
Authorship Identification of Research
Papers

Simen Skoglund

Master of Science in Informatics

Supervisor: Kjetil Nørvåg, IDI

Department of Computer and Information Science

Submission date: August 2015

Norwegian University of Science and Technology

Abstract

Authorship identification is a technique used to identify anonymous documents
by identifying and extracting an authors stylometric features. The focus of this
thesis is to apply an authorship identification technique, classification, to a set of
research papers to determine the authorship. We go through theory and previous
work of authorship identification before we present the implemented system. In
the end, we perform two separate experiments and discuss their results.

The experiments show good results in specific cases, and we achieve an accu-
racy of 100% in the best case. The algorithms used are support vector machines,
artificial neural networks, decision trees, random forests and the k-nearest neigh-
bor. In our experiments support vector machines and artificial neural network
had the best performance while decision trees performed worst.

Based on our results we propose caution when applying authorship identifica-
tion before or after having performed a double-blind review, or for an author to
use authorship identification to acquire an unbiased review of a research paper.
Even though we state that authorship identification should be used with caution,
it is still a great tool and gives a general idea of finding the authorship of an
anonymous document.

ii

Sammendrag

Forfatter-identifisering er en teknikk brukt til å identifisere forfatteren av et
anonymt dokument. Identifiseringen skjer ved å identifisere og å ta i bruk for-
fatterens stylometriske trekk. Hovedfokuset i denne masteroppgaven har vært å
ta i bruk en forfatter-identifiseringsteknikk, kalt klassifisering, og å bruke denne
teknikken til å identifisere forfatteren av anonyme forskningsartikler. I oppgaven
g̊ar vi gjennom nødvendig teori og tidligere arbeid utført i dette forskningsfeltet.
Videre presenterer vi det implementerte systemet i oppgaven, og til slutt utfører
vi to separate eksperimenter og diskuterer de respektive resultatene.

Eksperimentene viste gode resultater p̊a spesifikke omr̊ader, og p̊a det beste
oppn̊adde vi en nøyaktighet p̊a 100%. Algoritmene brukt i oppgaven er som
følger: support vector machines, artificial neural networks, decision trees, ran-
dom forests og k-nearest neighbor. I v̊are eksperiment hadde bruken av support
vector machines og artificial neural networks de beste resultatene, mens decision
trees hadde de d̊arligste.

Basert p̊a resultatene oppn̊add i denne masteroppgaven vil vi advare mot å stole
p̊a forfatter-identifisering til enten å finne forfatteren etter en blind review, eller
for en fortfatter til å bruke systemet til å kamuflere sin forskningsartikkel. Til
tross for at vi advarer mot dette, er forfatter-identifisering fortsatt et verktøy
som kan brukes i eksperimentelle situasjoner, og kan gi en pekepinn for å finne
forfatteren av et anonymt dokument.

iv

Preface

This thesis is written by Simen Skoglund, and is the final result of a master’s
thesis at the Norwegian University of Science and Technology. This masters’s
thesis is the conclusion of the two-year master’s degree study in Informatics at
the Department of Computer and Information Science, Faculty of Information
Technology, Mathematics, and Electrical Engineering at NTNU.

I would like to thank Professor Kjetil Nørv̊ag, my supervisor, for being avail-
able, helpful, and for giving constructive feedback during the period of writing
this thesis.

vi

Contents

Abstract . i
Sammendrag . iii
Preface . v

1 Introduction 3

1.1 Motivation . 3
1.1.1 Early work in authorship identification 4
1.1.2 Authorship identification using classification 4

1.2 Problem definition . 5
1.3 Research questions . 5
1.4 Report outline . 6

2 Preliminaries 7

2.1 Classification . 7
2.1.1 Feature set . 7
2.1.2 Training- and test data . 8
2.1.3 Test- and training set . 8
2.1.4 Percentage split . 8
2.1.5 K-fold cross-validation . 8

2.2 Evaluating the model . 9
2.2.1 True- and false positives & negatives 9
2.2.2 Precision . 9
2.2.3 Recall . 9
2.2.4 F-measure . 9
2.2.5 Confusion matrix . 10
2.2.6 Kappa statistics . 10

2.3 Algorithms . 11
2.3.1 Support vector machines . 11
2.3.2 Artificial neural networks 12
2.3.3 Decision trees . 14

viii Contents

2.3.4 Random forests . 15
2.3.5 K-nearest neighbor . 16

3 Related Fields 17

3.1 Authorship analysis . 17
3.2 Authorship identification . 17
3.3 Authorship verification . 17
3.4 Plagiarism detection . 18
3.5 Authorship profiling . 18
3.6 The PAN workshop . 19
3.7 Summary . 19

4 Authorship identification 21

4.1 Introduction . 21
4.2 Framework . 22
4.3 Document collection . 22
4.4 Feature extraction . 24

4.4.1 Character specific features 24
4.4.2 Word specific features . 26
4.4.3 Syntactic features . 27
4.4.4 Structural features . 28
4.4.5 Content-specific features . 28

4.5 Model generation . 29
4.5.1 Building the model in authorship identification 30
4.5.2 Classification and results 30

4.6 Summary . 31

5 Implementing the authorship identification system 33

5.1 Data collection . 33
5.1.1 Preprocessing . 35
5.1.2 Finding the author . 36

5.2 Automatic feature extraction . 36
5.2.1 The lexical features . 37
5.2.2 The syntactic features . 37
5.2.3 Output . 40

5.3 Approach . 40
5.3.1 Implementation 1: limited authors 41
5.3.2 Implementation 2: many authors 41

5.4 Summary . 42

Contents 1

6 Experiments and results 43

6.1 Experimental plan . 43
6.1.1 Perspective . 43
6.1.2 Datasets . 44
6.1.3 Metrics . 46

6.2 Experimental setup . 46
6.3 Experiment 1 . 46

6.3.1 Dataset 1 - lead author . 47
6.3.2 Dataset 2 - top 3 . 47
6.3.3 Dataset 3 - random . 48
6.3.4 Observations . 48

6.4 Experiment 2 . 53
6.4.1 Results . 54
6.4.2 Observations . 54

6.5 Summary . 55

7 Conclusion 57

7.1 Discussion . 57
7.2 Contributions . 59
7.3 Further work . 60
7.4 Summary . 60

A ARFF example 63

B Data from result graphs 65

C Setup to perform the di↵erent experiments 81

C.1 Experiment 1 . 81
C.1.1 Run with datasets and WEKA 81
C.1.2 Run experiment 1 with the implemented system 81

C.2 Experiment 2 . 82
C.2.1 Setting up the database . 82
C.2.2 Run experiment 2 with the implemented system 82

Bibliography 85

2 Contents

Chapter 1

Introduction

In this chapter, an introduction to the thesis is given. First through the motiva-
tion for the thesis, and why this is relevant research.

1.1 Motivation

The ability to be able to determine the authorship of anonymous texts is in-
creasing rapidly in today’s society. Whether it is in a criminal investigation or
trying to determine the authorship of a research paper authorship identification
has to be used to some degree even if someone has to sit down and perform
the identification manually. Authorship identification is the ability to identify
anonymous authors based on their previous work and statements. The common
technique in authorship identification is to look at and identify characteristics by
an author’s stylometric pattern. For instance, if an individual has been active
in public forums and blogs posting messages with their real name, or with other
means that can act as identification and suddenly starts posting threatening mes-
sages anonymously. In this case authorship identification could have been used
to identify the perpetrator based on their previous activity because these two
individuals, even though they where one person all along, would have used the
same stylometric pattern.
The main motivation for this thesis is the ability to detect the authorship of a
research paper by using di↵erent classification algorithms and see how they per-
form.
When a new journal or research paper is up for a peer review 1 normally a
double-blind 2 approach is used. The double-blind approach operates with the

1
http://libguides.lib.siu.edu/peerreviewedjournals

2
http://www.arj.no/2010/09/04/double-blind-peer-review/

4 Motivation

assumption that the author does not know the identity of the reviewer, and the
reviewer does not know the identity of the author. The reason to do a double
blind review is for the journal or research paper to get an unbiased opinion on
the work. The likelihood of a respected author to get a biased review of their
work is why the blind/double-blind review is standard when a research paper is
up for evaluation.
There are two sides to the ability to detect the authorship of a research paper.
The first one is unethical and gives the reviewer a chance to find out who wrote
the research paper. In this scenario, a reviewer can use authorship identification
software and give the author a biased review. Alternatively, the less unethical
approach; to see who wrote the paper after the review has been completed. The
second side is the ethical way and gives the author a chance to stay anonymous
and prevent the reviewer from giving a biased review. In this scenario, the author
can use authorship identification software to check whether or not the author can
be identified. If identified the author can alter the contents of the paper rendering
the software unable to correctly identify the authorship and, therefore, be able
to get an unbiased opinion on the work.

1.1.1 Early work in authorship identification

Authorship identification dates back to the middle of the 19th century when
mathematician and logician Augustus De Morgan theorized that an author of a
given text could be identified based on the number of longer words in a text.
De Morgan’s theory was put to the test in 1887 when T.C Mendenhall [27] ex-
perimented with the works of di↵erent authors. Mendenhall concluded that if
you had about one hundred thousand words from the same author that authors
curve of words would be uniquely di↵erent to another authors curve of words.
Figure 1.1 shows two example curves each five thousand words long originating
from the same author. The x-axis represents the number of letters in each word,
and the y-axis represents the number of occurrences for each n-letter word.

1.1.2 Authorship identification using classification

Authorship identification using classification follows four very distinct steps and
is what we have built the implemented system upon for this thesis. The first
step when performing authorship identification is to collect data and construct
a dataset. After the dataset is constructed, feature extraction is performed to
extract stylometric features from the generated dataset. When the feature ex-
traction process is completed, di↵erent classification algorithms can be applied

Introduction 5

Figure 1.1: Mendenhalls example of a curve of words. [27]

to the feature set and display the author predictions. The entire process is is
explained in Chapter 4 and the necessary theory is presented in Chapter 2.

1.2 Problem definition

From the motivation, the problem definition of this thesis will be to implement an
authorship identification system based on previous research and use this system
to identify the authorship of research papers. The systems goal is to be able to
use several machine learning algorithm to be able to identify the authorship of a
given research paper.

1.3 Research questions

From the problem definition, this thesis will answer the following research ques-
tions:

RQ1 What are the di↵erent features and techniques used in authorship identi-
fication field when looked at as a classification problem?

RQ2 Is it possible to perform authorship identification on research papers?

6 Report outline

RQ3 If authorship identification of research papers is possible, does the amount
of work contributed to a research paper by an author a↵ect the degree of
authors that can be identified?

To be able to answer these research questions, a survey on previous work re-
lated to authorship identification as a classification problem has been performed.
A prototype has been developed to identify authors of research papers and we
have tested out our system in two di↵erent experiments. The methods used in
the implementation is explained in detail and evaluated as an author identifica-
tion problem. The results have been discussed, and the experiments have been
compared internally where ever it was possible, and the same experiments have
been compared against each other.

To evaluate the di↵erent techniques used in the implementation, two separate
datasets were created. The first dataset contains twenty di↵erent authors with
between ten and twenty research papers per author divided in three di↵erent
heuristics. The last dataset takes on a set of research papers presented at various
information retrieval conferences and uses research papers prior to the year 2014
as training data and research papers after the year 2014 as test data.

1.4 Report outline

Chapter 2 introduces the necessary theory for understanding what classification
is, which algorithms are going to be used and which metrics can be used to
evaluate these algorithms.

Chapter 3 goes through the related fields of authorship identification, includ-
ing authorship verification, plagiarism, authorship profiling and the PAN
workshop.

Chapter 4 present the related work for this thesis and the techniques used in
authorship identification, including how to perform data collection, feature
extraction and model generation.

Chapter 5 gives a detailed explanation of the implemented system and talks
about which choices had to be made and why.

Chapter 6 presents the experiments that have been done and their respective
results.

Chapter 7 concludes this thesis and discusses the strengths and weaknesses as
well as contributions and further work.

Chapter 2

Preliminaries

This chapter provides general information about machine learning, techniques
and algorithms discussed in Chapter 4 to get a better understanding about how
machine learning and the algorithms used in this thesis work. To learn more
about classification, the algorithms or how to evaluate a classification model,
please refer to the following literature [5] [28] [38] [41].

2.1 Classification

Classifications ultimate goal is to label an object to one of several possible cat-
egories. An example in classification is to detect whether or not an email is
considered as spam. In this case, we have two categories, spam and not spam.
The object to be labeled as spam or not spam is the email. This thesis looks at
the possibility to label anonymous research papers to one out of several possible
candidate authors. A classifier uses a training set to build a model that fits the
relationship between the feature attributes and the category label. When the
classifier is satisfiable trained a test set can be applied to the model to evaluate
the performance of the classifier based on the number of correct and incorrect
labels the classifier has predicted.

2.1.1 Feature set

In classification, each instance in a dataset is represented as a feature set, also
known as a feature vector. Each feature in the feature set represents a unique
property to that instance. For example, a feature for a research paper can be the
total number of characters in that research paper. Features are often numeric
values, but can also be other values such as booleans or strings. A feature set

8 Classification

is either used as a part of the training- or test dataset to help the classification
algorithms be able to learn.

2.1.2 Training- and test data

Training data is data where the class label is known. For example, the features
of an email that is labeled as spam can be used in the training dataset to help
the classifier identify unlabeled emails as spam or not spam.
Test data is data where the class label is unknown. For example an email that
has not been labeled as either spam or not spam.

2.1.3 Test- and training set

A set of objects where the class label is exposed is referred to as the training set.
The same goes for the test set except the class label is unknown. For training
and testing you can provide your own separate training set, and your separate
test set that are independent of each other. However, there exist other techniques
that can be used such as percentage split and cross-validation. These techniques
use one part of the data as the training set and the remaining part as the test
set.

2.1.4 Percentage split

The percentage split method is the easiest one, were a percentage of the objects
are used as training data, and the rest is used for testing. For example, given six
instances, and 67% of these are used as training data, the remaining 33% of the
instances are used as test data. A drawback of the percentage split method is
that the training and test set are no longer independent of each other.

2.1.5 K-fold cross-validation

In the cross-validation technique, each object are used exactly once for testing
and each object are used the same number of times for training. For example if
we have six objects split equally into three parts, each part would consist of a
pair of objects. The first pair is then used as the test set, and the two other pairs
are used as training set. The next iteration the first and the last pair are used
for training and the middle set for testing and so on. This is known as K-fold
cross-validation where K is the number of parts the initial dataset is split into.
K must also be an integer greater than one and less than or equal the number of
instances in the initial data set.

