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Abstract
In this thesis, we develop a model that uses Conversational Case-Based Reason-
ing (CCBR) in order to help physicians diagnose patients. To be able to process
the vast amount of information embedded in the domain of general medicine,
we introduce a divide and conquer approach. By focusing on small, well-defined
sub-domains of medicine, we are able to capture specific knowledge from each of
them. Together the sub-domains form our understanding of the medical domain,
and we argue that this approach is more sound than to reason from the entire
domain at the same time.

We adopt a set of existing approaches to the CCBR process to fit our needs.
By testing these algorithms on real life data and analysing the results, we are
able to identify strengths and weaknesses for each of them. By studying different
dialogue management techniques embedded in CCBR, we are able to introduce
targeted measures to increase the performance of these algorithms. At the same
time, we are able to increase their flexibility, enabling them to take on domains
that they previously did not support. We also introduce different dialogue infer-
ence techniques to our system, and demonstrate that this has the potential to
further increase the performance of our system.

To bind the different sub-domains together we introduce an architecture that
includes a stack of CCBR dialogues. This enables our system to explore multiple
areas of medicine within the same session, increasing the probability of finding
the correct diagnosis. For each sub-domain the system can choose from the set
of CCBR algorithms included in the system, and find the one that maximises the
performance in that particular domain. To be able to determine which dialogues
to add to this stack we introduce a meta-level dialogue. This dialogue is added
on top of the other dialogues and presents the user with a set of general questions
in an effort to identify the most relevant sub-domains to explore.
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Sammendrag
I denne avhandlingen utvikler vi en modell som ved bruk av Conversational Case-
Based Reasoning (CCBR) skal hjelpe leger å diagnostisere pasienter . For å vœre
i stand til å behandle den enorme mengden av informasjon som det generelle
medisinske domenet består av, foreslår vi en splitt og hersk tilnœrming. Ved å
fokusere på små, avgrensede underdomener av medisin er vi i stand til å trekke
ut spesifikk kunnskap fra hver av dem. Sammen utgjør disse underdomene vår
forståelse av det medisinske domene, og vi mener at dette er en bedre tilnœrming
enn å ta hensyn til hele domenet samtidig.

Vi tilpasser et sett av eksisterende løsninger for CCBR prosessen slik at de passer
våre behov. Ved å teste disse algoritmene på reelle data og ved å analysere resul-
tatene, er vi i stand til å identifisere styrker og svakheter ved hver av dem. Ved å
studere ulike teknikker for styring av dialogen mellom brukeren og systemet er vi
i stand til å innføre målrettede tiltak for å øke ytelsen til disse algoritmene. Sam-
tidig er vi i stand til å øke fleksibiliten, slik at algoritmene kan brukes på domener
som tidligere ikke var støttet. Vi introduserer også ulike inferens teknikker i dialo-
gen, og viser at dette har potensialet til å ytterligere øke ytelsen for systemet vårt.

For å binde de forskjellige underdomenene sammen presenterer vi en arkitek-
tur som inkluderer en kø av CCBR dialoger. Dette gjør det mulig for systemet å
undersøke flere områder av medisinen i en og samme dialog, for å øke sannsyn-
ligheten for å finne en korrekt diagnose. For hvert underdomene velger systemet
algoritmen som maksimerer ytelsen i det aktuelle domenet. For å vœre i stand
til å avgjøre hvilke domener som skal legges til i køen, har vi innføret et meta-
nivå med dialog. Denne dialogen er lagt på toppen av de andre og presenterer
brukeren med et sett av generelle spørsmål i et forsøk på å identifisere de mest
relevante underdomenene å utforske.
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Chapter 1

Introduction

In this chapter, we introduce our main focus and goals for the thesis. First, we
will describe the domain of AI and CBR in medicine, followed by an introduction
of our goals and research questions.

1.1 Background and Motivation

The role of a medical diagnostician requires many years of practice to gain the
experience and analytic skills required to accurately diagnose patients. Even
with many years of experience, there is no guarantee for a correct diagnosis of
a patient. In a domain where information can often be contradictory and where
the knowledge is constantly evolving, it is hard even for the most experienced
diagnosticians to make the correct decisions. In order to help the physicians in
this difficult task, a great amount of research on artificial intelligence (AI) in the
medical domain has been conducted. One widely adapted AI method in medical
applications is Case-Based Reasoning (CBR)Bichindaritz [2008]. The reasoning
process in CBR builds on the fundamentals of human reasoning and how humans
use specific knowledge of previous experiences to solve new problems. Gierl et al.
[1998] compares the fundamentals of CBR process to the reasoning process in
medical diagnosis. Physicians spend a great deal of their time keeping up with
the development of best practices for both diagnostics and treatments. This most
commonly done by studying cases of different diseases documented by their own
or other physicians’ encounters. One can think of the collection of cases in a
doctor’s experience as a case base for a CBR system.

CBR has been successfully applied to several domains such as law(HYPO,
Ashley [1991]), design in autoclave layout(CLAVIER, Hinkle and Toomey [1994])
and heart failure diagnosis (CASEY, Koton [1988]), to name a few. CBR has also

1
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been applied successfully to other medical domains. Holt et al. [2005] reviews the
use of CBR in the field of medicine and list several applications for CBR ranging
from diagnosis support, classification, treatment to tutorials systems. In the
recent years, CBR has been applied to medical tasks such as cancer diagnosis
(De Paz et al. [2009]) and diabetes (Marling et al. [2008]).

In a previous study (Ekerholt et al. [2013]), we applied two Conversational
CBR (CCBR) systems on a medical dataset consisting of patient cases from gen-
eral physicians. In CCBR, a new case only consists of a limited description,
and it is the task of the system to select the best sequence of questions to fur-
ther elicit the case description until a solution can be selected within a pre-set
amount of certainty. While our study showed promising results, it also showed
that representation and management of cases can have noticeable impact on the
performance of the system depending on the choice of the CCBR approach, and
that it matters how the dataset is structured.

In this paper, we address the shortfalls of our previous study. We widen
our scope to incorporate several different datasets from the medical domain.
We investigate dialogue management in CCBR, and propose an architecture,
which incorporates different CCBR algorithms in order to reason within multiple
medical sub-domains, which can have wide array of different characteristics.

1.2 Goals and Research Questions

Goal Use concepts and techniques embedded in conversational case based reason-
ing to develop a system that is able to accurately diagnose patients across
different medical domains.

The motivation for this thesis is to develop a model for diagnosing patients
suffering from different diseases, using the concepts of conversational case based
reasoning. The product of our work will be a software system that implements the
different parts of our model to test it on real life data. Our main goal is to create
a system that through interaction with the patient is able to accurately predict
the diagnosis of that patient. We also want our system to be efficient on a wide
range of medical diseases, so our model needs to be versatile in order to handle the
different characteristics of the different diseases. General medicine is a large and
complex domain, which makes it a very difficult area to perform reasoning within.
Instead of tackling the domain as a whole, we intend to propose a system, which
is adaptive and can reason within several different sub-domains of medicine. By
testing multiple solutions to the different mechanisms in a CCBR system, we
hope to find good combinations, which yields good performance within each sub-
domain. We believe this divide and conquer strategy can enable reasoning within
an otherwise difficult domain.



1.3. RESEARCH METHOD 3

An important part of our system is the dialogue between the patient and the
system. The system will present the patient with a series of question to help
them describe their current condition. This process involves the system choosing
which question related to the patient’s current condition is the most relevant
at any given time, determining which question is likely to produce the most
information. One of the main challenges in any CCBR system is to make this
dialogue both efficient and fluent while at the same time ensure it feels natural to
the user. To be able to achieve this we will investigate different techniques and
methods within the field of dialogue management.

Research question 1 How can we use the concepts of dialogue management to
create an efficient and fluent dialogue with the patient?

Dialogue management concepts such as question selection and dialogue infer-
ence are important tools to improve the quality of the dialogue. By testing our
system on multiple different diseases and real life datasets we will research which
dialogue management techniques works in which situations and why.

Research question 2 How can we build an adaptive system, which performs
well with different datasets from different medical sub-domains?

A key aspect of this thesis is to test the performance of our system on real life
medical datasets. Our previous work (Ekerholt et al. [2013]) shows that CCBR
systems are often more effective on some datasets than others, and we hope
to be able to explain these differences by looking at the characteristics of the
underlying datasets and the mechanisms used in the different CCBR algorithm.
By analysing when the algorithms are most effective, we can associate different
datasets to its best-suited algorithm.

Research question 3 Is it possible to create a meta-level of reasoning around
each of the different sub-domains represented in our solution?

As the medical domain is large and complex, it makes it difficult to have
datasets that represents the general domain of medicine. In fact, most of the
available medical datasets represents different sub-domains and diseases. We
tend to investigate the possibility of making a system which through a CCBR
dialogue can identify which sub-domain is most relevant for further investigation,
and then continue the dialogue within this domain.

1.3 Research Method
In this thesis, we will investigate the area of CCBR and the different mechanisms
a CCBR algorithm comprises of. We will research different solutions to different
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mechanisms, and implement them in together with two different existing CCBR
systems. We will experiment with different combinations of CCBR systems and
mechanisms on several datasets from the medical domain. By evaluating the
results we will find which combination works best on each dataset and why. We
will also investigate the possibility of making a meta-level of reasoning that starts
with a dialogue in the general medical domain to identify which of the underlying
sub-domains is most relevant for the further examination.

1.4 Thesis Structure
We start this thesis with a short introduction to the field of medical diagnostic
and the use of AI in the field. We then present the focus and goal of our research.
Chapter two presents the background and theory of CBR, CCBR and dialogue
systems. An overview of existing CCBR and conversational systems is given in
chapter three. In chapter four, we describe our own implementation of two CCBR
algorithms, and presents our proposal for a system that can integrate them both
side by side. We then tests and evaluates each of the two algorithms on several
medical datasets and propose a coupling of datasets and algorithms in chapter
five. In chapter six, we conclude our work and propose topics for further research.



Chapter 2

Theory and Background

In this chapter we will present some necessary background material for our the-
sis. We will introduce the basics of case-based reasoning and conversational case-
based reasoning, looking at some of the key components and challenges for such
systems. We will also visit the general field of dialogue system design, introducing
some common architectures to facilitate dialogue between a user and a computer
system.

2.1 Case-Based Reasoning

Case based reasoning is a problem solving technique that differs from other com-
mon AI approaches. Unlike for instance rule- and model-based approaches to
AI, CBR does not try to reason from general domain knowledge. Instead, CBR
uses specific knowledge captured in previously experienced problem situations.
A new problem situation is solved by looking at similar past cases and reusing
the solutions from these cases. It enables CBR systems to capture knowledge
that cannot be represented by a general model, which also allows them to reason
in domains that are not completely understood. CBR enables sustained learning
by updating the case base when a problem is solved ensuring that case-based
reasoning systems becomes more competent over time as they experience and
learn more. Kolodner [1993] presents the use of CBR in a wide range of tasks
including classification, planning and design.

CBR is based on the assumption that situations recur with regularity, meaning
that what was done in a previous situation is likely to be applicable in a similar
situation. This kind of problem solving is frequently used by humans. CBR
has its foundation from the Dynamic Memory model proposed by Schank [1983].
This model states that human remembering, understanding, experiencing and

5
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Figure 2.1: The CBR Cycle

learning are integrated processes that cannot be separated. Our memory, which
is dynamic, change as a result of new experiences. We understand by integrating
these new experiences with what we already know. This understanding of the
human reasoning process forms the theoretical foundations of the CBR process.

Figure 2.1 shows the CBR reasoning process as it was suggested by Aamodt
and Plaza [1994]. This cyclic process can be divided into four general steps;
retrieve, reuse, revise and retain. The CBR system is initially presented with
a description of a new case that is to be solved. Using this description the system
compares the new case with all the cases it has stored in its case base to identify
former problem situations that are similar. By looking at the stored solutions
of these cases, one can derive a proposed solution for the new case. In some
scenarios, it might also be necessary to revise this solution to make it applicable
to the new situation. In the retain step the new case with its solution is stored
in the case base to be used in future problem solving situations.
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2.1.1 CBR in Medicine

There are a number of characteristics of a Case-Based reasoner that makes it
suitable for use in the medical domain. First of all, there exists a clear notion
of the definition of a case in the medical domain. Cases are used extensively in
medical research where research and documentation of new diseases are typically
based on disease case descriptions and case collections. Gierl et al. [1998] Cases
are also used in daily clinical practise where one is required to keep professional
records, describing symptoms, treatments and outcome of those treatments for
each patient. This means that there exists large collections of recorded medical
cases a Case-Based reasoner can use to build extensive case bases and learn
from. Another advantage is that the reasoning process of a CBR system closely
resembles the way physicians’ reason in the process of diagnosing a patient. To
diagnose a new patient a physician often revisits old cases to look for similarities
and potential clues as to what is wrong with the patient. If he finds a similar
case, he can use the conclusions of that case as a guideline for the new situation.

The fact that CBR is able to handle domains in which information is incom-
plete also suggests it is equipped to be successful in medical applications. The
medical domain is extremely complex, and there is still a lot we do not know
about the human body. A medical Case-Based reasoner needs to be able to han-
dle difficult cases with possible contradicting symptoms that can be caused by
multiple underlying causes. A Case-Based reasoner that uses knowledge captured
in specific instances and not general rules, can often overcome such difficulties if
it has observed similar cases before. A Case-Based reasoner also has the ability
to justify its conclusions, by referring to past cases where a certain solution was
found to be successful. This feature is useful in the medical domain where one
will typically need to double check the conclusions of an automated system.

2.2 Conversational Case-Based Reasoning

Conversational case based reasoning (CCBR) was one of the first widespread
commercially successful form of CBR. In the beginning it was used mostly in the
form of customer support tools (e.g. Inference Corporation and the k-Commerce
product line), and later in recommendation systems (McSherry [2005a]).

Unlike normal CBR-systems, which uses a full case description, CCBR starts
a new case with an initial and limited problem description. This can be either
free text or answers to a pre-defined set of questions. The system uses this
initial description to find a new question or test which results will limit the set
of potential solutions. This action is repeated until the system can determine a
solution within a pre-set degree of certainty, or the user decides to terminate the
process by picking a solution. It is the system’s aim to minimize the length of
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Figure 2.2: The conversational case-based reasoning process (from Gu [2006])

the dialogue and still reach a precise and correct solution. Figure 2.2 shows an
outline of the CCBR reasoning process.

This routine is very similar to the process involved in medical diagnosis, where
it is unrealistic to assume that a full description of the case in question is available
at the start of the diagnostic process. The patient can often only give a limited
description of his or her condition. The patient is also often unaware of the
relevance of certain information that is needed to reach a correct diagnosis. In
this setting, a CCBR-system could aid a doctor in the process of diagnosing a
patient, playing an active role in selecting relevant questions to help minimize the
number of answers a patient needs to provide to arrive at a potential diagnosis.
The ability to limit the number of tests and questions answered by the user is
important in medical diagnosis where time is often of the essence.

While CCBR has proven to be successful in areas like interactive fault diag-
nosis and help desk support (Aha et al. [2005]), it has also revealed promising
results in medical diagnosis in limited domains such as breast cancer, lymphog-
raphy, and contact lenses. McSherry [2011] propose a feature selection driven
algorithm, with the goal of confirming a target class and informed by a measure
of a feature’s discriminating power in favour of the target class. The algorithm
achieves high accuracy levels while only needing to examine an average of 51
percentage of the features in a full case description.

Below we present the main parts of a CCBR system, to give a brief overview
of the components necessary to build such a system. It can be divided into two
main parts, acquisition and management of the cases, and dialogue management.
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2.2.1 Case Representation

Deciding how to represent cases is an important decision in any CBR system, as
this decision can significantly influence the efficiency and accuracy of the system.
The representation needs to be adapted to the domain in which one is working.
In addition, source of the cases needs to be decided. In the medical domain, they
can for instance be created with help from expert physicians or be the result
of data mining from existing electronic medical records. Maintenance of these
libraries also becomes important when the number of cases grows large. Although
these are general problem areas that are relevant for all types of CBR systems,
special considerations needs to be made when working with CCBR systems.

2.2.1.1 Representation

Every CBR system needs a case library in which previous problems with their
solutions can be stored. From this library, cases are retrieved continuously based
on their similarity with the current query. In CCBR systems, cases are typi-
cally represented as a set of question- answer pairs, which is the basis of case
retrieval. It is also common in domains such as fault diagnosis that each solution
is represented by a single case (Aha et al. [2005]).

In taxonomic CCBR, domain features are arranged in taxonomies where levels
of abstraction are represented by subsumption links (Gupta [2001]). Each case
then only needs to reference features at the leaves of these taxonomies, as a parent
feature must appear in all the cases in which any of its children appear. This
makes both storing and retrieval of cases more efficient.

2.2.1.2 Acquisition and Maintenance

Creating a case base is often a time consuming process that requires significant
skill, effort and time. In addition, such case bases often has to be revised to be
applicable to CCBR systems. A number of software tools has been developed to
meet these challenges; a few examples are presented below.

Gupta and Aha [2004] suggests a technique, to automatically generate cases
from text, for instance manuals, logs or reports. Their system is called FACIT,
and it uses natural language processing techniques to extract features from each
case and then organises the features in subsumption taxonomies.

To create good case libraries for CCBR systems can be difficult as there are
many considerations to be made. To be able to create good cases many guidelines
has to be followed, and often, expensive experts are hired to do this job. Aha
and Breslow [1997] instead suggests revising case libraries to accommodate these
guidelines using a software tool. This tool, which they have named CLIRE,
creates a decision tree representation of the case library, indexed on the different
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questions. The software then uses this tree to both remove unnecessary questions
and to decide the order of the questions.

Yang and Wu [2001] points out the difficulty of retrieving similar cases in a
short amount of time when the case bases grows in size. Such large case bases
are common in industrial practises, and thus finding an efficient way to handle
these becomes an important maintenance challenge. To overcome this problem
the authors presents a way of compressing the case bases into several small ones
by creating decision forests in real time. This is achieved by using a clustering
algorithm to merge similar cases based on the density of attribute values. These
clusters are used in the interactive dialogue with the user. In each step of this
dialogue, the system finds the attributes that can distinguish between the clusters
the most. As the user provides answers, the system continuously ranks those
clusters that are most likely to contain the final result. As a final cluster is
identified, a simple CBR system can be used within this cluster to find the final
solution.

2.2.2 Dialogue Management

Dialogue management is an important part of a CCBR system. To achieve a
fluent and efficient dialogue between the user and the system there are a number
of considerations to make.

2.2.2.1 Question selection

One of the key features of CCBR is picking the questions that are presented to
the user. The goal of asking these questions is to further describe the case in the
most precise and efficient way possible, meaning that the most relevant questions
should be asked at each time. This is to be able to offer a solution as quickly as
possible, by asking the least amount of questions.

A common way of achieving this is to use purely statistical approaches. Bres-
low and Aha [1998] uses a method called the occurrence frequency metric that
looks at the frequency of features in the cases most similar to the current query.
It then picks the question related to the feature that is most common among
these cases. Another similar approach is the information gain metric, which tries
to identify the feature that can distinguish the cases the most, i.e. which feature
can provide the most information. The question with the highest information
gain is then selected for elicitation.

There are also approaches that go beyond the purely statistical metrics.
iNN(k) proposed by McSherry [2011], uses a goal driven approach, where ques-
tions are picked to either confirm a target class or eliminate competing classes.
Chapter 3 gives a more detailed look at such approaches. Another consideration
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Figure 2.3: An example of a feature taxonomy (from Gupta [2001])

one might take in the question selection process is that general context ques-
tions should be asked before ones that are more specific. Some systems order
the questions in hierarchies, specifying the order in which questions be asked.
Gupta [2001] presents an approach where features are ordered in subsumption
taxonomies. The questions related to higher-level features in these hierarchies are
constrained to be asked before lower level ones. An example of such a taxonomy
from the printing domain is depicted in Figure 2.3.

Different strategies for presenting the questions to the user are also possible.
Some CCBR systems present the user with an ordered list of questions that they
are able to pick from. The questions are ordered according to their respective
score, calculated by one of the methods presented above. Other systems does not
offer this flexibility, and rather just present the user with what is calculated to
be the most relevant question in each iteration.

2.2.2.2 Dialogue Inference

Another important challenge in CCBR is the dialogue inference task. To minimize
the length of the conversation between user and system, the user should not
have to answer questions that the system could answer automatically through
inference. The CCBR system should make such inference by looking at both the
initial description given by the user as well as the answers he provides in the
questioning process.

When applying dialogue inference techniques in a CCBR systems there are
two important principles to consider, rule completeness and rule accuracy. This
means that any inference technique used should be able to generate a complete
set of inference rules for the domain in question, and these rules also needs to
be accurate. Without a complete rule set, the system will suffer from being less
efficient as it fails to make all the inferences it could have made. Similarly, if
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the inference rules that are generated are not correct, the precision of the system
will degrade as it infers incorrect features for the current query. Complying with
these two principles is therefore essential when adding dialogue inference features
to a CCBR system.

Early systems adopted rule-based approaches to perform such inference, re-
quiring the system designer to enter implication rules manually. However, main-
taining such rule sets while ensuring rule completeness and accuracy is a time
consuming process. As a result, some system designers choose to avoid dialogue
inference techniques all together. More recent efforts, tries to take a model-based
approach to inference. Aha et al. [2001] achieved this by building domain models
and used these to generate inference rules automatically. Such models are easier
to maintain than a set of manually maintained rules, while it is also easier to guar-
antee the correctness of the resulting inferences. Examples of such approaches to
dialogue inference will be presented in chapter 3.

2.2.2.3 Dialogue Termination

One of the key challenges for a CCBR system is to balance the trade-offs between
solution quality and dialogue efficiency. A central task to achieve this is the
decision of when to terminate a dialogue. If ended too early, the solution offered
by the system may not be the optimal one, while asking too many questions will
degrade the efficiency of the system.

Some CCBR systems gives the user the ability to terminate the process him-
self. The user is presented with a list of the top ranking cases throughout the
dialogue process, and terminating the dialogue by picking on of the solutions from
the list. Even with such functionality, it is useful for the system to be able to
decide when to terminate automatically, to increase the efficiency of the system.

