
UbiBazaar: App Store for the Internet of
Things

Simon Stastny

Master in Information Systems

Supervisor: Babak Farshchian, IDI

Department of Computer and Information Science

Submission date: June 2015

Norwegian University of Science and Technology

Abstract

Recently the world witnesses the emergence of Internet of Things (IoT)
technologies, as new commercial IoT products by both large tech compa-
nies and new startups are coming to market daily. The recent boom in
hardware prototyping platforms such as Arduino or Raspberry Pi also
contributes to the development in IoT field, as user innovators (such as
Makers, tech enthusiasts and researchers) can build their IoT systems
and prototypes easily and cheap.

Despite the development efforts by the latter, we feel the user inno-
vation in IoT has not reached its full potential. We believe that this is
caused by the means the user innovators reach the end users. Our research
shows that there is a lack of efficient and usable software distribution
channels where user innovators could offer their software the the end
users, share and collaborate with other innovators.

This project proposes an app store for the Internet of Things, as a
means of software distribution in IoT, a tool connecting user innovators
to end users and other innovators. This proposed system should help the
user innovators with distributing their app to the masses and the users
to install the apps easily to their devices, just as easy as they are used to
install apps on smartphones.

In the scope of our project we performed surveys consisting of question-
naires and interviews with researchers and member of Maker communities,
we analyzed those and derived requirements for our system based on the
findings. Subsequently, we proposed an extensible architecture for the
system to be built upon, created a paper prototype and evaluated it with
a focus group and implemented a working software prototype than can
be used to IoT apps to Raspberry Pi devices using Docker. Both the
architecture and the prototype have been evaluated accordingly.

The findings from the prestudy show a big variance between used IoT
platforms and require the app store to support a multitude of different
platforms and be extensible to support new platforms as they come to
market. Other challenges found were relating to device configuration and
context in which the devices are used.

The projects is in the stage of a working prototype, however more
work needs to be done before this can be launched as a product.

Preface

This report documents the work done on project UbiBazaar: App
store for the Internet of Things, which was written as a master thesis at
Department of Computer and Information Science (IDI) at NTNU in the
spring semester of 2015.

I would like to express my gratitude to my supervisor, professor Babak
A. Farshchian, who provided me with valuable feedback and guidance
through the project, and put me in contact with other people whose
feedback I highly appreciate.

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Method 3
2.1 Prestudy . 4

2.1.1 Interviews . 4
2.1.2 Literature review . 5
2.1.3 Questionnaire . 6

2.2 Design and evaluation of the paper prototype 7
2.2.1 Design of the paper prototype 7
2.2.2 Evaluation of the paper prototype 7

2.3 Software prototype design . 7
2.3.1 Design of the software prototype 8
2.3.2 Evaluation of the software prototype 8

3 Findings and derived requirements 9
3.1 Findings . 9

3.1.1 Platforms . 10
3.1.2 Deployment . 11
3.1.3 Configuration . 13
3.1.4 Distribution . 14

3.2 Derived requirements . 15
3.2.1 Platform support . 15
3.2.2 Device capabilities and compatibility 15
3.2.3 App store requirements . 16

4 State of the art 19
4.1 Git deployment . 19
4.2 Snappy Ubuntu Core . 20
4.3 Docker . 20

v

4.4 Resin.io . 22
4.5 µC Software Store . 23
4.6 Overview of covered requirements . 24

5 Design and implementation 25
5.1 Proof of concept implementation . 25
5.2 Architecture . 28
5.3 Solution concept for Raspberry Pi 29

5.3.1 Design decisions . 30
5.4 Paper prototype . 31
5.5 Software prototype . 32

5.5.1 Database . 33
5.5.2 Core library . 34
5.5.3 API . 34
5.5.4 Web frontend . 35
5.5.5 Ahab (installation manager) 36

6 Evaluation 39
6.1 Prototype evaluation with focus group 39
6.2 Extending to support Arduino deployment 41
6.3 Dockerizing CoSSMic for Raspberry Pi 42
6.4 Overview of covered requirements . 45

7 Discussion 47
7.1 Limitations of the current solution 47
7.2 Future work . 48
7.3 Conclusion . 49

References 51

Appendices
A API Documentation 55

B Scenarios 59
B.1 Scenario 1 . 59
B.2 Scenario 2 . 60

List of Figures

2.1 Model of the research process by [Oat06] 3
2.2 Iterations of the project . 4

3.1 Reported usage of platforms by Makers in our questionnaire. 10

4.1 Snappy architecture. Source: [Can] . 20
4.2 Differences between Docker and traditional virtualization. Source: [Docd] 21
4.3 Workflow of Resin.io. Source: [Res13b] 22
4.4 Selected screenshots of µC Software Store. Source: [EST13] 23

5.1 Landing page and filtering. 25
5.2 Adding a new app in two steps. 26
5.3 App detail and device detail. 26
5.4 App installation and user profile. 27
5.5 Device overview and adding a new device. 27
5.6 User login and registration dialogs . 27
5.7 Proposed architecture. 28
5.8 Domain model for the proposed architecture. 28
5.9 Architecture of prototype solution for Raspberry Pi. 30
5.11 Welcome screen of the paper prototype. 32
5.12 Database model of our implementation. 33

6.1 Pairing instructions in prototypes. 40
6.2 App detail in prototypes. 40
6.3 Support of Arduino support in the proposed architecture. 42

vii

List of Tables

4.1 Coverage of requirements by the state-of-the-art technology. 24

6.1 Evaluation in correspondence to requirements. 45

A.1 API: Methods provided by App service 55
A.2 API: Methods provided by Installation service 56
A.3 API: Methods provided by Device service 56
A.4 API: Methods provided by Manager service 57
A.5 API: Methods provided by User service 57

ix

Chapter1Introduction

The emerging field of Internet of Things (IoT) gets a lot of attention recently as
virtually every day we can see new products coming to market, large tech companies
unveiling new technologies and new start-ups forming. Despite these efforts, IoT has
not really taken off yet, as most of the technologies are under heavy development
and the products are mostly at early stages of adoption.

As we pointed out before [Sta14], the importance of lead users and user innovation
for user adoption was shown by previous research [UH88]. As was shown, the lead
users of products and technologies face the same needs as the rest of the users, but
they face them much earlier and their feedback can be used to improve the product
or a technology so it is more mature by the time the majority gets to adopt it.
The innovations developed by the users innovators can in many cases be viewed as
enriching the product and attractive for both the users and the manufacturer of the
product (such as in the case of apps for smartphones). The same way user innovation
successfully drove user adoption in cases of other technologies, we believe it may help
in the case of IoT as well.

As we mentioned previously [Sta14], we feel that one of the factors that harms
the IoT user innovation is the absence of tools for easy software deployment and
distribution. User innovators developing new software for their systems lack ways
how to distribute the software to potential users easily.

In the previous work [Sta14], we stated how the development in the IoT undergoes
a big shift from being dominated by large commercial players to being open to
everyone, facilitated by the advent of small affordable open source electronic platforms,
such as Raspberry Pi, Arduino, Intel Edison, BeagleBoard, mbed or ARTIK.

This shift that IoT is undergoing has also been aided by the emergence of so
called “maker culture” that promotes creative use of technologies and build upon the
principles of openness and knowledge sharing. The electronic platforms mentioned

1

2 1. INTRODUCTION

above are very popular in the maker community and are used in widely used in hobby
IoT projects by makers.

Many of the maker IoT projects are in fact complex systems integrating commercial
IoT products as well as their own hardware and software into complete systems.
These makers, we believe, are the true user innovators in IoT, bringing innovation in
form of new products (or prototypes) as well as experiencing integration challenges
ahead of the rest of the users and developers.

For the reasons stated above we focus in this research on the makers and we try
to facilitate the user innovation coming from the maker community.

This project aims to drive user adoption in IoT through facilitating user innovation.
We aim to identify the main challenges for IoT software deployment and distribution
as experienced by makers, and propose a technical solution addressing those challenges.
We believe that the idea of app stores, very successful in the field of smartphones,
may very well be applied in the context of IoT.

Although the notion of app stores for IoT exists in previous research [KK10,
Dav11, MM12, SCBZ11], it has never been put into practice as a tool for deployment
and distribution of user-made software. Proposing such one and implementing it is
the main contribution of our research.

Our main research question therefore is:

RQ: “How can introduction of app stores improve IoT software deploy-
ment and distribution for user innovators?”

The main contributions of our project comprise of a set of requirements for an
IoT app store, an architecture proposition and a software prototype solution. Other
contributions are a state-of-the-art literature review on software deployment and
distribution, survey to investigate related challenges that makers face, a review of
state-of-the-art solutions in the field of IoT software deployment and distribution.

Chapter2Method

This research project spanned over two semesters and has been performed in several
consecutive iterations (as defined by [Oat06]), some with sub-iterations, and each
building upon the results of previous iterations.

Figure 2.1: Model of the research process by [Oat06]

This is the case for our prestudy (i.e. iteration 1), which comprises of three
iterations itself. The design and creation iterations (iterations 2 and 3) are however
considered two separate iterations in our project, as they are the main contributions
and we want to focus on each of them separately.

3

4 2. METHOD

The figure 2.2 shows the relations between the iterations of our research project.
As we followed the design cycle twice, first time for a paper prototype and second
time for a software prototype, our research project consisted of these four consecutive
iterations:

1. Prestudy, consisting of a) Interviews b) Literature review c) Questionnaire

2. Design and evaluation of a paper prototype

3. Design and evaluation of a software prototype

4. Final evaluation

Figure 2.2: Iterations of the project

2.1 Prestudy

As mentioned above the purpose of this project is to help user innovation in IoT,
represented by the development efforts by the maker community, by improving the
way software is deployed and distributed. To come up with a contribution to improve
these areas, first requires us to understand the needs of the user innovators and the
challenges they face during the development, software deployment and distribution.
To address this a prestudy needed to be performed to investigate the phenomena.

The prestudy has been performed in three iterations: a) a pilot round of
interviews, giving us insight into the nature of challenges b) a literature review
c) questionnaire with follow-up interviews.

2.1.1 Interviews

In the first part of the prestudy, taking place in autumn 2014, we scheduled a serie
of interviews with two acquainted researchers and one local maker. This was a
fundamental part of the prestudy and was designed to give us insight into the nature
of challenges that makers face, and platforms that are used for development. The

2.1. PRESTUDY 5

data collected in this part of the prestudy helped us to prepare a questionnaire for
the last part of the prestudy, as well as to set up a query for our literature review.

The findings from the first set of interviews are described in detail in the previous
report [Sta14], including a short description of the used platforms and functional
descriptions of the developed IoT systems.

2.1.2 Literature review

To understand the challenges of software deployment and distribution we carried out
a state-of-the-art literature review. The method of the literature review as well as
the detailed findings are described in [Sta14]. We will only provide a short summary
of the method here.

Since IoT is an emerging field and there is a lack of literature related directly to
it, we considered also literature of related fields, such as ubiquitous, pervasive and
mobile technologies, to be relevant. The nature of these fields resemble the one of
IoT to some extent and the challenges that apply in them might be relevant in the
field of IoT as well.

