
Two-hand, camera-based gesture
recognition for SoundDream

Henrik Hjorthen Støren

Master of Science in Computer Science

Supervisor: Asbjørn Thomassen, IDI

Department of Computer and Information Science

Submission date: July 2015

Norwegian University of Science and Technology

Abstract

Hand gesture recognition is the task of having a machine recognize the hand gestures made
by a human. In this thesis the main focus has been to research AI methods for gesture
recognition. I investigate machine learning methods and image processing techniques to
see if they are suited for hand gesture recognition with a color camera. I have used a
PlayStation Eye camera, and written two different programs that use images captured by it
to recognize and distinguish between 6 different static gestures. One of the programs uses
only image processing techniques to recognize the gestures, while the other uses image
processing to construct a feature vector, and then uses the KNN algorithm to predict the
gesture in the image. The thesis is a proof of concept that will show the results of both
programs and compare the two different approaches. I will also give a comparison between
my approaches and what other researchers have done.

i

Sammendrag

Gjenkjenning av håndgester er å få en maskin til å gjenkjenne gester som gjøres av et men-
neske. Denne rapporten har som hovedfokus å undersøke metoder i kunstig intelligens
som brukes til å gjenkjenne gester. Jeg undersøker maskinlæringsteknikker og bildebe-
handlingsteknikker for å se hvilke som er egnet for å gjenkjenne gester med et fargekam-
era. Jeg har brukt et PlayStation Eye kamera, og skrevet to forskjellige programmer som
bruker bilder fra kameraet for å gjenkjenne og skille mellom 6 ulike, statiske gester. Et
av programmene bruker kun bildebehandlingsteknikker for å gjenkjenne gester, mens det
andre bruker bildebehandling for å bygge opp en vektor med verdier, som så brukes i
KNN-algoritmen for å gjette gesten i bildet. Prosjektet er et ”proof of concept” som viser
resultatene fra begge programmene og sammenligner de to fremgangsmåtene. Jeg kommer
i tillegg til å sammenligne mine fremgangsmåter med hva andre forskere har gjort.

ii

Preface

This report is submitted to the Norwegian University of Science and Technology in fulfill-
ment of the requirements for master thesis.

This work has been performed at the Department of Computer and Information Science,
NTNU, with Amanuensis Asbjørn Thomassen as the supervisor.

Acknowledgements
I would like to thank Asbjørn Thomassen for his work as my supervisor, and Tore Ommedal
for inspiring me with his system for conferences. I am also grateful for all the help given
by Håvard Wormdal Høiby and Sondre Lefsaker on how to use LATEX. Finally I would give
an extra thanks to Håvard Wormdal Høiby for proofreading my thesis.

iii

Problem Description
The main task will be to recognize different hand gestures by using a color camera, and
to compare different approaches that achieve this. To accomplish that, an evaluation of
image processing and machine learning methods will be essential.

iv

Table of Contents

Abstract i

Sammendrag ii

Preface iii

Table of Contents vii

List of Figures x

List of Tables xi

Abbreviations xii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goal and Research Questions . 2
1.3 Research method . 3
1.4 Structure . 3

2 Background Theory 5
2.1 PlayStation Eye . 5
2.2 Image Processing . 6

2.2.1 Segmentation . 7
2.2.2 Erosion and Dilation . 8
2.2.3 Find Contours . 9
2.2.4 Find Convex Hull and Convexity Defects 10

2.3 Artificial Intelligence and Machine Learning 13
2.3.1 Data mining . 13
2.3.2 K-Nearest Neighbours . 16

v

3 Hand Gesture Recognition 19
3.1 What is Hand Gesture Recognition . 19
3.2 Previous Work . 20
3.3 My Approach . 23

3.3.1 System 1: IPRec - Gesture Recognition with Image Processing . . 24
3.3.2 System 2: KNNRec - Gesture Recognition with K-Nearest

Neighbours . 28

4 Experiments and Results 31
4.1 Hardware and Software . 31
4.2 Experimental Data Set . 32
4.3 The experiments . 32

4.3.1 Experiment 1: Will IPRec be able to recognize gestures in real-time? 32
4.3.2 Experiment 2: Will KNNRec be able to recognize gestures in real-

time? . 32
4.3.3 Experiment 3: Classifying the Test Set 32

4.4 Results . 33
4.4.1 Experiment 1: Will IPRec be able to recognize gestures in real-time? 33
4.4.2 Experiment 2: Will KNNRec be able to recognize gestures in real-

time? . 33
4.4.3 Experiment 3: Classifying the Test Set 33

5 Evaluation and Discussion 37
5.1 Evaluation Metric . 37
5.2 Evaluation . 38
5.3 Discussion . 41

5.3.1 Research Question 1: Which image processing techniques are best
suited for hand gesture recognition? 41

5.3.2 Research Question 2: Which machine learning algorithms are best
suited for hand gesture recognition? 42

5.3.3 Research Question 3: How should the different approaches be
compared and evaluated? . 42

5.3.4 Research Question 4: How does the performance of a purely im-
age processing system compare to the performance of the best ma-
chine learning systems when it comes to hand gesture recognition? 42

5.3.5 Goal: Compare methods in Artificial Intelligence to see which is
best suited for hand gesture recognition 43

6 Closing Remarks 45
6.1 Contributions . 45
6.2 Future Work . 45
6.3 Conclusion . 46

Bibliography 47

vi

A Examples of feature vectors 51
A.1 Feature vectors without normalization 51
A.2 Feature vectors with normalization . 51
A.3 Feature vectors with Z score applied . 52

vii

viii

List of Figures

1.1 Prototype drawing of gesture reconition system, as proposed by Tore Ommedal. 2

2.1 The PlayStation Eye camera. 6

2.2 Example of smoothing an image to remove noise. 6

2.3 4- and 8-connectivity. The top-most figure shows a binary image. The
middle figure shows 4-connected segments in different colors. The bottom
figure shows 8-connected segments in different colors. 7

2.4 Morphological operations. (a)Erosion, (b)Dilation, (c)Erosion. 9

2.5 (a) Image with some segments(b) Surroundness among connected compo-
nents and (c) among borders. 11

2.6 Conditions for pixel(i,j) being a (a) outer border pixel, or (b) hole border
pixel . 11

2.7 The convexity defects of the contour of a hand. The red dots are (some of)
the vertices of the convex hull, and start-/end-points for the defects. (Also
fingertips). The point farthest away from the hull is marked with green for
every defect. 12

2.8 The Manhattan distance(green) and the Euclidean distance(red) between
two points. 14

2.9 Difference between Mahalanobis distance(turquoise) and Euclidean dis-
tance(red). 17

3.1 Image used in the article [5], showing the results of the hit or miss trans-
formation. 22

3.2 Examples of the 6 different gestures to be recognized. 23

3.3 The process of finding the correct convexity defects after acquiring the
binary image of the hand. 25

ix

3.4 Examples of the 6 different gestures to be recognized with convexity de-
fects drawn on. The red points represent the start- and end-points of the
defects, while the green represent the point farthest away from the convex
hull. The green line is the distance between the convexity defect and the
convex hull and is orthogonal to the red line. 26

3.5 The results of after each main step in IPRec. 27

5.1 The difference between precision and accuracy. 38

6.1 Recognition using SIFT features. 46

x

List of Tables

2.1 Decision Rule for the Parent Border of the Newly Found Border B. 10

3.1 Average precision of the different classifiers used on the two feature sets
described in [20]. 21

4.1 Results of running KNN on the test set with K = 7 with normalization of
the features. 34

4.2 Results of running KNN on the Test Set with K = 7 and no normalization
of the features. 34

4.3 Results of running KNN on the Test Set with K = 7 and applying the Z
score from [20]. 35

4.4 Results of gesture recognition with only image processing techniques. . . 35

5.1 Results of running KNN on the test set with K = 7 with normalization of
the features. Precision and recall highlighted in green. 39

5.2 Results of running KNN on the test set with K = 7 and no normalization
of the features. Precision and recall highlighted in green. 39

5.3 Results of running KNN on the test set with K = 7 and applying the Z
score from [20]. Precision and recall highlighted in green. 39

5.4 Results of gesture recognition with only image processing techniques.
Precision and recall highlighted in green. 40

5.5 Results of gesture recognition with only image processing techniques on
the training set of KNNRec. Precision and recall highlighted in green. . . 41

xi

Abbreviations

HCI = Human Computer Interaction
FPS = Frames Per Second
AI = Artificial Intelligence
KNN = K-Nearest Neighbours
SVM = Support Vector Machine
HMM = Hidden Markov Model
NB = Naive Bayes
EM = ExpectationMaximization
CART = Classification and Regression Trees
ANN = Artificial Neural Network
SIFT = Scale-Invariant Feature Transform

xii

Chapter 1
Introduction

In this chapter I give an introduction to the thesis. I start with some background and
motivation for the project, and move on to the goal and my research questions. After that
I present the structure of the rest of this thesis.

1.1 Background and Motivation
Imagine that you did not need a display of knobs and buttons, or even a touch-screen to
control your device, but that you could do so simply by moving your hands in front of a
camera. This is one of the topics being researched in the field of Human Computer Inter-
action (HCI). HCI is an ever growing field of study in computer science, and in this thesis
I will explore how hand gestures can be used to control a device.

The inspiration for the project came from a friend of my supervisor, Tore Ommedal, who
wanted to build a system for conferences. The system would consist of two components,
each containing a camera, a speaker, a microphone, and a LED light. Every participant in a
conference would have the system mounted on the back of his/her chair, having one com-
ponent on either side of his/her head. The cameras would be used to capture frames above
- and in front - of the user’s shoulders, where he would perform hand gestures to control
the system. Typical commands would include controlling the volume of the speakers, or
turning noise cancellation on or off. This system is called SoundDream, and an image of
how a prototype is shown in Figure 1.1. In addition to being used for conferences, this
system could also be used to control other systems. Controlling programs used for design,
like Photoshop, could be done in a more intuitive way than using the mouse and keyboard.
Another application is user interaction with games. Sony, Microsoft, and Nintendo have
done extensive work already on how users can interact more intuitively with their consoles.

Having done some work previously with the Microsoft Kinect v2 I was already in the
mindset of using gestures for controlling a system. This work has made me eager to ex-
plore the topic further. I have also done quite some work with image processing in previous

1

Chapter 1. Introduction

projects and I had hopes to incorporate my knowledge on the topic into this project, while
still learning something new.

Figure 1.1: Prototype drawing of gesture reconition system, as proposed by Tore Ommedal.

1.2 Goal and Research Questions
Goal: Compare methods in Artificial Intelligence to see which is best suited for hand ges-
ture recognition.

There are lots of methods in the field of Artificial Intelligence (AI) that could be used
for hand gesture recognition. Throughout this thesis I will discuss a number of methods
within the fields of image processing and machine learning. I will present programs that
make use of the most promising of these methods in order to compare them. When I had
formulated the goal for my thesis, there were a few questions that arose. Following are the
4 research questions that define the work done in this thesis.

Research Question 1: Which image processing techniques are best suited for hand ges-
ture recognition?

Research Question 2: Which machine learning algorithms are best suited for hand ges-
ture recognition?

Research Question 3: How should the different approaches be compared and evaluated?

Research Question 4: How does the performance of a purely image processing system
compare to the performance of the best machine learning systems when it comes to hand
gesture recognition?