Many CCBR systems achieve this by terminating the dialogue when some
case reaches a threshold in similarity to the current query, and then picks the
solution this case offers. A similar approach is to terminate when the amount of
information possible to gain by further questioning is below a set limit. It is also
possible to terminate when the set of competing cases is reduced to certain limit.
Doyle and Cunningham [2000]; Aha et al. [2001]

McSherry [2003] points out that these naive approaches suffers from the fact
that they cannot guarantee that a better solution cannot be found if the dialogue
is allowed to continue. Although they are shown to decrease the dialogue length,
this reduction comes at a cost of lower precision. McSherry [2005b] presents a
possible solution to this problem. He suggest a method that does not terminate
before it is certain that continuing the dialogue will not yield a different solution.
The approach is based on the concept of case dominance. A case is dominated
by another in respect to an incomplete query if its similarity score is guaranteed
to be lower, regardless of what information further questioning can provide. A
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Figure 2.4: An example a dialogue system architecture

dialogue can then be safely terminated if the target class dominates all other
classes.

2.3 Dialogue System Design

The dialogue management module of a conversational system is responsible for
controlling the structure of the conversation between the system and the user.
In a reasoning system, this entails taking input from the user, through either
text or speech, and passing this input to the reasoning module. Output from the
reasoning module is sent back to the user through the dialogue manager. Figure
2.4 shows an overview of such a system. Four kinds of dialogue management
architectures that are most widely used Jurafsky and Martin [2009]. Finite-
state and frame-based architectures are the simplest ones, while information-state
and plan-based architectures are more complex but allows for a more natural
discourse. Finite-state architectures allows for conversations, which are system-
or single-initiative. This means the conversation is led by the system and the
user can only answer the current question asked by the system. While these
architectures are fairly easy to implement, it does put a restriction on the dynamic
of the dialogue. A more desirable approach is architectures that allow for mixed-
initiative, meaning the initiative and control of the conversation is shifted between
the user and the system. Frame-based architectures rely on a frame of slots. Each
slot represents a question that may have to be answered in order to move forward
in the dialogue. Framing a set of slots allows the user to choose which slot to fill
at any specific moment within the frame. It also opens up for answering multiple
slots at a time. The system can also include the ability to allow the filling of
slots that are not in the current frame. In this case, the system needs to able to
disambiguate which slot in which frame the input is directed to.
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A more advanced architecture is the information-state architecture by Traum
and Larsson [2003]. This type of architecture achieves a more sophisticated rep-
resentation of the dialogue through models of interpretation, generation of speech
acts and grounding. An information-state architecture usually consists of a model
of the information state, a dialogue act generator (an engine for generating speech
acts from the system), a dialogue interpreter (an engine for interpretation of the
user input), a set of rules for updating the information state based on the inter-
pretation of the user input and a control structure to select which update rule to
apply. The information state model is an abstract term and can consist of dif-
ferent information like discourse context, grounding of the dialogue, user models
and so on. The complexity of the system is largely based on the complexity of the
information state model. A dialogue act is a form of a speech act. Searle [1976]
classifies speech acts into five categories; Assertives(suggesting, concluding etc.),
Directives(asking, ordering, requesting etc.), Commissives(promising, plan-
ning, opposing etc.), Expressives(thanking, apologizing, deploring etc.), and
Declarations(an act which changes the state of the world). A dialogue act is
one such act, but grounded (i.e. both parts of the conversation agrees upon the
common ground of the discourse) in the information state. The interpretation
engine takes input from the user and finds the semantics of the input, as well as
a corresponding dialogue act. The generator engine on the other hand takes the
semantics and dialogue act, in order to produce output as either text or speech.
The update rules update the information state based on the information gained
from the dialogue acts.



Chapter 3

Related Work

In this chapter we will present a collection of existing systems that relate to the
different areas of this thesis. We will present three different approaches to the
CCBR process in the NaCoDAE, iNN(k) and TrollCCRM systems. In addition,
we will introduce systems that concern the process of controlling the state of a
dialogue between a user and a system in the Adaptive Place Advisor and DSGM
systems. For each of the systems we will highlight the parts that are particularly
interesting for our research. At the end of the chapter, we will summarize how
we plan to utilize these systems to build our own model.

3.1 NaCoDAE

Through investigation of previous attempts to make a CCBR tool in the American
Navy, the creators of NaCoDAE (Navy Conversational Decision Aids Environ-
ment) had identified two important challenges for commercial CCBR systems,
case authoring and dialogue inference. Breslow and Aha [1998] created the orig-
inal NaCoDAE system to address the problem of case authoring. This task orig-
inally required great expertise in case library authoring. To make this process
simpler the authors present an automated case authoring strategy. Aha et al.
[2001] later altered it to work as a full-fledged CCBR-tool with its own dialogue
inference tool based on model based reasoning.

3.1.1 The CCBR-process

The user interact with NaCoDAE by starting a new case Q, and first submitting
a free-text description of the problem, denoted Qd. NaCoDAE then fetches a set
of cases that are similar to this new case and shows their solutions (Ds) to the
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Figure 3.1: The NaCoDAE system (from Aha et al. [2001])

user. The system uses part-of-speech tagging to compute the initial similarity
measure between a case C and Q, denoted s(Q,C). The similarity between a
case C and a new case Q is at this time defined as the percentage of roots and
nouns phrases that are both present in the free-text description of each case. This
percentage is then used to rank the cases.

At this point, the user can either select a solution and terminate the dialogue
sequence, or he can select a question from a ranked list of related questions.
These are ranked according to their frequency in specifications of the cases whose
solutions are displayed to the user. When the user answers a selected question,
the partial case query Qqa is expanded. This query is then used to retrieve a
new set of ranked solutions and questions. This is done by scoring s(Q,C) for
every case C in the case base. s(Q,C) is now defined as in equation 3.1, where
same(Qqa, Cqa)− diff(Qqa, Cqa) will be the number of shared conflicts between
this query and the case C. This cycle is then repeated until the system terminates.
This can either happen by the user selecting a solution, the top ranked solutions
gaining a similarity exceeding a defined threshold, or all the possible questions
have been asked. The first two situations are considered a successful termination,
while the last is considered an unsuccessful one. An overview of the entire process
is given in Figure 3.1

same(Qqa, Cqa)− diff(Qqa, Cqa)

|Cqa|
(3.1)
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3.1.2 Case-Authoring

An important part of NaCoDAE is its case-authoring module. CCBR systems
often has heterogeneous case libraries (cases are represented by different sets of
attributes). While this can make cases smaller in size, it imposes problems re-
garding case authoring. NaCoDAE relaxes the problem of case authoring by using
software tools guided by a list of guidelines for CCBR case library construction
by the Inference Corporation 1. The approach consists of three phases. The
first phase consists of representing the case library as a tree-structure. This is
done using a simple top-down decision tree induction algorithm, TDIDT (Quinlan
[1986], Aha and Breslow [1997]). TDIDT algorithms chooses a feature (question)
index by some selection criterion to partition a node’s cases. A separate leaf is
attempted generated for each node. Most selection criteria used in TDIDT algo-
rithms assumes the cases to be homogeneous and clustered. As this is often not
the case in CCBR libraries, the selection criterion in NaCoDAE’s case authoring
is to select the most frequently answered question amongst a node’s cases. A
separate node is made for all the cases not containing an answer to the selected
question.

The second phase of the authoring is revision of the cases according to the
guidelines. All question-answer pairs (q,a), from a given case, that are not a part
of any path from the root node to the leafs containing this case are removed. It
is assumed that the removal of the pair are irrelevant, given that they do not
logically distinguish the case from other cases. The final phase of the authoring
is case extraction. Here (q,a) pairs that appears in paths to each case C, are
reordered.

3.1.3 Dialogue Inference

An important part of the NaCoDAE is its dialogue inference module. This module
is based on model-based reasoning to generate implication rules, which automati-
cally answers questions that can be inferred from previous answers. There are two
types of models in the system, represented as semantic networks. Object models
are models of the domain objects and question models are models of questions
related to the objects. The models themselves has to be created by the library
author. The models are in turn sent to an implication rule generator that derives
a rule set from the models. This rule set and the query itself is then sent to a
query-retrieval tool, which in the case of NaCoDAE is Parka-DB (Stoffel et al.
[1996]). Given the rule set and the query, Parka-DB derives inference rules from
the models and uses them to infer answers from the query description.

1Inference Corporation (1995). CBR2: Designing CBR Express Case Bases. Unpublished
manuscript.
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Figure 3.2: Example of an object model in the printer domain (from Aha et al.
[2001])

Figure 3.2 and 3.3 depict partial examples of an object model and a question
model respectively. These examples are taken from the printer domain, where a
CCBR tool can work as a support tool for diagnosing problems with printers. The
object model contains domain objects such as a printer or a printout represented
as boxes, as well as domain attributes represented as diamonds. In this case,
"Print Quality" is an attribute of the domain object "Printout". The question
model relates specific questions to the domain object model. For instance, the
question containing the text "What does the print quality look like?" is linked to
the print quality attribute from the object model.

Two types of rules are generated from these models, textual rules and chaining
rules. Parka-DB generates text rules based on the wording of the questions in the
case base. When presented with a new case it investigates its textual description
and tries to match this with existing questions in the case base. For instance if the
description contains the text "print quality problem" the system should infer that
the answer to Q24 (in figure 3.3) is yes. The chaining rules are inferred by Parka-
DB using the models. The chaining rules work by relating the interpretations
of separate questions in the question model. By doing this one can deduct rules
that infer answers to questions based on the provided answers to other questions.
Using such rules the system can for instance infer that the answer "Black Streaks"
to the question "What does the print quality look like", implies the answer "Yes"
to the question "Is there a print quality problem".

Aha et al. [2001] tested the dialogue inference module of NaCoDAE on several
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Figure 3.3: Example of a question model in the printer domain (from Aha et al.
[2001])
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fault diagnosis domains, and the results shows an increase in efficiency. The
average number of questions answered where reduced with up to 30 percentage
on some data sets, while maintaining the precision.

3.2 iNN(k) and CBR-Confirm
iNN(k) is a goal-driven approach for feature selection in CCBR, introduced by
McSherry [2009], with aims to increase transparency, accuracy and efficiency. It
selects features to confirm a target class based on information from a heuristic
measure based on a feature’s discriminating power in favour of the target class.
While CCBR case libraries often have heterogeneous and irreducible cases (i.e.
cases are represented by different sets of attributes, and each class is only rep-
resented by one case), this method assumes the cases to be homogeneous and
reducible (i.e. all cases share the same set of attributes, and classes can be rep-
resented by several cases).

Each case is represented by an id, a problem description, and a solution. The
problem description is a set of features, where each feature has either a value
a or unknown. The problem description in a new case is initially empty, and
the solution is the target class. The algorithm is a form of a nearest-neighbour
algorithm. Based on a similarity-measure function, iNN(k), with k ≥ 1, finds
a set of cases so that all cases in the set have less than k other cases that are
more similar to the current case. This set is called the retrieval set of iNN(k)
and is denoted r(Q, iNN(k)). The similarity between a case C and another case
Q is defined in equation 3.2. Here sima(C,Q) is equal to 1 if ac = aq and
aq 6= unknown, sima(C,Q) equals 0 otherwise. The algorithm for iNN(k) can be
seen in figure 3.4.

sim(C,Q) =

∑
aεAQ

sima(C,Q)

|A|
(3.2)

3.2.1 The CCBR-process
When the system is presented with a new case, it initially selects the class that is
supported by most cases in the case base, as the target class for the new case. To
find which feature to select for the next step in the CCBR-dialogue, iNN(k) uses
a feature’s discriminating power in favour of the current target class. Equation
3.3 defines a feature’s discriminating power for a class G as the difference between
the probability of a value given G and the probability of the same value given not
G, divided by the number of possible values the feature can have. After the user
has provided a value to the selected feature, the system finds a new retrieval set,
and a new target class is selected based on this set. The chosen target class is the
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Figure 3.4: The iNN(k) algorithm (from McSherry [2009])

class that is supported by most cases in the retrieval set. Any ties are broken by
selecting the class supported by most cases in the whole case base. This describes
the initial round of the CCBR-dialogue. The next rounds are almost identical.
The only difference is in the feature selection, which can be made either global
or local. Local selection means that only features represented in the current
retrieval set can be selected, while with global, all features represented in the
case base can be selected. The choice between global and local also affects a
features discriminating power. A feature’s discriminating power is based only on
the cases in the retrieval set in a local setting. In a global setting, all cases in
the case base are used in the calculation. Local and global versions of iNN(k) are
denoted iNN(k)-L and iNN(k)-G respectively.

d(a = v,G) =
p(a = v|G)− p(a = v|¬G)

|domain(a)|
(3.3)

The CCBR dialogue-cycle continues until all the cases in the retrieval set have
the same class, or there are no more possible feature values to ask for. In the
latter case, the class supported by most cases in the retrieval set of iNN(1) (k=1)
is selected as the solution class. Once again, ties are broken by selecting the class
supported by the most cases in the case base as a whole.
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Figure 3.5: Example CCBR dialogue in CBR-Confirm (from McSherry [2009])
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3.2.2 Transparency and CBR-Confirm

McSherry [2009] presents CBR-Confirm, a CCBR-system that uses iNN(k). In
CBR-Confirm the user has the ability to ask the system why a feature was se-
lected, before answering questions connected to that feature. To achieve this,
CBR-Confirm "looks-ahead" to explain why the feature is relevant. Its relevance
is determined by its effect on the class distribution in the retrieval set of iNN(k).
It especially looks for features with values, which can confirm the target class,
or values, which can eliminate other classes from the retrieval set. An example
dialogue in CBR-Confirm from the contact lenses domain can be seen in figure
3.5.

McSherry [2011] evaluates the classification accuracy and problem-solving ef-
ficiency of CBR-Confirm and iNN(k) on five different datasets from the medical
domain. The accuracy of iNN(k) on the different datasets were compared to
the performance of a k-NN algorithm on the same datasets. Results shows that
iNN(k) yields high accuracy and outperforms the k-NN system on all datasets
except for one. iNN(k) also achieved good results in terms of efficiency, often only
needing to answer around 50 percent of the features before reaching a class. An
interesting observation from the evaluation is that iNN(k)’s performance was not
proportional with the value of k, or the choice of local and global feature selec-
tion. The result show that the right choice of k and local versus global selection
is highly dependent on the data set.

3.3 TrollCCRM

Gu [2006] presents TrollCCRM, a knowledge-intensive CCBR system for software
component retrieval. Software component retrieval is the task of locating and
identifying the most suitable component based on the need a user has, and is an
important part of software component reuse.

TrollCCRM is based on the TrollCreek system (Aamodt [2004]), an implemen-
tation for the knowledge-intensive CBR architecture CREEK (Aamodt [1991]).
CREEK comprises of three main components, specifically a comprehensive knowl-
edge representation model, named CreekL (Aamodt [1994]), a knowledge-intensive
case-based problem solving process, and a sustained-learning process. In CreekL
the problem solving domain is modelled as concepts of all meaningful terms and
features in the domain. A concept is defined as a set of relationships in the form
of <relation, value> pairs. The value in such a pair is another concept in the
domain. Together with cases, all the concepts and their relations represents a
semantic network.

The knowledge-intensive case-based problem solving process is a hybrid mod-
ule of CBR and model-based reasoning (MBR), where the CBR-part utilizes
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Figure 3.6: The architecture of the conversational component retrieval model
(CCRM) (From Gu [2006])

the MBR to improve the CBR-process through the general domain knowledge
model. This hybrid reasoning process is achieved by incorporating three new
steps, ACTIVATE, EXPLAIN and FOCUS respectively, in order to combine the
two methods for each task in the CBR reasoning process. ACTIVATE is the step
for determining what knowledge (both case-specific and general domain knowl-
edge) which applies to a task. EXPLAIN generates explanation paths to possible
knowledge-intensive solutions to the task. FOCUS selects the best path for the
task by evaluation. The sustained-learning process is part of the retain step of
the CBR-process where general domain knowledge is used to guide the learning
process.

To achieve conversational retrieval in TrollCreek, TrollCCRM extends it with
a query-generating module, a feature inference module, a question identification
module, an integrated question-ranking module, a consistent question-clustering
module, a coherent question sequencing module, and a graphical user-machine
interaction interface. The query-generating module transforms an initial require-
ment into a query as a set of feature-value pairs. Using an explanation-boosted
reasoning mechanism, this query is then inferred by the feature inference module
to extend the query further with inferred knowledge from the general domain
knowledge. The query is then used as input to the knowledge-intensive case
retrieval module from Creek, which returns a set of most similar cases, or compo-
nents in this situation. The question-identification module identifies the features
that are represented in the returned set, but not in the query and which have
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Figure 3.7: Meta-level knowledge representation model (From Gu [2006])

not been inferred in the feature inference module. It then transforms them into
discriminative questions. The integrated-ranking module ranks the questions by
their focused explanation paths in two groups: free questions and constrained
questions (questions that can not be asked before another question has been
answered). The free questions is further ranked by a knowledge-poor statistical
method, while the constrained ones are further ranked by the degree of constraint.
The coherent question-sequencing module then orders the questions even further
by identifying questions that are constrained to be answered after the question
that was answered in the last question-answer cycle. The retrieved components
and questions is then returned and shown to the user through the user-machine
interaction interface. The user can now terminate the conversation by selecting
one of the retrieved components. If the user selects a question to answer, the
system displays a set of possible answers and a set of related questions found by
the consistent question-clustering module. The user can then submit answers to
one or more question, which triggers a new round of conversation. This will con-
tinue until the user selects a returned component, or there are no discriminative
question left to answer.

In TrollCCRM, both case-specific (software components and component queries)
and general domain knowledge are represented with CreekL as an object-level
knowledge model. Gu and Aamodt [2005] identifies a set of question selection
tasks to make the dialogue more efficient and natural in a CCRM setting. The
semantic relations in the object-level model is organized according to their con-
tributions to different question selection task. This is done by abstracting a
meta-level knowledge representation model from the object-level model, and us-
ing this meta-level model for organization. Relations types, which supports a
selection question task, is linked to the task as a "subclass of" relation. This
type of relation is then used in the knowledge-intensive problem solving process
of corresponding tasks. The meta-level model also provides flexibility and ex-
tendibility by separating the task of constructing the knowledge base from the
task of implementing question selection tasks. This lets knowledge engineers fo-
cus on constructing the knowledge base, while the software engineers can focus on
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implementing problem solving logic. The structure of the meta-level knowledge
representation model is given in Figure 3.7.

distance(q, c) =

√∑
fεFS wfdif

2(qf , cf ))∑
fεFS wf

(3.4)

TrollCCRM implements the weighted Euclidean distance seen in equation 3.4
as the similarity measure function for calculating the similarity between stored
cases and the current query during case retrieval. Here q denotes a query, c the
stored case, f is a particular feature, FS is a selected feature set and wf is the
weight for the feature f . Dif(qf , cf ) represents a function for computing the
difference between q and c on the feature f . Gu et al. [2005] compares three
different methods for selecting FS(the feature set to consider during similarity
measure) in a CCBR setting. Query-Biased Similarity (only counting features
represented in the query are counted) was found to match the characteristic of
CCBR cases better than Case-Biased (only counting features represented in the
case are counted) and Equally-Biased Similarity (all features in both the query
and case are counted).

3.4 Dialogue Management in the Adaptive Place
Advisor

Göker and Thompson [2000] introduce the Adaptive Place Advisor, a personal-
ized conversational case-based recommendation system for finding restaurants.
It takes a user oriented approach to enhance the subjective quality of both result
and dialogue. The system takes the approach similar to the information-state
architecture described in section 2.3. It uses a user model, which is dynamically
updated throughout the conversation, to improve and complement the retrieval
query. The entire system comprises of five main parts: two speech modules (one
generator and one recognizer), a user modelling system, a retrieval engine, and a
dialogue manager tying them all together. The dialogue manager is responsible
for controlling the conversation and works as an interface between the user model
system and the retrieval engine. The user model provides the dialogue manager
with an initial query and the process of query elicitation is viewed as a heuristic
search, similar to a constraint satisfaction problem. The dialogue manager has
a set of search operators to utilise in order to carry out the conversation. The
first operator is the ASK-CONSTRAIN operator, which ask the user to provide
a value for an attribute that has not yet been assigned. This attribute is selected
based on an information gain measure of lowest entropy (the attribute providing
the highest information gain) amongst the currently unconstrained attributes.
The equation to calculate entropy can be seen in equation 3.5, where Ai is the
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attribute for which the entropy is calculated. P (Vj) is the probability of the
value of the attribute Ai to be Vj , |CBs| is the number of cases above a certain
similarity threshold and |Ai = VJ |CBs is the number of items in the case base in
which Ai has the value Vj . The dialogue manager then extends the query with
the answer given by the user and passes the query to the retrieval engine. The
retrieval engine generates a SQL-query to retrieve all items matching the values
in the query and uses the result set as the case-base for similarity measure.

H = −
∑
Vj∈Ai

P (Vj) ∗ |CBs| ∗ 1
|Ai=Vj |CBs

∗ log( 1
|Ai=Vj |CBs

) (3.5)

In the case that assigning a value to an attribute leaves the retrieval engine
unable to return any satisfactory items, the dialogue manager applies the ASK-
RELAX operator. The ASK-RELAX operator ask the user to retract or relax
a particular constraint of an attribute. To ensure the search stays focused and
the case base stays small, the attribute constraint to relax is selected by highest
entropy (the attribute providing the lowest information gain) with respect to the
last case base used by the retrieval engine.

When the user is unfamiliar with the attribute he is asked to constrain, the
user can ask the system for a set of suggested-values. The user can also ask the
system to provide a set of unconstrained attributes and choose to constraint one
of the returned attributes. When an item, which satisfies the constraint provided
by the user, is returned by the retrieval engine, the dialogue manager uses the
RECOMMEND-ITEM operator to suggest the retrieve item to the user. The
dialogue manager also has a CLARIFY operator to ask for clarification of the
most recently performed user operation.

The user model is based on user preferences. It can be a specific item, at-
tribute or value preferences, or a combination of them. An item preference is
modelled based on the number of times an item has been suggested and the
following acceptance or rejection of the suggested item. This affects the choice
between suggesting the item again, and waiting some iterations. Attribute, value,
and combination preferences are incorporated into the similarity-measure and can
affect the retrieval process. Attribute preferences are updated from the user selec-
tion amongst the systems suggestions. If the selected item was not the predicted
one, then the attribute preferences model must be adjusted. The value preference
can be seen as a probability distribution over the values for each attributes, and
is used to generate an initial query. Its calculated based on the frequencies of
the values the user selects for an attribute. Combination preferences is modelled
from association rules learned from history of item selection. There is also a di-
versification preference, which can apply to either item or value. This preference
models the right time to suggest or re-suggest an item or value to an attribute.
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3.5 The Discourse Goal Stack Model

The Discourse Goal Stack Model (DGSM) is a stack-oriented approach to dialogue
management presented by Branting et al. [2004]. DGSM consists of a stack for
discourse goals, a goal handler and a forest of augmented transition networks
(ATNs). An ATN is a set of nodes connected by directed arcs. Each arc represents
a transition from one node to another, and has a condition that has to be fulfilled
in order for the transition to performed. Each node in the ATN is a discourse goal
and the arches are speech acts. The goal handler is responsible for determining
the next action based on the discourse goal at the top of the stack and the last
speech act performed. The goal handler works as a state transition system. A
diagram describing the goal handler is shown in figure 3.8.

