
Automatisk nummerskiltgjenkjenning for
mobile enheter

Peter Køste Ringset

Master i datateknologi

Hovedveileder: Asbjørn Thomassen, IDI

Institutt for datateknikk og informasjonsvitenskap

Innlevert: juni 2015

Norges teknisk-naturvitenskapelige universitet

A B S T R A C T

This thesis will explore systems and current publications on auto-
matic license plate recognition, and propose a new system that is
designed for a mobile device implementation. Details of an actual im-
plementation are also presented. Many automatic license plate recog-
nition systems are made for stationary cameras, and may often fall
short for a mobile device. The mobility of a device, such as a smart
phone, gives some new constraints to consider. Among these are pro-
cessing power, memory usage, angle of view, and distance to vehicle.
Automatic license plate recognition is usually split into three signif-
icant parts, license plate detection or location, character segmenta-
tion, and character recognition. The proposed system uses a trained
cascade classifier, with adaptive boosting classifiers, using the multi-
scale block local binary pattern feature for license plate detection.
Character segmentation is done using statistical methods, separat-
ing characters from background elements and noise. Lastly, charac-
ter recognition is done using a multi-class support vector machine,
based on feature vectors describing each character. The results for the
presented implementation shows that automatic license plate recog-
nition is feasible for a mobile device implementation. License plate
detection and character recognition is done with an accuracy of 99 %,
while character segmentation is done with an accuracy of 85 %. Com-
bined average processing time for all three stages is 50 ms, which also
makes the system feasible for live video. Moreover, character recogni-
tion is done at under 0.5 ms for each license plate.

S A M M E N D R A G (N O RW E G I A N A B S T R A C T)

Denne masteroppgaven skal utforske systemer og nylige publikasjo-
ner for automatisk nummerskiltgjenkjenning, og foreslå et nytt sys-
tem som er designet for en mobil enhet. Detaljer rundt en implemen-
tasjon er også presentert. Mange slike systemer er laget for stasjonære
kamera, og vil ofte ikke kunne fungere godt for en mobil enhet. En

I

mobil enhet, f.eks. en smarttelefon, gir noen nye utfordringer å ta høy-
de for. Blant disse er begrenset prosessorkraft, begrenset minne, vin-
kel til kamera, og avstand til kjøretøy. Automatisk nummerskiltgjen-
kjenning deles ofte i tre deler; nummerskiltlokasjon, bokstavsegmen-
tering og bokstavgjenkjenning. Det foreslåtte systemet bruker en tre-
net kaskadeklassifikator, med adaptiv boosting-klassifikatorer, basert
på multi-scale block local binary pattern kjennetegn for nummerskilt-
lokasjon. Bokstavsegmentering gjøres ved statistiske metoder som se-
parerer bokstaver fra bakgrunnselementer og støy. Bokstavgjenkjen-
ning løses ved hjelp av en egenskapsvektorbasert støttevektormaskin,
hvor egenskapsvektorene beskriver kjennetegn ved hver bokstav. Re-
sultater for det foreslåtte systemet viser at automatisk nummerskilt-
gjenkjenning er mulig for en mobil enhet. Nummerskiltlokasjon og
bokstavgjenkjenning gjøres med nøyaktighet rundt 99 %, mens bok-
stavgjenkjenning gjøres med nøyaktighet rundt 85 %. Total gjennom-
snittlig prosesseringstid for systemet er 50 ms, noe som gjør at meto-
den også kan brukes på levende bilder. Det må også nevnes at bok-
stavgjenkjenning gjøres på under 0,5 ms per skilt.

II

It would appear that we have reached the limits of what
it is possible to achieve with computer technology,

although one should be careful with such statements,
as they tend to sound pretty silly in 5 years.

— John Von Neumann, circa 1949

A C K N O W L E D G M E N T S

This masters thesis is done as a part of the Computer science masters
program at the Department of Computer and Information Science
(IDI), Norwegian University of Science and Technology (NTNU). The
work described in this thesis is based on an idea from WTW AS. A
masters thesis has also been completed in the spring of 2014 by Abra-
ham Straume Bah, focusing on the same idea. Our work has benefited
greatly from the work done by Bah, and we wish to extend our grati-
tude to him.

The project has been supervised by Asbjørn Thomassen, who has
provided valuable advice on research methodologies and academic
writing, and has provided valuable feedback during the process.

Additionally, I would like to thank some of the people closest to me;
Siri, for warm words of encouragement and invaluable assistance at
home during the course of this semester, and my father, for all his
assistance during my time at NTNU.

III

C O N T E N T S

i automatic license plate recognition 1

1 introduction 3

1.1 Motivation . 3

1.2 Research goals . 5

1.3 Contents of the thesis . 5

2 background theory 7

2.1 Image processing methods 7

2.1.1 Convolution . 8

2.1.2 Binary images . 11

2.1.3 Trichromatic imaging and color difference . . . 15

2.1.4 Haar-like features 19

2.1.5 Multi-scale block local binary patterns 19

2.1.6 Projection into vectors 21

2.2 Video processing . 21

2.3 Artificial intelligence methods 23

2.3.1 Artificial neural networks 23

2.3.2 Support vector machines 24

2.3.3 Cascade classifiers and adaptive boosting 26

3 related work 31

3.1 License plate location . 31

3.1.1 Trichromatic imaging and color difference . . . 31

3.1.2 Cascade classifier using Haar-like features and
MB-LBP features 34

3.1.3 Sliding concentric windows 36

3.2 Character segmentation 37

3.2.1 Projection boundaries and blob detection 37

3.2.2 Sliding concentric windows and statistical meth-
ods . 38

3.2.3 Tilt correction . 39

3.3 Character recognition . 40

3.3.1 Tesseract OCR . 40

3.3.2 Feature extraction for Support Vector Machines 40

3.3.3 Artificial neural networks 42

V

ii the prototype 45

4 mobile platform : ios 47

4.1 Devices . 48

4.2 Operating system, SDK, and language 49

4.3 External libraries and frameworks 51

4.3.1 OpenCV . 52

4.3.2 Tesseract OCR . 52

5 system model 53

5.1 License plate detection 53

5.1.1 Cascade Classifier using features 53

5.1.2 Color difference edge image and filtering 55

5.2 Character segmentation 56

5.2.1 Statistical character segmentation 56

5.2.2 Sliding concentric windows 60

5.3 Character recognition . 60

5.3.1 Artificial neural network 64

5.3.2 Support vector machine 64

5.3.3 Tesseract OCR . 65

6 results and evaluation 67

6.1 License plate detection 67

6.1.1 Cascade classifier 68

6.1.2 Color difference edge image and filtering 71

6.1.3 Efficiency . 72

6.2 Character segmentation 73

6.3 Character recognition . 77

6.4 Putting it all together . 78

6.5 Evaluation . 81

7 discussion and conclusion 85

7.1 Discussion . 85

7.2 Conclusion . 89

bibliography 91

iii appendix 95

a ios devices data 97

b software and tools used 101

VI

L I S T O F F I G U R E S

Figure 2.1 Sobel kernel edge image example. 12

Figure 2.2 Histogram example. 13

Figure 2.3 Otsu’s method example. 13

Figure 2.4 Sliding concentric windows example 14

Figure 2.5 Connected component analysis example. . . . 16

Figure 2.6 Color difference edge image example. 18

Figure 2.7 Haar-like features 20

Figure 2.8 Local binary pattern example. 20

Figure 2.9 Vertical and horizontal projection vectors. . . . 22

Figure 2.10 The Sigmoid function. 24

Figure 2.11 Artificial neural networks. 25

Figure 2.12 Support vector machine. 26

Figure 2.13 Cascade classifier control flow. 29

Figure 3.1 The variations in implementation detail of color
difference edge image. 33

Figure 4.1 Architecture of the iOS operating system. . . . 51

Figure 5.1 License plate location using color difference edge
image. 58

Figure 5.2 Character recognition training data example. . 62

Figure 5.3 Symmetrical sigmoid function. 65

Figure 6.1 Estimation of best filtering parameter for cas-
cade classifier 70

Figure 6.2 Examples of cascade classifier detections. . . . 71

Figure 6.3 Example of false positive detection by Color
difference edge image filtering. 73

Figure 6.4 Examples of character segmentation. 76

Figure 6.5 Examples of character recognition. 79

L I S T O F TA B L E S

Table 4.1 iOS device specifications. 49

VII

Table 4.2 Weight and size of iOS devices. 50

Table 5.1 Trained cascade classifiers. 55

Table 6.1 Cascade classifier accuracy results for license
plate detection. 69

Table 6.2 Color difference edge image filtering accuracy
results for license plate detection. 72

Table 6.3 License plate location efficiency results. 74

Table 6.4 Character segmentation accuracy results. . . . 75

Table 6.5 Character segmentation efficiency results. . . . 76

Table 6.6 Character recognition accuracy and efficiency
results. 77

Table 6.7 Complete ALPR system results. 80

Table 6.8 Performance of license plate detection in the
literature. 81

Table 6.9 Performance of character segmentation in the
literature. 82

Table 6.10 Performance of character recognition in the lit-
erature. 83

Table A.1 iPhone hardware specifications 98

Table A.2 iPad hardware specifications 99

Table A.3 iOS platform release history 100

L I S T O F A L G O R I T H M S

Algorithm 2.1 Image convolution with a kernel. 9

Algorithm 2.2 Connected component analysis for 8-connected
pixels. 16

Algorithm 2.3 Cascade classifier adaptive boosting (AdaBoost)
algorithm . 30

Algorithm 5.1 Locating regions of interest within a color dif-
ference edge image. 56

VIII

Algorithm 5.2 Modified finding location of regions of interest
within a color difference edge image. 57

Algorithm 5.3 Modified statistical character segmentation. . . 61

Algorithm 5.4 Character segmentation by sliding concentric
windows. 62

Algorithm 5.5 Modified character segmentation by sliding con-
centric windows. 63

A C R O N Y M S

adaboost adaptive boosting

ai artificial intelligence

alpr automatic license plate reconition

ann artificial neural network

cca connected component analysis

g-dcd global direction contributivity density

gpu graphics processing unit

hsv hue-saturation-value

l-dcd local direction contributivity density

lbp local binary pattern

lp license plate

mb-lbp multi-scale block local binary pattern

mlp multilayered perceptron

ocr optical character recognition

pnn probabilistic neural network

rbf radial basis function

IX

rgb red-green-blue

scw sliding concentric windows

svm support vector machine

X

Part I

A U T O M AT I C L I C E N S E P L AT E R E C O G N I T I O N

This thesis begins with an introduction to the subject of
Automatic license plate recognition. A lot of related work
exists on the subject, the core papers that support the work
done in the thesis will be presented. Some detail covering
background theory needed for the proposed method and
the related research will be also be presented.

1

I N T R O D U C T I O N

1.1 motivation

Automatically recognizing and reading license plates is a task that has
become more and more popular in recent years. The three most sig-
nificant problems of the task are 1) finding the location of the license
plate (LP) within an image or a video stream, 2) segmentation of the
characters, and 3) the recognition of the characters within the seg-
mented regions, also known as optical character recognition (OCR).
Anagnostopoulos et al. (2008) offers an extensive survey of the cur-
rent systems as of 2008 that have been researched and developed.
Another survey by Patel et al. (2013) covers some more recent publi-
cations. Many systems offer good results, where the success rate with
test data often is claimed at 93% or better. Good results often come at
the expense of processing time or generality. Likewise, the solutions
that offer better computational complexity or generality often cannot
produce results as good. As stated by Anagnostopoulos et al. (2008),
research that exists on automatic license plate reconition (ALPR) is
not being tested uniformly. This means that the test data may con-
tain varying degrees of difficult test cases, and can lead us to wonder
how these systems actually compare. Computational complexity will
traditionally not vary significantly with the test data, but the success
rates and generality of the ALPR-systems may. One of the motivating
factors behind this thesis is therefore to evaluate different methods for
the ALPR task, to see if we can draw any conclusions as to how the
methods work in terms of both accuracy and efficiency. We note that
accuracy addresses how accurate a method detects and recognizes LP
text, while efficiency denotes how fast it is possible to complete the
task. Accuracy is most often measured in percent, efficiency most of-
ten in seconds or milliseconds. Additionally we note that the words
positive and negative are used to denote contexts where an LP is ei-
ther present (positive) or not present (negative).

ALPR can be useful in many different contexts, some of them are
automatic toll booth systems, traffic management systems, and park-

3

4 introduction

ing fee systems. A specific use case is found in a parking fee sys-
tem provided by a local company, WTW AS. The parking fee system
works by having an end user downloading and using a mobile appli-
cation, in which they enter the LP number of their car, and use the
application to pay the parking fee for a given time period. Since the
car does not have any visual form of inspection the parking fee inspec-
tors have to use a mobile device that checks the parking fee system’s
database for each car they want to inspect. The parking inspector
enters the LP text manually into the mobile device, and that task can
be quite time consuming. Even if one LP can be manually entered
in a manner of seconds, the total time spent entering LP numbers for
an entire day can be very large. This provides another motivating
factor for the system; to provide parking inspectors with a tool that
lightens the load during their work day, and provide them with a tool
that improves efficiency on the tasks that take large parts of the work
day. We hypothesize that this task is possible to solve with current
mobile devices, especially since mobile devices has seen a significant
increase in processing power and battery capacity over recent years.
We also hypothesize that using a mobile device will in some ways
make the ALPR harder. The camera used in ALPR is often stationary,
and this results in having images that has small variations in distance
and viewing angle to the LP, and sometimes in illumination. With
a mobile device one cannot make any such assumptions. A hand-
held device can capture images from any possible angle and distance,
and can also capture images outdoors where there is a large varia-
tion in lighting conditions. ALPR systems are most often required to
work on still images; but a more desirable solution for a mobile de-
vice would be with live video. By using live video we can envision a
system where the user would only have to point the device’s camera
towards an LP, and the recognition would be done automatically and
instantaneously. A future version of such a system could also include
mounting a device onto a moving vehicle, and be able to do ALPR by
simply driving past parked vehicles.

This thesis is intended as a continuation of work done in a masters
thesis by Bah (2014). The masters thesis resulted in a proposed sys-
tem, that was never completely implemented. The first part of the
ALPR task (locating the LP) was never solved sufficiently, and sub-
sequent parts of the system could never be tested. We will therefore

1.2 research goals 5

try to build upon the research by Bah while evaluating the current
research on the field, and in our work towards a working prototype.

1.2 research goals

The research goals for this project, derived from the motivations are
as follows:

a. Determine if ALPR is feasible for a mobile device, with regards
to efficiency and accuracy. If possible, also investigate the pos-
sibility for a general purpose system, that is not dependent of
the LP’s design.

b. Find which methods are feasible for live video processing, with
regards to efficiency and accuracy. It is also desirable to uncover
if there is a tradeoff between accuracy and efficiency, and find a
possible balance between the two.

1.3 contents of the thesis

The thesis is split into three parts. Part i gives an introduction to the
ALPR task, related background theory and related work. Part ii will
focus on the creation of a working system, a prototype, and provide
and discuss results. Lastly, part iii contains the appendices.

2

B A C K G R O U N D T H E O RY

2.1 image processing methods

Many of the following methods shows how an image may be pro-
cessed, most often as a matrix. A matrix I is used to represent the
image, where I(i, j) accesses the pixel value at row i and column j.
The image coordinate system has its origin at the north-west corner
of the image; row indices increases southward and column indices
increases eastward. We will mainly deal with grayscale images in
this chapter. Most of the mentioned methods are either designed for
grayscale images or binary images. The expansion from grayscale to
color is in most cases trivial, where applicable.

A technique called window scanning is often used in image pro-
cessing. Window scanning allows for using an area of an image to
analyze or process, rather than using just a pixel’s value. The main
principle is to use a small window (usually significantly smaller than
the image), and position the window over the image, so that the win-
dow creates a mask over the image. The pixels contained within the
window mask are considered, while pixels that fall outside are disre-
garded. This technique is present in many different methods, some of
them are convolution, sliding concentric windows (SCW) and Haar-
like features. Usually, the window starts in the north-west corner of
the image, and is moved eastward. When it reaches the east edge of
the image it is shifted southward one increment, and starts again at
the west end of the image. The increment by which the window is
moved can vary, but usually it is 1 pixel in both directions.

Three different color-models are used in this thesis, grayscale, red-
green-blue (RGB), and hue-saturation-value (HSV). The grayscale color
model represents an image with no colors, only different shades of
gray. Pixels are usually represented with an 8-bit unsigned integer,
giving 256 possible values. The RGB color model divides an image
into three channels where each of them resemble a grayscale image.
Where a grayscale image at it’s brightest intensity is white, a channel
in an RGB image will represent it’s color’s value at maximum inten-

7

8 background theory

sity. The RGB color model is additive, meaning that a pixel is made
brighter by increasing channel values. The HSV model is conceptu-
ally different than the RGB and grayscale model. Hue represents an
angle in a color-wheel, saturation represents how much color there
is, and value represents the lightness or darkness of the color. The
color wheel is 360� where the angle is mapped to the wavelength of
the color. This results in having red at 0�, green at 120�, and blue at
280�. Lowering saturation will produce more washed out colors, and
a saturation of 0 will make the colors grayscale.

2.1.1 Convolution

Convolution is a mathematical operation usually performed on two
functions. The convolution between functions f and g and is notated
(f ⇤ g). The result of a convolution is a third function, that represents
the response found by projecting the response of the first function
onto the response of the second function. Formally, it is notated as

(f ⇤ g)(t) =
Z t

0
f (t) · g(t� t)dt

where t may for instance represent time and f and g may represent
two signals (Kreyszig (2006)). The Fourier transform can be used to
solve the expression analytically. In the case of signals, a Fourier
transform will take a function with time as its dimension and trans-
form it so that frequency becomes its transformed dimension.

F (f (t)) = f̂ (x) =
Z •

�•
f (t) · e�2pitx

When transformed to the frequency dimension, a convolution be-
comes a simple multiplication.