2

1.3 Research method

1.3 Research method
In this project I have written two programs that takes as input a query image and gives a
predicted gesture as output. The first program is written using only image processing tech-
niques to recognize the hand gestures. The second is an implementation of the K-Nearest
Neighbours algorithm, where image processing is used to construct the feature vector.
These two approaches were chosen because others have had great experiences with them
[20, 5]. By taking the practical approach and writing the programs and doing experiments,
I get insight to the various problems one might face - problems that might have been over-
looked by taking a more analytic approach. By predicting the gesture from images where
the gesture is known, I can easily measure the performance of the programs and in order to
validate correctness. In my experiments I have used images with a set of gestures shown
in Figure 3.2, that the systems should be able to recognize, and experimented with altering
some variables to increase the performance. The experimentation will be discussed further
in Chapter 4.

1.4 Structure
This thesis will describe the project in its entirety. The introduction is already given in
this chapter. In chapter 2, I will give necessary background theory on various topics. In
chapter 3, I will explain in more detail what hand gesture recognition is, followed by
what other researchers have done, and then I will go through the architecture of my two
programs. Chapter 4 will describe the experiments done to answer the research questions
given in Section 1.2. I first describe the different experiments that was conducted, and then
present the results of the experiments. In chapter 5, I will evaluate the systems and the two
approaches based on my experiments, and give answers to the research questions and a
discussion on how I achieved the goal of this thesis. In Chapter 6, I state the contributions
I have made to the field, suggest some future work and give the conclusion of this thesis.

3

Chapter 1. Introduction

4

Chapter 2
Background Theory

This chapter first gives some details about the camera used to capture images. These im-
ages are the input data used by the programs I have written. Then necessary background
theory is covered. The two fields of study the reader needs insight into in order to under-
stand the following chapters are image processing and machine learning. These fields are
the main focus of this chapter. In the section dedicated to image processing I describe the
image processing techniques used in my research. In the section covering AI and machine
learning, I first clarify the difference between the two terms, and then discuss data mining
and the K-Nearest Neighbours algorithm as subsections of AI and machine learning.

2.1 PlayStation Eye

Through my own experience with the Kinect, my first thought was that it would be very
well suited for this project. These thoughts were based on how well the Kinect can rec-
ognize different body parts of a user and it already has built-in functions to distinguish
between a few gestures. However, it is quite expensive and also quite big, which makes
it nonviable for the project. My supervisor suggested I use the PlayStation Eye, having
supervised another project a few years back where the students had used the same camera.
The camera is quite small(80mm 55mm 65mm) and known for its high frame rate and
low price.This makes it a good choice for my project. It is capable of capturing 60 fps
at a 640x480 pixel resolution, and 120 fps at a 320x240 pixel resolution. Having a high
frame rate will allow the user to perform- and the program to interpret, several gestures
per second which makes the program feel more responsive. A picture of the camera can
be seen in Figure 2.1. The PlayStation Eye is intended by Sony to only be used with a
PlayStation. Therefore, Sony themselves has not released a driver or any other support for
the camera to be used with a computer. However, a driver for this purpose is provided by
CodeLaboratories [1].

5

Chapter 2. Background Theory

2.2 Image Processing

In short, image processing is to apply mathematical operations on an image to achieve
some goal. This goal might be that you have a lot of noise in your image which you would
like to remove. In that case applying a smoothing filter [19] would be one solution. An
example of this can be seen in Figure 2.2. Other more advanced tasks include finding
contours in an image, or finding the center of mass of an oddly shaped figure.

In my implementation I have utilized several image processing techniques. I have used the
image processing library OpenCV [2], because it is easy to use and contains methods that
does exactly what I needed for my programs. In the following subsections I will explain
some of the techniques used and why they are useful for hand gesture recognition.

Figure 2.1: The PlayStation Eye camera.

Figure 2.2: Example of smoothing an image to remove noise.

6

2.2 Image Processing

2.2.1 Segmentation
Image segmentation is one of the oldest and most widely studied problems in image pro-
cessing [19]. The goal of image segmentation is to divide an image into regions or seg-
ments. Dividing the image is done based on some criterion. This could be to consider the
value of the pixels in the image, be it gray scale or color, or it could be something more ad-
vanced like considering texture in the image. The resulting regions are either 4-connected
or 8-connected and not overlapping. A region being 4-connected means that two pixels
that both fulfill the criterion will be in the same region if they are neighbours in a cross-
like pattern. Pixel ’A’ will only be considered to be the neighbour of pixel ’B’ if they lie
next to each other horizontally or vertically. 8-connectivity is the same as 4-connectivity
with the addition of pixels being neighbours also if they lie next to each other diagonally.
In Figure 2.3 you can see how an image can contain more segments if it’s 4-connected than
if it’s 8-connected. The result of the segmentation will in most cases be a binary image
with pixels having the value 1 (white) if they satisfy the condition, and 0 (black) if they do
not.

Figure 2.3: 4- and 8-connectivity. The top-most figure shows a binary image. The middle figure
shows 4-connected segments in different colors. The bottom figure shows 8-connected segments in
different colors.

For the task of hand gesture recognition, segmentation is very useful in detecting the hand.
To do this however, we need to know what to look for in the image. If we know approxi-
mately what color the user’s skin will have, we can simply set a color range that includes
this color. This has been done successfully in many other projects [13, 24, 14]. However,
if the system have to accommodate users with widely varying skin color, it might be nec-
essary for the user to wear a glove with a known color and make the segmentation based
on this color instead.

7

Chapter 2. Background Theory

Since the color of the hand is not uniform and there might be similar colors in the back-
ground, the result of segmentation will often return not only the segment we are interested
in, in this case the hand, but also other small segments here and there in the image. Also,
there will often be ”holes” in the segment which may be caused by the user having a lot of
hair on his hand or sub-optimal light conditions that cause a glare on part of the hand or
on the glove used.

2.2.2 Erosion and Dilation

Erosion and Dilation are very common operations in image processing and computer vi-
sion. These operations are performed on binary images and are called morphological op-
erations. This is because they alter the shape of the objects in the input image [19]. These
operations (and many other image processing operations), are based on the mathematical
concept of convolution, only in image processing we convolve two binary images, as op-
posed to mathematics, where the operation is performed on functions. In image processing
we convolve a binary image with a much smaller matrix, called the structuring element, to
produce a new binary image as the output. This structuring element can be anything from
a simple 3x3 matrix to more complex structures like a disc or other odd shapes. Once the
structuring element is chosen, it is positioned at every possible location in the image and
convolved with the region it overlaps to produce the output.

Erosion
Much in the same way that water erode porous rock, carving away at the fragile mountain,
erosion in image processing carves away parts of the objects in an image. An example of
erosion can be seen in Figure 2.4 a and c. The idea is to remove anomalies and noise from
the image, resulting in a cleaner object. This, however, will often render the object we are
interested in being trimmed and smaller than we want. To compensate for this, dilation is
often used on the image after erosion.

Dilation
Dilation is the opposite of erosion. With this operation we seek to make objects bigger
instead of cropping them. The idea behind dilation is to fill in gaps or holes that we want
to consider as part of the object, but that wasn’t included, or removed during previous
operations. An example of dilation can be seen in Figure 2.4 b.

As I mentioned earlier, segmentation is not perfect and might leave us with segments
that contain holes or have anomalies. To rectify both of these problems a combination of
erosion and dilation is useful. If we first perform erosion to remove anomalies on the hand
(maybe some of the background was considered to be part of the hand), and then perform
dilation to fill holes and gaps, this yields a good result [19]. Combining the two operations
in this order (erosion first, then dilation), is called Opening. Even though opening a binary
image will usually remove a lot of the unwanted segments from the image, there might
still be some segments left that were large enough to pass through the opening, but that we
still not want.

8

2.2 Image Processing

Figure 2.4: Morphological operations. (a)Erosion, (b)Dilation, (c)Erosion.

2.2.3 Find Contours

Finding the contours of the objects in an image is another very common task to perform in
image processing. This is usually done on a binary image, and the result will be one list for
every segment in the image. These lists will contain the coordinates of all the pixels that
lie on the edge of the respective segment in an ordered fashion. Finding the contours in an
image can be very useful for the task of hand recognition. In this case especially so, where
the distance between the hand and the camera is never more than a meter. This means that
after the segmentation it is safe to assume that the largest segment - and therefore also the
largest contour - is that of the hand. By making this assumption we now know exactly
which pixels of the image belongs to the hand.

There are several different ways to extract the contours of an image. As I already men-
tioned, I am using OpenCV for my image processing. This library contains a function
for finding contours based on the Suzuki and Abe algorithm (or Suzuki85)[18]. The algo-
rithm defines two types of borders; outer borders and hole borders. The difference between
these can be seen in Figure 2.5. They define two components, namely 0-components and
1-components. These represent the background and holes (black pixels), and the segments
(white pixels), respectively. The algorithm goes as follows:

1. Start scanning the image horizontally from the top leftmost pixel.

2. Interrupt the scan whenever you hit an outer border pixel or a hole border
pixel, as shown in Figure 2.6. (If the pixel satisfies both conditions, then it must
be regarded as the starting point for the outer border.)

9

Chapter 2. Background Theory

3. Assign a uniquely identifiable number to the newly found border (sequential
number of the border) denoted NBD.

4. Determine the parent border of the newly found border like so:
a) During the scan we remember the sequential number LNBD of the
previously encountered border during the scan.

b) LNBD should be either the parent (surrounding) border of NBD or a
border that shares the parent with NBD.

c) We can then decide the sequential number of the parent border of the
newly found border with the types of the two borders by checking
Table 2.1.

5. Follow the pixels on the border and mark them.
a) If the pixel lies between the 0-component that contains the pixel
(i, j+1) and the 1-component that contains the pixel (i, j), change the value
of pixel (i, j) to -NBD.

b) Otherwise set the value of pixel (i, j) to NBD, unless (i, j) lies on an
already followed border.

6. When the entire border is marked, resume the scan and continue from
point 2. When we reach the bottom right pixel in the image we are done.

B’ (LNBD) = Outer border B’ (LNBD) = Hole border
B (NBD) = Outer border The parent border of the border B The border B’
B (NBD) = Hole border The border B’ The parent border of the border B

Table 2.1: Decision Rule for the Parent Border of the Newly Found Border B.

2.2.4 Find Convex Hull and Convexity Defects
When you have a contour, you may need to know exactly what shape that contour has. In
order to evaluate this, it might be useful to know how many dents and protrusions there are
in the contour. This is the task performed by finding the convexity defects of a contour.
However, this can not be done until we have first found the convex hull of the contour, as
the convexity defects of a contour are partly defined by the convex hull of that contour.

The convex hull of a contour is the set of points that form the smallest convex shape that
encloses the contour. In the physical world this would be equivalent to having some object,
say a star-shaped wooden toy, and then putting a rubber band around it. The rubber band
would now be the convex hull of the star.

10

2.2 Image Processing

Figure 2.5: (a) Image with some segments(b) Surroundness among connected components and
(c) among borders.

Figure 2.6: Conditions for pixel(i,j) being a (a) outer border pixel, or (b) hole border pixel

As with the task of finding the contours, OpenCV also has a method to find the convex
hull of a contour. This method is based on Sklansky’s algorithm[16] which runs with O(N
logN) complexity in its current implementation. The algorithm goes as follows:

1. Choose the uppermost left vertex of the contour and call it O. Also
assign it to the variable V1.

2. In a counter-clockwise fashion, pick the two next vertices. Let the first be
V2, and the second V3.

3. Let u1, u2, and u3 be the position vectors of V1, V2, and V3 respectively.

4. Calculate the values c and d according to c = u2 − u1 and d = u3 − u1.

5. Calculate the vector product p = c× d.
a) If p is negative, then V2 is concave, and is removed. This might cause
V1 to become concave, so we need to go back and check V1 again.
Let V2 = V1 and V1 be the vertex that was V1 in the previous iteration.
Continue from point 3.