Preliminaries 9

2.2 Evaluating the model

As mentioned in Section 2.1 during the training of a classifier a model is generated.
This section provides the theory on how such a model can be evaluated based on
performance and randomness. The specific classification algorithms are presented
in Section 2.3.

2.2.1 True- and false positives & negatives

A true (TP) and false positive (FP) in classification is the number of instances
that are correctly classified. A true positive is the number of classifications that
the classifier classified correctly as the answer. A true negative is the opposite
and is the amount of classifications that the classifier correctly predicted not to
be the answer.
The true (TN) and false negatives (FN) are the incorrectly classified instances.
A false positive happens when an incorrect instance is classified as correct. A
false negative occurs when a correct instance is classified as incorrect.

2.2.2 Precision

Precision is the accuracy of how many relevant documents that are retrieved
compared to the total amount of document retrieved. Precision is calculated as
follows

Precision =
Relevant documents retrieved

Total number of retrieved documents
=

TP

TP + FP
(2.1)

2.2.3 Recall

Recall is defined as the number of relevant documents retrieved compared to total
number of relevant documents that exists in the document collection. Recall is
calculated as follow

Recall =
Relevant documents retrieved

Total number of relevant documents
=

TP

TP + FN
(2.2)

2.2.4 F-measure

Sometimes we are not interested in only recall or only precision but we want to
combine the two because they are both important. The F-measure score does
this by using the harmonic mean between precision and recall. There is also a
possibility to add weights to either precision and recall based on how important

10 Evaluating the model

a b c
a 1 4 1
b 3 6 1
c 4 2 2

Table 2.1: Realistic confusion matrix.

a b c
a 6 0 0
b 0 10 0
c 0 0 8

Table 2.2: Ideal confusion matrix.

they are. In the equation below we can see how F-measure is calculated with equal
weight on both precision and recall, also known as the balanced F1-measure.

F-measure =
2 ⇤ Recall ⇤ Precision
Recall + Precision

=
2 ⇤ TP

2 ⇤ TP + FP + FN
(2.3)

2.2.5 Confusion matrix

In classification, a confusion matrix tells something about how the classifier per-
formed. The confusion matrix says something about how many instances were
classified correctly, and how many were not. The rows represents the class an
instance belongs to, and the columns represent the class predicted by the classifi-
cation algorithm. Ideally in a confusion matrix we want the left-to-right diagonal
to be the only cells that have non-zero values, and if achieved, the classifier has
predicted every instance correctly. Table 2.2 represent an ideal confusion matrix
as seen, only the diagonal contains non-zero values. The other matrix, shown in
Table 2.1 represents a confusion matrix with only 9 out of 24 instances classified
correctly and classes a and c heavily misclassified compared to class b.

2.2.6 Kappa statistics

When working with classification getting the success rate of the classifier is of-
ten not good enough. Let us say that for a given confusion matrix 65% of the
instances are classified correctly. But how many of these instances are left to
chance? With the Kappa statistics, also known as Cohen’s Kappa, we take the
instances classified correctly by chance into account and provides a more robust
measure than the simple success rate. Equation 2.4 shows how to calculate the
Kappa value from a confusion matrix. P(a) is the agreement between the classifier
(predicted class) and the actual class. P(e) is the chance agreement.

 =
Pr(a)� Pr(e)

1� Pr(e)
(2.4)

A score between -1 and 1 is achievable when calculating Kappa, -1 equals perfect
disagreement, 0 indicates that instances are classified by chance and 1 equals

Preliminaries 11

perfect agreement. For values greater than 0 a Kappa score between 0 and
0.20 are considered poor agreement, between 0.20 and 0.40 are considered fair
agreement, between 0.40 and 0.60 are considered moderate agreement, between
0.60 and 0.80 are good agreement, and between 0.8 and 1 are excellent agreement.
Let us calculate the Kappa statistics for the confusion matrix shown in Table 2.1,
since we already know that the overall success rate for this matrix is 37.5% we
can assume that the Kappa is going to be fairly low, somewhere between poor
and fair agreement. For class a the actual and predicted class agrees that 1 of the
instances are correct, for class b the actual and predicted class agree that 6 of the
instances are correct and for class c they agree that 2 of the instances are correct.
The agreement between the predicted and actual class is Pr(a) = 1+6+2

24 = 9
24 .

To calculate the probability of chance agreement Pr(e) we have to compare the
number of times the actual and predicted class chooses the classes a, b, c. The
actual class chooses a 6 out of 24 times, b 10 out of 24 times and c 8 out of 24
times. The predicted class chooses a 8 out of 24 times, b 12 out of 24 times and c
4 out of 24 times. The probability that both the actual class and predicted class
choose a by chance is 6

24 ⇤ 8
24 , b by chance is 10

24 ⇤ 12
24 and c by chance is 8

24 ⇤ 4
24 .

The overall probability by chance is the sum of all individual classes being chosen
by chance and is expressed as Pr(e) = 6

24 ⇤ 8
24 + 10

24 ⇤ 12
24 + 8

24 ⇤ 4
24 = 25

72 Now we
have calculated both Pr(a) and Pr(e) and can insert these values directly into
Equation 2.4 and we get the Kappa score as seen in Equation 2.5.

 =
9
24 � 25

72

1� 25
72

= 0, 04 = 4% (2.5)

A Kappa score of 4% is considered very poor performance and only slightly better
than what is considered to be random.

2.3 Algorithms

Classification can be performed with several di↵erent classification algorithms, in
this section we describe the algorithms used in this thesis.

2.3.1 Support vector machines

In 1995, Cortes and Vapnik introduced an algorithm known as the support vector
machine [9]. In its simplest form, a support vector machine is visualized in two-
dimensional space with a dataset that consists of two di↵erent classes, e.i a square
and a circle. These squares and circles are separated by a hyperplane, and since
the support vector machine is two-dimensional, the hyperplane is represented as
a one-dimensional line. Since there exists an infinite amount of hyperplanes that

12 Algorithms

can separate the circles and squares, the support vector machine is interested
in the hyperplane that provides the maximal margin, also know as the maximal
margin hyperplane. What this means is that we want to find a hyperplane that
separates the two classes as far away from each other as possible. Figure 2.1
shows an example of the maximal margin hyperplane.

y

x

O
pt
im
al
hy
pe
rp
la
ne

M
axim

um
m
argin

Figure 2.1: Example of an SVM.

When training the SVM classifier to build a model, any hyperplane found that
separates the two data classes can have zero error after the training is completed.
However, a model with a small hyperplane tend to perform poorly when classi-
fying data from an unseen test set. Therefore, support vector machine models
with large margin usually have better generalization errors than models with a
smaller margin. There are also cases where the data points (squares and circles)
cannot be separated by a straight line. If this happens to be the case, we can
apply something called the kernel function. What the kernel function does is
to project the data points to a higher dimension to be able to separate them.
Support vector machines are also popular in authorship identification because
the algorithm does not su↵er from the curse of dimensionality problem.

2.3.2 Artificial neural networks

An artificial neural network, ANN for short, is a family of learning algorithms
heavily inspired in its design to function much like the human brain. However,
instead of neurons, axon, dendrites and synapses an ANN is composed of an

Preliminaries 13

assembly of dependent nodes that are linked together in a network. The simplest
ANN known is the perceptron-model, a perceptron uses two kind of nodes, the
input nodes and an output node. The input nodes represent the input attributes
and transmit the value to the outgoing link, the output node represent the model
output and performs all the calculations. Like the human brain each node in an
ANN is known as a neuron, and in the perceptron model the edges are known as
the synaptic connection between the nodes. Each edge between the input node
and the output node is given a weight, this is known as the weighted link and is
used to emulate the synaptic strength between the nodes. Figure 2.2 illustrates
how the perceptron-model may look like.

Input #1

Input #2

Input #3

Output

Input
nodes

Output
node

Figure 2.2: Example of the perceptron-model.

To calculate the output of the perceptron model a weighted sum operation is
performed on the weights and attributes, and then a bias factor t is subtracted
from the sum resulting in Equation 2.6. In the perceptron-model, a positive value
will yield the value +1 and a negative value yields the value -1.

Result = weightdattributed +weightd�1attributed�1 + ...+weight1attribute1 � t

(2.6)
Under training of the perceptron model the weights on the edges are adjusted
until the outputs of the perceptron-model are consistent with the actual output
from the training data. A drawback with the perceptron-model is that it only
works on linearly separable classification problems, if a perceptron-model is used
on a problem that is not linearly separable the perceptron-algorithm will never
converge. For classification problems that are not linearly separable a more com-
plex model has to be used. This model is known as the multilayered ANN and
can have several hidden layers between the input node layer and the output node
layer. And instead of being a feed-forward neural network, where nodes in one
layer are only connected to nodes in the next layer, it can be recurrent, which
means that nodes can be connected within the layer or be connected to a previous
layer as well. As in the perceptron-model the input node layer is the attributes

14 Algorithms

to be evaluated, and the output node-layer represents the available classes from
the training data. The hidden node-layer can, as the output node layer use an
activation function to find a hyperplane and combine this with the output node
to be able to produce output values that are non-linear. A figure showing a neural
network with the hidden layer is shown in Figure 2.3.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 2.3: Example of multilayered perceptrons.

2.3.3 Decision trees

A decision tree [32] is a tree-like structure that is able to classify (i.e an author).
Starting from the root node the decision tree proposes several choices depending
on the number of values for each feature. Each value leads to a child node, also
known as a chance node with a new feature. Already after the first choice several
leaf nodes are unreachable from the decision tree and thus is eliminated as a
possible candidate for classification. The child node chosen in the classification
process has another feature similar to the root node, and again there is a choice
between several values for the attribute. After reaching a leaf node (a node
without children), the process is completed, and a prediction has been found (i.e.
an author). A huge advantage with decision trees is that after they are generated
(see the C4.5 algorithm) classification can be performed very fast. Figure 2.4
shows a possible decision tree in authorship identification.

Preliminaries 15

#No. of words

#No. of sentences

Author 1 Author 2

Author 3

<= 5000

<= 400 > 400

> 5000

Figure 2.4: Example of a decision tree.

2.3.4 Random forests

Random forests combines decision trees and bootstrap aggregation (bagging) it
was introduced in 2001 by Breiman [7]. Bagging is a technique in classification
used to improve the accuracy of machine learning algorithms. Bagging is done by
creating k bootstrap samples, train the classifier of your choice on these bootstrap
samples and aggregate the result by taking a majority vote on the predictions
made by each classifier. The bootstrap sample is a randomly chosen distribution
of instances from the original training data. Each bootstrap sample is also of the
same size as the original set, and because each instance in the sample is chosen
at random, some data from the original training set can occur several times, and
some data doesn’t occur at all. What random forests does is to generate a set
of B decision trees using bagging and at each node in the decision tree use a
random subspace of the features for splitting. For a new instance to be classified
the result is given by taking a majority vote on the result given by each decision
tree. Going trough the entire procedure in more detail, first choose a B which
is the number of decision trees in your random forest, for each tree choose a
bootstrap sample from the training data. Construct the decision tree based on
this bootstrap sample by using a random subspace of the features. A common
number of features is log2(d) + 1, and choose the best split for this node from
the random subspace chosen. When all the B trees are generated and you want
to classify a new instance of data x, input x to each decision tree and classify x
based on a majority vote from the result for each decision tree. For example lets
say you want to classify x, where x is either +1 or -1, four of nine decision tree in
the random forest predicts -1, and the remaining five decision trees predict +1,
x is classified as +1.

16 Algorithms

2.3.5 K-nearest neighbor

The k-nearest neighbor algorithm is one of the simplest classification algorithms
that exists. Each instance of a training set is represented in a d -dimensional space
where d is the number of attributes (or features) for each instance. For a new
entry, i.e., from a test set, the position in the d -dimensional space is calculated.
To classify this new instance the kNN-algorithm looks for the k nearest neighbors
of d where k is the number of instances already represented in the d -dimensional
space based on the training data. If the value of k is 3, then the algorithm checks
the three nearest neighbors of the new instance and is classified according to the
majority of instances that represents the same class. If there is a tie between the
classes, a class may be chosen randomly to classify the new instance.

Chapter 3

Related Fields

This chapter aims to present fields that are related to the topic of this thesis,
including a brief introduction to authorship identification.

3.1 Authorship analysis

Authorship analysis is defined as using an author’s stylometric features to be
able to conclude something about the authorship of a document. In 1997 Gray
et al.[15] defined four di↵erent principal aspects of authorship analysis that they
could use to determine the authorship of source code. Researchers responsible
for the PAN workshop1 use four di↵erent fields of authorship analysis that are
presented below. These are authorship identification, also known as authorship
attribution, authorship verification, plagiarism detection and authorship catego-
rization.

3.2 Authorship identification

Authorship identification is to determine a probable author for an anonymous
text. A detailed explanation can be seen in Chapter 4.

3.3 Authorship verification

In authorship verification, we are given a set of documents from an author along
with an anonymous document. The goal in authorship verification is to be able

1
http://pan.webis.de/

18 Plagiarism detection

to tell whether or not the anonymous document were written by that author
with a yes/no answer. Koppel & Schler[24] identified authorship verification as a
one-class classification problem and they concluded that this problem is harder to
solve than the problem of authorship identification. Koppel et al.[25] proposed
in 2007 an e�cient method on how to solve authorship verification known as
the unmasking method. Since authorship verification is beyond the scope of this
thesis we refer readers to Stein et al.[37], Kestemont et al. [21].

3.4 Plagiarism detection

Plagiarism is theft of someone else’s work and in authorship analysis plagiarism
detection is to find out if someone has stolen work he or she has published as his
or her own. Maurer et al. [26] propose a list of six points that can be considered
plagiarism. In research, plagiarism can be di�cult to distinguish because most
of the work is based on what other researchers have done before. A quote by
Maurer et al.[26] describes this very well ”The border-line between plagiarism
and research is surprisingly murky. After all, advanced research is only possible
by “standing on the shoulders” of others, as it is often said.” - Maurer et al.. Also
Mauer et al. propose three main categories for plagiarism detection, document

source comparison is to pre-process the document in question and compare the
similarity with other pre-processed documents via a search engine, e.i Google and
highlight possible plagiarism parts. Manual search of characteristic phrases

is another category which is to select a phrase and use this phrase as a query and
search for matches on the internet. The last category is stylometry which is to
use an author’s writing style and comparing it within the document in question
of previous work done by that author. The chances are that if, i.e., one paragraph
of a paper does not fit that authors writing style this part may be questioned as
plagiarism.

