organization and is not generally available

21

outside that organization.

proprietary product class is a class that is a manufactured product class
and a proprietary class. Proprietary product classes are specializations that
depend on rules of inclusion and exclusion some of which are controlled in
a closed way. This means that some aspects of the specification can be
arbitrarily changed. Many proprietary product classes are specializations of
commodity product classes, de facto classes, or both, where the additional
restrictions reflect design or manufacturing details that the manufacturer
uses to differentiate his product from others of the same general type. A
product specification that is owned by a commercial organization, and is
marketed under and protected by a registered trade name, is the basis for
a proprietary product class. An example is lightbulbs 60 W 230 V E27
manufactured by Phillips are members of a proprietary product class.

Figure 2.6: (ISO 15926-1:2004, Types of classes) - The position of a class
relative to the top and base of the triangle indicates the degree of definition.
Classes at the top are general and have few restrictions on membership,
whereas those at the base are more specific. Classes at the base of the
triangle are specializations of the ones above, and so on up the triangle.

The relationship between the different class types is illustrated in Figure 2.6

22

2.2 The Semantic Web

In 2005 the POSC Caesar Association (PCA), as a part of the EU-funded
project CASCADE, was made aware that the World Wide Web Consor-
tium (W3C) had developed the Web Ontology Language (OWL) knowledge
representation language. They had been working on how to make informa-
tion universally interpretable between all knowledge domains, while POSC
Caesar project had focused on specifying a data model that would fit the
process plant industries. This discovery led to a change of direction for ISO
15926 towards an interpretation that would fit the tools and services of Web
3.0 as envisioned by the inventor of the Web and founder of W3C, Tim
Berners-Lee.

”I have a dream for the Web [in which computers] become ca-
pable of analyzing all the data on the Web – the content, links,
and transactions between people and computers. A ‘Semantic
Web’, which should make this possible, has yet to emerge, but
when it does, the day-to-day mechanisms of trade, bureaucracy
and our daily lives will be handled by machines talking to ma-
chines. The ‘intelligent agents’ people have touted for ages will
finally materialize.[6]”

The Web which Berners-Lee is referring to is known as the the Semantic
Web, or Web 3.0. In order to achieve his vision there is a need to improve
on how computers exchange the vast amount of information available on
the web while staying compatible with the early web. This improvement
is made possible by creating a common communication platform where the
computers share their language.

”The Semantic Web is not a separate Web but an extension of
the current one, in which information is given well-defined mean-
ing, better enabling computers and people to work in cooperation.[37]”

This shared language is a collection of concepts that computers can ref-
erence when exchanging information. They are organized in ontologies that
contains a large collection of precise and hierarchically organized concepts,
including their relation among each other. Ontologies enable machines to
refer classes in a ontology and thereby specify the exact meaning and context
from which its information relates to. So when a machine requests informa-
tion over the Internet it will get a reply including a reference to the ontology
used by its peer. Having such a shared reference to the definition of what the
data contains is useful when systems operate in different contexts. While
US systems might operate with imperial units, European systems operate
with metric units. In this setting the ontologies will provide a link to the
definition of the unit in question, making it easy for the peers to write a

23

simple conversion rule. An ontology will therefore act as a knowledge base
for a specific domain, like ISO 15926 which originally was designed for the
oil and gas industry1. An interesting fact is that the ontology is titled:

Industrial automation systems and integration - Integration
of life-cycle data for process plants including oil & gas production
facilities.

The developers of the standard now considers this title too narrow be-
cause the data model is so generic and its applications so wide that it can
model any state information. As a result the ISO15926 has gained interest
from other industries that wants to use this generic data model in their in-
formation exchange. However, the ontology has not been used or tested in
a production environment so there is a reluctance to be the first one out to
try out this model, there are several concerns held by the actors.

2.2.1 Potential of integrated operations

In 2007 the Norwegian Oil Industry Association (OLF) published a report
estimating a moderate potential value gain of 295 billion NOK in the period
2005-2028 by using Integrated Operation on the Norwegian continental shelf
[26]. This estimate is illustrated in Figure 2.7 requires a widespread imple-
mentation of Integrated Operation throughout the value chain and has an
estimated cost of 24 billion NOK. 78% of the potential is attributed to an
accelerated production and growth of reserves as a result of optimizations
of production plants and idleness at the installations.

2.2.2 Benefits

The report in the previous section emphasizes the following success factors
from the pilot project of full Integrated Operations at the Brage platform.

1. Real-time interaction between operational engineers from different ac-
tivities and disciplines resulted in quick and effective interaction

2. Specialized tools with historic and real-time data enabled engineers to
make better decisions

3. Enhanced digital collaboration with onshore personnel

4. Enhanced well performance due to real-time positioning of the well
installations

5. Enhanced seismologic surveillance

1Similarly there are other domain specific ontologies like SNOMED which has been
developed for the health care industry.

24

Figure 2.7: Estimated gain of implementing IO in the Norwegian continental
shelf.

6. Prolonged life expectancy of the platform due to lower operating costs

7. Enhanced pressure in production wells due to better real-time control
of the water injection

8. Enhanced health and safety records due to better control of operations

The Integrated Operation at the Brage platform was implemented by
streamlining their operational processes without the use of ISO15926. How-
ever, operational processes are just one part of the platform life-cycle. For
this reason the Integrated Operations in the High North (IOHN) project
was initiated as a joint industry project in May 2008 with a duration of four
years. In late 2010 IBM withdrew as supplier of the infrastructure so the
project is currently in a stand still.

While there are forces in the industry that is pushing for Integrated
Operation, like the OLF, there are also people who are satisfied with how
things currently work. It has been said that many of the changes with IO
we are seeing happening now, happened more than a decade ago in the
automotive industry [14]. There can be several different reasons why the
development is so slow, one is that downtime due to integration of Integrated
Operation can hav huge costs. Another is that it requires a substantial effort
from the workers that operate the facilities, resulting in a loss of production
in a highly efficiency intensive industry. David Ottesen, CEO in Ziebel said

25

this about the situation: The technology is here, yes. It’s the determination
we are lacking. The contracts are designed such that suppliers earn more
when things take more time and more people are used. That is the exact
opposite of what we should be striving towards.” [34]

2.2.3 State of the art

In 2007 Knowledgeweb made an assessment on the current status of the Se-
mantic Web development, acceptance and productivity level [11]. Since then
there has been several new additions to the collection of tools, frameworks
and services. Although the graph in Figure 2.8 is outdated it gives a good
overview of the technologies that has emerged in the last couple of years.
The graph shows a classic Gartner hype cycle that provides an overview of
the phases a new technology goes through after its inception. One example
in the graph is the Semantic annotation that Google has implemented in
their search engine 1. Another example is the semantic-mediawiki project
2 (extension of the popular mediawiki framework) which enable semantic
annotations of shared concepts, making the information computer sensible
so that user queries can be interpreted more intelligently. The Trust con-
cept has also received much attention in the last years and is going through
rapid development, which we will return to later. In essence, most of the
technologies listed in Figure 2.8 are highly relevant today.

1http://www.heppresearch.com/gr4google
2http://semantic-mediawiki.org/

26

Figure 2.8: A classic Gartner hype cycle for the Semantic Web.

2.3 The Semantic Web Stack

In order for a reasoner to be able to interpret and process the information
across information domains, it follows that a common platform is needed.
This platform is known at the Semantic Web stack and consists of layers
made up of concepts. Figure 2.9 on page 28 is an illustration of how these
concepts are related. Each concept is implemented by a technology, standard
or a data model capable of fulfilling the role of the concept. Some of these
implementations can live their life’s of their own, they are independent,
meaning that they might change their direction of development in a way
that disfavors the Semantic Web stack. Even if this is unlikely to happen,
it is necessary to emphasize that the implementation of a concept is not
of importance because, in theory, they are independent from each other.
However, in practice it might prove difficult for an organization if it chooses
to use a different implementation of a concept than its partners. With this
in mind we will have a look at the Semantic Web stack proposed by Steve
Bratt in 2007 [7].

27

2.3.1 URI/IRI

Starting from the bottom left of Figure 2.9 we have the URI/IRI block
consisting of two standards that deals with resource addressing on the Web.
URI’s1 are commonly known as URL’s2 that is used by the web browsers
to access web pages and other Internet resources like www.example.com.
We can think of a resource as an object, a ”thing” we want to talk about.
Resources may be authors, books, publishers, places, people, hotels, rooms,
search queries, and so on, or the concept of ”Ambient temperature” in figure
2.2. Every resource has a URI, a Uniform Resource Identifier [1]. The IRI’s3

enables the use of international characters including Chinese and Arabic
characters that earlier wasn’t possible with the characters limited from a
to z. The URI/IRI block is therefore an essential part of the Internet that
allows us to locate and interact with other computers.

Figure 2.9: The Semantic Web Stack.

1Uniform Resource Identifier’s is a scheme that defines the Internet addressing proto-
cols.

2Uniform Resource Locator’s is the set of addressing protocols that conforms to the
URI scheme.

3Internationalized Resource Identifier’s is an extension of URI from the US-ASCII
character set to the Unicode/ISO-10646 character set.

28

2.3.2 XML

Climbing one level up in the middle of the Semantic Web stack we find the
eXtensible Markup Language (XML) block. XML deals with the document
structure in the information transfer. Considering that there is a variety
of document formats and standards available to represent different kinds of
information, they are usually optimal for their own applications. Like the
mp3 file format which is suitable for acoustic information, or the doc file
format which is suitable for word processing. However, there is a need for
a file format that can represent any information in a common format that
is understood by all. The XML file format is simply a extensible language
that acts as an information carrier. The information contained in an XML
document can be validated with an eXtensible Markup Languages (XML-
Schemas) which is part of the XML standard. XML-Schema defines the
syntax required for a XML document. This allows us to define what data
types are allowed for the information contained within an XML document
with a XML markup tag. E. g. when we reference a website in an XML
document, we know that certain characters have special meaning and cannot
be used in the URL string such as # % & * { } \ : < > ? / +. In this way
XML-Schema allows us to express the rules of syntax for XML.

2.3.3 RDF

The previous paragraph described XML as a universal metalanguage for
defining markup. It provides a uniform framework, and a set of tools
like parsers, for interchange of data and metadata between applications.
However, XML does not provide any means of talking about the semantics
(meaning) of data. For example, there is no intended meaning associated
with the nesting of tags; it is up to each application to interpret the data.
This can be done with Resource Description Framework (RDF), which es-
sentially is a data model. RDF is a W3C specification which describes a
model on how information is represented. It is the most important part of
the stack and Tim Berners-Lee has expressed that he views it as the general
model of the Semantic Web [4].

Statements assert the properties of resources where a statement is an
object-attribute-value triple, consisting of a resource, a property, and a value
where values can either be resources or literals. There are three ways to view
a statement, the first alternative is the triple notation in form of a graph.
One way of viewing a single triple of linked data is by using variables (x, P,
y) that can be expressed a logic formula

P(x , y)

where P is a binary predicate that describes how an object x relates to an
object y. This notation is in accordance with expressions written in First
Order Logic (FOL).

29

<?xml v e r s i o n =”1.0”?>
<rd f :RDF
xmlns : rd f=”http ://www. w3 . org /1999/02/22− rdf−syntax−ns”
xmlns : posccae sa r=”http ://www. posccae sa r . org / rd f /”>

<rd f : De s c r ip t i on rdf : about=”http://www. posccaesar . org/x”>
<posccaesar :P

rdf : resource=”y”/>
</rd f : Descr ipt ion>

</rd f :RDF>

Viewing the data in a graph is useful when presenting a moderate sized
collection of under 50 triples, it can however become incomprehensible with
large collections. In the Artificial Intelligence (AI) community the graph
perspective is also known as a Semantic Net.

Figure 2.10: A single triple shown in W3C RDF style diagram.

This reified allows creating classes (organized in a hierarchy) and proper-
ties (with a domain/range), thus forming a primitive ontology language [1].
OWL offers a rich knowledge representation languages compared to RDF-S,
which had proved too simple [6].

ISO15926 is based on the same reified structure as RDF. The following
schema in Figure 2.11 shows a EXPRESS diagram of a pressure transmitter,
type 3051CG. The information in the schema itself is not of interest here, but
the structures and their composition is the important part of this example.

On the far left there is the name of the class in question 3051CG with
its relation to a Temperature range (between -45◦ and 85◦) through a class
of relation. The underlaying logic of this little part of the diagram is a
statement of a triple where the subject(3051CG) has a predicate(Indirect
property) to an object(Temperature -45◦-85◦). Starting from the Indirect
property and going upwards we can see that the triple-pattern is repeated
with the classification to the Ambient temperature which is giving meaning
to the predicate; it is of type ”Ambient temperature”. This process can be
repeated throughout the diagram where every box is a valid entry in the
ontology it refers to. The boxes are indicating ”type” (property range) and
”value”, e.g. (temperature range -45◦- 85◦). This model is similar to the
ISO 15926 with the use of triples to represent metadata and data in triples
with a subject, predicate and object as the example explained by Figure
2.11. This representation is desirable because it provides a data structure
that enables the use of rules. The rules will in turn allow reasoning and
discover new facts that is deductible from the data. The deduction of new

30

Figure 2.11: Example of a Triple.

information can be done by applying FOL, we shall however see that the
use of higher order logic is required to cover industrial needs. This is an
important goal of the Semantic Web, the notion that computers should be
able to interpret and reason on the behalf of humans by using a set of rules.