11

Chapter 2. Background Theory

b) Else if p is positive, we let V1 = V2 and V2 = V3, and pick the next
vertex in a counter-clockwise fashion for the value of V3.
Continue from point 3.

6. When all the vertices have been checked and we return to O, we are done
and the set of vertices that remain forms the convex hull of the contour.

Now that we have the convex hull of the contour, we can find its convexity defects.
OpenCV has a method for this as well. This method will find the defects between a con-
vex hull and a contour. Every returned defect is a tuple consisting of a start point for the
defect, an end point, the point within the defect that is the farthest away from the convex
hull, and the distance between this last point and the convex hull. If we assume that the
contour we are analyzing is the contour of a hand, the convexity defects can be very useful
in analyzing it further. It can for instance be used to find the fingertips on the hand, or
it can be used as a feature for some machine learning algorithm. These two uses will be
discussed further in Chapter 3. In Figure 2.7 you can see an example of how some of the
convexity defects of the contour of a hand can help in analyzing it.

Figure 2.7: The convexity defects of the contour of a hand. The red dots are (some of) the vertices
of the convex hull, and start-/end-points for the defects. (Also fingertips). The point farthest away

from the hull is marked with green for every defect.

12

2.3 Artificial Intelligence and Machine Learning

2.3 Artificial Intelligence and Machine Learning

The field of Artificial Intelligence (AI) is one of the newest fields in science and engineer-
ing, yet it is still very huge. AI is something that everyone living in a modern society will
encounter every day, probably without realizing it. Companies like Google and Facebook
uses AI for searching and configuring the presentation for the user using their applications.
Supermarkets use AI to estimate where in the store a certain product should be placed to
sell more of it. Hospitals use AI for diagnosing patients. AI is all around us. Tasks or goals
of AI include, but are not limited to: Reasoning, Knowledge representation, Automated
planning and scheduling, Machine learning, Natural language processing, Computer vi-
sion, Robotics, and General intelligence.

Many people will tell you that AI and Machine Learning are simply different terms for the
same thing. According to Russell and Norvig [15] however, they are not. In fact Machine
Learning is a sub-topic of AI. Machine learning deals with designing and developing al-
gorithms to evolve behaviors based on empirical data. One key goal of machine learning
is to be able to generalize from limited sets of data. Such algorithms will build a model
from the data, and make decisions or predictions based on the model. This allows for
more dynamic programs in the sense that they do not need to follow strictly static instruc-
tions, but can take one path or another, and even evolve by learning/discovering new paths.

In the above paragraph I mentioned that the algorithms, using Machine Learning, will
build a model from available data. In the case of gesture recognition the available data will
consist of a set of images or short video clips. Video clips will be most useful for dynamic
gestures, while for static gestures images will suffice. These images and video sets will
be sets where we already know which gesture is displayed. Having this prior knowledge
will let us train the algorithm to have it learn how each gesture is represented, in order to
predict which gesture is displayed in a new image/video clip.

Images in themselves do not really help us. They need to be processed and analyzed. This
will be done by utilizing image processing techniques, such as the ones explained in the
previous sections, to extract features that will build up a feature vector. A feature vector
will replace an image with a lot of numbers. If we instead think of the vectors as points in
an n-dimensional coordinate system (n being the number of features extracted from each
image), we might be able to extract some pattern or logic from the data. Doing this is
called Data Mining, which I will explain further in the following subsection.

2.3.1 Data mining

In our modern world we have computers and inexpensive disks that make it a lot easier to
save data that would previously have been discarded[22]. Almost every move we make as
individuals or as large industries are in some way tracked and stored in a database. It is
practically impossible for a human being to draw something useful out of all this data, but
for a computer it is not.

13

Chapter 2. Background Theory

The task of data mining is to extract patterns and useful information from this ocean of
data. Data mining is the practice of applying algorithms with the data available from a do-
main to solve related problems. To do this, the algorithms make good use of theory from
statistics. These algorithms are used a lot by big companies. As I have already mentioned,
internet companies like Google and Facebook will use their data to customize the user in-
terface. If you have been browsing for fantasy books on Amazon, it is not unlikely that you
will see an advertisement for fantasy books somewhere on Facebook. Data mining is the
technology which enables this. All of this may seem very simple, but it is not. In order to
successfully extract useful information from the data there are a lot of things that need to
be done right. First off you need to consider which part of the data (which attributes) you
want to evaluate. After that you need to make sure that the value ranges of the different
attributes don’t vary too much. Then you need to choose an appropriate algorithm to do
the actual prediction.

As I mentioned in the previous paragraph, it is important that the value ranges of the
attributes do not vary too much. I will go a little more into detail on this. First off, a lot of
the data mining algorithms attempts to perform some sort of classification or clustering.
In order to do this, they will often need to implement a distance metric. Typically the
distance is measured with a Minkowski distance. Between two points X = (x1, x2,..., xn)
and Y = (y1, y2,..., yn), the Minkowski distance is defined as (

∑n
i=1 |xi − yi|p)1/p. When

p = 1 this is called the Manhattan distance, and when p = 2 it is called the Euclidean
distance. The difference between these can be seen in Figure 2.8, where the green line is
the Manhattan distance, and the red line is the Euclidean distance between two points in
the two-dimensional space.

Figure 2.8: The Manhattan distance(green) and the Euclidean distance(red) between two points.

This is where the value ranges of the attributes come into play. Imagine if you have a case
of round objects. Some are bowling balls, and some are coconuts. Now, for the sake of
simplicity and to make my point more obvious, say that in order to classify these objects

14

2.3 Artificial Intelligence and Machine Learning

we will consider only two attributes. These attributes are the weight of the object, and
whether the object is edible or not. Let’s say that the weight of the coconuts will vary from
500 g to 2000 g, and the weight of the bowling balls will vary from 1000 g to 7000 g. If an
object is edible the value of the attribute will be 1, and if it is not edible it will be 0. Now
consider a bowling ball weighing 1500 g and a coconut weighing 1500 g. In a coordinate
system these points will practically lie on top of each other, and the distance between them
would be minimal. If we next consider another bowling ball that weighs 4000 g, it will
be extremely far away from the first bowling ball in comparison to how far the coconut is
from the bowling ball. This is all due to the ranges we have for the different features. If we
instead of measuring weight in g would measure it in kilograms, the range of the bowling
balls would be between 1 and 7, while the coconuts will be between 0.5 and 2. If we also
change the range of edible to be from 0 (not edible) to 10 (edible), our classifier would
have much better performance. Now you may argue that for the sake of this classification
it would be redundant to consider weight, since the edible feature is enough to classify the
objects. For this simple example that is true, but if we put in some hazelnuts and some
tennis balls into the case, both of our features would be necessary.

The simple example in the previous paragraph illustrates both how important value ranges
are, as well as how important it is to pick the correct features. In the original example it
would suffice to say whether or not an object was edible, while in the extension we would
also need to consider the weight. For both of them it would be useless to consider the
shape of the objects, since they are all round. (A feature called roundness that consider
how perfectly round the object is, however, could prove useful). It is worth noting that for
a feature that is not naturally a numerical value, such as edible/not edible in this example,
or color, or a medical symptom, we replace the natural value range of the feature with
numerical values so that we can calculate a distance. As we saw in the example, these
numerical values should be chosen carefully and not assigned arbitrarily.

Now that we have a basic understanding of the data representation in data mining we can
move on to discuss the algorithms used. According to [23] the 10 best-known algorithms
in data mining are: C4.5, K-means, Support vector machines (SVM), Apriori, Expecta-
tionMaximization (EM), PageRank, AdaBoost, K-nearest neighbor (KNN), Naive Bayes,
Classification and Regression Trees (CART). C4.5, SVM, KNN, Naive Bayes, and CART
fall into the category of classifiers. If you have a defined set of classes, like hand gestures
for example, a new data object that passes through one of these algorithms will end up
being classified as one of the predefined classes. Usually for this to work there is some
training involved, where we have a data set of which we already know the class of every
instance. We will then tell the system which features of the data to look at, and build the
classifier from this. In the following subsection I will go more into detail on how the KNN
classifier works. K-means and EM are clustering algorithms. The objective of these algo-
rithms is to divide the data into clusters. That means that they need to find some pattern
that separates the data into distinct groups. This can be useful for detecting anomalies, like
in the case of a stolen credit card. If there is all of a sudden a huge over-seas transaction on
an account, clustering could help the bank detect this anomaly, and alert the customer and
potentially take action against it. The apriori algorithm attempts to find frequent item sets

15

Chapter 2. Background Theory

in the data and derive association rules. This can be useful for the owner of a supermarket.
If the owner of a supermarket is able to derive that beer and snacks are often bought in
the same transactions, he can decide to put the beer and the snacks next to each other in
the store in order to speed up the shopping of the customers, and also attempt to influ-
ence more customers to buy both of the items. AdaBoost is an ensamble method. That
means that it will be combined with one or more other learners in an attempt to be more
accurate. Other researchers, such as Viola and Jones[21] have found this algorithm very
useful. PageRank is a search ranking algorithm, and is the foundation of the search engine
Google. The algorithm will assign a rank to every hyperlink, and produces a static ranking
of web pages.

As you may understand by now, machine learning and data mining are both huge areas of
research, and they are both very useful. In the following subsection I will explain, in more
detail, how the KNN algorithm works. This algorithm I used for hand gesture recognition,
and the details on how it was used will be given in Chapter 3.

2.3.2 K-Nearest Neighbours
The K-Nearest Neighbours (KNN) algorithm is designed to perform classification. It is an
improvement and an extension of a look-up table. It is an algorithm where both the dis-
tance metric (”nearest”) and the number of neighbours can be decided by the programmer.
It is one of the simplest machine learning algorithms, but still very effective in some cases.
A shortcoming of the algorithm is that it is sensitive to the structure of the data. This is
where it becomes important to pick the good features, the good distance metric, and make
the value range of the different features approximately similar, so that the distance in one
dimension does not overrule all the others. It is also important to note that the algorithm
will work best in low dimensional spaces (data with few features), and will become expo-
nentially worse as the number of dimensions increase. This is referred to as ”the curse of
dimensionality” in the literature[15].

The result of the training part of this algorithm is basically a matrix and a vector. The ma-
trix will contain the data. Every row represents an instance, and every column represents a
feature. The vector will have one element for every instance of training data (one for every
row in the matrix). The element at position i in the vector will be the class of the instance
in row i of the matrix. Alternatively the vector can be added on to the matrix as an extra
feature (column).

Now that the data representation is taken care of, it is time to choose a distance metric,
and a value for k. The most common distance metric is Euclidean distance. This is how
most people think of distance between two points. It is simply a straight line from point
A to point B as you saw earlier in red in Figure 2.8. Another common, but quite more
complex distance metric is Mahalanobis distance. With this metric the distance of an
observation x = (x1, x2,..., xn) from a set of observations with mean µ = (µ1, µ2,..., µn)
and covariance matrix S is defined as DM (x) =

√
(x− µ)TS−1(x− µ). This results

in an elliptical distance, as opposed to the circular of the Euclidean distance metric. The
difference between these two can be seen in Figure 2.9. Here all the points, including

16

2.3 Artificial Intelligence and Machine Learning

the two green dots, that lie on the turquoise line has the same distance to the black dot
in the center according to the Mahalanobis distance metric. The two green dots have
very different distances from the black dot according to the Euclidean distance metric,
as shown by the two red circles and the length of the black arrows. If you try using
Euclidean distance as your metric, but do not get any good results, it might be that the
data is structured in an odd fashion in the feature space. Using the Mahalanobis distance
instead could help in solving this problem.