3.5 Authorship profiling

Authorship profiling is a technique used to find out information about an author
given his or hers writing style. This type of authorship analysis is very similar
to authorship identification in how it can be performed. For example to find
out if an author is male or female can be considered a two-class classification
problem. This relates to authorship identification between two authors. As in
authorship identification, we can apply feature extraction to the text to generate
a set of features and use machine learning to get a probable gender based on
these features. Agramon et al.[3] used this technique to determine an author’s
age, gender, native language and neuroticism level. For authorship profiling, they

Related Fields 19

achieved 76.1% accuracy on classifying genders. 77.7% accuracy on classifying age
divided into three classes(13-17, 23-27 and 33-47). 82.3% accuracy on their native
language(Russian, Czech, Bulgarian, French and Spanish) and 65.7% accuracy
on neuroticism (tendency to worry yes/no).

3.6 The PAN workshop

The PAN workshop is a bi-annually competition/workshop hosted at di↵erent
conferences(SIGIR, CLEF, FIRE, SEPLN, and ECAI) all over the world. Partic-
ipants in the PAN workshop can compete in three to four di↵erent categories in
authorship analysis such as authorship identification, verification, profiling and
plagiarism detection.

3.7 Summary

This chapter has introduced the reader to the field of authorship analysis and
fields related to authorship identification.

20 Summary

Chapter 4

Authorship identification

This chapter illustrates the process of modern authorship identification by using
classification. A general approach is presented along with previous work in the
field alongside a more detailed presentation of authorship identification, including
their data collection phase, feature extraction, model generation and results from
9 di↵erent papers featuring the authors of , Abbasi & Chen [1], Baraka et al. [6],
Corney et al. [8], de Vel et al. [10], Hurtado et al. [18], Nizamani & Memon [30],
Tas & Gor [39], Zhang et al. [42], and Zheng et al. [43]

4.1 Introduction

Modern authorship identification can be divided into two di↵erent areas. In the
first area we have the similarity-based approach, this approach uses an author’s
writing style, also known as the stylometric features to determine the similarity
between an anonymous text and an author. For example, one approach to this
problem is to concatenate a large number of texts from an author and extract the
stylometric features. These features are used to calculate the distance between
the anonymous text and the di↵erent candidate authors. When the calculation is
completed, a prediction can be made to determine the authorship of the anony-
mous text in question [36]. This approach has stood the test of time and has been
in use since the mid-1960s when Mosteller and Wallace used bayesian statistical
analysis on a set of small common words on the ”Federalist Papers”. The ”Fed-
eralist Papers” is a collection of 85 articles and essays authored by Jay, Hamilton
and Madison in 1964 [29]. Both Madison and Hamilton claimed authorship of
twelve of these articles and by the work of Mosteller and Wallace, they credited
Madison with the authorship of these. Later studies has also showed that the
twelve articles were written by Madison, for example in [20] where Jockers and

22 Framework

Written applied several classification algorithms, including k-NN and support
vector machines to the disputed papers.
The second area in authorship identification is the instance based approach and
can be looked at as a multi-class single label text categorization task [35]. This
approach uses training data to build a model using the extracted stylometric
features as mentioned in Chapter 2. The model is generated by using a classifica-
tion algorithm such as support vector machines, k-NN, random forests, artificial
neural network or decision trees. A test set is then applied to the model to
evaluate the performance of the classifier. In this thesis, we consider the second
area and perform our authorship identification with the classification algorithms
mentioned above.

4.2 Framework

The approach to authorship identification by classification has developed over
the last few decades. However, the entire process can be boiled down to four
distinct steps, also known as a framework [43]. The first step is known as the
data collection phase. In this phase a corpus is created, this corpus is used
as the data set for authorship identification. The second step is the feature
extraction phase. In the feature extraction phase, a set of stylometric features
defined by the people performing the authorship identification is used to extract
data from the corpus established in the first step. Extracted data can be used
as either training- or test data. The third step is the model generation phase.
In the model generation phase, classification algorithms are used to generate a
model based on the training data created in the previous step. Testing data is
used to evaluate the performance of the model. The last step of the process is
the authorship identification phase. In the authorship identification phase, an
anonymous text is used as input to the generated model from the previous step
and a prediction on the authorship represents the output. The entire process can
be seen in Figure 4.1.

4.3 Document collection

Before the authorship identification process can begin enough data has to be
collected. The researcher can choose whatever topic he or she would like to
perform authorship identification on, imagination is the limit here. However
choosing a specific area with a limited number of authors will most likely yield
better results. Something to keep in mind is that some of the collected documents
must specify the author to be used as training data. In previous studies due to
the increasing amount of text published online popular topics for authorship

Authorship identification 23

Document Collection

Document preperation

Feature Extraction

Training- and testing set

Classification algorithms

Model generation

Author identification model

Probable Author

Step 1

Step 2

Step 3

Step 4

New document

Figure 4.1: Author Identification process.

24 Feature extraction

identification has been emails [8] [10] [30], newsgroup messages [43] and forum
messages [1]. Other areas of authorship identification range from source code
identification [12] to the identification of research papers based on only using
the abstract [18]. In Table 4.1 the total number of authors for each research is
shown, as well as the number of documents per author and the total number of
documents.

Reference # of authors # of documents pr author # of documents total
[18] 5+5 36 and 34 349
[39] 20 25 500
[30] 157+7 N/A for 157 and 30 620000
[1] 20 20 400
[42] RCV1 corpus 1 and 10 N/A RCV1 copus + 21
[10] 3 N/A 156
[8] 4 N/A 253
[6] 3+5 85 and 12 313
[43] 20 40 800

Table 4.1: Overview of the number of authors, documents per author and total
number of documents in previous research.

4.4 Feature extraction

As seen in Chapter 2, a set of pre-defined features is needed to be able to classify
data using classification algorithms. In authorship identification, these features
are known as style markers and helps quantify an author’s writing style. There
are four groups of style markers that are used for authorship identification; these
are the lexical features, the syntactic features, the structural features and the
content-specific features. The lexical features are split into two sub-categories: the
character specific features and the word specific features. The character specific
feature considers a text as a sequence of characters, and the word specific features
considers a text as a sequence of tokens (words). The syntactic features focus
on an author’s writing style. The structural features are based on how a text is
built and the content-specific features are special features depending on the area
authorship identification is performed on.

4.4.1 Character specific features

The character specific features are as mentioned that a text is parsed as a se-
quence of characters. Possible features that can be extracted in this group are the

1
http://www.daviddlewis.com/resources/testcollections/rcv1/

Authorship identification 25

total count of each letter in the alphabet i.e 26 di↵erent features in the English
language, and 29 features in the Norwegian language. The total count of occur-
ring digits can also be used providing ten more features from 0-9. The number of
upper and lower case letters can also be used as features. Other character specific
features range from the total count of special characters to the total number of
characters used in the text [10] [43]. Character N-grams can also be used as a
character specific feature. An N-gram is a sequence of characters or words con-
sisting of N items from a given string of characters. For example, a 2-gram, also
known as a bi-gram, of the word ”city” is ”ci”,”it” and ”ty”. Kjell [22] was one of
the first to use character n-grams to determine the authorship of the ”Federalist
Papers”. It is worth noting that by using character n-grams the dimensionality
of the feature vector will drastically increase, and it is important that the clas-
sification algorithm can handle high-dimensional data. If the algorithm cannot
handle high dimensionality data, consider leaving this feature out.

From what is done in previous work, as seen in Table 4.2, we can see that some re-
searchers have chosen not to include any character specific features at all. While
other researchers such as de Vel et al., [10], Zheng et al. [43], and Corney et al. [8]
have used several. Also we can see that some features have been more common
to use compared to others. For example the feature considering the total number
of alphabetic characters are used by four out of the nine di↵erent studies while
the ratio of digits to characters is only used by Nizamani & Memon [30]. In the
tables below ”# of” refers to ”the total number of”.

Description Reference
Character specific features

of characters [30] [43]
of alphabetic characters [8] [10] [30] [43]
of upper-case characters [8] [10] [43]
of digit characters [8] [10] [43]
of white space characters [8] [10] [43]
tab spaces [8] [10] [43]
Frequency of special char. ˜, @, #, $, %, ˆ, &, ⇤, –, , =, +, <, >, |, [,], {, }, \, / [1] [30] [43]
Frequency of letters From A to Z [43]
Ratio of digit to char. [30]
Ratio of space to word length [30]
of spaces [8]
of spaces/# of white spaces [8]
of tabs/ # white spaces [8]
Character level [1]
Character n-gram [8] [42]

Table 4.2: Character specific features used in previous work.

26 Feature extraction

4.4.2 Word specific features

The word specific features parses the document or text as a sequence of tokens.
Important features include finding the total number of short words used by an au-
thor, the total number of words, the average word length and the average sentence
length. Stamatatos [36] considers these features to be the token-based features.
Vocabulary richness is also considered quite important, and several of these vo-
cabulary richness measures exists today, for instance, Honore’s R measure [17].
A study of di↵erent richness measures was done by Tweedie & Bayeen [40] in
1998. They go into the di↵erent vocabulary richness measures in detail, and
they also showed that these types of vocabulary richness measures should not be
used as a single source of information. Besides vocabulary richness another word
specific feature is the word length frequency distribution, this feature counts the
number of words with varying length, usually between one and 30 characters. As
with character n-grams, word n-grams can also be used as features for author-
ship identification. The same problem applies here as with character n-grams,
which is the drastic increase in dimensionality. The misspelling of words can
also be used as a feature, this can include features such as missing hyphens or
using the wrong vowel. Features that originate from misspelling are known as
idiosyncrasies and has been used in previous studies such as a study performed
by Koppel & Schler [23]

Previous studies show that word specific features are amongst the most pop-
ular. Nine out of nine papers proposed in this thesis has used some form of
word-based features. Most common are the average sentence length in terms
of word-length that are present in five out of nine studies alongside vocabulary
richness and the average word length. For di↵erent languages, other features are
used, for example in Abbasi & Chen [1] they use elongation, which is a feature
specifically used for Arabic texts.

Authorship identification 27

Description Reference
Word specific features

of words [39] [43]
of short words Words less than 3 characters [8] [10] [30] [43]
of characters in words [8] [10] [43]
Average word length [10] [18] [30] [39] [43]
Average sentence length Character-length [8] [43]
Average sentence length Word-length [8] [10] [18] [30] [43]
Total di↵erent words [39] [43]
Hapax Legomena Words occurring only once [8] [10] [43]
Hapax Dislegomena Words occurring only twice [8] [43]
Vocabulary richness [1] [8] [10] [39] [43]
Word length frequency distribution Frequency of words in di↵erent length [1] [8] [10] [43]
Average words per document per author [30] [39]
Total number of sentences [39]
Average number of short words per author [39]
Total number of function words [8] [10]
Word Level [1]
Elongation [1]
Pronouns [42]
Word n-grams [6]

Table 4.3: Word specific features used in previous work.

4.4.3 Syntactic features

Syntactic features represent an author’s writing style better than the lexical fea-
tures does. The syntactic features takes into account how someone uses specific
word classes, also known as part of speech, such as nouns and adjectives. These
word classes are often used unconsciously, and pattern for a specific author can
emerge given enough documents.

A common use of part of speech as a syntactic feature is to count the frequency
of a word class, i.e., the total number of nouns. Part of speech n-grams can
also be used as a syntactic feature. To create part of speech n-grams the entire
corpus needs to be tagged with part of speech first using a tagger. The Stan-
ford’s part of speech tagger 2 is an example of a tagger that can be used for
this purpose. When the tagging of the corpus is complete, n-grams can be made
with the part of speech tagged corpus. The use of punctuation are also used as
a syntactic feature, how often an author writes a period (.) or comma (,) can
say much about an author’s writing style. Another important syntactic feature is
the use of function words. Function words are usually among the most common
words, such as prepositions, pronouns and articles.The function words comes in a
predefined list of words, each word represents a new feature, and this feature rep-
resents the frequency of that word. Zheng et al. [43] stated that there currently

2
http://nlp.stanford.edu/software/tagger.shtml

28 Feature extraction

are no general good go-to set of function words. The function words are however
proven to be some of the best features to distinguish between di↵erent authors [4].

As we can see in Table 4.4 the use of function words are heavily favored be-
tween the studies as well as the use of punctuation. Both these features are
used in six out of nine studies while part of speech are only used in three out of
nine. Same as for the word and character specific features Abbasi & Chen [1] use
language-specific features such as word roots.

Description Reference
Syntactic features

Punctuation ”,”, ”.”, ”?”, ”!”, ”:”, ”;”, ”’”, ””” [1] [8] [10] [30] [39] [43]
Function words List of function word provided by researcher [1] [8] [10] [30] [42] [43]
Part of speech nouns, verbs, adjectives etc. [18] [39] [42]
Word Roots For Arabic language [1]
Phrases [42]
Part of speech tag n-grams [6]

Table 4.4: Syntactic features used in previous work.

4.4.4 Structural features

The structural features shows how an author systematically arranges the lay-
out of a document. Some of these features are: how many lines, sentences or
paragraphs a document has, the average size of a paragraph or check if a new
paragraph start with an indentation or not. Even the font that was used, or the
color of that font can be considered structural features. In previous studies, if
the corpus consists of emails a feature used is whether or not the email starts
with a greeting [43] or if the sender left his or hers signature [10].

From the previous study we see in Table 4.5 that most of the structural fea-
tures depends on the format of the corpus. Zheng et al. [43], de Vel et al. [10]
and [30] all use emails as the corpus and uses3 some very email specific features.
However, some of these features can apply to most documents such as the total
number of lines, sentences and paragraphs per document, and the total number
of sentences, characters and words per paragraph.

4.4.5 Content-specific features

The content-specific features are features that mean something in a particular
area or context. These features are among the harder ones to extract, particularly
when working with a corpus that spans more than one specific area [36]. Zheng

Authorship identification 29

Description Reference
Structural features

of lines [8] [10] [43]
of sentences [43]
of paragraphs [30] [43]
of sentences per paragraph [43]
of characters per paragraph [30] [43]
of words per paragraph [43]
Has a greeting [10] [30] [43]
Has separators between paragraphs [43]
Has quoted content Cite original message as part of new message [43]
Position of quoted content Quoted content above or beyond new message [10] [43]
Email as signature [43]
Telephone as signature [43]
Url as signature [43]
Tab or space indentation [30]
of blank lines [8] [10]
Has farewell acknowledgment [10]
Has signature [10]
Number of attachments (email) [10]
HTML tag frequency distribution [10]
of HTML tag [10]
Message level [1]
Paragraph level [1]
Constant information [1]
Font color [1]
Font size [1]
Embedded images [1]
Hyperlinks [1]

Table 4.5: Structural features used in previous work.

et al. [43] used content-specific words such as ”obo” which means ”or best o↵er”
and ”wtb” which means ”want to buy”. These examples were used for selling or
buying items and were manually identified by reading through di↵erent ”for sale”
texts. Another set of features that is considered content-specific is to identify the
most frequently used words and count the occurrences of these. Hurtado et al. [18]
and Zhang et al. [42] the most frequent words as content-specific features in their
work. Other content-specific features used in Abbasi & Chen [1] were an authors
race and nationality, and whether or not a forum message proposed the use of
violence.