Listing 2.1: Scopus query to identify relevant literature
TITLE -ABS -KEY

(

("Internet of Things" OR "Internet -of-Things" OR "IoT"

OR "Web of Things" OR "Web -of-Things" OR "WoT"

OR "pervasive comp*" OR "ubiquitous comp*" OR "smart"

OR "Arduino" OR "Raspberry Pi")

AND
("software deployment" OR "deployment of software"

OR "deploying software" OR "deploy software"

OR "software installation" OR "installation of software"

OR "installing software" OR "install software"

OR "software distribution" OR "distribution of software"

OR "distributing software"

OR "application store" OR "software store" OR "app store"

OR "application market" OR "software market" OR "app market"

)

AND (LIMIT -TO (LANGUAGE , "English"))

To find relevant literature, we also considered works focused on software and
mentioning Arduino or Raspberry Pi as of interest. We also included several common
terms used for software deployment and we constructed a query that we then used
in Scopus to find relevant literature. Due to the large number of works and little
relevancy in most of them, we introduced critetia for inclusion and exclusion. As a
results, we only considered relevant works that related to a) deployment challenges
in the above mentioned fields b) effects of app stores in IoT.

6 2. METHOD

In total 11 works were review in the literature review [And00, BCFP14, Dav11,
GVAGM10, HM06, KK10, MM07, MM12, SKS05, SCBZ11, ZWH+06].

2.1.3 Questionnaire

After analysing the data from the first part of the survey, we published an online
questionnaire, and asked respondents from several maker groups around the globe
to fill it. In this questionnaire and interviews, we tried to investigate the means
of software deployment, distribution, and collaborative development, as well as
which platforms are popular to use among makers. Additional interviews with those
respondents have been carried out eventually.

The questionnaire was posted to 8 maker communities and hackerspaces:

1. Trondheim Makers (Trondheim, Norway)

2. Maker Faire Oslo (Oslo, Norway)

3. MADE - Festival for Makers (Roskilde, Denmark)

4. Brmlab: Hackerspace Prague (Prague, Czech Republic)

5. Noisebridge Hackerspace (San Francisco, USA)

6. Maker Faire (global)

7. Sudo Room (Oakland, USA)

8. Bergen Hackerspace (Bergen, Norway)

Of these communities, 3 published the questionnaire on their facebook pages 1

2 3 and 2 on a mailing list 4 5 . A total of 11 members from these communities
responded to the questionnaire.

The full questionnaire is disclosed in the appendix of [Sta14]. It consisted of
9 required questions inquiring about platforms used by the respondents in their
IoT projects, what challenges and limitations they face during deployment and
distribution, and how do they collaborate and share.

1https://www.facebook.com/TrondheimMakers/posts/1539370499646893
2https://www.facebook.com/MakerFaireOslo/posts/721443127975522
3https://www.facebook.com/madebyorangemakers/posts/1597810183770621
4https://brmlab.cz/pipermail/brmlab/2015-February/008031.html
5https://www.noisebridge.net/pipermail/noisebridge-discuss/2015-February/046095.html

2.2. DESIGN AND EVALUATION OF THE PAPER PROTOTYPE 7

As the last step of the survey, respondents of the questionnaire were also asked to
leave contact information, and the leads were used to schedule follow-up interviews.
Despite 5 respondents have left contact information, only 1 was reachable and still
open for an interview, which we carried out.

In the follow up interview, we inquired about collaboration on maker projects and
technical details of some of the answers in the questionnaire. Possible improvements
of deployment were discussed to details.

2.2 Design and evaluation of the paper prototype

After the prestudy, the findings were compiled and a set of requirements was derived
from them, describing functionality desired from the system and architectural re-
quirements. We selected which requirements will we focus on and these were used
as an input for two design and evaluation iterations of our project. The first of the
iterations set to design and evaluate a paper prototype of the system.

2.2.1 Design of the paper prototype

As a first step of the design iteration, we created a set of two scenarios that would
represent the workflow of users in the system. Then we proceeded to create a paper
prototype of our system supporting those scenarios.

Paper prototyping is a technique for quick and cheap prototyping, which suited
our needs as we needed to validate our ideas and concepts in a timely manner. To
design the paper prototype, we used Balsamiq Mockups [Bal] software.

The details on the scenarios and the prototype itself are to be found in section
5.4.

2.2.2 Evaluation of the paper prototype

After the scenarios and the prototype were designed, a focus group was called in and
presented with the idea of an app store for the IoT. The paper prototype was shown
and was walked through with the scenarios. The input from the focus group was
collected and analyzed. The results of the focus group evaluation is in section 6.1.

2.3 Software prototype design

After the paper prototype was evaluated and the concepts and ideas reconsidered
with the evaluation feedback, we proceeded to create a software prototype of the
system, and subsequently to evaluate the prototype.

8 2. METHOD

2.3.1 Design of the software prototype

To design a software prototype, we decided to implement the essential of the require-
ments and carry our a working software system that can be used as described in the
scenarios. The description of the design and implementation can be found in section
5.5.

2.3.2 Evaluation of the software prototype

After the software prototype was designed, we evaluated some of the aspects of the
prototype namely a) ease of adding an app b) extensibility for new platforms. The
evaluations can be found in section 6.3 and section 6.2.

Chapter3Findings and derived requirements

In this chapter, we will summarize findings from literature and our data collection
and derive requirements for the proposed system.

3.1 Findings

We present our findings divided into four subsections: findings on platforms, findings
on deployment challenges, configuration challenges and findings on distribution
challenges.

The findings on platforms used in IoT development by makers give us insight
into what major platforms do we need to consider when investigating deployment
and distribution challenges, and also what platforms to focus on when proposing a
technical solution to address those. Supporting multiple platforms is a necessary
requirement due to the rich variety of IoT platforms that will remain till the foreseeable
future.

The remaining thrww, findings on deployment, configuration and distribution
challenges, relate to each other to a great extent. We mentioned earlier in [Sta14]
that deployment and distribution of software are two different concepts. In the scope
of app stores, deployment and configuration of software are actually inherent parts
of the distribution process. This is given by the nature of app stores, which are
designed for simplicity to use rather than control over the process. We can see this
in mobile app stores, where seeing an app in the catalog and having it installed are
just a click away, without configuration being necessary in most cases.

In app stores, the distinction between distribution and deployment is typically not
of an interest to the end user, and as such this trade-off between aspects of simplicity
to use and user control is strongly inclined to of simplicity of use. It might turn out
that this trade-off should be balanced differently in the case of IoT development as
it assumes higher user expertise and will to spend more time and effort.

9

10 3. FINDINGS AND DERIVED REQUIREMENTS

If we consider deployment to be a part of distribution, it is clear that challenges in
deployment can cause challenges in distribution. These should always be considered
with respect to each other.

3.1.1 Platforms

The survey showed that platforms such as Arduino and Raspberry Pi are used for
prototyping IoT systems. Android turned out to be another popular platform used
for development.

The second survey showed that in the immense number of platforms, Arduino
and Raspberry Pi are the most prolific, as they were used by all respondents but
two and three respectively. Some respondents also mentioned use of other platforms,
such as Intel Edison, BeagleBone, Teensy, Atmel AVR, Spark, BasicATOM or ARM
mbed. Vast majority of the projects are using devices of more than one platform. See
figure 3.1 for an overview of reported platform usage by makers in our questionnaire.

Overall, Arduino and Raspberry Pi seem to be by far the most used platforms
for IoT development in the maker community.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11

Arduino
Raspberry Pi

Atmel AVR
mbed

Basic Atom Pro
Teensy

Figure 3.1: Reported usage of platforms by Makers in our questionnaire.

The wide variety of different platforms is seen by some of the research as actually
harming the development in IoT. The heterogeneity can cause a vendor lock-in, as
was noted by [SCBZ11] who mentioned that “The progress of Internet of Things is
hampered by a fragmented world of standards and players in the field. The different

3.1. FINDINGS 11

and many proprietary platforms can easily lock an end user to a solution that may
be outdated quickly.”

Another quite interesting problem is the infinite number of device variations.
As devices in IoT are usually more than just a simple board – they are equipped
with sensors, actuators and other perisherals – each particular device on a certain
platform can have different capabilities and these need to be considered when resolving
compatibility of devices with apps.

3.1.2 Deployment

The survey shows that the wide variety of platforms gives space to an even wider
variety of deployment tools and mechanisms. While some platforms require use of
specialized tools to program device, other platforms require users to come up with
their own ad hoc means of deployment. Some platforms also require a physical access
to the device, while some enable remote deployment over network or wirelessly.

As many of the developed system consist of more platforms, of which some may
require a specialized tools for deployment, we can see that deployment might not be
trivial. The notion of heterogeneity of environments as a problem for deployment
in IoT was noted by several respondents in the survey, as well as mentioned in the
related literature several times.

Raspberry Pi

As we mentioned previously in [Sta14]: “Raspberry Pi is a credit card-sized single-
board computer [Ras14], that can run ARM builds of several Linux distributions. As
such, any software that runs on Linux on the ARM platform can be ran on Raspberry
Pi.”

Installation of operating system To run a Raspberry Pi, you need to equip it
with an SD card with an installed operation system of your choice. This typically also
involves installing required Linux packages etc. Several respondents of our survey
noted that preparation of the this is the most time-consuming part, and that there
certainly is room for improvement.

One participant noted that the approach of manual preparation does not scale
well and should be reconsidered for industry scale applications: “If you’re going
to produce thousands of Raspberry Pis that are customized for this project then
you would produce them all with this image that already has this house-monitoring
software installed.”

12 3. FINDINGS AND DERIVED REQUIREMENTS

Another participant estimates this approach could speed up the deployment
six-fold for his particular application: “Typical deployment takes about six hours
[...] If you already have a prepared image for the Raspberry Pi, then the entire
deployment takes about one hour.”

Version control system (VCS) deployment Deployment using VCS such as
git seems to be a popular option for devices with Internet access and capability to
compile or interpret the source code. Deployment using git (a popular VCS tool)
was used by several respondents for deployment to Raspberry Pi devices.

This approach is quite popular, as developers already are using VCS to keep their
source code, and it is quite easy to set up. Detailed description of git deployment
can be found in section 4.1.

Docker As another way of improving deployment to Raspberry Pi, one participant
mentioned dockerizing (i.e. prepare an image for Docker) the applications and
then running them as Docker containers on the Raspberry Pi: “[the application on
Raspberry Pi] could be dockerized, the Java component, the GUI, the application
that stores the different power which is a web application written in PHP. This all
can be packaged as a docker file, kind of an installation script and then once someone
takes a Raspberry Pi and installs docker and get this docker file, he will have the
service running. However there is still pairing with the smart plugs to be done.”

Docker [Doca] is a platform for automation of application deployment inside soft-
ware containers, making use of Linux Containers (LXC), a virtualization environment
in Linux. It allows developers to assemble whole application into a container that
can be easily run by anyone either locally or deployed in the cloud, without having
to deal with installing all dependencies, as they are all packed in the container as
well. A detailed description of Docker is provided in section 4.3.

Arduino

Arduino devices are usually programmed using Arduino IDE running on a PC to
which they are connected via a USB cable. Arduino IDE is a free and open-source
software, and supposedly very easy to use. This method of software deployment was
prevalent in respondents using Arduino devices.