Figure 2.9: Difference between Mahalanobis distance(turquoise) and Euclidean distance(red).

Choosing a value for k can have a big impact on the results of the algorithm. It is this value
that says how many neighbours we will look at when we do the classification. The easiest
way to explain what the role of this value is in the algorithm is to explain the algorithm
itself. I will start explaining from when the training is complete and the distance metric is
chosen. The algorithm will then take a new instance as input and attempt to classify it.

1. Extract from the new instance all the same features that were extracted from
the training data, and store them in a vector.

2. For every row/instance in the training data apply the distance metric to
calculate the distance between it and the new instance.

3. Store a tuple consisting of distance and the class of the training data instance
for all the instances in the training data.

4. When the distance between the new instance and all the instances in the
training data has been calculated, sort the list containing the distance - class
tuples by ascending distance (having the element with the shortest distance as
the first element).

17

Chapter 2. Background Theory

5. From this list extract the k first elements. These will represent the k instances
from the training data that are closest to the new instance according to the
chosen distance metric. (The k nearest neighbours).

6. The new instance will have the class of the most frequent class among the k
extracted elements.

Choosing a good value for k can be difficult. It is usually set to be a small value between 5
and 11, but this will largely depend on the size of the training data, as well as the number
of classes. One way to make a decision on the value for k is to do validation. This is done
by having a test set of instances. It is important that this test set does not include any of the
instances used for training, or it will obviously perform extremely well, and we would not
really get anything useful from the validation. Therefore we use new instances that in total
represent all the different classes, and we already know which class each instance should
have. Now we set a value for k and run the algorithm on the test set. The performance is
measured as how many instances the algorithm can correctly classify. It is common to run
the algorithm several times with different values for k to find which one is best suited for
the specific problem. When the best one is found, the validation process is complete, and
we can start classifying new data.

18

Chapter 3
Hand Gesture Recognition

In this chapter, I will start off by explaining exactly what hand gesture recognition is, and
what it can be used for. It obviously has something to do with recognizing the hand of a
person, but in the first section of this chapter I will dive a little deeper. Next, I will discuss
some previous work on solving this problem. The two driving questions for this discussion
is: ”What have other researchers studied?”, and ”What results have this yielded?”. Finally,
I will explain my approach to reach the goal of this thesis, as stated in Chapter 1.

3.1 What is Hand Gesture Recognition
Hand gesture recognition is a topic in HCI. The goal is for a computer to interpret human
gestures via mathematical algorithms. By doing this the hope is that interaction between
humans and computers will be more natural and intuitive. At the time of writing, the most
common way for humans to interact with computers is to use a combination of a mouse
and a keyboard, but with touch-screens becoming ever more popular. While the use of
touch-screens is already an improvement from the use of mouse and keyboard with re-
gard to intuitiveness, hand gesture recognition takes it one step further by eliminating the
need to directly interact with a physical object. One of the reasons for why hand gesture
recognition is only recently starting to see the light of day, is because it is computationally
expensive compared to interpreting physical input devices, such as mouse and keyboard
and touch-screens. However, with modern computers and their processing power it is now
possible to interpret images and video and extract gestures from them in real-time. (As
opposed to older computers where you had to wait several seconds before the input was
registered and interpreted by the computer).

There are several interesting applications of hand gesture recognition. One example is
computer games. In strategy games, where the player need to move troops around on a
map, there is a concept called micro-management. The player has to keep track of where
all his troops are at any given time, and be able to issue commands to troops on different
parts of the map in quick succession. If instead of moving the mouse around he/she could

19

Chapter 3. Hand Gesture Recognition

move his/her fingers in the air and make gestures to issue the commands, I foresee that
the micro-management would become a lot easier. Another example, which is rooted in
everyday life, is to help the physically impaired to interact with computers, such as in-
terpreting sign language. Even for people who are not physically impaired it would be
beneficial to interact with systems by using hand gestures. Some systems are controlled
by voice, which can be troublesome in areas with a lot of noise. Other than that, hand
gesture recognition could be used for robotics [7] and for virtual reality [17].

While we still have some way to go before we make input devices such as mice, keyboards
and even touch-screens obsolete, there has been a lot of interesting research on the topic
of hand gesture recognition over the past years. Some of these are highlighted in the next
section.

3.2 Previous Work
Through my research I have found that most researchers describe hand gesture recognition
as a three-step pipeline from when the image is acquired. These three steps are: extraction
method, feature estimation and extraction, and classification or recognition. The first step
deals with pre-processing the image. Here we need to perform segmentation on the image
to extract the important part of the image. This segmentation process will vary depending
on whether the system should consider only static gestures, or if it should also be used for
dynamic gestures, in which case the hand will need to be tracked as well as segmented.
There are two main ways to do segmentation of the hand. Some researchers make use of
a colored glove to make the segmentation more robust and invariant to illumination and
background, while others make the segmentation based on skin color. Ibraheem et.al. con-
ducted a study [9] where they compared skin color based segmentation techniques. They
found that different techniques performs better in some environments than others, so that
the chosen technique should depend on the environment of the research. Overall they con-
cluded that segmentation based on skin color is easy and efficient, but with the drawback
of being sensitive to illumination changes and interference with backgrounds with similar
colors as that of the skin. Other studies such as [24, 6, 26] have also shown that segmen-
tation based on skin color can be efficient. In [11] Lamberti and Camastra made a system
where they use a glove with a few colors to make the segmentation more robust and in-
variant to illumination and background, which also proved to work well with a recognition
rate close to 98%.

After the extraction of the hand comes feature estimation and feature extraction. It can
be a difficult task to figure out which features of the image are important in order to rec-
ognize the gesture depicted, as there are so many possibilities. Seeing as hand postures
and gestures will vary greatly from person to person, due to the fact that not all hands
are similar, it is essential to capture the invariant properties of the hand [8]. In this arti-
cle Hasan and Abdul-Kareem describe two methods for gesture recognition. In the first
method they use the contour of the hand as the feature with the intention of eliminating
the problem with size difference and translation. In addition to the hand contour they use
”general features”. These describe the height and width of the hand, and compounded

20

3.2 Previous Work

with the hand contour, this results in a feature vector with 1060 elements. In the second
method, they use complex moments of the segmented gesture as features. This also deals
with the problem of rotation. For both methods they have the program differentiate be-
tween 6 static gestures. With the first method this results in a recognition rate between 50
and 88% for the different gestures, and a total recognition rate of 70.83%. With the second
method they produce a recognition rate between 75 and 100% for the different gestures,
and a total recognition rate of 86.38%. In [10] Ke et.al. propose a system that uses 2D
Gabor transformation, primarily used to analyze the texture of the hand region, for feature
extraction. These features are then used to distinguish between 5 different gestures, and
results in an accuracy of 98.76%. Despite what is stated by Hasan and Abdul-Kareem in
[8] about having to extract invariant properties of the hand, there are researchers that has
had success with extracting shape-based features. One of these is [13] where Panwar uses
orientation, center of mass, status of fingers (folded or not), status of thumb, and the loca-
tion of the fingers in the image as his features, and end up with an approximate recognition
rate of 94% on a set of 45 different gestures with 10 samples of each. Another example is
[20] where Trigueiros et.al. propose 2 different sets of features to be used in classification.
One of them uses the mean intensity value of the pixels in the region where the hand is,
the variance in intensity in the same region, the area covered by the hand, the perimeter
of the hand, the angle of the hand, and the number of convexity defects. The second set
also uses the mean, variance and angle from the first set, and adds on 36 values from the
orientation histogram of the hand as well as 100 values from the hand’s radial signature.
Both methods yielded good results, but the first one was a bit better.

The final step in the pipeline is classification or recognition. As with feature extraction
there is a huge number of different approaches that could be used to classify the gesture.
In [10] Ke et.al. used a Support Vector Machine (SVM) to make the classification based
on the features extracted from the training data. Hasan and Abdul-Kareem [8] make use
of a Neural Network (NN) for their classification, while in [25] Ying Yin and Davis have
successfully used a Hidden Markov Model (HMM). In [20] Trigueiros et.al. attempt to find
which machine learning technique is best suited for hand gesture recognition. They use
both KNN, Naive Bayes (NB), NN, and SVM to do the classification. All these techniques
are run twice on two different sets of features, as described in the previous paragraph. A
summary of how the different techniques performed on the two feature sets in terms of
precision can be seen in Table 3.1.

KNN Naive Bayes NN SVM
Feature set 1 96.89% 22.47% 96.80% 91.59%
Feature set 2 87.67% 85.12% 85.12% 81.44%

Table 3.1: Average precision of the different classifiers used on the two feature sets
described in [20].

From this table it is easy to see that Feature Set 1 gave better results than Feature Set 2,
except when using NB as the classification technique. This fact suggests that there is not
necessarily one absolute best way to do hand gesture recognition. Also when looking at the

21

Chapter 3. Hand Gesture Recognition

other research I have referenced in this section there are clearly other ways to go about the
classification, both in terms of feature extraction and choice of classification technique, in
order to get good results. Considering all the possible combinations of features extracted
and combine this with the possible classification techniques it is fairly obvious that the
number of possibilities is huge, and there are likely great combinations that have never
been researched before.

While most researchers consider the hand gesture recognition task as the three-step pipeline
described above, there are some that take a different approach. In [5] Chowdary et.al. ex-
plore 4 different algorithms for hand gesture recognition that does not use any sort of
machine learning. Therefore there is no database or training data to base the decision on.
In all the approaches they define a gesture simply by how many fingers are held up in the
image. This means that the system will interpret a hand showing the index finger with
the other fingers folded the same way as it would interpret a hand showing only the little
finger. The three first algorithms they suggest are pretty simple, and not very robust. All
4 algorithms start off by taking an RGB image as input and converts it to a binary image
(presumably based on some threshold). The first approach then counts the number of white
pixels in the image, and based on some predefined ranges they make a decision on which
gesture is shown. This method is insensitive to rotation, but quite sensitive to scaling. If
the user’s hand is too far or too close to the camera, it will be interpreted as a different
gesture than intended. In the second approach they have the user draw black circles or
put black markers on every finger. Having the binary image, they then proceed to count
how many circles are in the image. This number should be equivalent to how many fingers
are shown. In addition to being insensitive to rotation, this algorithm is also insensitive
to scaling, however, they experienced problems with detecting the thumb. In the third al-
gorithm they first perform morphological operations, which I described in Section 2.2.2,
on the image, and then a hit or miss transform, which results in an image showing only
the edges along one side (the right side in this case), as shown in Figure 3.1. After that,
they again apply the morphological operation dilation, to make sure that there are no holes
in the lines. After that, they count each object and this count says how many fingers are
shown.

Figure 3.1: Image used in the article [5], showing the results of the hit or miss transformation.

22

3.3 My Approach

In the fourth approach the authors have first smoothed the image with a median filter, and
then divided the image in two halves horizontally. After that they perform 3 - 5 horizontal
scans in each half to detect the fingers. To make the approach insensitive to rotation, the
image is also divided into two halves vertically and then these two halves are also scanned
(vertically) to detect the fingers. To conclude the authors say that the last approach is the
most robust, being able to correctly predict the gesture in 82.47% of the images.