4.5 Model generation

Chapter two introduced five di↵erent classification algorithms; these are the ar-
tificial neural networks, support vector machines, k-nearest neighbor, decision

30 Model generation

Description Reference
Content-specific features

Frequency of content specific words Words that mean something in a specific corpus Zheng [43]
Most frequently used words Hurtado, Zhang [18] [42]
Race/nationality Abbasi [1]
Violence Abbasi [1]

Table 4.6: Content specific features used in previous work.

trees, and random forests. This section will go through each of these algorithms
and how they have performed in previous work.

4.5.1 Building the model in authorship identification

Before we begin examining each algorithm individually we first have to look at
how a model is created in authorship identification. From Chapter 2 we know
that a classification algorithm needs a training set to build the model and a
test set to evaluate the performance. For authorship identification the class in
question consists of a single author, and as seen above the attributes for each
text are the stylometric feature of an author’s writing style. In essence, what a
classification algorithm does in authorship identification is to output a probable
author from an anonymous text based on the model generated by the training
set, verified by the test set. Table 4.7 shows which algorithm was used in each
study and Table 4.8 shows the respective best-case results achieved.

4.5.2 Classification and results

Support vector machine is the accepted go-to algorithm in the field of authorship
identification. It was introduced to the field in 2000 by Diedrich et al. [11] and
has shown an incredible performance since the beginning. One of the reasons this
algorithm fits good in authorship identification is the ability to handle a large
number of features [19]. Because support vector machines can handle a large
number of features it does not su↵er from the curse of dimensionality problem.
As seen in Table 4.7 nine out of nine papers examined here has used support
vector machines. Also, as seen from the results, in the best case Baraka et al. [6]
achieved an accuracy of 100% in the best case while others float around 80-90%
accuracy/f-measure.

Only two out of nine papers used artificial neural networks in their study, that
does not mean the algorithm performs any worse than support vector machines in
the best case. In Zheng et al. [43] artificial neural networks achieved an accuracy
of 95%, only two percent behind support vector machines. Hurtado et al. [18]
achieved a score of 0.97 area under the ROC-curve [38], where a score of 0.5 is

Authorship identification 31

random performance, and a score of 1 is considered not random. However, this
was only on two di↵erent authors in only one particular field. When used on ten
di↵erent authors in two di↵erent fields the neural network algorithm achieved a
score of 0.94 area under the ROC-curve.

In Zhang et al. [42] the k-NN algorithm had the worst performance and only
achieved 60% accuracy in the best case while support vector machines were
around 90%. For Hurtado et al. [18] they achieved a score of 0.92 on the area
under the ROC-curve with two authors in the same field. The performance went
down to a score of 0.87 on the area under the ROC-curve when the number of
authors was increased to five.

Decision trees also did considerably well with a 91% accuracy in the best case for
Zheng et al. [43] when using 30 documents and five di↵erent authors, and 90%
accuracy for Abbasi & Chen [1]. For Zheng et al. [43] the performance decreased
to 80% accuracy when the number of authors increased from five to 20, and as
low as 69% accuracy when the number of messages were reduced to ten. It is
worth noting that both studies used the popular C4.5 algorithm for constructing
the decision tree.

Random forests were only used in Hurtado et al. [18], and the results shown
were also limited. They achieved a score of 0.95 on the area under the ROC-
curve in the best case when the number of authors were limited to two, and a
score of 0.9 when increased to five authors.

From Nizamani et al. [30], Zheng et al. [43] and Hurtado et al. [18] we can see
that the accuracy are related to the number of authors. We can see that when the
number of authors increases, the accuracy will decrease. Both Zheng et al. [43]
and [1] shows that when more feature groups are added the accuracy increases.
Only lexical features performs worse than lexical + syntactical and, lexical +
syntactical performs worse than lexical + syntactical + structural. Zheng et
al. [43] and Nizamani et al. [30] also show that the number of documents per
author matters, and that the accuracy increases when the number of documents
per author increases.

4.6 Summary

This chapter has given insight into the previous work done in the field of author-
ship identification. We have also looked at the document collection- and feature
extraction phase in detail. The next chapter will go through how this thesis im-
plemented the framework described in this chapter and which decisions had to

32 Summary

Previous research ANN k-NN SVM Decision trees Random forests
Zhang et al. 2014 [42] x x
Baraka et al. 2014 [6] x
Zheng et al. 2006 [43] x x x
de Vel et al. 2001 [10] x
Corney et al. 2001 [8] x
Nizamani & Memon, 2013 [30] x
Abbasi & Chen, 2005 [1] x x
Hurtado et al. 2014 [18] x x x x
Tufan Tas & Abdul Kadir Görür, 2007 [39] x

Table 4.7: Algorithms used in previous work.

ANN KNN SVM DT RF Measure
Results

Zhang et al. 2014 [42] 60% 90% Accuracy
Baraka et al. 2014 [6] 100% Accuracy
Zheng et al. 2006 [43] 95% 97% 91% Accuracy
de Vel et al. 2001 [10] 90% F-measure
Corney et al. 2001 [8] 82% F-measure
Nizamani & Memon, 2013 [30] 94% Accuracy
Abbasi & Chen, 2005 [1] 97% 90% Accuracy
Hurtadi et al. 2014 [18] 0.97 0.92 0.92 0.95 Area under ROC
Tufan Tas & Abdul Kadir Görür, 2007 [39] 58% Accuracy

Table 4.8: Best performance of the classifiers.

be made and why.

Chapter 5

Implementing the
authorship identification
system

This chapter shows how the authorship identification framework presented in
Chapter 4 were used in the architecture of the implemented system for this thesis.
Including data collection, feature extraction, and model generation, Figure 5.1
illustrates how we intended to implement the system, and we will now go into
detailed about how we performed our implementation. This chapter will also
talk about some of the alternative options that were considered and explain the
process behind decisions that were made.

5.1 Data collection

Performing authorship identification requires a corpus. As previously seen in Sec-
tion 4.3 a corpus can be everything from a collection of emails to source code and
in this thesis the corpus consists of research papers. However the term ”research
paper” is very broad and to be more concrete our corpus exists of research papers
in computer science under the subject of information retrieval. Two di↵erent data
sets were made based on the corpus, the first one includes only research papers
from information retrieval proceedings, such as ”SIGIR”, ”ECIR” and ”CIKM”.
The other dataset consists of several research papers from authors within infor-
mation retrieval. The reason for having two separate data set was because we
wanted to see how the classification algorithms performed when given di↵erent
amount of data for training and testing. In the first data set, we have a small

34 Data collection

Data collection

Online libraries(ACM,IEEEx, etc)

Research papers in PDF

Convert PDF to text

Feature extraction

Set of extracted features in research paper

Training- and test set

kNN SVM RF

AIM

Probable author

ANN DT

Step 1

Step 2

Step 3

Step 4Anonymous paper

Figure 5.1: Author Identification process.

Implementing the authorship identification system 35

number of authors with a good amount of research papers per author. In the
second data set, we have a large number of authors with a limited number of
research papers per author.

For the first dataset, the dataset with a limited number of authors, the research
papers were saved in separate folders. Each folder were named after the candi-
date author, and because we could do a lookup on the folder name, no automatic
author name extraction were necessary. However, for the second data set the re-
search papers were not structured this way. Therefore, for this dataset we needed
a way to automatically extract the author name from the research paper. How
we performed the author name extraction is explained in Section 5.1.2

5.1.1 Preprocessing

The next step in the process after establishing the corpus was to extract usable
text from a research paper. All of the research papers used in the corpus were
originally in PDF format, and automatic text extraction had to be performed to
be able to extract the stylometric features. For the preprocessing of the PDFs,
two di↵erent approaches were considered. The first option was to use a Java
library to extract text from the PDFs directly, and the second option was to use
OCR, also known as optical character recognition [14]. For regular PDF text
extraction, Apaches PDFBox1 and a layout aware text extractor for scientific
articles, known as LAPDF [34] were the two candidates reviewed for the task.
A major drawback with PDFBox was that extracting text from research papers
created noise in the output text when extracting content from tables, pseudocode,
and figures. Besides creating noise in the output, the text extractor performed
very well overall.
Compared to PDFBox, the LAPDF library did not su↵er to the same degree when
it came to the frequency of noise in the output text. The reason for that is because
the LAPDF-library intelligently ignores authors, article headlines, figures, tables,
and pseudocode. However LAPDF came with a drawback as well, being optimized
to work on two-column scientific articles it did not work on single-column articles.
For the second option, optical character recognition, ABBYY2 was tested out. By
being both slow, providing the same amount of noise in the data set as PDFBox
and had to be purchased to access the full version, OCR was decided to not be
used in the implementation.
We ended up with two possible solutions both o↵ering two major drawbacks. On
one side by settling with PDFBox we would end up with a noisy dataset and
by choosing LAPDF, single-column articles had to be ignored, such as research

1
https://pdfbox.apache.org/

2
http://www.abbyy.com/

36 Automatic feature extraction

papers from the ”ECIR” conference. We ended up with a compromise and used
LAPDF whenever possible and PDFBox for the single column articles, with this
solution we ended up with less noise in the dataset and able to handle more
research papers.

5.1.2 Finding the author

Besides automatically extract text from the PDF for the second dataset with a
large number of authors and limited training and test data we also needed to
automatically extract the name of the authors of the research paper. The initial
assumption was that the authors of a given research paper could be identified
using the metadata of the PDF. However, it turned out that most of these PDFs
only contained auto-generated metadata from the compiler and that the authors
rarely bothered to update the metadata with the correct information. Therefore,
the idea that the metadata could be used as a reliable source to find out who
wrote the research paper was scrapped. The second solution proposed was to use
the title of the research paper and perform a lookup in a database containing
information about research papers and their respective authors. The database
was created using a MYSQL-database created from the XML-file DBLP3 provides
free of charge which contains the entire DBLP-database. The next problem to
be solved was to automatically extract the title from the research paper. Since
the filename of the PDFs were mostly obscure and unusable, we could not use
the filename of the PDF directly to identify the authors. Fortunately, a Java
library named ”Docear’s PDF Inspector” 4 could do the job of extracting the
title. How the title extraction works is that the library extracts the largest text
from the top third of the first page of a PDF. For a research paper that is in
most cases the title. After the title had been extracted, it was then used to query
the database to identify the candidate authors. Figure 5.2 illustrates how the
automatic author extraction process works.

5.2 Automatic feature extraction

In the implementation of the automatic feature extraction, only two out of the
four feature groups were implemented. The structural and content-specific fea-
tures were left out because of a limitation in the pre-processed text files generated
when using PDFBox or LAPDF. The limitation was that a text-file created by
extracting the content from a PDF did not maintain the structure the text had
in the PDF. Therefore, we could not extract these features accurately enough
to consider them reliable features. However we did come up with some possible

3
http://dblp.uni-trier.de/

4
https://www.docear.org/software/add-ons/docears-pdf-inspector/

Implementing the authorship identification system 37

Figure 5.2: Author extraction process.

structural- and content-specific features that were not discussed in Chapter 4.
For the structural features these were: ”Related work early or late in the research
paper”, ”Are the references in sorted order according to the reference list” and
”Reference style”. For the possible content-specific features, ”Total number of
references”, ”Usage of footnotes” and ”Total number of footnotes” were proposed.

5.2.1 The lexical features

The lexical features used in the implementation are influenced by the survey done
in Chapter 4. Most of the features used by more than one of the previous studies
has been used, but some have been chosen not to implement such as character and
word n-grams. The reasoning for not including n-grams in the implementation
was to avoid the curse of dimensionality problem, and thereby have an increased
amount of running time for some of the algorithms. The entire list of lexical
features can be seen in Table 5.1.

5.2.2 The syntactic features

The syntactic features are also inspired by the previous survey, and the list of
function words used are the same list of function words used by Zheng et al.
in [43]. The reasoning behind using their list of function words was because they
stated that there are no good rules for deciding which function words to include.
Therefore, we came to the conclusion that we would not come up with a better
list of function words our self and picked the list they used for their research.
The part of speech features were extracted by using Stanford’s natural language
processor5 and each part of speech tag are mentioned in Table 5.2.

5
http://nlp.stanford.edu/software/tagger.shtml

38 Automatic feature extraction

Lexical Description
L1 # of characters
L2 # of alphabetic characters
L3 # of uppercase characters
L4 # of digits
L5 # of white space characters
L6 # of tabs
L7 - L32 Frequency of alphabetic characters, case insensitive

L33 - L54
Frequency of special characters
(˜, @, #, $, %, ˆ, &, ⇤, –, , =, +, <, >, |, [,], {, }, \, /)

L55 # of words
L56 # of short words
L57 # of charcters in words
L58 Average word length
L59 Average sentence length in characters
L60 Average sentence length in words
L61 # of di↵erent words
L62 Hapax legomena (words occuring only once)
L63 Hapax dislegomena (words occuring twice)
L64 Vocabulary richness by Yule’s measure
L64 Vocabulary richness by Simpson’s D measure
L65 Vocabulary richness by Sichels S measure
L66 Vocabulary richness by Brunet’s W measure
L67 Vocabulary richness by Honores measure
L68-L88 Word length frequency distribution (1 - 20 characters per word)

Table 5.1: List of lexical features used.

Implementing the authorship identification system 39

Feature Description

S1 - S8
Frequency of punctuation

(”,”, ”.”, ”?”, ”!”, ”:”, ”;”, ”’”, ”””)

S9-S156

Frequency of function words

(about,above,after,all,although,am,among
, an,and,another,any,anybody,anyone,anything
,are,as,at,be,because,before,behind,below,
beside,between,both,but,by,can,cos,do,down,
each,either,enough,every,everybody,everyone
,everything,few,following,for,from,have,he
,her,him,if,in,including,inside,into,is,it
,its,latter,less,like,little,lots,many,me
,more,most,much,must,my,near,need,neither
,no,nobody,none,not,nothing,of,o↵,on,once
,one,onto,opposite,or,our,outside,over,own
,past,per,plenty,plus,regarding,same,several
,she,should,since,so,some,somebody,someone,
something,such,than,that,the,their,them,these
,they,this,those,though,through,till,to,toward
,towards,under,unless,unlike,until,up,upon,us,
used,via,we,what,whatever,when,where,whether,
which,while,who,whoever,whom,whose,will,with,
within,without,worth,would,yes,you,your)

S157-S193

Frequency of part of speech

(Coordinating conjunction, Cardinal number
, Determiner, Existential there, Foreign word
, Preposition or subordination conjunction
, Adjective, Adjective(comparative)
, Adjective(superlative), List item marker
, Modeal, Noun(singular or mass), Noun(plural)
, Proper noun(singluar), Proper noun(plural)
, Predeterminer, Possesive ending, Peronal pronoun
, Possessive pronoun, Adverb, Adverb(comparative)
,Adverb(superlative),Particle, Symbol, to
, Interjection, Verb(base form), Verb(past tense)
, Verb(gerund or present participle)
, Verb(part participle), Verb(non-third person singular present)
, Verb(third person singular present)
, Whdeterminer, Whpronoun, Possessive whpronoun
, Whadverb

Table 5.2: List of syntactic features used.