(f ⇤ g)(t) = F�1 (F (f (t)) ·F (g(t)))

In the case of image processing, we can view an image as a discrete
two-dimensional signal, and this allows us to bring the convolution
operation to images. In a two-dimensional discrete space, the two
continuous functions are replaced with two two-dimensional matri-
ces, and the formula becomes a little different (Gonzalez et al. (2009))

F(x, y) ⇤ G(x, y) = Â
n1

Â
n2

F(n1, n2) · G(x� n1, y� n2)

2.1 image processing methods 9

In image processing the image will usually be one of the matrices,
while a kernel, or a processing element, is the other. The kernel is
defined from the operation one wants to perform on the image. Al-
gorithm 2.1 shows the details of image convolution. The algorithm
takes a grayscale image and a kernel as input and produces the con-
volved image. The kernel is most often square and must be of odd
dimension. The basic flow of the algorithm is that the center of the

Algorithm 2.1 Image convolution with a kernel.
I is an image with n1 rows, m1 columns.
k is a kernel of size n2 rows and n2 columns.
C is the result of the convolution.

1: for i = 0 to n1 do

2: for j = 0 to m1 do

3: ox = i�
⌅ n2

2
⇧

4: oy = j�
⌅ n2

2
⇧

5: a = 0
6: for x = 0 to n2 do

7: for y = 0 to n2 do

8: a = a +
�

I(ox + x, oy + y) · k(x, y)
�

9: end for

10: end for

11: C(i, j) = a
12: end for

13: end for

kernel is positioned directly over each pixel, and each element in the
kernel is multiplied with the corresponding pixel in the image. The
sum of these multiplications is the pixel value in the resulting convo-
lution. This is done for all pixels. Note that since the center of the
kernel is supposed to be aligned with an image pixel, we will have
some trouble with the edges of the image. By for example placing
the kernel at position (0, 0), a part of the kernel will be outside the
bounds of the image. A simple solution to this is to add additional
pixels along the edges of the image. The kernel will still only process
the original pixels, but the additional pixels will help the kernel cover
an equal number of pixels throughout the convolution.

10 background theory

As with most matrix transforms, convolution also has an identity
transform matrix. This is a zero-valued matrix with arbitrary size,
and value 1 at the center

k =

2

664

0 0 0
0 1 0
0 0 0

3

775

Convolution can often produce pixel values that are outside the
defined range for pixel values, and therefore a normalization of the
image may be required after convolution.

Gaussian blur

Convolution offers many important image operations, Gaussian blur
being one of them (Gonzalez et al. (2009)). A Gaussian blur kernel is
based on the Gaussian function

G(x, y) =
1p
2ps

e�
x2+y2

2s2

Since a kernel matrix must be discrete, the Gaussian blur kernel will
be an approximation of the Gaussian function

k =
1
16

2

664

1 2 1
2 4 2
1 2 1

3

775 (2.1)

Note that the sum of the elements in the kernel is 1. The Gaussian
blur will make the value of each pixel a weighted average of its own
value and the pixels surrounding it. The size of the kernel will de-
termine the strength of the blur, a larger kernel will produce a more
washed out image. The Gaussian blur is often used to remove un-
wanted noise or artifacts in an image before performing further pro-
cessing.

Sobel kernel

The Sobel kernel is used for finding edges in an image (Gonzalez et al.
(2009)). The kernel is an approximation of the gradient function of an
image

r f =
∂ f
∂x

x̂ +
∂ f
∂y

ŷ

2.1 image processing methods 11

and will produce an image that has marked out vertical or horizontal
edge characteristics. The Sobel kernel is approximated as

kv =

2

664

�1 0 1
�2 0 2
�1 0 1

3

775 , kh =

2

664

�1 �2 �1
0 0 0
1 2 1

3

775 (2.2)

where kv is the vertical kernel and kh is the horizontal kernel. An
example of using the vertical Sobel kernel is shown in figure 2.1.

2.1.2 Binary images

When analyzing images, a binary representation of the image may be
useful. A binary image is formally expressed as a matrix

I(i, j) 2 {0, 1}

where each element in the matrix is either 0 or 1. The process of
converting an image to a binary image, most often referred to as
segmentation or binarization, consists of determining which of the
pixel values should be 0 and which should be 1. In its simplest form,
a histogram of the image—a counting of the number of occurrences
of each pixel value—can be used to find a suitable threshold, so that
every value under the threshold is set to 0, and every value over the
threshold is set to 1. The key problem with thresholding methods is
selecting the correct threshold.

Otsu’s method

Otsu’s method (Gonzalez et al. (2009)) is a clustering-based thresh-
olding method, that is based on the assumption that the image has
two classes of pixels; foreground and background. This is called a
bimodal image, meaning that the histogram presents two obvious
peaks. The method is based on analyzing the histogram, and finding
the separation between foreground and background that minimizes
the variance within each class. An example of a bimodal histogram
is shown in figure 2.2.

The formula for the method is

arg min
t

s2
w(t) = w1(t)s2

1 (t) + w2(t)s2
2 (t)

12 background theory

(a) The original image.

(b) Image after convolving with vertical Sobel kernel.

Figure 2.1: Sobel kernel edge image example.

2.1 image processing methods 13

0 127
0

n

Figure 2.2: Histogram example.

Figure 2.3: An example of using Otsu’s method. The original image is the
same as in figure 2.1.

where w represents weights that denote the number of pixels on ei-
ther side of the threshold. The goal is to find the threshold t that
minimizes the expression. Minimizing the variance within each class
is equivalent to maximizing the variance between the classes, and the
expression becomes

arg max
t

s2
b (t) = s2 � s2

w(t) (2.3)

This can be rewritten as

arg max
t

s2
b (t) = w1(t)w2(t) [µ1(t)� µ2(t)]

2

An example of using Otsu’s method is shown in figure 2.3.

14 background theory

a

b

h2
h1

w2

w1

Figure 2.4: Sliding concentric windows example, adapted from Anagnos-
topoulos et al. (2006)

The computational complexity of Otsu’s method is about O(L4),
where L is the total number of intensity levels for a pixel. There are
however several available improvements.

Sliding concentric windows

Sliding concentric windows (SCW) is a method developed by Anag-
nostopoulos et al. (2005). The method is based on using two differ-
ently sized windows where the center pixel of the first window is
aligned with the center pixel of the second window, i.e. concentric.
The center of the concentric windows scan the image, and compute
statistical measures for the pixels overlapped by each of the windows.
Figure 2.4 shows how the two windows are positioned over each
other; note that the windows does not necessarily have to be of the
same aspect ratio.

A statistical measure m (mean value or standard deviation) is cal-
culated for both windows, a and b, and the relation between them is
used to determine if the current pixel is foreground or background.
If mb

ma
> t the pixel is marked as foreground, where ma and mb

is the statistical measures of windows a and b, and t is an empir-
ically found threshold. The pixels not marked as foreground are

2.1 image processing methods 15

assumed as background. The computational complexity of SCW is
O (n · m · (w1h1 + w2h2)) where n and m is the size of the image and
w1, h1, w2, h2 is the size of the two windows.

Connected component analysis

Connected component analysis (CCA) is an algorithm for labeling ar-
eas of objects in a binary image (Gonzalez et al. (2009)). There may
be several areas in a binary image that are regarded as objects, and
they have the property of having pixel values of 1, i.e. foreground,
and being connected by either 4-connectivity or 8-connectivity. 4-
connectivity means that pixels positioned north, south, west, or east
are connected. 8-connectivity includes all of the 4-connectivity pixels
and the four diagonally positioned pixels, that is, the 8 pixels that sur-
round a pixel. In CCA however, we do not consider all of the pixels
in the connectivity due to the iterative nature of the algorithm. The
algorithm starts at position (0, 0), and iterates through each element
in each row. This means that the only pixels that needs to be consid-
ered are the two pixels that are placed diagonally north, and the pixel
directly north and directly west of the current pixel, totaling 4 pixels.
The complete procedure is shown in algorithm 2.2.

Figure 2.5 shows how CCA will perform on an example image.
The colors in the image illustrate the different labels given to each
component. The computational complexity of CCA is O(n · m) where
n and m is the size of the image.

2.1.3 Trichromatic imaging and color difference

Trichromatic imaging theory is based on the fact that the human
eye samples light in three different color-bands; red, green and blue.
The theory is explained in Yang et al. (2012). When evaluating a
pixel, the notion of difference can become important, and trichro-
matic imaging allows us to define a difference color that expresses
the difference between two colors. Per trichromatic imaging theory
a color can be defined from its red, green, and blue components,
and gives the possibility to use these components when evaluating
the difference. Suppose a target color T = {TR, TG, TB} and a back-

16 background theory

Algorithm 2.2 Connected component analysis for 8-connected pixels,
adapted from Bah (2014).

1: for each pixel p in image I do {iterate by row and column}
2: l = 0 {the current label}
3: if p is foreground then

4: if one and only one neighbor n is foreground then

5: assign p same label as n
6: else if a set N of neighbors are foreground then

7: assign p same label as one of the pixels in N
8: mark all labels in N as an equivalence class
9: else

10: increment l
11: assign p the label l
12: end if

13: end if

14: end for

15: give each equivalence class a unique label
16: for each pixel p in I do

17: assign p’s equivalence class’ label
18: end for

(a) The original image. (b) Connected component analysis per-
formed, and labels assigned to each
component.

Figure 2.5: Connected component analysis example.

2.1 image processing methods 17

ground color L = {LR, LG, LB}, then we can express the difference
color DTL = {RTL, GTL, BTL} by

RTL = |TR � LR|
GTL = |TG � LG| (2.4)
BTL = |TB � LB|

The difference color can be used as a measure of how an image
changes in a given direction by computing delta pixel values. Two
pixels at locations (i, j) and (i, j + 3) can give some information as to
how the transition between the two locations can be analyzed. Yang
et al. (2012) explains how this can be used to compute an edge im-
age of LPs where combinations of character color and plate color are
known a priori.

The set of a priori color combinations produce a set of a priori dif-
ference colors, W. When evaluating an image the difference color for
each pixel is calculated. This difference color is compared to all ele-
ments in W. If the difference color is deemed to be similar enough to
at least one difference color in W, the corresponding pixel is marked
as foreground. An example where the plate color is known to be
white, W, and the character color is know to be green, G, gives a
desired difference color DWG = |{1, 1, 1}� {0, 1, 0}| = {1, 0, 1}. A
row-wise iteration of a candidate image then finds each pixel’s dif-
ference color by comparing with the pixel located three columns to
the east, and checks if the difference color is similar to the desired
difference color DWG. We will not go into the notion of similarity
here, other than to note that the HSV and the RGB color models are
used. This offers a much more fine grained form of edge detection
for images with good color conditions, as it is able to significantly
narrow down the number of found edges. An example where the a
priori color combinations is defined as black-white and green-black is
shown in figure 2.6. As seen from the figure, the image produced by
color difference edge detection contains far less noise than the Sobel
image, and there is significantly less edge information that is not per-
tinent to the LP. Note that virtually all of the edge information that
pertains to the LP is intact, and is more clearly defined.

18 background theory

(a) The color difference edge image.

(b) Sobel edge image.

Figure 2.6: Color difference edge image example.

2.1 image processing methods 19

2.1.4 Haar-like features

Haar-like features were first introduced by Viola and Jones (2001),
and were originally created for the task of face recognition. The fea-
tures are based on simple calculations within windows in an image.
An example of a Haar-like feature is to divide a window into two
parts, and checking if the sum of the pixel values in the one half
is greater than the sum of pixels in the other half by some amount.
Haar-like features are boolean valued, either true or false. Each fea-
ture will be very simple, but by combining a very large number of
them, a more sophisticated type of recognition can be produced. To
speed up the calculation of Haar-like features, integral images can be
used. An integral image is an image where each pixel is the sum of
itself and every preceding pixel. By preceding we mean pixels that
are positioned north, north-west, or west of the pixel. Formally, an
integral image can be expressed as

IR (i, j) =
i

Â
k=0

j

Â
l=0

I(k, l)

Since Haar-like features are based on comparing sums of pixels,
the integral image can offer a substantial performance boost. The
sum of pixels in a window with position (i, j) and size w⇥ h can be
expressed as

i+w

Â
k=x

j+h

Â
l=y

I(k, l), IR (i + w, j + h)� IR (i + w, j)� I(i, j + h) + I(i, j)

The use of the integral image makes it possible to calculate each Haar-
like feature in constant time, regardless of size. Figure 2.7 shows four
examples of Haar-like features. In each example, the blue area within
the window represents the area to be compared with the white area
within the window.

2.1.5 Multi-scale block local binary patterns

Multi-scale block local binary pattern (MB-LBP) is a representation
technique that divides a region into blocks. MB-LBP (Liao et al.
(2007)) is an extension of local binary pattern (LBP). LBP is a fea-
ture that is concerned with a local 8-connected neighborhood of a

20 background theory

a

c d

b

Figure 2.7: Haar-like features, adapted from Viola and Jones (2001).

20 3 13

33 14 18

8 0 19

1 0 0

1 1

0 0 1

≥ 14

The corresponding binary pattern of the neighborhood is 100110012
or 153 in decimal.

Figure 2.8: Local binary pattern example.

given pixel, and produces a signature for that pixel by comparing the
pixel value to the neighbors. Each neighbor corresponds to a bit in a
byte number, and the bit is hot if the corresponding neighbor’s pixel
value is greater than or equal to the given pixel’s value. Figure 2.8
shows how the LBP signature of a pixel and it’s neighborhood may
be calculated.

MB-LBP uses the same principle over larger areas by averaging
pixel values that fall within each block. An MB-LBP may have an
arbitrary size, it is however a good practice to use sizes that are mul-
tiples of 3 in order to get the same number of pixels within each block.
The use of an integral image will make the calculation of an MB-LBP
possible in constant time. MB-LBPs are more robust than regular
LBPs, since it is able to generalize larger regions. As image quality
increases, a local 3⇥3 neighborhood will be increasingly insufficient

2.2 video processing 21

to capture any patterns that may be present. Although the method
allows for arbitrarily large areas, there will be some upper bound to
the accuracy of the feature as it’s size increases. Additionally, even
though the method allows for large areas, it still possible to use all
the local LBP features if that is desirable.

Training a classifier using MB-LBP is also regarded as more time
efficient than Haar-like features, since a single feature has fewer de-
grees of freedom. While a Haar-like feature has one degree of free-
dom in each of it’s size axes plus one degree per separation line, the
MB-LBP has only two degrees of freedom. This dramatically reduces
the feature space, and provides a much faster training process.

2.1.6 Projection into vectors

Projection is a wide term, in this context we use the term as a form
of aggregation. Given that one has found a region of interest within
an image, it is sometimes necessary to analyze some statistics about
the region before determining if this is the region we are searching
for. A projection vector can then be a useful tool, since it describes
some key characteristics about the region. We mainly use vertical and
horizontal projection vectors, but other orientations are also possible
(Gonzalez et al. (2009)). A horizontal projection vector is a vector
where each element in the vector is the sum of the pixel values in
each of the rows in the region. Similarly, a vertical projection vector’s
elements are the sums of the columns in the region. Formally, the
vertical and horizontal projections of an image I are

pv = 1 · I
ph = I · 1

|

Figure 2.9 shows how vertical and horizontal projection vectors repre-
sents the image. As seen from the figure, the vertical vector can be a
good estimation of where characters start and end, and the horizontal
vector can estimate the baseline and cap height of the characters.

2.2 video processing

As stated by research goal b, we want to investigate if and how an
ALPR system could be created by using live video. Live video is usu-
ally at least 25 frames per second. In this report we will mostly focus

22 background theory

Figure 2.9: Vertical and horizontal projection vectors. The graph to the
right of the image represents the horizontal projection, while the
graph below the image represents the vertical projection.

on processing time with regards to live video. We intend to analyze
each frame separately, and treat each frame in the same manner as
a still image would be treated. This implies that the three stages of
ALPR are still the same. It could be argued that there is some lost
potential here, there is some information in the temporal dimension
of the video stream that is not being utilized. For instance, a method
of tracking objects (like an LP) across frames would have an easier
task of locating the object in the next frame if there is some prior
knowledge from previous frames on the object’s most likely location
and movement. Properties like these are considered to be outside
the scope of this thesis, and will be disregarded. We do however ac-
knowledge that the information found in the temporal dimension of
a video stream is cause for further work.

The devices we will consider for our system has a normal frames
per second rate of 30 (discussed more in section 4.1). This gives a max-
imum processing time of 1s

30fps = 33.33 ms/frame. A system aiming
to process every single frame of a video stream should however have
some extra time in between frames, so a processing time of roughly 25
ms should be the maximum. Fortunately, there is another approach
that may lessen the tight time constraint. By only analyzing every
other or every third frame the system can give the user an impres-
sion of being live, while in reality being slightly behind. We regard
this as an acceptable compromise.

2.3 artificial intelligence methods 23

2.3 artificial intelligence methods

All of the presented artificial intelligence (AI) methods are classifiers,
and are based on learning. Object recognition in images is a difficult
task, and in most cases it is impossible to solve analytically. Learning-
based methods will therefore provide the necessary adaption to the
task, and most often it can solve the task satisfactory.

2.3.1 Artificial neural networks

An artificial neural network (ANN) is a graph, composed in several
layers (Mitchell (1997)). Each layer contains a number of nodes, or
neurons, and is connected to the next layer via edges, or synapses.
Each edge has an associated weight which scales the data sent to the
receiving neuron. The architecture of ANNs are inspired from bio-
logical neural networks, which model a central nervous system in
a brain. Each neuron in an ANN has an activation function, which
determines if the inputs to the neuron should cause it to send some-
thing to the neurons itself is connected to. Generally, an ANN has at
least two layers, an input layer and an output layer. The input layer is
where the neurons are given data to process, and the output layer is
where the processed data is delivered. Between the input and output
layers there may be several hidden layers. Most ANNs have at least
one hidden layer.