The goal handler first checks if the top of the stack is a node in a ATN and
that the last speech act by the user matches a transition from this ATN node.
If this is the case, then the handler pops the top of the stack and pushes the
node at the end of the transition on to the stack. In the case which there is
no transition matching the user’s speech act, the handler looks for a transition
which represents a system speech act, and that is currently enabled. If found,
the handler generates the speech act represented by the transition and pops the
top-of-stack node before pushing the destination node. If no transitions were
found the handler now searches for matches to the user speech act amongst all
initial transitions of other ATNs. If a match is found, it indicates a topic change,
and the destination node of the transition is pushed on to the stack. If yet again
no matches where found, the handler checks if the top-of-stack node is an end
state of some ATN, if so, the node is popped, and the next node in the stack is
evaluated. At last, if none of the previous conditions holds, then the top-of-stack
node must be a goal that can only be achieved by some external module, e.g.
a reasoning module such as a CBR or CCBR system. Such a goal is called a
selection goal.

To achieve a high degree of mixed-initiative throughout the entire dialogue,
DGSM incorporates a query elicitation mechanism called Direct-Elicitation for
the underlying CBR modules. Direct-Elicitation uses ATNs to control the dia-
logue during the query elicitation. When the reasoning module is requesting a
value for a specific attribute the goal handler invokes direct-elicitation by push-
ing a direct-elicitation ATN start node onto the goal stack. The transition from
the start node represents the question regarding the attribute, which is asked to
the user. When the goal handler receives the next speech act from the user, it
compares the utterance to what is expected to be answered. If the utterance is
matched as a valid answer to the question, the answer is stored. If the utterance
does not match a valid answer, the goal handler searches for any ATN with an
initial transition matching the utterance. If found, it means the speech act from
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Figure 3.8: The DGSM goal handler (from Branting et al. [2004])
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the user was an interruption in the current dialogue. Such an interruption can be
either a clarifying question from the user, or a change in topic. The start state of
the matching ATN-transition is then pushed onto the stack. The dialogue then
continues through this ATN and returns to the previous dialogue context when
the end state is reached. Note that this ATN can also lead to other changes in
the dialogue context. However, as long as the previous dialogue context is in the
goal stack, it can always be restored.

3.6 Summary
Studying existing systems gives us a great chance to learn from their approaches,
taking lessons from the results they are able to produce. A lot of what these
systems are trying to achieve coincides with our goals for this thesis, on differ-
ent areas. Together these systems forms a platform on which we can build our
own version of a CCBR system, tailored to our specific needs. Below we have
summarised the most important lessons we will be taking with us going forward.

The main objective of this thesis is to be able to create a CCBR system. The
algorithms used in the NaCoDAE and CBR-Confirm systems gives us a great
place to start from. They both contain a complete approach to the CCBR pro-
cess, from case representation and retrieval, to different methods for managing
the dialogue. Especially the methods for question selection and dialogue termi-
nation in both these systems will be useful going forward. Although they share
many of the same properties, NaCoDAE and CBR-Confirm represent different
approaches to the CCBR process. The main focus for CBR-Confirm is trans-
parency, explaining the choices it makes to the user to increase the trust in the
system. In addition, it was originally developed to work in the medical domain.
NaCoDAE was not, the system was originally developed in the setting of help
desk support systems. Another difference is that CBR-Confirm was mainly made
to work with homogeneous datasets where all the cases share the same attributes.
NaCoDAE however is made to handle datasets in which cases can have a widely
different set of attributes connected to them. Having two such systems with
their respective strengths and weaknesses to learn from, gives us a great deal of
flexibility going forward.

Another important goal of this thesis is to be able to do inferences to help
make the dialogue more fluent and efficient. Our study of existing systems has
identified different alternatives to doing such dialogue inference that goes beyond
simply creating a set of inference rules. The approaches of both NaCoDAE and
TrollCCRM tries incorporate domain knowledge in the inference process. The
NaCoDAE system uses object models to model the domain in which the CCBR
system operates in, adding question models that connect each question to specific
domain objects. Using these models, the system is able to infer new information.
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The approach taken in TrollCCRM shows how general domain knowledge can be
incorporated in this process.

We will also take lessons from the dialogue management approaches we have
researched. The approach taken in the Adaptive Place Advisor contains specific
methods on how to achieve a mixed initiative dialogue with the user. It shows how
to handle different types of situations, for instance providing question alternatives
when the user is unsure of the answer of a question. The Discourse Goal Stack
Model takes a different approach for mixed initiative dialogue. It uses a stack
of dialogue states together with a discourse handler. The stack keeps track of
multiple goals at the same time and a discourse handler performs discourse actions
depending on state at the top of the stack.

Going forward we will try to adapt these approaches to fit our needs. We will
focus on dialogue inference and the use of different CCBR approaches working
side by side in a bigger context with several data sets.
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Chapter 4

Architecture/Model

In this chapter we will introduce the overall architecture for our system. We will
initially present the requirements we have identified for our system, which will
serve as a guideline for the development process. We will have a look at the
different datasets we have chosen to investigate and how these were identified.
Next, we will introduce the overall structure of our approach, highlighting the most
important parts. The manner of how we implemented the different parts are then
explained in detail. The chapter will close off with a discussion of different ways
of adding dialogue inference to our system.

4.1 Introduction

We chose to implement NaCoDAE and iNN(k) as the two CCBR algorithms to
test in our project. We have tested both on a medical dataset in our previous
work (Ekerholt et al. [2013]), with mixed results due to the dataset that was used.
Our previous work shows that NaCoDAE could work well on heterogeneous case
bases, while iNN(k) does not work so well on such case bases. We have chosen
these two algorithm based on our previous experience with them, and the fact
that they are well documented which gives the possibility for us to customise
them for our needs. They also do not depend on any third-party module as
TrollCCRM does (CreekL).

Our goal is to have a system that can run different CCBR algorithms based
on the characteristics of the case base that is used. Our proposal is to have a
system, which can adapt to different data sets, by allowing the use of multiple
algorithms to work side by side. We also propose to incorporate a meta-level
of reasoning over these algorithms. The medical domain is a large and complex
domain, which is difficult to perform reasoning in. Reasoning in sub-domains

33
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of medicine has on the other hand proved to be possible. Therefore, we intend
to take a divide and conquer approach. By introducing a meta-level CCBR
dialogue to determine which sub-domain is the most relevant to further examine,
and by matching the case bases to the algorithms which performs best on each,
we believe we can achieve successfully reasoning within a large complex domain.
This is where our model differ from other existing solutions, which typically only
consider one domain at the time.

To achieve this we need a data representation model for datasets, cases, at-
tributes and classes, which makes it possible for the system to change between
data sets and algorithms without the need to do manual alterations. We also
intend to implement a dialogue manager, which will let the user examine multi-
ple datasets without having to restart the session. To do this we will be looking
at the stack model introduced in Section 3.5. We will also add a small set of
questions for the user to answer in order to determine which data set is relevant
for the current dialogue.

4.2 Requirements
The requirements we set for our system is a reflection of what we hope to achieve
with it. With this in mind and through our study of background material and
similar existing systems we have identified a set of requirements that our system
should adhere to. The success of our system will ultimately be measured against
these requirements.

Accuracy

The system needs to be accurate, meaning it should be able to correctly classify
a high percentage of the cases in the different datasets. This is obviously an
important requirement for any CBR classifier, which is ultimately judged by its
accuracy. This requirement is especially important in the medical domain where
diagnostic decisions can mean the difference between life and death. Without
being accurate, a diagnostic system is of limited use. We would also like to see
high levels of accuracy across domains, meaning that the system should be able
to produce high levels of accuracy on different types of datasets with different
characteristics.

Efficiency

In addition to being accurate, another common way of measuring the performance
of CCBR system is effectiveness. Any CCBR system should strive to use as few
questions as possible in order to reach a conclusion. Smart question selection and
knowing when to terminate the dialogue safely are important aspects in achieving
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this goal. In addition, one should try to avoid asking the user obvious questions
that can be answered with the information already at hand. Our system should
therefore be able to at least do basic inferences. As with the accuracy, measures
to increase the efficiency of the system should work on multiple domains and
datasets, not just tailored to one specific.

Flexibility

To be able to handle multiple domains and datasets the system needs to be
flexible. Different datasets differ in the structure of their cases and attributes, so
our system needs to account for these differences. The system should therefore be
able to represent different datasets with different attributes, for instance handle
different types of questions. This requires specific means of how to store the
information and how to deal with it in the dialogue process itself. We want our
system to be able to switch between datasets and algorithms in each session as
it looks for the best possible diagnosis for the current case. In order to achieve
this we are dependent on a flexible dialogue process.

Scalability

We want our system to make use of multiple datasets, so the architecture should
account for this in that it should be easily extendable with more datasets. We
would like to see a minimum amount of tailoring needed to add new datasets with
different characteristics. It should also be easy to add new approaches/algorithms
for the dialogue process itself.

4.3 Datasets
As one of the main focus areas of this thesis is on dialogue inference, we wish
to focus more on the dialogue management part of CCBR. This was only partly
covered by our previous work. To be able to do this we need to find datasets
that allows for this kind of reasoning. In our previous research, we decided to
use a dataset from the general field of medicine containing a large set of possible
diagnoses with a limited set of symptoms/features for each case. As we feel we
have exhausted our possibilities of expanding on this dataset, and it has shown
to be difficult to reason with the general domain of medicine, we are now looking
for smaller datasets focused on a single or small group of diseases.

We are trying to avoid datasets with too few attributes as they limit the
possibilities of dialogue management. The datasets must contain a minimum of
attributes to create a meaningful dialogue of any length. Both datasets with
and without missing values are of interest, as the amount of missing values in a
case base correlates with the degree of heterogeneity of a case base. We are also
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looking for datasets with attributes that are related to each other, i.e. the answer
to one question can influence or say something about the answers of others. We
hope that the existence of such relations gives us a better opportunity to create
a smart dialogue, with the possibility to infer answers.

The attributes/features should preferably be on a form that can be under-
stood by regular people, so that they can be transformed into questions that
normal people can answer. This is not necessarily an absolute requirement, as
the concepts remain the same even if the attributes represent something complex
or abstract. However, in the sake of a fluent dialogue we want something related
to the patient/doctor situation we originally envisioned.

We wish to test our system on multiple datasets. Although they at least in
part should fit under the description given above, we are interested in datasets
that are different from each other. This is to see which datasets our system
performs best on, and be able to explain why. This allows us to try different
approaches in all aspects of CCBR. Using such an approach, we hope to make a
system that is adaptable, and not confined or tailored to one specific dataset.

Our search was mostly done in the UCI Machine Learning repository Bache
and Lichman [2013]. This repository contains datasets tailored to machine learn-
ing purposes. The datasets we have found are all from the medical domain. This
was not an absolute requirement, as results found in other domains could be
equally relevant. In the beginning, we confined our search to datasets within
the medical domain, before we later expanded our search to also include other
domains. We were also able to find one relevant dataset outside of UCL. The
"Patterns of Lung Cancer in Ex-Smokers" dataset by Gillespie et al., was found
at StatLib1. In the end, we were able to find datasets that matched our require-
ments all with different characteristics. Table 4.1 lists the different datasets we
have imported in our system.

A more detailed introduction to each dataset and their characteristics is given
in Appendix A.

4.4 Data Representation

A key requirement for our system is that it should be flexible, being able to han-
dle a number of different datasets on the fly and not be confined to a specific
domain. In addition, the system should be able to make use of different CCBR
algorithms on each dataset without having to make any adjustments in the rep-
resentation of the stored information. These requirements encourages a versatile
representation of the datasets, the cases within them and the attributes for each
case. Not tying our implementation to any specific approach and ensuring that

1http://lib.stat.cmu.edu/datasets/csb/
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Name Num of
attr.

Numeric
values

Num of
cases

Num of
classes

Missing
Values

Acute Inflammations 6 1 120 4 No
Dermatology 33 1 366 6 Yes
SPECT Heart 22 0 267 2 No
SPECT-F Heart 44 44 267 2 No
Patterns of Lung Cancer
in Ex-Smokers

9 6 1751 3 No

Hepatitis 19 1 155 2 Yes
Heart Disease Hungar-
ian

75 6 303 5 Yes

Fertility 10 2 100 2 No

Table 4.1: List of datasets

the representation is flexible will allow us to easily extend our system with new
datasets from different domains or new approaches to the CCBR process itself.

To store information about specific datasets we have created the class DataSet.
In this object we store basic information such as the name of the dataset, which
attributes it contains, as well as the different classifications that exist for the
cases within the dataset. In addition, we have added the possibility to store the
optimal settings for each dataset, for parameters such as which CCBR algorithm
performs best on this dataset, the optimal size of the retrieval set, and so on.

Each dataset consist of a set of different attributes, used to describe the cases
that are stored in them. These attributes are tied to the specific domain of
each dataset and can have widely different characteristics, also within the same
dataset. For instance, one question might only require a simple yes or no answer,
while others require numeric value within a certain value range. As our system
needs to handle these differences, we need some way of describing the properties
of each attribute in order to tell the system how to handle them. Each dataset
contains a list of attributes, represented by an AttributeType class. For each
attribute, we store a textual question that will be used in the dialogue process
to ask for a value for that specific attribute. This question can be one of four
different types, depending on what kind of answers it allows. The different types
are listed in Table 4.2. If the attribute is a multiple-choice question with a finite
set of answers, the different alternatives are stored as a list of MultiSelect objects.
Additional information on the value range of the attribute can also be stored if
necessary. Together, the DataSet, AttributeType, DataClass and MultiSelect
classes allows us to store all the necessary characteristics of each specific dataset.
Figure 4.1 shows the connection between these objects.

In addition to storing the meta-level characteristics about each dataset and
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Figure 4.1: Dataset representation

Type Description
Boolean True or false questions
Integer Numeric value, represented as an integer
Double Numeric value, represented as a decimal
MultiSelect Multiple choice question, right or wrong

Table 4.2: List of different attribute types
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Figure 4.2: Dataset and case representation

the different attributes they contain, we also have to store the cases themselves.
Each separate case is represented by the DataCase class. It contains a list of
DataAttributes, which holds the actual values for each attribute in the case.
Each attribute is connected to its corresponding AttributeType. Using these two
classes, we can store a set of question and answers pairs for each case, where the
AttributeType represents the question and the DataAttribute represents the an-
swer to that specific question. In addition, each case holds a DataClass attribute
to store its classification. Figure 4.2 shows how the case instances are connected
to the meta-information stored about the dataset they belong to.

By looking at a specific example from the Fertility dataset, we can get a
better understanding of the different parts of the representation. The Fertility
dataset consist of 10 attributes of different types, with two different classifica-
tions. When adding this dataset to the system we first store the meta-level
characteristics about the dataset and its attributes, starting by adding a new
DataSet object. Then we create two new DataClass objects, one for each of the
possible classification. Next, we create an AttributeType object for the 10 differ-
ent attributes. The attribute Age, will for instance be represented as an attribute
of type Integer, as it is a nominal value within a pre-set value range. The Chil-
drenDiseases attribute on the other hand will be represented as a Boolean type,
as the value for this attribute can only be true or false. A textual question will
also be added for each attribute, for instance, "What is your age?" for the Age
attribute or "Did you have chicken pox, measles, mumps or polio as a child?" for
the ChildrenDiseases attribute.

After these objects have been created, each separate case will be imported to
the system. For each case, a DataCase will be created, with a list of DataAt-
tributes for each attribute value. This can for instance be the value 26 for age, or
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false for Children Diseases. Each of these DataAttributes are linked to a specific
AttributeType, for instance Age. In addition, the class for each case is stored, as
either ’Normal’ or ’Altered’.

4.5 CCBR Dialogue Stack
We will try to incorporate a top-level dialogue in our system. The purpose of this
dialogue is to determine which dataset one should choose to investigate further.
This top level is made up of a set of questions, as well as an example (imaginary)
case base. Each case in this case base contains answers to the general questions,
as well as a classification indicating which dataset/disease/domain they relate
to. Using a CCBR algorithm on this case base, the system presents the patient
with questions relating to his/her general health status. Using the case base, the
system pick a dataset when some case exceeds a given threshold in similarity.

When a specific dataset is chosen, this dataset is pushed on the "dialogue
stack". This means that the system will initialise a new CCBR dialogue using
this dataset. The system will check if this dataset shares any questions with
the current state of the top-level dialogue. If so, any answers that are already
provided for these questions are added to the lower level CCBR reasoner. This is
quite similar to the approach taken in NaCoDAE as we described in Section 3.1,
where the user is allowed to provide an initial textual description of the case. The
difference is that in our case this initial description is generated with the help of
another CCBR dialogue instead. The specific CCBR algorithm used depends on
the characteristics of the dataset. If initial testing shows that for instance iNN(k)
is the best algorithm to use on this specific dataset, then this is the algorithm
used. Using this algorithm the system eventually reaches a conclusion, or rather a
medical diagnosis. If however it reaches a conclusion of non-existence of a disease
in the domain of the dataset, this dataset is popped from the stack.

When this happens, the system will go back to the top-level dialogue. If
there is another case whose similarity also exceeds the given threshold, this case
will now be chosen and the corresponding dataset will be pushed to the stack.
If this new dataset shares any questions with the previous dataset, the CCBR
reasoner running on this dataset will again be initialised with the answers to
these questions. The dialogue manager will at all times keep track of a set of
all answered question from all the different levels of the dialogue, to facilitate
such sharing of information across datasets. If there are no cases that exceeds
the threshold, the system will continue the top-level dialogue, choosing a new
question to present to the patient. This process is repeated until the system
either reaches a diagnosis in one of the lower level dialogues, or there are no more
top level questions to ask(and no case exceeds the threshold) which leads to an
unsuccessful termination of the dialogue.
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4.5.1 Selected Domains
We have chosen five different datasets to demonstrate our approach. Within
these five, we have tried to include datasets that shared some of their questions
with the others. This way we can ask questions at the top level that can be
reused by the CCBR reasoners at the lower levels. The fact that the datasets
share some of the same questions makes the system as a whole more effective, and
serves as a better demonstration of the advantages of our solution. Therefore,
the datasets that we choose should be similar in the sense that they share some
of the same attributes/question, but at the same time be easily characterised by
key attributes so the system can separate them.

Dataset Shared attributes
Acute Inflammations Nausea
Dermatology Age
Fertility Age
Heart Disease Hungarian Age, Sex
Hepatitis Age, Sex, Fatigued

Table 4.3: Datasets for dialogue stack

4.5.2 Initial Questions
We have created a set of initial questions that are to be used at the top-level
dialogue. The questions were identified by examining the attributes of the five
datasets we have chosen. The purpose of these questions is to be able to determine
which dataset/domain one should investigate further. Initially we looked for
general questions that are common to many datasets, such as the age and sex of
the patient. Then we moved on to more specific questions that relate to a subset
of the datasets, and help distinguish them from one another. For example if the
patient answers that the reason for his visit is that he is experiencing pain, that
could indicate that is related to either Acute Inflammations or Heart Disease
domain(in our limited domain where we assume that these are the only possible
sub- domains). A natural next question would be to ask where the patient is
hurting. If he for example answers that the pain is located in his chest, that
should prompt the system to choose the Heart Disease domain. On the other
hand, if he answers that the pain is in his abdominal/lumbar region the system
should recognise that the Acute Inflammations domain is a better fit.

Q1 What is your age? Numeric

Q2 What is your sex? [Female, Male]
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Q3 What is the reason for your visit? [Pain, Itching, Feeling ill, Consultation]

Q4 Where does it hurt? [Abdominal, Chest, Lumbar, Left arm]

Q5 Are you experiencing nausea? [true, false]

Q6 Do you feel fatigued? [true, false]

These questions are created under the assumption that the five datasets we
have chosen represents the only viable diseases for any patient. This assumption
is obviously not valid in the real world. For instance, abdominal pain can be
an indicator for a great deal of other diseases than those represented in the
Acute Inflammations dataset. In such cases, more follow up questions would be
needed to more accurately determine which disease that could be the source of
the abdominal pain. However, for our simple demonstration purposes, this small
set of questions is sufficient.

4.5.3 Example Dialogue

By looking at an example dialogue, we get a better understanding of the different
components of the system. When the system starts a new dialogue the patient
will initially be presented with some basic questions about his/her age and sex.
The reasoning behind asking these questions first is that they are present in many
of the different datasets.

Id Q1 Q2 Q3 Q4 Q5 Q6 Class
C1 22 Male Pain Abdominal True ? Acute Inflammations
C2 32 Female Consultation ? ? ? Fertility
C3 53 Male Pain Chest ? ? Heart Disease
C4 42 Female Feeling ill ? ? True Hepatitis
C5 64 Male Itch ? ? ? Dermatology

Table 4.4: Example case base

Then the CCBR component takes over, looking at the cases in the case base
to determine which question to ask next. For demonstration purposes, we have
created an imaginary case base with some example cases. The different cases of
this case base is listed in Table 4.4. Ideally, the answer to this question should
provide the system with a maximum amount of information; this is determined
by the question selection of the CCBR algorithm. By looking at the initial set
of questions, a natural next question might be Q3,"Reason for visit?". This is
because all of the cases contain an answer for this question, and it will likely
provide more information than other question where this is not the case.
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The patient then answers "Pain" to this question. Looking at the cases in
the case base, we see that the only cases with this value is Case 1 and Case 3,
relating to the Acute Inflammations and Heart Disease datasets. The system
then chooses Q4, "Where does it hurt?", as this question is shared between the
two top ranking cases. The patient answers "Abdominal/lumbar region". Now
Case 1 will have the highest similarity score, and a new CCBR dialogue with this
dataset will be pushed to the stack.