40 Approach

5.2.3 Output

In total 193 lexical and syntactic features has been used in the implementation,
these are represented as numeric values in a file format known as ARFF6. The
ARFF-file, also known as attribute-relation file format, consists of a header field
and a data field. In the header field, the name of the relation, and a list of all
the features used are present, and in the data field each instance to be classified
is represented as a string of values. These values can be a combination of strings,
dates, numerics or nomials. An example of an ARFF-file can be seen in Appendix
A.
In the implementation, each text-file is individually processed through a feature
extraction object written in Java and the extracted features are written to the end
of the ARFF-file as instances. Figure 5.3 illustrates the entire feature extraction
process, and the integration with WEKA, a machine learning library is explained
in Section 5.3.

Figure 5.3: Feature extraction process.

5.3 Approach

Five di↵erent classification techniques were chosen to be used for the authorship
identification, these were: support vector machines, k-nearest neighbor, decision
trees, random forests and artificial neural networks. In the implementation, we
used WEKA [16], a machine learning library, to generate a classification model
during the training phase, and test the model out during the test phase. For
each classification algorithm WEKA has one or several di↵erent implementations,
and the implementation used in this thesis where: Platt’s sequential minimal
optimization algorithm [31] for support vector machines, instance based k [2]
for the k-nearest neighbor algorithm, Quinlan’s C4.5 [33] for the decision trees,
Breiman’s random forests algorithm [7] and multilayered perceptrons [13] for the
artificial neural network. We have implemented two di↵erent ways of performing
the classification, one for each of the datasets mentioned in Section 5.1.

6
http://www.cs.waikato.ac.nz/ml/weka/ar↵.html

Implementing the authorship identification system 41

5.3.1 Implementation 1: limited authors

The first implementation were created for examples where we could perform
authorship identification on a limited amount of authors where the author of
each paper were known beforehand. What we did was to implement a 10-fold
cross-validation to train and test the data and systematically increase the number
of authors in the data set, from 2 to 20.

5.3.2 Implementation 2: many authors

For the second implementation, we intially decided that training should be per-
formed on the lead author of the paper, and the testing should be performed
on every author that contributed to the paper. However due to performance
issues discussed in Chapter 6 we went through several iterations on the design
and decided to train our model on a prioritized list of authors. For the second
implementation we had a separate test set, and we had to decide what a correct
classification should look like. The obvious choice would have been only to use
the lead author of the papers in the test set. This would have been easy to im-
plement, but we assumed that the results for the many author problem would be
unsatisfactory. In the end we decided that a classification should be marked as
correct if the following criteria was satisfied: A classification is marked as correct
if the model can predict one of the contributing authors of the research paper.
This meant that we would have to perform a lookup through our database to find
every author that contributed to a research paper and hold on to that informa-
tion until the model could make a prediction. Since WEKA does not support the
ability to credit a classification as correctly from a list of candidate classes (au-
thors) this functionality was implemented to support the WEKA framework and
make the classification process possible. To explain the process in its entirety the
classifier is first trained on every paper prior to 2014 on the author that matches
the first author in the prioritized list. This means that only one author is con-
sidered during training. When the training is complete the generated model can
begin to accept instances from the test set, where the test set includes research
papers published after and during 2014. For each instance in the test set, if
the model can predict one of the authors, we classify that instance as correctly
classified. Another reasoning behind using every author that contributed to the
paper for each test instance is that for a real world problem we would be satisfied
if we managed to predict at least one of the authors that wrote the paper. An
illustration of how the second implementation works can be seen in Figure 5.4.

42 Summary

Figure 5.4: Author identification process with limited data.

5.4 Summary

This chapter has shown how we implemented the di↵erent steps in the authorship
identification process. This included how we preprocessed the research papers,
which features we decided to include in the implementation and how we performed
the classification.

Chapter 6

Experiments and results

In this chapter, we go through how we performed the experiments and present
their respective results. The chapter starts with the experimental plan where
we discuss the di↵erent datasets, metrics, and the perspective of the results.
Followed up by the results and a brief discussion about the results we observed
during the experiments.

6.1 Experimental plan

This section presents our perspective of the experiments, the datasets used in
these experiments and which metrics we decided to use for each experiment.

6.1.1 Perspective

There are two parts the implemented system is trying to solve. The first part,
known as Experiment 1, considers a dataset with a limited number of authors,
where each author is represented with enough training and test data. The second
part, known as Experiment 2, considers a dataset with a large number of authors,
and limited training- and test data for each author. The reasoning behind having
these two datasets is as mentioned in Section 5.1 to see how the system handles
di↵erent cases of authorship identification. Another reason for having Experiment
1 in the mix was to get results for a smaller set of authors, for example the two-
author problem where only two di↵erent authors are considered. Good results on
such small cases may intend that even though the system fails for a large number
of authors it is still usable under the right conditions.

44 Experimental plan

6.1.2 Datasets

Experiment 1

The dataset used consisted of 20 di↵erent authors with a maximum of 20 pub-
lished research papers each. This dataset was further divided into three new
datasets with di↵erent heuristics. In the first dataset, the heuristic was set to
only consider research paper where the candidate author is also the lead author
of the paper. Since we found a limited number of authors that were the lead
author in twenty or more research papers this dataset was set to only contain ten
published papers each. In the second dataset the heuristic was set to consider
research papers where the candidate author is among the top 3 contributors of
the research paper. For this case, we managed to gather the maximum of which
was twenty research papers per author. In the last dataset the heuristic was set
to include research papers where the candidate author has at least contributed
something to the research paper, this dataset also had the maximum of twenty
research papers per author. The reasoning behind having three di↵erent datasets
each with their own heuristic was to observe how important the amount of work
contributed to a research paper had to say for the result.

To summarize the dataset for the first experiment:

Dataset 1

Heuristics: Author is the lead author
Number of research papers: 10 for each author, 200 in total

Dataset 2

Heuristics: Author is among the top 3 contributors
Number of research papers: 20 for each author, 400 in total

Dataset 3

Heuristics: Author has contributed something to the paper
Number of research papers: 20 for each author, 400 in total

Experiment 2

For Experiment 2 the research papers in the dataset were taken from di↵erent
information retrieval conferences. The conferences included in the training- and
test set can be seen in the list below.

Training set

CIKM 2005, CIKM 2011, CIKM 2012, CIKM 2013, SIGIR 2005, SIGIR
2011, SIGIR 2012, SIGIR 2013, ECIR 2012, ECIR 2013 and RIAO 2007.

Experiments and results 45

Test set

SIGIR 2014, CIKM 2014, ECIR 2014 and ECIR 2015.

As mentioned in Section 5.3.2 this dataset went through several iterations before
the final dataset was established. After attempting to train the classifier on
the lead author heuristic we realized that the training process was very slow.
To clarify how slow the training process was, the only algorithms that finished
training on this dataset were the decision tree algorithm and k-nearest neighbor.
The support vector machines, random forests, and artificial neural networks never
finished training. The reasoning that the training process was so slow for three
of the algorithms were that the dataset generated was very sparse, with several
thousand candidate authors, and most of them with only a single paper they had
contributed to.

Normalization

Because of this the initial design had to be changed, and the idea that we came
up with was to normalize the dataset. The normalization for the second iteration
of the design was to identify the authors that had contributed to the most papers
in the dataset and list them up in a prioritized manner, from most contributions
to least contributions. This list was used to assign an author to the paper in the
training set. By getting every author for the paper and cross check these authors
to the prioritized list of authors we could assign the first match in this list as the
author of the paper.

Third iteration

Normalization of the dataset was a step in the right direction, the number of
candidate authors was reduced, and the highest number of papers per author
went from a maximum of six up to thirty. To our surprise, the training process
was still running very slow for the support vector machines, random forests, and
neural network algorithms. We still had about 1200 di↵erent candidate authors
in our training set, and we decided that we needed to modify the dataset even
further. A decision was made to remove every author that only had contributed
to one research paper. With the third iteration of the design, the classification
algorithms were able to perform training within a reasonable time.

Final dataset

The final numbers of the training set were as follows: 1683 di↵erent instances,
408 unique authors, the highest amount of papers per author were 30 and the
lowest number of papers per author were 2. The test set consisted of 707 di↵erent
instances. It is also worth noting that research papers in the dataset that were

46 Experimental setup

unreadable by our PDF-parser, and research papers that we were unable to find
in our database was not included in either the training set, nor the test set.

6.1.3 Metrics

For the first experiment which we expected to perform reasonably well we used
three di↵erent metrics, these were: success rate, which is the number of instances
that is classified correctly. The second metric we used was the F1-measure which
is as mentioned in Chapter 2 is the harmonic mean between precision and recall.
The last metric we consider is Cohen’s Kappa which measures the internal agree-
ment of the classifier.
For the second experiment we only considered the success rate because we had
already made the assumption that the results from this experiment was going to
be poor.

6.2 Experimental setup

The experiments are performed by gathering data from di↵erent proceedings
and Google Scholar. For the first experiment approximately 500 research papers
were manually downloaded and about 450 of these were approved for use in
the di↵erent datasets mentioned above. We had to download more than 450
research papers because there were some of the papers our system were unable to
parse. For the second experiment we used research papers published in di↵erent
information retrieval proceedings, these papers were provided by Kjetil Nørv̊ag,
the supervisor for this thesis. We have attached our ARFF files to make it easy to
replicate the results from Experiment 1 by using the WEKA explorer. However
for Experiment 2, due to the nature of how it was implemented the experiment
has to be executed directly from the Java application. Instructions on how to set
up the database and run the implemented system please refer to Appendix7.4.

6.3 Experiment 1

In the first experiment we considered the three datasets mentioned in Section 6.1.2.
We ran each dataset with a di↵erent number of papers per author ranging from
five to twenty. The reasoning for doing this was to not only compare the di↵erent
heuristics but also how the classification on each dataset performs with a di↵erent
size of training- and test data.

Experiments and results 47

6.3.1 Dataset 1 - lead author

In the first dataset we considered the heuristic where the author of the paper also
has to be the lead author of that paper. Two iterations of the classifiers were
executed on this dataset, the first iteration only used five research papers per
author as training- and test data, while the second iteration used all ten research
papers. The results from this dataset can be seen in Figure 6.1 and Figure 6.2

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Number of authors

%
co
rr
ec
t
cl
as
si
fi
ca
ti
on

s

SVM
DT
KNN
RF
ANN

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Number of authors

W
ei
gh

te
d
F
-m

ea
su
re

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Number of authors

K
ap

p
a
sc
or
e

Figure 6.1: Lead author with 5 papers per author.

6.3.2 Dataset 2 - top 3

In the second dataset, we considered the heuristics where the author of the paper
had to be among the top three authors that contributed to the paper. Also in
this dataset two di↵erent iterations were executed. The first iteration had fifteen
papers per author and the second iteration had twenty papers per author. The
reasoning behind not testing with ten and five research papers per author was
because we had already done this with what we believe is a better heuristic in
the first dataset. The two iterations in the second dataset could, therefore, be
compared directly with the first dataset as well as internally with a di↵erent
number of training- and test data. The results from this dataset can be seen in
Figure 6.3 and Figure 6.4

48 Experiment 1

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

Number of authors
%

co
rr
ec
t
cl
as
si
fi
ca
ti
on

s

SVM
DT
KNN
RF
ANN

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Number of authors

W
ei
gh

te
d
F
-m

ea
su
re

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Number of authors
K
ap

p
a
sc
or
e

Figure 6.2: Lead author with 10 papers per author.

6.3.3 Dataset 3 - random

For the last dataset we considered the heuristics that the author of the paper
could be in any order, i.e., the author could be mentioned last in the list of
contributors. We only ran one iteration of this dataset. The number of research
paper used in this iteration was twenty and with the same reasoning as above
this can be directly compared to the second and first dataset. The result from
this dataset can be seen in Figure 6.5

6.3.4 Observations

Algorithm performance

From the results presented above we can see that the algorithm that performed
best overall was the artificial neural network with multilayered perceptron and
not far behind we have support vector machines. The random forests performed
worse than artificial neural networks and support vector machines but overall
better than both the k nearest neighbor and decision trees. The most surprising
result was that the decision tree algorithm performed so horribly. In previous
work as seen in Chapter 2 decision trees showed decent performance and the idea

Experiments and results 49

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

Number of authors

%
co
rr
ec
t
cl
as
si
fi
ca
ti
on

s

SVM
DT
KNN
RF
ANN

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

Number of authors

W
ei
gh

te
d
F
-m

ea
su
re

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

Number of authors

K
ap

p
a
sc
or
e

Figure 6.3: Top 3 author with 15 papers per author.

50 Experiment 1

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

Number of authors

%
co
rr
ec
t
cl
as
si
fi
ca
ti
on

s

SVM
DT
KNN
RF
ANN

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

Number of authors

W
ei
gh

te
d
F
-m

ea
su
re

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

Number of authors

K
ap

p
a
sc
or
e

Figure 6.4: Top 3 author with 20 papers per author.

Experiments and results 51

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

Number of authors

%
co
rr
ec
t
cl
as
si
fi
ca
ti
on

s

SVM
DT
KNN
RF
ANN

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

Number of authors

W
ei
gh

te
d
F
-m

ea
su
re

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

Number of authors

K
ap

p
a
sc
or
e

Figure 6.5: Random position of author with 20 papers per author.