An ANN is usually trained with the feed-forward back-propagation
algorithm. The algorithm feeds labeled training examples to the net-
work, and calculates an error of the classification the network pro-
duces. The error is fed backwards into the network, allowing the net-
work to update the weights and activation functions of the network
so that the error is minimized. This can be done by using gradient
descent.

The activation function in the neurons can be of many different
types, some of them are step functions, linear combinations and non-
linear functions. A step function has a binary output

f (x) =

8
<

:
1 x > t

0 x t

and can be useful in the output layer when a binary answer may
be needed. A linear combination is a weighted sum of the inputs

24 background theory

�1 �0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

Figure 2.10: The Sigmoid function, here with k = 5.

to a neuron plus a bias value that is obtained through training. The
Sigmoid function is an example of a nonlinear function that resembles
the step function. The Sigmoid can model a range of uncertainty,
which is impossible with the step function. In addition, its derivative
is easy to calculate, which makes it easy to use when training the
network with back-propagation and gradient descent. The function
can be expressed as

f (x) =
1

1 + e�kx

where k can be used to tune the slope.
A multilayered perceptron (MLP) is a special case of an ANN,

where each layer is fully connected to the next layer (Mitchell (1997)).
The architecture of the networks makes it a good candidate for data
that is not linearly separable, like the XOR function. We can tailor
an ANN to a specific structure when we have some notion of how
certain inputs correlate with certain classifications. An MLP can be
better if there is a large amount of uncertainty around the relation
between inputs and classification.

2.3.2 Support vector machines

Support vector machines (SVMs) are binary classifiers. The method
is mathematically inspired, and is based on finding support vectors
that separates a hyperplane optimally (Russell and Norvig (2003)).

2.3 artificial intelligence methods 25

Hidden layer
Input layer Output layer

(a) Regular artificial neural network.

Hidden layer
Input layer Output layer

(b) Multilayered perceptron.

Figure 2.11: Artificial neural networks.

The hyperplane represents the data space, and the separation gives
the classification of new examples. Figure 2.12 shows how the data
space can be optimally separated, so that the support vectors (the thin
green lines) has a maximal distance from each other. More formally,
the goal is to optimize the expression

arg max
a

Â
j

aj �
1
2 Â

j,k
ajakyjyk(xj · xk)

where a represents the support vectors, yi 2 {�1,+1} is the classi-
fication and xi is a training example. Normally, the SVM is a linear
classifier, meaning that a classification is found by inspecting a lin-
ear combination of an examples’ properties. The function, or kernel,
used by the SVM can be exchanged with a nonlinear function, like
the Gaussian radial basis function (RBF)

K(x, x

0) = exp

�kx� x

0k2

2s2

!
(2.5)

A position paper by Bennett and Campbell (2000) details some of the
advantages and shortcomings of SVMs. An SVM will not have any
problems with local minima, as the method is guaranteed to converge
on a global minima if it is given a sufficiently good training set. The
results from an SVM are easier to reproduce, and SVMs are more in-
dependent of algorithm choice than other methods. It is also able to
handle fairly large datasets, it’s computational complexity is O(D2).

26 background theory

Hyperplane separation
Figure 2.12: Support vector machine.

However, an SVM may in many cases not outperform a classifier that
is hand-tuned for a specific domain; an SVM is not able to incorporate
domain knowledge like other methods can. Additionally, it does not
solve the feature selection problem. Using optimal feature sets can
have a large impact on a method’s performance, and selection of the
most information-bearing features must be found separately before
training an SVM. SVMs are inherently only capable of binary classifi-
cation, but it is possible to construct either a single multi-class kernel
for an SVM, or training an ensemble of SVMs (Hsu and Lin (2002)).
One of the possible strategies is called one against one classification,
which for k classes constructs k(k � 1)/2 classifiers where each clas-
sifier is trained to distinguish between two classes. A voting among
the classifiers is then the method for finding the correct classification.
There are several other possibilities for solving the multi-class SVM
problem, but this one is shown to be competitive, and has the advan-
tage of producing output that allows for inspecting the confidence in
a classification.

2.3.3 Cascade classifiers and adaptive boosting

Cascade classifiers is an ensemble learning method, and was first in-
troduced by Viola and Jones (2001). It is based on concatenating a
series of classifiers, where each classifier may be a weak classifier.
The cascade is usually a binary classifier, having a positive and a neg-
ative classification. Only examples classified as positive are passed to
the next classifier; an example is immediately discarded if it is classi-

2.3 artificial intelligence methods 27

fied as negative. Figure 2.13 shows how the control flow is executed.
The nature of the cascade classifier means that the first classifiers in
the cascade may be relatively simple or weak classifiers, since they
will function as a filtering mechanism. Here, the term weak refers
to the classifier’s ability to classify examples; a classifier that slightly
outperforms random guessing (around 50% correctness) is said to be
weak, while a classifier that is correct most of the time is said to be
strong. The early classifiers often produces a large number of false
positives, that are discarded by later classifiers. This allows for a very
fast classification of examples that are obviously negative, giving the
method more time to focus on the hard examples.

The training of a cascade is done in a similar manner. A minimum
hit rate and a maximum false alarm rate is defined for the training
process. The minimum hit rate describes how many of the positive
training examples that are required to be correctly classified, while
the maximum false alarm rate describes how many of the classifica-
tions we can accept to be false positives. Usually the minimum hit
rate is somewhere between 99.0 % and 99.9 %, and the maximum
false alarm rate around 50 %. Stages are trained in turn, and is fed
with the examples that were classified as positive by the previous
stage. Each stage can have multiple classifiers, the stage in total is
required to have a correctness rate for the positive examples that is
greater than or equal to the minimum hit rate. Classifiers are added
until the rate of false positives among the positive examples drops
below the maximum false alarm rate. Usually this will result in hav-
ing few classifiers in the first stages, and increasing numbers towards
the end of the cascade. Each stage in the cascade reduces the rate of
false positives, but it also decreases the true positive rate accordingly.
The overall hit rate will be the minimum hit rate for each stage to the
power of the number of stages, likewise for the false alarm rate. With
an example of 99.5 % minimum hit rate, 50 % maximum false alarm
rate, and 15 stages, the resulting cascade has an expected accuracy
of (99.5%)15 = 92.76% correct classification with a false alarm rate of
(50%)15 = 0, 003% being false positives.

In some cases the classifiers in the cascade may be AdaBoost classi-
fiers, which also is an ensemble learning method (Russell and Norvig
(2003)). The AdaBoost algorithm is a variation of the traditional boost-
ing algorithm. The method is based on having multiple weak classi-
fiers, where each of the weak classifiers are assigned weights to ac-

28 background theory

count for their abilities. During training, the classifiers that are able
to correctly classify hard training examples, i.e. training examples
that the preceding classifiers failed to classify correctly, will be re-
warded by a weight increase. This means that classifiers that seem to
do correct generalizations in the domain are favored.

Viola and Jones (2001) describes using a cascade classifier with Ad-
aBoost classifiers based on Haar-like features to do face detection. A
modified version of the AdaBoost algorithm is used, the main varia-
tion being that each AdaBoost classifier will only rely on one feature.
The steps are described in algorithm 2.3. Zhang et al. (2007) pro-
poses an expansion of this work by using MB-LBP features instead of
Haar-like features. Each of the MB-LBP features are used to create a
multi-branch tree of classifiers with 256 branches, one branch for each
possible value of the feature. Given a training set (x1, y1), . . . , (xn, yn)
where xi is an image, xk

i is the MB-LBP value of feature k with image
xi, and y 2 {1,�1}, the classifier for feature k can be defined as

h(xi) =

8
>>>>>>>>>><

>>>>>>>>>>:

ak
0 if xk

i = 0
...

ak
j if xk

i = j
...

ak
255 if xk

i = 255

where xk is the k-th training example. The variable aj is defined as

ak
j =

Âi wiyid(xk
i = j)

Âi wid(xk
i = j)

where wi is the associated weight of the instance, yi is the correct
classification, and d(a = b) is a function that returns 1 if a ⌘ b.

In both cases the possible feature space for each feature type is way
to large to process, and so an AdaBoost algorithm is used in each
stage to find a subset of the possible features.

2.3 artificial intelligence methods 29

Classifier 1

Classifier 2

Classifier 3

YES

YES

Positive
classification

Negative
classification

YES

NO

NO

NO

Figure 2.13: Cascade classifier control flow.

30 background theory

Algorithm 2.3 Cascade classifier AdaBoost algorithm, adapted from
Viola and Jones (2001).

Training examples are (x1, y1), . . . , (xn, yn).
Initialize weights w1,i =

1
2m , 1

2l for yi = 0, 1 respectively, where m
and l are the number of negative and positive training examples
respectively.

1: for t = 1, . . . , T do

2: Normalize the weights,

wt,i
wt,i

Ân
j=1 wt,j

so that w is a probability distribution.
3: For each feature j, train a classifier hj which is restricted to

using a single feature. The error is evaluated with respect to wt,
ej = Âi wi

��hj(xi)� yi
��.

4: Choose the classifier, ht, with the lowest error et.
5: Update the weights

wt+1,i = wt,ib
1�ei
t

where

ei =

8
<

:
0 hi(xi) ⌘ yi

1 otherwise

bt =
et

1� et

6: end for

7: The final strong classifier is

h(x) =

8
<

:
1 ÂT

t=1 atht(t) � 1
2 ÂT

t=1 at

0 otherwise

where at = log 1
bt

3

R E L AT E D W O R K

This chapter will cover publications and papers related to ALPR. The
chapter is divided in the same manner as the ALPR task, and the
stages will be covered in order.

3.1 license plate location

The task of license plate location is the first task that needs to be
solved in an ALPR system. One of the challenges of locating an LP
is that the scene may be very complex, so that locating possible po-
sitions in the image, so-called regions of interest, is often a required
tradeoff. Lighting conditions will typically vary greatly. The size,
angle, and rotation of the LP within the scene may also be subject
to many variations, especially considering that the target system is
intended to run on a handheld device. In this section we will de-
scribe the approaches that have contributed to or inspired our ALPR
system.

3.1.1 Trichromatic imaging and color difference

We know from several different papers that vertical edge informa-
tion can be a key factor in locating an LP in an image (Abolghasemi
and Ahmadyfard (2009); Kocer and Cevik (2011); Quan et al. (2009);
Thome et al. (2011); Yang et al. (2012); Zheng et al. (2005, 2013)). The
LP region will typically present as a distinct horizontal rectangle of
dense edge information, allowing it to be a subject of recognition.
The literature presents many different approaches as to how this re-
gion may be detected and located, most often including some sort of
filtering mechanism to extract horizontal rectangle-shaped regions of
dense edge information.

Trichromatic imaging is based on the theory that an image can be
represented using the three color bands red, green and blue. Yang
et al. describes how a difference color can be used to compare pixels,
and how this comparison can help produce a color sensitive gradient

31

32 related work

edge image. Equation 2.4 on page 17 shows how the difference color
is calculated, and how the difference color metric is used to produce
a color-sensitive gradient image. Each pixel in an image is evaluated
against the pixel that lies three increments to the east. A requirement
of the method is to have a priori knowledge of the possible combina-
tions of plate color and character color, so that the difference color for
each distinct pair may be precomputed. Each pair of colors will con-
stitute a rule, that the evaluated pixels in an image must fulfill to be
marked as foreground. The rules are based on the relation between
the red, green and blue components of the difference color, as well
as defining acceptable ranges for the hue and saturation values. A
rule representing the difference color for the white-red combination,
DTL = {RTL = 0, GTL = 255, BTL = 255} , h = p, s = 0, where h is
hue and s is saturation, can be

8
>>><

>>>:

G�R
G � 0.5

B�R
B � 0.5

5p
6 h 7p

6

The intensities of the RGB components of DTL produces the first two
clauses of the rule, the high intensity components G and B must have
much larger values than the low intensity component R. The hue
produces the third clause, the hue of the difference color defines an
acceptable range for the evaluated pixel’s hue. Note that each a priori
difference color may correspond to several combinations of colors.
The above example with the white-red difference color identical to
the difference color for cyan-black.

The algorithm for producing the edge image outlined by Yang et al.
does however need some modifications to be able to produce edge im-
ages that are useable. The formulas provided for calculating hue and
saturation does not produce the same results as a system implemen-
tation provided in the OpenCV framework. Secondly, the algorithm
states that pixels that satisfy all of the given rules (6 in total) should
be marked as foreground. By effectively binarizing the image at this
stage a significant amount of noise is introduced to the image. By
adjusting the HSV color calculation, and using the value from HSV
as the pixel value we get an edge image with significantly less noise.
Figure 3.1 show the results of these corrections.

3.1 license plate location 33

(a) Edge image using the paper’s equations for calculating HSV.

(b) Edge image using system framework calculation of HSV.

(c) Edge image using system framework calculation of HSV, and
using v from HSV as pixel value.

Figure 3.1: The variations in implementation detail of color difference edge
image.

34 related work

The edge image now contains very little noise, and most of the edge
information in the image is associated with an LP region. There is still
however a need for some filtering before trying to find a rectangle that
can be wrapped around a horizontally rectangular region. The image
is row-scanned, and rows that contain more than n1 edge regions
where the inter-spacing is less than a threshold d1 are labelled. n1 is
given as the minimum number of characters allowed in an LP, and d1
is some empirically found value. After the row-scanning is done the
labelled edges close to each other are fitted for a rectangle that tightly
wraps the edge regions. Edges that are contained within a wrapping
rectangle with a given aspect ratio are kept and marked as a region
of interest, while those that fall outside are discarded.

Yang et al. tested the method on two test sets, one containing 600

(600⇥330 pixels) different LP types from 104 different countries and
regions, and the other containing 784 Chinese (768⇥576 pixels) LPs
exclusively. The success rates on the two test sets were 95.3 % and
93.1 %, respectively. The processing was performed on a Pentium
4, 2.5 GHz with 1 GB RAM, and is reported to execute in 54 ms on
average for the first test and 63 ms on average for the second test set.
A variation of the method was also tested, where a first pass using
only two difference color rules was used on the Chinese test set. The
full set of difference color rules was only used if the first pass was
not able to find a region of interest in the image. The success rate of
this variation was 94.1 %, and executed in 59 ms on average.

One of the things that make this paper particularly interesting is
the method’s ability to work on many different plate types. We also
observe that the set of rules does not appear to have a very adverse
effect on the execution time or the accuracy. The method can not be
claimed to be color invariant, but the ability to handle a vast collection
of different layouts is nonetheless very impressive. During our own
implementation and testing we did however encounter some prob-
lems with the methods ability to detect edges in images with dirty
LPs, or washed out colors. This will be presented and discussed fur-
ther in chapter 6.

3.1.2 Cascade classifier using Haar-like features and MB-LBP features

Zheng et al. (2013) proposes an LP detection based on a cascade clas-
sifier, much like the cascade classifier by Viola and Jones (2001). The

3.1 license plate location 35

cascade used by Zheng et al. has some key differences; the first
two classifiers in the cascade are not AdaBoost classifiers based on
Haar-like features. Another important difference is that the Viola and
Jones-cascade uses greyscale images, while the classifier proposed by
Zheng et al. (2013) uses the vertical edge image representation for
both training and classification. The first classifier in the proposed
cascade calculates the vertical edge density and the second classifier
calculates the edge density variance. The original cascade classifier
is intended as a general purpose object detection algorithm, and us-
ing edge information in the general case would not be justified since
there would be no guarantee that the object would present any sig-
nificant edge features. However, in the case of ALPR we recognize
that using the vertical edge information may lead to a higher detec-
tion rate, given the visual layout of an LP and it’s tendency to contain
edge-dense areas.

Another system using a cascade classifier is proposed by Bah (2014).
This cascade classifier uses MB-LBP features instead of Haar-like fea-
tures, and is based on the work described by Zhang et al. (2007). The
use of MB-LBP features complicates the base classifier used in the
AdaBoost classifiers. Each MB-LBP feature maps to a value, but the
value does not bear any information in itself. The number will simply
act as an index into an error function, which estimates how good a
feature performs over the entire training set, and it is this function
that makes the feature into a classifier. Unfortunately, Bah had some
problems constructing a classifier that would produce reasonable re-
sults, and the work was never taken any further. Our initial tests
with the OpenCV framework does however provide us with positive
results. With standard settings for the classifier, using the same data
set, we have produced a classifier that works as expected for the LP
location problem. We therefore attribute the problems described by
Bah to factors not related to the technique, but possibly to parameter
settings or implementation details.

Zheng et al. (2013) reports having a detection rate of 96.4% over
169 LP regions. The paper does not give a specific execution time
for LP detection, but reports that the entire ALPR task is executed in
100 ms or less on a Pentium 2.8 GHz. It is also pointed out that the
algorithm has room for optimizations, so that the execution time may
be reduced. Zhang et al. (2007) reports using a cascade classifier algo-
rithm similar to the original algorithm by Viola and Jones (2001), but

36 related work

with some improvements in the performance metrics. The MB-LBP
based cascade reportedly needs fewer features to perform at a similar
accuracy level, and considerably less execution time to perform at a
similar accuracy level. We do however note that the work by Zhang
et al. is only tested on a face-detection test set.

3.1.3 Sliding concentric windows

Anagnostopoulos et al. (2006) proposes the use of SCW for detecting
LP regions. SCW is performed on the image, and the pixels marked
as foreground are used as a mask on the original greyscale image.
The resulting image is then binarized using Sauvolas method, which
is a local thresholding method. SCW is based on local neighborhood
statistics, and so it stands to reason that the thresholding also is done
with a local method. One of the key effects is that illumination vari-
ations within an image will not have converse effects on the marked
areas from SCW. The resulting image is analyzed with CCA. Each
component in the image is then tested for aspect ratio, orientation
and Euler number. The orientation is calculated from the axis of least
second moments, which is an estimate of a line that minimizes the
squared distance to all points in the object. The Euler number rep-
resents the number of holes in the object, i.e. closed curve areas of
background located within the outer borders of the object. The as-
pect ratio is required to be > 2 and < 6, the orientation < 35° and the
Euler number > 3. All components that pass these tests are regarded
as regions of interest. A second pass of the algorithm is executed
with the inverted image if no regions of interest are found during the
first pass.