2.3.4 RDF-S

The name RDF Schema is now widely regarded as an unfortunate choice [1].
It suggests that RDF Schema has a similar relation to RDF as XML Schema
has to XML, but in fact this is not the case. XML Schema constrains the
structure of XML documents, whereas RDF Schema defines the vocabulary
used in RDF data models to express relationships. Resource Description
Framework Schema (RDF-S) is an extensible knowledge representation lan-
guage that is used to structure RDF resources and provide a vocabulary/on-
tology using RDF, making it a general purpose language for representing
information on the web by enforcing RDF document structures. However,
RDF-S has a limited ability to represent advanced knowledge structures.
It can not express relationships like disjointness among classes, property
characteristics symmetry and cardinality restrictions (among other).

The fundamental concepts of RDF-S are resources, properties and state-
ments. Resources are defined by classes that represents an entity such as
”Person”, ”Planet” and the ”IP-66” standard. Properties are a special kind
of resources that describe relations between resources, for example ”manu-
factured by”, ”has unique id”, ”own by”, and so on. Properties and resources
are identified by URIs (and in practice by URLs). This idea of using URIs to
identify ”things” and the relations between them is quite important. RDF
has a decentralized philosophy and allows incremental building of knowledge,

31

and its sharing and reuse. This choice gives a worldwide, unique naming
scheme. The use of such a scheme greatly reduces the name space problem
that has plagued distributed data representation.

2.3.5 Ontology: OWL

OWL is a family of knowledge representation languages, namely OWL-
Lite/DL/Full. It is based on RDF/XML serializations.

1. OWL-Lite - intended for users that has a simple thesauri or taxonomy-
based systems. It was meant to act as a gateway for institutions
that wants to try out semantic technologies without having to commit
to large changes. OWL-Lite supports hierarchical classification and
simple class constraints like cardinality, although limited to the values
1 and 0 (this allows setting limits on classes by for example specifying
that a person must have exactly one mother. As a result it is not used
very much other than for educational and for simple testing purposes.
Since it is based on the DL SHIF(D) semantics it is a subset of
OWL-DL [31], thus making it capable of interacting with OWL-DL
applications.

2. OWL-DL - is a more complex language based on description logic that
is more expressive than OWL-Lite but has some trade-offs compared to
OWL-Full. It supports the users that wants maximum expressiveness
while retaining computational completeness (all conclusions are guar-
anteed to be computable) and decidability (all computations will finish
in finite time). OWL DL includes all OWL language constructs, but
they can be used only under certain restrictions (for example, while a
class may be a subclass of many classes, a class cannot be an instance
of another class). OWL DL is so named due to its correspondence
with description logics; namely the SHOIN (D) semantics, a field of
research that has studied the logics that form the formal foundation
of OWL.

3. OWL-Full - is meant for users who want maximum expressiveness and
the syntactic freedom of RDF with no computational guarantees. For
example, in OWL Full a class can be treated simultaneously as a col-
lection of individuals and as an individual in its own right. OWL Full
allows an ontology to augment the meaning of the pre-defined (RDF
or OWL) vocabulary. Its semantics is beyond SROIQ(D) and it is
unlikely that any reasoning software will be able to support complete
reasoning for every feature of OWL Full.

Each of these sublanguages is an extension of its simpler predecessor,
both in what can be legally expressed and in what can be validly concluded.
The following set of relations hold. Their inverses do not [27].

32

1. Every legal OWL Lite ontology is a legal OWL DL ontology.

2. Every legal OWL DL ontology is a legal OWL Full ontology

3. Every valid OWL Lite conclusion is a valid OWL DL conclusion

4. Every valid OWL DL conclusion is a valid OWL Full conclusion

Figure 2.12 shows the level of expressiveness with respect to knowledge
representations we have reviewed until now. Ontologies will be revisited in
section 4.1.

Figure 2.12: Knowledge representation languages.

2.3.6 Rule: RIF

Rule Interchange Format (RIF) is a rule interchange standard and no spe-
cific implementation. It arises from the experience from the fact that rules
provide a useful method of making inferences on large and complex informa-
tion sources. Its purpose is to allow systems to exchange rules that define
their business logic that augments the shared information model and pro-
viding the ability to make them available through a shared format. Such
rules is used by the reasoner to make inferences about information that is
necessary for a business, but does not exist in the ontology. Rule languages
like SWRL and RuleML implement RIF in such a way that allows an ac-
tor to publish its f. ex SWRL-rules in order for another actor to translate
the rules into f. ex RuleML-rules. Several dialect are available like the
RIF PR that is optimal for business rules, RIF BLD for logic programming
and RIF Core which covers both dialects. The most widespread implemen-
tation is Semantic Web Rule Language (SWRL) which is a subset of the
RIF Basic Logic Dialect (RIF-BLD) format. SWRL has been built as an
extension of OWL and provides the capability to specify Horn-rules. It is
currently pending as a proposal at W3C to be accepted as a Semantic Web
rule language. Although rule support is clearly a desirable feature, there is
no general commitment of implementors of OWL reasoners to a particular
syntax or semantics, although SWRL rules are the most commonly used
ones [16]

E. g. if an American business uses the imperial system want to connect
to an European business that uses a metric system in their catalogs, there

33

will be a conversion issue. Rules will allow them to convert values to their
respective standards. A rule can be written as follows

Equipment (? x)
∧ hasSt r ing (?x , ? system)
∧ swrlb : equa l s (? system , ” metr ic ”)
⇒ customswrl : conver s i on (?x , ? system , ” impe r i a l ”)

In this rule we establish if x is a member off the class Equipment
and determine if it has a string field named system and if its a string.
Given that the conditions hold, then we can perform the conversion. When
leaving out Crypto, the Rule block spans five other blocks in its height ,
namely the XML, RDF, RDF-S, SPARQL and Ontology blocks. It has
applications within all of these because, even as an extension of OWL, it
has an interpretation through RDF and RDF-S and XML in order to be
serializeable and interchangeable between systems.

2.3.7 SPARQL

is a RDF query language and a data access protocol that interface with
information stored in a RDF data structure. It can be represented as native
RDF or any middleware that can be viewed as RDF triples. Similar to
RDF it is Triple-oriented and enabled queries of conjunctions, disjunctions
and optional patterns. It also have Negation As Failure (NAF) through
the NOT EXISTS keyword added in SPARQL Protocol and RDF Query
Language (SPARQL) 1.1. The following code is an example of a query on
the ISO 15926 SPARQL endpoint that lists all classes that has a superclass
designation containing the string ”PUMP”.

s e l e c t ? s u p e r c l a s s ? supDes ignat ion ? s u b c l a s s ? subDes ignat ion
{

? s u p e r c l a s s a p2 : C la s sOfClas sOf Ind iv idua l .
? s u p e r c l a s s RDL: hasDes ignat ion ? supDes ignat ion .
FILTER (fn : conta in s (? supDesignation , ”PUMP”))
? c l s p2 : hasSuperc l a s s ? s u p e r c l a s s .
? c l s p2 : hasSubc las s ? s u b c l a s s .
? s u b c l a s s RDL: hasDes ignat ion ? subDes ignat ion .

}
There are several implementations of this protocol such as, Sesame, Vir-

tuoso, Jena TDB and Jena SDB. It is worth mentioning that SPQRQL is a
highly query intensive language that does not scale very well for large im-
plementations. In 2009 the research publication portal Elsevier announced
the ”Billion Triples Track” Semantic Web Challenge of 20101. The goal

1http://challenge.semanticweb.org/

34

was to present an architecture that could scale up deal with at least one
billion relations between instances in the dataset gathered from the open
web. SPARQL has been and will probably continue to be a bottleneck in
the Semantic Web. Updated information and benchmarks can be found at
the W3C RDF Store Benchmarking Wiki page1.

2.3.8 Unifying Logic

Throughout the years since the Semantic Web layer cake was introduced it
has undergone several changes. During one of these changes the Unifying
Logic block has been put on top of the SPARQL and Rule layers where it
previously only covered the Ontology. As a result of this there has been done
a fair amount of research on reasoning on the Ontology layer, some on the
Rule layer, but none on the SPARQL layer. There has been little progress
on this topic since then, but this is starting to pick up. The idea is that
existing reasoners also can be capable of directly accessing and interpret
the rules and data [5] - enabling existing DL reasoners to access the entire
knowledge base. Most DL reasoners now support Ontology and, to some
extent, the rule layer in this architecture. However, there are no support for
SPARQL. The developers of Pellet is proposing a new approach for reasoning
on SPARQL data as well, this contribution will be investigated in section
4.1.3, Reasoners

2.3.9 Proof

The Semantic Web aims to make data available as computer interpretable
information that allows free interaction between systems. This expansion
of information flow between systems requires improved control mechanisms
that guarantees algorithm tractability, system authentication and certifi-
cation, access control, version control and document signing. Very little
work has been published on this area although some languages have been
proposed, like the Proof Markup Language (PML) [33].

2.3.10 Trust

Trust can be understood as an extension of proof, and the two are closely
related subjects that are often mentioned in the same sentence. Proof deals
with mechanisms involving information exchange, while trust deals with
data auditing through data provenance, networks of services and how to
handle them. Issues involve handling trust by auditing information contrib-
utors of in a network of web services, discrepancies between web services,
and social network analysis [23]. The semantic web has incorporated the
matter of trust into the architecture, but it is not a new concept. The most

1http://esw.w3.org/topic/RdfStoreBenchmarking

35

famous example is the Google Pagerank algorithm that used positive rein-
forcement of trust to websites that had a high count of hyperlinks pointing
to that domain, and negatively reinforcing websites that had a high count of
hyperlinks pointing outwards. The matter of trust has ever since, and con-
tinue to be a highly competitive arena where businesses and other groups
compete for visibility on the web that gain their interests.

2.3.11 User Interface & Applications

The social web is currently a strong force in development of user interfaces
and applications in the Semantic Web. Users are starting to see the benefits
of linking their data as the amount of information is growing, and this has
become evident on social websites like Facebook where users can tag other
people in images, include them in status updates and messages etc. There
are many challenges and new ideas that the general web can benefit from
this development, and especially for small factor devices. Readers that want
to know more about the status, ambitions and research on this topic can
have a look at the website of Visual Interfaces to the Social and Semantic
Web arranged by the International Conference on Intelligent User Interfaces
at Stanford1.

2.3.12 Crypto

Security on the Internet is, and will continue to be a major concern. This
topic will not be discussed further in this thesis, but interested readers can
have a look at the work of Raman Pal, which in January 2011 completed an
comprehensive study on the topic2.

2.3.13 Issues not covered

This chapter could arguably have presented OWL axioms and its corre-
sponding SHIF(D), SHOIN (D) and SROIQ(D) DL semantics. It was
considered too comprehensive and contributing little to understanding of
this study.

1http://www.smart-ui.org/events/vissw2011/
2http://www.scribd.com/doc/65529492/11/Cryptography-in-Semantic-Web

36

Chapter 3

Information quality

In the previous chapter we elaborated on the data model, technologies and
data exchange of the Semantic WEB architecture. In this chapter we will
start defining an information quality scale that measures level of accuracy
we can achieve.

Information quality is difficult to measure because it is relative to the
customer and users of the system. While some users define quality as having
accurate and explicit data, others might emphasize availability and amount.
There is also a matter of performance of the data services and the amount of
effort it takes to be able to use the system. Information quality is therefore
not a feature that applies to all users of the system, rather a subjective
subconscious process that reflects the users perspective [13, p. 16]. There
has been numerous attempts from different disciplines to define a universal
definition of information quality, some more successful than others.

In this study we will look into ISO 8000, a standard founded in 2006
which is devoted to implementing a shared definition of information quality
levels in automated computer processes. It is important to note that the
ISO 8000 standard is still undergoing development and there are ongoing
debates within the community on where the development is heading. Still,
it will act as a guideline by referring to shared concepts and definition on
information quality, and provide a scale for measuring outcomes of different
tools and tests from the published work.

Later in section 4.2, Validation Tools & Software we will perform a review
of the current tools and software to carry out RDF data validation and
determine the best candidate.

3.1 ISO 8000

The ISO 8000 standard is aimed at quality facets of automated information
exchange for the purchase of goods. It defines formats for descriptions of
individuals, organizations, locations, goods and services using fifteen char-

37

Part Description

1 Data quality—Part 1: Overview, principles and general re-
quirements

100 Data quality—Part 100: Master data: Exchange of character-
istic data: Overview

102 Data quality—Part 102: Master data: Exchange of character-
istic data: Terminology

110 Data quality—Part 110: Master data: Exchange of charac-
teristic data: Syntax, semantic encoding, and conformance to
data specification

120 Data quality—Part 120: Master data: Exchange of character-
istic data: Provenance

130 Data quality—Part 130: Master data: Exchange of character-
istic data: Accuracy

140 Data quality—Part 140: Master data: Exchange of character-
istic data: Completeness

150 Data quality—Part 150: Master data: Exchange of character-
istic data: Quality management framework

Table 3.1: The published ISO 8000 parts.

acteristics. Table 3.1 lists the published parts, where the name reflects
the location of the definitions. These characteristics can be divided into
three categories, namely; Syntactic quality 3.1.2, Semantic Quality 3.1.3
and Pragmatic quality 3.1.4. It is important to note that none of these does
not adhere to any specific implementations and is therefore not bound to
any language.

3.1.1 ISO 15926 & ISO 8000 - Master data

ISO 8000 part 120 defines master data as data held by an organization that
describes the independent and fundamental entities for an enterprise [20].
This is where ISO15926 fits in with ISO 8000 because ISO15926 is a data
model of the master data, that in this thesis, is implemented with semantic
technologies. The system interoperability that allows organizations to auto-
mate their information exchange is implemented through the mechanisms of
ISO15926 templates. Templates are highly explicit data sheets that contain
data fields for all the possible information field that a class can have.