3.3 My Approach
As I have already mentioned, the research goal of this thesis is to ”Compare methods in
Artificial Intelligence to see which is best suited for hand gesture recognition”. To do this
I have taken two different approaches in writing two programs to perform hand gesture
recognition. Both of them tries to recognize 6 different static gestures. Examples of these
6 gestures can be seen in Figure 3.2. The first program I wrote uses only image processing
techniques, similarly to what Chowdary et.al. did in [5], only I go through a few more
steps. This is to make the solution more robust and hopefully be able to recognize most of
the gestures correctly. In the second program I use a database of 600 images and extract
features from all of them to build up feature vectors to be used as a data set. I then use this
data set to make predictions on new images by using the KNN classification algorithm.
The reason why I chose these two approaches is because I wanted to see how a program
that performs gesture recognition only by using image processing techniques compares
to one of the best[20] machine learning techniques. For both the first approach and the
feature extraction of the second approach I used the library OpenCV[2] for my image
processing. My two approaches will be discussed in greater detail in the following two
subsections, and in Chapter 4 I present my results of the experiments to test and compare
the two approaches.

Figure 3.2: Examples of the 6 different gestures to be recognized.

23

Chapter 3. Hand Gesture Recognition

3.3.1 System 1: IPRec - Gesture Recognition with Image Processing

When I first started working on this thesis I thought that I should write at least one pro-
gram that would perform gesture recognition. My first idea was to perform the hand ges-
ture recognition using only image processing techniques. Before I started conducting a
literature review on this I had some initial thoughts as to how I should go about doing it.
I obviously needed to segment the image to extract the pixels that represent the hand, and
I would probably have to refine the result of the segmentation in some way. Next I would
have to get into some more advanced methods to recognize which gesture was shown in
the image. I was happy to find that other researchers have had success with gesture recog-
nition by only using image processing techniques [5]. Although they did not have quite as
high recognition rates as I had expected, it gave me confidence to pursue the matter further.
Researchers using machine learning techniques for prediction, such as [24, 26, 8, 20], as
well as the OpenCV forum [3], also helped to let me know what I should have my program
look for in the image in order to have it recognize the gesture. Throughout the develop-
ment of my first approach I tested the resulting application at each step to make sure that
the solution was a viable alternative in practice and not just theoretically good. Using this
strategy also told me if the program could recognize gestures in real-time, or if the pro-
cessing power required was too much.

The first step I had to take in order to make a real-time gesture recognition program was
to make sure that I was able to capture images and continually feed them to the program.
To do this I used the PlayStation Eye discussed in Section 2.1. However easy this may
sound, it was not. I struggled a lot in the beginning to make the drivers work and have my
program detect and use the camera. Initially I got an old driver for the camera from super-
visor, that the other students I mentioned in Section 2.1 had used for their project. When
this was made it was free to download and available to whoever wanted to use it. However,
the driver is now outdated, and it was impossible to find documentation on how to use it.
I tried with C++, C#, Python and Java, but I could not get it working in either language.
After some time I had to give up and purchase the newest version of the software for the
camera. Being most comfortable with Java, I chose this as my developing platform. With
the newest software and some help from the CodeLaboratories [1] forum I was able to get
it working.

Once I had an image to work with, it was time to start processing it. As almost all re-
searchers I discussed earlier seems to agree, the first step is to segment the image. I started
out by having the user wear a glove with a known color. This was chosen because my
initial research suggested that segmenting the hand based on skin color was next to impos-
sible. However, as I kept on reading research papers I soon discovered that it is very much
possible to do segmentation of the hand based on skin color. I then took a few pictures of
my hand with the PlayStation Eye and analyzed the color ranges of the hand in order to
find the color range to use for the segmentation. The easiest way to do this with OpenCV
is the function inRange(Mat src, Scalar lowerb, Scalar upperb, Mat dst), where src is the
source image and dst is the resulting binary image. lowerb and upperb are the lower and
upper bounds, respectively, represented as tuples of the form [B, G, R], where the letters
stands for blue, green, and red, respectively and are integers ranging from 0 to 255. Using

24

3.3 My Approach

this function will result in a binary image where every pixel from src that lies within the
range [lowerb, upperb] will be white, while those that fall outside the range will be black.
After tuning the bounds a little, I ended up with a good segmentation of the hand, with
only a few, small other segments. To refine the segmentation I then eroded and dilated the
image.

At this point it was time to figure out how the system should separate the different gestures
from one another. As discussed in Section 2.2.4, convexity defects seems like a good path
to investigate. This was also suggested in various posts on the OpenCV forum. As already
mentioned in Section 2.2.4, OpenCV has a function to find convexity defects, called ”con-
vexityDefects”. In order to use this function, however, I first had to find the contour of the
hand, as well as the convex hull of the hand. Using OpenCV’s function ”findContours”
(discussed in Section 2.2.3), I got a list with all the contours in the binary image acquired
in the previous paragraph. Assuming the hand is the biggest contour in the image, I could
then extract this contour from the list with the help of the function ”contourArea”, which
returns the area encircled by a contour. If the biggest contour in the image was not big
enough (according to the constraints I had set based on camera resolution and the dis-
tance between the camera and the user’s hand), to be considered a hand, the image was
dropped and the recognition process cancelled. After a sufficiently large contour had been
extracted, I used the function ”convexHull” to get the convex hull of the biggest contour,
which based on the same assumption as above, would be the hand. Having the contour and
the convex hull of the hand I could now extract the convexity defects. However, OpenCV’s
function for doing this will return all the convexity defects between the convex hull and
the contour. For my application I am only interested in the defects assosiated with the
fingers on the hand, which means that I somehow had to find these defects. In Section
2.2.4 I mentioned that a convexity defect is defined by it’s start point, end point, point on
the contour farthest away from the convex hull, and the distance from this last point and
the convex hull. This distance can be used to filter out the defects that doesn’t lie between
fingers. The ones that do lie between the fingers will have a distance that is quite a lot
larger than the others. I experimented with a few different values for this, and eventually
landed on a value that gave good results. This value will depend on the resolution of the
image, as well as how far away from the camera the hand is. The process described in this
paragraph is visualized in Figure 3.3.

Figure 3.3: The process of finding the correct convexity defects after acquiring the binary image of
the hand.

25

Chapter 3. Hand Gesture Recognition

This leaves me with only the defects that lies between the fingers. Now it is time to find out
how many fingers, and thus which gesture, is shown in the image. I can use the number
of defects, as well as their start- and end-points to count the fingers. (When I refer to
different gestures in the following explanation, I will be referring to those shown in Figure
3.4, where the convexity defects can also be seen). If there are no defects left, that means
that no fingers are held up, as in Gesture0. If there is only one defect, as in Gesture1, that
means there is only one finger being held up. If there are two defects, as in Gesture2 , there
are two fingers in the image. However if there are three defects, it is either Gesture3 or
Gesture4 . Notice that in Gesture3 there is at least one defect where the distance between
the start-point and the end-point is much greater than any of the defects in Gesture4. This
is what I ended up using to separate between the two gestures. If the distance is large
enough it is Gesture3, and 3 fingers are being held up, otherwise it is Gesture4, and 4
fingers are being held up. Finally, if there are 4 defects, 5 fingers are being held up, like in
Gesture5.

Figure 3.4: Examples of the 6 different gestures to be recognized with convexity defects drawn on.
The red points represent the start- and end-points of the defects, while the green represent the point
farthest away from the convex hull. The green line is the distance between the convexity defect and

the convex hull and is orthogonal to the red line.

In Figure 3.5 you can see the results of each step described in this approach. The top left
image is the original image captured by the PlayStation Eye. The second image on the first
row is the original image after being segmented based on skin color. The first image on
the second row is the segmented image after morphological operations have been applied.
The second image on the second row is the original image with the largest found contour
drawn on. The first image on the third row is the original image with the largest contour,
the convex hull and all the convexity defects drawn on. The second image on the third row
is the fingertips drawn on to the original image.

26

3.3 My Approach

Figure 3.5: The results of after each main step in IPRec.

27

Chapter 3. Hand Gesture Recognition

3.3.2 System 2: KNNRec - Gesture Recognition with K-Nearest
Neighbours

For my second approach, I wrote a program that follows the KNN algorithm to perform the
gesture recognition. The reason why I chose this algorithm over any of the other common
machine learning algorithms is that it proved to be the best among the algorithms tested
in [20]. Other than that article it did not seem like other researchers have used the algo-
rithm for gesture recognition. With my program I attempt to recreate the results achieved
in [20]. As the paper does not give any information on which gestures their method can
recognize, I will be using the ones depicted in Figure 3.2. This approach actually consists
of 3 different programs. One to capture images, one to train the algorithm/construct the
data set, and one to perform the recognition based on the data set.

The first thing that needs to be in place for any machine learning technique to work is
the data set that the algorithm will use to make the classification. To create this data set I
wrote a small program that uses the PlayStation Eye to capture images and save them to
a specified folder. I then proceeded to capture 100 sample images for every gesture to be
recognized which I would use for my training data. I also captured a total of 67 images
representing all the gestures to be used for the experiments in Chapter 4 (which later will
be referred to as the Test Set). During this capturing process I moved my hand around a
bit, so that not every image would be the same, but I made sure to always keep my hand
within the frame and not to move it too much in the depth direction. Next up I had to
extract features from all of these images to build the actual data set. In [20] they had most
success with their first data set consisting of the features: the mean intensity value of the
pixels, the variance in intensity, the area covered by the hand, the perimeter of the hand,
the angle of the hand, and the number of convexity defects. In the following paragraphs I
explain how each of these features were extracted from the image.

Mean intensity and Variance in intensity:
To get the mean intensity and the variance in intensity, I first had to convert the image from
RGB to gray scale. This was done using OpenCV’s function cvtColor(Mat src, Mat dst,
int code), where src is the source image, dst is the destination, or output image, and the
code says what you want to convert from, and what you want to convert into. Here I used
the code Imgproc.COLOR BGR2GRAY which converts from RGB to gray scale. Next I
made an array of size 256 (as the pixels in the gray scale image can have any integer value
(intensity) ranging from 0 to 255), and iterated through the pixels of the gray scale image.
For every pixel in the image I extracted its intensity, n, and added 1 to position n in the
array I made. After the iteration was complete I iterated through the array and summed
up the total intensity in the image, and divided it by the number of pixels in the image to
get the mean intensity. Next I calculated the variance in intensity. The formula to get the
variance is V ar(X) = 1

n

∑n
i=1(xi − µ)2, where xi is the i’th pixel, n is the total number

of pixels, and µ is the mean intensity in the image. This works because the background
is static in my case, and I do not change the distance between my hand and the camera.
If you have a background that keeps changing, or if you change the distance between the
hand and the camera, you will first have to find a bounding box around the hand and only
consider the pixels within this box to make the mean intensity and variance in intensity

28

3.3 My Approach

invariant to changes in the background and the scale of the hand. This is what the authors
of [20] did.

Area and Perimeter of the hand:
In order to get the area and perimeter of the hand, I only needed to get the contour of
the hand. To do this, I again had to segment the image, but unlike what I did in Section
3.3.1, I now wanted to see if I could also segment the image based on intensity values. I
therefore analyzed a few of my gray scale images and found appropriate lower- and upper
bounds to use with the function inRange(Mat src, Scalar lowerb, Scalar upperb, Mat dst).
This segmentation also worked very well. Next, I performed erosion and dilation just like
I did in Section 3.3.1, and then extracted the contours of the image. After that, I iterated
through the list of contours to find the one covering the greatest area (the hand), using
contourArea(contour). I also saved the index of this contour so that I would know which
contour to extract the perimeter from. I then used the function arcLength(curve, closed),
where curve is the contour of the hand and closed is a flag that says whether the curve is
closed or not. In my case it is closed. This function will return the length of the contour,
i.e the perimeter.