The method is tested on 5 test sets, totaling 1334 images. 96.5 % of
all LPs are correctly detected, and the average execution time is 111

ms on a Pentium 4, 3.0 GHz with 512 MB RAM.
One remark about the method is that there is some sort of assump-

tion on the size of the LP. SCW is performed with given window-
sizes, and so there will be a lower bound and an upper bound for
the sizes it is able to detect. SCW operates by comparing mean value
or standard deviation of pixel values in the two windows. The rela-
tion between the statistics for the windows determine that the pixel
at the concentric point should be marked as foreground if the rela-
tion is bigger than some defined threshold. The threshold is reported

3.2 character segmentation 37

to be found by trial and error, and is another point for concern. A
threshold like this will most often not work well if set to a specified
value, it is in fact reported that the user controls the threshold while
operating the system. To be able to support different sizes for LPs it
would be possible to do several analyses of an image with differently
sized SCW windows. It is however important to note that the time
complexity of the algorithm is quadratically proportional to the size
of the windows, and executing many passes of the algorithm with
different window sizes will have significant effects on the execution
time.

3.2 character segmentation

The next step after identifying some region(s) of interest is character
segmentation. Character segmentation aims to identify and extract
character regions within a region, or possibly discard a region based
on not finding suitable character segments. This stage of the ALPR
task is conceptually different from the other two stages in that an AI
method for segmenting characters is not widely used or accepted as
a fruitful course of action. Most methods base the character segmen-
tation on a form of binarization method, and some utilize additional
statistical means to estimate character boundaries.

3.2.1 Projection boundaries and blob detection

Zheng et al. (2013) describes a method using projections, binariza-
tion and CCA to segment characters. A color correction step is done
first to correct for dark foreground on light background or vice versa.
Equally spaced horizontal lines are placed over the image, each line
counting the number of pixels above a certain intensity value along
the line. The image is inverted if the averaged number of counted
pixels along each line lies above a given threshold. This results in
having a grayscale representation of each region of interest where
the character color (i.e. white) can be assumed to be lighter than the
plate color (i.e. black). The algorithm proceeds by using the vertical
edge image of the region to create a horizontal projection vector. The
vector is used to estimate the baseline and the cap height of the char-
acters, and crops the region accordingly. The region is then binarized
using Otsu’s method, and a vertical projection vector is created. The

38 related work

vertical projection estimates character regions, and each character re-
gion is analyzed with CCA. Each of the components is validated with
a set of rules and actions:

• If the upper boundary is different from the overall upper bound-
ary, the component is discarded1.

• If the inverse aspect ratio
⇣

1
aspect ratio

⌘
is > 0.8 or < 0.3, the

component is discarded.

• If the area of the component is more than one sixth of the whole
image size, it needs further segmentation2.

• If any two neighbor segments’ widths are smaller than 66.66 %
of the average character width, the segments are joined together.
However, if the joined segment has a width 33.33 % greater than
the average character width, the joining is not done after all.

The segments still present after the above set of rules and actions
is performed is accepted as character segments, and passed to the
character recognition stage.

The approach was tested on a test set of 587 LP images with 3502

characters, where all of the characters were correctly segmented. The
method did however also find some false positives, giving a total
accuracy of 98.82 %. As noted in the previous section, this paper
does not account for time spent on each stage in ALPR, but states
that the entire ALPR task is executed in less than 100 ms, using a
Pentium 2.8 GHz processor.

3.2.2 Sliding concentric windows and statistical methods

Anagnostopoulos et al. (2006) describes using SCW for character seg-
mentation. The region of interest is resized to a predefined size
(228⇥75 pixels) and then SCW is run on the resized region. Dur-
ing this step, the windows are sized to match the expected aspect
ratio of each character segment, so that the windows will more easily
capture the statistical variations that occur between the foreground

1 Overall upper bound is not defined in the paper.
2 What further segmentation entails is not described in the paper, but we imagine that

this may have to do with changing the threshold found by Otsu’s method for bina-
rization

3.2 character segmentation 39

and the background. The resulting image is analyzed with CCA, and
components that have a sufficient height (> 32 pixels) and are ori-
ented upright (> 75°) are kept. A vertical and a horizontal projection
vector is then calculated from the final components. The standard
deviation of each of the vectors then define the start and end points
of each character segment along their respective axes.

The method was tested on a Pentium IV, 3.0 GHz with 512 MB
RAM, and correctly segmented 89.1 % of 1334 LPs with an average
processing time of 37 ms. The success rate also includes the character
recognition stage, and so it is expected that the true success rate is at
least as high.

3.2.3 Tilt correction

None of the above mentioned methods try to correct any tilt or skew
in the regions of interest. During our initial tests we found that most
images present some tilt, and correcting this can have a positive ef-
fect on character recognition. It could be argued that the character
recognition stage should handle this. Unfortunately, the information
needed to perform a tilt correction is lost when character regions are
extracted from a region of interest, and so it is prudent to take this
into account during character segmentation.

Quan et al. (2009) proposes using an improved Hough transform
(Gonzalez et al. (2009)), which is used before segmentation to correct
tilt. The region of interest is analyzed both horizontally and verti-
cally to find slopes for each of the axes, and right align them before
proceeding with a character segmentation algorithm. It is important
to note that this method addresses shear and not orientation. This
enables the method to correct regions that are skewed because the
image was captured from an angle and not straight ahead. Another
method is proposed by Bah (2014), where baseline estimation is the
foundation of the method. The baseline is found by linear regression
on each character segments’ lowest point. The baseline becomes the
bottom line in a rotated rectangle that should enclose each character
segment, and a vertical projection vector is created for this rotated
rectangle. The projection vector is used to estimate character start
and end points, their heights are already given from the enclosing
rotated rectangle.

40 related work

3.3 character recognition

Character recognition, often referred to as OCR, is the final stage in
ALPR. One of the main advantages of this stage is that the research of
OCR is not limited to ALPR. A vast corpus of literature exists on the
subject, relating both to the most popular task of digitizing books and
other printed material, but also from natural scenes. In this section
we will present methods that relate to ALPR, and methods that show
promise for an actual implementation.

3.3.1 Tesseract OCR

Tesseract OCR is an OCR engine that is maintained by Google (Google
Inc. (2015)). The engine is regarded as one of the leading OCR tools
available, and is used in many different contexts. It’s first step is to
perform CCA and organize components into lines of text. Each line
is separated into words based on the components’ interspacing, and
each word is passed to a two-pass recognition process. The first pass
attempts feature extraction and character recognition on each word,
and words that are deemed as satisfactory are passed as training data
to an adaptive classifier. The adaptive classifier is used for character
recognition lower down on the same page. The second pass is ex-
ecuted after the whole page has been processed once, utilizing the
fully trained adaptive classifier.

Zheng et al. (2013) describes using the Tesseract software with very
good results. They do however note that some modification has been
made to the engine, but not how the modifications are done. The
reported success rate is 100 % for all correctly segmented character
regions.

It is also important to note that Tesseract is trainable, and that it
is possible to define dictionaries that describe the possible language
one seeks to do OCR in. From the online documentation (Google Inc.
(2015)) we also note that the engine is usually trained for certain fonts,
allowing it to achieve a higher accuracy rate.

3.3.2 Feature extraction for Support Vector Machines

Using some extracted features instead of the actual character segment
is an often used technique in OCR (Capar and Gokmen (2006); Kocer

3.3 character recognition 41

and Cevik (2011); Quan et al. (2009); Smith (2007); Thome et al. (2011);
Wen et al. (2011)). The intension is that a vector of features may
contain more discriminating information than the image will, and so
it is possibly easier to base the training and classification on the vector
of features. There are many different types of feature one can extract,
some of the most interesting are described by Wen et al. (2011). Four
different types of feature vectors are described:

g-dcd feature The global direction contributivity density (G-DCD)
feature scans the image from left to right. Whenever a transition
from background to foreground is detected it calculates the an-
gle of the boundary, and the angles are stored into a vector. The
vector is divided into parts, where the sum of each part ap-
pended to the original vector constitute the feature vector. This
feature vector can provide information about how a character’s
shape is distributed over the image.

l-dcd feature The local direction contributivity density (L-DCD)
feature is similar to the G-DCD feature. A character segment is
divided into sub-regions, and a single-valued G-DCD calcula-
tion is performed for each sub-region. Each sub-region’s value
constitute the feature vector.

contour feature The character region is scanned along equally
spaced scan lines, horizontally and vertically. For each scan
line, the distance to the k-th occurence of a transition from back-
ground to foreground is recorded. The distances constitutes the
elements of the feature vector. This feature can give us informa-
tion about how the character is laid out in the region, and for
increasing k it can give information about how complex shapes
are laid out.

penetrated feature The number of transitions from background
to foreground are recorded along equally spaced scan lines, hor-
izontally and vertically. The number of transitions for each scan
line constitutes the elements of the feature vector. The pene-
trated feature is a simplification of the more recognized projec-
tion vector.

While some of these feature may not be very easy to grasp, the re-
sults presented by Wen et al. are more easily interpreted. The differ-
ent types of features was tested on numerals and Chinese characters

42 related work

using an SVM with an RBF kernel. For Chinese characters the best
performance was found using the contour feature with an accuracy
of 98.79 %. The numerals achieved the best performance with the
contour feature with an accuracy of 98.41 %. The contour feature is
reported to have an average processing time of 5 ms per character. We
also note that the fastest feature, the penetrated feature, has an aver-
age processing time of 1 ms and an accuracy of 97.55 % on english
characters.

3.3.3 Artificial neural networks

ANN is another popular approach in OCR. Different systems vary
between using feature vectors and the character region as input to
the network.

Anagnostopoulos et al. (2006) describes using a probabilistic neu-
ral network (PNN) for OCR. PNNs are a special case of the more
known MLP, where each layer of the network is fully connected with
the next layer. PNNs are usually has one hidden layer, where each
neuron represent one training example, and has a probability dis-
tribution of how a sample correlates with the the training example.
This means that the method is quite memory intensive compared to
other ANN flavors. The speed is also surpassed by other types of
networks, since the network can become quite large and require very
many computations per classification. Still, the method described by
Anagnostopoulos et al. achieves an 89.1 % accuracy, with an average
processing time of 128 ms. As in the previous section, this accuracy
also represents the success in character segmentation.

Kocer and Cevik (2011) describes using the more traditional MLP
networks, one for letters and one for numerals. Letters and numer-
als are separated in order to avoid uncertainty around characters that
have similar features, such as O and 0, Z and 2, I and 1, and B and
8. Each character is described with a feature vector that represents
the characters’ average absolute deviation metric, a metric that is de-
scribed with the equation

V =
1
N

Â
N
| f (x, y)�m|

!

where f (x, y) is the pixel value at location (x, y), m is the mean value
of the pixels and N is the number of pixels. The images were divided

3.3 character recognition 43

into blocks, the average absolute deviation for each block would be an
element in the image’s feature vector. Having letter images divided
into 6⇥8 blocks, and numeral divided into 7⇥7 blocks, the resulting
feature vectors has 48 and 49 elements respectively. The networks are
reported to be three-layer networks, having 1 hidden layer. The num-
ber of nodes in each layer is not reported, but we surmise that the
input layer has as many nodes as the feature vector, and the output
layer as many nodes as the number of letters and numerals. With a
test set of 347 letters and 1022 numerals, the method was able to cor-
rectly classify 344 letters and 1000 numerals (98.17 %). No processing
time is given, but a general knowledge of ANNs leads us to believe
that classification of characters can be done with satisfactory speed.

Part II

T H E P R O T O T Y P E

The second part of this thesis is focused on the work done
and it’s results. We will begin by presenting some key
aspects of the chosen platform and the frameworks and li-
braries that have been used to create the prototype. More-
over, we will also give an overview of the system model
to offer insight into which algorithms and techniques are
used. Finally, we will present our tests and results, and
discuss the results.

4

M O B I L E P L AT F O R M : I O S

The work by Bah (2014), which this thesis builds upon, was originally
intended for the Android platform. The plan to implement some soft-
ware for the Android platform was however abandoned due to time
constraints and lack of experience with the platform. The author of
this thesis is an experienced iOS developer, and we believe that this
will aid greatly in the implementation of a prototype system for the
iOS platform. When choosing between available mobile device plat-
forms we have only considered the Android and the iOS platform.
The Windows Phone platform could be viable in the future, but is as
of yet not mature enough and has a far too low market share. Recent
data1 shows that the Windows Phone market share is 3.5 % world-
wide. From a practical standpoint this makes the platform unattrac-
tive, especially with regards to realizing the system in a real-world
application.

Aside from the advantage of having experience, there are some
other justifications for choosing the iOS platform. Mobile device op-
erating systems are traditionally updated regularly (see table A.3 in
appendix A for more details). Since hardware specifications are im-
proved regularly, it naturally also entails that the supporting software
increases equally in complexity and performance. Each new version
of the mobile device operating systems often releases new and com-
plex functionality, and supporting many different versions quickly
becomes a complicated task. Recent data2 shows that only 3.3 % of
the user mass for the Android platform is on it’s latest major oper-
ating system version, version 5. If we include the previous version
(4.4) the number rises to 44.2 %. In comparison, data from Apple3

shows that 78 % of it’s user mass is on the latest iOS version, ver-
sion 8. Including the previous version of iOS raises the percentage
to 98 %. This, in combination with the advantage of experience with

1 http://bgr.com/2014/05/28/ios-vs-android-vs-windows-phone/, accessed 2015-
04-05.

2 https://developer.android.com/about/dashboards/index.html, accessed 2015-04-
05.

3 https://developer.apple.com/support/appstore/, accessed 2015-04-05.

47

http://bgr.com/2014/05/28/ios-vs-android-vs-windows-phone/
https://developer.android.com/about/dashboards/index.html
https://developer.apple.com/support/appstore/

48 mobile platform : ios

the platform, leads us to choose iOS as the target platform for our
implementation.

4.1 devices

The iOS platform was originally launched in 2007 with it’s first device,
the first model of the iPhone. It has since been expanded to include
more Apple devices, such as the iPod touch and the iPad. iOS is
originally just the name of the operating system used by the devices,
but as both devices and functionality has been added over the last
years it has become a family of products. The most prominent of
them is the original product, the iPhone. At the time of writing, the
iOS platform is at it’s eight major version (version 8.2), a new major
version is released once every year. Simultaneously with releasing
a new iOS version, some new devices are often also released. The
trend so far has been that a new iPhone model is released every other
year, and years in between releases updated products with improved
hardware specifications. An example of this is the fifth model of
the phone, the iPhone 5 which was released 2012, and the iPhone 5s
which was released in 2013.

The Apple iOS devices have seen a significant increase in technical
capabilities since the first version in 2007. The processor has moved
from 32-bit to 64-bit, and from single core to multi-core. RAM has
been increased by a factor of 8 or 16, and the camera from 2 MP to 8

MP. The technical specifications of the first iPhone and the currently
latest iPhone and iPad models are shown in table 4.1. A complete
table with detail for all models can be found in appendix A. There are
also some characteristics not covered in the table, like RAM type. The
first model featured LPDDR DRAM, while the latest models features
LPDDR3 DRAM, which provides significantly faster memory access.
The processor core has also been significantly upgraded, from a single
core 412 MHz processor to a multi-core 1.4 GHz 64-bit processor, and
the architecture of the processor core is quite different. The camera
has also seen some significant improvements, not only in the number
of pixels covered. The optics in the camera has been improved in
almost each model. As stated in chapter 1, the increase in hardware
capabilities leads us to believe that the time is right for exploring the
ALPR task on a mobile device.

4.2 operating system , sdk , and language 49

model year processor ram

iPhone 2007 412 MHz, 32-bit 128 MB

iPhone 6 2014 2x1.4 GHz, 64-bit 1 GB

iPad Air 2 2014 3x1.5 GHz, 64-bit 2 GB

model gpu photos video battery

iPhone 103 MHz 2 MP f/2.8 n/a 1400 mAh

iPhone 6 4x450 MHz 8 MP 1.5µ f/2.2
1080p

1810 mAh
30-240 fps

iPad Air 2 8x450 MHz 8 MP
1080p

7340 mAh
30-240 fps

Table 4.1: iOS device specifications.

As seen from table 4.1, the iPad Air 2 is significantly more pow-
erful than the iPhone 6. The battery capacity is also superior, but it
must be taken into account that the iPad has a much larger screen,
and will use more power than the iPhone. The size of the device is
also something that must be taken into account. The ALPR system
should be able to run on a mobile device that could be carried by a
person that would want to inspect LPs in a public space. Table 4.2
shows their heights, widths, depths and weights. The iPad Air is
substantially larger and heavier than the iPhone 6, but the increased
processing power may be necessary to provide satisfactory results
from the ALPR system. The decision on whether to use the iPhone 6

or the iPad Air 2 will be made at a later time; the architecture of the
platform allows for a system that is interchangeable between iPhones
and iPads. It is therefore prudent to wait until after some testing has
been performed before making a final decision.

4.2 operating system , sdk , and language

The iOS platform’s main programming language is Objective C. Ob-
jective C is a superset of C, and is object oriented and has a dynamic

50 mobile platform : ios

model height width depth weight

iPhone 6 138.1 mm 67.0 mm 6.9 mm 129 g

iPad Air 2 240 mm 168.5 mm 6.1 mm 444 g

Table 4.2: Weight and size of iOS devices.

runtime. The main compiler for Objective C on iOS is Clang backed
by LLVM. Being a superset of C, Objective C also supports regular C
code, and has also capabilities for embedding C++ code. Even though
the C++ syntax has some major differences from Objective C, a com-
bined language called Objective C++ exists to bridge the gap between
the two languages. There are some limitations to what functionality is
available in Objective C++, it does not include the full power of each
language. Rather, it functions as a means to stitch together different
parts of an application.