Arduino, as well as other platforms, are also using various lower-level approaches
to device programming, such as In-Circuit Serial Programming (ICSP) protocol using
tools such as AVR Downloader/UploaDEr (AVRDUDE). This approach was also
mentioned by some respondents, but it seems to be of a far less popularity nowadays
and only used bu those who relish in working with low level programming.

3.1. FINDINGS 13

Typically IoT systems comprise of devices of various platforms of which some,
including Arduino, require specialized build tools in order to deploy software. Getting
rid of these tools, or incorporating them into one universal tool was mentioned by
the participants.

The need of physical access to a device when deploying software was, however,
raised as a major challenge by participants. This is typically a problem for devices
that are placed in inaccessible or distant areas, or on customer premises. Deployment
over network (wired or wireless) was mentioned as a possible improvement.

There exist other means of deployment to Arduino devices, such as deploying over
BlueTooth, which is described in section 4.5. Some respondents also mentioned using
a wireless network controllers such as ATWINC1500 for the purposes of wireless
deployment.

3.1.3 Configuration

Related works frequently mention the challenges related to post-deployment configu-
ration of software. As we mentioned in [Sta14], many IoT systems are by definition
formed by a number of interconnected Things, which in many cases need to be paired,
registered, or configured in some other way in order to be able to work together. In
many IoT systems, configuration might a hard nut to crack, as since the Things in
many cases comprise of devices with no interface that user can use to configure it.
[And00]

The problem of configuration also emerged in the survey. Participants were
mentioning the need of manual configuration that takes place after the software is
deployed onto the target device.

As we found out in previously in [Sta14], the related works such as [MM07,
HM06, ZWH+06, SKS05] suggest addressing this challenge by self-configuration, one
of the four aspects of self-management by [KC03], proposing a vision of autonomic
computing: “Self-configuration Installing, configuring, and integrating large, complex
systems is challenging, time-consuming, and error-prone even for experts”, all of
which actually apply to IoT systems.

The related works also suggest that self-configuration should be achieved through
context-awareness, as mentioned by [MM07] as a means of achieving self-adaptation
to changes in the environment: “Since pervasive systems are likely to be long lived
and dynamic, they will demand deployment, and redeployment, solutions that are
able to adjust to the system’s changing execution context continuously.” As other
means of achieving self-configuration, research suggests to use service discovery and
semantic descriptions that can be interpreted by the deployment tool.

14 3. FINDINGS AND DERIVED REQUIREMENTS

3.1.4 Distribution

As noted earlier, this projects aims to propose an app store solution for the IoT,
as a distribution channel for IoT software. It is worth noting that such a product
does not exists as of now and as the survey shows the distribution of IoT software is
instead done manually as downloading and copying files or repositories.

Some works suggest, that the above mentioned heterogeneity of platforms is the
reason why we do not have distribution channels for IoT software artifacts such
as [MM12] who mention “The IoT industry doesn’t have a unified hardware and
software platform. It is a network of heterogeneous hardware (i.e. Things), people
and services. This greatly complicates the creation of distribution channels for
software applications.”

However, previous research such as [KK10, Dav11, MM12, SCBZ11] suggests that
app stores might be a feasible solution for IoT, and as such should be investigated.

It was mentioned above that distribution of IoT software is mostly done manually
as of now. This means that the end user manually fetches the software (downloads a
binary package or source code) and then manipulates with it as they wish (typically
deploy the software or do changes to source code and then build and deploy).

All respondents said that they use source code repositories, such as Github or
Bitbucket, to share source code of their software. Some only use private repositories
to version the source code or collaborate with other developers, while others use it
as a way of releasing the sources for use by the general public. Distributing software
in form of source code is a means of exercising the principle of openness, as it makes
it possible to make changes, both technically and legally (in most cases).

Some respondents also mentioned distributing software in form of binaries or
built packages. While these are easier for an end user to use (as they do not need to
build them first), it might be impossible for the user to make changes. This is of
course specific to the nature of the packages.

Apart from source code repositories, respondents frequently mentioned that they
share the software on community forums or through their personal website or blogs.

Two of the respondents also mentioned they publish their software artifacts on
software store, but failed to specify where. As these mentioned use of Raspberry Pi
platform the stores in question could possibly be Pi Store [Ind15].

3.2. DERIVED REQUIREMENTS 15

3.2 Derived requirements

As noted in the chapter 1 the system that we are proposing is an app store for the
IoT with which we aims to address the lack of software distribution channels in IoT,
considering the challenges identified in the findings above. In this section, we revisit
the above mentioned findings and use them to derive requirements for our proposed
system. Having a clear set of requirements will help us to define the extent of the
solution we are attempting to propose, the desired functionalities and limitations.

3.2.1 Platform support

The findings show that one of the biggest challenges in IoT is the variety of platforms
and devices, especially as new platforms are coming to market. For the system we
propose to be successful, it needs to support a multitude of different platforms and
be extensible to support new platforms in the future.

Requirement 1: “App store should support multiple platforms.”

Requirement 1.1: “App store should be extensible to support new plat-
forms without changes to the architecture.”

The findings also show us that while there is a wide variety of platforms, it
is mainly two most prolific ones, Raspberry Pi and Arduino, that are used most
frequently. There is no use in supporting a large number of platforms unless we cover
the most used ones.

Requirement 1.2: “App store should support remote deployment to
Raspberry Pi.”

Requirement 1.3: “App store should support deployment to Arduino
without needing to physically connect the computer to Arduino and use
the Arduino build tool.”

3.2.2 Device capabilities and compatibility

In mobile app stores such as Google Play, the store provider can resolve the compati-
bility of an app and a device by simply looking whether the device (which is one of a
finite number of known model types) supports the API level needed by the app. In
IoT this approach is generally not applicable, as each device can be different and the
app store can not a priori know the capabilities of every device possible.

16 3. FINDINGS AND DERIVED REQUIREMENTS

It is therefore needed to come up with a framework that can formally describe
the device capabilities and let the system use this to resolve the compatibility of
apps and devices. These capabilities are ideally to be discovered automatically by
the system, but may need to be edited manually be the user in case the discovery
does not get it right.

Requirement 2: “App store should be aware of the device’s capabilities.”

Requirement 2.1: “App store should be able to discover the capabilities
of the device automatically.”

Requirement 2.2: “App store should it make possible for the user to
fix the capabilities information manually.”

Requirement 2.3: “App store should use the device capability informa-
tion to resolve app compatibility.”

3.2.3 App store requirements

The proposed system should also support the features and functionality that are to
be expected from a modern app store. The features required here were from a large
part inspired by well known app stores such as Google Play. This will help make the
app store easy to use, especially for people who are familiar with other app stores.

Requirement 3: “App store should provide expected app store function-
ality and features.”

As the main contribution of our project is bringing a means of installation of
apps on the devices, this is also one the important group of requirements.

Requirement 3.1: “App store should support installing apps on devices.”

Requirement 3.1.1: “App store should support registering devices.”

Requirement 3.1.2: “App store should support a single-click installation
of apps.”

3.2. DERIVED REQUIREMENTS 17

Requirement 3.1.3: “App store should support a single-click uninstal-
lation of apps.”

Modern app stores are edge-dominant systems. This means that the success of
them largely depends on the input from the uses. It is not the provider of the service
who creates the content, but rather the so called “prosumers”, productive consumers.
This means that users not only can download and install apps, they can also be able
develop their own apps and use the app store as a platforms for publishing them.

Requirement 3.2: “App store should support adding own apps.”

Requirement 3.2.1: “App store should support adding updates to exist-
ing apps.”

The feedback from the paper prototype evaluation, described in subsection 2.2.2,
brought up the issue of categorizing the apps. In case the system scales to a store
with thousands of apps, an effective means of categorization, filtering and search
needs to be put in place.

Requirement 3.3: “App store should support filtering, categorization
and search for apps.”

Requirement 3.3.1: “App store should support categorizing apps into
nested categories.”

Requirement 3.3.2: “App store should support filtering apps by at-
tributes (platform, author).”

Requirement 3.3.3: “App store should support search over apps.”

The social context of app stores was also brought up in the the paper prototype
evaluation, and is further described in subsection 2.2.2. The requirements derived
from the feedback are:

Requirement 3.4: “App store should support user feedback on apps.”

18 3. FINDINGS AND DERIVED REQUIREMENTS

Requirement 3.4.1: “App store should support user comments on apps.”

Requirement 3.4.2: “App store should support user rating of apps.”

The store of course needs to feature a functional user management system and
means of authentication and authorization. This requirement is inherent and is only
mentioned pro forma.

Requirement 3.5: “App store should support user registration and
login.”

Chapter4State of the art

This chapter gives an overview on the state-of-the-art methods, technology and
solutions in software deployment in the IoT field that are related to the requirements
proposed for our system. It provides an analysis of their advantages, disadvantages
and ideas that can be utilized in our project. Table 4.1 provides an overview of
coverage of the requirements.

4.1 Git deployment

Deployment using git (and other VCS) are popular even outside the IoT field, for
instance as a deployment method to cloud Platform as a service (PaaS) such as
Heroku [Her] or OpenShift [Red].

Even though this deployment method is quite popular, some point out that VCS
systems were not designed for deployment purposes and might not be suited for such,
as they are for example unable to keep track of file permissions or empty directories,
which might be an issue in some cases.[Cha]

There are several workflows how deployment via git can be implemented [Cha].
In any case, device needs to be set up in advance in order to be deployed to.

Even though of deployment is used often by the developers themselves, it might
not be an appropriate deployment model for use by regular users, as they would
need to set up the environment, including all the dependencies and configuration
needed, which might turn out to be complicated in some cases. We decided this way
of deployment was not suitable for our prototype, in which we wanted to demonstrate
the ease of deployment.

19

20 4. STATE OF THE ART

4.2 Snappy Ubuntu Core

Another technology to be considered is Snappy Ubuntu Core.[Can] According to
[Can15] Snappy Ubuntu Core is a new rendition of Ubuntu with transactional updates
- a minimal server image with the same libraries as today’s Ubuntu, but applications
are provided through a simpler mechanism. The Snappy system provides a new
mechanism of managing apps, having them isolated from each other, and updating
them with transactional delta updates.

This Ubuntu distribution was ported to ARM devices and is one of the third-party
distributions you can download from the official Raspberry Pi webpage [Ras].

Figure 4.1: Snappy architecture. Source: [Can]

This technology has been introduced only recently and even though the technology
has a certain potential it seems it has not taken off yet. We feel the community and
documentation is not yet at the level of other, more popular technologies.

4.3 Docker

Docker is a platform building on top of LXC (Linux Containers), a virtualization
environment in Linux. It facilitates running multiple isolated containers under a
single system.1 There is a subtle difference between a traditional virtualization which
runs a separate OS inside a virtualized sandbox (such as one used in VirtualBox)
and Linux Containers, which reuse the underlying system and only bring a layer of
needed dependencies. This difference is best explained by figure 4.2.