The Acute Inflammations dataset does not share any attributes with the top-
level questions, so the new dialogue will initially contain an empty set of answers.
The patient will now be prompted to answer question from this dataset, such as
whether he is experiencing any micturition pain or his current temperature. Let
us assume that the this dialogue will result in a diagnosis that the patient is not
suffering from any of the two different diseases contained in this dataset. This
will lead the system to exit the current dialogue, and return to the top-level one.

Any cases with a classification linking it to the Acute Inflammations dataset
will now be disregarded, as the system has already investigated this domain. The
system now needs to determine which dataset to investigate next, by looking at
the similarity score of the remaining cases. Let us assume that none of the current
scores exceeds the threshold. Then the system is forced to continue the top-level
dialogue, by choosing a new question from the initial question set.

4.6 System Architecture

4.6.1 Testing Environment

The project is implemented in C# .Net and consists of one backend domain
layer responsible for algorithm computations and dialogue management, and one
frontend ASP.NET MVC 2 website layer responsible for giving the user a simple
graphical interface to interact with the system. By dividing the system into two
such layers, we ensure that the business layer, i.e. the CCBR algorithms and the
case bases can easily be exported and reused in other applications.

The domain layer is implemented as a repository pattern 3 using an Object
Relational Mapping (ORM) framework, Entity Framework 4. The repositories
works as mediators between the business layer and the data source. The reposito-
ries are responsible for querying the data source and maps the results to business
entities, e.g. cases in a data set. Using this pattern improves the code’s main-
tainability and readability by separating business logic from the data access logic.
We have chosen a regular SQL database as our underlying data source provider.

2http://www.asp.net/mvc
3http://msdn.microsoft.com/en-us/library/ff649690.aspx
4http://msdn.microsoft.com/en-us/data/ef.aspx

http://www.asp.net/mvc
http://msdn.microsoft.com/en-us/library/ff649690.aspx
http://msdn.microsoft.com/en-us/data/ef.aspx
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Figure 4.3: Technology Stack
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The frontend is developed as an ASP.NET MVC website. It contains con-
trollers and views to interact with the system, exposing the functionality in the
domain class library. It contains two different pages. One to test the dialogue
process itself, allowing the user to answer the questions provided by the system.
The second page is used to test different methods on the different datasets and
read the results of those tests.

The structure of the overall solution is pictured in Figure 4.3. Putting all the
core functionality of our model in a C# class library makes it easier to export
our model to other applications. The MVC website, which is only added for
presentation purposes, can easily be switched out with something else. Can also
be used in for instance an API to give public access.

More details on the implementation of the system are given in Appendix C.

4.6.2 Implementation process
We started the implementation by defining an interface for the CCBR algorithms.
We found the two main functions in the CCBR process to be the initialization
of a new dialogue for query elicitation, and the find next question functional-
ity. We also added the leave one out test in the interface since we would be
running automated testing on both algorithms. We then implemented the two
algorithms, and started testing each algorithm on the several datasets we had
chosen. We then matched the datasets to their best performing algorithm and
started implementing the dialogue manager.

4.6.3 Dataset Import Module
We have implemented a module for importing datasets. There is a fair amount
of manual work, which we have not focused on automating when it comes to
dataset importation. The module works by reading raw text files and converts
line by line to cases in a dataset. As the different datasets we found have quite a
few differences in textual representation and format, we were forced to do some
manual mapping in order to properly extract the information from each text
file. In addition, we have to manually define both attributes and classes for each
dataset.

The dataset import module is therefore a collection of specialized methods for
importing different datasets, one for each dataset we have decided to add to our
system. The result of running these methods are that each dataset with all of its
characteristics, as well as the cases within it, are added to the database, stored
using the representation described in Section 4.4. Once this import is completed,
the system can start reasoning with the dataset in question. As we store the
information on each dataset in a permanent database, the import process itself
is only needed once.
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When a new dataset is parsed and added to the database, we also run a
series of initial tests on the dataset. The purpose of these tests is to identify
which CCBR approach achieves the best performance on the particular dataset.
In addition, the parameters of the different algorithms are tuned to find the
optimal values for each dataset. When these initial tests are concluded, the best-
performing algorithm together with the values of the different parameters of that
method are stored for later use.

4.6.4 Dialogue Manager

An important feature of our system is that it is able to reason in multiple do-
mains within the same dialogue. Where ordinary CCBR systems only allow users
to answer questions connected to a specific dataset/domain, our version has an
added level on top of this, which allows the CCBR system to switch the cur-
rent dataset at any time during the conversation. To keep track of the different
domains and handle the transfer from one to another, we have implemented a
dialogue manager class.

The dialogue manager consists of a stack of CCBR instances, influenced by the
Discourse Goal Stack Model. Each instance represents a CCBR dialogue being
conducted on a data set with one specific CCBR method. The stack enables for
topic chances without having to give up the current state for a dialogue. When
a new topic is started, a CCBR method running the dataset corresponding to
the topic is pushed on to the stack. When this dialogue reaches an end, i.e.
the CCBR process terminates and returns a class, the instance is popped from
the stack. If there are more instances left on the stack, the user can choose to
continue the dialogue in the instance that lies on the top of the stack. If at any
moment in a dialogue the user wants to change topic, a new instance with the
new topic is pushed on to the stack and the dialogue continues on the new topic.
Figure 4.4 shows the dialogue managers role in the system.

The dialogue manager deals with the initial setup of the top-level dialogue and
controls the stack of different datasets. When the system enters a new topic the
manager instantiates one of the two algorithms, and uses the methods contained
in these classes to drive the dialogue forward. The abstract interface includes
a method to initialise the CCBR algorithms with a set of answered questions,
so the dialogue manager can easily switch from one dataset to another possibly
using another algorithm.

The details of the implementations of the two different algorithms are given
below.
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Figure 4.4: System overview

4.6.5 NaCoDAE
The NaCoDAE class contain our implementation of this algorithm, and follows
the general description given in Section 3.1. There are however some important
differences in our version of it. The class extends the abstract CCBR interface,
with its two main methods. The InitialiseDialogue method is responsible for the
initial setup of the necessary parts of the algorithm. In the case of NaCoDAE
this includes creating a class level variable to hold the retrieval set and picking
an initial question. This constructor can also take a list of already answered
questions as a parameter. If this list is not empty, the method will account for
these answers when picking the initial question of the dialogue.

The second important part of the abstract CCBR interface is the GetNex-
tQuestion method. The dialogue manager uses this method when it is time to
present the user with a new question. This method will first update the retrieval
set using the set of answers already answered. The retrieval set will contain the
cases that are the most similar to the current query. To measure the similarity
between two cases, the NaCoDAE class makes use of a QuerySimilarity method.
This method will produce a score for each case in the case base by comparing the
questions and answers with the query case.

4.6.5.1 Similarity Score

In the original implementation of the NaCoDAE system, the total score for each
case is equal to the number of attributes with the same value divided on the
number of attributes for the case in question. Our version follows the same
principle, but it adds better handling of numeric attributes. If the type is Boolean,
the similarity score will be 1 if the answers are the same or 0 if they are different.
The same logic is used for multiple-choice questions. If however the attribute
type is numeric, the similarity score is calculated based on the relative difference
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between the values for the two cases. This is done to better capture similarity
between numeric attributes. To find the relative difference Equation 4.2 is used.
This equation uses the maximum and minimum values of the specific attribute
to calculate the difference, giving a score between 1 and 0 depending on the
difference between the two values. If no pre-set max and min values are given
for the specific attribute, the max and min values for this attribute present in
the dataset are used instead. Using this approach, we can for instance say that
the numeric values 0 and 1 are more similar than 0 and 10, within value range
of 0-10. The first two values will get a similarity score of 0.9, while the last two
will get a score of 0.0.

score(Qa, Ca) =

Eq 4.2 If attribute ’a’ is numeric
0 If attribute ’a’ is nominal and Qa 6= Ca
1 If attribute ’a’ is nominal and Qa = Ca

(4.1)

1− |Qa − Ca|
Max(a)−Min(a)

(4.2)

4.6.5.2 Question Selection

Using the calculated similarity score, the retrieval set is updated with the most
similar cases. Based on the cases in this retrieval set the algorithm then picks
a new question to present to the user. In the original implementation this is
done by picking the attribute which is the most common among the cases in the
retrieval set, excluding questions which are already answered (see Eq. 3.1). Using
this method on a heterogeneous dataset makes sense, as the set of answers among
the different cases will naturally differ. In our previous work, we were able to
produce good results using this approach. However, the datasets we have picked
this time around are largely homogenous, with the cases more often than not
containing the same set of answers. As a result, this method fails to distinguish
among questions in a good way in these types of datasets. We therefore chose to
investigate other approaches to the question selection task.

We ended up basing the question selection on information gain, trying to
find the question that can give you the most information. The information gain
metric is a common way of inducing decision trees (Quinlan [1986]), and it is
also commonly used in other CCBR systems (Göker et al. [1998], Simazu et al.
[2001], Yang and Wu [2001]). In the context of a CCBR system, the information
gain measures how well a question separates the cases based on their respective
classifications. The calculation of the information gain needs to handle the three
main types of questions present in our system, Boolean, multiple choice and
numeric. The Boolean and multiple choice questions are easily calculated using
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Eq. 4.4. Numeric values are slightly more complicated however. Numeric values
was originally a limitation of the entropy calculation in the ID3 algorithm, as
this algorithm is unable to account for continuous values. The C4.5 algorithm,
an extension of the original ID3 algorithm (Salzberg [1994]), introduces a solution
to this problem. By finding a splitting point based on the sorted values of the
attribute in question, C4.5 separates the cases in two sets. One set for those
cases with values that are smaller or equal to the splitting point, and one set for
those with greater values. We chose to implement a simple version of this method
in our system, using the median of the sorted list as the splitting point. More
complex versions, where the split point is calculated based on information gain,
do exist. These involves finding the split point that gives the most information.
However, for our purposes, the simple version was deemed good enough, and it
has the added advantage of being less computationally demanding. The C4.5
algorithm also introduces another important upgrade from ID3 in that it can
handle missing attribute values. These values are simply ignored in the gain and
entropy calculations.

H(X) = −
∑

P (Xi)× log2(P (Xi)) (4.3)

IG(X, a) = H(X)−H(X | a) (4.4)

The information gain metric has a weakness as it tends to favour questions
with many alternatives. There are solutions to account for this weakness, but
this was not something we prioritized for now, as none of the datasets in our
system had question sets with a large variance of question alternatives.

4.6.5.3 Dialogue Termination

To determine if a dialogue should be terminated and return a classification, a
threshold function is used. The threshold is a function that prevents the system
to ask further questions to the user if the probability that the right class is chosen
is above a certain threshold. There are different types of thresholds one can use
in a CCBR system. The simplest is to use a threshold for the similarity score for
each case. If this exceeds a given threshold, the dialogue should be terminated
and the class of this case returned as the solution. If multiple cases exceeds the
threshold, the most common class in the case base is chosen. This is the approach
taken in the original version of the NaCoDAE system.

One problem with this approach is that it evaluates each case on its own;
failing to capture situations where multiple cases with the same class achieves
a high level of similarity. Consider a situation where 9 out of 10 cases in the
retrieval set belongs to the same class, yet the highest scoring case belongs to
a competing class. If this score is above the given threshold, the system will
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return the highest scoring class, failing to account for the majority vote of the
retrieval set. In some cases this might be a correct conclusion, yet the fact that 90
percentage of the cases in the retrieval set contains a different classification is a
strong indication that it might not be the case. We want our system to recognize
such situations and consider the distribution of classes in the retrieval set when
deciding whether to terminate the dialogue or not.

We therefore decided to introduce a different threshold version, which is based
on the approach to terminate when the set of competing classes is reduced to a
certain limit. Instead of simply looking at the similarity scores of each case
individually, we decided to look at the classifications of the cases in the current
retrieval set. If a large fraction of these cases belongs to the same class, it is a
solid indication in favour of that class, and a sign that the system should consider
terminating the dialogue. Therefore, we added a threshold function to our system
that terminates the dialogue if a given fraction of the retrieval set belongs to the
same class. If so, this dominating class is returned as the solution.

4.6.6 iNN(K)

We implemented iNN(k) based on the pseudo code algorithm shown in 3.2. Like
our implementation of NaCoDAE, the algorithm is driven by the two functions
InitilizeDialogue and GetNextQuestion as we defined in the ICCBRalgorithm in-
terface. The InitilizeDialogue function is responsible for initialize the retrieval
set and query, and to find the first question to ask. This is done by first finding
the target class, the class supported by the most cases in the retrieval set. The
retrieval set is first grouped by class, and the class represented in the largest
group is selected. Next, it calculates the discriminating power for each possible
attribute-value pair and populates a list of Attribute-Value-Power-Triplets ob-
jects, holding the attribute, value assign to the attribute and the discriminating
power calculated for the pair. This list is then ordered by the discriminating
power and the attribute with the highest power that also has at least one oc-
currence of the attribute value pair in the current retrieval set is selected as the
first attribute to ask about. When the value for the attribute is recorded, the
GetNextQuestion function is called. This time the retrieval set is found based
on the value of K. When finding the new target class we now check if there is
only one class represented in the retrieval set, if so, this class is returned as the
solution. If this is not the case, the algorithm continues with finding the next
question the same way as before. The Leave-One-Out test is implemented the
same way as for NaCoDAE.



4.7. DIALOGUE INFERENCE 51

4.7 Dialogue Inference

In this section, we explore some of the possible approaches to dialogue inference
in our system. From our initial research of existing CCBR systems, we have
identified two different approaches. Below we explain how these approaches can
be used in the medical domain, and show how they can be applied to a specific
dataset.

4.7.1 Rule- Based Inference

The simplest way to introduce dialogue inference to our system is to manually
create rule bases for each dataset. Such a rule set can be created by for instance
looking for relationships among the attributes of each case, or by using general
domain knowledge from the domain in question.

We can create an example of such a rule base by looking at the Patterns of
Lung Cancer Risk in Ex-Smokers dataset. This dataset maps the occurrence of
lung cancer and survival rate in test subjects and contains a number of attributes
relating to the patients smoking habits. The nature of these questions allows us to
create some simple inference rules we know to be correct in all cases. In addition,
there are only 10 different attributes for each case in this dataset, which simplifies
the job of creating a complete rule set.

Attribute Description
Age Age on January 1, 1982
Gender Male | Female
Education No college | Some college
Smoker Never | Former | Current
Cigarettes/day Values rounded up to the nearest 5
Years smoked Number of years smoked as of January 1, 1982
Years quit Number of years since smoking cessation, as of January 1, 1982
Follow up time Years from January 1, 1982 until death or last interview
Death codes Alive | Death from other causes | Lung cancer death

Table 4.5: Attributes for each case in lung cancer dataset

By looking at the individual attributes of the dataset, we can start to create
inference rules. The different attributes of the dataset are listed in table 4.5. For
instance, if a person answers ’Never’ to the question of whether he smokes, we
can automatically infer that this person has smoked a total of 0 years and that
the value of the cigarettes per day attribute is also 0. Similarly, we can also safely
assume that a person that has smoked for a total of more than 0 years, will not
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answer ’Never’ when asked the question of his current smoking status. Table4.6
summarizes similar rules we can create from the attributes of this data set.

Premise Conclusion
Smoker = ’Never’ Cigarettes/day = 0
Smoker = ’Never’ Years smoked = 0
Smoker = ’Never’ Years quit = 0
Years smoked > 0 Smoker != ’Never’
Years smoked = 0 Smoker = ’Never’
Years quit > 0 Smoker = ’Former’
Years smoked > 0 && Years quit = 0 Smoker = ’Current’
Cigarettes/day > 0 Smoker != ’Never’
Cigarettes/day > 0 && Years quit = 0 Smoker = ’Current’

Table 4.6: Inference rules in the lung cancer dataset

Although this rule set is quite small it can help increase the efficiency of a
CCBR system used on this dataset. This dataset has a limited set of attributes,
the advantages of introducing such rules can be even bigger as the datasets grows
larger and the number of possible inferences grows with them. However, while
creating rule bases for datasets with a small number of attributes can be a trivial
task, the complexity of such a task grows larger as the number attributes increase.
The main challenge is to guarantee that the rules and the resulting inferences are
still correct even with a large number of attributes that are possibly dependent
on each other.

To introduce rule-based inference in our system we need a way to store the
different inference rules for each dataset. In addition, we need a software module
able to identify when the conditions of each rule are satisfied. This module would
then be activated after each question a patient answers. If a rule is found to be
satisfied, the system then adds the resulting answers to the current case. Figure
4.5 shows how such a module would interact with the basic CCBR system.

4.7.2 Model-Based Inference

The second alternative we identified in our initial research is to do inference based
some sort of domain model usually represented as semantic networks. Use some
sort of inference engine on top of this to derive rules from this model. Such
models are often more compact than the corresponding rule base and is easier to
maintain.

Using the dialogue inference approach from the NaCoDAE system, we can
create domain and question models for the field of general medicine. Figure 4.6
and Figure 4.7 shows a simple example of how this could look like. The domain
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Figure 4.5: Rule- based inference component

model in Figure 4.6 relates different objects in the medical domain. In this
example, we see an object of type Patient that has two different attributes, pain
and temperature. These attributes can have different values. The temperature
attribute indicates whether the patient has a normal body temperature or if it
is elevated. The pain attribute can have several values, indicating where on the
body the patient is hurting. The different values for each attribute also relates
to different medical conditions, in this case a heart problem or a problem with
the urinary system. Using these specific models one can for instance derive an
inference rule stating that if a patient is experiencing pain in his lumbar region,
this is due to a urinary problem. A similar inference can be made for chest pains,
showing that the cause of these pains is a heart problem.

The question model in Figure 4.7 shows the relationship between specific
questions and the domain model. This model in particular shows the relationship
between the general question of where the patient is hurting, and the more specific
question of whether the patient is having a urinary problem. Using both the
question model and the domain model, an inference engine can derive a rule
stating that if a patient is experiencing pain in his lumbar region, he has a problem
with his urinary system. As a consequence, if a patient answers ’Lumbar’ to Q1
(Where does it hurt?), the CCBR can automatically infer that the answer to Q2
(Do you have a urinary problem?) is ’Yes’. We could also make a similar question
model for the question Q3 (Are you experiencing a fever?). If the patient answers
yes to this question, the answer to Q2 can again be inferred to be ’Yes’.

This simple example a useful way of showing how such a domain and question
models can help when trying to do inference in the medical domain. However, it
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Figure 4.6: Object model in the medical domain

also highlights a large problem with this approach, which is accounting for the
complexity of the general medical domain. While some of the inferences in the
model can be true in some cases, they are in no way guaranteed to be correct
every time. For instance, while a fever might be an indication of an infection
in the urinary system, it is hardly proof. A fever is a very common symptom
that can also indicate a great number of other diseases. So to assume that every
patient that shows sign of a fever has a urinary problem would be plain wrong.
This model is only correct in a restricted domain where we assume that the
only cause of fever is a urinary problem. Obviously, in the real world, it is not
appropriate to make any conclusions as to what is wrong with the patient based
on such a simple model.

To include model based dialogue inference in our system we should instead try
to create domain and question models for the domains that each dataset operate
in. We could then operate in limited domains where it is easier to model the
dependencies of the objects and questions. However, that would require great
expertise in each domain that relates to the different datasets. The model-based
approach is facing the same problem as the rule based approach, in that there
are no apparent connections between the different attributes of each dataset.

4.7.3 Data Centric Inference

Both the rule based and the model-based approaches we have explored are diffi-
cult to use on the datasets we have chosen to include in our system. The datasets
are characterised by having almost no attributes that relate to each other, for
instance that the answer to one will influence the answer to another. In addition,
there is no hierarchy among the questions that we can utilize for inference pur-
poses. These limitations of the datasets reflect the fact that the datasets were
not originally created to be used in a CCBR system. This limits our possibilities
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Figure 4.7: Partial question model in the medical domain
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of doing inference on them.
An alternative approach is to do inference based solely on the contents of

the dataset instead, and not using rules that are guaranteed to be correct. One
such approach is to look at the relationship between questions in the dataset.
If a certain answer to one of the questions always leads to the same answer to
another question for all the cases, this can be seen as an indication that there is
a connection between these questions. By identifying such connections, they can
be used to make inferences for new query cases. If at some time in a dialogue
the user answers a question that links to a connection that has been identified,
then the system can assume that the query case will follow the same pattern and
automatically answer the connecting question.

Inferences based on this approach are not guaranteed to be correct as they
are with the rule or model based methods, but it may still be a good indication.
A major advantage of this method is that it requires no maintenance or domain
knowledge to integrate it with our system. As our system will try to use multiple
datasets at the same time, creating and maintaining either rule bases or domain
models most likely will require a lot of effort and time. With such a method,
the relationship between two attribute-value-pairs can be calculated during the
importation of the dataset. This one time calculation and the lack of having to
manually adapt rules to each specific dataset has obvious advantages.

A disadvantage of such an approach can be that the CCBR is over fitting to
the case base, making false assumptions about the new query. The assumption
that the new query case will have the same value for such an attribute is only
sensible as long as the case base is representative for the entire domain. Yet only
considering the information present in the case base is consistent with the mind-
set of CBR in general, where one assumes that this information is representative
for the entire domain. Closed world assumption, what holds by looking at the
contents of the case base can be assumed to be true for the entire domain.

We implemented this method as separate module to our system. It is done by
looping through each attribute-value pair in a dataset after it has been imported.
For each such pair < a, v >, we retrieve all cases containing < a, v > in the case
base. We then find all other attribute-value pairs < a′, v > (a′ 6= a) represented in
the retrieved cases. Each < a′, v > is then stored in our database together with its
relating < a, v > and the estimated probability of this relationship holding based
on the cases in the case base. When performing inference during a dialogue, we
simply look up the relating attribute-value pairs for each attribute answered by a
user. For each relationship found for which the relationship probability exceeds
a defined threshold, we assert the value of attribute a′ from this inference.



Chapter 5

Results and Evaluation

In this chapter we will perform a range of different experiments, testing the dif-
ferent parts of our system on real life data. First, we will observe how our two
CCBR algorithms perform on the different datasets that we have included in our
system. We will then try to improve these results using a range of different mea-
sures. We will compare the results obtained from the different algorithms and try
to explain any differences between them. An evaluation of the overall performance
of our system against the requirements we have previously identified will also be
presented.

5.1 Testing Procedure

In order to perform an evaluation of our approach we have developed our sys-
tem as a web application. This is openly available at the following URL: http:
//masterproject.doguapi.no. The source code has been delivered as an at-
tachment to this thesis. In this application it is possible to reproduce the results
we present in the next sections, testing the performance of different configura-
tions of both NaCoDAE and iNN(k) on all the datasets which has been imported.
It is also possible to test a simple version of our meta-level dialogue.