The technologies available in the iOS SDK is packaged as frame-
works (Apple Inc. (2014)). Additionally, the operating system is based
on a layered structure, where each layer provides another level of ab-
straction from hardware. Each of the frameworks reside in one of the
four layers, an overview of the layers are shown in figure 4.1. The
top layer contains all of the frameworks related to user interfaces and
most software pattern related methods, while the lower levels provide
interfaces to hardware like the camera, bluetooth antenna, and even
processor scheduling. Code pertaining to each layer may commu-
nicate with lower layers as needed. The most important framework,
the Foundation framework, is available through all layers, and among
other things defines the most basic data types. The most important
layer in an ALPR context is the media layer. The media layer contains
graphics, audio and video frameworks, and allows us to interface
with all of the relevant hardware on the device. Among the graphics-
related frameworks we have Metal and OpenGL ES. OpenGL ES is a
subset of the traditional OpenGL made for embedded systems. Metal
is a similar type of framework, but is based on Apple’s own technolo-
gies, and is claimed to be much more efficient. Both frameworks give
us the possibility of dispatching code to the graphics processing unit
(GPU) of the device. Unfortunately, using third-party libraries for

4.3 external libraries and frameworks 51

Core OS

Core Services

Media

Cocoa Touch

Figure 4.1: Architecture of the iOS operating system.

Metal and OpenGL is not possible without major adjustments to the
source code.

For our ALPR system, the most important frameworks will be
UIKit, Grand Central Dispatch, and AV Foundation. UIKit is a frame-
work for user interface components and classes that emphasize the
Model-view-controller pattern and the delegate-pattern. Grand Cen-
tral Dispatch gives us fine-grained multi-threading, and provides ease-
of-use functions for dispatching operations on multiple threads. AV
Foundation is the framework that gives us access to the device’s cam-
era, and is used to set up a video capture and configure the camera’s
settings.

4.3 external libraries and frameworks

To ease the development of the system prototype we have used two
prominent third party libraries. Both are available as open-source
code, and can be found on the web (Itseez (2014); Google Inc. (2015)).
When using third party libraries the notion of frameworks becomes
especially useful, as it enables us to include a whole library as a single
package, that is compiled and ready to be linked into the application
we are building. There are many different package managers avail-
able, we have used the CocoaPods package manager since both these
libraries are available there. It also allows for specifying specific ver-
sions of the third party software, and handles any dependencies to
any other third party libraries.

52 mobile platform : ios

4.3.1 OpenCV

OpenCV is a large library created for various computer vision ap-
plications (Itseez (2014)). The library is maintained by a company
named Itseez, and has over 2500 optimized implementations of vari-
ous computer vision and machine learning algorithms. Many of the
standard image processing techniques like binarization, Hough trans-
form, and convolution are implemented, as well as more complicated
methods like object detection, ANNs, and SVMs.

4.3.2 Tesseract OCR

The Tesseract OCR (Smith (2007); Google Inc. (2015)) software was
originally started as a PhD research project in 1984 at HP, and was
developed there until 1994. The software was not released until 2005,
when it was made available as an open source project. Google then
decided to continue it’s development, and has maintained the soft-
ware ever since. The software was initially intended for use on scan-
ners, but has since been adopted for more advanced use. Some of the
steps used in the algorithm was not released as open source, and as
an effect the Tesseract OCR engine assumes that it’s input images is
already binarized as black text on white background. Tesseract is also
written in C++, and is regarded as one of the top OCR engines today.
Trained data is provided with the software, but it is also possible to
train Tesseract to a specific domain. On the tests referenced in Smith
(2007), the recognition rate lies at approximately 98%.

5

S Y S T E M M O D E L

The prototype created for this thesis is implemented for iOS 8, and
runs on both iPhone and iPad models. Both the OpenCV library
and the Tesseract OCR library has been used in developing this pro-
totype. Each stage of the ALPR task has some defined inputs and
outputs, so that interchanging implementations for a given stage can
be done without altering the rest of the system. Additionally, ALPR
calculations are done asynchronously and on dedicated threads. The
main thread of an iOS application will take care of all user interface-
related tasks, and so it is a good practice to keep heavy calculations
away from this thread. Another motivation for asynchronous dedi-
cated threads is to be better able to measure efficiency. Lastly, while
processing a video stream it is desirable to process as many frames
as possible. By using a dedicated thread it is easy to see if the thread
is still processing some previous frame when a new frame arrives
from the camera. This allows for discarding frames that cannot be
processed in real time.

The data set used by the model contains a training set of 2250 pos-
itive images and 4354 negative images, and a test set of 546 images
of Norwegian LPs. Additionally, a set for training OCR was created
from the training set images, totaling 5162 segmented images of char-
acters.

5.1 license plate detection

The first stage in the ALPR task is LP detection. Two different ap-
proaches has been selected for this task, one based on a cascade clas-
sifier and the other based on searching a color difference edge image
from trichromatic imaging.

5.1.1 Cascade Classifier using features

OpenCV has an implementation of the cascade classifier described by
Viola and Jones (2001) using Haar-like features. MB-LBP features are

53

54 system model

also included, the implementation is based on Liao et al. (2007). There
are some small differences between the training implementation in
OpenCV and the implementations described by Viola and Jones and
Liao et al.. Both papers advocate for using a specific version of the
AdaBoost algorithm, while the OpenCV implementation allows the
user to select between four different variations. Moreover, some pa-
rameters allows for slightly different classifiers, like tree depth. Tree
depth denotes if each AdaBoost classifier can be a decision tree or a
stump, which is effectively one classifier. It is also possible to limit
the maximum number of classifiers allowed in each stage. The orig-
inal cascade classifier training algorithm by Viola and Jones is set to
terminate when the entire cascade reaches a minimum defined hit
rate, or a maximum defined false alarm rate. The hit rate denotes the
rate of true positive classifications to all positive training examples.
Similarly, the false alarm rate denotes the rate of false positive clas-
sifications to all negative training examples. The OpenCV training
implementation differs in defining the number of stages in the cas-
cade explicitly, while the Viola and Jones version adds as many stages
that are necessary to reach globally specified minimum hit rate and
maximum false alarm rate.

Since training is a very time-consuming effort — training a 15-stage
cascade classifier takes at least two weeks on a normal modern per-
sonal computer — a computer provided by NTNU was used for train-
ing the different classifiers. This machine has 32 Intel Xeon 2.6 GHz
processors, and has 128 GB RAM. Using such a machine reduces train-
ing time from weeks to days, normal training time for a Haar-like
feature based cascade classifiers is around two days.

The OpenCV library also includes an application for generating
new positive training images. This is done by rotating the image
around the x, y, and z-axes, and by applying illumination variations
and distortions. From our training set of 2250 images we have trained
several different classifiers with different numbers of positive training
examples and different numbers of stages to investigate the effects on
accuracy. Given the nature of the algorithm when using a trained clas-
sifier for detection, we expect that an increased number of stages will
negatively affect efficiency. Table 5.1 shows the different variations in
number of positive training examples and number of stages used.

5.1 license plate detection 55

pos . ex . feature type # stages

5000 Haar-like 12

5000 Haar-like 15

5000 MB-LBP 12

5000 MB-LBP 15

10000 Haar-like 12

10000 Haar-like 15

10000 MB-LBP 12

10000 MB-LBP 15

All classifiers were trained with the same number of negative
examples, 4354. Additionally, all classifiers were trained with the

same minimum hit rate of 99.5 % and maximum false alarm rate of
50 %.

Table 5.1: Trained cascade classifiers.

5.1.2 Color difference edge image and filtering

Many different ALPR systems utilize edge information in candidate
images to locate an LP. Due to the nature of the characters present
in the LP, the region normally presents as a rectangle of dense edge
information. By using a color difference edge image the noise in the
image can be considerably reduced, and finding regions of interest
may be an easier task. Yang et al. (2012) presents an algorithm for
calculating the color difference edge image and subsequently filtering
and searching the resulting image for regions of interest. Filtering is
done by smoothing the image with an appropriately sized kernel,
followed by a binarization. The procedure for searching is shown in
algorithm 5.1.

Our implementation of this technique has some slight modifica-
tions. Line 4 in algorithm 5.1 states that the rectangle should be seg-
mented out of the original image; our variation does not segment out
the region and the image is left the same. This is done to avoid prema-
turely extracting components from the image that may in following
row analyses turns out to be adjacent to additional components, i.e.
part of a larger region of interest. Additionally, the rectangles that are
marked as regions of interest may be very close to each other, some of

56 system model

Algorithm 5.1 Locating regions of interest within a color difference
edge image, adapted from Yang et al. (2012).

I is a candidate image possibly containing an LP.
n1 is the minimal number of LP characters.
d1 is the maximal interspacing between LP characters.
(a⇥ b) ranges from the minimal to the maximal LP size.

1: for every row R in I do

2: if R traverses � n1 adjacent connected components and inter-
spacing d1 then

3: if the adjacent connected components can be enclosed by a
rectangle (a⇥ b) then

4: segment the rectangle out of the image
5: mark the rectangle as a region of interest
6: end if

7: end if

8: end for

them even overlapping. Another modification is therefore to merge
overlapping or touching regions of interest. The entire algorithm is
shown in algorithm 5.2, and an example result is shown in figure 5.1.

5.2 character segmentation

Two different implementations have been explored for character seg-
mentation, one inspired by the method described by Zheng et al.
(2013), and another inspired by the SCW-method of Anagnostopoulos
et al. (2006).

5.2.1 Statistical character segmentation

Statistical character segmentation is done by purely analyzing statis-
tical characteristics for a region of interest. The algorithm is closely
based on the character segmentation described by Zheng et al. (2013).
The basic flow of the algorithm is to use a horizontal projection vector
for a Sobel edge image to estimate character baseline and cap height
to crop away the top and bottom of the image. Further, a binarized
image (using Otsu’s method) creates a vertical projection vector that
is used to estimate character regions. Each region is analyzed with

5.2 character segmentation 57

Algorithm 5.2 Modified finding location of regions of interest within
a color difference edge image, modified from Zheng et al. (2013).

I is a candidate image possibly containing an LP.
n1 is the minimal number of LP characters.
d1 is the maximal interspacing between LP characters.
(a⇥ b) ranges from the minimal to the maximal LP size.

1: will contain marked regions
2: for every row R in I do

3: m is the number of connected components traversed by R.

4: if m � n1 then

5: C ∆ is an empty set representing the current region
6: for k = 1 to m do

7: ck is the k-th connected component traversed by R
8: if distance from ck to ck�1 d1 and k < (m� 1) then

9: C C [ci
10: else

11: if |C| � n1 and C can be enclosed by a rectangle (a⇥ b)
then

12: Find the smallest (a⇥ b) enclosing all c 2 C.
13: W W [(a⇥ b)
14: end if

15: C ∆
16: end if

17: end for

18: end if

19: end for

20: Project every rectangle in W onto an image P that has the same
size as I

21: Find all contours Q in P
22: Mark rectangles enclosing contours in Q as regions of interest

58 system model

Figure 5.1: License plate location using color difference edge image.

CCA, and the connected components are filtered with the following
rules and actions:

• If the upper boundary is different from the overall upper bound-
ary, the component is discarded.

• If the inverse aspect ratio
⇣

1
aspect ratio

⌘
is > 0.8 or < 0.3, the

component is discarded.

• If the area of the component is more than one sixth of the whole
image size, it needs further segmentation.

• If any two neighbor segments’ widths are smaller than 66.66 %
of the average character width, the segments are joined together.
However, if the joined segment has a width 33.33 % greater than
the average character width, the joining is not done after all.

The original algorithm has some ambiguities regarding the filtering
rules. One of the rules states that a component needs further segmen-
tation if it’s size exceeds one sixth of the image’s size, but there is not
given any account of what this actually entails. A possible solution is
to increase the threshold found when using Otsu’s method for bina-
rizing the image, and run CCA and the filtering rules again for this

5.2 character segmentation 59

particular region. Another unclear aspect is how the upper boundary
of the components are compared in the first rule. The wording used
suggests that the upper boundaries must be within a certain range,
but there is no mention of the components’ height or the lower bound-
ary of the components. Moreover, the estimation of character baseline
and cap height is not accounted for. The use of a horizontal projec-
tion vector is discussed, but how it’s values are used is not mentioned.
The example projections shown in the paper are free from noise, giv-
ing a good estimation of the characters, but there is no mention of
possible noise that may be present.

Our algorithm addresses some of these issues. We propose using a
non-zero threshold for estimating character baseline and cap height.
Additionally, when filtering connected components, some different
rules are used. The rule regarding the upper bound of the characters
use mean values and standard deviation to identify outliers, and we
also include the same evaluation for the lower bounds of the compo-
nents. A new metric regarding fill percent is also introduced, putting
a constraint on how many pixels a component may occupy within it’s
bounding rectangle. The edge image of the region is also considered,
requiring that the component traverses some edge in the correspond-
ing edge image.

After filtering is done we propose adding a second phase of the
algorithm, to enhance accuracy in this stage of the ALPR task, as well
as the next. The objective of this phase is to correct rotated regions,
so that components that does not conform to the baseline and cap
height of the other segments may be removed. Having right aligned
character segments will also have a positive effect on the character
recognition stage. If all characters have the same alignment there will
be less room for variation within each character class, and it should
be an easier task to discriminate between them. Some related meth-
ods argue that correcting orientation is an expensive task, since it
will require resampling of the region. Some initial tests does how-
ever reveal that the operation can be executed efficiently. We found
that correcting orientation takes 2.3 ms on average using an iPhone
6. In light of this information we find that correcting orientation is
an operation that can be included. Given the nature of the algorithm
it is also natural to consider orientation correction at this particular
point in the process. Earlier in the process the image is still popu-
lated with potentially many non-character segments, and trying to

60 system model

estimate a correction angle would involve a substantial amount of
noise. Estimating orientation correction at a later point in the process
would also prove difficult, as the character regions’ spatial informa-
tion does not follow into the next ALPR stage. Orientation correction
is done by estimating a rotation angle using least squares estimation
of the segments’ center points. The image is rotated so that the es-
timated rotation angle is level. It is prudent to repeat some of the
earlier steps in the algorithm after the rotation, since the rotation will
involve resampling the image. We propose performing CCA again to
find components that are potential character segments, and use the
filtering rules for upper and lower bounds, and fill percent to remove
those that are most likely non-character segments. The entirety of the
method is shown in algorithm 5.3.

5.2.2 Sliding concentric windows

Anagnostopoulos et al. (2006) describes in an algorithm for using
SCW for character segmentation. Our implementation is inspired
by this method, but has been extended to account for remaining non-
character elements. The original algorithm is described in algorithm
5.4. SCW is run on a region, and each component produced from
SCW must meet some criteria to be kept in the image. Then, a sta-
tistical analysis involving standard deviation and mean value of the
horizontal and vertical projections estimate bounding rectangles of
the components that are left in the image.

Our modified algorithm, algorithm 5.5, follows many of the same
steps. The component criteria check is modified to check the area
and height of each components bounding rectangle. Then, a orien-
tation correction is performed to account for rotated regions. The
original statistical analysis to find bounding rectangles is kept, but
the extracted components are subject to an additional round of filter-
ing. Here, their aspect ratio and fill-percent are checked to ensure
that as few as possible false positives are produced.

5.3 character recognition

The character recognition stage is implemented with three different
variations, ANN classifier, SVM classifier, and Tesseract OCR. An ex-
ample of training data characters is shown in figure 5.2.

5.3 character recognition 61

Algorithm 5.3 Statistical character segmentation, modified from
Zheng et al. (2013).

I is a region of interest, possibly containing an LP.
a, b, g, z are empirically found constants.

1: Ir Sobel edge image of I.
2: hr horizontal projection of Ir.
3: y1, y2 the start and the end of the longest consecutive range

where elements in hr > a.
4: Remove row numbers < y1 and > y2 from I.
5: Ib I binarized with Otsu’s method.
6: vIb vertical projection of Ib.
7: R Ib split into regions using start and end indices of non-zero

consecutive ranges in vIb .
8: C components found from CCA on all regions 2 R.
9: µu, µl , su, sl upper and lower bound mean and standard devia-

tion values for all c 2 C.
10: for each component ck 2 C do

11: if |upperBound(ck)� µu| > 2su or |lowerBound(ck)� µl | > 2sl
then

12: remove ck from Ib.
13: else if aspectRatio(ck) > 0.9 or aspectRatio(ck) < 0.2 then

14: remove ck from Ib.
15: else if area(ck) > 1

6area(I) or area(ck) < g or

fillPercent(ck) > z then

16: remove ckfrom Ib.
17: else if ck does not traverse any edge in Ir then

18: remove ck from Ib.
19: end if

20: end for

21: f estimated baseline angle found using least squares estima-
tion on components left in Ib.

22: Ib Ib rotated with angle �f.
23: C components found from CCA on Ib.
24: µu upper bound mean value for all c 2 C.
25: su upper bound standard deviation for all c 2 C.
26: for each component ck 2 C do

27: if |upperBound(ck)� µu| > 2su or |lowerBound(ck)� µl | > 2sl
or fillPercent(ck) > z1 or fillPercent(ck) < z2 then

28: remove ck from C.
29: end if

30: end for

31: Create character segments from components in C

62 system model

Algorithm 5.4 Character segmentation by sliding concentric win-
dows, adapted from Anagnostopoulos et al. (2006).

I1 is a region of interest, possibly containing an LP, resized to
228⇥75 pixels.

1: for each pixel pk in I1 do

2: run SCW with inner window size 5⇥11, outer window size
9⇥21, statistical measure standard deviation, and threshold
0.7.

3: end for

4: I2 the resulting image of SCW.
5: I3 the inverse image of I2.
6: C components found from CCA on I3.
7: I4 an empty image with the same size as I3.
8: for each component ck 2 C do

9: if orientation(ck) > 75° and height(ck) > 32 then

10: copy ck into I4.
11: end if

12: end for

13: vI4 vertical projection of I4.
14: hI4 horizontal projection of I4.
15: C components in I4 that fall within the bounds of standard

deviation of vI4 and hI4 .
16: Create character segments from components in C.