Figure 3.1 illustrates the process of mapping field/values that enables
translation from one proprietary data sheet from to another. This process
of moving data from one format to another through a shared format is known
as Lifting & Lowering, a concept from the artificial intelligence community
[36]. It is a simplified illustration of how the field/value mapping translation
of the pump example shown in Figure 2.11 could have been done between

38

Figure 3.1: Example of data sheet mapping, the process of moving data is
known as Lifting & Lowering.

two vendors. Starting from the top field of the data sheet of Vendor X to
the left we have the ”Operating temperature” field. It has been mapped to
the corresponding template field in the ISO15926 explicit format. Similarly
Vendor Y has mapped the ”Temperature” field of their competing product.
When engineers have mapped all the data sheet fields of their product cata-
log to the corresponding ISO15926 class, they will be part of a information
sharing hub that allows customers to connect and find the best products
that fit their needs.

3.1.2 Syntactic quality

It is treated in ISO 8000-110:2009 [19] as listed in Table 3.1. The infor-
mation quality of syntax is a basic necessity in any information model and
addresses the need for properly formatted data. The following characteris-
tics on syntactic quality is therefore a definition that addresses checking of
data according to its metadata

Accuracy The extent to which data has attributes that correctly represent
the true value of the intended attribute of a concept of event in a specific
context of use. E. g, checking that data field values corresponds to the
data type assertion such as; an integer is asserted where a integer data type
is expected. The same type/value rules applies to other data types such
as; unsigned integers, 32-bit integers or other data types like characters or
strings

Compliance The extent to which data has attributes that adhere to stan-
dards, conventions, or regulations in force and similar rules relating to data

39

quality in a specific context of use. E. g, given a telephone number, the
number sequence can be checked to verify that it complies to a telephone
pattern, if such a pattern has been defined in a class. Compliance is also a
matter of verifying that values conform to data ranges, e. g. that an operat-
ing temperature of an individual is within the required range specified by its
class. Similarly, ontologies can (and often do) contain contradictions such
as a declaration that class A is sameAs class B, if class B then have been
declared as differentFrom - then we are able to conclude that the ontology
is inconsistent

Completeness The extent to which subjects associated with an entity
have values for all expected attributes and related entity instances in a
specific context of use. E. g, in order for the information to be computer
processable rich information is needed such as an operating temperature
although it might not be explicitly declared as required. Required fields is
of special importance because there is no guarantee that they have been
entered correctly or fulfill the specification

Syntactic correctness is a requirement that easily can be automated with
simple checks. Most publicly available reasoners offer syntactic checking on
the ontology and individuals without requiring much effort, it is therefore
considered to be free functionality

3.1.3 Semantic Quality

Is a measure on how the meaning of data quality is preserved on a concep-
tual level. This harder to accomplish because the subject is less computer
sensible.

Correctness The extent to which data is used according to its intension

Consistency The extent to which data has attributes that are free from
contradiction and coherent with other data in a specific context of use.

Precision The extent to which data has attributes that are exact or that
provide discrimination in a specific context of use

3.1.4 Pragmatic quality

Pragmatic data quality relates to how the data is used, maintained, accessed
and so forth. This level of handling data quality is more a business logic
rather than strict data requirements. It has been taken into consideration
of this measure of information quality because it is still important aspects
on how the ISO15926 overall quality is perceived by the users.

40

Accessibility The extent to which data has attributes that enable it to
be reached in a specific context of use, particularly by people who need
supporting technology or special configuration because of some disability.

Currentness The extent to which data has attributes that are of the right
age in a specific context

Credibility The extent to which data has attributes that are regarded as
true and believable by users in a specific context of use

Confidentiality The extent to which data has attributes that ensure that
it is accessed and interpreted only by authorized users in a specific context
of use

Performance The extent to which data has attributes that can be pro-
cessed and provide the expected level of performance by using the appropri-
ate amounts and types of resources under stated conditions and in a specific
context of use

Traceability The extent to which data has attributes that provide an
audit trail of accesses to the data and of any changes made to the data in a
specific context of use

Understandability The extent to which data (and associated metadata)
has attributes that enable it to be read and easily interpreted by users and
are expressed in appropriate languages, symbols, and units in a specific
context of use

Availability The extent to which data has attributes that enable it to be
retrieved in a specific context of use

Portability The extent to which data has attributes that enable it to be
moved from one platform to another, preserving the existing quality in a
specific context of use

Recoverability The extent to which data has attributes that enable it to
maintain and preserve a specified level of operations and quality, even in the
event of failure, in a specific context of use.

In the next chapter we will now turn to how we can model and test these
criteria.

41

3.1.5 Provenance

In addition there is another important concept from ISO 800 worth mention-
ing. Provenance is a measure that describes statements about statements.
This topic has been devoted special attention in ISO 8000 and should have
been assessed heavier in the development of ISO15926 according to Johan
Klüwer. Provenance is the data quality principle that requires a descrip-
tion of suppliers, customers and entities that relates to the information au-
tomation process. Say, for example, that an engineer declares that a given
”pump” is a member of the hydraulic pump class. This constitutes a
statement of the triple notion, and we would like to know who made that
statement. Since member of is a class we could make a perpendicular to
that statement saying that member of is part of another statement saying
that member of - declaredBy - ”someEngineer”. This pattern can con-
tinue on and on for any statement that has additional information attached
to it. We will not discuss this further, but it is yet another reason why UML
object properties needs to be classes with relations.

3.2 Related work

Martin Giese is a post-doc researcher at the department of Informatics at
the University of Oslo and has been developing RDF quality criterias for
applications of the ISO15926 standard. His work focuses on developing
requirements for a Best practice implementation of Templates and its co-
herence with existing reference data.

42

Chapter 4

Validation of ISO 15926 data
in the Semantc Web
architecture

4.1 Ontologies

This chapter relates back at the discussion of shape vs material in section
2.1.8, Representation of ”Attributes” using ISO 15926. Ontologies touch
upon a fundamental question within metaphysics that seeks to discover the
natural categorization of things. Several great philosophers have pondered
the ontological question, including Descartes, Kant, Ockam and Gadamer
among others. The topic of whether an object is defined by its shape or
material will not be discussed further here. Still, it is reveals some differences
relating to properties in how ISO 15926 is used in OWL with regard to
reification. First, we will define some key terms that make up the OWL
language.

Class - coincides with the definition of class in ISO 15626, see class in
paragraph 2.1.10.1 [21]

Instances - coincides with the definition of instance in ISO 15626, see
instance in paragraph 2.1.10.4 [21]

individual - coincides with the definition of individual in ISO 15626, see
individual in paragraph 2.1.10.3 [21]

Property - in Owl a property is a binary relation that states relationships
between individuals or from an individual to data value. Property can be
further distinguished as ”ObjectTypeProperty” that is defined as the rela-
tion between instances of two classes. ”DataTypeProperty” is defined as

43

the relation between instances of classes and literal values such as string,
number, and date.

4.1.1 Representing ISO 15926 in OWL

As mentioned earlier ISO 15926 originated from the industry, OWL on the
other hand is a language designed for general knowledge representation.
From now on we will be referring to OWL whenever OWL-DL is mentioned.
One of the major differences is that the OWL vocabulary only have two
levels of expressing class-individual relationships. While ISO15926 has an
additional level known as a meta-class1 that is used to group a collection of
classes. Lets clarify these three important levels with an example; assume
that you have three pets at home, for example an eagle named sam, a cat
named itchy and dog named scratchy. These three pets exist, have names,
belong at your address, etc - and we refer to them as individuals of the zero
order. Each pet relates to their class of species namely eagle, cat and dog
which is of the first order. Now here comes the point, if you want to group
your pets into classes like endangered animals and domestic animals
- you will need a third level of classes. Second order classes allows you to
create a meta-class that lists other classes as members across the ontology
hierarchy. 2

Figure 4.1: The diagram shows zero, first and second orders classes when
following one of the three vertical paths.

1OWL-Full and OWL-DL 2 has the property owl:sameAs for representing meta-classes,
OWL-DL 1 has none.

2The correct nomenclature for classes of the second order is class-of-class, turning the
examples above to class of endangered animals and class of domestic animals.

44

The diagram shows zero, first and second orders classes when following
one of the three vertical paths. The three horizontal paths shows possible
combination of a subject-predicate-object (triple). The six rings indicate
that first and second order classes can have specializations within the same
order, but never between object/subject and a relation. Note that classi-
fications are made vertically between 0 and 1, 1 and 2 - but not directly
between 0 and 2. This is because individuals cannot be a class-of-class. Put
in other words, you cannot have create a unique individual my car from a
second order class class of coupes, it has to be created of a class like saab,
which again can be a member of class of coupes.

4.1.2 Reification

The EXPRESS data modeling language never caught the attention of the in-
dustry and is rarely used today. Still, large parts of ISO15926, and especially
its part 2 were modeled in EXPRESS, which is in contrast to the Semantic
Web community that based itself upon UML and later a UML profile known
as ODM. As mentioned in section 2.1.7 UML has severe limitations, so rather
than migrating to ODM ISO15926 has focused on mimicking the EXPRESS
norm directly into an OWL translation [24]. This way of transforming the
data models is important because it preserves the Triple notation of sub-
ject -¿ predicate -¿ object of the ISO15926 core data model. Looking back
to the Semantic Web layer cake 2.9 we can see that OWL is based upon
RDF, which is a triple notation format. As of OWL 1 reification was a
ontology design pattern that was rarely used because it requires developers
to make comprehensive abstractions of class relationships that had little or
no application to their specific modeling requirements. As a convenience
developers were able to create classes that innate properties declared within
the class and avoid the issue. This approach is nevertheless not sustainable
when ontologies from two different knowledge domains needs to be merged.
Then a point of view problem suddenly arise, leading to the metaphysical
question about whether an class is defined by its shape or material. In this
sense ISO 15926 enforces a strong reification, meaning that the developers
need to make classes that define both form and material, then again ISO
15926 provides this through an extensive library of definitions so that devel-
opers do not have to make reference data. As soon developers to use object
properties, they will defy the expressiveness and usefulness of ISO 15926.

A reified data structure can easily be visualized as a directed graph
consisting of nodes, where each node in the graph can have the role of being
a subject, predicate or object. As we discussed in section 4.1 the ontology
serves as a knowledge representation language that enforces the rules of class
membership for any given individual during its life-cycle. An individual can
go through multiple changes during its life span where relations to other
individuals can be added, changed or removed. There is also a possibility

45

that the requirements for class membership of an individual in the ontology
itself changes over time, causing inconsistency between the data and its data
structure, lets consider an example the from the IT-industry. In April 2009
the IT company Oracle acquired its competitor Sun, they immediately re
branded the software portfolio of Sun Java systems to Oracle Java systems.
With respect to an ontology such a transition will require changes because
Sun will cease to exist as an individual in the database.

4.1.3 Reasoners

The Unifying Logic layer was introduced in section 2.3.8. In brief we can
say that from a historical perspective there has been done a substantial
amount of research on Ontology reasoning and many useful tools and ideas
have been introduced in this layer because of the previous arrangement of the
Semantic Web stack. Methods and algorithms that originated from the fields
of mathematics and artificial intelligence was being applied to the Ontology
layer to infer new knowledge and detect inconsistencies. There forward and
backward chaining algorithms have two complementary strategies to traverse
linked data structures, where they also have complementary strengths and
weaknesses. There is also a third option that uses a combination of the
two which is known as Hybrid chaining. We will briefly compare these
alternatives when they are applied to linked data structures represented in
the SPARQL and Ontology layer.

Forward chaining is a data driven strategy that uses modus ponens to
add inferences by statements. It is a rule where an antecedent P is followed
by a consequent Q in an If-then statement. When applied to linked data we
can make inferences throughout a Ontology or SPARQL graph represented
in RDF. Forward chaining has its name from its strategy of iterating through
existing data and, adding new inferences where the data supports it.

Backward chaining is a goal driven algorithm that uses modus ponens
by the same principle as with forward chaining. The difference lies in its
opposite strategy of starting with the consequent and working backwards to
see if is supported by the antecedent. This strategy provides a method of
proving that a given goal is correct.

There are more to reasoners than just forward and backward chaining,
and there have been written numerous paper on the subject [39][3][8][12],
so it will not be discussed any further. What is important to learn from
this is that there has been done a considerable amount of work on ontology
reasoning that includes checking for circular dependencies, inconsistencies,
data type validation and data range validation. In essence, the syntax data
quality perspective is quite mature and is supported by most reasoners as
out-of-the-box functionality.

46

Later, in 2007, the SPARQL and Rule layers was aligned with the Ontol-
ogy layer so that all three is arranged underneath the Unifying Logic layer.
This rearrangement has opened up the data (SPARQL) and business logic
(Rules) to be accessed by the reasoner. The Gartner Hype cycle that was
introduced early in Figure 2.8 showed that the Semantic Web hype was at
its peak in the same year, there have also been a falling interest of research
in the Semantic Web stack. As a result of this it seems that the development
of Semantic Web tools lost some of its momentum from 2007-2009. Never-
theless, there has been progress in the academic circles that has continued
this research and this is now starting to appear.

Hybrid reasoning both Forward and Backward chaining are well estab-
lished algorithms within the field of artificial intelligence, but they have
limited applicability on multi-layered models. While they are able to per-
form reasoning on the 0. order level of SPARQL data and on the 1. order
level of Ontologies represented in RDF they, lack the possibility of reasoning
across the levels. Recently there has been published research on the hybrid
reasoning approach that combines these levels to validate multi layered mod-
els by applying the CWA [29]. Hybrid reasoning can be accomplished by the
technique of punning which enables the use of a single name when referring
to individuals and classes, respectively of the 0 and 1st order, potentially up
n’th -1 and to n’th order. This also opens up the possibility for reasoning
with 1. and 2. order classes. Pellet is currently the only reasoner that
supports punning [25] with the use of OWL-DL.