By using the imported datasets in our system, we will test the performance
of our two algorithms. Some of the datasets contained a separate test set of cases
that can be used to test the classifications in this dataset. These test sets were
used whenever possible. If no test sets were provided, we used the leave-one-out
cross-validation method instead. This method measures the performance on a
dataset by extracting each case one by one and uses this case as a query case.
For each separate test we performed, we registered the accuracy, i.e. the number
of correct classifications divided by total number of test cases, and the efficiency,
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storing the minimum, maximum and average number of features asked before
dialogue termination.

For NaCoDAE the cases in the dataset were ordered randomly before each
test, as the order of the cases can influence the results. This is due to the fact
that the size of the retrieval set is finite, and if multiple cases achieve the same
similarity score, the cases that appear first in the list of ordered scores are taken.
To make sure the specific order of the cases did not influence the results we
ran the tests 3 times for each configuration and registered the average accuracy
and efficiency. The iNN(k) algorithm on the other hand is deterministic; it will
produce the same results given that the same parameters are set for every dataset.
For this reason, it was not necessary to run the algorithm multiple times when
we tested iNN(k).

A complete overview of all the tests we have carried out is available in Ap-
pendix B. In the following section we present a subset of these experiments, to
highlight the most important results.

5.1.1 Performance Measures

To measure the performance of the algorithms we use two criteria. The first one
is efficiency, which is defined as the fraction of total questions asked before the
system terminates and returns a diagnosis. The second is accuracy, defined as
whether the system classifies each query case with the correct diagnose correctly
or not. There is an obvious connection between efficiency and accuracy in a
CCBR system. When the efficiency increases, the accuracy tend to decrease. This
is because the less questions the system asks, the less information we have about
the case and therefore the accuracy is bound to decrease. To create a good CCBR
system it is important to achieve a good balance between these two measures.
Deciding which parameter to prioritize depends on the application of the specific
CCBR system. Given that we operate in the medical domain influencing medical
decisions, the accuracy of the system is perhaps more important than in other
common CCBR domains such as help desk applications. We will keep this in
mind when we evaluate the different test results.

5.2 Initial Results

Each algorithm was initially tested on all the datasets using their original con-
figurations, i.e. using the exact approach taken in the original versions of these
algorithms. As the datasets we are testing on all have different characteristics,
we tried to identify the optimal parameters for each one. This included setting
the K-value for iNN(k) and deciding whether to run the local or global version
of it. For NaCoDAE the size of the retrieval set and the value of the best-score
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threshold are parameters that can be adjusted for each dataset. For each dataset,
we will compare the performance of NaCoDAE and iNN(k). If the differences be-
tween the two are significant, we will try to explain these differences by looking
at the characteristics of the given dataset. This type of comparison will help us
identify the strengths and weaknesses of each approach, and can also give us clues
as to how they can be improved for the setting in which we are using them.

5.2.1 NaCoDAE

The results for the NaCoDAE algorithm can be read from Table 5.1 and Table 5.2.
The test were run with best-score threshold values from 0.4 to 0.8 and retrieval
set sizes of 2, 5 and 10. The tables does not show the results for different values of
the retrieval set. The reason behind this is that the result are almost identical no
matter the size, it hardly affects the results at all. This pattern can be observed
for all of the datasets and is not confined to specific datasets.

Dataset t=0.4 t=0.5 t=0.6 t=0.7 t=0.8
Acute Inflammations 0.86 0.96 0.95 0.99 0.99
Dermatology 0.92 0.94 0.95 0.96 0.96
Hepatitis 0.78 0.79 0.77 0.77 0.77
Heart Disease 0.65 0.64 0.64 0.65 0.64
Fertility 0.84 0.84 0.86 0.86 0.86
SPECT Heart 0.65 0.63 0.6 0.63 0.62
SPECT-F Heart 0.43 0.42 0.43 0.44 0.43

Table 5.1: Accuracy of NaCoDAE for different values of t

The value of the best-score threshold however affect the test results signif-
icantly. As the threshold value is increased, the accuracy is increasing, while
at the same time the efficiency is degraded. The effects of the threshold value
and the retrieval set size can clearly be observed in plots a and b in Figure 5.1.
This example is from the Dermatology dataset, and clearly shows how the two
parameters influence the results.

By looking at plots c and d form the same figure, we see that the retrieval set
size hardly affects either. To explain why the retrieval set size is irrelevant we
need to study the dialogue termination method used in the original NaCoDAE
system. The dialogue only terminates when the score of some case exceeds a
predefined threshold. For every iteration, the system finds the top scoring case
and compares its score to the current threshold value. As the retrieval set is made
up of the cases with the highest scores, the top ranking case is present in this set
no matter how big it is. The retrieval set size then, does not have any effect on
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whether to terminate the dialogue, and that explains the plots we are seeing in c
and d.

Dataset t=0.4 t=0.5 t=0.6 t=0.7 t=0.8
Acute Inflammations 0.57 0.79 0.78 0.92 0.92
Dermatology 0.56 0.75 0.87 0.95 0.99
Hepatitis 0.52 0.70 0.85 0.94 0.98
Heart Disease 0.78 0.84 0.86 0.87 0.88
Fertility 0.53 0.72 0.86 0.96 0.99
SPECT Heart 0.51 0.72 0.83 0.91 0.96
SPECT-F Heart 1.0 1.0 1.0 1.0 1.0

Table 5.2: Efficiency of NaCoDAE for different values of t

So why do we need to consider the retrieval set size in the NaCoDAE system
when it has no effect on the results? To understand this we need to consider the
characteristics of our datasets. All of the datasets we have tested on are either
completely homogeneous, or has a small amount of missing values. If we look at
the question selection method that is used on the original version of NaCoDAE,
we see that it pick the questions that are most regular among the retrieval set.
Using our datasets the system is unable to distinguish the different questions, as
they are all equally common no matter which cases are in the retrieval set, as
every case has the same set of questions. We see then that the retrieval set size
in cases where the datasets are heterogeneous can have an effect on the question
selection process, which in turn can affect both the accuracy and efficiency of
the system. This is what the NaCoDAE system was designed for in the first
place. On homogeneous datasets however, the retrieval set size has no effect on
the performance of the system, as it does not affect the selection of questions.

The efficiency of the system, defined as the percentage of questions asked
before the dialogue is terminated, can be seen to decrease linearly with the value
of the best-score threshold in plot b. To understand the connection between
this threshold value and the efficiency of the system we need to look at the way
NaCoDAE measures similarity between cases. It is defined as the number of equal
question answers minus the number of different, divided by the total number of
questions for that case. The best-score threshold value then sets a lower limit for
the amount of questions needed to be asked before the system can terminate the
dialogue. If for instance the threshold is set to 0.5, at least half of the questions
for a specific dataset has to be asked before any case has a theoretical possibility
of exceeding the threshold and ending the dialogue.

If we look closely at Table 5.2 we see that two datasets stands out from the
rest in terms of efficiency, the SPECT-F and Heart Disease datasets. Both these
datasets have very low levels of efficiency, asking close to all of the questions for
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Figure 5.1: NaCoDAE test result plots for Dermatology dataset



62 CHAPTER 5. RESULTS AND EVALUATION

even low threshold values. The reason behind this is that both these datasets
contain a large fraction of continuous attributes. The similarity measure of the
original NaCoDAE algorithm does not account for continuous value ranges for
attributes, and only recognizes exact similarity between such attributes. When
large fractions of the attributes are continuous, the results is that most cases will
receive a low similarity score throughout the dialogue, almost never exceeding
even low threshold values.

The accuracy of the system can also be seen to increase with the best-score
threshold value. This is simply due to the fact that the larger threshold values
forces more questions to be asked and the system can then make a more informed
decision when it classifies each case. On some datasets, the increase in accuracy
is minimal, and even decreasing in some cases. This is probably because we have
reached a limit for how accurate any CBR system can be on those datasets.

5.2.2 iNN(k)

The results from the initial tests on the iNN(k) algorithm can be read in Table
5.3 and Table 5.4. The tests were run by using both the local and global version
of iNN(k), denoted iNN(k)-L and iNN(k)-G in the tables. In addition, the value
of k was tested from 1 to 5 on both algorithms (only 1, 3 and 5 shown in table).

Dataset iNN(k)-L iNN(k)-G
k=1 k=3 k=5 k=1 k=3 k=5

Acute Inflammations 1.0 1.0 1.0 1.0 1.0 1.0
Dermatology 0.90 0.92 0.92 0.95 0.95 0.96
Hepatitis 0.76 0.79 0.80 0.81 0.82 0.81
Heart Disease 0.65 0.65 0.65 0.65 0.65 0.65
Fertility 0.87 0.87 0.87 0.88 0.87 0.87
SPECT Heart 0.7 0.77 0.77 0.75 0.75 0.75
SPECT-F Heart 0.49 0.52 0.54 0.50 0.53 0.55

Table 5.3: Accuracy of iNN(k) for different values of k

Plots a and b in Figure 5.2 shows how the accuracy and efficiency of the
system are affected by the value of k. The values shown are from the results on
the Dermatology dataset. As the value of k increases, so does the accuracy of the
system. It will however degrade the efficiency of the system, asking on average
more questions as k increases. The results for the local and global version are
almost similar, with the global one being slightly more accurate on most of the
datasets. This does however, come at a cost of efficiency, as the local version on
average is requires less questions.
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Dataset iNN(k)-L iNN(k)-G
k=1 k=3 k=5 k=1 k=3 k=5

Acute Inflammations 0.46 0.46 0.46 0.47 0.47 0.47
Dermatology 0.14 0.18 0.19 0.18 0.23 0.27
Hepatitis 0.27 0.34 0.41 0.44 0.54 0.60
Heart Disease 0.70 0.77 0.80 0.74 0.79 0.82
Fertility 0.47 0.50 0.56 0.51 0.60 0.68
SPECT Heart 0.36 0.48 0.61 0.46 0.63 0.79
SPECT-F Heart 0.30 0.74 0.93 0.38 0.8 0.91

Table 5.4: Efficiency of iNN(k) for different values of k

The iNN(k) algorithm was originally not designed to work with continuous
attribute values, only recognizing exact similarity between different attribute
values. This limitation can clearly be seen if we study the results for the SPECT
and SPECT-F datasets. The cases in these two datasets are the same. The
difference between the two is in the attributes and their types. For the SPECT
dataset, the original continuous attributes from the SPECT-F version have been
further processed to extract a set of attributes on binary form, i.e. true or false
questions. If we look at the results from Table 5.3 we can see that the accuracy
is significantly higher for the SPECT dataset, reaching levels of 70% or greater.
The SPECT-F datasets on the other hand barely makes it over 50%. Given that
there only exist two different classes in the datasets, 50% is not an impressive
result. These two datasets clearly demonstrate an important limitation of the
original iNN(k) algorithm, as it fails to handle continuous value types.

The same effect can also be seen on the Heart Disease dataset, which achieves
relatively poor results. In addition, this dataset contains a number of continuous
values.

5.2.3 Comparison

The most obvious difference between the two algorithms are the level of efficiency
they achieve. The results clearly show that iNN(k) achieves far greater efficiency
on the datasets, asking on average less questions before terminating the dialogue.
This is mostly a result of the dialogue termination strategy of NaCoDAE, which
fits poorly with homogenous datasets. These results are quite different from the
ones we achieved in our previous research, where NaCoDAE outperformed iNN(k)
consistently (Ekerholt et al. [2013]). This clearly shows how the characteristics
of the underlying dataset can influence the performance for these two algorithms.

The two algorithms generally achieve the same level of accuracy, albeit at a
different level of efficiency. The iNN(k) is slightly better on most of the datasets,
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Figure 5.2: iNN(k) test result plots for Dermatology dataset

but not by much. They both use the same basics in the similarity measure of
cases; the only difference is that NaCoDAE adds a penalty for attributes that are
different. As the similarity score largely determines the final classification of each
case, it is expected that the two algorithms achieve similar levels of accuracy.

5.3 Improvements

After our initial testing of the two algorithms we have a baseline of results on
which we can try to improve. The initial test also highlighted some specific
situations where the two algorithms struggles. In this section, we will discuss
and evaluate different methods for improving the overall results.

In the following sections we will be introducing a number of changes to our
CCBR algorithms. To keep track of the different version they are each given a
specific name, to uniquely identify them. Table 5.5 lists all the different versions,
and these names will be used when we discuss the different results.

5.3.1 Question Selection Strategy

As we identified in Section 4.6.5.2, the question selection technique of the orig-
inal NaCoDAE system is tailored to situations where the underlying dataset
is homogeneous. We also observed the effects of this in our initial testing of
this algorithm, causing low levels of efficiency across all the datasets. To erase
this dependency, and increase the performance of the algorithm on homogeneous
datasets, we suggested using a question selection method based on information
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Name Description
NaCoDAE Original version
NaCoDAE*(QSi) NaCoDAE with altered query similarity measure
NaCoDAE*(QSe) NaCoDAE with altered question selection method
NaCoDAE*(DT) NaCoDAE with altered dialogue termination strategy
NaCoDAE*(Com) NaCoDAE with all of the improvements
NaCoDAE*(RI) NaCoDAE with rule based inference
NaCoDAE*(DI) NaCoDAE with data centric inference
iNN(k) Original version
iNN(k)*(QSi) iNN(k) with altered query similarity measure
iNN(k)*(QSe) iNN(k) with altered question selection method
iNN(k)*(Com) iNN(k) with all of the improvements

Table 5.5: The different versions of NaCoDAE and iNN(k)

gain instead. To test the effects of this approach we have tested on multiple
datasets using the values for the best-score threshold and retrieval set size that
achieved the best results from our initial testing.

NaCoDAE NaCoDAE*(QSe)
t=0.2 t=0.4 t=0.8 t=0.2 t=0.4 t=0.8

Accuracy 0.59 0.65 0.62 0.74 0.64 0.60
Efficiency 0.25 0.51 0.96 0.25 0.51 0.95
Shortest 5 9 18 5 9 18
Longest 11 22 22 15 22 22

Table 5.6: Normal vs. Information gain question based selection, SPECT dataset

Table 5.6 shows a comparison of the performance of the original NaCoDAE
question selection method and the new information gain based approach. The
accuracy of the system is shown to increase with the new method, especially when
the threshold value is low. This makes sense, as the system on average is asking
less questions when the threshold value is low. The fewer questions the system
asks before the dialogue terminates, makes the selection of specific questions all
the more important. A good question selection method will pick the questions
that give the most information about the classification of the current query case,
and will result in a more accurate system. This is the effect we are seeing in
Table 5.6, the information gain method is better adapted to the homogeneous
dataset, and is therefore able to pick questions that are more relevant. We can
also read from the table that the advantages of a good question selection method
are mitigated as the threshold increases. As more questions are asked, the specific
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order of them are less important, and the gains in accuracy decrease.
The effects of the new question selection method are not so apparent on

datasets with a smaller number of questions. Table 5.7 shows a comparison
between the two methods on the Fertility dataset. Although the information gain
method again displays a higher level of accuracy, the differences are minor. This
is due to the fact that the Fertility dataset only contains 9 different attributes, as
opposed to the 22 in the SPECT dataset. As there are fewer questions to choose
from, it limits the effects of smart question selection. Also worth noting is the
class distribution of this specific dataset. The Fertility dataset contains 88 cases
that belongs to the class "Normal", as opposed to the 12 that belongs to the
class "Altered". This can often result in the system picking the dominant class
in the dataset, and can help explain why the system struggles to achieve more
than 88% accuracy.

NaCoDAE NaCoDAE*(QSe)
t=0.2 t=0.4 t=0.8 t=0.2 t=0.4 t=0.8

Accuracy 0.88 0.84 0.86 0.88 0.86 0.86
Efficiency 0.23 0.53 0.99 0.22 0.50 0.99
Shortest 2 4 8 2 4 8
Longest 6 9 9 4 9 9

Table 5.7: Normal vs. Information gain based question selection, Fertility dataset

The two tables also highlights another interesting fact. The question selection
method used has almost no effect on the efficiency of the system. The values
for the two different methods are almost identical on both datasets. This is
another sign of how important the best-score threshold value is for the efficiency.
No matter how relevant questions you ask, the simple threshold approach of
NaCoDAE still sets a lower limit for the amount of questions the system can
ask in each dialogue. Even though the information gain method is more adapted
to homogeneous datasets, this alone will not increase the efficiency significantly
when using the same threshold method.

We also tested the information gain method together with iNN(k). As the
selection strategy of iNN(k) is based on discriminating power according to Eq.
3.3, it does not account for attributes with continuous values. The information
gain method should then have a positive effect on performance. Table 5.8 shows
the results of introducing information gain for feature-selection on the SPECT-
F dataset. The results shows that there is a small increase in accuracy to be
gained while still maintaining a good level of efficiency. The increase of accuracy
is however too small to give a satisfactory level of precision on the dataset as it
only contains two different classifications. The limitation in increase is probably
a result of iNN(k)’s termination criteria which is bases on the cases similarity and
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class distribution. As calculating the similarity between the cases is still done by
exact equality of attribute value pairs, it is still hard to find good retrieval sets
that correctly represents the query case. We try eliminating this limitation in
5.3.3.

iNN(k) iNN(k)*(QSe)
k=1 k=2 k=3 k=1 k=2 k=3

Local
Accuracy 0.49 0.50 0.52 0.56 0.50 0.50
Efficiency 0.30 0.54 0.74 0.28 0.52 0.75
Global
Accuracy 0.50 0.50 0.53 0.54 0.48 0.48
Efficiency 0.38 0.66 0.80 0.32 0.60 0.77

Table 5.8: iNN(k) with information gain feature-selection in SPECT-F dataset

We also found some improvement in accuracy when using iNN(k) with infor-
mation gain attribute selection on other datasets with only a few, or no continuous
values. The SPECT dataset, which contains only binary attributes, was one of
them. Table 5.9 shows the results compared with our initial results for iNN(k)
using discriminating power as the selection method. The results shows that there
is some accuracy to gain by using the information gain method. It does however
come at the cost of lower efficiency.

iNN(k) iNN(k)*(QSe)
k=1 k=2 k=3 k=1 k=2 k=3

Local
Accuracy 0.70 0.72 0.77 0.78 0.80 0.80
Efficiency 0.36 0.39 0.48 0.42 0.52 0.55
Global
Accuracy 0.75 0.75 0.75 0.73 0.75 0.78
Efficiency 0.45 0.59 0.63 0.47 0.58 0.61

Table 5.9: iNN(k) with information gain feature-selection in SPECT dataset

5.3.2 Dialogue Termination Strategy
As we discussed in Section 4.6.5.3 the best threshold function used in the original
NaCoDAE system is rather limited, only recognizing situations where a single case
exceeds a given threshold. This was also very apparent in our initial testing, where
we observed that the value of this threshold largely determined the efficiency
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of the system. Our suggestion was to introduce a different threshold function
able to detect situations where large portions of the retrieval set belongs to the
same class. We hope that such a method is able to terminate the dialogue in
earlier stages when appropriate, i.e. when it detects that one class dominates the
retrieval set. By comparing the results achieved, with the initial results we can
determine if the new function indeed increases the efficiency of the system. As
the new threshold function is rather dependent on the size of the retrieval set, we
tested the approach with multiple different sizes on each dataset. We also tested
with multiple values for the threshold value itself.

Table 5.10 shows the results from using the original best-score threshold func-
tion versus the new based on class distribution. The test were run using a retrieval
set size of 10. The results clearly indicates that the new method achieves a greater
level of efficiency. By observing the shortest and longest dialogue for each test,
we can also see that the value span of the dialogue length is greater for the new
method. There is a slight difference in accuracy, with the new method yielding
marginally better results.

NaCoDAE NaCoDAE*(DT)
t=0.2 t=0.4 t=0.8 t=0.2 t=0.4 t=0.8

Accuracy 0.63 0.65 0.64 0.59 0.65 0.67
Efficiency 0.39 0.78 0.87 0.08 0.14 0.40
Shortest 3 6 10 1 1 1
Longest 8 11 13 2 13 13

Table 5.10: Best-Score vs. Class-Distribution threshold, Heart Disease dataset

The reason the new method results in greater efficiency is that it allows the
system to terminate the dialogue when the situation calls for it. The best-score
threshold function sets a lower limit for the amount of questions, only allowing
the dialogue to be ended after a fixed percentage of questions has been asked.
The new method sets no such limit; theoretically, it can end the dialogue after one
question if a certain fraction of the cases in the retrieval set belongs to the same
class. In other words, it allows the system to end dialogues when there is a strong
possibility that more questions will not change the classification of the query
case. This also explains the differences in value range for the dialogue length,
even with a threshold value of 0.8 the new method in some cases terminates after
1-3 questions. For the same threshold value, the best-score method is forced to
ask 80% (11 of 13) of the questions, even if a class clearly stands out early in the
dialogue. The new method is then more adaptable to the situation, and can to
greater extend vary the length of the dialogue depending on the situation.

If we look at Figure 5.3 we can see how the efficiency of the system develops
when the threshold value is increased. The blue line shows the results from the
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Figure 5.3: Efficiency at different threshold values, Heart Disease dataset

original best-score method, and the red line shows the results from the new one.
As we noted earlier, the efficiency is almost linearly dependent on the threshold
value for the best-score method. If we look at the new one however, there is
no such dependency. The efficiency is initially almost flat, before a spike when
the threshold value reaches 0.8. This spike can be explained by the fact that
there are a limited set of situations where 80% of the retrieval set has the same
class early in the dialogue and thereby fewer situations where the conditions
for terminating the dialogue apply. Still the plot clearly shows the advantage
of the new threshold method, achieving much higher levels of efficiency while
maintaining the same levels of accuracy.