52 Experiment 1

was that decision trees would at least perform on par with k nearest neighbor.
Table 6.1 shows the standings of the di↵erent algorithms. The classification
algorithms were run a total of between nine and nineteen times depending on
the dataset where we for every iteration added a new target author, from two
authors up to a maximum of twenty. Every time we added a new target author
the problem at hand got a little harder to solve. For the two-author problem,
where we only consider assigning a paper to one of the two target authors our
classifier reach a maximum accuracy of 100% with a kappa score and F1-measure
of 1. As seen in the result graphs above for the twenty-author problem we reach
a maximum accuracy of 67% with a kappa score of 0.66 and an F1-measure of
0.68. In the two subsections below we discuss how we interpreted the results
for the twenty-author problem. The main reason we chose to take a close look
at the twenty-author problem was because we believe that it was the hardest
problem for our classification algorithms to solve and, therefore, provides the
most important result. For the exact numbers in the results graphs, please refer
to Appendix 7.4.

Performance Algorithm
1 ANN
2 SVM
3 RF
4 KNN
5 DT

Table 6.1: Overall performance of the algorithms.

Comparing the number of training and test instances

Previous work done on authorship identification shows that increasing the amount
of training data to the classifier often makes the classifier perform better. In
our experiment we did tests to see how our classifier and dataset holds up to
that statement. We performed these tests on the lead author dataset and top 3
author dataset. For the first dataset we started to test with five research papers
per author for our ten-fold cross validation and increased the size of the dataset
to ten research papers per author. When considering all twenty authors in the
dataset we saw a clear increase in performance that can be seen in Table 6.2.
For the accuracy, the number of correctly classified instances the performance
improved by 61%, for F1-Measure the performance increased by 64% and for the
Kappa score the performance increased by 72%. For the dataset considering the
top 3 authors the overall performance of the classifier also increased, however by a
smaller amount. The performance in accuracy increased by 27%, the F1-measure

Experiments and results 53

increased by 27% and the Kappa score increased by 36%. Overall this confirms
what has been done in previous research and shows that the performance of the
classifiers increase when the number of training- and test instances increases.

Comparing heuristics

One of the goals we had with our thesis was to see how much of a di↵erence it
made that the author was presented as lead author of the paper versus being
among the top contributors or even one of the authors that contributed least to a
paper. Initially we assumed that being lead author of a research paper would give
the author permission to structure the paper how he or she wanted and most likely
that author has contributed most to what is written in the paper. Therefore our
hypothesis was that it would be easier to classify papers where each author also
was the lead author of the paper. The hypothesis also assumed that being among
the top three contributors to the research paper would perform better than the
heuristic that the author of a research paper could be any of the authors. As
seen in Table 6.2 comparing the lead author dataset with ten papers to the top 3
author dataset with fifteen papers we can see an improvement in performance by
between 39 to 53% when applying the classification algorithms to all twenty target
authors. By increasing the number of papers per author from fifteen to twenty for
the top 3 dataset the performance of the lead author heuristics still performed
between 9 to 11% better. This is, however, a considerably smaller increase in
performance compared to the dataset with fifteen papers per author. What we
can conclude from this is that the lead author heuristics is indeed better than the
top 3 contributor heuristic considering the performance is better and the dataset
is at most half the size of the top 3 contributors dataset. For the last comparison
that we are going to do we look at the di↵erence in performance between the
top 3 contributor heuristic with twenty papers per author and compare it to the
heuristic where the author can be any of the authors that contributed to the
paper. Also in this case we can see that our hypothesis is correct because the
top 3 contributor heuristics performs between 22 to 30% better than the random
heuristic. We believe that this is the case because if you are listed as the author
that contributed least to the paper your writing style, or stylometry, doesn’t
appear nearly as often in the paper as it would have done if you were among the
authors that contributed the most.

6.4 Experiment 2

The second experiment we consider a single dataset that has been created based
on research papers from several information retrieval conferences mentioned in
Section 6.1.2. This experiment is what we consider to be a problem that we

54 Experiment 2

Comparisons Kappa F-measure Accuracy
Lead author (10 vs 5 papers) 72% 64% 61%
Top 3 author (20 vs 15 papers) 36% 27% 27%
Lead author 10 papers vs top 3 15 papers 53% 39% 42%
Lead author 10 papers vs Top 3 20 papers 11% 9% 11%
Top 3 20 papers vs Random 20 papers 30% 25% 22%

Table 6.2: Percent increase in performance for di↵erent datasets for the twenty-
author problem.

can perform authorship identification in the real world, and we consider this
experiment the real test of this thesis.

6.4.1 Results

Table 6.3 shows the result from the test set. The main di↵erence between this
experiment and Experiment 1 is that we decided to use a dedicated training set,
and a dedicated test set. The reasoning behind this choice is that we wanted to
attempt to use authorship identification on a real world problem to see how our
system would perform when put on a di�cult test.

Algorithm Correctly classified Accuracy
SVM 70 out of 707 correctly classified 9.9%
Neural Networks 66 out of 707 correctly classified 9.3%
KNN 48 out of 707 correctly classified 6.8%
Random Forests 40 out of 707 correctly classified 5.7%
Decision trees 9 out of 707 correctly classified 1.3%

Table 6.3: Accuracy and number of instances correctly classified for Experiment
2.

6.4.2 Observations

Initially, the assumption was that the classification results from this experiment
would be very bad. At one stage of the process we would consider us lucky if we
were able to perform the experiment at all with all the di↵erent design changes
on the training set to be able to perform the training. From the results, we
can see that the SVM algorithm comes out ahead with an accuracy of 9.9%.
There were some surprises by comparing the results from this experiment to the
previous experiment. Previously the neural network algorithm performed overall
better than the support vector machines algorithm and in this experiment the

Experiments and results 55

support vector machines algorithm outperforms the neural network algorithm
with 0.6% accuracy. Also, the KNN algorithm outperformed the random forests
algorithm by 1.1% in accuracy which also di↵ers from what we saw in our previous
experiment. Moreover, as it always has the decision tree algorithm came in last
with an accuracy of 1.3%.

6.5 Summary

In this chapter, we have looked at results for both our experiments and discussed
their respective results. We have also proved our hypothesis by showing through
our results by determining which heuristic was best and performed an experiment
on a real world problem. In the next chapter we will whether or not we feel we
answered our research questions for this thesis, which problems we encountered
when we implemented the system, and further work.

56 Summary

Chapter 7

Conclusion

In this chapter we conclude our work, we discuss and answer the research question
presented in the introduction, what this thesis contributes to the research field
and recommendations for further work.

7.1 Discussion

In the introduction to this thesis, three di↵erent research questions were asked.
In this section, these questions are answered by evaluating our work and the
results presented in Chapter 6.

RQ1: What are the di↵erent features and techniques used in author-

ship identification field when looked at as a classification problem?

Before we began implementing our system to perform authorship identification
we wanted to know what studies had been conducted before in this area and
which features and techniques were considered the state of the art. In Chap-
ter 2, 3 and 4 we have looked at the theory behind classification, how to measure
the performance of classification algorithms, and talked about the algorithms
used in our work. We have also looked at other areas that relate to authorship
identification and several di↵erent studies in the research field. But have we been
able to answer the research question? We believe that the work we have done in
this thesis is su�cient for the reader to get an understanding of the problem in
question, but that there may be previous important studies that possibly have
been overlooked.

58 Discussion

RQ2: Is it possible to perform authorship identification on research

papers?

Throughout the period of writing this thesis, a system was implemented with
the sole purpose of using classification to identify authors of research papers. To
determine whether or not authorship identification of research papers we built
the system to be very similar to what has been done before. Each feature was
stripped down to a set of features to determine the authors writing style and use
these features as input to a classification algorithm. From the results presented
in Chapter 6 authorship identification of research papers using classification is
indeed possible but according to our results only to some extent. For a very lim-
ited number of authors, authorship identification can be applied with a very high
accuracy reaching an accuracy of up to 100% in the simplest case the two-author
problem. However when we look at the results from our second experiment where
we have over 400 di↵erent authors for our algorithms to choose from the accu-
racy plummets drastically compared to the first experiment. There have also
been some limitations that we have had to handle that has to be taken into ac-
count when evaluating our results. The first limitation we want to talk about and
that most of our system relies on is the ability to automatically parse and convert
a PDF-file to plain text. Even though we tried to find the PDF-text extraction
libraries that suited our problem best there were still some limitations. These
limitations hindered us in implementing a whole category of features that could
have helped us increase the accuracy of the classifiers even further. Creating a
library with the sole purpose of extracting text and maintaining the structure of
the research papers is something we feel fitting as further work for this research
area. Another limitation that came up was during generation of the dataset for
the first experiment. As most websites that o↵er research papers, such as ACM
and IEEE, prevents the user of automatically downloading research papers using
a crawler (according to their Robots.txt file). Because of this, the 450 di↵erent
research papers used in the first experiment were downloaded manually. Down-
loading all these research papers manually has taken a lot of time and, therefore,
the number of candidate authors tested as well as the number of research papers
per author had to be limited. The last issue we want to talk about regarding lim-
itations in our work was that we had to tweak the dataset in Experiment 2 more
than initially anticipated. Some of the classification algorithms couldn’t handle
a large set of candidate authors and instances, and we did not get a chance to
legitimately test the system in an optimal setting. Given these limitations and
the fact that authorship identification on a large set of candidate authors showed
mediocre results we advice that even though we have shown that authorship
identification is possible you should think twice before applying and relying on
authorship identification before, or after a double-blind review, or for an author
to use authorship identification to acquire an unbiased review of a research paper.

Conclusion 59

RQ3: If authorship identification of research papers is possible, does

the amount of work contributed to a research paper by an author a↵ect

the degree of authors that can be identified?

Above we have concluded that authorship identification of research papers is
possible. However, how much does the amount of work contributed to a research
paper have to say about whether or not we can identify the author in question?
To answer this question, we hypothesized three di↵erent heuristics that we would
conduct experiments on. The first heuristic would only take into account papers
where the candidate author were the lead author of the paper. The second
heuristic would take into account papers where the candidate author where among
the top three contributors of the paper. The last heuristic would consider papers
where the candidate author contributed to the paper, it did not matter whether
or not the candidate author was the author that had contributed the least to
the paper. In Chapter 6, we were able to determine that the amount of work
contributed by the candidate author mattered as seen in the results. Our initial
hypothesis where right and the lead author heuristic outperformed the top three
author heuristic that again outperformed the heuristic where the author could be
any of the above, or have contributed less. One experiment that we wished we
could have made would have been to be able to compare the lead author heuristic
with twenty papers per author versus the top three heuristic with twenty paper
per author. Unfortunately due to the fact that we would have had to find twenty
di↵erent research paper for each candidate author where the author would have
had to be the lead author this task was not feasible.

7.2 Contributions

The contributions this thesis makes to the research area of authorship identifi-
cation is a study of how authorship identification can be used to determine the
authorship of research papers. It also shows techniques that needs to be im-
proved to make authorship identification even easier, such as a better tool to
extract plain text from research papers that maintains the structure of the pa-
per. We have also seen what is feasible when choosing the size of the dataset
to be classified. Furthermore, we have shown how much of a di↵erence it makes
when the candidate author has contributed a lot versus contributed a little to
a research paper. We also think that we have laid a foundation of what can be
given as new masters theses in the future described in the further work section.

60 Further work

7.3 Further work

There are several directions that can be looked at when thinking about the fu-
ture of authorship identification for research papers. Below we have listed up
everything we believe is appropriate recommendations for further work.

Authorship identification as a service

Being able to use authorship identification as a web service would be some-
thing that can be seen as a business opportunity. The concept is to let a
customer bring their own set of training- and test data and use the service
to perform authorship identification either for free or for predetermined fee.
Keep in mind that for this to be realizable the authorship process would
have to be overhauled and improved by a large margin.

Identify a group of researchers

As a masters thesis, the ability to determine a group of researchers rather
than a single individual would be suitable. The idea is to determine a group
of researchers or a research department, for example, the ”author” could
be the computer science department at NTNU.

Probability distributed authorship identification

In this thesis we can output a single author as the candidate author for our
classification problem, this is due to a limitation in WEKA. However what
could have been interesting and useful would be the ability to produce a
list of possible candidates with a probability assigned to each candidate.
We think that this task as well would be suitable for a new master’s thesis.

PDF-extraction library that maintains structure

As mentioned in the discussion a limitation with the system implemented in
this thesis was the ability to extract text from PDFs and still maintain the
structure of the research paper. Even though this is not about authorship
identification per se, the possibility to use a library like this would help
improve the accuracy of the classifications.

7.4 Summary

Throughout this thesis we have worked against answering the research questions
listed in Section 1.3:

RQ1 What are the di↵erent features and techniques used in authorship identi-
fication field when looked at as a classification problem?

RQ2 Is it possible to perform authorship identification on research papers?

Conclusion 61

RQ3 If authorship identification of research papers is possible, does the amount
of work contributed to a research paper by an author a↵ect the degree of
authors that can be identified?

We have in this report presented theory, related fields, and previous studies
in the research area of authorship identification. We have also shown that au-
thorship identification of research papers has been proven possible, and we have
implemented a system that can be used for this purpose. We have also presented
our findings and our recommendations for further work in this area.

62 Summary

Appendix A

ARFF example

Below is an artificial example of how the ARFF-file format may look like.

@RELATION Authorship

@ATTRIBUTE totalNumberOfWords NUMERIC

@ATTRIBUTE totalNumberOfDigits NUMERIC

@ATTRIBUTE averageSentenceLength NUMERIC

@ATTRIBUTE averageWordLength NUMERIC

@ATTRIBUTE class {BillGates,SteveJobs}

@DATA

3987,40,17.2,5.6,BillGates

4001,21,16.1,4.7,BillGates

4012,22,19.3,5.1,BillGates

2081,17,4.5,6.2,SteveJobs

1873,20,5.4,5.2,SteveJobs

2530,29,4.7,5.4,SteveJobs

64

Appendix B

Data from result graphs

The tables below show exact values of the graphs presented in Chapter 6.

SVM DT KNN RF ANN
2 Authors 100.0 80.0 100.0 90.0 100.0
3 Authors 93.0 46.0 86.0 86.0 93.0
4 Authors 85.0 45.0 65.0 60.0 85.0
5 Authors 80.0 16.0 60.0 44.0 84.0
6 Authors 53.0 16.0 56.0 33.0 63.0
7 Authors 58.0 22.0 47.0 38.0 66.0
8 Authors 48.0 29.0 39.0 36.0 63.0
9 Authors 51.0 36.0 38.0 36.0 59.0
10 Authors 44.0 28.0 34.0 38.0 48.0
11 Authors 47.0 15.0 38.0 31.0 47.0
12 Authors 43.0 11.0 24.0 32.0 53.0
13 Authors 44.0 8.0 29.0 32.0 55.0
14 Authors 39.0 21.0 25.0 32.0 45.0
15 Authors 40.0 17.0 27.0 27.0 46.0
16 Authors 41.0 22.0 27.0 33.0 40.0
17 Authors 40.0 23.0 27.0 34.0 46.0
18 Authors 34.0 18.0 24.0 26.0 45.0
19 Authors 35.0 16.0 25.0 26.0 43.0
20 Authors 37.0 15.0 25.0 31.0 42.0

Table B.1: Accuracy of lead author 5 papers per author.