Hybrid reasoning allows us to locally close parts of the ontology and
SPARQL data in the same namespace and allows us to write integrity con-
straints, which we will return to after the following section.

4.1.4 Open vs. Closed World Assumption

Reasoners are able to infer new facts from the database because of the
assumption that the information contained in the database is not the whole
truth about the world, it is just a limited set of facts within a limited domain.
Whatever information not contained within the database is simply unknown,
and unless there are any evidence that can assert the value of a statement,
it is left as an open question. This is known as the OWA and is in sharp
contrast to the CWA of traditional relational databases where any assertion
that cannot be proven true, is regarded as false. This assumption is closely
related to the non-monotonic inference rule NAF which is the basis for all
databases with a CWA [36].

The CWA is intuitive to anyone that has experience with relational
databases and it is very useful for appliances that has complete knowledge
about a limited domain. But in order for a relational database to be provably

47

consistent it is required to be expressed in Horn form, and is not guaranteed
otherwise. [28].

For example, the following knowledge base that pump is entailed to be
neither electric nor hydraulic, but still

{ E l e c t i c (pump) V Hydraul ic (pump)}
In order for reasoners to infer new facts from a given set of explicit

facts, a decision has to be made by the in advance with respect to how
missing facts in a database are interpreted. SPARQL-based databases are
designed and intended to be OWA, while traditional relational databases
are predominately CWA. The CWA is closely related to the non-monotonic
inference rule known as NAF in logic programming where data about the
domain is said to be complete for the observer when what is not asserted to
be true, is assumed to be false [36]. This means that when a database query
returns an empty set of results, then whatever was asserted, is considered
to be false.

4.1.5 Integrity constraints

In The concept of IC stems from the field of relational databases where IC
helps ensuring data consistency [2]. It is an important functionality which
nearly all database systems support. The method consists of checking all ICs
defined in the database schema and translate the constraints to correspond-
ing queries. During a database query these queries are executed to verify
that no ICs are violated, and therefore avoiding any potential constraint
violations. Such methods would be useful for evaluating data in SPARQL
databases as well; modeling the ICs into the knowledge domain by using
existing knowledge representation languages like ISO15926 (as with OWL
[22]) then translating the IC axioms into queries and validate the ICs based
on the query. This idea touches upon two concepts within the semantics of
DL; namely the closed vs. the open world assumption, and the UNA. Tra-
ditional relational databases practice the CWA by asserting that any query
that can not be proven true will be considered false. If we were to search a
OWA database for a pump made by a manufacturer named ACME

: isManufacturedBy r d f s : range : Manufacturer .
: product1 : isManufacturedBy :ACME .

Unique Name Assumption Another important ontology concept is the
UNA that stems from DL. It states that different names refer to different
entities in the knowledge base. This means that we cannot uniquely identify
an entity by its name. OWL does not have UNA, instead there are reserved
keywords that allows the ontology engineer to specify same or distinct enti-
ties by using owl:sameAs and owl:differentFrom when implementing classes.

48

4.2 Validation Tools & Software

There is quite a selection of reasoners available . In the following paragraphs
we will review the existing tools that later will be summarized and presented
in table 4.2. As we will see, for obvious reasons Pellet is the preferred option
and was also chosen.

4.2.1 On-line validators

Since 2001 the W3C has provided a validator1 which parses documents and
verifies that they conform to the syntactic requirements of RDF/XML stan-
dard. The WEB page accepts a URI to a public document or text inserted
into the WEB browser. It does not check if it is in accordance with a given
RDF Schema Specification - therefore it cannot validate the instances up
against the ontology, only do simple syntax validation. This tool is useful
for developers that wants to analyze a specific document and want to have
the opportunity to visualize the data in a directed graph. There are similar
tools which provide the same level of validation on different formats. Unlike
the W3C validator the following supports RDF-S; University of Manchester
OWL Validator2 and Ontology Metrics3, WonderWeb OWL Ontology Val-
idator4, CheckRDFa5. However, they do not perform any reasoning on the
completeness of the data. One such validator is Vapour6 which is lacking
OWL2 support and is partially dependent on the W3C Validator. It is im-
portant to note that none of the on-line validators mentioned above have
been maintained since 2007, nor do they support OWL2 or have the ability
to scale for large quantities of data.

4.2.2 Jena Eyeball

The Jena Eyeball project is part of the Jena Semantic Web framework.
It currently only support the OWL 1.1 API and is capable of performing
consistency checks on the RDF/OWL model. The project is open sources
and can be downloaded and run as an application 6

4.2.3 ODEval

The ODEval tool is a syntactic ontology checker that was introduced in 2004.
It can be used for the automatic detection of possible syntactical problems

1W3C RDF Validator - http://www.w3.org/RDF/Validator/
2Manchester OWL Validator - http://owl.cs.manchester.ac.uk/validator/
3Manchester OWL Ontology Metrics - http://owl.cs.manchester.ac.uk/metrics/
4WonderWeb OWL Ontology Validator - http://www.mygrid.org.uk/OWL/Validator
5CheckRDFa - http://check.rdfa.info/
6Vapour - http://validator.linkeddata.org/vapour
6http://jena.sourceforge.net/Eyeball/

49

Name Active Syn Sem OWL2 OWA CWA RIF

W3C x

Manchester OWL x

Manchester Metrics x

WonderWeb x

Check RDFa x

Vapour x part

Jena Eyeball x

ODEVal x

HermIT x x x x

Fact++ x x x x

Pellet ICV x x x x x x x

Table 4.1: Current data validation software.

in ontologies, such as the existence of cycles in the inheritance tree of the
ontology classes, inconsistency, incompleteness, and redundancy of classes
and instances [30].

4.2.4 HermIT

Is a typical up to date OWL 2 reasoner that supports RIF. With its hyper-
tablau algorithm it is capable of performing syntactic checks on the ontology
and whether the data conforms to valid fields and ranges. It should be noted
that HermIT is focused on reasoning performance and is therefore suitable
for low performance environments.

4.2.5 Fact++

The Fact++ is a widely used OWL 2 DL reasoner that has been maximized
for performance and portability.

4.2.6 Pellet Integrity constraint validation

Pellet is a OWL 2 DL reasoner in active development under an open source
license, and is currently the only reasoner available that supports integrity
constraints in OWL. It a reasoner that is among the best on performance
[35], and features [32]. Integrity constraints can be written in RDF and
later run through the Pellet command line interface taking the ontology,
constraints and SPARQL data source as parameters. Pellet is the obvious
choice of tool.

50

4.3 Development configuration

The software configuration consists of two parts. a development environment
and a testing environment, both shown in Figure 4.2 and described in the
next section. All the software that has been used is Java based, enabling
a seamless porting between different machines and operating systems. An
illustration of how the different components was setup can be seen in Figure
4.2.

4.3.1 Jena

The Jena framework1 is a collection of tools that provides a Java program-
ming interface to RDF/OWL documents. It is not an executable application,
but it is a Java API that assists the handling RDF/RDF-S/OWL documents
into a Java data structure that seamlessly can be created or loaded, manip-
ulated and saved, without having to manually edit the files. In addition to
this Jena provides an interface to SPARQL enabled databases. Jena comes
with a built in Rule engine and it has a plug and play reasoner architecture
in addition to the ones that are built-in, although they are not very useful for
anything else than educational purposes. Most production environment will
require up to date reasoners. There is a big downside to the Jena framework
from the fact that it only supports OWL 1.1. It happens to be that Jena is
starting to fall behind in the development of the Semantic Web where the
OWL API is taking over.

4.3.2 OWL API

The University of Manchester is currently a very active contributer to the
development of the Semantic Web. One of the open source tools they pro-
vide is the OWL API2, which in contrast to Jena, supports OWL 2 and
is currently taking over as the dominating Semantic Web framework. It is
however possible to use the OWL API in conjunction with Jena by replacing
the Jena RDF/OWL/XML serialization API with the OWL API and to use
existing OWL 2 interfaces in Jena to manipulate the documents. This is
an approach that uses the best features of both that requires a bit more
configuration, but is a strong combination.

Eclipse The Eclipse3 IDE was used to develop Java4 code for the integra-
tion of testing Pellet5 in the Jena API set up with the OWL API to handle

1http://www.openjena.org/
2OWL API - http://owlapi.sourceforge.net/
3http://www.eclipse.org/
4http://www.java.com/
5http://www.clarkparsia.com/

51

Figure 4.2: The software configuration.

RDF/XML serializations. This setup made it possible to do lookup on meth-
ods and classes provided by the Jena API and Pellet in an advanced source
code editor. It also enabled easy access to Javadoc, detailed library imports
and gathering application output to the console integrated in Eclipse.

Protégé Protégé1 was used to edit the ontology and developing the Pellet
integrity constraints.

1Protégé - http://www.protege.stanford.edu/

52

Brand/Type Asus P6T Deluxe V2

Architecture x64

Processor(CPU) Core i7 920

Chipset Intel X58

Ram 6 Gb

Hard drive Corsair 64 Gb SSD

Graphics Nvidia GeForce GTX 275

Operating system Microsoft Windows 7

Java runtime env. jre-19.1-b02

Table 4.2: Hardware configuration.

TDB (SPARQL) The Jena framework offers several SPARQL databases
which is ideal for development environments. TDB1 due to its high perfor-
mance on single machines.

Joseki Is a simple extension to the Jetty web server that enables SPARQL
queries over the http protocol.

Hardware configuration

The following machine was used in all phases of this thesis. It should be
noted that the Ontology editor Protégé requires quite an amount of memory
when loading large ontologies and data as with ISO 15926.

1TDB - http://openjena.org/TDB/

53

Chapter 5

Validation Test Case and
Results

5.1 The Life Of An electric Motor

How the concepts of ISO 15926 can support industrial needs can be demon-
strated by showing how the concepts defined in IEC 61346-4 maps onto
ISO 15926. The example used is the electric motor example of IEC 61346-4
[10]. This description is based on a presentation given at the POSC Caesar
”Semantic Days 2011”. The objects used to represent the various aspects
related to an electric motor over its life time are represented in IEC 61346-4
as shown below.

Figure 5.1: The life cycle stages of an electric motor.

”Situation” can be translated to plant life-cycle stages where ”A” rep-
resents the first design stage, often called ”Front End Engineering Design”

54

(FEED), ”B” to ”G” various stages of ”Detail Design”, and ”H”-”M” various
fabrication stages where ”M” represents the commissioning and handover to
the client. One should note that the physical items making up the plant does
not appear until the stages ”H”-”M”. Before that we are only talking about
specifications. ”N”-”V” are various stages during operation, and ”X” is the
decommissioning and removal of the plant

The ”Object” represents what is most commonly known as the ”Tag”
in the industry. This is the ”Functional Location” in a process where a
particular type of activity will take place. This is not a physical location,
just a place in a schematic representation of a network of processes. It is
talked about as the ”Tag” even if the ”Tag” is the identifier of the ”Object”,
or ”Functional location”, where an activity takes place.

The ”Function specification FR” is stating the requirements from the
process point of view, i.e. how much under which conditions, whereas
”Component specification CS” is the specification for how the functional
requirements shall be met, but not stating a particular make or type. This
is represented by the ”Product specification PS”, which represents a par-
ticular manufacturers type of products. Eventually an electric motor, the
”Physical specimen” is installed and all relevant documentation is docu-
mented in the ”Individual log IL”. It is worth noting that all these objects
exist independently and have separate life-cycles; you can replace the actual
motor without changing the specification etc.

These concepts maps to the ISO 15926-2 entity types as follows. The
correspondence is shown on Figure 5.2.

In ISO 15926-2 terms the ”Object” (Driver at Tag xxxx) will be rep-
resented as an instance/member of ”functional physical object” See Fig-
ure 5.2, top oval. This shall be classified by a member of ”instance of
”class of functional object”. The appropriate class here would be the class
driver. A check to verify the completeness of a functional design is to check
if all members of ”functional physical
object” are classified by a member of ”class of functional object”.

The ”Function specification FR” is represented by an instance/member
of ”class of inanimate physical object”. (Not shown on the diagram below)
The reason for choosing a class level entity type for this is that we are
not talking about a specific motor but a set of requirements that can be
met by many types (classes) of motors. This is independent of the life-
cycle stage and will remain so as long as an electric motor is needed. In
ISO 15926 all specifications are considered to be classes. The ”Component
specification CS” (Electrical motor suitable for Tag xxxx) is also represented
by an instance/member of ”class of inanimate physical object”. Here again
we are not talking about a specific motor but a set of requirements that
can be met by many types (classes) of motors. This set of requirements is
prepared by the engineering office. This argument also holds for ”Product
specification CS” (Model X, Variant Y) which is a specification prepared by

55

the manufacturer, but still a class. This is a representation in ISO 15926
terms of what can be found in manufacturer’s product catalogues. This class
is a subclass of the ”Component specification CS” as it has fewer members.

The ”Physical specimen” is an individual, ”materialized physical object”.
The relationship in ISO 15926 terms between these object types and entity
types is shown in the diagram below.

Figure 5.2: The mapping between ISO 15926 and IEC 61346.

The nature of a design process is to start with a high level set of re-
quirements defining what e.g. the plant shall be capable of, and then later
specifying how this shall be achieved. The specification process is in fact
a process where the ”how” eventually is defined in detail by refining the
initial requirements. This is a process of adding constraints that the ob-
jects making up the plant shall conform to, i.e. one version of a design will
be a specialized version of the previous as there will be fewer types of ob-
jects that can be used. Therefore one version of a design can be seen as a
subclass of the preceding version. Eventually one will end up specifying a
manufacturer’s model, or a special design.