Thanks to recent development efforts by Resin.io [Res13a] and by Hypriot [Hyp15],
Docker now has been ported to ARM platform, and therefore Raspberry Pi, rendering
Docker a feasible deployment method for Raspberry Pi.

To run an app inside a Docker container, one must first dockerize it. This
means prepare a docker image that can be instantiated into a container. This is
typically done by creating a so-called Dokerfile, which is a text file of a special syntax

1Technically detailed description can be found in [Docd]

4.3. DOCKER 21

containing instructions on building the image. The official Docker documentation
[Doc15] describes it as “[...] a text document that contains all the commands you
would normally execute manually in order to build a Docker image.”

Figure 4.2: Differences between Docker and traditional virtualization. Source: [Docd]

Docker images are layered. Each step in the Dockerfile translates to another layer,
as the previous image is taken, instantiated into a container, the new step is applied
to it, snapshot of container is taken and stored as another image, depending on the
underlying one. The layers are thin, but too many of them in an image can be a
possible performance bottleneck. Dockerfile also needs to specify its parent image,
which can in turn be another image built from a stack of layers, and builds on top of
another parent image. The parent image can also be a base image, which is an image
without parent, which architecture needs to correspond with the architecture of the
processor on which the container is supposed to run. It is therefore not possible to
run a 64-bit image on a 32-bit processor or an ARM image on a x86 processor.

Resin.io, the company behind the product described in section 4.4, published a
guide to building and installing Docker on Arch Linux for ARM in November 2013
and updated it several times since, with Docker v0.8.0 being the latest (as of May
2015) release in February 2014.

Hypriot (a project going under a rather poetic slogan “Docker Pirates ARMed
with explosive stuff, roaming the seven seas in search for golden container plunder.”)
releases SD card images of a modified Raspbian distributions with Docker installed.
Their first known release on February 8th 2015 was using Raspbian Wheezy and
Docker 1.4.1, the latest one (as of May 2015) release on April 16th is using the latest

22 4. STATE OF THE ART

Raspbian Jessie and Docker 1.6.0.

Docker features a remote API [Docb], that is REST-like and can be used bu other
applications. It can be used either locally (bound to UNIX socket) or remotely (when
bound to TCP socket). This technology seems to be feasible for our implementation
of Deployment to Raspberry Pi, in large part thanks to the development efforts by
Hypriot and Resin.io.

4.4 Resin.io

Unlike Hypriot, which is an initiative dedicated to providing Docker enabled Raspbian
SD card image, Resin.io is a business providing a platform for developers which can
be used to deploy software to devices such as Raspberry Pi, Beaglebone Black and
(experimentally) Intel Edison [Res15]. According to their website [Res15] they are
constantly working on supporting more platforms in near future.

Even though Resin.io is also deploying apps on IoT devices, the idea is different
from the one of UbiBazaar. Resin.io is not an app store, but merely a bridge between
software developers pushing code to a source code repository and devices that are
running the software built from that code. It allows developers to deploy their code
to devices easily, not to release their apps for the wide public, or for the public to
install the apps on their devices.

Figure 4.3: Workflow of Resin.io. Source: [Res13b]

4.5. µC SOFTWARE STORE 23

When code is pushed into a code repository in Resin.io infrastructure, it is built
into a Docker image, which is in turn published to a Docker repository from which
the devices are fetching it and starting the images as container. The whole process is
described in detail in [Res13b].

Resin.io currently only supports having one app deployed on a device at once.
The idea of UbiBazaar differs, as we aim to support running multiple apps on the
same host. The idea of cross-compiling the image on a build server outside the target
device also seems to be a feasible one, as it will save time for the end user.

4.5 µC Software Store

µC Software Store was developed as a student project at NTNU. The project’s aim
was originally to develop an app store from which apps can be installed to devices
based on microcontrollers such as Arduino. The focus of the project shifted to “use
Bluetooth instead of a wired connection to program an Arduino device”. [EST13]

In the scope of the project, students implemented an Android app, that uses
a BlueTooth shield (RN-42) to enable remote programming of an Arduino device.
[New14] The system manages pairing of devices over BlueTooth and deploys software
over-the-air. It features a fixed set of apps, which can be installed, but no new apps
can be added and shared with other users, so the social dimension of app stores is
unfortunately eliminated.

Figure 4.4: Selected screenshots of µC Software Store. Source: [EST13]

While the app only implements STK500v1 protocol for over-the-air deployment
to Arduino, [EST13] claims the app has a modular design and can be easily extended
to support additional protocols for deployment. This makes it a great inspiration in
case of eventual implementation of Arduino deployment in UbiBazaar.

24 4. STATE OF THE ART

4.6 Overview of covered requirements

This section provides an overview of how our requirements were covered by the
reviewed state of the art technology and solutions. We chose to focus on the
deployment method perspective of our system and have not investigated the methods
of discovering device capabilities and resolving compatibiloity.

Rq State of the art Findings
1 Resin.io (section 4.4) supports

several platforms such as Rasp-
berry Pi, BeagleBone Black, Intel
Edison. All with the same deploy-
ment mechanism (Docker).

There are platforms for which
Docker is not a feasible solution,
such as Arduino. So to address
the requirement, we need to do
more than Resin.io is doing.

1.1 Several ways how to deploy apps
on Raspbery Pi exists, such
as a) Git b) Ubuntu Snappy
c) Docker. Resin.io (section 4.4)
is using Docker.

For Raspberry Pi, Docker seems
to be a good choice of deployment
method and technology.

1.2 µC Software Store (section 4.5)
does over-the-air deployment of
apps using BlueTooth.

Solution works, reuse of existing
code is possible.

1.3 — not applicable
2 — not investigated
3 — not applicable

Table 4.1: Coverage of requirements by the state-of-the-art technology.

Chapter5Design and implementation

This chapter describes the proposed solution from an architecture and a concept, to a
paper prototype to a software prototype. It also provides reasoning why some of the
requirements from section 3.2 were not considered in the concept and architecture or
carried out in the prototypes.

5.1 Proof of concept implementation

As noted in the chapter 1 and in section 3.2 we propose an app store for the IoT that
should become a distribution channel for IoT software. This tool should facilitate
user innovation in IoT by providing a platform where makers can publish their IoT
apps and other users and makers can install those to their own devices. We believe
this is a solution to the lack of distribution channels in IoT software, and can replace
the current means of sharing software (that is making source code public in Github,
etc.) with a method more efficient and user friendly.

(a) Landing page. (b) Filtering apps by platform.

Figure 5.1: Landing page and filtering.

In the end this project we designed and implemented a working software prototype
of an IoT app store for Raspberry Pi devices and apps, installed as Docker containers.

25

26 5. DESIGN AND IMPLEMENTATION

The app store has a web frontend which can be accessed by users through a web
browser, and which can be used to install apps to Raspberry Pi devices with just a
few mouse clicks.

(a) Step 1. (b) Step 2.

Figure 5.2: Adding a new app in two steps.

The apps store was specifically designed for a) users who want to publish their
own apps b) users who want to install apps published by others. It supports all the
functionality needed from adding a new app, to registering a device, to having the
app installed on the device.

(a) App detail. (b) Device detail.

Figure 5.3: App detail and device detail.

Some of the functionality of the app store is only available to authenticated users.
While user who is not authenticated in can browse through the app store, filter the
apps by attributes and categories and see their details, a user who authenticates can
in addition a) register devices they own (figure 5.5b) b) install apps to registered
devices (figure 5.4a) c) add new apps to the app store (figure 5.2).

5.1. PROOF OF CONCEPT IMPLEMENTATION 27

(a) Selecting a device to deploy app to. (b) User profile.

Figure 5.4: App installation and user profile.

User can at any time see the devices they have and what apps are installed on
them, and can uninstall the apps from devices with a single mouseclick.

(a) Device overview. (b) Adding a new device.

Figure 5.5: Device overview and adding a new device.

To authenticate, user first needs to register using the user registration form
(figure 5.6b), providing a username and password of choice. Subsequently, user logs
in through login form (figure 5.6a) with the credentials provided on registration.

(a) Login dialog. (b) Registration dialog.

Figure 5.6: User login and registration dialogs

28 5. DESIGN AND IMPLEMENTATION

5.2 Architecture

As stated in the requirement 1.1 in section 3.2, the system should support future
extensions for new platforms. To accommodate this the system was divided into
separate modules so that it can be extended later on. Overview of the architecture
is provided in figure 5.7.

Figure 5.7: Proposed architecture.

In general, the three main types of components in the system are a) API
b) Frontend c) Installation Manager.

We decided to fully separate the frontend from the API so new types of frontends
can be implemented at a later stage, such as native mobile apps etc. This also means
following the principle of loose coupling.

Domain model To back the ideas drawn in the proposed architecture we created
a domain model that deals with the concepts that are to be used in system built in
that architecture. A schematic diagram of the domain model can be seen in figure
5.8. Even though this diagram is oversimplified, we feel it shows the most important
concepts and relationships among them.

Figure 5.8: Domain model for the proposed architecture.

5.3. SOLUTION CONCEPT FOR RASPBERRY PI 29

API is the component of the system that is responsible for the data. Typically,
it deals with reading and storing data from a database and serves it to the other
components. There typically is one API working over one database, but this setup
might differ if the project is ever implemented as a distributed network of inter-
connected app stores. The API is responsible for keeping the data on users, apps,
devices, installation managers and installations, each of them separately, following
the principle of separation of concerns. Should there be any extension requiring to
keep new types of data, these should be kept by the API. The API should also be
equipped by security mechanisms for authentication and authorization over the kept
resources. The API should be easy to integrate upon, and RESTful approach is
preferable. An overview of the methods the API needs to provide can be found in
paragraph 5.2.

Frontend is the component of the system that the users are interacting with to
manipulate the data - registering themselves, adding new apps, registering their
devices, requesting app installations onto devices. The component provides a user
interface, a layer between the user and the API. It can take form of a web page, a
smartphone app or a desktop application.

Installation manager is the component which manages installations of apps onto
devices. It works with the API and makes sure that apps are installed on devices
they are supposed to. It may or may not require user interaction, depending on the
installation method. This might take form of a client residing on each individual
device, or a server application, managing a number of devices remotely over the
Internet, or even a smartphone app managing devices locally using BlueTooth.

5.3 Solution concept for Raspberry Pi

Even though the requirements in section 3.2 call for supporting both Raspberry Pi
and Arduino deployments, we decided to only demonstrate implementation of one of
them - Raspberry Pi (requirement 1.2). We will nonetheless describe in section 6.2
how Arduino deployment could be implemented and how the architecture is fit to
support such extension, complying with requirement 1.3.

While the architecture proposed in section 5.2 is more of a general one, this
section deals with architecture for a prototype solution that we propose, having
Raspberry Pi in mind. The figure 5.9 gives an schema of the architecture when
Raspberry Pi is considered to be the target platform. Design decisions backing this
architecture are described in details below.

30 5. DESIGN AND IMPLEMENTATION

Figure 5.9: Architecture of prototype solution for Raspberry Pi.

5.3.1 Design decisions

There were several design decisions made at this point and this section presents a
brief overview of the rationale behind them.