Figure 5.2: Character recognition training data example.

5.3 character recognition 63

Algorithm 5.5 Character segmentation by sliding concentric win-
dows, modified from Anagnostopoulos et al. (2006).

I1 is a region of interest, possibly containing an LP, resized to
228⇥75 pixels.
a, b are empirically found constants.

1: for each pixel pk in I1 do

2: run SCW with inner window size 3⇥3, outer window size
7⇥7, statistical measure standard deviation, and threshold
0.95.

3: end for

4: I2 the resulting image of SCW.
5: I3 the inverse image of I2.
6: C components found from CCA on I3.
7: I4 an empty image with the same size as I3.
8: for each component ck 2 C do

9: if area(ck) <
1
5area(I3) and height(ck) < a then

10: copy ck into I4.
11: end if

12: end for

13: f estimated baseline angle found using least squares estima-
tion on components in I4.

14: I5 I4 rotated by angle �f.
15: C components found from CCA on I5.
16: vI5 vertical projection of I5.
17: hI5 horizontal projection of I5.
18: C components in I5 that fall within the bounds of standard

deviation of vI5 and hI5 .
19: for each component ck 2 I5 do

20: if aspectRatio(ck) > 1 or aspectRatio(ck) < 0.25 or

fillPercent(ck) < b1 or fillPercent(ck) > b2 then

21: remove ck from C.
22: end if

23: end for

24: Create character segments from components in C.

64 system model

5.3.1 Artificial neural network

The artificial neural network is implemented using OpenCV, and is
trained with a training set of 5162 segmented images of characters.
Training and classification is done using three-feature vectors:

1. The first feature is a horizontal projection of the character re-
gion, resized to 38 pixels.

2. The second feature is a vertical projection of the character re-
gion, resized to 27 pixels.

3. The third feature is the entire image laid out as a vector, resized
to 10⇥14 pixels.

The entire feature vector is 38 + 27 + 10 · 14 = 205 elements. The
topology of the network is chosen as a direct result of the size of the
feature vector and the number of classes. The network is an MLP,
and has three layers. The input layer has 205 nodes, while the hidden
layer and the output layer has 30 nodes, one for each possible class.
Note that the set of 30 classes is complete, some letters are not part
of the Norwegian LP format. The network is trained using the back-
propagation algorithm (Russell and Norvig (2003)). A symmetrical
sigmoid function

f (x) = b
1� e�ax

1 + e�ax (5.1)

is used as the activation function in the network, the function is
shown in figure 5.3. Initial tests shows that the network performs
best with the parameters a and b set to 1.

5.3.2 Support vector machine

An SVM is implemented using OpenCV, and is trained with the same
training set as the ANN. Feature vectors are also computed in the
same manner. The SVM uses a linear kernel function, and is con-
figured for soft margins, a property of C-support vector machines
(Chang and Lin (2011)). Soft margins means that adjustments of sup-
port vectors will allow training examples to reside on the wrong side
of a support vector, but is given a penalty score (multiple of C) for
doing so. Using soft margins can help steer the classifier away from

5.3 character recognition 65

�1 �0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

Figure 5.3: Symmetrical sigmoid function (equation 5.1), here with b =
1, a = 8

overfitting a training set. The classifier is trained with the one-against-
one strategy, which trains k(k � 1)/2 classifiers for k classes, where
each classifier is trained to distinguish between two given classes.

5.3.3 Tesseract OCR

Tesseract OCR can be configured for many different use-case scenar-
ios of OCR, in this case it is configured for single character recogni-
tion. Tesseract can be trained manually, or it can be used with some
training data that is available from the website (Google Inc. (2015)),
which is used here. Another training data file, from the open source
project OpenALPR by New Designs Unlimited, LLC (2015), is also
used. The latter is trained for European LPs, while the former is
trained for general OCR on characters in the English alphabet.

6

R E S U LT S A N D E VA L U AT I O N

This chapter contains the results for each of the three stages in the
ALPR task. Each stage has two different implementations, as dis-
cussed in chapter 5. Additionally, the results will be interpreted and
evaluated. To evaluate the ALPR system we use two test sets. The
first test set contains 546 annotated images, and is used on the first
two stages of the ALPR task. The tests are carried out for three of the
most common image sizes on the iPhone and iPad models: 640⇥480

pixels, 1280⇥720 pixels, and 1920⇥1080 pixels. The second test set
contains 5162 character segments, and is used in cross-validation to
train and test the third stage of the ALPR task.

6.1 license plate detection

License plate detection is done with two different techniques, a cas-
cade classifier and a filtering method based on a color difference edge
image. We evaluate the accuracy of the methods as the number of
true positive detections, measured as the opposite of the number of
false negative detections. In order to further assess the quality of
each method we also evaluate the number of false positives detected
in the test set. False positives are recorded whenever a detected rect-
angle overlaps less than 75 % of the correct rectangle for an LP. It
could be argued that false positives should count towards the clas-
sifiers accuracy. In this case we leave the false positives out of the
accuracy calculation, because a false positive could be discarded at a
later stage. Moreover, we deem it better to falsely detect an LP, and
displaying a bogus LP to a user, rather than missing an LP. If a system
misses too many LPs it is decidedly not useable, while a system with
some false positives is still useable. Even so, our aim is to minimize
false positives, and a method with too many false positives must be
discarded.

67

68 results and evaluation

6.1.1 Cascade classifier

Since the cascade classifier is trained, it is largely dependent on it’s
training data and training method. The cascade classifier method has
been tested with Haar-like features and MB-LBP-features, and vary-
ing degrees of training examples. The original publication by Viola
and Jones (2001) suggests that the classifier needs a fairly large train-
ing set — 9832 positive examples — whereas the ALPR system by
Zheng et al. (2013) uses only 305 positive examples for training. The
number of stages in a classifier is also an important property. While
fewer stages leads to faster training and classification, adding stages
can help filter out false positives. There is however a risk of overfit-
ting for the training set if the number of stages is set too high. Each
classifier can be adjusted with a filtering parameter, which decides
how many suspected true positive rectangles are needed in a region
to produce a detection. The filtering is not a linear process, there is
a nonlinear calculation that pertains to the rectangles’ center of mass,
and interspacing. Consequently it is very hard to analytically find a
best filtering. Instead we have used a method inspired by the gradi-
ent descent algorithm to find the filtering that minimizes the sum of
false negatives and false positives, while having the fewest number of
false negatives. Figure 6.1 shows how the false negative and false pos-
itive numbers decline and increase with the filtering parameter. The
marked out intersection shows the minimum sum of false negatives
and false positives. Table 6.1 shows the results for the different com-
binations of positive examples and feature types. The abbreviations
FP and FN stands for false positive and false negative.

The best results for each training set size in table 5.1 are marked
out as bold. We observe that for all image sizes the 15-stage MB-LBP
classifier has the highest accuracy. Additionally, the classifier trained
with 10000 training examples has the lowest number of false positives
for every image size. The test results also shows that the MB-LBP
feature significantly outperforms the Haar-like feature for any given
combination of image size, number of stages, and number of positive
training examples. The number of false negatives produced by MB-
LBP features are significantly lower than that of the Haar-like features,
and the number of false positives are also lower in almost every case.

6.1 license plate detection 69

pos . ex . # stages haar-like mb-lbp

5000

12

FN: 30, FP: 40 FN: 16, FP: 13

94.51 % 97.07 %

15

FN: 14, FP: 14 FN: 8, FP: 8
97.44 % 98.53 %

10000

12

FN: 37, FP: 32 FN: 11, FP: 22

93.22 % 97.99 %

15

FN: 16, FP: 16 FN: 7, FP: 3
97.07 % 98.72 %

(a) Accuracy for 480⇥640 pixel test images.

pos . ex . # stages haar-like mb-lbp

5000

12

FN: 58, FP: 34 FN: 16, FP: 17

89.38 % 97.07 %

15

FN: 29, FP: 11 FN: 7, FP: 14
94.69 % 98.72 %

10000

12

FN: 46, FP: 32 FN: 31, FP: 26

91.58 % 94.32 %

15

FN: 28, FP: 19 FN: 14, FP: 13
94.87 % 97.44 %

(b) Accuracy for 1280⇥720 pixel test images.

pos . ex . # stages haar-like mb-lbp

5000

12

FN: 66, FP: 83 FN: 21, FP: 44

87.91 % 96.15 %

15

FN: 42, FP: 24 FN: 13, FP: 17
92.31 % 97.62 %

10000

12

FN: 63, FP: 77 FN: 39, FP: 43

88.46 % 92.86 %

15

FN: 45, FP: 28 FN: 15, FP: 8
91.76 % 97.25 %

(c) Accuracy for 1920⇥1080 pixel test images.

Table 6.1: Cascade classifier accuracy results for license plate detection.

70 results and evaluation

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

Filtering strictness

N
um

be
r

of
oc

cu
rr

en
ce

s

FN
FP

FN+FP

Figure 6.1: Estimation of best filtering parameter for cascade classifier

6.1 license plate detection 71

Figure 6.2: Examples of cascade classifier detections. The green rectangles
represent the correct rectangle for the LP, the red rectangles rep-
resents the detected rectangle.

6.1.2 Color difference edge image and filtering

The color difference edge image filtering method is implemented as
described in algorithm 5.2. The parameters n1, d1 and (a ⇥ b) are
estimated using the same gradient descent inspired technique men-
tioned in the previous section. Although the parameters initially have
a strong connection to reality, initial tests reveal that setting them to
real-world values does not provide a decent LP location. d1 is also de-
pendent on the expected size of the LP, so that varying the parameter
is necessary to be able to test for different image sizes. The results
from the method are shown in table 6.2.

We observe that the accuracies are significantly lower than all of
the cascade classifiers, and that the number of false positives are
alarmingly high. With these high false positive rates, about one in
every five detections are false positives. We speculate that one of the
reasons for these high numbers of false positives is the filtering al-
gorithm applied to the color difference edge image. While the edge
image produced by the method contains significantly less noise than
a Sobel edge image, the method in itself is still not able to correctly

72 results and evaluation

image size accuracy

640⇥480

FN: 123, FP 154

77.47 %

1280⇥720

FN: 112, FP: 106

79.49 %

1920⇥1080

FN: 64, FP: 339

88.27 %

Table 6.2: Color difference edge image filtering accuracy results for license
plate detection.

filter out non-LP elements, and correctly identify regions of LP ele-
ments. Figure 6.3 shows an example of a false positive detection. The
white regions marked out in the image are the elements that are left
after filtering is done, and the red rectangles are the detected regions.
The front lights of the car in the image creates elements that are not
filtered out by the algorithm, and their semi-parallel nature produces
a detection. Another problem with the method arises when an LP is
dirty, or the image has washed out colors. Since the method is depen-
dent on quantizing color difference, some LPs are not detected when
the contrast between characters and plate is too low.

Given these results, it is clear that the cascade classifier is the best
alternative for the LP detection stage.

6.1.3 Efficiency

The efficiency, i.e. the average processing time, is measured as the
average time needed to detect rectangles for every example in the
test set. There is possibly some overhead processing included in the
given times, but still, it gives us a clear indication of how the different
classifiers compare. In a real-world application it is natural to account
for some overhead, since the application would in any case need to
do some work that is not strictly pertinent to the ALPR task. Table 6.3
shows the average processing times for each of the cascade classifiers,
tested on an iPhone 6. The table shows that the image size has a
significant effect on the processing time, as expected. The average
processing time scales almost linearly given the number of pixels in

6.2 character segmentation 73

Figure 6.3: Example of false positive detection by Color difference edge im-
age filtering.

an image. By comparison, the classifiers use about a third of the
processing time when tested on a notebook computer (2.5 GHz Intel
i7, 16 GB RAM). The color difference edge image filtering method
has already been discarded due to it’s low accuracy, but it is worth
mentioning that it also shows efficiency 3 to 4 times slower than the
cascade classifier.

6.2 character segmentation

The character segmentation stage has two different implementations.
One is solely based on statistical analysis of the region (algorithm 5.3),
while the other is based on SCW followed by a statistical analysis (al-
gorithm 5.5). In this stage we still analyze false positives and false
negatives, to get a clearer picture of how the different methods work
for the test set. Unlike the previous stage, false positives and false
negatives are both viewed as errors. Two different metrics are used
to evaluate accuracy, character accuracy and LP accuracy. Character
accuracy denotes how many of the total number of characters in the
test set that are successfully segmented, while LP accuracy denote
how many of the LPs in the test set have all their characters success-

74 results and evaluation

pos . ex . # stages haar-like mb-lbp

5000

12 46.15 ms 33.53 ms
15 44.55 ms 31.36 ms

10000

12 42.90 ms 34.96

15 43.69 ms 32.89 ms
(a) Efficiency for 640⇥480 pixel images.

pos . ex . # stages haar-like mb-lbp

5000

12 164.94 ms 111.83 ms
15 157.13 ms 108.58 ms

10000

12 148.46 ms 116.06 ms
15 152.95 111.08 ms

(b) Efficiency for 1280⇥720 pixel images.

pos . ex . # stages haar-like mb-lbp

5000

12 419.95 ms 292.97 ms
15 401.42 ms 276.69 ms

10000

12 371.14 ms 308.59 ms
15 383.61 ms 293.54 ms

(c) Efficiency for 1920⇥1080 pixel images.

Table 6.3: License plate location efficiency results.

6.2 character segmentation 75

image size . fn fp char . acc . lp acc .

640⇥480 224 43 93.01 % 83.88 %

1280⇥720 212 33 93.59 % 86.08 %

1920⇥1080 192 38 93.98 % 87.00 %
(a) Statistical character segmentation.

image size . fn fp char . acc . lp acc .

640⇥480 289 97 89.90 % 64.65 %

1280⇥720 101 147 93.51 % 71.43 %

1920⇥1080 106 133 93.74 % 72.89 %
(b) Sliding concentric windows.

Table 6.4: Character segmentation accuracy results.

fully segmented with no false positives. The main difference between
these two metrics is that the character accuracy will enlighten a gen-
eral notion of segmentation capabilities, while the LP accuracy gives
more information about how well these methods will work for the
ALPR task. The results from the tests are shown in table 6.4.

We observe that the two different methods have their faults in dif-
ferent ways. The statistical character segmentation’s errors largely
comes from false negatives. In comparison, the SCW method has a
less uneven distribution of false negatives and false positives. The
character accuracy for the SCW presents as slightly better than the
statistical character segmentation. However, by looking at the LP ac-
curacy it is clear that the statistical character segmentation is far better
suited for the ALPR task. The average processing times for each of
the methods, shown in table 6.5, shows that the methods also differ
significantly in efficiency. The processing times were tested on an
iPhone 6. The SCW method is not very affected by the image size,
since the region is resized to a given format before the algorithm is
run. The poor accuracy of the SCW method makes it clear that the
statistical character segmentation is superior to the SCW approach.
Even so, we remark that the LP accuracy leaves something to be de-
sired.

76 results and evaluation

image size . stat. reg . seg . scw

640⇥480 11.92 ms 15.67 ms

1280⇥720 19.39 ms 15.99 ms

1920⇥1080 24.02 ms 16.10 ms

Table 6.5: Character segmentation efficiency results.

(a) Correct segmentations

(b) Incorrect segmentations

Figure 6.4: Examples of character segmentations. The red rectangles repre-
sent the outline of the segmented character regions.

6.3 character recognition 77

method accuracy efficiency

MLP 98.67 % 0.08 ms /char.

SVM 99.56 % 0.16 ms /char.
(a) 5-fold cross-validation.

method accuracy efficiency

MLP 98.79 % 0.09 ms /char

SVM 99.60 % 0.16 ms /char.
(b) 10-fold cross-validation.

method accuracy efficiency

Tesseract eng. 90.36 % 5.01 ms /char.

Tesseract EU 92.93 % 3.14 ms /char.
(c) Tesseract

Table 6.6: Character recognition accuracy and efficiency results.

6.3 character recognition

Character recognition has two different implementations, an MLP net-
work, and a multi-class SVM. To evaluate the implementations, and
form a baseline for wanted accuracy and efficiency, we also include
the Tesseract OCR engine. Since the two implementations require
training, we use k-fold cross-validation to train and test. k-fold cross-
validation splits the data set into k subsets, and each subset is in turn
used for testing while all other subsets are used for training. This al-
lows for using the entire data set for both training and testing, while
still keeping training and testing data completely separated in each
fold. Tesseract is used with it’s provided training data, allowing it to
consume the entire data set as test data. Table 6.6 shows the accuracy
and efficiency of the two implemented methods and two different
Tesseract versions. All of the tests were executed on an iPhone 6. The
English version of Tesseract is used with it’s provided training data,
while the European version of Tesseract is used with training data
produced by New Designs Unlimited, LLC (2015).

We observe that both the implemented classifiers are significantly
more accurate than Tesseract, and that efficiency is also significantly

78 results and evaluation

faster. The European version of Tesseract is much more suited for
the Norwegian LPs, both in terms of accuracy and efficiency. There
is however such a large performance gap to the SVM and the MLP
classifiers that Tesseract can easily be discarded. The SVM implemen-
tation offers a higher accuracy than the MLP, but the efficiency is
about half for both the 5-fold and the 10-fold tests. For an average
Norwegian license plate with 7 characters the difference between the
two methods is likely less than 0.6 ms, which is insignificant if we
compare to the expected efficiency of the other stages. We choose to
use the SVM for character recognition because of it’s higher accuracy.
Figure 6.5 shows examples of character recognition done in the test
set, note the similarities between the letter D and the numeral 0 in
some of the examples.