The example from the Heart dataset also demonstrates another important
consideration when using threshold functions to control the dialogue termination.
The optimal setting of the threshold value is largely dependent on the dataset
on which you are using it. Observing the specific results from this dataset, we
can see that even though the levels of efficiency are changing for both methods
as the threshold value is increased, the accuracy of the system remains almost
unchanged. This is perhaps somewhat counterintuitive; one might think that
asking more questions will lead to more classifications that are accurate. However,
this is clearly not the case for this dataset, and it is most likely due to the fact
that a limited set of questions in this dataset is enough to reach a conclusion.
Asking more questions will only serve to degrade the efficiency of the system, and
will not influence the final conclusion.
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5.3.3 Query Similarity Functions

Both NaCoDAE and iNN(k) shares the same weakness in that they do not han-
dle continuous values in a good way. The similarity function for both algorithms
only recognizes exact similarity of two values. This approach fails to account for
the relative distance between numeric values, detecting that some values are more
similar than others. Some of the datasets we have chosen contains a large portion
of numeric values. This effect can clearly be seen from our initial testing of both
iNN(k) and NaCoDAE, achieving relatively low levels of efficiency on datasets
with a large portion of continuous attributes. By introducing the similarity mea-
sure listed in Eq. 4.1 in both algorithms we hope to see increased performance
on these datasets due to this measures ability to recognize similarity between
continuous values. To test the new similarity function we ran the algorithms on
datasets with at least some numeric attributes, as the new function will produce
the same results on datasets without them.

iNN(k) iNN(k)*(QSi)
k=1 k=2 k=3 k=1 k=2 k=3

Local
Accuracy 0.49 0.50 0.52 0.60 0.59 0.63
Efficiency 0.30 0.54 0.74 0.07 0.12 0.24
Global
Accuracy 0.50 0.50 0.53 0.65 0.65 0.69
Efficiency 0.38 0.66 0.80 0.07 0.13 0.26

Table 5.11: Continuous values handling in SPECT-F dataset, iNN(k)

Table 5.11 shows the effect of introducing the new similarity measure in the
iNN(k) algorithm. To see the full effects we chose to test on the SPECT-F dataset,
which is entirely made up of continuous attributes. The results clearly shows
that the new similarity function increases both the accuracy and the efficiency
of the system. The similarity measure is now able to determine the relative
distance between numeric values, which on datasets like the SPECT-F enables
it to increase its performance significantly. Since iNN(k)’s termination criteria is
based on content of the retrieval set, and indirectly the cases similarity, its evident
that changing the similarity calculation function is essential when working with
data sets containing continuous values.

Table 5.12 shows the result of introducing the same similarity measure in the
NaCoDAE algorithm. Similar results can be observed for this method as well, as
both the accuracy and efficiency of the system are significantly better than in our
initial tests. The development of the efficiency can now be observed to degrade
linearly as the best-score threshold value increases, which is similar to the results
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from the other datasets containing none or only a few continuous attributes.

NaCoDAE NaCoDAE*(QSi)
t=0.4 t=0.6 t=0.8 t=0.4 t=0.6 t=0.8

Accuracy 0.43 0.43 0.43 0.6 0.65 0.59
Efficiency 1.0 1.0 1.0 0.44 0.65 0.86

Table 5.12: Continuous values handling in SPECT-F dataset, NaCoDAE

The results from introducing this new similarity measure serves to demon-
strate how even small changes can drastically improve the performance of a CCBR
system. Accounting for continuous values is not a complicated task, but it in-
creases both the accuracy and efficiency for both methods on datasets where
continuous values are common. It increases the flexibility of our system as it
enables it to be effective in domains where both algorithms previously struggled.

5.3.4 Combination of Methods
The different methods we have investigated in the previous sections all increase
the performance of the system, each in different ways. The improved question se-
lection method help make the system more accurate by picking the most relevant
questions first, and adapting the original NaCoDAE algorithm to the homogenous
datasets we have used here. The new threshold function increases the efficiency of
the system, terminating the dialogue earlier when it is appropriate. In addition,
the new similarity measure increases both accuracy and efficiency by handling
continuous attributes. Table 5.13 and 5.14 shows the results of combining these
improvements for the NaCoDAE algorithm. If we compare these results with the
initial ones in Table 5.1 and 5.2 we see that the performance of the algorithm
overall is improved.

If we look closer at the results, we see that the improvements in efficiency are
the most substantial. This is especially true for the datasets with a large portion
of continuous attributes such as the SPECT-F dataset where the changes are
dramatic. The highest level of accuracy for each dataset is more or less unchanged
from our initial results. The exception is for the datasets with continuous values
where we were able to increase the accuracy substantially. This should come as
no surprise as the original NaCoDAE method handled such values poorly, only
looking for exact similarity, which is rarely the case for continuous attributes.

One reason for why the accuracy is unchanged for some of the datasets can
be found by looking at the distribution of classes in the entire dataset. As noted
earlier the Fertility dataset contains 88 cases of class ’Normal’ and 12 of class
’Altered’. This can help explain why the system is more or less achieving 88% no
matter what the parameters are. We get similar results with the Heart Disease
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Dataset t=0.4 t=0.5 t=0.6 t=0.7 t=0.8
Acute Inflammations 0.59 0.68 0.79 0.93 1.0
Dermatology 0.52 0.66 0.83 0.88 0.86
Hepatitis 0.79 0.79 0.79 0.84 0.81
Heart Disease 0.64 0.65 0.64 0.65 0.65
Fertility 0.88 0.88 0.88 0.88 0.88
SPECT Heart 0.47 0.41 0.59 0.64 0.57
SPECT-F Heart 0.56 0.61 0.58 0.57 0.57

Table 5.13: Accuracy of NaCoDAE*(Com) for different values of t

dataset where 64% of the cases belongs to the ’Absence’ class and the accuracy
is hovering around that same level of accuracy. The results from these datasets
display a weakness in our suggested dialogue termination method. It fails to rec-
ognize situations where the reason large portions of the retrieval set belongs to
the same class is simply due to the fact that they are dominant in the case base
as a whole. For such datasets, the best-score threshold method we started with
might perform better, but as we observed this method comes with its own set of
weaknesses. From looking at the initial results, it would seem that this method
achieves the same levels of accuracy for these datasets. These results suggest
that this method also terminates the dialogue prematurely in some cases and
wrongfully ends up picking the dominant class every time. Other approaches for
dialogue termination does exist, for example breaking when the amount of infor-
mation gain possible is below a certain limit. Such methods might be worth test-
ing in the future to see if they are more adaptable to differences in the datasets,
and especially datasets with one dominant class. Definitely an area worthy of
more research, determine what type of conditions warrant termination of the
dialogue, balancing the need for more information with the goal of an efficient
system.

Dataset t=0.4 t=0.5 t=0.6 t=0.7 t=0.8
Acute Inflammations 0.17 0.26 0.32 0.43 0.44
Dermatology 0.08 0.09 0.10 0.12 0.13
Hepatitis 0.05 0.05 0.05 0.11 0.09
Heart Disease 0.08 0.18 0.08 0.42 0.42
Fertility 0.11 0.11 0.11 0.13 0.14
SPECT Heart 0.05 0.07 0.07 0.19 0.12
SPECT-F Heart 0.02 0.03 0.04 0.11 0.11

Table 5.14: Efficiency of NaCoDAE*(Com) for different values of t
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It should be mentioned that we could also have presented results for different
retrieval set sizes. The results we have presented here are from tests with a
constant retrieval set size of 10. Unlike the original NaCoDAE algorithm, the
size of the retrieval set will actually have an impact on the performance of the
system on the different datasets. The optimal setting is dependent on the specific
characteristics of the dataset, much like the value of the threshold. In the sake
of brevity and the fact that the changes in accuracy and efficiency are relatively
small, we chose not to present such results here.

iNN(k)*(QSe) iNN(k)*(QSi) iNN(k)*(Com)
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

Local
Accuracy 0.56 0.50 0.50 0.60 0.59 0.63 0.61 0.59 0.57
Efficiency 0.28 0.53 0.75 0.07 0.13 0.23 0.06 0.12 0.20
Global
Accuracy 0.54 0.48 0.48 0.65 0.65 0.69 0.70 0.65 0.67
Efficiency 0.32 0.60 0.77 0.07 0.13 0.26 0.06 0.10 0.14

Table 5.15: Combining improvements in iNN(k) on SPECT-F dataset

We looked for similar improvements in performance when combining the im-
provements for iNN(k). As stated earlier, the new similarity function will produce
the same results on datasets without continuous attributes as the original func-
tion. We therefore concentrate our testing on the datasets containing continuous
attributes. Table 5.15 shows the results of combining the improvements on the
SPECT-F dataset compared to the results of the two improvements by them
self. From the table it is clear that there is an even greater performance gain in
combining the two methods. iNN(1)-G yields our highest recorded accuracy on
the SPECT-F dataset, and at the same time achieving the highest (lowest value)
recorded efficiency.

Combining the improvements on the Heart disease data set did not give signif-
icant increase in accuracy, but there was a significant gain in efficiency. Looking
at Table 5.16 , we can see the same effect of combining the improvements as
was found in NaCoDAE. As earlier mentioned, the around 66 percent accuracy
corresponds with the class distribution of the dataset. It is evident that to breach
this barrier on accuracy is difficult. This barrier does however not limit possible
improvement in efficiency, as the improvement only leads to the dialogue reaching
the same retrieval set even faster. We can also see that even the longer dialogues
does not pass the 66 percent barrier. This highlights the same weakness as with
NaCoDAE, when the dataset is dominated by one class.
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iNN(k)*(QSe) iNN(k)*(QSi) iNN(k)*(Com)
k=1 k=2 k=3 k=1 k=2 k=3 k=1 k=2 k=3

Local
Accuracy 0.65 0.66 0.66 0.65 0.64 0.66 0.64 0.64 0.67
Efficiency 0.76 0.84 0.87 0.64 0.70 0.72 0.36 0.56 0.70
Global
Accuracy 0.66 0.66 0.66 0.67 0.66 0.66 0.67 0.66 0.66
Efficiency 0.72 0.78 0.84 0.67 0.73 0.75 0.31 0.56 0.61

Table 5.16: Combining improvements in iNN(k) on Heart Disease dataset

5.4 Dialogue Inference

5.4.1 Rule Based Inference
To test the effects of the rule-based dialogue inference in our system we have
carried out tests on the Pattern of Lung Cancer in Ex-Smokers dataset. As
discussed in Section 4.7.1 this dataset contains a number of attributes that are
dependent upon each other. Adding the rules listed in Table 4.6 to a rule base in
our system, the system will be able to check the conditions of each rule during a
dialogue and determine if any inferences are applicable. If they are, these answers
are added to the current query.

NaCoDAE NaCoDAE*(RI)
t=0.4 t=0.6 t=0.8 t=0.4 t=0.6 t=0.8

Accuracy 0.85 0.84 0.82 0.85 0.84 0.81
Efficiency 0.50 0.63 0.88 0.41 0.53 0.78
Shortest 4 5 7 3 4 6
Longest 4 6 7 4 5 7

Table 5.17: Inference vs. no inference, Smoking dataset

Table 5.17 shows the results of introducing this rule-based inference to the
NaCoDAE algorithm. The efficiency of the system in increased, asking on average
one less question in each dialogue. The accuracy stays the same, which is to be
expected as both versions make decisions with the same amount of information.
The only difference is that the version where inference is introduced needs to ask
less questions to arrive at the same amount of questions, and thereby increase
the performance of the system. These results clearly shows how even superficial
knowledge about a dataset and the attributes within it can help increase the
performance of a CCBR system. The advantage of making such simple rule
bases is that they require a minimum of domain expertise to create. The rules
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we made for the smoking dataset could have been made by anyone, and do not
require any medical expertise at all.

5.4.2 Model Based Inference
We considered adding a model based approach to the dialogue inference task,
based on the approaches taken by the NaCoDAE and TrollCCRM system. How-
ever, we concluded that such efforts were not applicable for our system, as we do
not possess the knowledge about the domains in question necessary to be able to
create such models. This would ultimately mean that we would not be able to
do any meaningful testing of such an approach in our system.

There are also certain limitations on the datasets we have used; they are
not really tailored to CCBR applications. For instance, there is no hierarchy of
questions from general to specific, no apparent connection between the attributes
in the different datasets. This makes it difficult to apply model based inference, or
any inference at all, on such datasets. We struggled to even find a dataset where
the simple rule based approach could apply. Ultimately, the datasets we have
chosen were not created with dialogue in mind, and this limits the possibilities
of doing any type of dialogue inference on them.

Although we have not been able to test any model-based approaches, they can
potentially hold significant advantages over the manually created rule bases we
tested in the previous section. For more complex datasets than the lung cancer
we investigated earlier, model-based inference can be easier to maintain and can
to a larger degree ensure correctness. There are certainly medical domains and
datasets that are more complex than this one, where general knowledge can be
helpful in the dialogue process. Being able to capture such knowledge in domain
models can help make the system be more efficient.

Even though we were not able to test such methods, it should be noted that
there is a considerable advantage of our approach of using multiple datasets and
domains in the same system. It enables you to capture very specific knowledge
concerning small domains within medicine, which in turn means that one can
consult experts from multiple domains and incorporate such knowledge in the
system. Can create small manageable models for each sub- domain in the system
with specific knowledge from each of them. Creating such models for the entire
domain of general medicine would be a monumental task, if not impossible, due
to the complexity of the domain.

5.4.3 Data Centric Inference
We chose to test and run our statistical inference calculation on the Dermatology
and SPECT datasets. We chose the two datasets, as they contain no or only a
few continuous attributes. Our calculation method only considers exact similarity
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in attribute-value pairs and would therefore not work well on continuous values.
During the calculation we set the probability threshold to be 85%. This means
that for a relationship between two attribute-value pairs to be stored, at least
85% of the cases in the case base needs to contain this relationship. When testing
we ran the NaCoDAE algorithm with retrieval set size 5, termination threshold
values ranging from t = 0.4 to t = 0.8, termination criteria set to "scorethreshold"
and feature selection by information gain. We ran this with and without inference.

NaCoDAE NaCoDAE*(DI)
t=0.4 t=0.6 t=0.8 t=0.4 t=0.6 t=0.8

Accuracy 0.94 0.96 0.97 0.86 0.91 0.84
Efficiency 0.43 0.65 0.86 0.29 0.49 0.68
Shortest 14 21 28 7 13 19
Longest 17 25 34 14 20 28

Table 5.18: No inference vs. inference, Dermatology dataset

Table 5.18 shows the results for the Dermatology dataset. There is a clear
increase in efficiency, which comes at a cost of some reduction of accuracy. The
results show that there exists several statistical relations between the different
attributes in the Dermatology dataset based on the case base we have. The
reduction of accuracy is most lightly a result of setting the relationship probability
threshold to 85%. Indeed, by increasing this threshold to 100%, the accuracy
increased back to its initial results, while still achieving some gain in efficiency.
The results can be seen in Table 5.19

t=0.4 t=0.6 t=0.8
Accuracy 0.94 0.96 0.97
Efficiency 0.38 0.59 0.78
Shortest 10 17 23
Longest 16 24 31

Table 5.19: Inference on Dermatology dataset with probability threshold = 1

5.5 Evaluation
From our initial rounds of testing on the datasets and our set of improvements
we have been able to identify the best performing algorithm for each dataset. We
will try to pick the algorithm that provides the best trade-off between accuracy
and efficiency. This decision is sometimes difficult to make, as there are in some
cases small differences in accuracy and efficiency.
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Table 5.20 shows the best performing algorithms and parameters using the
original versions of each algorithm. This list is dominated by iNN(k), as is ex-
pected considering that NaCoDAE was not originally created to be used on ho-
mogeneous datasets.

Dataset Algorithm k R t Accuracy Efficiency
Acute Inflammations iNN(k)-L 1 N/A N/A 1.0 0.46
Dermatology iNN(k)-L 1 N/A N/A 0.9 0.14
Hepatitis iNN(k)-L 1 N/A N/A 0.76 0.27
Heart Disease iNN(k)-L 1 N/A N/A 0.65 0.7
Fertility iNN(k)-G 1 N/A N/A 0.88 0.51
SPECT Heart iNN(k)-L 2 N/A N/A 0.77 0.48
SPECT-F Heart iNN(k)-L 1 N/A N/A 0.49 0.30

Table 5.20: Best performing algorithms initial

Table 5.21 show the best results for each dataset after improving the algo-
rithms mechanisms. For NaCoDAE the improvements is to use attribute selec-
tion by information gain, similarity measures handling continuous values and
class distribution threshold as dialogue termination criteria. The iNN(k) ver-
sion uses information gain selection and similarity measures handling continuous
values. As can be seen by comparing the two tables, all datasets have gained
some improvement, either in efficiency, accuracy or both. The most noticeable
improvement is found in the SPECT-F dataset, where accuracy has increased by
21% and efficiency has increased by 24%. It is not surprising that this dataset
gets the highest increase in performance since the dataset consists only of contin-
uous attributes, and neither of the two algorithms are initially designed to handle
such data.

We are pleased with the level of accuracy we have been able to achieve. To
expect our algorithms to achieve 100% accuracy on every dataset would be un-
realistic. On the majority of the datasets, our system is able to achieve levels of
80% accuracy or more. This notion is confirmed by looking at how other machine
learning methods have performed on the same datasets. For the SPECT-F Heart
dataset for instance, the highest reported levels of accuracy where generated us-
ing the Clip3 algorithm, which was able to generate rules that were correct in
84% of the time (Kurgan et al. [2001]). Although slightly better, these results
are comparable to ours, especially considering that our system on average only
use 6% of the attributes to reach a classification for this dataset.

Looking at the levels of efficiency our system only requires at most half of
the questions in each dataset to reach a conclusion, and in the majority of the
datasets the efficiency are much higher than that. We are especially pleased with
the fact that the targeted measures we introduced to increase the efficiency of
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Dataset Algorithm k R t Acc. Eff.
Acute Inflammations NaCoDAE*(Com) N/A 10 0.8 1.0 0.44
Dermatology iNN(k)*(Com)-L 4 N/A N/A 0.97 0.24
Hepatitis NaCoDAE*(Com) N/A 10 0.7 0.84 0.11
Heart Disease iNN(k)*(Com)-G 1 N/A N/A 0.67 0.31
Fertility NaCoDAE*(Com) N/A 10 0.4 0.88 0.11
SPECT Heart iNN(k)*(Com)-L 2 N/A N/A 0.80 0.52
SPECT-F Heart iNN(k)*(Com)-G 1 N/A N/A 0.70 0.06

Table 5.21: Best performing algorithms with improvements

the system proved to be fruitful. The most visible improvement was seen for
the NaCoDAE system applied to the SPECT-F dataset. Where this algorithm
previously needed to ask all 42 questions possible to reach a classification, the
system now on average only uses 6% of the question while at the same time
increasing its accuracy.

In terms of performance the Heart Disease has proved to be the most difficult
dataset of them all, only achieving a most 67% accuracy using on average a third
of the questions. This is the only dataset where we feel there are significant
room for improvements. By looking at the class distribution of this dataset we
identified that the levels of accuracy were closely tied to the fraction of cases
of a particular class, which compared to the other classes were quite high. We
suggested that this might be a consequence of the dialogue termination criteria’s
for both of the algorithms, which share the fact that they look for class dominance
in the retrieval set.

In addition to showing that our algorithms can achieve high levels of perfor-
mance on the datasets of our system, we now also have a complete list of which
algorithm that performs best on each specific dataset. This information can now
be stored along with the datasets, together with the specific parameters used.
Having this information means that our dialogue manager now can determine
which algorithm to use in order to achieve the best results. Whenever it decides
that a new dataset should be added to the stack, it uses this information to
determine which algorithm to initialise on the dataset.

Figure 5.4 shows an overview of the current state of our system. The dia-
logue manager now has a toolbox available with different datasets that represent
different subdomains of the medical domain. During a dialogue with the user,
it can pick from this toolbox in order to investigate specific domains in hopes
of finding a fitting diagnose. The efforts we have made to make our algorithms
more accurate, more efficient and more flexible, means that the quality of each
tool in this toolbox increases. The flexibility of our representation also ensures
that it can be easily expanded with further additions.
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Figure 5.4: CCBR Dialogue Stack overview

Although implemented in our system and possible to test, we will not present
any results from the two level dialogue approach here. The simple reason for
that is that we have no real life data to test this with; we have no fitting case
base to use for the top-level dialogue. Yet there is no real difference between the
dialogue at this level and the ones we have tested in previous sections, the results
we have found there also applies here. To be able to properly test the validity
of our approach we are dependent on the presence of such a case base. However,
to create such a case base falls outside the scope of this thesis. One would also
need to identify more datasets from different subdomains of medicine in order to
at least partially cover the domain of general medicine.

Through our implementation of the system, we have been able to test both
the original CCBR approaches of NaCoDAE and iNN(k), as well as a series of
improvements on each dataset. Each dataset has its own characteristics, some
of the configurations work in given situations and some do not. Observing the
contents of Table 5.21 should give us clues as to how the different algorithms
and configurations will work on future dataset. To manually test all the differ-
ent configurations we have presented in this thesis is a time consuming process,
especially if the dataset contains large numbers of cases or attributes. If this
process could be skipped, the amount of work needed to add new datasets from
different medical sub-domains would be greatly reduced. Generalising from the
results we have presented here we should be able to give a reasonable assessment
of which configuration would work best on new datasets by simply studying the
characteristics of these datasets.

Throughout our testing, we have chosen to highlight datasets where the effects
of each improvement is most visible. This is something that can be utilized in
the future. For instance, introducing handling of continuous values will have no
effect on datasets where such value are not present. Alternatively, that questions
selection and dialogue inference techniques are more effective on datasets with
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a large number of attributes. By recognizing such situations, one can ignore
certain configurations in the initial testing of a dataset, and thereby speed up the
process.

An even better situation would be if the system could avoid the testing all to-
gether, and pick a configuration solely based on the characteristics of the datasets.
At this point this is not something we are able to do, for that our sample size
is simply too small. In addition, the results are not conclusive enough for us
to identify specific links between the characteristics and the algorithms. Going
forward this is definitely an area worthy of further research. Investigating how
we can learn from each new import of a new dataset, and being able to predict
if similar datasets will behave in the same way in the future would add to the
value of our solution.



Chapter 6

Conclusions and Future Work

In this chapter we summarize and conclude our thesis and propose areas for
further research

6.1 Conclusions

The main goal of this thesis was to create a diagnostic system based on the
CCBR approach. The system should propose an accurate diagnosis through a
dialogue with the patient, which includes a series of questions and answers. To
account for the complexity of the domain of general medicine we have presented
an architecture consisting of two levels. We have added datasets from multiple
different medical subdomains to our system and argued that it is easier to reason
in such sub-domains separately rather than the entire field of medicine as a whole.
To bind these subdomains together we have added a meta-level dialogue aimed
at identifying which sub-domain to further examine during the diagnosis process.