Docker as the installation method As stated above, the main focus of this
prototype is installing apps on Raspberry Pi devices. We decided to take the approach
of dockerizing the apps and installing them as Docker containers. This will render
some additional effort on the app makers, who needs to dockerize the app, but is in
turn easy for the user to install such an app.

Manager-per-device strategy Using Docker Remote API [Docb] was chosen
considered as a way how to manage apps installations on a device. Binding the
Docker to a TCP socket and using the API remotely from a server service was
briefly considered, but deemed inapplicable, as it would require the device to be

5.4. PAPER PROTOTYPE 31

reachable from the outer network, which might not fit many network setups in which
IoT applications are used. It was decided that the system will be using the Docker
Remote API locally from the device. For this to work, a client/manager needs to be
running on that device interacting with both the Docker in that particular device
and with the UbiBazaar API. This means that for each Raspberry Pi device, there
needs to be this client installed. The relationship is therefore 1:1 between managers
and Raspberry Pi devices.

(a) Captain Ahab fighting Moby Dick. Illus-
tration by I. W. Taber. [Mel51]

(b) Docker logo. Source: [Doca]

Naming the installation manager The name of installation manager for Rasp-
berry Pi was decided to be Ahab, after the eponymous fictional captain of a whaling
ship from Herman Mellville’s masterpiece novel, Moby Dick [Mel51]. Captain Ahab
is known for being mono-maniacally obsessed with Moby Dick, the most fierce whale
known to man; the whale that deprived him of his leg and, later on, cost him his life.
As the installation manager for Raspberry Pi is designed to build on top of Docker,
and Docker has a whale in its logo1, we find it fitting that the software would be
named after the probably worlds best known whaler, despite his tragic destiny.

5.4 Paper prototype

As described in section 2.2, we created a paper prototype of the proposed system
before implementing it. We did this to be able to validate our ideas quickly and have
them evaluated externally.

To design a paper prototype, we have first come up with two user scenarios that
represent the main tasks we expect the users to perform with the system, namely
a) adding a new app b) registering a device c) installing an app. The full scenarios
can be found in appendix B.

1The whale in the logo is in fact called Moby Dock, a pun on both Moby Dick and Docker.
Source: https://blog.docker.com/2013/10/call-me-moby-dock/

https://blog.docker.com/2013/10/call-me-moby-dock/

32 5. DESIGN AND IMPLEMENTATION

Figure 5.11: Welcome screen of the paper prototype.

A clickable “paper” prototype was then designed in Balsamiq Mockups [Bal] that
supported those scenarios. 2

5.5 Software prototype

For all the components implemented in the scope of the software prototype, we used
Java as the programming language of choice. This decision was made due to the
previous experience with the Java platform and libraries and due to openness that
this project aimed for in case this software prototype will be polished and becomes a
reference implementation.

2See the clickable PDF prototype on https://www.dropbox.com/s/019iqa8nsorxerl/prototype_
scenario_1.pdf?dl=0 (scenario 1) and https://www.dropbox.com/s/8pnc5exhzhpoqbr/prototype_
scenario_2.pdf?dl=0 (scenario 2).

https://www.dropbox.com/s/019iqa8nsorxerl/prototype_scenario_1.pdf?dl=0
https://www.dropbox.com/s/019iqa8nsorxerl/prototype_scenario_1.pdf?dl=0
https://www.dropbox.com/s/8pnc5exhzhpoqbr/prototype_scenario_2.pdf?dl=0
https://www.dropbox.com/s/8pnc5exhzhpoqbr/prototype_scenario_2.pdf?dl=0

5.5. SOFTWARE PROTOTYPE 33

5.5.1 Database

It was decided to use a traditional Relational Database Management System (RDBMS)
to persist the data in the system. This is to ensure integrity among the relations
between individual entities we persist.

MariaDB When choosing a particular RDBMS implementation, we decided to
use MariaDB [Mar], a community developer fork of popular MySQL. These two are
however compatible and interchangeable, so this choice does not impose a strict
limitation on eventual future work which would like to extend UbiBazaar yet use
MySQL instead.

Figure 5.12: Database model of our implementation.

Database model The domain model, as described in paragraph 5.2 was revisited
and a database model was derived from it, considering necessary linking tables.
Diagram of the derived database model is shown in figure 5.12. The database model
is using foreign keys heavily, as well as unique constraints and composite keys. We
decided that each non-linking table will have a primary surrogate key (speaking the
SQL language, the column is defined as ‘id‘ varchar(32) NOT NULL) and natural
keys such as username will only be considered unique keys.

34 5. DESIGN AND IMPLEMENTATION

5.5.2 Core library

Entities (such as App, Device, User, Installation and other) are used throughout all
the components - API, frontend, installation manager - and as these components are
all built in Java, we found it useful to extract these entities into a common library
that then can be reused in all of the components.3

5.5.3 API

As the system is designed for reuse by new types of installation managers and possibly
new types of frontends, our main concern was to implement the API in a way it is
easy to extend, easy to implement and easy to use. Implementing it in RESTful
manner, which is a de-facto standard in modern APIs, was a clear choice.4

Glassfish As this component is a server software, we decided to run it on a Java
application server Glassfish 4, which is also a Java EE 7 environment and supports
newest versions of APIs for servlets, JSON processing, Java API for RESTful Web
Services (JAX-RS), Java Authentication and Authorization Service (JAAS), Java
Database Connectivity (JDBC) as well as other features expected from an application
server.

JAAS To secure the RESTful resources, we made use of the basic authentication
method through the JAAS mechanism. JAX-RS has built-in support for JAAS
and can inject security context to the secured resource. Declaration of secured
resources is done in web.xml . The proposed system recognizes two types of subjects
a) users b) installation managers. These differ not only in the privileges they should
have in the API but also to the way they authenticate themselves. While users are
authenticating with a username and password, installation managers authenticate
with a unique ID and a generated random key. To accommodate this we implemented
an own JAAS module that Glassfish can use. This also enabled us to hash passwords
with an algorithm of our choice - with bcrypt.5

Maven UbiBazaar API is using Apache Maven [Apa] for build automation and
dependency management. Maven follows the “convention over configuration” principle
and makes it really easy to set up a project that has many dependencies without
needing to download those and their dependencies manually.

JAX-RS To implement RESTful services easily, it was decided to make use of
JAX-RS, namely of the version 2.0. The ease of implementing a RESTul service
using this technoilogy is best illustrated in code listing 5.1.

3Source code and setup guide can be found on https://github.com/ubibazaar/core.
4Source code and setup guide can be found on https://github.com/ubibazaar/api.
5Source code and setup guide can be found on https://github.com/ubibazaar/jaas.

https://github.com/ubibazaar/core
https://github.com/ubibazaar/api
https://github.com/ubibazaar/jaas

5.5. SOFTWARE PROTOTYPE 35

Listing 5.1: Example RESTful resource
1 package org.ubicollab.ubibazaar.api.resources;

2
3 import javax.ws.rs.*;

4 import com.google.common .*;

5 import com.google.gson .*;

6
7 @Path("ping")

8 public class PingResource {

9
10 @GET

11 @Produces(MediaType.APPLICATION_JSON)

12 public String ping() {

13 return new Gson().toJson(ImmutableMap.of("pong",

System.currentTimeMillis ()));

14 }

15
16 }

JDBC To keep the code free of property files, it was decided to set up database
connection as a JDBC resource in the application server and let the application
look it up by Java Naming and Directory Interface (JNDI) name in the application
context. This way the datasources can be changed without needing to reconfigure
and rebuild the application itself. For the simplicity of implementation and rather
simple structure of our domain it was decided not to use any Object Role Modeling
(ORM), even though the application server features support for Java Persistence API
(JPA).

bit.ly To shorten long generated URLs, the system is using API of bit.ly, a popular
URL shortening service. This becomes especially handy when users are attempting
pairing of a device within the system and need to manually write a command in
Raspberry Pi’s terminal. The shorter the URL they are using, the quicker and the
less error prone the process is. There is a RESTful API provided by bit.ly that
UbiBazaar is using through the StoreUtil class.

5.5.4 Web frontend

From the initial idea to write a thick web app running in user’s browser, we shifted
to the traditional approach where all the application logic resides on the server and
the user’s browser barely renders HTML pages generated by the server. 6

6Source code and setup guide can be found on https://github.com/ubibazaar/web.

https://github.com/ubibazaar/web

36 5. DESIGN AND IMPLEMENTATION

When choosing a Java web framework to use for implementation, experience,
simplicity and and community support (tutorials, samples, etc) were considered as
important factors. It was decided to pick Play Framework [Typ], which has a rather
simple templating engine (based on Scala, readable for Java-acquainted developers),
support for routing, RESTful client libraries, keeping user sessions server-side, and
many other features.

To give the generated HTML more appeal for the general public we make use of
Bootstrap [Twi], which is a web front-end framework, consisting of CSS styles and
JavaScript helpers that makes it really easy to style a web application. Using this
framework and a theme Flatly [Par] styling the app into a modern looking one was a
matter of minutes.

5.5.5 Ahab (installation manager)

This component is using Apache Maven the same way and for the same reasons
described in paragraph 5.5.3.7 It is using entities from the core library, described in
subsection 5.5.2.

Ahab is a fairly simple component with a sole responsibility: ensuring that the
device is running apps that is supposed to be running. That is Ahab installs and
starts new containers user installs those through the frontend, and stops and remove
containers as user uninstalls apps through the frontend. Ahab runs a thread every
20 seconds, checking API for apps that are supposed to be installed and then starts
and stops containers so that they are in sync with what user expects.

Docker Remote API wrapper It was intended to implement a wrapper around
the Docker Remote API [Docb], but it has turned out that there exist a number
of already implemented libraries for this [Docc], and that the implementation of
docker-client by Spotify8 suits our needs perfectly.

Naming installation containers As stated above, Ahab needs to resolve which
apps are running on a device in order to install those that should be installed,
but are missing, and to stop those that are running, but should be removed. The
implementation uses container names to identify which installation are they running.
To ensure that Ahab does not interfere with other container that might be running
on the same device, we name all the containers in a way that a common user would
never name them in their right mind: using prefix ubibazaar_inst_ followed by an
installation UUID. UUID has length of 32 hexadecimal digits, having approximately
1038 unique combinations, entropy sufficient enough for all practical purposes.

7Source code and setup guide can be found on https://github.com/ubibazaar/ahab.
8Source code and documentation to be found on https://github.com/spotify/docker-client

https://github.com/ubibazaar/ahab
https://github.com/spotify/docker-client

5.5. SOFTWARE PROTOTYPE 37

Installation script and service Ahab is installed by a small installation script9,
that is generated by the API and contains a unique identifier of the installation man-
ager as well as key for the installation manager to be able to authenticate against the
API. This scripts downloads a release of Ahab, copies it to /usr/local/ubibazaar

along with properties file containing the unique credentials, creates a service10 in
/etc/init.d and starts it. This service is started by system after rebooting, making
sure that Ahab always runs.

9Source code of the installation script can be found on https://github.com/ubibazaar/ahab/
blob/master/installation_script.sh. Make sure to replace placeholders in mustaches by real values.