66

SVM DT KNN RF ANN
2 Authors 1.0 0.79 1.0 0.9 1.0
3 Authors 0.93 0.47 0.87 0.86 0.93
4 Authors 0.85 0.46 0.63 0.58 0.85
5 Authors 0.79 0.19 0.56 0.4 0.83
6 Authors 0.51 0.16 0.55 0.3 0.61
7 Authors 0.57 0.22 0.45 0.37 0.65
8 Authors 0.49 0.28 0.39 0.35 0.62
9 Authors 0.5 0.34 0.38 0.35 0.6
10 Authors 0.44 0.28 0.35 0.37 0.48
11 Authors 0.48 0.14 0.4 0.29 0.46
12 Authors 0.44 0.11 0.24 0.31 0.54
13 Authors 0.45 0.07 0.26 0.31 0.56
14 Authors 0.4 0.21 0.23 0.3 0.45
15 Authors 0.4 0.17 0.24 0.24 0.46
16 Authors 0.43 0.22 0.25 0.31 0.41
17 Authors 0.41 0.21 0.25 0.33 0.47
18 Authors 0.35 0.18 0.23 0.24 0.45
19 Authors 0.37 0.16 0.23 0.24 0.44
20 Authors 0.39 0.16 0.22 0.29 0.43

Table B.2: F-measure of lead author 5 papers per author.

Data from result graphs 67

SVM DT KNN RF ANN
2 Authors 1.0 0.6 1.0 0.8 1.0
3 Authors 0.9 0.2 0.8 0.8 0.9
4 Authors 0.8 0.27 0.53 0.47 0.8
5 Authors 0.75 -0.05 0.5 0.3 0.8
6 Authors 0.44 0.0 0.48 0.2 0.56
7 Authors 0.51 0.09 0.38 0.29 0.61
8 Authors 0.41 0.19 0.3 0.27 0.58
9 Authors 0.45 0.28 0.3 0.28 0.55
10 Authors 0.38 0.21 0.27 0.32 0.42
11 Authors 0.42 0.07 0.32 0.25 0.42
12 Authors 0.38 0.03 0.17 0.26 0.49
13 Authors 0.4 0.02 0.24 0.27 0.51
14 Authors 0.35 0.15 0.19 0.27 0.41
15 Authors 0.37 0.11 0.22 0.22 0.42
16 Authors 0.38 0.17 0.22 0.29 0.37
17 Authors 0.37 0.18 0.23 0.31 0.43
18 Authors 0.3 0.14 0.2 0.22 0.42
19 Authors 0.32 0.12 0.21 0.22 0.41
20 Authors 0.34 0.11 0.22 0.28 0.4

Table B.3: Kappa score of lead author 5 papers per author.

68

SVM DT KNN RF ANN
2 Authors 100.0 57.0 94.0 94.0 100.0
3 Authors 93.0 62.0 93.0 89.0 93.0
4 Authors 89.0 65.0 78.0 73.0 86.0
5 Authors 79.0 45.0 75.0 72.0 89.0
6 Authors 70.0 37.0 65.0 58.0 81.0
7 Authors 76.0 42.0 67.0 57.0 86.0
8 Authors 74.0 44.0 70.0 64.0 78.0
9 Authors 75.0 40.0 64.0 64.0 77.0
10 Authors 67.0 30.0 59.0 57.0 82.0
11 Authors 69.0 34.0 56.0 55.0 77.0
12 Authors 66.0 27.0 53.0 54.0 77.0
13 Authors 60.0 28.0 52.0 58.0 68.0
14 Authors 62.0 24.0 48.0 51.0 71.0
15 Authors 59.0 25.0 46.0 48.0 68.0
16 Authors 57.0 28.0 46.0 51.0 68.0
17 Authors 55.0 17.0 47.0 52.0 65.0
18 Authors 57.0 23.0 47.0 52.0 70.0
19 Authors 56.0 20.0 45.0 49.0 67.0
20 Authors 53.0 24.0 43.0 52.0 67.0

Table B.4: Accuracy of lead author 10 papers per author.

Data from result graphs 69

SVM DT KNN RF ANN
2 Authors 1.0 0.55 0.95 0.95 1.0
3 Authors 0.93 0.61 0.93 0.9 0.93
4 Authors 0.9 0.64 0.79 0.73 0.87
5 Authors 0.79 0.45 0.75 0.73 0.9
6 Authors 0.71 0.37 0.65 0.58 0.81
7 Authors 0.76 0.43 0.67 0.57 0.87
8 Authors 0.74 0.43 0.7 0.63 0.78
9 Authors 0.75 0.4 0.63 0.64 0.77
10 Authors 0.67 0.31 0.58 0.57 0.82
11 Authors 0.69 0.33 0.55 0.55 0.78
12 Authors 0.67 0.29 0.52 0.53 0.77
13 Authors 0.61 0.28 0.5 0.56 0.7
14 Authors 0.61 0.25 0.46 0.49 0.72
15 Authors 0.61 0.26 0.45 0.46 0.69
16 Authors 0.58 0.27 0.45 0.49 0.68
17 Authors 0.56 0.17 0.46 0.51 0.66
18 Authors 0.58 0.23 0.47 0.51 0.71
19 Authors 0.57 0.21 0.46 0.46 0.68
20 Authors 0.54 0.25 0.44 0.5 0.68

Table B.5: F-measure of lead author 10 papers per author.

70

SVM DT KNN RF ANN
2 Authors 1.0 0.14 0.89 0.89 1.0
3 Authors 0.9 0.43 0.9 0.84 0.9
4 Authors 0.86 0.54 0.72 0.65 0.82
5 Authors 0.74 0.32 0.69 0.66 0.87
6 Authors 0.65 0.26 0.59 0.5 0.77
7 Authors 0.73 0.33 0.62 0.5 0.85
8 Authors 0.71 0.37 0.66 0.59 0.75
9 Authors 0.72 0.33 0.6 0.6 0.74
10 Authors 0.64 0.23 0.55 0.52 0.81
11 Authors 0.66 0.28 0.52 0.51 0.76
12 Authors 0.64 0.21 0.49 0.5 0.75
13 Authors 0.58 0.23 0.48 0.55 0.66
14 Authors 0.59 0.19 0.45 0.48 0.69
15 Authors 0.57 0.21 0.43 0.45 0.66
16 Authors 0.55 0.23 0.43 0.48 0.66
17 Authors 0.52 0.13 0.45 0.5 0.64
18 Authors 0.55 0.19 0.44 0.5 0.69
19 Authors 0.54 0.16 0.42 0.46 0.66
20 Authors 0.51 0.2 0.41 0.5 0.66

Table B.6: Kappa score of lead author 10 papers per author.

Data from result graphs 71

SVM DT KNN RF ANN
2 Authors 96.0 60.0 90.0 90.0 96.0
3 Authors 75.0 51.0 71.0 75.0 84.0
4 Authors 79.0 38.0 59.0 69.0 81.0
5 Authors 67.0 32.0 48.0 55.0 74.0
6 Authors 68.0 40.0 48.0 59.0 68.0
7 Authors 64.0 29.0 47.0 50.0 75.0
8 Authors 63.0 25.0 41.0 54.0 74.0
9 Authors 54.0 31.0 37.0 52.0 63.0
10 Authors 54.0 24.0 38.0 46.0 56.0
11 Authors 56.0 25.0 37.0 45.0 62.0
12 Authors 57.0 24.0 35.0 46.0 61.0
13 Authors 52.0 18.0 31.0 43.0 56.0
14 Authors 52.0 22.0 31.0 44.0 58.0
15 Authors 48.0 17.0 28.0 44.0 56.0
16 Authors 46.0 17.0 28.0 41.0 53.0
17 Authors 51.0 13.0 28.0 41.0 58.0
18 Authors 52.0 17.0 31.0 44.0 53.0
19 Authors 47.0 15.0 29.0 41.0 52.0
20 Authors 46.0 13.0 30.0 38.0 52.0

Table B.7: Accuracy of top 3 authors 15 papers per author.

72

SVM DT KNN RF ANN
2 Authors 0.97 0.6 0.9 0.9 0.97
3 Authors 0.75 0.51 0.7 0.75 0.85
4 Authors 0.8 0.39 0.59 0.69 0.82
5 Authors 0.68 0.32 0.48 0.55 0.74
6 Authors 0.69 0.4 0.48 0.59 0.68
7 Authors 0.64 0.29 0.47 0.49 0.75
8 Authors 0.63 0.25 0.4 0.54 0.74
9 Authors 0.55 0.31 0.37 0.52 0.63
10 Authors 0.58 0.25 0.4 0.46 0.56
11 Authors 0.58 0.26 0.38 0.44 0.62
12 Authors 0.59 0.25 0.36 0.46 0.61
13 Authors 0.54 0.18 0.32 0.42 0.57
14 Authors 0.54 0.22 0.32 0.44 0.59
15 Authors 0.5 0.17 0.29 0.43 0.56
16 Authors 0.48 0.17 0.28 0.41 0.53
17 Authors 0.53 0.13 0.28 0.4 0.58
18 Authors 0.54 0.16 0.31 0.43 0.52
19 Authors 0.49 0.15 0.3 0.4 0.52
20 Authors 0.49 0.14 0.3 0.37 0.52

Table B.8: F-measure of top 3 authors 15 papers per author.

Data from result graphs 73

SVM DT KNN RF ANN
2 Authors 0.93 0.2 0.8 0.8 0.93
3 Authors 0.63 0.27 0.57 0.63 0.77
4 Authors 0.73 0.19 0.46 0.59 0.75
5 Authors 0.59 0.15 0.36 0.44 0.68
6 Authors 0.62 0.29 0.38 0.51 0.62
7 Authors 0.59 0.18 0.38 0.42 0.72
8 Authors 0.58 0.14 0.33 0.48 0.71
9 Authors 0.49 0.23 0.29 0.47 0.59
10 Authors 0.49 0.16 0.32 0.41 0.52
11 Authors 0.52 0.17 0.31 0.4 0.58
12 Authors 0.54 0.18 0.29 0.41 0.58
13 Authors 0.49 0.11 0.26 0.39 0.53
14 Authors 0.48 0.16 0.26 0.4 0.55
15 Authors 0.45 0.12 0.23 0.4 0.54
16 Authors 0.43 0.12 0.24 0.38 0.5
17 Authors 0.48 0.08 0.24 0.38 0.56
18 Authors 0.5 0.12 0.27 0.41 0.51
19 Authors 0.45 0.1 0.26 0.38 0.5
20 Authors 0.44 0.09 0.27 0.35 0.5

Table B.9: Kappa score of top 3 authors 15 papers per author.

74

SVM DT KNN RF ANN
2 Authors 95.0 70.0 92.0 95.0 95.0
3 Authors 90.0 68.0 80.0 83.0 95.0
4 Authors 81.0 56.0 64.0 75.0 87.0
5 Authors 74.0 38.0 58.0 75.0 82.0
6 Authors 76.0 31.0 57.0 61.0 80.0
7 Authors 73.0 33.0 57.0 66.0 81.0
8 Authors 79.0 38.0 55.0 65.0 81.0
9 Authors 73.0 30.0 53.0 60.0 77.0
10 Authors 67.0 31.0 51.0 57.0 73.0
11 Authors 67.0 29.0 45.0 53.0 68.0
12 Authors 64.0 22.0 45.0 53.0 67.0
13 Authors 62.0 22.0 42.0 50.0 67.0
14 Authors 61.0 25.0 40.0 50.0 66.0
15 Authors 58.0 17.0 37.0 49.0 64.0
16 Authors 57.0 22.0 41.0 49.0 63.0
17 Authors 58.0 19.0 43.0 50.0 62.0
18 Authors 59.0 17.0 39.0 48.0 68.0
19 Authors 58.0 21.0 40.0 47.0 59.0
20 Authors 58.0 18.0 41.0 45.0 61.0

Table B.10: Accuracy of top 3 authors 20 papers per author.

Data from result graphs 75

SVM DT KNN RF ANN
2 Authors 0.95 0.7 0.92 0.95 0.95
3 Authors 0.9 0.67 0.8 0.83 0.95
4 Authors 0.81 0.57 0.64 0.76 0.87
5 Authors 0.75 0.38 0.58 0.76 0.83
6 Authors 0.76 0.31 0.58 0.61 0.8
7 Authors 0.73 0.32 0.57 0.67 0.81
8 Authors 0.8 0.38 0.55 0.65 0.82
9 Authors 0.74 0.31 0.54 0.6 0.78
10 Authors 0.68 0.31 0.52 0.57 0.74
11 Authors 0.68 0.29 0.45 0.54 0.68
12 Authors 0.66 0.23 0.46 0.54 0.67
13 Authors 0.64 0.23 0.43 0.51 0.68
14 Authors 0.63 0.25 0.41 0.5 0.67
15 Authors 0.6 0.17 0.39 0.5 0.65
16 Authors 0.6 0.22 0.42 0.48 0.63
17 Authors 0.61 0.2 0.44 0.49 0.63
18 Authors 0.61 0.18 0.4 0.48 0.68
19 Authors 0.6 0.21 0.4 0.47 0.59
20 Authors 0.6 0.19 0.42 0.45 0.61

Table B.11: F-measure of top 3 authors 20 papers per author.

76

SVM DT KNN RF ANN
2 Authors 0.9 0.4 0.85 0.9 0.9
3 Authors 0.85 0.53 0.7 0.75 0.93
4 Authors 0.75 0.43 0.53 0.68 0.83
5 Authors 0.68 0.23 0.48 0.7 0.79
6 Authors 0.72 0.17 0.5 0.54 0.77
7 Authors 0.69 0.22 0.5 0.61 0.78
8 Authors 0.76 0.3 0.49 0.6 0.79
9 Authors 0.7 0.22 0.48 0.55 0.75
10 Authors 0.64 0.24 0.46 0.53 0.7
11 Authors 0.64 0.22 0.4 0.49 0.65
12 Authors 0.61 0.16 0.4 0.49 0.64
13 Authors 0.59 0.16 0.37 0.47 0.65
14 Authors 0.59 0.19 0.36 0.47 0.64
15 Authors 0.55 0.11 0.33 0.46 0.62
16 Authors 0.55 0.17 0.37 0.46 0.61
17 Authors 0.56 0.15 0.4 0.47 0.61
18 Authors 0.57 0.13 0.36 0.46 0.66
19 Authors 0.56 0.17 0.37 0.45 0.57
20 Authors 0.56 0.15 0.39 0.43 0.6

Table B.12: Kappa score of top 3 authors 20 papers per author.