Angle of the hand:
The orientation, or angle of the hand can be calculated by using image moments. They
involve sums over all pixels and are defined as Mij = ΣxΣyx

iyjI(x, y). Using moments,
the center of the hand can be calculated as xc = M10

M00
for the x-coordinate, and yc = M01

M00

for the y-coordinate. By using the intermediate variables

a =
M20

M00
− x2c b = 2(

M10

M00
− xcyc) c =

M02

M00
− y2c

then angle of the hand can then be calculated as θ = arctan(b,(a−c))
2 . To do this i used

OpenCV’s function moments(Mat array, boolean binaryImage), where array is the image
to be used, and binaryImage is a flag that says whether array is a binary image or a gray
scale image. For this to be accurate with a binary image, it is very important that there
is only one segment in the image, or else the center described above will be calculated
as the center between all the segments. I therefore created a new binary image with only
black pixels, drew the largest contour (the hand) on it with white pixels, and filled it using
the function drawContours(image, contours, contourIdx, color, thickness), where image
is the image to be drawn on, contours is the list with all the contours I extracted earlier,
contourIdx is the index of the largest contour, and thickness says how thick the contour
should be drawn. If this last value is set to be negative the function will draw the interior
of the contour. Now that I had a binary image with only the segment of the hand, I could
send it into the function that extract the moments and then calculate the angle of the hand
as described above.

Constructing the feature vector and the data set:
The last feature to be extracted is the number of convexity defects. I did this in exactly the
same way as I did in 3.3.1, and also filtered out defects that was not between the fingers
in the same way. At this point I have extracted all the features that they used in [20] with

29

Chapter 3. Hand Gesture Recognition

their most successful attempt. Next I made an array of size 7 designated for the 6 extracted
features. In the last entry of the array I put the class of the image. Examples of feature
vectors are included in Appendix A. After this, I made a for-loop that iterated through all
my 600 images to extract the same features and construct a similar feature vector. I stored
all the feature vectors as entries in an ArrayList. Throughout the entire feature extraction
process I kept track of the largest value for all the features. When I had iterated through all
the images I then normalized all the feature values by dividing all of them by the largest
value for that feature. This made it so that all the features have a value ranging from 0 to
1. If I had not normalized the values, there would have been a huge difference in value
ranges. Number of convexity defects would range from 0 to 4, while the area covered by
the hand could be as large as 50,000 .(Remember the discussion in Section 2.3.1). Finally,
I made 2 .txt-files. One to hold the data set, and one to hold the largest values for all the
features. This concludes the training of the KNN algorithm.

To perform the recognition I wrote another program that looks very much like the one
described above. It loads the data set from the .txt-file, extract the values and put them
into feature vectors that in turn are stored in an ArrayList. The largest values found during
training are also loaded into an array. Next, a query image is loaded in, the features are
extracted in the same way as above, and then normalized using the largest values from the
training. Then the classification is performed as described in Section 2.3.2 and given as
output to the user as text in the console. This process is further explained in Chapter 4
where I will discuss the experiments that I performed.

30

Chapter 4
Experiments and Results

In this chapter, I will perform experiments on the two approaches described in Sections
3.3.1 and 3.3.2, evaluate the results, and compare the two approaches based on the experi-
ments. I will start by giving some information on the components used in the experiments,
such as what hardware was used. Next, I will say something about the data used to per-
form the experiments. Then, I present a review of the actual experiments where I show
the results. These experiments are conducted in order to answer research question 3 and
research question 4 from Chapter 1.

4.1 Hardware and Software

For the implementation of my two approaches and the experiments conducted I have used
a HP laptop with a 64-bit Windows 7 operating system. It has an Intel Core i7 processor
with 4 cores running at 2.20GHz and 12GB RAM. The capturing device I have used is the
PlayStation Eye described in 2.1. The use of the PlayStation Eye is the reason why I have
done the implementation in Windows 7 rather than in Windows 8, as the camera’s driver
was not supported in Windows 8. (I changed from Windows 8 to Windows 7 because the
old driver did not work in Windows 8. I have not checked to see if the latest driver is
supported in Windows 8).

The software used for the experiments is the programming environment Eclipse and the
Java programs I described in Sections 3.3.1 and 3.3.2. These implementations will be
the foundation for all the experiments, but for some of them I have made a few changes.
These changes will be explained in Section 4.3, where a more detailed description of all
the experiments will be given.

31

Chapter 4. Experiments and Results

4.2 Experimental Data Set
Throughout this chapter I will be referring back to the Test Set that I defined in Section
3.3.2. The Test Set contains images from all 6 gestures to be recognized by my two
approaches. The set consists of 11 samples of Gesture0, 16 samples of Gesture1, 11
samples of Gesture2, 8 samples of Gesture3, 12 samples of Gesture4, and 9 samples of
Gesture5. These images are saved to disk as JPEG-files and read into the programs one by
one during the classification/prediction.

4.3 The experiments
In this section, I describe the different experiments. I state what the purpose of each
experiment is, and if I made any changes to the code, those changes will be reviewed as
well.

4.3.1 Experiment 1: Will IPRec be able to recognize gestures in real-
time?

With my inspiration for this thesis being SoundDream, described in Section 1.1, I had
to make sure that the systems I created was able to perform gesture recognition in real-
time. This experiment is designed to make sure that the image processing done in IPRec
is not too heavy computationally for the computer to be able to process the images and
make predictions in real-time. As already mentioned in Section 3.3.1, I initially wrote the
program to recognize gestures in real-time, so in order to test it I simply had to make the
program display the images captured and see if the recognition was able to keep up with
the images shown on screen.

4.3.2 Experiment 2: Will KNNRec be able to recognize gestures in
real-time?

Same as with Experiment 1, I had to make sure that KNNRec could also perform gesture
recognition in real-time. To test this I used the Test Set and the program described in the
last paragraph of Section 3.3.2. I had my KNN algorithm go through and classify all the
67 images in the Test Set and timed how long it took from when the first image was loaded
until the last one had been classified. I then divided it by the number of images in the Test
Set to get the average time spent processing and classifying 1 image. From this I can say
how many images I am able to classify each second.

4.3.3 Experiment 3: Classifying the Test Set
This experiment is conducted in order to answer research question 4 from Chapter 1. To do
this, I had both my systems perform gesture recognition on the Test Set. In the following
section I will present the results from this experiment, and in Chapter 5 I will discuss what
these results mean in terms of the research question. KNNRec was primarily designed to
perform gesture recognition on a test set, so this system is already good to go. With IPRec

32

4.4 Results

however, I had to make a few adjustments in order to have it recognize gestures from
images saved to the disk rather than images captured from a camera directly. I achieved
this by using the code from KNNRec that iterates through all the images, and put my image
processing and prediction from IPRec inside that loop.

4.4 Results
In this section I present the results of the experiments described in the previous section.
I will not be discussing what these results mean, as I will be doing so in Chapter 5, but I
will explain what the results show.

4.4.1 Experiment 1: Will IPRec be able to recognize gestures in real-
time?

When running IPRec as explained in the previous section it worked exactly as it should.
There was no delay between when I changed from one gesture to another and when that
gesture was recognized and displayed in the console. I had the program running for 10
minutes to see if there was a small delay for each image that piled up to become a big
delay after some time had passed, but there was no recognizable delay. As an addition I
timed how much time went by when classifying the Test Set using IPRec from when the
first image was loaded until the last image was processed. In total 950 milliseconds went
by, which means an average of 14.2 milliseconds per image, which in turn means that the
system is able to process 70 images each second.

4.4.2 Experiment 2: Will KNNRec be able to recognize gestures in
real-time?

I executed the experiment 3 times getting quite similar processing times with the slowest
being 8878 milliseconds, and the fastest being 8460 milliseconds. On average this gives
8629 milliseconds which means that on average 128.8 milliseconds was spent processing
1 image. This in turn means that the system is able to process 7 images each second.

4.4.3 Experiment 3: Classifying the Test Set
Below you will find four tables that contain the results from this experiment. In all of them
each column will say which class, or which gesture an image actually was, while the rows
will say which gesture the program predicted it to be. The cells with blue backgrounds are
the ones that were predicted correctly. In all the runs of the KNN algorithm that I have
included I have set K = 7. Table 4.1 shows the results of running the KNN algorithm and
normalizing the features before calculating the distance. Table 4.2 shows the results of
running the KNN algorithm without normalizing the features before calculating the dis-
tance. Table 4.3 shows the results of running the KNN algorithm by first standardizing the
data by applying the Z score like they did in [20]. Finally, Table 4.4 shows the results of
having IPRec recognizing the Test Set.

33

Chapter 4. Experiments and Results

In addition to the tests displayed in the below tables, I also experimented by using different
values for K. However, there was little to no change in how the images were classified, so
I decided not to include the results of those experiments.

Actual class
G. 0 G. 1 G. 2 G. 3 G. 4 G. 5

Predicted G. 0 10 0 0 0 0 0
Predicted G. 1 1 16 11 8 11 0
Predicted G. 2 0 0 0 0 1 3
Predicted G. 3 0 0 0 0 0 6
Predicted G. 4 0 0 0 0 0 0
Predicted G. 5 0 0 0 0 0 0

Table 4.1: Results of running KNN on the test set with K = 7 with normalization of the features.

Actual class
G. 0 G. 1 G. 2 G. 3 G. 4 G. 5

Predicted G. 0 11 4 5 8 3 0
Predicted G. 1 0 10 6 0 0 0
Predicted G. 2 0 2 0 0 0 0
Predicted G. 3 0 0 0 0 8 2
Predicted G. 4 0 0 0 0 0 5
Predicted G. 5 0 0 0 0 0 0

Table 4.2: Results of running KNN on the Test Set with K = 7 and no normalization of the features.

34

4.4 Results

Actual class
G. 0 G. 1 G. 2 G. 3 G. 4 G. 5

Predicted G. 0 11 7 9 8 12 9
Predicted G. 1 0 9 2 0 0 0
Predicted G. 2 0 0 0 0 0 0
Predicted G. 3 0 0 0 0 0 0
Predicted G. 4 0 0 0 0 0 0
Predicted G. 5 0 0 0 0 0 0

Table 4.3: Results of running KNN on the Test Set with K = 7 and applying the Z score from [20].

Actual class
G. 0 G. 1 G. 2 G. 3 G. 4 G. 5

Predicted G. 0 10 4 0 0 0 0
Predicted G. 1 1 12 0 0 0 0
Predicted G. 2 0 0 10 0 0 0
Predicted G. 3 0 0 1 8 1 0
Predicted G. 4 0 0 0 0 11 0
Predicted G. 5 0 0 0 0 0 9

Table 4.4: Results of gesture recognition with only image processing techniques.

35

Chapter 4. Experiments and Results

36

Chapter 5
Evaluation and Discussion

In this chapter, I first state how my two approaches from Sections 3.3.1 and 3.3.2 will be
compared. I then evaluate the results of the experiments conducted in Chapter 4. At the
end of the chapter I give a discussion on the research questions presented in Chapter 1
in light of all that has been revealed throughout this thesis. Lastly, a discussion on the
strengths and weaknesses of my two approaches is given.