10Source code for the init.d script can be found on https://github.com/ubibazaar/ahab/blob/
master/ahab

https://github.com/ubibazaar/ahab/blob/master/installation_script.sh
https://github.com/ubibazaar/ahab/blob/master/installation_script.sh
https://github.com/ubibazaar/ahab/blob/master/ahab
https://github.com/ubibazaar/ahab/blob/master/ahab

Chapter6Evaluation

In the scope of the project we carried out 3 evaluations that evaluate the proposed
solution both theoretically and practically. This chapter presents the description of
the evaluations and their results.

1. Prototype evaluation with focus group has been performed as a focus
group evaluation with focus on the usability of the paper prototype and its workflow.

2. Extending to support Arduino deployment has been performed as the-
oretical feasibility evaluation to conceptually assess the fitness of the proposed
architecture to requirements.

3. Dockerizing CoSSMic has been performed as a practical feasibility evalua-
tion, to evaluate whether the selected deployment method is applicable in the IoT
context.

6.1 Prototype evaluation with focus group

To evaluate usability of the paper prototype and validate our requirements with
unbiased participants, we held a focus group meeting, where participants were
presented the concept of the project and the scenarios, and shown the way through
the paper prototype. Plenty of important feedback was collected during the session
and many good points were made that needed to be reconsidered before we proceed
to create a software prototype.

From the evaluation we found out we need to make the prototype easier to use
(ease the terminology and simplify device registration mechanism) and to improve our
functional requirements — stress social perspective, and address trust and security
concerns.

39

40 6. EVALUATION

Device pairing mechanism The original mechanism of device pairing was count-
ing on downloading a generic installer, installing the software and then configuring
it manually with unique credentials for accessing the API. The focus group found
this too complicated for the user and suggested to simplify the process even more.
Several methods were suggested, some of them applicable in the context (using MAC
address, downloading installer with credentials built-in) and some not (using QR
codes). For the software prototype, we decided to generate the installation script
with built-in credentials so it can auto-configure itself. The difference can be seen in
figure 6.1.

(a) Paper prototype. (b) Software prototype.

Figure 6.1: Pairing instructions in prototypes.

Language It was quickly discovered that the terminology/language used in the
paper prototype is complicated and while it may (or may not) be technically correct,
it does not meet the needs of common users who expect simplicity. While we have
used the terms “deploy” and “deployment” up to this point, it turns out that users
are more acquainted with terms “install” and “installation” which represent the same
things from their point of view. Having “download” was also considered confusing
and not useful, so it was removed.

(a) Paper prototype. (b) Software prototype.

Figure 6.2: App detail in prototypes.

6.2. EXTENDING TO SUPPORT ARDUINO DEPLOYMENT 41

Social perspective A clear point was made that app stores are not bare catalogs
of apps, but also a social platform, comprising of features such as ratings and comment
sections. This social perspective should not be underestimated, as their it forms an
integral part of what app stores really are - an exchange among creators and users.
Creators providing software to users, users providing feedback to creators and other
users. For users, it is not only the official description of the app what is important,
but also how other users find the app useful and usable. This is also one of the
factors that can establish trust of users against the resources in the app store.

Trust and security concerns The trustworthiness in IoT app stores have been
brought up by previous research [KPX+14] and was also a big concern of the focus
group. IoT has a potential to influence our daily lives in ways we may not even be
able to imagine yet, and it is absolutely necessary to ensure that IoT apps, many of
which will handle our personal data and control our lives to a certain extent, are to
be trusted and prevent misuse by third parties.

6.2 Extending to support Arduino deployment

To evaluate how requirements 1.2 (Arduino deployment) and 1.3 (extensibility for
new platforms), were handled by our solution, we decided to perform a theoretical
feasibility evaluation. To do this, we would like to conceptually show how Arduino
deployment could be implemented within the proposed system architecture.

As mentioned in section 4.5, NTNU students in the scope of the µC Software
Store project [EST13], developed an Android application with the capability of
programming an Arduino device wirelessly. We believe this approach can serve as an
inspiration for designing a UbiBazaar extension for Arduino, as well as the code can
be reused by a reference implementation in the future.

The figure 6.3 shows how this extension can fit into the proposed architecture.
The extension in question would be a native Android app which would assume roles
of both the frontend and the installation manager, as proposed in figure 5.7. This
means the responsibilities of the app would be to communicate with the API as
well as install the apps to the device physically, using the over-the-air deployment
functionality implemented in µC Software Store.

We believe this solution fits perfectly into the proposed architecture and can be
implemented easily as a future continuation of the UbiBazaar project, as it can reuse
the code developed in µC Software Store [EST13].

42 6. EVALUATION

Figure 6.3: Support of Arduino support in the proposed architecture.

6.3 Dockerizing CoSSMic for Raspberry Pi

We decided to perform a practical feasibility evaluation of the selected deployment
method — using Docker on Raspberry Pi — selected to address requirement 1.2.
This evaluation helps us to assess whether the Docker approach is feasible for IoT
apps on Raspberry Pi.

To perform the evaluation we decided to take an existing IoT app and install
it on a real Raspberry Pi device using our prototype of installation manager. This
section presents our findings from this evaluation and describes what challenges we
faced and how have we overcome them.

We chose to do this experiment with an IoT app which is a part of the CoSSMic
project. The reasons to choose this app are threeefold a) it is a real, existing IoT app
b) this app targets Raspberry Pi devices c) the CoSSMIC project has a planned field
study which could be a good test case. The CoSSMic project assumes deployment
of a larger number of these devices, but the experiment was only concerned about
installation of the app to an individual device and does not cope with the integration
issues.

As described in 4.3 being able to do this first requires us to dockerize the app.
This means writing a Dockerfile, formally describing all the necessary steps to be

6.3. DOCKERIZING COSSMIC FOR RASPBERRY PI 43

taken for the app to be installed. Under normal circumstances this would be created
from scratch building on the knowledge about needed dependencies, etc.

In our case, we had an almost ready-made Dockerfile that dockerized the app on
top of debian:wheezy 1 base image, which is an image of a 64-bit version of Debian,
a Linux distribution.

As mentioned in 4.3, a Docker image can only run on a device whose processor
architecture matches the architecture for which the image was built. Therefore we
needed to change the base image to one that would work on Raspberry Pi. At the
time evaluating, there were several possible base-images that could have been used:

1. resin/rpi-raspbian 2

2. cellofellow/rpi-arch 3

3. mazzolino/armhf-ubuntu 4

To minimize the effort needed to adjust the Dockerfile to a new base image,
we decided to choose resin/rpi-raspbian as a base image. This docker image of
Raspbian which is closely based on Debian, would allow us to reuse most of the
existing Dockerfile. Some changes were however still necessary:

1. Dropbox daemon was failing intermittently on Raspbian, and was removed
from the Dockerfile as unnecessary for the demonstration purposes.

2. Installer for mysql tried to launch a prompt during the installation, asking
for a password to set for the root user on the database. As building a docker image
needs to be non-interactive, we fixed this by using debconf-set-selections to set
the password when the installers prompts for it.

3. Configuration files for lighttpd, a web server, slightly differed between the
version for Debian and for Raspbian, most notably in path used as a document root.
While the Debian version has default document root in /var/www , the Raspbian
version has it set to /var/www/html . This was however very easy to carry out in
the lighttpd configuration file /etc/lighttpd/lighttpd.conf .

1https://registry.hub.docker.com/_/debian/
2https://registry.hub.docker.com/u/resin/rpi-raspbian
3https://registry.hub.docker.com/u/cellofellow/rpi-arch
4https://registry.hub.docker.com/u/mazzolino/armhf-ubuntu

https://registry.hub.docker.com/_/debian/
https://registry.hub.docker.com/u/resin/rpi-raspbian
https://registry.hub.docker.com/u/cellofellow/rpi-arch
https://registry.hub.docker.com/u/mazzolino/armhf-ubuntu

44 6. EVALUATION

Building the Docker image has proven to be a very time consuming task. There
are two main factors to this:

1. Building a docker image is fail-fast. Build stops on first encountered problem
with the Dockerfile, which only makes it possible to eliminate problems one by one
by trial and repeat.

2. Building the docker image on Raspberry Pi turned out to be extremely ineffi-
cient and was a matter of hours (typically 3-5, occasionally 8 for no clear reason).

Building a docker image is typically not a time-consuming task, but it proved to
be in our case. This was largely caused by the low performance of the Raspberry Pi
device, but also due to the fact that this particular Dockerfile consisted of over 70
commands, each of them creating another layer of the container.

Building the original Dockerfile (i.e. the one basing on for debian:wheezy) was
a matter of minutes so we have a reason to believe low performance of the Raspberry
Pi is to blame.

Further optimization of the Dockerfile to reduce the number of steps is advisable,
however detailed benchmarks were not performed and this is just a conjecture of our
observations. This was also observed and described by other such as [Toe15], who
tried to address this issue by building the image outside Raspberry Pi: “I used the
emulator QEMU to emulate the Raspberry Pi on a fast Macbook. But, because of
the inefficiency of the emulation, it is just as slow as building your Dockerfile on a
Raspberry Pi. I tried cross-compiling. This wasn’t possible, because the commands
in your Dockerfile are replayed on a running image and the running Raspberry-pi
image can only be run on... a Raspberry Pi.” [Toe15]

The built docker image was uploaded to Docker Hub into repository
simonstastny/rpi-cossmic 5 and can be used directly without needing to build it
again. Once there, it was added to a running instance of UbiBazaar and deployed
onto a real Raspberry Pi device. Due to the size of the Docker image, this has taken
a couple of minutes, but the installation was successful at last.

5https://registry.hub.docker.com/u/simonstastny/rpi-cossmic/

https://registry.hub.docker.com/u/simonstastny/rpi-cossmic/

6.4. OVERVIEW OF COVERED REQUIREMENTS 45

6.4 Overview of covered requirements

This section provides an overview of how our requirements were covered by the
reviewed state of the art technology and solutions. We chose to focus on the
deployment method perspective and usability of the app store functionality.

Rq Evaluation Result
3
1.2

Usability evaluation:
Prototype evaluation with focus
group

Requirements 3.4 added. Improved
prototype’s language and device pair-
ing mechanism.

1.1
1.3

Theoretical feasibility evaluation:
Extending to support Arduino deploy-
ment

Extensibility and Arduino support
feasible with little effort to be ex-
pected.

1.2 Practical feasibility evaluation:
Dockerizing CoSSMic

Approach feasible, yet minor perfor-
mance issues were encountered with
the example app.

Table 6.1: Evaluation of the prototypes according to requirements.

Chapter7Discussion

This chapter provides an overview on known limitations of our project and possible
future work that can be done as an extension of the project.

7.1 Limitations of the current solution

Survey breadth The survey we have performed has not met our expectations,
as only 12 responses have been collected, and only one participant was interviewed
subsequently. We feel the survey should have been performed even broader, asking
more maker communities, in order to collect more responses and have more data to
base our work upon.

Prototype completeness To propose a solution and create a viable prototype
of the product in a timely fashion, the scope of the project was limited to only a
subset of the requirements. We have focused on those that are most important to our
contribution — deployment of apps to Raspberry Pi (requirement 1.2), extensibility to
other platforms (requirement 1.1) and most of the app store functionality (requirement
3). Implementation of other requirements — such as deployment to Arduino and
resolving device capabilities — was considered to be out of scope of this project and
might be carried out as a future extension of the project. This is to be discussed in
section 7.2.