To be able to perform any of this we were dependent on an implementation
of the CCBR process, and for this we have built on existing systems. We have
built our system from the ground up, starting with adapting two existing systems
to the different datasets and domains we added to the system. After presenting
the results of our initial testing of the existing systems, we were able to increase
both the accuracy and efficiency of the system by introducing improvements to
different parts of the CCBR process. During our evaluation of the system, we have
introduced targeted measures to improve different parts of the algorithms and
thereby increasing their overall performance. Through smarter question selection,
which accounted for the fact that our datasets were mostly homogeneous, we
were able to increase the accuracy. By introducing an improved termination
strategy for the NaCoDAE algorithm that were more adaptable, we were able
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to increase the efficiency of this algorithm. In addition, we have altered the
similarity measure of both algorithms to handle continuous attributes for added
flexibility.

The end result of these efforts were two different algorithms in NaCoDAE
and iNN(k) that excels under different circumstances working on datasets with
different characteristics. As we identified in our previous research NaCoDAE also
offers good performance on heterogeneous datasets, with a large number of miss-
ing values. We have the possibility to alter the different question selection and
dialogue termination methods to adapt to any given dataset. For instance, the
original question selection method of NaCoDAE might work better on heteroge-
neous datasets than the one based on information gain. We have extended their
flexibility by introducing handling of continuous attributes, which we saw can in-
crease the performance significantly on datasets where such values are common.
This is important as our overall two level architecture aims to include datasets
from different medical subdomains, and the datasets based on these domains are
bound to have different characteristics.

By taking a closer look at the characteristics of each dataset, we were also
able to identify a weakness in both algorithms operating on datasets with one
dominating class; both algorithms struggle to account for this. This weakness
is connected with the dialogue termination criteria’s, which are focused on the
distribution of classes in the current retrieval set. As a result, the system can
sometimes be blinded by the uneven distribution of classes in the dataset as a
whole. Further research efforts are needed to find termination criteria’s that can
account for this.

We have also presented and tested different methods for doing inference in a
CCBR system and observed that they have a positive effect on the efficiency of
the system. We saw mark able improvements even for the data centric approach,
which is not dependent on any domain models or general knowledge. This ap-
proach can be used on any dataset, yet the efficiency of applying it depends on
the characteristics of the given dataset and the presence of connections between
the questions.

The goal of this thesis is not only to achieve the best possible performance
for each dataset individually, but also to be able to use them together to form a
system that covers different parts of the medical domain. We have demonstrated
our approach for a stack of separate CCBR dialogues, adding a dialogue manager
to control the different levels of conversation. This manager allows the user to
switch between different datasets, passing on the current state of the conversation
to each one. It is difficult to say anything specific about performance of this top
level, as the case base we are using for this dialogue is only a simple version we
created ourselves for demonstration purposes. However, given the proper data,
this dialogue is no different from the ones specific to each dataset, which we have
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demonstrated to work.
If we compare the final results we were able to generate to the initial require-

ments we sat for our system in Section 4.2, we see that it complies with all of
them. The accuracy and efficiency has been increased, on datasets with different
characteristics. The same can be said for the flexibility of the system, handling
datasets that were previously not supported that well. We also feel that the re-
sults validate the scalability of our architecture, in that we were able to represent
all the different datasets, and that we were able to make use of different CCBR
algorithms on the fly.

The architecture we have presented in this thesis offers a different approach
compared to similar CCBR classification systems. Our two level approach with a
top-level meta-dialogue enables our system to reason in multiple different subdo-
mains, utilizing data collected in these domains that can possibly have different
characteristics. By dividing the problem space into multiple smaller ones, we are
able to reason in more specific domains and adding the possibility to incorporate
more detailed domain knowledge specific to each domain. Our model has been
built using the experiences of others, which we have adapted and combined to
create the different parts of our system. We have also borrowed ideas from sys-
tems outside the field of CBR, for instance the dialogue stack approach from the
DSGM system to handle the switching between different subdomains. In addition
we have drawn on experiences from our previous work in which we tried a reg-
ular approach of CCBR on a dataset for the general field of medicine, identified
weaknesses and shortcomings of this approach.

6.2 Future Work
Going forward there are several areas to further explore. Our system exhibits
a particular weakness when reasoning with datasets containing dominant clas-
sifications. This can often lead to prematurely dialogue termination. Finding
methods that address such cases is an important part of further research. If this
weakness can be eliminated, it can open up for more domains to be incorporated
into the system. Since the system as a whole aims to someday address a large
part of the medical domain, it is important that the system handles multiple
types of datasets. It is natural to keep searching for new datasets representing
different parts of the medical domain and focusing on datasets that are diagnostic
in nature.

The greatest obstacle, which we have yet to tackle, is to create a well-defined
case base for the top-level dialogue. We see this as a possible job for a case
base author, in corporation with diagnostician. Such a case base may be based
on records of actual patient visit, but the most important thing is that is can
clearly distinguish different medical cases through a set of questions and answers.
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Finally yet importantly, it might be possible to use the dialogue stack to introduce
more levels to the dialogue. Taking more inspiration from Branting et al. [2004]’s
DGSM architecture, one might allow the results of one dialogue to be the answer
to a question in in another dialogue.

In this thesis, we have focused on the two CCBR approaches of NaCoDAE
and iNN(k). In our initial study of similar systems, we also identified a third
approach, the TrollCCRM system. We chose to not include this approach in our
system as we deemed it too demanding. Yet, as we have previously identified,
our approach of splitting the medical domain into multiple smaller sub-domains
increases the possibility of including domain knowledge from such domains. In
such a setting the TrollCCRM approach, which relies heavily on the inclusion of
domain knowledge in the dialogue process, could become more relevant. Given
the access to specific domain knowledge in some of the sub-domains, the possi-
bility of adding this third approach to the dialogue process should be a natural
focus for future research.

Houeland and Aamodt [2009] introduces a meta-level architecture that aims
to learn the connections between problem solving methods and the sub-domains
they run on. The system determines in runtime which method it should use on
each problem sub-domain. This connection is stored as a case to gradually speed
up the system as more connections are learned. By employing CBR on these
cases, the system can in time determine the most fitting method by looking at the
characteristics of each sub-domain. This line of thinking is most certainly relevant
for our system, as it employs a similar meta-level of reasoning. By adapting a
form of this approach, our system can potentially learn the connections between
the characteristics of each dataset and the method, which achieves the highest
performance. Future research should investigate the possibility of integrating this
architecture with our system, as it has a great potential of simplifying the process
of adding new datasets to the system.



Appendix A

Datasets

A.1 Acute Inflammations

Created by a medical expert to serve as examples to diagnose acute inflammations
of the urinary bladder and acute nephritis. Intended to measure the performance
of expert systems trying to diagnose patients. Each case in the dataset contains
6 different attributes which are all related to the existence of different symptoms.
The attributes describing each case are all binary values, i.e. yes or no questions.
These symptoms are in turn used to determine whether the patient is suffering
from none, one or both of the diseases.

Attribute Type # attributes Percentage
Boolean 5 83.3%
Multiple Choice 0 0.0%
Numeric 1 16.7%

Table A.1: Acute Inflammations attribute distribution

A.2 Dermatology

This dataset consists of 366 cases of dermatology diagnoses of erythemato-squamous
diseases. Each case is represented by 34 attributes, 33 of which are linear valued
and one of them is nominal.

The differential diagnosis of erythemato-squamous diseases is a real problem
in dermatology. They all share the clinical features of erythema and scaling,
with very little differences. The diseases in this group are psoriasis, seboreic
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Figure A.1: Acute Inflammations Class Distribution

dermatitis, lichen planus, pityriasis rosea, cronic dermatitis, and pityriasis rubra
pilaris. Usually a biopsy is necessary for the diagnosis but unfortunately these
diseases share many histopathological features as well. Another difficulty for the
differential diagnosis is that a disease may show the features of another disease
at the beginning stage and may have the characteristic features at the following
stages. Patients were first evaluated clinically with 12 features. Afterwards, skin
samples were taken for the evaluation of 22 histopathological features. The values
of the histopathological features are determined by an analysis of the samples
under a microscope.

In the dataset constructed for this domain, the family history feature has the
value 1 if any of these diseases has been observed in the family, and 0 otherwise.
The age feature simply represents the age of the patient. Every other feature
(clinical and histopathological) was given a degree in the range of 0 to 3. Here, 0
indicates that the feature was not present, 3 indicates the largest amount possible,
and 1, 2 indicate the relative intermediate values.

Attribute Type # attributes Percentage
Boolean 1 2.95%
Multiple Choice 32 94.1%
Numeric 1 2.95%

Table A.2: Dermatology attribute distribution
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Figure A.2: Dermatology Class Distribution

A.3 Hepatitis
This medical data set consists of 19 descriptive and clinical test result values for
155 hepatitis patients. 13 of the attributes are binary, while the rest are discrete
numeric attributes. The dataset has a lot of missing values.

Attribute Type # attributes Percentage
Boolean 12 63.2%
Multiple Choice 7 36.8%
Numeric 0 0.0%

Table A.3: Hepatitis attribute distribution

A.4 Fertility
The dataset contains real life data collected from 100 samples. Each case is de-
scribed by attributes well suited for questioning, which is based on life habits and
disease history of the patient. The attributes are both binary and categorical.
The problem is to predict the seminal quality of a patient from the attributes
which provide data about environmental factors and lifestyle. The possible diag-
noses are either normal or altered.
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Figure A.3: Hepatitis Class Distribution

Attribute Type # attributes Percentage
Boolean 3 33.3%
Multiple Choice 4 44.4%
Numeric 2 22.2%

Table A.4: Fertility attribute distribution
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Figure A.4: Fertility Class Distribution
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Figure A.5: Heart Disease Class Distribution

A.5 Heart Disease
This database contains 76 attributes, but all published experiments refer to using
a subset of 14 of them. The "goal" field refers to the presence of heart disease in
the patient. It is integer valued from 0 (no presence) to 4.

Attribute Type # attributes Percentage
Boolean 2 15.4%
Multiple Choice 5 38.5%
Numeric 6 46.1%

Table A.5: Heart Disease attribute distribution

A.6 Patterns of Lung Cancer in Ex-Smokers
This dataset maps the occurrence of lung cancer and survival rate in test sub-
jects. Can be used to predict whether a specific person is going to die of lung
cancer. The prediction is based on a set of attributes describing the smoking
habits of the person as well as other factors such as age and education. The
dataset contains both binary and categorical attribute values. This dataset can
be particularly interesting as it contains conditional attributes/questions. For
instance, the question of how many cigarettes you smoke each day is not relevant
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Figure A.6: Lung Cancer Class Distribution

for non smokers. 3 possible classifications exists, alive, dead from other causes
and dead from lung cancer.

Attribute Type # attributes Percentage
Boolean 0 0.0%
Multiple Choice 4 57.1%
Numeric 3 42.9%

Table A.6: Lung Cancer attribute distribution

A.7 SPECT Heart

The dataset describes diagnosing of cardiac Single Proton Emission Computed
Tomography (SPECT) images. Each of the patients is classified into two cate-
gories: normal and abnormal. The database of 267 SPECT image sets (patients)
was processed to extract features that summarize the original SPECT images. As
a result, 44 continuous feature pattern was created for each patient. The pattern
was further processed to obtain 22 binary feature patterns. Contains both test
and training sets.
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Attribute Type # attributes Percentage
Boolean 22 100.0%
Multiple Choice 0 0.0%
Numeric 0 0.0%

Table A.7: SPECT attribute distribution
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Figure A.7: SPECT Class Distribution
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Figure A.8: SPECT-F Class Distribution

A.8 SPECT-F Heart
The dataset describes diagnosing of cardiac Single Proton Emission Computed
Tomography (SPECT) images. Each of the patients is classified into two cate-
gories: normal and abnormal. Contains both test and training sets.

Attribute Type # attributes Percentage
Boolean 0 0.0%
Multiple Choice 0 0.0%
Numeric 44 100.0%

Table A.8: SPECT-F attribute distribution
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K 1 2 3 4 5 K 1 2 3 4 5

A 1 1 1 1 1 A 1 1 1 1 1

E 0,45833 0,45833 0,45833 0,45833 0,45833 E 0,47222 0,47222 0,47222 0,47222 0,47222

K 1 2 3 4 5 K 1 2 3 4 5

A 1 1 1 1 1 A 0,96667 0,99167 1 1 1

E 0,43056 0,43056 0,43056 0,43056 0,43056 E 0,57083 0,6 0,60278 0,60278 0,60278

K 1 2 3 4 5 K 1 2 3 4 5

A 1 1 1 1 1 A 1 1 1 1 1

E 0,45833 0,45833 0,45833 0,45833 0,45833 E 0,47222 0,47222 0,47222 0,47222 0,47222

K 1 2 3 4 5 K 1 2 3 4 5

A 1 1 1 1 1 A 1 1 1 1 1

E 0,43056 0,43056 0,43056 0,43056 0,43056 E 0,52778 0,52778 0,52778 0,52778 0,52778

K 1 2 3 4 5 K 1 2 3 4 5

A 0,89891 0,90437 0,9153 0,9235 0,9235 A 0,94809 0,95082 0,95082 0,95628 0,95628

E 0,14425 0,16651 0,17502 0,1919 0,21239 E 0,18314 0,21006 0,23409 0,24992 0,27491

K 1 2 3 4 5 K 1 2 3 4 5

A 0,96721 0,96448 0,96448 0,96721 0,96448 A 0,96448 0,96721 0,97268 0,97268 0,97268

E 0,21938 0,22878 0,23803 0,24727 0,27266 E 0,34924 0,3625 0,3797 0,39224 0,4055

K 1 2 3 4 5 K 1 2 3 4 5

A 0,89344 0,90164 0,92077 0,92623 0,93169 A 0,94536 0,94536 0,95082 0,95355 0,95355

E 0,14095 0,15084 0,15879 0,17173 0,18009 E 0,15919 0,17735 0,19206 0,20468 0,22404

K 1 2 3 4 5 K 1 2 3 4 5

A 0,96721 0,96448 0,96995 0,97268 0,97268 A 0,96448 0,97268 0,97541 0,97268 0,96721

E 0,21328 0,2238 0,23545 0,24341 0,26149 E 0,34097 0,35101 0,35567 0,36058 0,37753

Acute Inflammations

Cont. Similarty calculation (local) Cont. Similarty calculation (global)

Cont. Similarty and Info. gain (local) Cont. Similarty and Info. gain (global)

Dermatology

Cont. Similarty calculation (local) Cont. Similarty calculation (global)

Cont. Similarty and Info. gain (local) Cont. Similarty and Info. gain (global)

Stock (local) Stock (global)

Information gain selection (local) Information gain selection (global)

Stock (local) Stock (global)

Information gain selection (local) Information gain selection (global)



K 1 2 3 4 5 K 1 2 3 4 5

A 0,76129 0,7871 0,7871 0,8 0,80645 A 0,80645 0,8129 0,81935 0,80645 0,80645

E 0,27131 0,3236 0,34397 0,38438 0,4129 E 0,44007 0,49983 0,54092 0,57284 0,59525

K 1 2 3 4 5 K 1 2 3 4 5

A 0,80645 0,80645 0,80645 0,80645 0,81935 A 0,77419 0,83226 0,83226 0,81935 0,81935

E 0,44754 0,49236 0,53039 0,57284 0,61664 E 0,44346 0,52496 0,56774 0,59694 0,61426

K 1 2 3 4 5 K 1 2 3 4 5

A 0,76774 0,7871 0,77419 0,77419 0,77419 A 0,77419 0,77419 0,78065 0,78065 0,78065

E 0,24244 0,29066 0,3348 0,37453 0,42784 E 0,41188 0,48014 0,53039 0,57623 0,59626

K 1 2 3 4 5 K 1 2 3 4 5

A 0,77419 0,76774 0,79355 0,7871 0,79355 A 0,76774 0,81935 0,80645 0,8 0,79355

E 0,39559 0,45093 0,50594 0,55484 0,57657 E 0,35586 0,40611 0,4764 0,52666 0,56638

K 1 2 3 4 5 K 1 2 3 4 5

A 0,64966 0,65306 0,65306 0,65306 0,65306 A 0,65306 0,65306 0,65306 0,65306 0,65306

E 0,70042 0,75144 0,7708 0,78414 0,7967 E 0,74385 0,77656 0,78545 0,80612 0,82391

K 1 2 3 4 5 K 1 2 3 4 5

A 0,65306 0,65646 0,65646 0,65646 0,65646 A 0,65986 0,65646 0,65646 0,65646 0,65646

E 0,76321 0,83778 0,86709 0,88226 0,90686 E 0,71978 0,78388 0,83516 0,86709 0,88828

K 1 2 3 4 5 K 1 2 3 4 5

A 0,65306 0,63946 0,65646 0,65986 0,65646 A 0,67007 0,66327 0,65986 0,65986 0,65646

E 0,63893 0,69309 0,72266 0,73731 0,7428 E 0,67452 0,7292 0,74647 0,76504 0,77943

K 1 2 3 4 5 K 1 2 3 4 5

A 0,63946 0,64286 0,66667 0,66667 0,66667 A 0,67007 0,65646 0,66327 0,66667 0,66327

E 0,36211 0,56358 0,69833 0,72475 0,75196 E 0,31109 0,55913 0,61198 0,63684 0,68001

Cont. Similarty calculation (local) Cont. Similarty calculation (global)

Cont. Similarty and Info. gain (local) Cont. Similarty and Info. gain (global)

Fertility

Cont. Similarty and Info. gain (local) Cont. Similarty and Info. gain (global)

Heart Disease

Stock (local) Stock (global)

Information gain selection (local) Information gain selection (global)

Hepatitis

Stock (local) Stock (global)

Information gain selection (local) Information gain selection (global)

Cont. Similarty calculation (local) Cont. Similarty calculation (global)



K 1 2 3 4 5 K 1 2 3 4 5

A 0,87 0,87 0,87 0,87 0,87 A 0,88 0,88 0,87 0,87 0,87

E 0,46889 0,49444 0,49778 0,51667 0,55667 E 0,50556 0,55778 0,59889 0,66778 0,68444

K 1 2 3 4 5 K 1 2 3 4 5

A 0,85 0,86 0,87 0,87 0,87 A 0,85 0,86 0,87 0,87 0,87

E 0,48 0,51889 0,54556 0,60222 0,60889 E 0,49222 0,51667 0,55444 0,56778 0,59

K 1 2 3 4 5 K 1 2 3 4 5

A 0,88 0,89 0,89 0,89 0,89 A 0,89 0,89 0,89 0,89 0,89

E 0,46778 0,48889 0,49556 0,51333 0,55333 E 0,48444 0,54111 0,58111 0,64556 0,65778

K 1 2 3 4 5 K 1 2 3 4 5

A 0,87 0,86 0,88 0,89 0,89 A 0,86 0,87 0,88 0,89 0,89

E 0,41889 0,46333 0,48778 0,55111 0,55 E 0,42111 0,44333 0,48333 0,50667 0,52444

K 1 2 3 4 5 K 1 2 3 4 5

A 0,70053 0,72193 0,77005 0,7754 0,77005 A 0,75401 0,75401 0,75401 0,74866 0,74866

E 0,35902 0,39426 0,47837 0,55858 0,60549 E 0,45527 0,59383 0,63393 0,76884 0,78828

K 1 2 3 4 5 K 1 2 3 4 5

A 0,78075 0,79679 0,79679 0,79679 0,79679 A 0,73797 0,75401 0,78075 0,7861 0,78075

E 0,42076 0,52309 0,55153 0,60501 0,62883 E 0,47083 0,5807 0,61327 0,63807 0,68158

K 1 2 3 4 5 K 1 2 3 4 5

A 0,70053 0,72193 0,77005 0,7754 0,77005 A 0,75401 0,75401 0,75401 0,74866 0,74866

E 0,35902 0,39426 0,47837 0,55858 0,60549 E 0,45527 0,59383 0,63393 0,76884 0,78828

K 1 2 3 4 5 K 1 2 3 4 5

A 0,78075 0,79679 0,79679 0,79679 0,79679 A 0,73797 0,75401 0,78075 0,7861 0,78075

E 0,42076 0,52309 0,55153 0,60501 0,62883 E 0,47083 0,5807 0,61327 0,63807 0,68158

Cont. Similarty and Info. gain (local) Cont. Similarty and Info. gain (global)

SPECT-F Heart

Stock (local) Stock (global)

SPECT Heart

Stock (local) Stock (global)

Information gain selection (local) Information gain selection (global)

Cont. Similarty calculation (local) Cont. Similarty calculation (global)

Information gain selection (local) Information gain selection (global)

Cont. Similarty calculation (local) Cont. Similarty calculation (global)

Cont. Similarty and Info. gain (local) Cont. Similarty and Info. gain (global)

Stock (local) Stock (global)



K 1 2 3 4 5 K 1 2 3 4 5

A 0,48663 0,50267 0,51872 0,54011 0,54011 A 0,49733 0,49198 0,52941 0,53476 0,54545

E 0,3025 0,54886 0,74016 0,85027 0,92404 E 0,37859 0,65715 0,80287 0,88102 0,90605

K 1 2 3 4 5 K 1 2 3 4 5

A 0,55615 0,50267 0,50267 0,55615 0,52941 A 0,54545 0,48128 0,48128 0,51872 0,52406

E 0,28014 0,52953 0,75267 0,86437 0,92295 E 0,32316 0,60343 0,77419 0,87299 0,93182

K 1 2 3 4 5 K 1 2 3 4 5

A 0,60428 0,59358 0,63102 0,61497 0,6631 A 0,65241 0,65241 0,68984 0,68449 0,68984

E 0,07171 0,13162 0,23104 0,34225 0,51507 E 0,06879 0,12883 0,26033 0,39633 0,52686

K 1 2 3 4 5 K 1 2 3 4 5

A 0,61497 0,59358 0,57219 0,60963 0,66845 A 0,70053 0,65241 0,6738 0,67914 0,67914

E 0,06016 0,11923 0,20552 0,26337 0,38673 E 0,05919 0,09784 0,14329 0,21269 0,28367

Cont. Similarty calculation (local) Cont. Similarty calculation (global)

Cont. Similarty and Info. gain (local) Cont. Similarty and Info. gain (global)

Information gain selection (local) Information gain selection (global)
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B.2 NaCoDAE



R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,86 0,95 0,95 0,98 0,99 0,83 0,94 0,95 0,99 0,98 0,86 0,96 0,95 0,99 0,99

E 0,588 0,7852 0,788 0,9185 0,9194 0,5667 0,7889 0,787 0,9194 0,9153 0,5722 0,7861 0,7843 0,9227 0,9181

S 3 4 4 5 5 3 4 4 5 5 3 4 4 5 5

L 5 6 6 6 6 5 6 6 6 6 5 6 6 6 6

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,76 0,83 0,84 1 0,99 0,99 1 0,76 0,76 0,88 0,99 1 1 1