To help in the verification of such processes logic based reasoners will be
of great help. The general picture is that if one shall be able to perform such
test using SW, e.g. agents, the data representing both the individuals and
classes have to be represented as ”computer sensible data”, i.e. expressed

56

so that a computer can use it. At least in the ISO 15926 community there
is not yet sufficient data to perform such tasks on a wide scale. But even
generic tests can be of help to reveal logical inconsistencies.

One aspect that is not covered in the example so far is how to deal with
”preferred types”. In order to limit the number of variants and to simplify
maintenance, reduce types of spare parts, optimize delivery etc. companies
often have a preferred set of types of products that shall be used within
the company. This is information about types (classes), and not about an
individual. This can be represented as classifying the types of electric motors
as ”preferred motor types” i.e. classifying the 1st order electric motor classes
by 2nd-order electric motor type classes. Therefore, to meet the business
requirements a system based on 2nd order logic is required. Therefore, to
represent ISO 15926 in OWL the use of OWL DL will not be sufficient. To
temporarily overcome this punning was used, but this is resolved with the
current version of OWL, known as OWL 2.

During the development of the POSC Caesar RDL it has been identified
that 2nd order classes in general is extremely powerful when it comes to
maintaining and subdividing an ontology in addition to record industrial
needs.

Quality control is a process by which an item is approved provided it
meets a defined set of requirements. These requirements can as described
above be represented as an ontology. Quality control is therefore to estab-
lish if a particular physical object meets the conditions for membership in a
defined class; i.e. a classification process. Provided the data related both to
the relevant product class and individual physical object is expressed in a
”computer sensible language” establishing if a particular object is conform-
ing to the specifications could be executed as a check if a classification is
correctly established. Such check could be performed both as an item leaves
the factory, and when it is received at the construction site.

Compared to the PISTEP Activity Model Situations ”A”-”G corre-
sponds to ”Produce Conceptual Process Design”, ”Produce Detailed Process
Design”, ”Produce Conceptual Engineering Design (Front End)”, and ”Pro-
duce Detailed Engineering Design” , situations ”H”-”M” represents ”Con-
struct Plant Pre-Commission” up to and including ”Commission Plant”.,
and situations ”N”-”V” represents ”Operate Plant” and ”Maintain Plant
and Equipment”, whereas ”X” represents ”Decommission Plant” and ”De-
molish Plant and Restore Site”. Activities ”Procure and Control Equipment,
Material and Services”, including interaction with ”Suppliers and Fabrica-
tors” takes place during ”G”-”V”.

57

5.2 Integrity constraint - Test cases

The concept of integrity constraint (IC) was invented in the field of relational
databases where ICs are used to ensure data consistency [9]

When starting to build a constraint it is recommended to reflect the
hierarchy of the ontology. This is not strictly necessary because there are
no direct couplings between the ontology and the integrity constraints that
are defined, though it is easier to maintain as the number of constraints
start to grow. In the following examples we will augment the ontology with
constraints that applies to various aspects of ISO15926 that spans from the
general perspective down to specific implementations. For the tests we will
assume that the ontology is free from inconsistencies

5.3 Life-cycle test case

In the following example we will look at the life-cycle of the general ISO15926
pipeline class. The reason for selecting this class is to emphasize the use of
constraint inheritance, meaning that subclasses of the class we are modeling
will be placed under the same constraints that has been applied to its par-
ents. This example will therefore avoid enforcing constraints that should be
implemented in specialized classes further down the hierarchy. Using inher-
itance in this way is a good practice that, if done at the right ontology level,
will force ontology engineers to refine their ontology and make them real-
ize whenever the constraints affects classes that perhaps should have been
classified in another branch.

The diagram in Figure 5.3 is a EXPRESS diagram of the pipeline class.
There are four important components in this example.

1. Rectangular yellow boxes that represents classes, all with the label (1)

2. Emphasized diamonds that represents classes of relations, all with the
label (2)

3. Simple diamonds that represents instances of relations, all with the
label (3)

4. Hash tags that represents instances of classes, all with the labeled with
a # followed by a number that represents the individual

Looking into the classes we can see from the description of their label
that they are subclasses of class of activity, which is a core class from
the Part 2 specification. At the ontology level classes are reified with a
temporal sequence relationship class that links the classes as a prede-
cessor and a successor. From these classes we can create the individuals

58

Figure 5.3: This EXPRESS diagram shows the pipeline class and its rela-
tions to its life-cycles.

shown in the baseline of the diagram. The ontology provides us with do-
main knowledge on rules for class relationships, however, it does not give
us the ability to specify dependencies of the individuals with respect to the
CWA. In other words, we need to be able to specify that an individual of
the class pipeline commissioning depends on an individual of the class
pipeline test commissioning, which again depends on the previous class
and so forth - leading all the way back to the pipeline commissioning pr
ocedure class.

This dependencies have been modeled as integrity constraints that can be
found in Appendix 7.2, Integrity constraints for the pipeline commissioning
life-cycle. The text can be copied from the Appendix and pasted into an
empty XML file, and then loaded into Protégé. The latest RDL nightly
compilation is available for download from the POSC Caesar web site1.
Then the constraints and then be run against the Pellet ICV in order to test
if the dependencies of the individuals conform to the RDL.

5.4 Results

This test case shows that it is possible to apply the local CWA to the indi-
viduals by adding integrity constraints while other individual are unaffected
by the constraints. Any changes to the individuals such as inserting faulty
data types, data ranges etc. resulted in either a integrity constraint viola-
tion or by Pellet rejecting the individual. However, it is possible to avoid
the integrity constraints by manually manipulating the class membership of

1http://rds.posccaesar.org/downloads/PCA-RDL.owl.zip

59

the individuals. This will result in a bypassing of the IC, and is expected
behavior.

Regarding the pragmatic data quality perspective, the augmentation of
IC will increase the credibility of the validated data. ICs will also be able
to provide a better traceability of potential erroneous data that does not
comply to the constraints. However, ICs does not add any value to the
pragmatic data quality of portability, accessibility and so forth. Such quality
measures is a matter of good implementation planning of the system to best
fit its users.

The life-cycle example is a very important because nearly all classes and
hence individuals are affected by it. There has been devised several similar
tests for verifying that E. g; no pressurized pipe can lead into the open air,
and ensuring that systems under operation do not have any warnings.

60

Chapter 6

Conclusions, Current &
Future Work

In this thesis we have introduced a new data validation approach the Seman-
tic Web implementation of ISO 15926. By reviewing the existing Semantic
Web tools we can conclude syntactic data validation is provided by nearly
all the Semantic Web tools and is to be considered out of the box function-
ality. Furthermore, it is important to avoid the pitfall of applying UML to
the ISO 15926 class modeling from the fact that it has been shown that
the OWL language allows users to specify innate object properties without
applying reified principle. As a result of this there is a potential of a loss of
expressiveness and precision that is one of the key features of ISO 15926.

The most important contribution is the proof of concept that shows it is
possible to apply the CWA to ISO 15926 without requiring any modifications
or changes to existing implementations.

It can be concluded that automated reasoning, can not replace fulfill
the pragmatic data quality measures of ISO 8000. Pragmatic data quality
is subjective to user experience from the choices that are made during the
system implementation planning.

Studied conducted by the OLF has indicated that implementations of
Integrated Operation could not only improve the utilization of existing re-
sources, but also improve the health and safety for the workers which is one
of the most valuable business assets.

6.1 Further work

As of today the Pellet ICV software is operated through a simple command
line interface that can be modified in many ways. The existing program
can be implemented into a web service that scans all incoming data or the
source code can be imported in Jena - allowing greater control of both data
and error handling.

61

There is no other data model that uses 2nd order classes like ISO 15926.
It could be interesting to investigate if there are any benefits of applying
punning and Integrated Operation on this level.

62

Chapter 7

Appendix

63

Quality Criteria for RDF representations
of installations descriptions

according to ISO15926 part 8

Martin Giese

criteria.tex 2209 2011-05-12 14:14:12Z martingi

1 Prerequisites

We assume the following:

• All data is originally represented as a set of “template instances” and “type asser-
tions”

– A template instance is an n-ary literal of the shape

p(i1, . . . , in)

where i1, . . . , in are literals (strings, numbers, etc) or resources identifiers
(URIs), and p is a template (also identified by a URI) Do we allow

blank nodes
in template
instances?

– A type assertion is a literal
C(i)

where C is an OWL class and i is a resource identifier as before

• For every template p, there is a description giving an RDF property Rp,i for each
of the arguments of p.

• Any template instance p(i1, . . . , in) is represented in RDF as a set of n + 1 triples

:x rdf:type p;
:x Rp,1 i1;

. . .
:x Rp,n in.

• Any type assertion C(i) is represented in RDF by a triple

i rdf:type C

• These representations are complemented by an ontology, including the ISO15925
part x/y/z vocabularies, and the template and meta-template ontologies, as well
as a domain-specific ontology built on top of these.

Rev: 2209, May 12, 2011 1 criteria.tex

2 Requirements for RDF representations in general

2.1 Separation of Information Levels

Requirement 2.1.1 There is a clear separation of the set of triples into

• a vocabulary description, and

• instance data.

This separation might be effected through the storage in different files, in different graphs
underlying a SPARQL endpoint, etc. In any case, it must be possible to say which part
a given triple belongs to.

Rationale: The main purpose of this separation is to provide a basis for the remaining
criteria. The rules applying to the vocabulary definition and the instance data will
be different.

Implementation: This is not a requirement that can be tested. Rather, implementations
testing the other requirements will need this separation as part of their input.

Note that information both of the vocabulary description and the instance data
may well be spread over several documents or data sources. The important point
is that it must be clear for each triple which part it belongs to.

Requirement 2.1.2 There is a clear separation of the vocabulary definition into

• an application specific vocabulary

• a generic vocabulary

For the meaning of ‘separation’, see Req. 2.1.1.

Rationale: Like Req. 2.1.1, this is mainly to provide a basis for the remaining criteria.
For instance, resources will be required to carry a sufficiently specific type, in
the sense that types mentioned in the application specific vocabulary and not the
generic vocabulary are considered specific enough.

Implementation: See Req. 2.1.1. Again, each part of the vocabulary may well be spread
over several documents or data sources. The important point is that it must be
clear for each triple (RDFS/OWL axiom) which part it belongs to.

Definition 2.1.3 An application class is a class that is mentioned in the application
specific vocabulary, but not in the generic vocabulary. Any class mentioned in the generic
vocabulary is called a generic class.

2

2.2 Literals

Requirement 2.2.1 Any literal should be either typed (by one of the standard datatypes
defined by OWL 2) or carry a language tag.

Rationale: Any literal is either intended for machine processing or to be read by humans.
In the first case, it should carry a datatype delimiting the interpretation (the
datatype might by xsd:string if that is the intention). In the latter case, it is a
natural language string, which should carry its language tag.

Implementation: This should be easy to implement using SPARQL queries with suitable
filter expressions.

2.3 Types

Requirement 2.3.1 Any resource mentioned should have a type, either explicitly given
with rdf:type, or inferable, that is related to the application domain. This type should
in other words be an application class in the sense of Def. 2.1.3.

Rationale: All objects referred to the description of an installation should have to do
directly with that installation. They must therefore have a more concrete type
than being a “Thing”, a “possible individual”, etc. Any kind of further processing
of the RDF description will require more concrete types.

Note that this requirement does not require types to be given explicitly. Types
maybe inferred from an ontology and the relations in which a resource stands with
other resources, e.g. domain and range reasoning.

Since it cannot be decided from the data alone what constitutes a sufficiently
specific type, the separation of the vocabulary according to Req. 2.1.1 is used to
decide which parts of the vocabulary are to be counted as the domain vocabulary,
and which are generic terms.

Implementation: This requirement is not easy to implement, since it requires reasoning.
However, if the model and accompanying ontology can be classified, the available
types for all individuals can easily be checked.

The previous requirement is comparatively weak, and hard to check, but it can be
seen as a minimal requirement. We can ask for more by restricting the reasoning to
simple cases.

Requirement 2.3.2 Requirement 2.3.1 is refined by requiring that a application class
can be derived as type of any resource by some simple reasoning regime, e.g. RDFS
entailment

Rationale: This requirement is easy to check algorithmically, although it cannot be
checked with a SPARQL query.

3

Implementation: RDFS reasoning (domain/range, subclass, subproperty) can be used
to check for the existence of types. In fact, reasoning can be aborted for each
individual, as soon as at least one type has been derived.

The latter requirement can be seen as one element in a family of requirements, indexed
by the reasoning regime to be supported. At the extreme end, we can require that no
reasoning is needed at all:

Requirement 2.3.3 Requirement 2.3.1 is refined by requiring at least one application
class to be explicitly given as type with an rdf:type triple for every resource.

Rationale: No reasoning is needed to check this requirement. And it can be implemented
without adding too much overhead to the RDF representation.

Implementation: The presence of rdf:type triples can probably be checked with a
SPARQL query.

To ease further processing, we can add the following requirement:

Requirement 2.3.4 Requirement 2.3.3 is refined by requiring that all (named) types that
can be inferred for a resource are explicitly given by rdf:type triples.

Rationale: This makes it easy for software that processes the RDF representation to
find all instances of any given type, without requiring reasoning.

Implementation: Checking this requires reasoning again. The model needs to be clas-
sified, and for each individual i and each type C it belongs to, the presence of a
triple i rdf:type C needs to be checked.

A certain kind of “useless” type information allowed by the previous requirements can
be eliminated by the following one:

Requirement 2.3.5 If a resource i has (can be inferred to have) type C and C is (can be
inferred to be) covered by some of its sublcasses D1, . . . , Dn v C, with C v D1t· · ·tDn,
then there is a k ∈ {1, . . . , n} such that i has (can be inferred to have) type Dk.