While we have implemented adding new apps to demonstrate requirement 3.2, we
have not gone the whole way to develop the whole life-cycle of an app. The prototype
therefore does not support removing an existing app, updating it or adding new
updates to it (requirement 3.2.1). Even though they are essential to the app store
if it becomes a mature product, they were not essential to a prototype which sole
purpose was to demonstrate deployment of an app to a device.

The search over the catalog (requirement 3.3.3) was not implemented as it was
deemed unnecessary for the prototype, which only features a few of apps at maximum.

47

48 7. DISCUSSION

The social perspective of the app store — user feedback features from requirement
3.4 were also not implemented in the scope of the project as we focused on the
technicalities of device registration and app installation instead.

Docker on Raspberry Pi performance issues The evaluation in section 6.3
showed that building a Docker image on a Raspberry Pi can be a tedious task as the
performance of the device does not allow to build the image fast. In practice this
means building a Docker image can easily take hours, which is not ideal for the app
developer who wants to add a new app to UbiBazaar and might not want to wait
this long.

Evaluation completeness A usability evaluation with real users (makers) has
not been performed withing the scope of this project. Such one should be carried
out to truly evaluate the usability of the prototypes for the users.

7.2 Future work

section 3.2 drawn many requirements posed on the system, however many of them
were not implemented in the scope of the project. These requirements can server as
a basis for future extensions of the UbiBazaar project.

Arduino deployment One of the possible extensions, support for Arduino de-
ployment (requirement 1.3), was conceptually followed and evaluated in section 6.2.
It was assessed that this extension can built on top of the existing architecture and
should be rather easy to implement.

Social aspect Another requirement that was not followed further was the social
aspect of the app store: discussions, rating, etc. This could be a good extension of
the project but was out of our focus, which was more on the technical perspective of
the deployment mechanisms.

Device capabilities The last set of requirements that we have not carried out was
requirement 2 and its sub-requirements: exploring devices’ capabilities and matching
them against app requirements to resolve compatibility. This was again out of the
narrow focus of our project, but would be an essential requirement for the final
product and a good extension of our project.

Other possible extensions Extending the app store is of course possible in many
other ways, starting with finishing the core functionality to support full life-cycle of
apps and devices, to adding features such as bulk-deployment, automatic app update
mechanism in installation managers, or adding support for new platforms.

7.3. CONCLUSION 49

Open source All the source code is released under Apache Software License 2.0
and publicly available at https://github.com/ubibazaar, where everyone is welcome
to join the project, contribute to it and discuss ideas.

7.3 Conclusion

Our project identified that the world of makers and IoT was missing a distribution
channel for software, collected relevant information through surveys using question-
naires and interviews, derived requirements from these findings, proposed a solution
and implemented a working prototype addressing those.

The prototype supports many of the essential requirements that we set, but needs
to be extended, completed and polished before it can become a final product that
could be used in daily lives by makers and users.

As such, we consider the project to be successful, and hope to start this as an
open source project at https://github.com/ubibazaar and get the maker community
involved in contributing to it.

https://github.com/ubibazaar
https://github.com/ubibazaar

References

[And00] Jesper Andersson. A deployment system for pervasive computing.
In Proceedings International Conference on Software Maintenance
ICSM-94, pages 262–270. IEEE Comput. Soc. Press, 2000. URL:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=883058http:
//www.scopus.com/inward/record.url?eid=2-s2.0-0034505884&partnerID=
tZOtx3y1.

[Apa] Apache Software Foundation. Apache Maven. URL: https://maven.apache.org/.

[Bal] Balsamiq Studios, LLC. Balsamiq Mockups. URL: https://balsamiq.com/
products/mockups/.

[BCFP14] Paolo Bellavista, Antonio Corradi, Luca Foschini, and Alessandro Pernafini.
Towards an Automated BPEL-based SaaS Provisioning Support for OpenStack
IaaS. Scalable Computing: Practice and Experience, 14(4):235–247, January
2014. URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-84893475267&
partnerID=tZOtx3y1, doi:10.12694/scpe.v14i4.930.

[Can] Canonical Ltd. Snappy Ubuntu. URL: http://www.ubuntu.com/cloud/tools/
snappy.

[Can15] Canonical Ltd. ARM/RaspberryPi - Ubuntu Wiki, 2015. URL: https://wiki.
ubuntu.com/ARM/RaspberryPi/.

[Cha] Sitaram Chamarty. git as a deployment tool. URL: http://gitolite.com/deploy.
html/.

[Dav11] Nigel Davies. Beyond Prototypes, Again. IEEE Pervasive Computing, 10(1):2–
3, January 2011. URL: http://www.scopus.com/inward/record.url?eid=2-s2.
0-78650879022&partnerID=tZOtx3y1, doi:10.1109/MPRV.2011.2.

[Doca] Docker, Inc. Docker - Build, Ship and Run Any App, Anywhere. URL: https:
//www.docker.com/.

[Docb] Docker, Inc. Docker Remote API - Docker Documentation. URL: https://docs.
docker.com/reference/api/docker_remote_api/.

51

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=883058 http://www.scopus.com/inward/record.url?eid=2-s2.0-0034505884&partnerID=tZOtx3y1
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=883058 http://www.scopus.com/inward/record.url?eid=2-s2.0-0034505884&partnerID=tZOtx3y1
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=883058 http://www.scopus.com/inward/record.url?eid=2-s2.0-0034505884&partnerID=tZOtx3y1
https://maven.apache.org/
https://balsamiq.com/products/mockups/
https://balsamiq.com/products/mockups/
http://www.scopus.com/inward/record.url?eid=2-s2.0-84893475267&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-84893475267&partnerID=tZOtx3y1
http://dx.doi.org/10.12694/scpe.v14i4.930
http://www.ubuntu.com/cloud/tools/snappy
http://www.ubuntu.com/cloud/tools/snappy
https://wiki.ubuntu.com/ARM/RaspberryPi/
https://wiki.ubuntu.com/ARM/RaspberryPi/
http://gitolite.com/deploy.html/
http://gitolite.com/deploy.html/
http://www.scopus.com/inward/record.url?eid=2-s2.0-78650879022&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-78650879022&partnerID=tZOtx3y1
http://dx.doi.org/10.1109/MPRV.2011.2
https://www.docker.com/
https://www.docker.com/
https://docs.docker.com/reference/api/docker_remote_api/
https://docs.docker.com/reference/api/docker_remote_api/

52 REFERENCES

[Docc] Docker, Inc. Docker Remote API Client Libraries. URL: https://docs.docker.
com/reference/api/remote_api_client_libraries/.

[Docd] Docker, Inc. What is Docker? An open platforms for distributed apps. URL:
https://www.docker.com/whatisdocker/.

[Doc15] Docker, Inc. Dockerfile - Docker Documentation, 2015. URL: https://docs.docker.
com/reference/builder/.

[EST13] Jeppe Eriksen, Wilhelm Walberg Schive, and Robin Tordly. µ C Software Store
Project Report. 2013.

[GVAGM10] Charles Gouin-Vallerand, Bessam Abdulrazak, Sylvain Giroux, and Mounir
Mokhtari. A Software Self-Organizing Middleware for Smart Spaces Based on
Fuzzy Logic. In 2010 IEEE 12th International Conference on High Performance
Computing and Communications (HPCC), pages 138–145. IEEE, September
2010. URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-78149320999&
partnerID=tZOtx3y1, doi:10.1109/HPCC.2010.107.

[Her] Heroku. Heroku Dev Center - Deploying with Git. URL: https://devcenter.
heroku.com/articles/git.

[HM06] Didier Hoareau and Yves Mahéo. Middleware support for the deployment of
ubiquitous software components. Personal and Ubiquitous Computing, 12(2):167–
178, November 2006. URL: http://www.scopus.com/inward/record.url?eid=2-s2.
0-38349165556&partnerID=tZOtx3y1, doi:10.1007/s00779-006-0110-7.

[Hyp15] Hypriot. Getting started with Docker on your Raspberry Pi, 2015. URL: http:
//blog.hypriot.com/getting-started-with-docker-on-your-arm-device/.

[Ind15] IndieCity. Games & Apps - Pi Store, 2015. URL: http://store.raspberrypi.com/
projects.

[KC03] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, January 2003. URL: http://www.scopus.com/inward/record.url?
eid=2-s2.0-0037253062&partnerID=tZOtx3y1, doi:10.1109/MC.2003.1160055.

[KK10] Gerd Kortuem and Fahim Kawsar. Market-based user innovation in the Internet
of Things. 2010 Internet of Things (IOT), pages 1–8, November 2010. URL:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5678434, doi:
10.1109/IOT.2010.5678434.

[KPX+14] Kai Kang, Zhibo Pang, Li Da Xu, Liya Ma, and Cong Wang. An Interactive
Trust Model for Application Market of the Internet of Things. 10(2):1516–1526,
2014.

[Mar] MariaDB Foundation. MariaDB An enhanced, drop-in replacement for MySQL.
URL: https://mariadb.org/.

[Mel51] Herman Melville. Moby-Dick; or, The Whale. Harper & Brothers, 1851.

https://docs.docker.com/reference/api/remote_api_client_libraries/
https://docs.docker.com/reference/api/remote_api_client_libraries/
https://www.docker.com/whatisdocker/
https://docs.docker.com/reference/builder/
https://docs.docker.com/reference/builder/
http://www.scopus.com/inward/record.url?eid=2-s2.0-78149320999&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-78149320999&partnerID=tZOtx3y1
http://dx.doi.org/10.1109/HPCC.2010.107
https://devcenter.heroku.com/articles/git
https://devcenter.heroku.com/articles/git
http://www.scopus.com/inward/record.url?eid=2-s2.0-38349165556&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-38349165556&partnerID=tZOtx3y1
http://dx.doi.org/10.1007/s00779-006-0110-7
http://blog.hypriot.com/getting-started-with-docker-on-your-arm-device/
http://blog.hypriot.com/getting-started-with-docker-on-your-arm-device/
http://store.raspberrypi.com/projects
http://store.raspberrypi.com/projects
http://www.scopus.com/inward/record.url?eid=2-s2.0-0037253062&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-0037253062&partnerID=tZOtx3y1
http://dx.doi.org/10.1109/MC.2003.1160055
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5678434
http://dx.doi.org/10.1109/IOT.2010.5678434
http://dx.doi.org/10.1109/IOT.2010.5678434
https://mariadb.org/

REFERENCES 53

[MM07] Nenad Medvidovic and Sam Malek. Software deployment architecture and quality-
of-service in pervasive environments. In International workshop on Engineering
of software services for pervasive environments in conjunction with the 6th ES-
EC/FSE joint meeting - ESSPE ’07, pages 47–51, New York, New York, USA,
2007. ACM Press. URL: http://www.scopus.com/inward/record.url?eid=2-s2.
0-41149153300&partnerID=tZOtx3y1, doi:10.1145/1294904.1294911.