E 0,4231 0,4472 0,6241 0,8306 0,8306 0,931 0,9306 0,3861 0,3935 0,6074 0,8343 0,8333 0,9319 0,931

S 2 2 3 4 4 5 5 2 2 3 4 4 5 5

L 4 4 5 6 6 6 6 4 4 5 6 6 6 6

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,75 0,76 1 1 1 1 1

E 0,3546 0,4046 0,5583 0,8028 0,7704 0,9167 0,9194

S 2 2 3 4 4 5 5

L 4 4 5 6 6 6 6

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,39 0,35 0,36 0,71 0,69 0,59 0,68 0,41 0,42 0,6 0,42 0,76 0,8 0,82

E 0,1667 0,1667 0,1667 0,3588 0,3773 0,3139 0,3519 0,1667 0,1667 0,2745 0,2069 0,4176 0,4009 0,4667

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L 1 1 1 5 6 6 6 1 1 4 4 6 6 6

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,4 0,48 0,47 0,58 0,72 0,87 0,88

E 0,1667 0,169 0,219 0,2519 0,369 0,5199 0,5296

S 1 1 1 1 1 1 1

L 1 2 4 6 6 6 6

Information gain selection

2 5

10

2 5 10

Acute Inflammations
Stock

2 5

10

Class distribution threshold



R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,71 0,86 0,92 0,96 0,98 0,69 0,88 0,89 0,97 0,97 0,73 0,86 0,89 0,96 0,98

E 0,5 0,6667 0,6667 0,8333 0,8333 0,5 0,6667 0,6667 0,8333 0,8333 0,5 0,2666 0,6667 0,8333 0,8333

S 3 4 4 5 5 3 4 4 5 5 3 4 4 5 5

L 3 4 4 5 5 3 4 4 5 5 3 4 4 5 5

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,43 0,9 0,72 0,71 0,86 0,61 0,54 0,82 0,81 0,75 0,59 0,68 0,79 0,93 1

E 0,1667 0,4542 0,362 0,4032 0,4829 0,2509 0,2037 0,4426 0,3606 0,3995 0,1667 0,263 0,324 0,4309 0,4437

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L 1 4 4 4 4 4 3 5 4 4 2 4 4 5 4

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,88 0,92 0,93 0,95 0,95 0,91 0,94 0,95 0,96 0,96 0,92 0,94 0,95 0,96 0,96

E 0,5528 0,7547 0,8714 0,9515 0,9944 0,5569 0,7488 0,8715 0,9508 0,9944 0,5585 0,7495 0,8715 0,9499 0,9947

S 14 18 21 24 28 14 18 21 24 28 14 18 21 24 28

L 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,76 0,89 0,94 0,95 0,96 0,95 0,95 0,86 0,93 0,95 0,96 0,96 0,96 0,96

E 0,2398 0,4015 0,5634 0,7483 0,848 0,933 0,9882 0,2349 0,3951 0,5353 0,7216 0,8268 0,9221 0,9847

S 7 11 14 18 21 24 28 7 11 14 18 21 24 28

L 17 34 34 34 34 34 34 25 31 34 34 34 34 34

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,9 0,94 0,95 0,96 0,98 0,97 0,96

E 0,22 0,3726 0,4897 0,674 0,7926 0,9038 0,9827

S 7 11 14 18 21 24 28

L 17 29 34 34 34 34 34

Continuous similarity measures

Combined

2 5 10

2 5 10

Dermatology
Stock

2 5 10

Information gain selection

2 5

10



R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,35 0,34 0,32 0,63 0,59 0,64 0,67 0,34 0,33 0,47 0,55 0,72 0,72 0,75

E 0,0294 0,0294 0,0294 0,1157 0,1165 0,1189 0,1366 0,0298 0,0295 0,0639 0,0788 0,1596 0,1525 0,1666

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L 1 1 1 34 27 34 34 3 2 14 18 34 34 34

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,38 0,41 0,52 0,69 0,81 0,87 0,88

E 0,0301 0,0414 0,0725 0,1272 0,1929 0,2646 0,2674

S 1 1 1 1 1 1 1

L 3 9 17 23 34 34 34

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,88 0,91 0,93 0,94 0,96 0,89 0,92 0,93 0,95 0,95 0,88 0,92 0,93 0,94 0,95

E 0,4271 0,5415 0,6481 0,7561 0,8637 0,4274 0,5415 0,6483 0,7563 0,8634 0,427 0,5418 0,6479 0,7555 0,8637

S 14 18 21 24 28 14 18 21 24 28 14 18 21 24 28

L 19 22 27 30 34 17 22 26 31 34 18 21 26 31 34

R

T 0,4 0,5 0,5 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,21 0,44 0,44 0,38 0,52 0,41 0,29 0,65 0,69 0,64 0,52 0,66 0,83 0,88 0,86

E 0,0294 0,0923 0,0923 0,1006 0,1102 0,0618 0,0379 0,1186 0,1273 0,1052 0,0848 0,0909 0,1056 0,1188 0,1309

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L 1 15 15 34 34 7 2 13 14 13 8 10 11 12 34

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,94 0,95 0,96 0,96 0,97 0,86 0,89 0,91 0,91 0,84

E 0,4259 0,5433 0,651 0,7569 0,8621 0,2949 0,3905 0,4863 0,5867 0,6809

S 14 18 21 24 28 7 11 13 17 19

L 17 21 25 31 34 14 17 20 25 28

R

T 0,4 0,6 0,8

A 0,94 0,96 0,97

E 0,3814 0,5891 0,7812

S 10 17 23

L 16 24 31

Class distribution threshold

Combined

2 5 10

2 5

10

Continuous similarity measures

2 5 10

Without With

Data centric inference

Probability P = 1.0



R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,77 0,76 0,76 0,75 0,77 0,76 0,78 0,76 0,77 0,76 0,78 0,79 0,77 0,77 0,77

E 0,5576 0,7374 0,8704 0,9451 0,9785 0,5507 0,7133 0,8663 0,9493 0,9836 0,5256 0,6969 0,8555 0,9404 0,9839

S 8 10 12 14 16 8 10 12 14 16 8 10 12 14 16

L 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,74 0,68 0,74 0,76 0,77 0,76 0,75 0,8 0,77 0,78 0,75 0,76 0,76 0,78

E 0,225 0,3507 0,5091 0,6741 0,8522 0,9411 0,9895 0,2386 0,3916 0,5919 0,7586 0,8778 0,9441 0,9897

S 4 6 8 10 12 14 16 4 6 8 10 12 14 16

L 19 19 19 19 19 19 19 19 19 19 19 19 19 19

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,79 0,81 0,81 0,79 0,77 0,77 0,77

E 0,2626 0,4266 0,5761 0,7572 0,8937 0,9523 0,9919

S 4 6 8 10 12 14 16

L 19 19 19 19 19 19 19

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,78 0,58 0,64 0,8 0,71 0,76 0,77 0,78 0,7 0,67 0,78 0,8 0,8 0,82

E 0,0526 0,0526 0,0526 0,0908 0,092 0,1207 0,1233 0,0526 0,0526 0,0526 0,0526 0,0618 0,0921 0,1139

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L 1 1 1 11 19 15 19 1 1 1 1 11 19 19

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,8 0,79 0,79 0,79 0,8 0,81 0,8

E 0,0526 0,0526 0,0526 0,0526 0,0755 0,129 0,1159

S 1 1 1 1 1 1 1

L 1 1 1 1 11 19 19

Class distribution threshold

2 5

10

Information gain selection

2 5

10

Heptatitis
Stock

2 5 10



R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,77 0,75 0,76 0,77 0,79 0,77 0,76 0,77 0,79 0,78 0,76 0,77 0,77 0,78 0,79

E 0,5051 0,6773 0,8248 0,9194 0,966 0,4901 0,6573 0,8135 0,9133 0,9676 0,4877 0,6344 0,7825 0,9088 0,9666

S 8 10 12 14 16 8 10 12 14 16 8 10 12 14 16

L 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,63 0,79 0,76 0,76 0,79 0,63 0,79 0,78 0,77 0,79 0,79 0,79 0,79 0,84 0,81

E 0,0526 0,0772 0,1054 0,0928 0,0526 0,0526 0,0526 0,0795 0,0696 0,0526 0,0526 0,0526 0,0534 0,114 0,0942

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L 1 5 12 9 1 1 1 7 15 1 1 1 2 19 19

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,62 0,63 0,63 0,63 0,62 0,65 0,64 0,63 0,64 0,64 0,65 0,64 0,64 0,65 0,64

E 0,7618 0,8054 0,8166 0,8156 0,8182 0,7683 0,8205 0,8342 0,8366 0,8387 0,7834 0,8403 0,8653 0,8726 0,8673

S 6 7 8 9 9 6 7 8 10 10 6 7 8 10 10

L 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,57 0,6 0,62 0,63 0,62 0,62 0,63 0,62 0,62 0,65 0,63 0,64 0,64 0,64

E 0,4622 0,7447 0,979 0,9971 0,9984 1 1 0,436 0,5804 0,8559 0,9583 0,9963 1 1

S 4 5 8 9 10 13 13 4 5 7 8 10 13 13

L 13 13 13 13 13 13 13 13 13 13 13 13 13 13

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,64 0,65 0,64 0,63 0,64 0,65 0,65

E 0,4177 0,5714 0,8394 0,9194 0,9959 1 1

S 4 5 7 8 10 13 13

L 13 13 13 13 13 13 13

Information gain selection

2 5

10

Heart Disease
Stock

2 5 10

2 5 10

Combined

2 5 10

Continuous similarity measures



R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,51 0,54 0,55 0,6 0,65 0,65 0,63 0,59 0,62 0,64 0,63 0,65 0,66 0,65

E 0,0769 0,0769 0,0769 0,2022 0,255 0,2444 0,2207 0,077 0,0769 0,1576 0,1117 0,3094 0,2462 0,2827

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L 1 1 1 13 12 12 13 2 1 13 12 13 13 13

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,59 0,64 0,65 0,66 0,66 0,67 0,67

E 0,0771 0,1065 0,1402 0,203 0,3059 0,3878 0,4006

S 1 1 1 1 1 1 1

L 2 10 13 13 13 13 13

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,56 0,58 0,61 0,62 0,61 0,58 0,57 0,59 0,61 0,61 0,57 0,59 0,61 0,62 0,61

E 0,469 0,552 0,6523 0,7793 0,8123 0,4662 0,5467 0,6484 0,7772 0,8327 0,4665 0,5455 0,6445 0,778 0,8575

S 6 7 8 9 9 6 7 8 10 10 6 7 8 10 10

L 9 11 12 12 12 9 11 12 12 12 9 11 12 12 13

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,64 0,64 0,64 0,64 0,64 0,64 0,64 0,65 0,65 0,64 0,64 0,65 0,64 0,65 0,65

E 0,0769 0,2613 0,3535 0,1709 0,2572 0,0783 0,0769 0,3089 0,2662 0,11 0,0782 0,18 0,0775 0,4199 0,4187

S 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1

L 1 13 13 13 13 6 1 13 13 13 3 13 2 13 13

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,68 0,68 0,66 0,67 0,65 0,63 0,65 0,64 0,64 0,64 0,65 0,63 0,6 0,63 0,62

E 0,5246 0,713 0,8251 0,9125 0,9577 0,5177 0,7172 0,8216 0,9078 0,959 0,5117 0,7193 0,8271 0,9094 0,9603

S 9 12 14 16 18 9 12 14 16 18 9 12 14 16 18

L 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22

Stock

2 5 10

Combined
2 5 10

SPECT Heart

2 5

10

Continuous similarity measures

2 5 10

Class distribution threshold



R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,6 0,66 0,6 0,72 0,63 0,63 0,65 0,69 0,72 0,68 0,68 0,65 0,66 0,66

E 0,243 0,3728 0,5177 0,7077 0,8192 0,9002 0,954 0,2493 0,3728 0,5172 0,6989 0,8085 0,8977 0,9501

S 5 7 9 12 14 16 18 5 7 9 12 14 16 18

L 11 21 22 22 22 22 22 13 19 22 22 22 22 22

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,74 0,67 0,64 0,62 0,64 0,63 0,6

E 0,254 0,3789 0,507 0,7022 0,8073 0,8984 0,9537

S 5 7 9 12 14 16 18

L 15 19 22 22 22 22 22

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,41 0,47 0,32 0,35 0,43 0,65 0,51 0,58 0,46 0,69 0,49 0,74 0,69 0,5

E 0,0455 0,0455 0,0455 0,1518 0,1275 0,0824 0,0856 0,0455 0,0455 0,0455 0,0455 0,163 0,163 0,0992

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L 1 1 1 22 22 18 22 1 1 1 1 22 22 21

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,52 0,48 0,63 0,66 0,77 0,53 0,63

E 0,0455 0,0455 0,0455 0,0562 0,1171 0,2085 0,314

S 1 1 1 1 1 1 1

L 1 1 1 5 22 22 22

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,8 0,8

A 0,68 0,67 0,67 0,64 0,65 0,65 0,66 0,63 0,64 0,63 0,62 0,63 0,61 0,62 0,94

E 0,5105 0,713 0,8229 0,9099 0,9592 0,5186 0,7159 0,8247 0,9084 0,9587 0,5226 0,7184 0,8261 0,9601 0,8333

S 9 12 14 16 18 9 12 14 16 18 9 12 14 18 5

L 22 22 22 22 22 22 22 22 22 22 22 22 22 22 5

10

Continuous similarity measures

2 5 10

2 5

10

Class distribution threshold

2 5

Information gain selection



R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,24 0,75 0,49 0,61 0,39 0,69 0,69 0,74 0,47 0,47 0,47 0,41 0,59 0,64 0,57

E 0,0455 0,1596 0,0711 0,0778 0,0711 0,0455 0,0455 0,1056 0,0455 0,0455 0,0455 0,0709 0,0681 0,1916 0,1237

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L 1 22 22 18 18 1 1 22 1 1 1 2 3 22 22

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,7 0,7 0,65 0,67 0,67 0,53 0,64 0,64 0,61 0,63

E 0,5177 0,706 0,8123 0,8956 0,9551  0,3608815426997250,5265 0,6236 0,7218 0,7831

S 9 12 14 16 18 5 7 9 11 13

L 22 22 22 22 22 21 21 22 21 21

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,44 0,45 0,44 0,46 0,45 0,44 0,42 0,45 0,42 0,45 0,43 0,42 0,43 0,44 0,43

E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44

L 44 44 44 44 44 44 44 44 44 44 44 44 44 44 44

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,44 0,44 0,45 0,45 0,45 0,45 0,42 0,44 0,43 0,45 0,42 0,42 0,45 0,43

E 1 1 1 1 1 1 1 1 1 1 1 1 1 1

S 44 44 44 44 44 44 44 44 44 44 44 44 44 44

L 44 44 44 44 44 44 44 44 44 44 44 44 44 44

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,41 0,42 0,42 0,43 0,41 0,4 0,41

E 1 1 1 1 1 1 1

S 44 44 44 44 44 44 44

L 44 44 44 44 44 44 44

Combined
2 5 10

10

Information gain selection

2 5

10

Without With (Probability P = 0.85) 

Data centric inference

SPECT-F Heart
Stock

2 5



R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,61 0,52 0,43 0,61 0,46 0,57 0,57 0,31 0,6 0,35 0,34 0,43 0,45 0,48

E 0,0227 0,0227 0,0227 0,0718 0,0634 0,0759 0,0714 0,0227 0,0227 0,0227 0,0227 0,1288 0,1086 0,139

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L 1 1 1 44 44 44 44 1 1 1 1 44 44 44

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,34 0,32 0,44 0,14 0,43 0,38 0,48

E 0,0227 0,0227 0,0227 0,0262 0,1942 0,5381 0,5235

S 1 1 1 1 1 1 1

L 1 1 1 7 44 44 44

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,6 0,61 0,59 0,59 0,6 0,59 0,59 0,59 0,61 0,6 0,6 0,62 0,6 0,61 0,59

E 0,4378 0,5404 0,6484 0,7547 0,8613 0,4374 0,5395 0,6486 0,7549 0,861 0,437 0,5398 0,6485 0,7545 0,8614

S 18 23 27 32 37 18 23 27 32 37 18 23 28 32 37

L 22 28 33 38 44 22 28 33 39 44 22 28 33 39 44

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,63 0,67 0,59 0,61 0,58 0,56 0,64 0,59 0,62 0,59 0,56 0,61 0,58 0,57 0,57

E 0,0227 0,0382 0,0464 0,0427 0,0412 0,0227 0,0227 0,0382 0,0386 0,0425 0,0227 0,0267 0,0429 0,1121 0,1156

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L 1 12 11 12 12 1 1 20 12 18 1 4 44 44 44

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,8 0,82 0,84 0,81 0,83 0,85 0,85 0,86 0,85 0,86 0,84 0,84 0,86 0,86 0,86

E 0,5274 0,7267 0,8719 0,9622 0,99 0,5281 0,7341 0,8815 0,9667 0,9919 0,5341 0,72 0,8659 0,9659 0,9919

S 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8

L 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

2 5 10

Fertility
Stock

2 5 10

Class distribution threshold

2 5

10

Continuous similarity measures

2 5 10

Combined



R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,79 0,75 0,84 0,84 0,82 0,84 0,8 0,88 0,87 0,86 0,86 0,84 0,84 0,86

E 0,2244 0,3704 0,507 0,6763 0,8304 0,9556 0,9889 0,2252 0,3593 0,5067 0,6815 0,8448 0,9578 0,9885

S 2 3 4 5 6 7 8 2 3 4 5 6 7 8

L 4 5 9 9 9 9 9 4 5 9 9 9 9 9

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,88 0,88 0,86 0,84 0,86 0,87 0,86

E 0,223 0,3444 0,5037 0,7126 0,8578 0,957 0,99

S 2 3 4 5 6 7 8

L 4 5 9 9 9 9 9

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,86 0,82 0,78 0,83 0,88 0,88 0,87 0,88 0,88 0,88 0,88 0,88 0,88 0,88

E 0,1111 0,1111 0,1111 0,1785 0,1159 0,163 0,2007 0,1111 0,1111 0,1111 0,1111 0,1111 0,1352 0,1341

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L 1 1 1 9 4 9 9 1 1 1 1 1 9 6

R

T 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A 0,88 0,88 0,88 0,88 0,88 0,88 0,88

E 0,1111 0,1111 0,1111 0,1115 0,1141 0,1252 0,1411

S 1 1 1 1 1 1 1

L 1 1 1 2 2 7 6

R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,76 0,82 0,8 0,84 0,84 0,83 0,82 0,82 0,82 0,83 0,84 0,84 0,84 0,84 0,83

E 0,4533 0,5848 0,7259 0,86 0,947 0,4637 0,5878 0,7233 0,8556 0,9478 0,4622 0,5852 0,7219 0,863 0,9507

S 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8

L 6 8 9 9 9 7 9 9 9 9 8 9 9 9 9

2 5

10

Class distribution threshold

2 5

10

Continuous similarity measures

2 5 10

Information gain selection



R

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,88 0,88 0,87 0,8 0,88 0,88 0,88 0,88 0,88 0,88 0,88 0,88 0,88 0,88 0,88

E 0,1111 0,1374 0,1474 0,2063 0,14 0,1111 0,1111 0,1389 0,1111 0,1111 0,1111 0,1111 0,1159 0,1359 0,137

S 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

L 1 9 4 9 9 1 1 7 1 1 1 1 5 7 4

T 0,4 0,5 0,6 0,7 0,8 0,4 0,5 0,6 0,7 0,8

A 0,85 0,84 0,84 0,83 0,81 0,85 0,84 0,84 0,82 0,82

E 0,4081 0,5331 0,5332 0,6581 0,7831 0,5 0,625 0,6251 0,75 0,875

S 3 4 4 5 6 4 5 5 6 7

L 4 5 5 6 7 4 5 6 6 7

inference No inference

Patterns of lung cancer
Rule-based inference

Combined
2 5 10
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Appendix C

Source Code Documentation

C.1 Technologies
The implementation of our system is in the form of a web application developed
using the following collection of technologies:

C# 5.0 & .NET 4.5 Programming language and framework for web develop-
ment, developed and maintained by Microsoft.

ASP.NET MVC 5.0 Model view controller framework for ASP.NET webpages

Entity Framework 6.0.2 Object-relational mapping framework.

Microsoft Azure SQL SQL database version tailored to the Microsoft Azure
platform.

Bootstrap 3 Frontend JavaScript and CSS for responsive websites.

Visual Studio 2013 Ultimate Integrated development environment(IDE)from
Microsoft.

C.2 Installation Guide
This is a step by step guide of how to open and inspect the source code of
our software system on your local machine. The database, which is hosted in
the Microsoft Azure platform imposes certain restrictions on which IP-address
that can access the database. This unfortunately means that you will be un-
able to run the project locally, as you will not gain access to the database.
The web application is however openly available at the following URL: http:

111
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//masterproject.doguapi.no. We encourage people to visit this address if
they wish to test our system.

1. Unzip the file attached to this thesis. The project is provided as an uncom-
piled Visual Studio solution containing the source code.

2. Open the solution file named "Master.sln" using Visual Studio 2013. It will
not open on older versions of Visual Studio.

3. The solution contains two projects, named Domain and Webpage. To in-
spect the source code you can now navigate these projects and their files.

C.3 Class Diagrams
In this section we present a collection of class diagrams for different parts of our
system. It is not a complete collection of classes, it is only meant to highlight
the most important parts. Each class is listed with its name, in addition to the
parameters and methods they contain.

• Figure C.1 shows the two most important classes in the web application
project. These classes are responsible for controlling the UI of the system,
making use of the classes and methods embedded in the class library.

• Figure C.2 shows the different classes related to the repositories and the
domain models they operate with. These are the classes that together
form the data access layer of the application, exposing the contents of the
database.

• Figure C.3 shows the most important classes for the dialogue part of the
system. This includes the dialogue manager and dialogue state model that
together keep track of the current dialogue. It also includes the CCBR
algorithm interface and the classes that extends it.

• Figure C.4 shows a more detailed look at the implementations of NaCoDAe
and iNN(k).

http://masterproject.doguapi.no
http://masterproject.doguapi.no
http://masterproject.doguapi.no
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Figure C.1: Web application class diagram
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Figure C.2: Repositories and domain models
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Figure C.3: Dialogue classes
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Figure C.4: CCBR algorithm classes
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