6.4 putting it all together

To test the complete ALPR system we have created a final test that
uses the three above selected implementations. Each image in the
test set is tested, and whenever a stage is successful the result is
passed to the next stage. This means that stages 2 and 3 may not
be tested with the complete test set. We expect to see results that are
fairly similar to those presented in the previous sections, although
there are some variations in the methods. The character segmenta-
tion stage was in the previous section tested with the correct frame
for the given LP, but in this instance the segmentation stage will be
run with the frames that are detected by the first stage. Further, in
the previous sections we did not regard false positives as errors in the
LP detection stage, because a false positive could be discarded at a
later stage. Here the false positives will be discarded if the character
segmentation produces too few segments, and will be recorded as a
failed detection otherwise. Additionally, since the test set contains
only Norwegian LPs, we have used two separate SVMs to do charac-
ter recognition. The first 2 characters in a Norwegian LP are always
letters, and the following 4 or 5 are always numerals. This allows for
training two different classifiers, that can have a reduced set of classes
to classify. The main motivation for doing this is to avoid problems
with ambiguous characters, such as O-0, B-8, and I-1. As discussed in
section 5.3.2, the classifier is trained with the one-against-one strategy,
which produces an ensemble of k(k� 1)/2 classifiers. Reducing the

6.4 putting it all together 79

Figure 6.5: Examples of character recognition.

80 results and evaluation

method accuracy efficiency

LP detection 98.90 % 31.82 ms

Character segmentation 85.37 % 18.33 ms

Character recognition 99.13 % (95.88 %) 0.44 ms (1.05 ms)

Total 83.70 % 50.59 ms

(a) Results for 640⇥480

method accuracy efficiency

LP detection 99.09 % 109.09 ms

Character segmentation 84.32 % 24.33 ms

Character recognition 99.12 % (96.28 %) 0.45 ms (0.98 ms)

Total 82.97 % 133.87 ms

(b) Results for 1280⇥720

method accuracy efficiency

LP detection 98.18 % 266.56 ms

Character segmentation 84.26 % 25.97 ms

Character recognition 99.34 % (96.92 %) 0.45 ms (1.19 ms)

Total 82.78 % 292.98 ms

(c) Results for 1920⇥1080

Table 6.7: Complete ALPR system results.

number of classes will have a positive impact on the classifiers pro-
cessing time, since the processing time is quadratically dependent on
the number of classes.

The results for the complete tests are shown in table 6.7. Note that
the parenthesized accuracy and efficiency for character recognition
are the values produced by a single SVM for all character classes.

We observe that both accuracy and efficiency of the dual-SVM is
far better than the single SVM version (parenthesized in table 6.7).
Further we observe that all of the other efficiency results and accuracy
results cohere with the results from the previous sections. Image size
does not seem to have a significant effect on accuracy in any of the

6.5 evaluation 81

method size accuracy efficiency

Yang et al. (2012) 600⇥330 95.3 % 54 ms

Zheng et al. (2013) 640⇥480 96.4 % << 100 ms

Anagnostopoulos et al. (2006) 1024⇥768 96.5 % 111 ms

Proposed system 640⇥480 98.90 % 31.82 ms

Table 6.8: Performance of license plate detection in the literature.

three stages, and so we pragmatically select the smallest image size
as a reference result since it’s efficiency is by far the best.

6.5 evaluation

Tables 6.8, 6.9, and 6.10 shows how the proposed system compares to
the methods in the reviewed literature. A general observation is that
the proposed system is considerably more efficient than any of the
other methods. This may be due to recent advances in hardware. On
the other hand, the processing times given for the proposed system
are all from testing on an iPhone 6, which may be comparable with
older workstation computers with regards to processing power.

The method by Zheng et al. (2013) is the most similar method from
the literature to the proposed system’s LP detection stage. Zheng
et al. use a cascade classifier with 6 stages. The first 2 stages uses fea-
tures based on edge image statistics, while the 4 last stages are based
on Haar-like features. With these 6 stages, they are able to achieve
a good accuracy, and a reasonable efficiency. The proposed system
is based on the same cascade classifier algorithm, but uses 15 stages,
and is based on MB-LBP features. Our tests reveal that the MB-LBP
features can more efficiently and accurately discriminate LP regions
than the Haar-like feature are able to. This leads us to believe that
the accuracy achieved by Zheng et al. has a large contribution from
the first two edge statistics stages. Another detail that separates this
method from the proposed system is the use of edge images. Zheng
et al. uses Sobel edge images for both training and classification,
while the proposed system uses normal greyscale images. Initial tests
were done to investigate the promise of using edge images, but were
quickly discarded due to alarmingly high numbers of false positive
detections. Additionally, we found that using only 6 stages for both

82 results and evaluation

method size accuracy efficiency

Zheng et al. (2013) 640⇥480 98.82 % << 100 ms

Anagnostopoulos et al. (2006) 1024⇥768 89.1 % 37 ms

Proposed system 640⇥480 85.37 % 18.33 ms

Table 6.9: Performance of character segmentation in the literature.

MB-LBP and Haar-like features was infeasible due to the overwhelm-
ing number of false negative and false positive detections. The tests
done by Zheng et al. does not detail any specific processing times
for each of the stages in the ALPR task, but it is noted that the entire
task is completed in less than 100 ms. Given this, we believe that the
proposed system is at least as good as the method by Zheng et al.
(2013) with regards to efficiency, and is decidedly more accurate.

The color difference edge image filtering method of Yang et al.
(2012) produces very different results from the implementation ex-
plored in this system. Our tests revealed an accuracy of 88.27 % for
a modified implementation, while the tests by Yang et al. shows an
accuracy of 95.3 %. There is a notable discrepancy here, which is
not well understood. The modifications made to our implementation
strictly improved the results of the method, but still it is well away
from achieving the same accuracy claimed by Yang et al.. Moreover,
we note that there are some issues with the method, detailed in sec-
tion 3.1.1, that if not corrected would prevent the method from any
form of accurate detection. We suspect that there must be some as-
pects of the method not detailed in the publication that are essential
to achieving the claimed accuracy.

The second stage of the ALPR task, character segmentation, is the
stage where the results of the proposed system differs most from
the literature. Both implementations are based on corresponding
methods from the literature. The statistical character segmentation
by Zheng et al. (2013) claims an accuracy of 98.82 %, while our modi-
fied implementation achieves 85.37 % at it’s best. The SCW method of
Anagnostopoulos et al. (2006) achieves an accuracy of 89.1 %, while
our modified algorithm achieves 72.89 % at it’s best. These accuracy
rates reflects the number of correctly segmented LPs, and not the
number of correctly segmented characters. The character accuracy
for both methods are considerably better, 91.86 % and 93.74 % respec-

6.5 evaluation 83

method accuracy efficiency

Wen et al. (2011) 98.41 % 5 ms /char.

Anagnostopoulos et al. (2006) 89.1 % 18.3 ms /char.

Kocer and Cevik (2011) 98.17 % n/a

Proposed system 99.13 % 0.44 ms /LP

Table 6.10: Performance of character recognition in the literature.

tively. The LP accuracy for both methods are negatively influenced by
an unfortunate distribution of either false negatives or false positives.
Ideally a method would either segment either all or no characters cor-
rectly, but in this instance the incorrect segmentations are spread over
many different images, leading to a lower LP accuracy. This indicates
that the method could use improvement in correctly identifying true
positives and true negatives.

The third and last stage of the ALPR task is character recognition.
The proposed SVM method achieves very convincing results, with
the best accuracy at 99.13 %. The corresponding efficiency is 0.44 ms
per LP. There are some variations in efficiency in the tests. Chang-
ing between one classifier for all classes, or two classifiers that each
cover numerals or letters has a profound effect on the accuracy. Obvi-
ously, separating numerals and letters is contingent on having prior
knowledge of the LP format, and is not always possible.

The most comparable method in the literature is the SVM classi-
fiers by Wen et al. (2011). Their results shows a best accuracy at 98.41

%, and a corresponding efficiency of 5 ms per character. The best
efficiency reported is another SVM variation, with 1 ms per charac-
ter and an accuracy of 97.55 %. The MLP implementation by Kocer
and Cevik (2011) shows an accuracy of 98.17 %, but the efficiency is
not accounted for. The PNN by Anagnostopoulos et al. (2006) is far
surpassed by both methods. We observe that the results of the pro-
posed system is comparable, and also competitive to the results by
Wen et al.. The accuracy of the proposed method is slightly higher,
and the efficiency is magnitudes faster.

7

D I S C U S S I O N A N D C O N C L U S I O N

7.1 discussion

The two research goals, a and b, stated in chapter 1 will be presented
and discussed below.

a . Determine if ALPR is feasible for a mobile device, with regards to
efficiency and accuracy. ...

The first part of research goal A is specifically concerned with a mo-
bile device’s capabilities to run an ALPR system. ALPR can possi-
bly involve many computationally intensive operations, and it is not
given that a mobile device like the iPhone may be sufficient to host
such a system. The results in chapter 6 shows that all three parts of
the ALPR task can be solved on a mobile device. The ALPR system
detailed in this report has been implemented and tested for the recent
iPhone mobile devices. There is a caveat with the character segmen-
tation accuracy. Both LP detection and character recognition shows
accuracy around 99 %, while character segmentation has it’s highest
isolated accuracy at 87 % (table 6.4). There is more than one way of
measuring accuracy for this stage. Here, only completely correctly
segmented plates is recorded as correct, and all other instances as in-
correct. A more forgiving way of measuring accuracy is to measure
how many percent of the characters that were correctly segmented.
While this gives a good indication of a method’s capabilities, it falls
short in a more practical setting. An LP is composed of parts, i.e.
characters, but in the real world an LP is an atomic entity which is
indivisible. As a consequence, the accuracy of the character segmen-
tation stage must be held to this constraint in order to assess the
success of the method. The three stages in the ALPR task is exe-
cuted consecutively, and each stage is dependent on the results from
the previous. This entails that the final accuracy of the system is
the product of the accuracy of each of the stages. The character seg-
mentation method shows that it is able to extract characters in most
settings, but is often challenged by dynamic illumination conditions,

85

86 discussion and conclusion

and dirty or partially covered LP characters. LP detection and charac-
ter recognition appears as much more robust, and show much greater
capability of handling noise. There are of course some artifacts with
these stages as well, but in a much smaller sense than the character
segmentation. The results in chapter 6 shows that ALPR is feasible
for a mobile device, but it also shows that character segmentation is
a stage that needs more work in order to give satisfactory accuracy
results. We strongly believe that the shortcomings of the character
segmentation stage is not a consequence of the mobile platform, but
rather a problem with the method itself. The combined efficiency of
the ALPR system is around 50 ms, which gives the ability to process
up to 20 images per second.

a . (continued) ... If possible, also investigate the possibility for a
general purpose system, that is not dependent of the LP’s de-
sign.

The second part of research goal A is concerned with the generality
of the ALPR system. Some systems are based on template match-
ing, like Quan et al. (2009). Typically, a template matching method
may achieve a very high accuracy, since the format of the LP and
some distinguishing marks are known a priori. This does however
put constraints on the possible types of LPs that can be detected and
recognized by the method. Moreover, such a method may be prone
to errors when given images that show partially covered, or rotated
or skewed LPs. The second part of research goal A addresses this,
with a purpose to find methods that are not geared towards a specific
LP design. The proposed ALPR system has been designed with this
in mind. There are however some remarks regarding this. The LP
detection stage consist of a cascade classifier, that is trained with im-
ages of LPs. The set of training images is constructed from a smaller
set of original images, where the original images are rotated around
their x-, y-, and z-axes, and different types of distortion are applied
to produce more training examples. This is done to avoid overfitting
the data set, but also to generalize the appearance of an LP. We will
however note that the entirety of the test set is made up of Norwegian
LPs, and so we cannot speak to the generality of the method without
having performed any tests. We propose this as a point for further
work. Another consideration is that the complete test of the ALPR
system, detailed in section 6.4, made one assumption regarding the
LP format. The assumption was that Norwegian LPs always contains

7.1 discussion 87

2 letters followed by 4 or 5 numerals. This was done in part to remove
ambiguity from the classification for numerals and characters that ap-
pear similar. Examples of such pairs of letters and numerals are O-0,
B-8, and I-1. Another reason to split numerals from characters is that
the SVM classifier is actually an ensemble classifier, whose classifica-
tion time is quadratically dependent on the number of classes. By
removing the 10 numeral classes from the general classifier it’s clas-
sification time is dramatically improved, and as we observe from the
results, classification of an entire LP’s characters can be done in about
0.5 ms! We must note that this assumption regarding the distribution
of letters and numerals goes against the notion of generality. How-
ever, the results from both 5-fold and 10-fold cross validation for the
SVM (table 6.6) shows that the classifier can generalize well over the
data set, and shows very good results also here.

b . Find which methods are feasible for live video processing, with
regards to efficiency and accuracy. ...

Research goal B states that we wish to uncover methods that are feasi-
ble for video processing. As it turns out, the methods that shows the
highest accuracy are also the methods that show the best efficiency.
This means that there are no conflicts of interest between still image
processing and live video processing. As discussed in section 2.2, we
have not considered video processing beyond the scope of processing
a video stream frame by frame. The cascade classifier is well suited
for live video processing, because of it’s discriminative nature. The
cascade uses very little time to discard parts of an image, or a video
frame image, that obviously does not contain an LP, while using more
processing power on parts that are less obvious. Greediness of this
kind means that negative images will be processed even more effi-
ciently than positive images, allowing the system to save resources. In
comparison, the color difference edge image filtering method would
in any case need to do a full processing of every image before being
able to discard a negative image. Disregarding accuracy, the cascade
classifier is still much better suited for live video processing than any
other method for LP detection investigated in this thesis. The char-
acter segmentation stage is not entirely as dynamic as the cascade
classifier, but still has two possible efficiency gains in the algorithm
for negative regions. The algorithm performs two different filtering
passes over the possible character regions. This means that the algo-
rithm can terminate if there are too few possible character regions

88 discussion and conclusion

left after the first filtering pass. The algorithm starts with a character
height estimation, which also provides a point for early termination if
the estimated character height proves to be too short for any realistic
hope of character recognition. The final stage, character recognition,
does not provide any points of early termination for negative classi-
fications. The classifier will try to classify all characters regardless of
the probability of previous characters being correctly classified. Since
the character recognition classifier is an ensemble classifier, it does
provide a probability distribution for each test example over all possi-
ble classes. It would be possible to use this distribution to determine
if the current character has a very low probability of being correctly
classified. This in turn would mean that the total probability of cor-
rectly recognizing all characters in the LP is equally compromised.
However, our experience with the probability distribution produced
by the ensemble classifier indicates that some characters will in most
cases have a low probability for the correct classification, while still
being the peak of the distribution. We therefore deem it prudent to
view the probability distribution as more indicative of peaks, rather
than an absolute distribution.

b . (continued) ... It is also desirable to uncover if there is a tradeoff
between accuracy and efficiency, and find a possible balance
between the two.

The second part of research goal B is concerned with the possibility of
having to sacrifice accuracy for efficiency, or vice versa. The results in
chapter 6 shows that there is no such tradeoff to be considered. The
most apparent tradeoff we have observed is between both efficiency
and accuracy, and generality. The character recognition results for
the complete ALPR classifier shows that accuracy and efficiency is
improved when assuming a certain sequence of letters or numerals
in the LP format. The core of the problem stems from the pairs of
similar numerals and letters. Distinguishing between these pairs can
be particularly difficult for one of the older Norwegian LP fonts. The
choice of using such prior knowledge can limit a system’s ability to
work across different types of LP formats. On the other hand, very
many countries have a predetermined format.

As a final thought regarding the accuracy of the system, we would
like to point out that the character segmentation stage has no form of
AI. All the methods in the reviewed literature are based on statistical
methods and image processing techniques. A possible explanation

7.2 conclusion 89

for the low accuracy for this system could be that this problem is not
easily solved by conventional statistical methods. Some form of intel-
ligent learning could possibly help improve these filtering techniques;
in the very least, a form of evolutionary algorithm could be one way
to find the most discriminative features of non-character elements.
We would like to propose this as a point for further work, explor-
ing the possibility of using an AI inspired technique do improve the
reliability and accuracy of this stage.

7.2 conclusion

In this thesis we have shown how an ALPR system may be con-
structed for a mobile device, specifically the family of iOS devices.
The main concerns for a mobile device implementation is the limited
processing power of the device, and it’s ability to capture images from
many different angles and distances. The choice of methods therefore
becomes a vital part of the process. The corpus of literature on the
ALPR subject shows that there are many different possibilities for im-
plementation, although few of them are designed for a mobile device
implementation. Our work has consisted of uncovering, assessing,
and improving existing methods.

The final implementation shows that ALPR is feasible for a mobile
device. The ALPR task is split into three parts, LP detection, character
segmentation, and character recognition. LP detection is done with
a cascade classifier, inspired by the work of Viola and Jones (2001),
and is tasked with finding the location of an LP in an image. The
original cascade classifier is based on Haar-like features. We have
found that MB-LBP features are both more efficient and accurate for
LP detection. Character segmentation is performed on detected LP re-
gions. Character segmentation should identify and extract characters
from the region. This is done by binarizing the region, and filtering
out non-character elements with statistical methods. The final stage,
character recognition, is tasked with determining which characters
the character segmentation stage has extracted from the region.

Both LP detection and character recognition are shown to have ac-
curacy around 99 %, which is competitive against most other methods
in the literature, especially considering that the system is constructed
for recognition from arbitrary angles and distances. However, char-
acter segmentation has an accuracy around 85 %, which is too low

90 discussion and conclusion

for the entire system to be competitive against other methods in the
literature. The combined accuracy of the system is 83.70 %. The av-
erage processing time of an image containing an LP is around 50 ms
(32 + 18 + 0.5), allowing the system to process up to 20 images per
second. We also must remark that the final stage, character recogni-
tion, has an average efficiency of under 0.5 ms. Given this, the system
is capable of both still image processing, as well as some live video
processing. The nature of the LP detection stage cascade classifier al-
lows for more efficient processing of negative images, meaning that a
negative image may be processed faster than a positive image. Char-
acter segmentation and character recognition should in any case not
be necessary for negative images.