[MM12] Dejan Munjin and Jean-Henry Morin. Toward Internet of Things Application
Markets. 2012 IEEE International Conference on Green Computing and Commu-
nications, pages 156–162, November 2012. URL: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6468308, doi:10.1109/GreenCom.2012.33.

[New14] Joshua Newell. Make: DIY Arduino Bluetooth Programming Shield, 2014. URL:
http://makezine.com/projects/diy-arduino-bluetooth-programming-shield/.

[Oat06] Briony J Oates. Researching Information Systems and Computing. Sage Publica-
tions Ltd., 2006.

[Par] Park, Thomas. Flatly - Flat and modern. URL: https://bootswatch.com/flatly/.

[Ras] Raspberry Pi Foundation. Ubuntu Snappy Core - Raspberry Pi. URL: https:
//www.raspberrypi.org/downloads/snappy/.

[Ras14] Raspberry Pi Foundation. What is a Raspberry Pi, 2014. URL: http://www.
raspberrypi.org/help/what-is-a-raspberry-pi/.

[Red] Red Hat. OpenShift Developers - Deployments and Rollbacks. URL: https:
//developers.openshift.com/en/managing-deployments.html.

[Res13a] Resin.io. Docker on Raspberry Pi, 2013. URL: https://resin.io/blog/
docker-on-raspberry-pi/.

[Res13b] Resin.io. How does resin.io work?, 2013. URL: https://resin.io/how-it-works/.

[Res15] Resin.io. Resin.io Documentation - Supported Devices, 2015. URL: http://docs.
resin.io/#/pages/hardware/devices.md.

[SCBZ11] Reidar M. Svendsen, Humberto N. Castejon, Erik Berg, and Josip Zoric. Towards
an integrated solution to Internet of Things - a technical and economical pro-
posal. In 2011 15th International Conference on Intelligence in Next Generation
Networks, pages 46–51. IEEE, October 2011. URL: http://www.scopus.com/
inward/record.url?eid=2-s2.0-83455224733&partnerID=tZOtx3y1, doi:10.1109/
ICIN.2011.6081101.

[SKS05] Byung Y. Sung, Mohan Kumar, and Behrooz Shirazi. Flexible and Adap-
tive Services in Pervasive Computing, 2005. URL: http://www.scopus.com/
inward/record.url?eid=2-s2.0-33645956199&partnerID=tZOtx3y1, doi:10.1016/
S0065-2458(04)63005-1.

[Sta14] Simon Stastny. Specialization Project Report: UbiBazaar - App Store for the
Internet of Things. 2014.

http://www.scopus.com/inward/record.url?eid=2-s2.0-41149153300&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-41149153300&partnerID=tZOtx3y1
http://dx.doi.org/10.1145/1294904.1294911
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6468308
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6468308
http://dx.doi.org/10.1109/GreenCom.2012.33
http://makezine.com/projects/diy-arduino-bluetooth-programming-shield/
https://bootswatch.com/flatly/
https://www.raspberrypi.org/downloads/snappy/
https://www.raspberrypi.org/downloads/snappy/
http://www.raspberrypi.org/help/what-is-a-raspberry-pi/
http://www.raspberrypi.org/help/what-is-a-raspberry-pi/
https://developers.openshift.com/en/managing-deployments.html
https://developers.openshift.com/en/managing-deployments.html
https://resin.io/blog/docker-on-raspberry-pi/
https://resin.io/blog/docker-on-raspberry-pi/
https://resin.io/how-it-works/
http://docs.resin.io/#/pages/hardware/devices.md
http://docs.resin.io/#/pages/hardware/devices.md
http://www.scopus.com/inward/record.url?eid=2-s2.0-83455224733&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-83455224733&partnerID=tZOtx3y1
http://dx.doi.org/10.1109/ICIN.2011.6081101
http://dx.doi.org/10.1109/ICIN.2011.6081101
http://www.scopus.com/inward/record.url?eid=2-s2.0-33645956199&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-33645956199&partnerID=tZOtx3y1
http://dx.doi.org/10.1016/S0065-2458(04)63005-1
http://dx.doi.org/10.1016/S0065-2458(04)63005-1

54 REFERENCES

[Toe15] Jan Toebes. Fool-Proof Recipe: Docker on the Raspberry Pi, 2015. URL: https://
www.voxxed.com/blog/2015/04/fool-proof-recipe-docker-on-the-raspberry-pi/.

[Twi] Twitter, Inc. Bootstrap · The world’s most popular mobile-first and responsive
front-end framework. URL: http://getbootstrap.com/2.3.2/.

[Typ] Typesafe Inc. Play Framework - Build Modern & Scalable Web Apps with Java
and Scala. URL: https://www.playframework.com/.

[UH88] GL Urban and E Von Hippel. Lead user analyses for the development of new
industrial products. Management science, 1988. URL: http://pubsonline.informs.
org/doi/abs/10.1287/mnsc.34.5.569.

[ZWH+06] Di Zheng, Jun Wang, Weihong Han, Yan Jia, and Peng Zou. Towards A Context-
Aware Middleware for Deploying Component-Based Applications in Pervasive
Computing. In 2006 Fifth International Conference on Grid and Cooperative
Computing (GCC’06), pages 454–457. IEEE, 2006. URL: http://www.scopus.
com/inward/record.url?eid=2-s2.0-38649143208&partnerID=tZOtx3y1, doi:10.
1109/GCC.2006.92.

https://www.voxxed.com/blog/2015/04/fool-proof-recipe-docker-on-the-raspberry-pi/
https://www.voxxed.com/blog/2015/04/fool-proof-recipe-docker-on-the-raspberry-pi/
http://getbootstrap.com/2.3.2/
https://www.playframework.com/
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.34.5.569
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.34.5.569
http://www.scopus.com/inward/record.url?eid=2-s2.0-38649143208&partnerID=tZOtx3y1
http://www.scopus.com/inward/record.url?eid=2-s2.0-38649143208&partnerID=tZOtx3y1
http://dx.doi.org/10.1109/GCC.2006.92
http://dx.doi.org/10.1109/GCC.2006.92

AppendixAAPI Documentation

This appendix gives an overview of the RESTful methods the API provides.

resource path query
params

method result

apps / — GET returns all apps
apps /{id} — GET returns app with the specified id
apps /query category,

platform,
author

GET all apps satisfying the query crite-
rion (or the conjunction of crite-
ria, if more than one is specified

apps / — POST creates a new app and returns its
URI

apps /{id} — PUT updates the app with the speci-
fied id

apps /{id} — DELETE deletes the app with the specified
id

categories / — GET returns tree of all categories
categories /{id} — GET returns subtree of the specific cat-

egory
platform / — GET returns all platforms
platform /{id} — GET returns the platform with the

specified id

Table A.1: API: Methods provided by App service

1full resource name: installation_methods
2full resource name: manager_types

55

56 A. API DOCUMENTATION

resource path query
params

method result

installations / — GET returns all installations of the
logged-in user

installations /{id} — GET returns the installation of the
logged-in user with the specified
installation id

installations /query app,
device

GET all installations of the logged-in
user satisfying the query criterion

installations / — POST creates a new installation and re-
turns its URI

installations /{id} — PUT updates the installation with the
specified id

installations /{id} — DELETE deletes the installation with the
specified id

Table A.2: API: Methods provided by Installation service

resource path query
params

method result

devices / — GET returns all devices of the logged-
in user

devices /{id} — GET returns the device of the logged-
in user with the specified device
id

devices /query platform GET all devices of the logged-in user
satisfying the query criterion

devices / — POST creates a new device and returns
its URI

devices /{id} — PUT updates the device with the spec-
ified id

devices /{id} — DELETE deletes the device with the speci-
fied id

Table A.3: API: Methods provided by Device service

57

resource path query
params

method result

managers / — GET returns all managers of the
logged-in user

managers /{id} — GET returns the manager of the logged-
in user with the specified manager
id

managers /query type, de-
vice

GET all managers of the logged-in user
satisfying the query criteria

managers / — POST creates a new manager and re-
turns its URI

managers /{id} — PUT updates the manager with the
specified id

managers /{id} — DELETE deletes the manager with the
specified id

i.m. 1 / — GET returns all installation methods
i.m. /{id} — GET returns subtree of the specific cat-

egory
m.t. 2 / — GET returns all manager types
m.t. /{id} — GET returns the manager type with

the specified id
pairings /{id} — POST links the device in the body with

the manager by id

Table A.4: API: Methods provided by Manager service

resource path query
params

method result

users /{id} — GET returns the user with the specified
id

users /query username GET returns the user with the specified
username

users / — POST creates a new user and returns its
URI

Table A.5: API: Methods provided by User service

AppendixBScenarios

This appendix presents scenarios as they were designed for the paper prototype. The
prototype and the scenarios were then subject to focus group evaluation described in
section 6.1. It is worth noting these scenarios represent the workflow and terminology
used in the paper prototype only. As there were important findings regarding the
usability of the paper prototype, after which we revised the workflow and terminology
before proceeding to the software prototype, these scenarios do not represent the
workflow of the final software prototype.

B.1 Scenario 1

1. Registers as a user

2. Logs in

3. Goes to Apps

4. Clicks on Add new app

5. Fills in CoSSMic as a name

6. Selects Raspberry Pi as a platform

7. Writes app description in the textbox

8. Fills in cossmic/emoncms as Docker Hub repository

9. Clicks on Save

10. Finds himself on app overview page

11. Clicking on Edit button gets him back to editing app details

59

60 B. SCENARIOS

B.2 Scenario 2

1. Registers as a user

2. Logs in

3. Goes to Apps

4. Filters on Raspberry Pi

5. Clicks on CoSSMic

6. Clicks on Deploy

7. Clicks on Add new device

8. Fills in Pequod as a name

9. Selects Raspberry Pi as a platform

10. Selects Docker App Manager

11. Follows installation instructions

12. Goes to Apps

13. Filters on Raspberry Pi

14. Clicks on CoSSMic

15. Clicks on Deploy

16. Selects Pequod device

17. Finds himself on device overview, seeing the app deployed on the device

	List of Figures
	List of Tables
	Introduction
	Method
	Prestudy
	Interviews
	Literature review
	Questionnaire

	Design and evaluation of the paper prototype
	Design of the paper prototype
	Evaluation of the paper prototype

	Software prototype design
	Design of the software prototype
	Evaluation of the software prototype

	Findings and derived requirements
	Findings
	Platforms
	Deployment
	Configuration
	Distribution

	Derived requirements
	Platform support
	Device capabilities and compatibility
	App store requirements

	State of the art
	Git deployment
	Snappy Ubuntu Core
	Docker
	Resin.io
	µC Software Store
	Overview of covered requirements

	Design and implementation
	Proof of concept implementation
	Architecture
	Solution concept for Raspberry Pi
	Design decisions

	Paper prototype
	Software prototype
	Database
	Core library
	API
	Web frontend
	Ahab (installation manager)

	Evaluation
	Prototype evaluation with focus group
	Extending to support Arduino deployment
	Dockerizing CoSSMic for Raspberry Pi
	Overview of covered requirements

	Discussion
	Limitations of the current solution
	Future work
	Conclusion

	References
	API Documentation
	Scenarios
	Scenario 1
	Scenario 2