Rationale: C plays the role of an “abstract superclass”: any element of C must also
belong to one of the subclasses D1, . . . Dn. We require the model to say explicitly
which of the subclasses this is. For instance, if “sensor” is covered by “temperature
sensor”, “pressure sensor”, and “motion sensor”, then the model should say for any
concrete resource with type “sensor” which of the subclasses it belongs to.

Note: it is not clear whether this is always a desired property. For a given
application, “sensor” may sufficiently concrete, and giving the actual type of sensor
would not add any value. On the other hand, the ontology used to define sensors
might include covering axioms for types of sensors. In such a case, this requirement
should not be enforced. It only makes sense if the “granularity” of the ontology is
not finer than required by the application.

4

Implementation: This requires reasoning in general. Given an ontology, reasoning could
be used to find all sets of covering axioms as asked for in this requirement, and
then generate a single SPARQL query that checks the requirement, provided type
information is represented explicitly. E.g. given the sensor ontology, a SPARQL
query could be written that checks that whenever a triple i rdf:type :Sensor

is present, there is also a triple i rdf:type :TemperatureSensor or i rdf:type
:PressureSensor or i rdf:type :MotionSensor.

The previous requirements require types of resources to be inferable, and require at
least one of them to belong to the domain vocabulary. This is not the same as the
following mostly orthogonal property:

Requirement 2.3.6 Requirement 2.3.1 is refined by requiring that all (named) types any
resource belongs to are explicitly given or can be inferred.

Rationale: What this means is that anything that is e.g. a temperature sensor actually
carries that type, explicitly or implicitly. For the previous requirements, it would
be enough if a temperature sensor belonged to the supertype “sensor”, assuming
that “sensor” is part of the domain vocabulary.

Implementation: This cannot be checked mechanically, since it requires knowing what
identifiers refer to.

2.4 Consistency

Requirement 2.4.1 The RDF representation and its accompanying ontology must be
consistent.

Rationale: An inconsistent model is obviously faulty.

Implementation: The implementation requires full OWL DL reasoning.

If the model is too large to be classified, this requirement could be weakened be
restricting the reasoning performed, for instance as follows:

Requirement 2.4.2 The ontology TBox must be consistent, and no individual is asserted
(or can be inferred by RDFS reasoning) to belong to two classes that are known to be
disjoint from TBox reasoning.

Rationale: For large ABoxes with reasonably sized TBoxes, this might be tractable, and
catch most potential mistakes.

Note that it is hard to give a semantic explanation for such a restriction. If the
model as a whole is inconsistent, then it has no interpretation, and no amount of
restricted reasoning can change that.

5

3 Requirements for RDF representations in accordance with
ISO15926 part 8

3.1 Conservative Extensions

Requirement 3.1.1 The application specific vocabulary must be a conservative extension
of the underlying ISO15926 part x/y/z, template, and meta-template vocabularies.

Rationale: This ensures that the application specific ontology does not “modify” the
meaning of the underlying ontologies.

Implementation: This requires reasoning, and that reasoning is non-standard. Not sure
which implementations exist at all.

This is a nice minimal requirement, but might be hard to check.
It might be possible to relax this, by restricting the way in which the domain vocab-

ulary can refer to the imported ontologies, e.g. only by subclassing. Such restrictions
can easily become over-restrictive however.

3.2 Part 8 adherence

We want to ensure that all information is actually represented as “reified” template
statements.

Requirement 3.2.1 For any triple x y z belonging to the instance data, where y is dif-
ferent from rdf:type, and y is not declared by the vocabulary description to be an
owl:AnnotationProperty, there is a (possibly inferred) triple x rdf:type p where p is
in turn of type . . . (what? abc:Template?)

Rationale: We want only template instances and type assertions in the RDF data. How-
ever, annotations are allowed, like for instance rdfs:label to give a human read-
able identifier to a resource.

Note: in combination with Req. 2.3.1, this means that the template types p should
also be part of the application specific vocabulary.

Implementation: This can be checked with SPARQL queries generated from the domain
vocabulary, provided that the types are explicitly represented. Maybe with a static
SPARQL query.

Requirement 3.2.2 For any resource or blank node x mentioned in the instance data,
such that x rdf:type p for some n-ary template p with declared properties Rp,i, there
is a triple x Rp,i yi for all i = 1, . . . , n, either explicitly or implicitly, for some literal
or named resource yi.

6

Rationale: Whenever a template instance is given, all arguments should be given. Not
just inferred to exist.

TODO: Have to think about blank nodes for the yi. It might make sense to have
blank nodes in the template instances. But then, such blank nodes have to be kept
apart from things that can be inferred to exist simply from the template axioms.

Implementation: This can be checked with SPARQL queries generated from the domain
vocabulary, provided that the types are explicitly represented. Maybe with a static
SPARQL query.

4 Further Thoughts

1. Many of the previous requirements can be read the “semantic” way, i.e. as require-
ments on inferable information, or as requirements on explicitly given information.
Which to choose depends on how much reasoning we are willing to perform. In
any case, it would be good to find a structure for this document which allows
referring to requirements together with the implied amount of reasoning without
reduplicating all the requirements.

2. We have several recurring categories of implementability:

a) undecidable

b) algorithm not known to us

c) algorithm known but non-standard

d) implemented by standard reasoning tools

e) implementable as a set of SPARQL queries that can be computed from the
domain ontology

f) implementable as a static SPARQL query, independent of the domain vocab-
ulary.

Should make reference to these categories more systematic.

3. At some point, we might want to look into an axiomatisation of properties of
templates, like symmetry, transitivity, etc. which may not be easy to express after
the part 8-isation.

5 TODO

• Criteria for URIs, prefixes/namespaces

• No relative URIs?

7

7.2 Integrity constraints for the pipeline commis-
sioning life-cycle

<?xml version=” 1 .0 ”?>

< !DOCTYPE rdf:RDF [
<!ENTITY rd l 2 ” h t t p : // posccae sa r . org / r d l /” >
< !ENTITY r d l ” h t t p : // irm . dnv . com/ rapoc / r d l /” >
< !ENTITY ca t s ” h t t p : // irm . dnv . com/ rapoc / ca t s /” >
< !ENTITY owl ” h t t p : //www. w3 . org /2002/07/ owl#” >
< !ENTITY xsd ” h t t p : //www. w3 . org /2001/XMLSchema#” >
< !ENTITY templates2 ” h t tp : // irm . dnv . com/ rapoc / templates /” >
< !ENTITY r d f s ” h t t p : //www. w3 . org /2000/01/ rdf−schema#” >
< !ENTITY rd f ” h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#” >
< !ENTITY templates ” h t t p : // standards . i s o . org / i s o / t s /15926/−8/ed

−1/tech / r e f e r e n c e−data / templates#” >
< !ENTITY data−model ” h t t p : // standards . i s o . org / i s o / t s /15926/−8/

ed−1/tech / r e f e r e n c e−data /data−model#” >
< !ENTITY template−model ” h t t p : // standards . i s o . org / i s o / t s

/15926/−8/ed−1/tech / r e f e r e n c e−data / template−model#” >
]>

<rdf:RDF xmlns=” h t t p : //www. posccae sa r . org / r d f v e r i f i e r . owl#”
xml:base=” h t t p : //www. posccae sa r . org / r d f v e r i f i e r . owl”
xmlns : templates=” h t t p : // standards . i s o . org / i s o / t s /15926/−8/ed

−1/tech / r e f e r e n c e−data / templates#”
xmlns : ca t s=” h t t p : // irm . dnv . com/ rapoc / ca t s /”
xmlns : rd f s=” h t t p : //www. w3 . org /2000/01/ rdf−schema#”
xmlns:data−model=” h t t p : // standards . i s o . org / i s o / t s /15926/−8/ed

−1/tech / r e f e r e n c e−data /data−model#”
xmlns : rd l=” h t t p : // irm . dnv . com/ rapoc / r d l /”
xmlns:template−model=” ht t p : // standards . i s o . org / i s o / t s

/15926/−8/ed−1/tech / r e f e r e n c e−data / template−model#”
xmlns:owl=” ht t p : //www. w3 . org /2002/07/ owl#”
xmlns:xsd=” h t tp : //www. w3 . org /2001/XMLSchema#”
xmlns : rd f=” h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns : templates2=” h t t p : // irm . dnv . com/ rapoc / templates /”
xmlns : rd l2=” h t tp : // posccae sa r . org / r d l /”>

<owl:Ontology rd f : abou t=” h t t p : //www. posccae sa r . org / r d f v e r i f i e r .
owl”>

< r d f s : l a b e l>Const ra int s f o r Univ−bench Ontology</ r d f s : l a b e l>
<rdfs:comment>This onto logy prov ide s s i g n a t u r e s f o r ISO

15926−7 templates , as g iven in ISO 15926−7/CD−TS.</
rdfs:comment>

<rdfs:comment>This onto logy prov ide s ba s i c c l a s s e s f o r
r e p r e s e n t i n g ISO 15926−8 template s i g n a t u r e s . I t depends on
an OWL taxonomy r e p r e s e n t a t i o n o f ISO 15926−2 e n t i t y types

.</ rdfs:comment>
<rdfs:comment>Pre l iminary OWL nat ive r e p r e s e n t a t i o n o f ISO

15926−2 , de s t ined f o r the ISO 15926−8 r e p r e s e n t a t i o n o f ISO
15926−2 e n t i t y types . This f i l e was provided by DNV IRM,

71

based on work in the IOHN p r o j e c t .</ rdfs:comment>
<rdfs:comment>Some axioms from LUBM schema copied to be

i n t e r p r e t e d as c o n s t r a i n t s</ rdfs:comment>
</ owl:Ontology>

< !−−
///

//
// Annotation p r o p e r t i e s
//
///

−−>

< !−−
///

//
// Object Prope r t i e s
//
///

−−>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#
c la s sOfPrede se s so r −−>

<owl :ObjectProperty rd f : abou t=” h t tp : //www. posccae sa r . org /
r d f v e r i f i e r . owl#c l a s s O f P r e d e s e s s o r ”>

<r d f : t y p e r d f : r e s o u r c e=”&owl ; Trans i t i veProper ty ”/>
<owl :proper tyDi s jo intWith r d f : r e s o u r c e=” h t tp : //www. posccae sa r .

org / r d f v e r i f i e r . owl#c l a s s O f S u c c e s s o r ”/>
</ owl :ObjectProperty>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#c la s sOfSucce s so r
−−>

<owl :ObjectProperty rd f : abou t=” h t tp : //www. posccae sa r . org /
r d f v e r i f i e r . owl#c l a s s O f S u c c e s s o r ”>

<r d f : t y p e r d f : r e s o u r c e=”&owl ; Trans i t i veProper ty ”/>
<ow l : i nve r s eOf r d f : r e s o u r c e=” h t tp : //www. posccae sa r . org /

r d f v e r i f i e r . owl#c l a s s O f P r e d e s e s s o r ”/>
</ owl :ObjectProperty>

72

< !−−
///

//
// Clas se s
//
///

−−>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#Ac t i v i t y −−>

<owl :C la s s rd f : abou t=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r . owl
#Act iv i ty ”/>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#
C l a s s o f A c t i v i t y −−>

<owl :C la s s rd f : abou t=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r . owl
#C l a s s o f A c t i v i t y ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=” h t tp : //www. posccae sa r . org /
r d f v e r i f i e r . owl#Act iv i ty ”/>

</ owl :C la s s>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#
Class o f Tempora l Sequence −−>

<owl :C la s s rd f : abou t=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r . owl
#Class o f Tempora l Sequence ”/>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#
Pipe l ine Commiss ioning −−>

<owl :C la s s rd f : abou t=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r . owl
#Pipe l ine Commiss ion ing ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=” h t tp : //www. posccae sa r . org /
r d f v e r i f i e r . owl#Class o f Tempora l Sequence ”/>

</ owl :C la s s>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#

73

Pipe l ine Commiss ioning Procedure −−>

<owl :C la s s rd f : abou t=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r . owl
#Pipe l ine Commiss ion ing Procedure ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=” h t tp : //www. posccae sa r . org /
r d f v e r i f i e r . owl#Class o f Tempora l Sequence ”/>

</ owl :C la s s>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#
Pipe l ine Commiss ion ing Tes t ing −−>

<owl :C la s s rd f : abou t=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r . owl
#Pipe l ine Commiss ion ing Test ing ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=” h t tp : //www. posccae sa r . org /
r d f v e r i f i e r . owl#Class o f Tempora l Sequence ”/>

</ owl :C la s s>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#
Pipe l ine Precommiss ion ing Cleaning −−>

<owl :C la s s rd f : abou t=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r . owl
#Pipe l ine Precommis s ion ing Clean ing ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=” h t tp : //www. posccae sa r . org /
r d f v e r i f i e r . owl#Class o f Tempora l Sequence ”/>

</ owl :C la s s>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#
P i p e l i n e T e s t C e r t i f i c a t e −−>

<owl :C la s s rd f : abou t=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r . owl
#P i p e l i n e T e s t C e r t i f i c a t e ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=” h t tp : //www. posccae sa r . org /
r d f v e r i f i e r . owl#Class o f Tempora l Sequence ”/>

</ owl :C la s s>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#RDS1914482081 −−
>

<owl :C la s s rd f : abou t=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r . owl
#RDS1914482081”>

<o w l : e q u i v a l e n t C l a s s>
<owl :C la s s>
<o w l : i n t e r s e c t i o n O f rd f :parseType=” C o l l e c t i o n ”>
<r d f : D e s c r i p t i o n rd f : about=” h t t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#Temporal Sequence ”/>
<o w l : R e s t r i c t i o n>