5.1 Evaluation Metric
There are many ways to evaluate empirical data such as that shown in Tables 4.1, 4.2, 4.3,
and 4.4. One of simplest and most used approach is to calculate precision and recall. Pre-
cision measures how many of the gestures classified to be Gesture X were actually Gesture
X, and recall measures how many of the gestures that were actually Gesture X was classi-
fied by the system to be Gesture X [15]. These two measurements are what I will be using
to evaluate the performance of my 2 approaches to hand gesture recognition. It is also
how the researchers in [20] have evaluated their algorithms, so by doing it the same way,
I will be able to compare my results to theirs. In addition, I will calculate the accuracy of
the different results. Accuracy is calculated as the number of instances classified correctly
divided by the total number of instances. It is common to confuse accuracy and precision
with one another, and also to use the terms interchangeably. However, it is important to
note that they are not the same. The easiest way to grasp the difference is by looking at
Figure 5.1.

37

Chapter 5. Evaluation and Discussion

Figure 5.1: The difference between precision and accuracy.

5.2 Evaluation
In Experiments 1 and 2, I tested whether IPRec and KNNRec were able to recognize ges-
tures in real-time. It is important that they can do so for them to be useful for SoundDream,
described in Section 1.1. The results of the experiments showed that IPRec was able to
process and recognize the gestures from 70 images every second, while KNNRec was able
to classify 7 images each second. KNNRec was not designed to recognize gestures in
real-time, but to test the performance of an algorithm. There is definitely a lot of room for
improvement in terms of data representation, how the data was handled (stored into- and
loaded from memory), and how intermediate variables were utilized. Optimizing KNNRec
with respect to this, would probably have a huge impact on how many images it would be
able to classify each second. According to [4], a response time of 0.1 second is the limit
on how long a system can spend before the user does not feel like the system is reacting
instantaneously. That being said, I would still argue that 7 images per second is sufficient
to perform real-time gesture recognition. If the system was to be used for an action game
or something along those lines, 7 actions per second would maybe not be enough, but to
control SoundDream, I think 7 actions per second is more than enough. The 70 images
per second from IPRec, however, would probably be enough to control any system in real-
time.

As I mentioned in the previous section, I will use precision, recall, and accuracy to evaluate
the results of Experiment 3. Following are the tables from Section 4.4.3, with the addition
of an extra row and column that shows the recall and precision respectively. These num-
bers are be highlighted in green.

38

5.2 Evaluation

Actual class
G. 0 G. 1 G. 2 G. 3 G. 4 G. 5 Precision

Predicted G. 0 10 0 0 0 0 0 100%
Predicted G. 1 1 16 11 8 11 0 34.04%
Predicted G. 2 0 0 0 0 1 3 0%
Predicted G. 3 0 0 0 0 0 6 0%
Predicted G. 4 0 0 0 0 0 0 0%
Predicted G. 5 0 0 0 0 0 0 0%
Recall 90.91% 100% 0% 0% 0% 0%

Table 5.1: Results of running KNN on the test set with K = 7 with normalization of the features.
Precision and recall highlighted in green.

Actual class
G. 0 G. 1 G. 2 G. 3 G. 4 G. 5 Precision

Predicted G. 0 11 4 5 8 3 0 35.48%
Predicted G. 1 0 10 6 0 0 0 62.50%
Predicted G. 2 0 2 0 0 0 0 0%
Predicted G. 3 0 0 0 0 8 2 0%
Predicted G. 4 0 0 0 0 0 5 0%
Predicted G. 5 0 0 0 0 0 2 100%
Recall 100% 62.50% 0% 0% 0% 22.22%

Table 5.2: Results of running KNN on the test set with K = 7 and no normalization of the features.
Precision and recall highlighted in green.

Actual class
G. 0 G. 1 G. 2 G. 3 G. 4 G. 5 Precision

Predicted G. 0 11 7 9 8 12 9 19.64%
Predicted G. 1 0 9 2 0 0 0 81.82%
Predicted G. 2 0 0 0 0 0 0 0%
Predicted G. 3 0 0 0 0 0 0 0%
Predicted G. 4 0 0 0 0 0 0 0%
Predicted G. 5 0 0 0 0 0 0 0%
Recall 100% 56.25% 0% 0% 0% 0%

Table 5.3: Results of running KNN on the test set with K = 7 and applying the Z score from [20].
Precision and recall highlighted in green.

39

Chapter 5. Evaluation and Discussion

Actual class
G. 0 G. 1 G. 2 G. 3 G. 4 G. 5 Precision

Predicted G. 0 10 4 0 0 0 0 71.43%
Predicted G. 1 1 12 0 0 0 0 92.31%
Predicted G. 2 0 0 10 0 0 0 100%
Predicted G. 3 0 0 1 8 1 0 80.00%
Predicted G. 4 0 0 0 0 11 0 100%
Predicted G. 5 0 0 0 0 0 9 100%
Recall 90.91% 75.00% 90.91% 100% 91.67% 100%

Table 5.4: Results of gesture recognition with only image processing techniques. Precision and
recall highlighted in green.

From the Tables 5.1, 5.2, 5.3, and 5.4, it is easy to see which of my approaches was most
successful. IPRec, with results shown in Table 5.4, has an average precision of 90.62%
and an average recall of 91.41% across the classes. In comparison the best settings of KN-
NRec was with K=7 and no normalization of the features, achieving an average precision
of 33.00% and an average recall of 30.79%.

I was clearly unable to reproduce the success that the authors of [20] was able to find with
the KNN algorithm. It might be that their gestures were more different from one another in
terms of the different features than what mine were. However, if I look past the results I got
from the KNN algorithm and instead compare my results from Table 5.4 with the results
they achieved in [20], I can do a more reasonable comparison of the two approaches. They
were able to achieve an average precision of 96.89% and an average recall of 96.94% with
the KNN algorithm. This beats what I achieved with IPRec, but not by much. It is worth
noting that they had a test set of 1,295 images and 10 different gestures. This test set is
considerably bigger than my test set of only 67 images. Having only around 10 images for
each gesture, results in every incorrectly classified image having an impact of around 10%
on the recall, and also quite a lot on precision. In [20] they have a little more than 100
images for each gesture, which is exactly what I have in my training set for KNNRec. I
therefore decided to use IPRec to predict the gestures in my training set to better compare
it to what they achieved in [20]. The results of this additional experiment can be seen in
Table 5.5.

40

5.3 Discussion

Actual class
G. 0 G. 1 G. 2 G. 3 G. 4 G. 5 Precision

Predicted G. 0 87 3 0 0 0 0 96.67%
Predicted G. 1 13 95 1 2 1 0 84.82%
Predicted G. 2 0 2 97 1 1 0 96.04%
Predicted G. 3 0 0 2 93 5 5 88.57%
Predicted G. 4 0 0 0 3 89 4 92.71%
Predicted G. 5 0 0 0 1 4 91 94.79%
Recall 87.00% 95.00% 97.00% 93.00% 89.00% 91.00%

Table 5.5: Results of gesture recognition with only image processing techniques on the training set
of KNNRec. Precision and recall highlighted in green.

With this additional experiment I was able to achieve an average precision of 92.27% and
an average recall of 92.00%. This is a small improvement to what I got using the test set,
but not enough to be as good as the KNN approach in [20].

In Section 3.2 I mentioned a paper [5] where they used only image processing techniques
for gesture recognition, and were able to correctly predict the gesture in 82.47% of the
images with their best approach. This is the same as accuracy. Calculating the accuracy
from the results in Table 5.4, I get 89.55%. Doing the same calculation for the results in
Figure 5.5, I get 92.00%.

5.3 Discussion
In this section, I first answer the research questions posed in Chapter 1. After that I give a
discussion on how I achieved the research goal of this thesis.

5.3.1 Research Question 1: Which image processing techniques are
best suited for hand gesture recognition?

Through my research and implementation of various image processing techniques, I have
found that a combination of segmentation based on skin color, morphological filtering,
extraction of the largest contour, and the properties of convexity defects gives better results
on hand gesture recognition than any approach I have been able to find in my research that
uses only image processing techniques. In [5] they made 4 different algorithms using only
image processing techniques for hand gesture recognition and were able to successfully
predict the gesture in 82.47% of the images using segmentation, a median filter, and then
scanning the image horizontally and vertically to detect the number of fingers. Papers
such as [24, 26, 8, 20], although using machine learning for prediction, also make use
of image processing techniques such as segmentation based on skin color, finding the
contour of the hand and extracting the convexity defects of the hand. The system I made
using only image processing techniques combined all of this and used segmentation based
on skin color, morphological filtering, extraction of the largest contour, and the properties

41

Chapter 5. Evaluation and Discussion

of convexity defects to successfully predict the gesture in 89.55% of the images in my test
set, which is an improvement to what they managed in [20].

5.3.2 Research Question 2: Which machine learning algorithms are
best suited for hand gesture recognition?

Based only on the results from [5] one could say that the best machine learning algo-
rithm for hand gesture recognition is the KNN algorithm. However, other researchers
(discussed in Section 3.2) have produced equally good results using other algorithms and
other features. It would seem that the choice in algorithm and features depends on how
many gestures should be recognized, and how different these gestures are. Also, some
algorithms might work better than others if the system should recognize dynamic gestures
in addition to static ones. In conclusion it is extremely difficult to crown one machine
learning algorithm as the single best.

5.3.3 Research Question 3: How should the different approaches be
compared and evaluated?

Precision and recall (and accuracy) was chosen as the metrics to evaluate the different ap-
proaches. The decision was based on what other researchers had used to evaluate their
approaches, as well as my own experience in using these metrics successfully in previ-
ous projects. Precision and recall goes well together in describing the performance of a
classification system. If we look at the column for precision in Table 5.4, we see that the
precision of class/gesture 1 was 92.31%, which is quite excellent. However, this only tells
us how many of the images predicted to be Gesture 1 was actually Gesture 1. It doesn’t tell
us anything about how many of the images that were actually of Gesture 1 were predicted
to be Gesture 1. In the row for recall in the same table we see that that was only 75.00%.
Combining precision and recall yields a better understanding of the performance of the
system than what any of the two could do alone.

5.3.4 Research Question 4: How does the performance of a purely im-
age processing system compare to the performance of the best ma-
chine learning systems when it comes to hand gesture recogni-
tion?

The two approaches both perform very well, but the machine learning approach has the
edge. This question has been discussed a lot in the previous section. To sum it up; I
was unable to reproduce the success that the authors of [20] had with the KNN algorithm
(which in their comparative study turned out to be the best one). In order to do a proper
comparison, I therefore compared my system using only image processing techniques for
hand gesture recognition with the system using KNN from [20]. It turned out that both ap-
proaches were able to successfully recognize the gesture in more than 90% of the images,
but with the machine learning approach being slightly better than my approach.

42

5.3 Discussion

5.3.5 Goal: Compare methods in Artificial Intelligence to see which is
best suited for hand gesture recognition

Throughout this thesis I have discussed the work done by other researchers in the field
of hand gesture recognition. I have described and explained various techniques in image
processing and machine learning. I have evaluated all my findings and built two different
systems to recognize hand gestures using the AI methods that I deemed most likely to be
successful. One of the systems used only image processing to recognize the gestures, and
the other used image processing for feature extraction, and then KNN for gesture recogni-
tion.