Data from result graphs 77

SVM DT KNN RF ANN
2 Authors 90.0 67.0 77.0 77.0 95.0
3 Authors 81.0 48.0 68.0 75.0 91.0
4 Authors 78.0 46.0 60.0 68.0 82.0
5 Authors 68.0 48.0 51.0 63.0 77.0
6 Authors 70.0 35.0 43.0 62.0 75.0
7 Authors 69.0 28.0 48.0 55.0 71.0
8 Authors 66.0 27.0 42.0 54.0 64.0
9 Authors 58.0 22.0 38.0 51.0 60.0
10 Authors 54.0 22.0 34.0 50.0 61.0
11 Authors 54.0 20.0 35.0 44.0 56.0
12 Authors 57.0 24.0 34.0 44.0 55.0
13 Authors 54.0 15.0 35.0 39.0 55.0
14 Authors 51.0 19.0 35.0 45.0 53.0
15 Authors 50.0 16.0 33.0 43.0 54.0
16 Authors 48.0 17.0 31.0 42.0 48.0
17 Authors 51.0 17.0 34.0 44.0 54.0
18 Authors 49.0 14.0 36.0 38.0 55.0
19 Authors 49.0 16.0 31.0 41.0 49.0
20 Authors 47.0 14.0 34.0 39.0 51.0

Table B.13: Accuracy of random author.

78

SVM DT KNN RF ANN
2 Authors 0.9 0.67 0.77 0.77 0.95
3 Authors 0.82 0.49 0.67 0.75 0.92
4 Authors 0.79 0.47 0.6 0.68 0.82
5 Authors 0.69 0.48 0.51 0.63 0.78
6 Authors 0.71 0.35 0.43 0.62 0.75
7 Authors 0.7 0.28 0.48 0.55 0.72
8 Authors 0.66 0.28 0.43 0.54 0.64
9 Authors 0.59 0.23 0.38 0.51 0.6
10 Authors 0.56 0.22 0.34 0.51 0.61
11 Authors 0.56 0.2 0.36 0.44 0.57
12 Authors 0.58 0.24 0.35 0.44 0.55
13 Authors 0.56 0.16 0.36 0.39 0.55
14 Authors 0.52 0.19 0.35 0.45 0.54
15 Authors 0.52 0.17 0.34 0.43 0.54
16 Authors 0.49 0.17 0.32 0.42 0.48
17 Authors 0.53 0.17 0.34 0.43 0.54
18 Authors 0.51 0.15 0.35 0.38 0.55
19 Authors 0.51 0.16 0.31 0.4 0.49
20 Authors 0.49 0.14 0.33 0.38 0.51

Table B.14: F-measure of random author.

Data from result graphs 79

SVM DT KNN RF ANN
2 Authors 0.8 0.35 0.55 0.55 0.9
3 Authors 0.73 0.23 0.53 0.63 0.87
4 Authors 0.71 0.29 0.48 0.58 0.76
5 Authors 0.61 0.36 0.39 0.55 0.72
6 Authors 0.65 0.22 0.32 0.55 0.71
7 Authors 0.64 0.17 0.4 0.48 0.67
8 Authors 0.62 0.17 0.35 0.48 0.6
9 Authors 0.53 0.13 0.31 0.46 0.55
10 Authors 0.5 0.14 0.27 0.45 0.57
11 Authors 0.5 0.12 0.29 0.38 0.53
12 Authors 0.53 0.17 0.28 0.39 0.51
13 Authors 0.51 0.09 0.3 0.34 0.52
14 Authors 0.47 0.13 0.31 0.41 0.5
15 Authors 0.47 0.11 0.29 0.39 0.51
16 Authors 0.45 0.12 0.27 0.39 0.45
17 Authors 0.49 0.12 0.3 0.41 0.51
18 Authors 0.46 0.1 0.32 0.35 0.53
19 Authors 0.46 0.11 0.28 0.39 0.47
20 Authors 0.44 0.1 0.31 0.36 0.48

Table B.15: Kappa score of random author.

80

Appendix C

Setup to perform the
di↵erent experiments

C.1 Experiment 1

Experiment 1 is the easiest to run. The simplest form is the use the datasets in
the deliveries directly with WEKA, however the implemented system can also be
used.

C.1.1 Run with datasets and WEKA

The delivered datasets can be run directly by downloading and running WEKA
(version 3.6.12 was used during the experiments in this thesis). Start of by
choosing the Explorer and then choose Open File. Then proceed to the Classify
tab and choose the desired algorithm. In this thesis we used SMO, J48, IBk,
RandomForest and MultilayerPerceptron.

C.1.2 Run experiment 1 with the implemented system

This system is built using Gradle 1. In order to get the necessary dependen-
cies Gradle 2.x has to be installed. After Gradle has been successfully in-
stalled proceed to build the system to download the necessary dependencies.
The build.gradle file might have to be modified in order to install the local de-
pendencies included in the deliveries. After installing the dependencies proceed
to open the MainExperiment1.java file. Now some of the variables has to be

1
https://gradle.org/

82 Experiment 2

edited in order to run the experiment. The ”numberOfAuthors” variable has to
be set according to the number of authors in the dataset. For example if you are
performing authorship identification on a two-author problem the variable has to
be set to 2. When the ”numberOfAuthors” variable has been set, the ”author”
variable is up next. The ”author” variable should be the path to your datasets.
The structure of the folders with the PDFs has to be structured in a specific way
in order to run the program. Inside the main folder we will have a folder named
”output” and folders containing the PDFs for each authors. The name of each
folder directly in the main folder has to be unique in order to distinguish between
the di↵erent authors. Inside each author folder two new folders has to be cre-
ated, the first one named ”single”, and the second folder named ”double”. In the
”single” folder single-column PDFs are stored, and in the ”double” folder double-
column PDFs are stored. When everything is set the MainExperiment1.java class
can be executed. In the deliveries a folder named ”Experiment1testfolder” illus-
trates the file-structure. Please note that the multilayered perceptrons algorithm
can take quite a while to finish running.

C.2 Experiment 2

Experiment 2 can run any number of PDFs but can be harder to set up compared
to the first experiment.

C.2.1 Setting up the database

For the second experiment a database with all the recordings from DBLP has to
be set up. Instruction on how to do this can be seen in the DatabaseReadme.txt
file in the AuthorshipIdentification project. The guide on how to set up the
database was taken from https://code.google.com/p/dblp-parser/. When
the database is set up, the project can be run.

C.2.2 Run experiment 2 with the implemented system

The first thing that has to be done is set up Gradle. Please see Section C.1.2.
After the Gradle step is finished, the PDFs has to be validated as readable.
By running the PDFChecker.java class, PDFs with less than 3 pages or has
less than 1000 readable characters will be deleted. Change the variable ”s” to
the destination of the PDFs. Then run the class. When the PDFs has been
validated, the next step is to make sure that they exist in the database, that
is done by running the PDFCheckerDatabase.java file. In this file, change the
variable ”path” to the path of the PDFs. If the author cannot be found in
the database, the file is deleted. When the PDFCheckerDatabase.java class has

Setup to perform the di↵erent experiments 83

finished running, the training process can begin. To train the data proceed to
run the MainExperiment2.java file, change the variable ”author” to the path of
the trainingdata folder. After being run the program will create a training set
in the ”output” folder inside the trainingdata folder. When the training set is
completed, it is time to create and run the test set. First verify the PDFs with
the PDFChecker.java program, then open the CreateAndClassifyTestSet.java,
and change the variable ”mainPath” to the path to the folder containing the
training- and test data. Finally run the CreateAndClassifyTestSet.java and wait
for the results, this might take a while.

84 Experiment 2

Bibliography

[1] Abbasi, A. and Chen, H. (2005). Applying authorship analysis to extremist-
group web forum messages. IEEE Intelligent Systems, 20(5):67–75.

[2] Aha, D. W., Kibler, D. F., and Albert, M. K. (1991). Instance-based learning
algorithms. Machine Learning, 6:37–66.

[3] Argamon, S., Koppel, M., Pennebaker, J. W., and Schler, J. (2009). Automat-
ically profiling the author of an anonymous text. Commun. ACM, 52(2):119–
123.

[4] Argamon, S. and Levitan, S. (2005). Measuring the usefulness of function
words for authorship attribution. In Proceedings of the Joint Conference of
the Association for Computers and the Humanities and the Association for
Literary and Linguistic Computing.

[5] Baeza-Yates, R. A. and Ribeiro-Neto, B. A. (1999). Modern Information
Retrieval. ACM Press / Addison-Wesley.

[6] Baraka, R., Salem, S., Abu, M., Nayef, N., and Shaban, W. A. (2014). Arabic
Text Author Identification Using Support Vector Machines. In Journal of
Advanced Computer Science and Technology Research, volume 4, pages 1–11.

[7] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–32.

[8] Corney, M., Mohay, G. M., Andersona, A., and de Vel, O. Y. (2001). Identi-
fying the Authors of Suspect Email. In Computers and Security.

[9] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learn-
ing, 20(3):273–297.

[10] de Vel, O. Y., Anderson, A., Corney, M., and Mohay, G. M. (2001). Mining
email content for author identification forensics. SIGMOD Record, 30(4):55–64.

86 Bibliography

[11] Diederich, J., Kindermann, J., Leopold, E., and Paass, G. (2003). Author-
ship attribution with support vector machines. Appl. Intell., 19(1-2):109–123.

[12] Frantzeskou, G., Stamatatos, E., Gritzalis, S., and Katsikas, S. K. (2006).
E↵ective identification of source code authors using byte-level information. In
28th International Conference on Software Engineering, pages 893–896.

[13] Gardner, M. and Dorling, S. (1998). Artificial neural networks (the multi-
layer perceptron)— a review of applications in the atmospheric sciences. At-
mospheric Environment, 32(14–15):2627 – 2636.

[14] Govindan, V. and Shivaprasa, A. (1990). Character recognition — a review.
Pattern Recognition, 23(7):671 – 683.

[15] Gray, A., Sallis, P., and Macdonell, S. (1997). Software forensics: Extending
authorship analysis techniques to computer programs. In Proceedings of the
3rd Biannual Conference of the International Association of Forensic Linguists
(IAFL), pages 1–8.

[16] Hall, M. A., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and
Witten, I. H. (2009). The WEKA data mining software: an update. SIGKDD
Explorations, 11(1):10–18.

[17] Honoré, A. (1979). Some Simple Measures of Richness of Vocabulary. As-
sociation for Literary and Linguistic Computing Bulletin, 7(2):172–177.

[18] Hurtado, J., Taweewitchakreeya, N., and Zhu, X. (2014). Who wrote this
paper? learning for authorship de-identification using stylometric featuress. In
Proceedings of the 15th IEEE International Conference on Information Reuse
and Integration, pages 859–862.

[19] Joachims, T. (1998). Text categorization with suport vector machines:
Learning with many relevant features. In Machine Learning: ECML-98, 10th
European Conference on Machine Learning, pages 137–142.

[20] Jockers, M. L. and Witten, D. M. (2010). A comparative study of machine
learning methods for authorship attribution. LLC, 25(2):215–223.

[21] Kestemont, M., Luyckx, K., Daelemans, W., and Crombez, T. (2012). Cross-
genre authorship verification using unmasking. English Studies, 93(3):340–356.

[22] Kjell, B., Woods, W. A., and Frieder, O. (1994). Discrimination of author-
ship using visualization. Inf. Process. Manage., 30(1):141–150.

Bibliography 87

[23] Koppel, M. and Schler, J. (2003). Exploiting stylistic idiosyncrasies for au-
thorship attribution. In Proceedings of IJCAI’03 Workshop on Computational
Approaches to Style Analysis and Synthesis, pages 69–72.

[24] Koppel, M. and Schler, J. (2004). Authorship verification as a one-class
classification problem. In Machine Learning, Proceedings of the Twenty-first
International Conference.

[25] Koppel, M., Schler, J., and Bonchek-Dokow, E. (2007). Measuring di↵er-
entiability: Unmasking pseudonymous authors. Journal of Machine Learning
Research, 8:1261–1276.

[26] Maurer, H. A., Kappe, F., and Zaka, B. (2006). Plagiarism - A survey. J.
UCS, 12(8):1050–1084.

[27] Mendenhall, T. C. (1887). The characteristic curves of composition. In
Science, volume 9, pages 237–249.

[28] Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc.

[29] Mosteller, F. and Wallace, D. L. (1964). Inference and Disputed Authorship:
The Federalist Papers. Addison-Wesley.

[30] Nizamani, S. and Memon, N. (2013). CEAI: CCM based email authorship
identification model. CoRR, abs/1312.2451.

[31] Platt, J. C. (1998). Fast training of support vector machines using sequen-
tial minimal optimization. In Advances in Kernel Methods - Support Vector
Learning. MIT Press.

[32] Quinlan, J. R. (1986). Induction of decision trees. Machine Learning,
1(1):81–106.

[33] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan
Kaufmann.

[34] Ramakrishnan, C., Patnia, A., Hovy, E. H., and Burns, G. A. P. C. (2012).
Layout-aware text extraction from full-text PDF of scientific articles. Source
Code for Biology and Medicine, 7:7.

[35] Sebastiani, F. (2002). Machine learning in automated text categorization.
ACM Comput. Surv., 34(1):1–47.

[36] Stamatatos, E. (2009). A survey of modern authorship attribution methods.
JASIST, 60(3):538–556.

88 Bibliography

[37] Stein, B., Lipka, N., and zu Eissen, S. M. (2008). Meta analysis within au-
thorship verification. In 19th International Workshop on Database and Expert
Systems Applications, pages 34–39.

[38] Tan, P., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining.
Addison-Wesley.

[39] Tufan, T. and Görür, A. K. (2007). Author identification for turkish texts.
In Cankaya University Journal of Arts and Sciences, volume 1, pages 151–161.

[40] Tweedie, F. J. and Baayen, R. H. (1998). How variable may a constant be?
measures of lexical richness in perspective. Computers and the Humanities,
32(5):323–352.

[41] Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learn-
ing Tools and Techniques. Morgan Kaufmann, second edition.

[42] Zhang, C., Wu, X., Niu, Z., and Ding, W. (2014). Authorship identification
from unstructured texts. Knowl.-Based Syst., 66:99–111.

[43] Zheng, R., Li, J., Chen, H., and Huang, Z. (2006). A framework for author-
ship identification of online messages: Writing-style features and classification
techniques. JASIST, 57(3):378–393.