74

<owl :onProperty r d f : r e s o u r c e=” ht t p : //www. posccae sa r . org /
r d f v e r i f i e r . owl#c l a s s O f P r e d e s e s s o r ”/>

<owl:someValuesFrom r d f : r e s o u r c e=” h t t p : //www. posccae sa r .
org / r d f v e r i f i e r . owl#Pipe l ine Commiss ion ing Procedure ”/>

</ o w l : R e s t r i c t i o n>
<o w l : R e s t r i c t i o n>
<owl :onProperty r d f : r e s o u r c e=” ht t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#c l a s s O f S u c c e s s o r ”/>
<owl:someValuesFrom r d f : r e s o u r c e=” h t t p : //www. posccae sa r .

org / r d f v e r i f i e r . owl#Pipe l ine Precommis s ion ing Clean ing ”
/>

</ o w l : R e s t r i c t i o n>
</ o w l : i n t e r s e c t i o n O f>

</ owl :C la s s>
</ o w l : e q u i v a l e n t C l a s s>
<rd f s : subC la s sO f r d f : r e s o u r c e=” h t tp : //www. posccae sa r . org /

r d f v e r i f i e r . owl#Temporal Sequence ”/>
</ owl :C la s s>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#RDS1914482571 −−
>

<owl :C la s s rd f : abou t=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r . owl
#RDS1914482571”>

<o w l : e q u i v a l e n t C l a s s>
<owl :C la s s>
<o w l : i n t e r s e c t i o n O f rd f :parseType=” C o l l e c t i o n ”>
<r d f : D e s c r i p t i o n rd f : about=” h t t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#Temporal Sequence ”/>
<o w l : R e s t r i c t i o n>
<owl :onProperty r d f : r e s o u r c e=” ht t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#c l a s s O f P r e d e s e s s o r ”/>
<owl:someValuesFrom r d f : r e s o u r c e=” h t t p : //www. posccae sa r .

org / r d f v e r i f i e r . owl#Pipe l ine Precommis s ion ing Clean ing ”
/>

</ o w l : R e s t r i c t i o n>
<o w l : R e s t r i c t i o n>
<owl :onProperty r d f : r e s o u r c e=” ht t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#c l a s s O f S u c c e s s o r ”/>
<owl:someValuesFrom r d f : r e s o u r c e=” h t t p : //www. posccae sa r .

org / r d f v e r i f i e r . owl#Pipe l ine Commiss ion ing Test ing ”/>
</ o w l : R e s t r i c t i o n>

</ o w l : i n t e r s e c t i o n O f>
</ owl :C la s s>

</ o w l : e q u i v a l e n t C l a s s>
<rd f s : subC la s sO f r d f : r e s o u r c e=” h t tp : //www. posccae sa r . org /

r d f v e r i f i e r . owl#Temporal Sequence ”/>
</ owl :C la s s>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#RDS1914482991 −−

75

>

<owl :C la s s rd f : abou t=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r . owl
#RDS1914482991”>

<o w l : e q u i v a l e n t C l a s s>
<owl :C la s s>
<o w l : i n t e r s e c t i o n O f rd f :parseType=” C o l l e c t i o n ”>
<r d f : D e s c r i p t i o n rd f : about=” h t t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#Temporal Sequence ”/>
<o w l : R e s t r i c t i o n>
<owl :onProperty r d f : r e s o u r c e=” ht t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#c l a s s O f P r e d e s e s s o r ”/>
<owl:someValuesFrom r d f : r e s o u r c e=” ht t p : //www. posccae sa r .

org / r d f v e r i f i e r . owl#Pipe l ine Commiss ion ing Test ing ”/>
</ o w l : R e s t r i c t i o n>
<o w l : R e s t r i c t i o n>
<owl :onProperty r d f : r e s o u r c e=” ht t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#c l a s s O f S u c c e s s o r ”/>
<owl:someValuesFrom r d f : r e s o u r c e=” ht t p : //www. posccae sa r .

org / r d f v e r i f i e r . owl#P i p e l i n e T e s t C e r t i f i c a t e ”/>
</ o w l : R e s t r i c t i o n>

</ o w l : i n t e r s e c t i o n O f>
</ ow l :C la s s>

</ o w l : e q u i v a l e n t C l a s s>
<rd f s : subC la s sO f r d f : r e s o u r c e=” h t tp : //www. posccae sa r . org /

r d f v e r i f i e r . owl#Temporal Sequence ”/>
</ owl :C la s s>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#RDS1914483661 −−
>

<owl :C la s s rd f : abou t=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r . owl
#RDS1914483661”>

<o w l : e q u i v a l e n t C l a s s>
<owl :C la s s>
<o w l : i n t e r s e c t i o n O f rd f :parseType=” C o l l e c t i o n ”>
<r d f : D e s c r i p t i o n rd f : about=” h t t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#Temporal Sequence ”/>
<o w l : R e s t r i c t i o n>
<owl :onProperty r d f : r e s o u r c e=” ht t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#c l a s s O f P r e d e s e s s o r ”/>
<owl:someValuesFrom r d f : r e s o u r c e=” ht t p : //www. posccae sa r .

org / r d f v e r i f i e r . owl#P i p e l i n e T e s t C e r t i f i c a t e ”/>
</ o w l : R e s t r i c t i o n>
<o w l : R e s t r i c t i o n>
<owl :onProperty r d f : r e s o u r c e=” ht t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#c l a s s O f S u c c e s s o r ”/>
<owl:someValuesFrom r d f : r e s o u r c e=” ht t p : //www. posccae sa r .

org / r d f v e r i f i e r . owl#Pipe l ine Commiss ion ing ”/>
</ o w l : R e s t r i c t i o n>

</ o w l : i n t e r s e c t i o n O f>
</ ow l :C la s s>

76

</ o w l : e q u i v a l e n t C l a s s>
<rd f s : subC la s sO f r d f : r e s o u r c e=” h t tp : //www. posccae sa r . org /

r d f v e r i f i e r . owl#Temporal Sequence ”/>
</ owl :C la s s>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#
Temporal Sequence −−>

<owl :C la s s rd f : abou t=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r . owl
#Temporal Sequence ”/>

< !−−
///

//
// I n d i v i d u a l s
//
///

−−>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#
My c l e an i n g a c t i v i t y −−>

<owl:NamedIndividual rd f : abou t=” h t tp : //www. posccae sa r . org /
r d f v e r i f i e r . owl#M y c l e a n i n g a c t i v i t y ”>

<r d f : t y p e r d f : r e s o u r c e=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r .
owl#Pipe l ine Precommis s ion ing Clean ing ”/>

</ owl:NamedIndividual>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#
My commiss ion ing ac t i v i t y −−>

<owl:NamedIndividual rd f : abou t=” h t tp : //www. posccae sa r . org /
r d f v e r i f i e r . owl#My commiss ion ing act iv i ty ”>

<r d f : t y p e r d f : r e s o u r c e=” ht t p : //www. posccae sa r . org / r d f v e r i f i e r .
owl#Pipe l ine Commiss ion ing ”/>

</ owl:NamedIndividual>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#
My commissioning procedure −−>

<owl:NamedIndividual rd f : abou t=” h t tp : //www. posccae sa r . org /

77

r d f v e r i f i e r . owl#My commissioning procedure ”>
<r d f : t y p e r d f : r e s o u r c e=” h t t p : //www. posccae sa r . org / r d f v e r i f i e r .

owl#Pipe l ine Commiss ion ing Procedure ”/>
</ owl:NamedIndividual>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#
My t e s t c e r t i f i c a t e −−>

<owl:NamedIndividual rd f : abou t=” h t tp : //www. posccae sa r . org /
r d f v e r i f i e r . owl#M y t e s t c e r t i f i c a t e ”>

<r d f : t y p e r d f : r e s o u r c e=” h t t p : //www. posccae sa r . org / r d f v e r i f i e r .
owl#P i p e l i n e T e s t C e r t i f i c a t e ”/>

</ owl:NamedIndividual>

< !−− h t t p : //www. posccaesar . org / r d f v e r i f i e r . owl#
My t e s t i n g a c t i v i t y −−>

<owl:NamedIndividual rd f : abou t=” h t tp : //www. posccae sa r . org /
r d f v e r i f i e r . owl#M y t e s t i n g a c t i v i t y ”>

<r d f : t y p e r d f : r e s o u r c e=” h t t p : //www. posccae sa r . org / r d f v e r i f i e r .
owl#Pipe l ine Commiss ion ing Test ing ”/>

</ owl:NamedIndividual>

< !−−
///

//
// General axioms
//
///

−−>

<r d f : D e s c r i p t i o n>
<r d f : t y p e r d f : r e s o u r c e=”&owl ; A l l D i s j o i n t C l a s s e s ”/>
<owl:members rd f :parseType=” C o l l e c t i o n ”>
<r d f : D e s c r i p t i o n rd f : about=” h t t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#Pipe l ine Commiss ion ing ”/>
<r d f : D e s c r i p t i o n rd f : about=” h t t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#Pipe l ine Commiss ion ing Procedure ”/>
<r d f : D e s c r i p t i o n rd f : about=” h t t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#Pipe l ine Commiss ion ing Test ing ”/>
<r d f : D e s c r i p t i o n rd f : about=” h t t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#Pipe l ine Precommis s ion ing Clean ing ”/>
<r d f : D e s c r i p t i o n rd f : about=” h t t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#P i p e l i n e T e s t C e r t i f i c a t e ”/>
</owl:members>

</ r d f : D e s c r i p t i o n>

78

<r d f : D e s c r i p t i o n>
<r d f : t y p e r d f : r e s o u r c e=”&owl ; A l l D i f f e r e n t ”/>
<owl :d i s t inctMembers rd f :parseType=” C o l l e c t i o n ”>
<r d f : D e s c r i p t i o n rd f : about=” h t t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#M y c l e a n i n g a c t i v i t y ”/>
<r d f : D e s c r i p t i o n rd f : about=” h t t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#My commiss ion ing act iv i ty ”/>
<r d f : D e s c r i p t i o n rd f : about=” h t t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#My commissioning procedure ”/>
<r d f : D e s c r i p t i o n rd f : about=” h t t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#M y t e s t c e r t i f i c a t e ”/>
<r d f : D e s c r i p t i o n rd f : about=” h t t p : //www. posccae sa r . org /

r d f v e r i f i e r . owl#M y t e s t i n g a c t i v i t y ”/>
</ owl :d i s t inctMembers>

</ r d f : D e s c r i p t i o n>
</rdf:RDF>

79

80

List of Terms

antecedent
is a preceding event. 46

API
Application Programming Interface is a preprogrammed library that is
available for a software developer as a toolkit for performing common
application tasks.. 49, 51, 83

Axiom
An axiom (or postulate) is a proposition that is not proved or demon-
strated but considered to be either self-evident, or subject to necessary
decision. It is any mathematical statement that serves as a starting
point from which other statements are logically derived.. 48, 82

Best practice
is a technique or methodology that, through experience and research,
has proven to reliably lead to a desired result. 42

business logic
is the part of an application program that performs the required data
processing of the business. 33, 40, 47

class-of-class
is a 2nd order class that can group a collection of classes. 44, 45

consequent
is a following event. 46

CWA
The assumption that a database query can be considered false unless
proven true, thus considering the information in the database to be
complete.. 1, 47, 48, 59, 61

DL
Is a family of formal knowledge representation languages that models

81

concepts, roles and individuals, and their relationships. The funda-
mental modeling concept of a DL is the Axiom - a logical statement
relating roles and/or concepts.. 32, 35, 36, 48

DNV
Det Norske Veritas, a non-profit organization leading the RAPOC
project.. 3, 8

EXPRESS
is a modeling language for use in engineering data exchange standards
that combines the entity-attribute relationship and object modeling
paradigm. 30, 45

Horn-rules
is a clause (a disjunction of literals) with at most one positive literal.
33

IC
A constraint (rule) that must remain true for a database to preserve
integrity.. 48, 60

IDE
Integrated Development Environment. 51

Integrated Operation
is a system where different parties share data on a common platform.
1, 24, 25, 62

ISO
Is an standardization organization with a consortium of public and pri-
vate members that develops standards within several fields. Its name
is not an acronym for International Standardization Organization, but
is derived from the Greek word meaning ”equal”.. 17

ISO 15926-1
ISO 15926 Part 1: Overview and fundamental principles. 16

ISO 15926-2
ISO 15926 Part 2: Data model. 16, 84

ISO 8000
Is an information quality standard currently undergoing development
that seeks to define a common measure of data quality in automated
processes.. 37, 38, 42

82

ISO15926
A data model standard proposed by the International Standardization
Organization and its members for information exchange.. 8, 9, 11, 15,
16, 24, 25, 30, 38–40, 42, 44, 45, 48, 58

Javadoc
is a Java tool for generating API documentation. 52

Knowledgeweb
is a project funded by the European Commission for promoting the
transition process of Ontology technology from Academia to Industry.
26

life-cycle
A progression through a series of differing stages of development. 3–5,
7–15, 18, 20, 24, 25, 45, 54, 55, 58

Lifting & Lowering
The process of expanding RDF data (Lifting) from a system into a ex-
plicit ISO 15926 Part 2 and translating (Lowering) it to other systems..
38

modus ponens
is a valid inference drawn from a hypothetical proposition. 46

ODM
is an Object Management Group (OMG) specification to make the
concepts of Model-Driven Architecture applicable to the engineering
of ontologies. 45

Ontology
defines the terms used to describe and represent an area of knowledge.
46, 47

OWA
The assumption that a database query can be considered true unless
proven false, taking into account that the database might be incom-
plete.. 1, 47, 48

OWL API
is a Java API and reference implmentation for creating, manipulating
and serialising OWL Ontologies. 51

OWL-DL
A heuristic version of the OWL knowledge representation language
based on description logic, hence DL, that guarantees computational
completeness.. 32, 44

83

OWL-Full
A complete version of the OWL knowledge representation language
that make no compromises to expressiveness on the expense of com-
putational tractability.. 32

OWL-Lite
A simple version of the OWL knowledge representation language suit-
able for building taxonomies.. 32

Part 2
See ISO 15926-2. 58

punning
the name comes playing with words, the technique is a method of
making classes and individuals share the same namespace. 47

Reified
is an explicit statement containing a subject predicate and object with-
out using properties. 30, 58

Semantic Net
is a network which represents semantic relations among concepts. 30

Semantic Web
is a collaborative movement led by the World Wide Web Consortium
(W3C) that promotes common formats for data on the World Wide
Web. 45

Template
is a set comprising of a first-order logic predicate for which a definition
is stated as an axiom, a template signature and a template axiom
expansion. 42

Triple
An actual, physical object that is represented in the ontology as a data
element. 34, 45

UML
is a standardized general-purpose modeling language in the field of
object-oriented software engineering. 45

UNA
The assumption that every URI specifies a unique object, regardless
of whether they may refer to the same object.. 48

84

List of Abbreviations

AI Artificial Intelligence. 30
AP Application Protocol. 7
ASME American Society of Mechanical Engineers.