Based only on the results from my experiments, the approach using only image processing
techniques was without a doubt the best one. If I also take into consideration all the work
that other researchers have done, then classification using machine learning techniques
yields a slightly better precision, recall and accuracy. There are, however, strengths and
weaknesses to both systems. IPRec using only image processing do not require a huge
database of all the gestures that should be recognized. Instead it relies on each gesture
being coded in the program. Having each gesture being coded, it makes the task of adding
support for more gestures very difficult. To do so a programmer would have to add code
to the program, and in the worst case might have to rewrite the entire system. However,
with a machine learning approach, you would simply need to expand the training set with
samples of the new gesture. Another weakness of IPRec is that a gesture is defined by how
many fingers are being held up. This means that it would interpret a hand where only the
index finger is being held up in the same way as it would if only the little finger was being
held up. If this was meant to be two different gestures there would have to be made big
changes to IPRec. Whereas with KNNRec one would only need to put samples of both
marked as different classes into the training set.

So which approach is the best? If you have only 6 different gestures like the ones shown in
Figure 3.2, you would probably be equally well off by using either of the two approaches
discussed. If your system needs to support more gestures, or gestures that are more com-
plex than simply being defined by the number of fingers shown, then a machine learning
approach would be your best bet.

43

Chapter 5. Evaluation and Discussion

44

Chapter 6
Closing Remarks

This chapter will wrap up my thesis. I will first state what contributions I have made to the
field of hand gesture recognition, then I will move on to what future work should be done
to improve on my approach should be concerned with, and round it off with the conclusion
of this thesis.

6.1 Contributions
With this thesis I have reviewed which image processing techniques are best suited for
hand gesture recognition through studying what other researchers have done, and then
written a program myself using the techniques I deemed most likely to yield good results.
I then compared this system to a machine learning approach to hand gesture recognition
that other researchers found success with. This kind of comparison is something I have
not been able to find in other research, and I think it offers valuable insight to the topic.

6.2 Future Work
With my two approaches to hand gesture recognition I have prior knowledge about the
color of the hand, which allows me to segment it. This segmentation is the foundation
that the entire recognition process builds on. If the system should be used in other lighting
conditions and by people with different skin color, then the segmentation should be invari-
ant to these conditions. Papers such as [13, 9] discuss the use of the K-means clustering
algorithm for segmentation, and I think using that would improve the robustness of the
segmentation.

As I approached the deadline for delivering this thesis I came across the SIFT (Scale-
invariant feature transform) algorithm [12]. It is an algorithm within the field of computer
vision, and it is used to detect and describe local features in images. I think that the features
extracted from this algorithm may prove useful for hand gesture recognition, and could be

45

Chapter 6. Closing Remarks

combined with other features such as those I have looked at in this thesis. In Figure 6.1 you
can see how the features extracted from a playing card on the left are matched to features
of the right image in order to find and recognize a similar playing card.

Figure 6.1: Recognition using SIFT features.

6.3 Conclusion
In my research to find the best AI approach to hand gesture recognition, I have found
that a system using only image processing techniques can be quite good, but is slightly
outperformed by the best machine learning algorithms. Especially if the gestures to be
recognized are more complex than the ones shown in Figure 3.2, a machine learning ap-
proach would fare better than an approach using only image processing techniques. While
some researcher would claim or indicate that their approach and the algorithm they have
used is the best one, I have found that it is extremely difficult to crown a winner. Which
algorithm performs best depends on what features are extracted from the images, and how
many gestures the system should be able to recognize.

46

Bibliography

[1] Codelaboratories homepage. Available: https://codelaboratories.com/.
[Accessed: 2015-03-02].

[2] OpenCV documentation for java. Available: http://docs.opencv.org/
java/. [Accessed: 2015-06-25].

[3] OpenCV forums. Available: http://answers.opencv.org/questions/.
[Accessed: 2015-06-25].

[4] Response times: The 3 important limits. Available: http://www.nngroup.
com/articles/response-times-3-important-limits/. [Accessed:
2015-07-02].

[5] P. R. V. Chowdary, M. N. Babu, T. V. Subbareddy, B. M Reddy, and V. Elamaran.
Image processing algorithms for gesture recognition using matlab. Advanced Com-
munication Control and Computing Technologies (ICACCCT), 2014 International
Conference on, pages 1511–1514, 2014.

[6] W. Du and H. Li. Vision based gesture recognition system with single camera. Signal
Processing Proceedings, 2000. WCCC-ICSP 2000. 5th International Conference on,
2:1351–1357, 2000.

[7] S. M. Goza, R. O. Ambrose, M. A. Diftler, and I. M. Spain. Telepresence control of
the nasa/darpa robonaut on a mobility platform. Proceeding CHI ’04 Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages 623–629,
2004.

[8] H. Hasan and S. Abdul-Kareem. Static hand gesture recognition using neural net-
works. Artificial Intelligence Review, 41(2):147–181, 2014.

[9] N. Ibraheem, R. Khan, and M. Hasan. Comparative study of skin color based seg-
mentation techniques. International Journal of Applied Information Systems (IJAIS),
5(10), 2013.

47

https://codelaboratories.com/
http://docs.opencv.org/java/
http://docs.opencv.org/java/
http://answers.opencv.org/questions/
http://www.nngroup.com/articles/response-times-3-important-limits/
http://www.nngroup.com/articles/response-times-3-important-limits/

[10] W. Ke, W. Li, L. Ruifeng, and Z. Lijun. Real-time hand gesture recognition for
service robot. Intelligent Computation Technology and Automation (ICICTA), 2010
International Conference on, 2:976–979, 2010.

[11] L. Lamberti and F. Camastra. Real-time hand gesture recognition using a color glove.
Image Analysis and Processing ICIAP 2011, 6978:365–373, 2011.

[12] David G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-
tional Journal of Computer Vision, 60(2):91–110, 2004.

[13] M. Panwar. Hand gesture recognition based on shape parameters. Computing, Com-
munication and Applications (ICCCA), 2012 International Conference on, pages 1–
6, 2012.

[14] S.S. Rautaray and A. Agrawal. Design of gesture recognition system for dynamic
user interface. Technology Enhanced Education (ICTEE), 2012 IEEE International
Conference on, pages 1–6, 2012.

[15] S. Russel and P. Norvig. Artificial Intelligence A Modern Approach. Pearson, 2010.

[16] J. Sklansky. Measuring concavity on a rectangular mosaic. IEEE TRANSACTIONS
ON COMPUTERS,, C-21(12):1355–1364, 1972.

[17] T. Starner, J. Auxier, D. Ashbrook, and M. Gandy. The gesture pendant: a self-
illuminating, wearable, infrared computer vision system for home automation control
and medical monitoring. Wearable Computers, The Fourth International Symposium
on, pages 87–94, 2000.

[18] S. Suzuki and K. Abe. Topological structural analysis of digitized binary images by
border following. Computer Vision, Graphics, and Image Processing, 30(1):32–46,
1985.

[19] R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

[20] P. Trigueiros, F. Ribeiro, and L.P. Reis. A comparison of machine learning algorithms
applied to hand gesture recognition. Information Systems and Technologies (CISTI),
2012 7th Iberian Conference on, pages 1–6, 2012.

[21] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings
of the 2001 IEEE Computer Society Conference on, 1:I–511 – I–518, 2001.

[22] I. Witten, E. Frank, and M. Hall. Data Mining Practical Machine Learning Tools
and Techniques. Elsevier, 2011.

[23] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. McLachlan,
A. Ng, B. Liu, P. Yu, Z. Zhou, M. Steinbach, D. Hand, and D. Steinberg. Top 10
algorithms in data mining. Knowledge and Information Systems, 14(1):1–37, 2008.

48

[24] Yishen Xu, Jihua Gu, Zhi Tao, and Di Wu. Bare hand gesture recognition with a
single color camera. Image and Signal Processing, 2009. CISP ’09. 2nd International
Congress on, pages 1–4, 2009.

[25] Ying Yin and R. Davis. Real-time continuous gesture recognition for natural human-
computer interaction. Visual Languages and Human-Centric Computing (VL/HCC),
2014 IEEE Symposium on, pages 113–120, 2014.

[26] B. Zhang and R. Yun. Robust gesture recognition based on distance distribution fea-
ture and skin-color segmentation. Audio Language and Image Processing (ICALIP),
2010 International Conference on, pages 886–891, 2010.

49

50

Appendix A
Examples of feature vectors

A.1 Feature vectors without normalization

Below you find feature vectors extracted by KNNRec from four of the sample images in
the training set. There is 1 of Gesture0, 1 of Gesture1, 1 of Gesture2, and 1 of Gesture4.
The class of each image is marked by the last feature in each of the vectors. These features
have not been normalized.

[35.0167, 771.1317, -0.7895, 55258.0, 1040.3818, 1.0, 0.0]
[35.0220, 803.6573, -0.7942, 48749.5, 1145.9382, 1.0, 1.0]
[37.9369, 1077.3910, -0.8152, 56116.5, 1544.6488, 3.0, 2.0]
[37.8960, 1115.5613, -0.7979, 53824.0, 1579.4844, 3.0, 3.0]

A.2 Feature vectors with normalization

Below you find the feature vectors from Section A.1 normalized through dividing by the
largest value found for every feature.

[0.7592, 0.5023, 0.9360, 0.6943, 0.4506, 0.1667, 0.0]
[0.7593, 0.5236, 0.9416, 0.6125, 0.4963, 0.1667, 1.0]
[0.8225, 0.7019, 0.9666, 0.7051, 0.6690, 0.5000, 2.0]
[0.8216, 0.7268, 0.9460, 0.6763, 0.6841, 0.5000, 3.0]

51

A.3 Feature vectors with Z score applied
Below you find the feature vectors from Section A.1 after applying the Z score used in [20].

[-1.3116, -1.2844, 0.0015, -0.2897, -0.9430, -0.0726, 0.0]
[-1.3097, -1.1509, 9.9385E-4, -0.9517, -0.7574, -0.0726, 1.0]
[-0.2706, -0.0277, -0.0011, -0.2024, -0.05616, 0.0133, 2.0]
[-0.2852, 0.12885, 6.2210E-4, -0.4355, 0.0051, 0.0133, 3.0]

52

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Background and Motivation
	Goal and Research Questions
	Research method
	Structure

	Background Theory
	PlayStation Eye
	Image Processing
	Segmentation
	Erosion and Dilation
	Find Contours
	Find Convex Hull and Convexity Defects

	Artificial Intelligence and Machine Learning
	Data mining
	K-Nearest Neighbours

	Hand Gesture Recognition
	What is Hand Gesture Recognition
	Previous Work
	My Approach
	System 1: IPRec - Gesture Recognition with Image Processing
	System 2: KNNRec - Gesture Recognition with K-Nearest Neighbours

	Experiments and Results
	Hardware and Software
	Experimental Data Set
	The experiments
	Experiment 1: Will IPRec be able to recognize gestures in real-time?
	Experiment 2: Will KNNRec be able to recognize gestures in real-time?
	Experiment 3: Classifying the Test Set

	Results
	Experiment 1: Will IPRec be able to recognize gestures in real-time?
	Experiment 2: Will KNNRec be able to recognize gestures in real-time?
	Experiment 3: Classifying the Test Set

	Evaluation and Discussion
	Evaluation Metric
	Evaluation
	Discussion
	Research Question 1: Which image processing techniques are best suited for hand gesture recognition?
	Research Question 2: Which machine learning algorithms are best suited for hand gesture recognition?
	Research Question 3: How should the different approaches be compared and evaluated?
	Research Question 4: How does the performance of a purely image processing system compare to the performance of the best machine learning systems when it comes to hand gesture recognition?
	Goal: Compare methods in Artificial Intelligence to see which is best suited for hand gesture recognition

	Closing Remarks
	Contributions
	Future Work
	Conclusion

	Bibliography
	Examples of feature vectors
	Feature vectors without normalization
	Feature vectors with normalization
	Feature vectors with Z score applied