The character segmentation stage is the least accurate stage in the
system, and we propose further work, especially concerning learning
based methods and evolutionary methods, to improve the accuracy of
this stage. Additionally, we propose that the generality of an MB-LBP-
based cascade classifier should be explored, to uncover the potential
of the method. As discussed in the previous section, the use of a
priori knowledge regarding the format of the LP can increase both
efficiency and accuracy for character recognition. We do however
note that a decision on whether or not to assume a certain LP format
can be made at a later time.

B I B L I O G R A P H Y

Vahid Abolghasemi and Alireza Ahmadyfard. An edge-based color-
aided method for license plate detection. Image and Vision Comput-
ing, 27(8):1134 – 1142, 2009. (Cited on page 31.)

C.-N.E. Anagnostopoulos, I.E. Anagnostopoulos, G. Tsekouras,
G. Kouzas, V. Loumos, and E. Kayafas. Using sliding concentric
windows for license plate segmentation and processing. In Signal
Processing Systems Design and Implementation, 2005. IEEE Workshop
on, pages 337–342, Nov 2005. (Cited on page 14.)

C.-N.E. Anagnostopoulos, I.E. Anagnostopoulos, V. Loumos, and
E. Kayafas. A license plate-recognition algorithm for intelligent
transportation system applications. Intelligent Transportation Sys-
tems, IEEE Transactions on, 7(3):377–392, Sept 2006. (Cited on
pages 14, 36, 38, 42, 56, 60, 62, 63, 81, 82, and 83.)

C.-N.E. Anagnostopoulos, I.E. Anagnostopoulos, I.D. Psoroulas,
V. Loumos, and E. Kayafas. License plate recognition from still
images and video sequences: A survey. Intelligent Transportation
Systems, IEEE Transactions on, 9(3):377–391, Sept 2008. (Cited on
page 3.)

Apple Inc. iOS Technology Overview, 2014. URL https://developer.

apple.com/library/ios/documentation/Miscellaneous/

Conceptual/iPhoneOSTechOverview/Introduction/Introduction.

html. Last checked: 2015-04-21. (Cited on page 50.)

Abraham Straume Bah. Fast and reliable recognition of car license
plates. Master’s thesis, Norwegian University of Science and Tech-
nology (NTNU), 2014. (Cited on pages 4, 16, 35, 39, and 47.)

Kristin P. Bennett and Colin Campbell. Support vector machines:
Hype or hallelujah? SIGKDD Explor. Newsl., 2(2):1–13, December
2000. (Cited on page 25.)

A. Capar and M. Gokmen. Concurrent segmentation and recognition
with shape-driven fast marching methods. In Pattern Recognition,

91

https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html

92 bibliography

2006. ICPR 2006. 18th International Conference on, volume 1, pages
155–158, 2006. (Cited on page 40.)

Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support
vector machines. ACM Trans. Intell. Syst. Technol., 2(3):27:1–27:27,
May 2011. (Cited on page 64.)

Rafael C Gonzalez, Richard E Woods, and Steven L Eddins. Digital
image processing using MATLAB. Gatesmark Publishing, 2 edition,
2009. (Cited on pages 8, 10, 11, 15, 21, and 39.)

Google Inc. Tesseract OCR, 2015. URL https://code.google.com/p/

tesseract-ocr/. Last checked: 2015-04-21. (Cited on pages 40, 51,
52, and 65.)

Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for mul-
ticlass support vector machines. Neural Networks, IEEE Transactions
on, 13(2):415–425, Mar 2002. (Cited on page 26.)

Itseez. OpenCV Web page, 2014. URL http://opencv.org. Last
checked: 2015-04-21. (Cited on pages 51 and 52.)

H. Erdinc Kocer and K. Kursat Cevik. Artificial neural networks
based vehicle license plate recognition. Procedia Computer Science,
3(0):1033 – 1037, 2011. (Cited on pages 31, 40, 42, and 83.)

Erwin Kreyszig. Advanced engineering mathematics. John Wiley and
sons Inc, 9 edition, 2006. (Cited on page 8.)

Shengcai Liao, Xiangxin Zhu, Zhen Lei, Lun Zhang, and Stan Z Li.
Learning multi-scale block local binary patterns for face recogni-
tion. In Seong-Whan Lee and StanZ. Li, editors, Advances in Biomet-
rics, volume 4642 of Lecture Notes in Computer Science, pages 828–
837. Springer Berlin Heidelberg, 2007. (Cited on pages 19 and 54.)

Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997. (Cited on
pages 23 and 24.)

New Designs Unlimited, LLC. OpenALPR web page, 2015. URL
http://www.openalpr.com. Last checked: 2015-04-21. (Cited on
pages 65 and 77.)

Chirag Patel, Dipti Shah, and Atul Patel. Automatic number plate
recognition system (anpr): A survey. International Journal of Com-
puter Applications, 69(9):21–33, May 2013. (Cited on page 3.)

https://code.google.com/p/tesseract-ocr/
https://code.google.com/p/tesseract-ocr/
http://opencv.org
http://www.openalpr.com

bibliography 93

Jin Quan, Quan Shuhai, Shi Ying, and Xue Zhihua. A fast license plate
segmentation and recognition method based on the modified tem-
plate matching. In Image and Signal Processing, 2009. CISP ’09. 2nd
International Congress on, pages 1–6, Oct 2009. (Cited on pages 31,
39, 41, and 86.)

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. Pearson Education, 3 edition, 2003. (Cited on pages 24,
27, and 64.)

Ray Smith. An overview of the Tesseract OCR engine. In ICDAR,
volume 7, pages 629–633, 2007. (Cited on pages 41 and 52.)

Nicolas Thome, Antoine Vacavant, Lionel Robinault, and Serge
Miguet. A cognitive and video-based approach for multinational
license plate recognition. Mach. Vis. Appl., 22:389–407, 2011. (Cited
on pages 31 and 41.)

P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. In Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference
on, volume 1, pages I–511–I–518 vol.1, 2001. (Cited on pages 19, 20,
26, 28, 30, 34, 35, 53, 54, 68, and 89.)

Ying Wen, Yue Lu, Jingqi Yan, Zhenyu Zhou, K.M. von Deneen, and
Pengfei Shi. An algorithm for license plate recognition applied to
intelligent transportation system. Intelligent Transportation Systems,
IEEE Transactions on, 12(3):830–845, Sept 2011. (Cited on pages 41

and 83.)

Xing Yang, Xiao-Li Hao, and Gang Zhao. License plate location based
on trichromatic imaging and color-discrete characteristic. Optik -
International Journal for Light and Electron Optics, 123(16):1486 – 1491,
2012. (Cited on pages 15, 17, 31, 32, 34, 55, 56, 81, and 82.)

Lun Zhang, Rufeng Chu, Shiming Xiang, Shengcai Liao, and Stan Z.
Li. Face detection based on multi-block lbp representation. In
Seong-Whan Lee and Stan Z. Li, editors, Advances in Biometrics, vol-
ume 4642 of Lecture Notes in Computer Science, pages 11–18. Springer
Berlin Heidelberg, 2007. (Cited on pages 28, 35, and 36.)

94 bibliography

Danian Zheng, Yannan Zhao, and Jiaxin Wang. An efficient method
of license plate location. Pattern Recognition Letters, 26(15):2431 –
2438, 2005. (Cited on page 31.)

Lihong Zheng, Xiangjian He, Bijan Samali, and Laurence T. Yang. An
algorithm for accuracy enhancement of license plate recognition.
Journal of Computer and System Sciences, 79(2):245 – 255, 2013. (Cited
on pages 31, 34, 35, 37, 40, 56, 57, 61, 68, 81, and 82.)

Part III

A P P E N D I X

A
I O S D E V I C E S D ATA

The data in the following tables can be found at http://en.wikipedia.
org/wiki/List_of_iOS_devices, last accessed 2015-03-31.

97

http://en.wikipedia.org/wiki/List_of_iOS_devices
http://en.wikipedia.org/wiki/List_of_iOS_devices

98 ios devices data

m
o

d
e

l
y

e
a

r
p

r
o

c
e

s
s

o
r

r
a

m
g

p
u

c
a

m
e

r
a

v
i
d

e
o

b
a

t
t

e
r

y

iPhone
2
0
0
7

4
1
2

M
H

z,
3
2-bit

1
2
8

M
B

1
0
3

M
H

z
2

M
P

f/
2.

8
n/a

1
4
0
0

m
A

h

iPhone
3G

2
0
0
8

4
1
2

M
H

z,
3
2-bit

1
2
8

M
B

1
0
3

M
H

z
2

M
P

f/
2.

8
n/a

1
1
5
0

m
A

h

iPhone
3G

S
2
0
0
9

6
0
0

M
H

z,
3
2-bit

2
5
6

M
B

1
5
0

M
H

z
3

M
P

f/
2.

8
4
8
0p

3
0

fps
1
2
1
9

m
A

h

iPhone
4

2
0
1
0

8
0
0

M
H

z,
3
2-bit

5
1
2

M
B

2
0
0

M
H

z
5

M
P

f/
2.

8
7
2
0p

3
0

fps
1
4
2
0

m
A

h

iPhone
4S

2
0
1
1

2x
8
0
0

M
H

z,
3
2-bit

5
1
2

M
B

2x
2
0
0

M
H

z
8

M
P

f/
2.

4
1
0
8
0p

3
0

fps
1
4
3
2

m
A

h

iPhone
5

2
0
1
2

2x
1.

3
G

H
z,

3
2-bit

1
G

B
3x

2
6
6

M
H

z
8

M
P

1.
4µ

f/
2.

4
1
0
8
0p

3
0

fps
1
4
4
0

m
A

h

iPhone
5C

2
0
1
3

2x
1.

3
G

H
z,

3
2-bit

1
G

B
3x

2
6
6

M
H

z
8

M
P

1.
4µ

f/
2.

4
1
0
8
0p

3
0

fps
1
5
1
0

m
A

h

iPhone
5S

2
0
1
3

2x
1.

3
G

H
z,

6
4-bit

1
G

B
4x

4
5
0

M
H

z
8

M
P

1.
5µ

f/
2.

2
1
0
8
0p

3
0

fps,
7
2
0p

1
2
0

fps
1
5
6
0

m
A

h

iPhone
6

2
0
1
4

2x
1.

4
G

H
z,

6
4-bit

1
G

B
4x

4
5
0

M
H

z
8

M
P

1.
5µ

f/
2.

2
1
0
8
0p

3
0-

2
4
0

fps
1
8
1
0

m
A

h

iPhone
6

plus
2
0
1
4

2x
1.

4
G

H
z,

6
4-bit

1
G

B
4x

4
5
0

M
H

z
8

M
P

1.
5µ

f/
2.

2
1
0
8
0p

3
0-

2
4
0

fps
2
9
1
5

m
A

h

Table
A

.
1:iPhone

hardw
are

specifications

ios devices data 99

m
o

d
e

l
y

e
a

r
p

r
o

c
e

s
s

o
r

r
a

m
g

p
u

c
a

m
e

r
a

v
i
d

e
o

b
a

t
t

e
r

y

iP
ad

2
0
1
0

8
0
0

M
H

z,
3
2
-b

it
5
1
2

M
B

2
0
0

M
H

z
n/

a
n/

a
6
6
1
3

m
A

h

iP
ad

2
2
0
1
1

2
x8

0
0

M
H

z,
3
2

-b
it

5
1
2

M
B

2
x2

0
0

M
H

z
0
.7

M
P

7
2
0
p,

3
0

fp
s

6
5
7
9

m
A

h

iP
ad

M
in

i
2
0
1
2

2
x1

.0
G

H
z,

3
2
-b

it
5
1
2

M
B

2
x2

5
0

M
H

z
5

M
P

1
0
8
0
p,

3
0

fp
s

4
4
4
0

m
A

h

iP
ad

3
2
0
1
2

2
x1

.0
G

H
z,

3
2
-b

it
1

G
B

3
x2

6
6

M
H

z
5

M
P

1
0
8
0
p,

3
0

fp
s

1
1
4
8
7

m
A

h

iP
ad

4
2
0
1
2

2
x1

.4
G

H
z,

3
2
-b

it
1

G
B

4
x5

3
3

M
H

z
5

M
P

1
0
8
0
p,

3
0

fp
s

1
1
5
6
0

m
A

h

iP
ad

M
in

i2
2
0
1
3

2
x1

.3
G

H
z,

6
4
-b

it
1

G
B

4
x4

5
0

M
H

z
5

M
P

1
0
8
0
p,

3
0

fp
s

6
4
7
1

m
A

h

iP
ad

A
ir

2
0
1
3

2
x1

.4
G

H
z,

6
4
-b

it
1

G
B

4
x4

5
0

M
H

z
5

M
P

1
0
8
0
p,

3
0

fp
s

8
8
2
7

m
A

h

iP
ad

M
in

i3
2
0
1
4

2
x1

.3
G

H
z,

6
4
-b

it
1

G
B

4
x4

5
0

M
H

z
5

M
P

1
0
8
0
p,

3
0

fp
s

6
4
7
1

m
A

h

iP
ad

A
ir

2
2
0
1
4

3
x1

.5
G

H
z,

6
4
-b

it
2

G
B

8
x4

5
0

M
H

z
8

M
P

1
0
8
0
p,

3
0

fp
s

7
3
4
0

m
A

h

Ta
bl

e
A

.2
:i

Pa
d

ha
rd

w
ar

e
sp

ec
ifi

ca
tio

ns

100 ios devices data

o
s

v
e

r
s

i
o

n
r

e
l

e
a

s
e

d
a

t
e

d
e

v
i
c

e
s

r
e

l
e

a
s

e
d

w
i
t

h
v

e
r

s
i
o

n

iPhone
O

S
1

June
2
9,

2
0
0
7

iPhone

iPhone
O

S
2

July
1
1,

2
0
0
8

iPhone
3G

iPhone
O

S
3

June
1
7,

2
0
0
9

iPhone
3G

S,iPad

iO
S

4
June

2
1,

2
0
1
0

iPhone
4,iPad

2

iO
S

5
O

ctober
1
2,

2
0
1
1

iPhone
4s,iPad

3

iO
S

6
Septem

ber
1
9,

2
0
1
2

iPhone
5,iPad

4,iPad
M

ini

iO
S

7
Septem

ber
1
8,

2
0
1
3

iPhone
5s,iPad

A
ir,iPad

M
ini

2

iO
S

8
Septem

ber
1
7,

2
0
1
4

iPhone
6,iPhone

6
plus,iPad

A
ir

2,iPad
M

ini
3

Table
A

.
3:iO

S
platform

release
history

B
S O F T WA R E A N D T O O L S U S E D

Software

xcode Xcode, version 6.2, IDE used for development.

cocoapods CocoaPods, version 0.36.0.beta.2, iOS package manager
software.

opencv Third party library for image processing. The library is
written in C/C++ and has been adopted to other languages
through wrapper classes.

tesseract ocr Tesseract OCR is an OCR library. Tesseract can be
used for general OCR on a page of text, or can be trained for
more specific use cases.

Hardware

apple macbook pro Apple MacBook Pro 15-inch notebook com-
puter, 2,5 GHz Intel Core i7, 16 GB 1600 MHz DDR3

ubuntu server Ubuntu server, 32 cores Intel Xeon 2.6 GHz, 128

GB RAM, provided by NTNU.

apple iphone 6 iPhone 6 smart phone, running iOS 8.2, see ap-
pendix A for technical specifications.

Data

data set from trondheim , norway Data set of license plates,
2888 images of various cars with focus on their license plates,
provided by WTW AS.

101

colophon

This document was typeset using the typographical look-and-feel
classicthesis developed by André Miede. The style was inspired
by Robert Bringhurst’s seminal book on typography “The Elements of
Typographic Style”. classicthesis is available for both LATEX and LYX:

http://code.google.com/p/classicthesis/

Final Version as of June 9, 2015 (classicthesis version 1.0).

http://code.google.com/p/classicthesis/

	Abstract
	Sammendrag
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Automatic license plate recognition
	1 Introduction
	1.1 Motivation
	1.2 Research goals
	1.3 Contents of the thesis

	2 Background theory
	2.1 Image processing methods
	2.1.1 Convolution
	2.1.2 Binary images
	2.1.3 Trichromatic imaging and color difference
	2.1.4 Haar-like features
	2.1.5 Multi-scale block local binary patterns
	2.1.6 Projection into vectors

	2.2 Video processing
	2.3 Artificial intelligence methods
	2.3.1 Artificial neural networks
	2.3.2 Support vector machines
	2.3.3 Cascade classifiers and adaptive boosting

	3 Related work
	3.1 License plate location
	3.1.1 Trichromatic imaging and color difference
	3.1.2 Cascade classifier using Haar-like features and MB-LBP features
	3.1.3 Sliding concentric windows

	3.2 Character segmentation
	3.2.1 Projection boundaries and blob detection
	3.2.2 Sliding concentric windows and statistical methods
	3.2.3 Tilt correction

	3.3 Character recognition
	3.3.1 Tesseract OCR
	3.3.2 Feature extraction for Support Vector Machines
	3.3.3 Artificial neural networks

	The prototype
	4 Mobile platform: iOS
	4.1 Devices
	4.2 Operating system, SDK, and language
	4.3 External libraries and frameworks
	4.3.1 OpenCV
	4.3.2 Tesseract OCR

	5 System model
	5.1 License plate detection
	5.1.1 Cascade Classifier using features
	5.1.2 Color difference edge image and filtering

	5.2 Character segmentation
	5.2.1 Statistical character segmentation
	5.2.2 Sliding concentric windows

	5.3 Character recognition
	5.3.1 Artificial neural network
	5.3.2 Support vector machine
	5.3.3 Tesseract OCR

	6 Results and evaluation
	6.1 License plate detection
	6.1.1 Cascade classifier
	6.1.2 Color difference edge image and filtering
	6.1.3 Efficiency

	6.2 Character segmentation
	6.3 Character recognition
	6.4 Putting it all together
	6.5 Evaluation

	7 Discussion and Conclusion
	7.1 Discussion
	7.2 Conclusion

	Bibliography

	Appendix
	A iOS devices data
	B Software and tools used
	Colophon