17

CAD Computer-Aided Design. 7
CAE Computer-Aided Engineering. 7
CAM Computer-Aided Manufacturing. 7
CAx Computer-Aided technologies. 7
COTS Commercial Off The Shelf. 6

EPISTLE European Process Industries STEP Technical
Liaison Executive. 8

ESPRIT European Strategic Program on Research in
Information Technology. 8

FOL First Order Logic. 29, 31

GE General Electric. 7

IEC International Electro technical Commission.
17

IGES Initial Graphics Exchange Specification. 7
IOHN Integrated Operations in the High North. 25

NAF Negation As Failure. 34, 47, 48
NFR Research Council of Norway. 8

OLF Norwegian Oil Industry Association. 24, 25
OWL Web Ontology Language. 23, 30, 32–34, 36,

45, 48

85

PDM/EDM Product data management/Engineering Data
Management. 7

PML Proof Markup Language. 35

RD Reference Data. 14–16
RDF Resource Description Framework. 29–31, 34,

45–47
RDF-S Resource Description Framework Schema. 31,

34
RDL ReferenceData Library. 14
RIF Rule Interchange Format. 33, 86
RIF-BLD RIF Basic Logic Dialect. 33

SME Society of Manufacturing Engineers. 7
SPARQL SPARQL Protocol and RDF Query Lan-

guage. 34, 35, 46–48
STEP STandard for the Exchange of Product model

data. 7, 8
SWRL Semantic Web Rule Language. 33

W3C World Wide Web Consortium. 23, 33

XML eXtensible Markup Language. 29, 34
XML-Schema eXtensible Markup Language. 29

86

Bibliography

[1] Grigoris Antoniou and Frank van Harmelen. A Semantic Web Primer
(Cooperative Information Systems). The MIT Press, April 2004.

[2] E.C.C.M. Association. Electronic open technical dictionary (eotd).
http://www.eccma.org/index.php, 2005. This is an electronic doc-
ument. Date of publication: February 03, 2005. Date retrieved: May
31, 2011. Date last modified: [Date unavailable].

[3] Damyan Ognyanov Atanas Kiryakov and Dimitar Manov. Owlim - a
pragmatic semantic repository for owl. Technical report, Ontotext lab,
Sirma Grouc corp, 2005.

[4] Tim Berners-Lee. Semantic web road map. Technical report, World
Wide Web Consortium, 2004.

[5] Tim Berners-Lee. Artificial intelligence and the semantic web.
http://www.w3.org/2006/Talks/0718-aaai-tbl/Overview.html,
2006. This is an electronic document. Date of publication: November
30, 2006. Date retrieved: May 15, 2011. Date last modified: [Date
unavailable].

[6] Tim Berners-Lee and Mark Fischetti. Weaving the Web. HarperSan-
Francisco, 1999.

[7] Steve Bratt. Semantic web, and other technologies to watch.
http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24),
2006. This is an electronic document. Date of publication: November
30, 2006. Date retrieved: May 15, 2011. Date last modified: [Date
unavailable].

[8] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy
Seaborne, and Kevin Wilkinson. Jena: implementing the semantic web
recommendations. In Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters, WWW Alt. ’04,
pages 74–83, New York, NY, USA, 2004. ACM.

87

http://www.eccma.org/index.php
http://www.w3.org/2006/Talks/0718-aaai-tbl/Overview.html
http://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)

[9] E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13:377–387, June 1970.

[10] International Electrotechnical Commission. Part 4: Discussion of con-
cepts. Technical report, International Electro technical Commission,
1998.

[11] Louis Vincent Cuel Roberta, Delteil Alexandre and RIZZI Carlo.
Knowledge web technology roadmap the technology roadmap of the
semantic web. Technical report, Knowledgeweb, 2007.

[12] Ian Dickinson and Michael Wooldridge. Towards practical reasoning
agents for the semantic web. In Proceedings of the second international
joint conference on Autonomous agents and multiagent systems, AA-
MAS ’03, pages 827–834, New York, NY, USA, 2003. ACM.

[13] Larry P. English. Improving data warehouse and business information
quality: methods for reducing costs and increasing profits. John Wiley
& Sons, Inc., New York, NY, USA, 1999.

[14] Oeystein Fossen. Integrerte operasjoner - akselerert laering;
hoeydepunkter fra paagaaende olf prosjekt, stavanger 12. juni.
olfs konferanse om integrerte operasjoner 12. og 13. juni 2007.
http://www.olf.no/getfile.php/Konvertert/www.olf.no/

Aktuelt/Dokumenter/OLFs%20IO-konferanse%202007%20-%20%

C3%98ystein%20Fossen%2C%20Arbforskinst.pdf, 2007. This is
an electronic document. Date of publication: June 13, 2007. Date
retrieved: July 15, 2011. Date last modified: [Date unavailable].

[15] Barbara L. M. Goldstein, Sharon J. Kemmerer, and Curtis H. Parks.
A brief history of early product data exchange standards - nistir 6221,
1998.

[16] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Ben-
jamin Grosof, and Mike Dean. Swrl: A semantic web rule language
combining owl and ruleml. W3c member submission, World Wide Web
Consortium, 2004.

[17] International Standardization Organization (ISO). Information pro-
cessing systems - concepts and terminology for the conceptual schema
and the information base. Iso publication, JTC 1/SC 32, 1987.

[18] International Standardization Organization (ISO). Industrial automa-
tion systems and integration - integration of life-cycle data for process
plants including oil and gas production facilities - part 2: Data model.
Iso publication, ISO/TC 184/SC4, 2004.

88

http://www.olf.no/getfile.php/Konvertert/www.olf.no/Aktuelt/Dokumenter/OLFs%20IO-konferanse%202007%20-%20%C3%98ystein%20Fossen%2C%20Arbforskinst.pdf
http://www.olf.no/getfile.php/Konvertert/www.olf.no/Aktuelt/Dokumenter/OLFs%20IO-konferanse%202007%20-%20%C3%98ystein%20Fossen%2C%20Arbforskinst.pdf
http://www.olf.no/getfile.php/Konvertert/www.olf.no/Aktuelt/Dokumenter/OLFs%20IO-konferanse%202007%20-%20%C3%98ystein%20Fossen%2C%20Arbforskinst.pdf

[19] International Standardization Organization (ISO). Data quality – part
110: Master data: Exchange of characteristic data: Syntax, semantic
encoding, and conformance to data specification. Iso publication, ISO,
2009.

[20] International Standardization Organization (ISO). Data quality – part
120: Master data: Exchange of characteristic data: Provenance. Iso
publication, ISO, 2009.

[21] International Standardization Organization (ISO). Industrial automa-
tion systems and integration - integration of lifecycle data for process
plants including oil and gas production facilities - part 8: Implemen-
tation methods for the integration of distributed systems: Owl imple-
mentation. Iso publication, ISO/TC 184/SC4/WG3 N2662, 2009.

[22] sub-committee SC 4 ISO Technical Committee TC 184, A.s.a.i. Indus-
trial data, iso/ts 8000-100:2009 data quality - part 100: Master data
(overview). Technical report, ISO, 2009.

[23] Bijan Parsia Jennifer Golbeck and James Hendler1. Trust networks on
the semantic web. Technical report, University of Maryland, 2003.

[24] Martin G. Skjæveland Johan W. Klüwer and Magne Valen-Sendstad.
Iso 15926 temapltes and the semantic web. Position paper, Information
Risk Management, Det Norske Veritas, 2011.

[25] Y. Katz and B. Cuenca Grau. Representing qualitative spatial informa-
tion in owl-dl. Technical report, In Proceedings of OWL: Experiences
and Directions Workshop, 2005.

[26] KonKraft. Konkraft-rapport 2, produksjonsutviklingen paa norsk
sokkel. Technical report, KonKraft, 2007.

[27] Deborah L. McGuinness and Frank van Harmelen. Owl web ontology
language overview. Technical report, W3C, 2004.

[28] J. Minker. On indefinite databases and the closed world assumption,
pages 326–333. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1987.

[29] Jeff Z. Pan Nophadol Jekjantuk, Gerd Groner and Edward Thomas.
Towards hybrid reasoning for verifying and validating multilevel mod-
els. Technical report, University of Aberdeen, United Kingdom and
University of Koblenz-Landau, Germany, 2010.

[30] Rafael Gonzalez-Cabero Oscar Corcho, Asuncion Gomez-Perez and
M. Carmen Suarez-Figueroa. Odeval: a tool for evaluating rdf(s),

89

daml+oil, and owl concept taxonomies. Technical report, The Depart-
ment of Artificial Intelligence in the School of Computer Science of the
Universidad Politecnica de Madrid, 2004.

[31] Bijan Parsia and Evren Sirin. Pellet: An owl dl reasoner. Technical
report, MINDSWAP Research Group, University of Maryland, 2004.

[32] Bijan Parsia and Evren Sirin. Pellet: A practical owl dl reasoner. Tech-
nical report, MINDSWAP Research Group, University of Maryland,
2006.

[33] eborah L. McGuinness Paulo Pinheiro da Silva and Richard Fikes.
A proof markup language for semantic web services. Technical re-
port, Knowledge Systems Laboratory, Stanford University, Stanford,
CA 94305, USA, 2006.

[34] Bjoern Rasen. Time for integrated action. http://www.npd.no/

English/Emner/IO/IO-forum/11.03.08+time+for+integrated+

action.htm, 2008. This is an electronic document. Date of publica-
tion: July 7, 2008. Date retrieved: june 3, 2011. Date last modified:
[Date unavailable].

[35] Boris Motik Rob Shearer and Ian Horrocks. Hermit: A highly-e?cient
owl reasoner. Technical report, Oxford University Computing Labora-
tory, 2005.

[36] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach (2nd Edition). Prentice Hall, December 2002.

[37] James Hendler Tim Berners-Lee and Ora Lassila. The semantic web.
Scientific American, 2001.

[38] Matthew West. Developing high quality datamodels. Technical report,
Shell International Limited, 1996.

[39] Tim Finin Youyong Zou and Harry Chen. F-owl: An inference engine
for semantic web. Technical report, Computer science and eletrical
engineering department, University of Maryland, 2005.

90

http://www.npd.no/English/Emner/IO/IO-forum/11.03.08+time+for+integrated+action.htm
http://www.npd.no/English/Emner/IO/IO-forum/11.03.08+time+for+integrated+action.htm
http://www.npd.no/English/Emner/IO/IO-forum/11.03.08+time+for+integrated+action.htm

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Problem statement
	Original problem statement
	Changes

	Motivation
	Goal
	Personal goal

	Thesis guide

	Technical Background & Concepts
	ISO 15926
	ISO 15926 Parts
	Industry requirements
	Conceptual data model
	Overall design requirements
	Architecture
	Data model design/EPISTLE principles
	Some aspects related to the use of ISO 15926
	Representation of "Attributes” using ISO 15926
	Conditions for membership
	Key ISO 15926 Terms and definitions

	The Semantic Web
	Potential of integrated operations
	Benefits
	State of the art

	The Semantic Web Stack
	URI/IRI
	XML
	RDF
	RDF-S
	Ontology: OWL
	Rule: RIF
	SPARQL
	Unifying Logic
	Proof
	Trust
	User Interface & Applications
	Crypto
	Issues not covered

	Information quality
	ISO 8000
	ISO 15926 & ISO 8000 - Master data
	Syntactic quality
	Semantic Quality
	Pragmatic quality
	Provenance

	Related work

	Validation of ISO 15926 data in the Semantc Web architecture
	Ontologies
	Representing ISO 15926 in OWL
	Reification
	Reasoners
	Open vs. Closed World Assumption
	Integrity constraints

	Validation Tools & Software
	On-line validators
	Jena Eyeball
	ODEval
	HermIT
	Fact++
	Pellet Integrity constraint validation

	Development configuration
	Jena
	OWL API

	Validation Test Case and Results
	The Life Of An electric Motor
	Integrity constraint - Test cases
	Life-cycle test case
	Results

	Conclusions, Current & Future Work
	Further work

	Appendix
	Quality Criteria for RDF representations of installations descriptions according to ISO15926 part 8
	Integrity constraints for the pipeline commissioning life-cycle

	List of Terms
	List of Abbreviations
	Bibliography

