
Model-Driven Development of REST APIs

Tomás Procházka

Master in Information Systems

Supervisor: John Krogstie, IDI

Department of Computer and Information Science

Submission date: June 2015

Norwegian University of Science and Technology

Abstract

The domain of REST APIs contains highly repetitive code which needs to be written ev-
ery time there is a need for a new REST API. When developing client-side applications,
like web applications or native applications, one must also create a robust REST API in
order to share the data between all the clients. The server-side technology takes a huge
part of the budget and in most cases it is not the main product- the client-side application
is. The author is trying to solve this problem by applying the Model-Driven Develop-
ment paradigm. A code generator specifically designed for the domain is proposed and
developed. The code generator has some unique features such as GitHub integration and
mechanisms to structure the files in the same way as human would do. This has been
achieved by analyzing the human created file structure. The generated REST API comes
also with an option of automatically testing behavior compared to best practices. This is
done by taking an existing solution and further researching its use.

i

Preface

This report has been created as a documentation of my Master Thesis in Information Sys-
tems at the Department of Computer and Information Science at the Norwegian University
of Science and Technology. The thesis has been written in cooperation with Searis AS.

I would like to thank my supervisor professor John Krogstie for inspiration, patience,
and mainly a lot of useful advise. A huge thank you also belongs to the guys from Searis
AS for their useful comments, evaluation and mainly the smooth cooperation I had with
them. Last but not least to my family since this would not be possible without them. A
special thank you also goes to my girlfriend Lisa, because she had to handle me in moods
she will hopefully never ever see me in again. I am glad I was lucky enough to surround
myself with such awesome people.

Tomas Prochazka

ii

Table of Contents

Abstract i

Preface ii

Table of Contents v

List of Tables vii

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Questions . 2
1.3 Thesis Outline . 2

2 Background 5
2.1 REST . 5

2.1.1 Best Practices When Creating URIs 6
2.1.2 HTTP Methods . 7

2.2 REST API Notations . 9
2.2.1 RAML . 9
2.2.2 Swagger . 9
2.2.3 API Blueprint . 10
2.2.4 JAX-RS . 11

2.3 Projects . 11
2.3.1 Apiary . 11
2.3.2 Restlet . 11
2.3.3 Project Texo . 12
2.3.4 EMF REST . 12

iii

2.3.5 Web Based Editor . 13
2.4 Model-Driven Software Development 13

2.4.1 Template deriving . 14
2.4.2 Protected areas . 14

2.5 Code generators . 15
2.5.1 Acceleo . 15
2.5.2 Project Matilda . 15

2.6 Conclusion . 15

3 Research 17
3.1 Design Science . 17
3.2 Guidelines . 17

4 Goals and Requirements 21
4.1 Goals . 21
4.2 Requirements . 22

4.2.1 Functional Requirements . 22
4.2.2 Non-Functional Requirements 24

5 Implementation 25
5.1 Architecture . 25
5.2 Technology . 25

5.2.1 NodeJS and NPM . 26
5.2.2 MongoDB . 26
5.2.3 MochaJS . 27
5.2.4 GruntJS . 27
5.2.5 UnderscoreJS . 27
5.2.6 Dredd . 28
5.2.7 Git . 28
5.2.8 Why not Java? . 28

5.3 Generation Process . 29
5.3.1 Meta-Model . 31
5.3.2 Scope . 32
5.3.3 Templates . 33
5.3.4 Templates Load . 36
5.3.5 Templates Execution . 37
5.3.6 Code Beautification . 39
5.3.7 Templates Saver . 39
5.3.8 Generator’s Configuration File 40
5.3.9 Generator’s Endpoints . 40
5.3.10 Git Integration and Versioning 42
5.3.11 Download, Installation, Run and Test 44

5.4 REST API template . 44
5.4.1 Folder Structure . 44
5.4.2 Filtering and Sorting . 45
5.4.3 Behavior prediction . 46

iv

5.4.4 API Blueprint . 47
5.5 Template Development Workflow . 47

5.5.1 Prerequisites . 48
5.5.2 Template Development Process 48

5.6 The Editor Extensions . 49
5.6.1 Endpoint handling . 50

6 Evaluation 51
6.1 Functional Requirements . 51

6.1.1 Meta-Model Independence . 51
6.1.2 Platform Independence . 52
6.1.3 Endpoint Completeness . 53
6.1.4 Model Completeness . 56
6.1.5 Best Practice Behavior . 59
6.1.6 Code Quality . 60
6.1.7 Folder Structure Quality . 63
6.1.8 Re-Generating Management . 64
6.1.9 Template Re-Usability . 65
6.1.10 Output Testability . 65

6.2 Non-Functional Requirements . 66
6.2.1 Cross-Platform . 66
6.2.2 Output Testability . 67
6.2.3 Template Sharing . 67
6.2.4 Speed . 67

6.3 Limitations . 68

7 Discussion 69

8 Conclusion and Future Work 71

Bibliography 72

Appendix A- Study Case 75

Appendix B- Videos 84

Appendix C- External Assessment 85

Appendix D- Unit Tests 87

v

vi

List of Tables

2.1 Expected behavior of a request with a combination of a method and URI . 8

4.1 Functional requirements . 23
4.2 Non-functional requirements . 24

6.1 Comparison of the modeled endpoints with the generated ones 56
6.2 Expected behavior related to the Dredd test results 60

vii

viii

List of Figures

2.1 Valid URI illustrating the rules (red numbers) 7
2.2 RAML standard in action (source: http://raml.org/index.html) 9
2.3 Swagger standard in action (source: http://editor.swagger.io/) 10
2.4 API Blueprint in Apiary online editor 10
2.5 The process of template deriving, source: (Stahl and Völter, 2005) 14
2.6 An example of a protected area in a template, source: (Stahl and Völter,

2005) . 14

4.1 The goals and derived requirements . 22

5.1 The generation process . 30
5.2 The implementation of the Meta-Model 32
5.3 The usage of a scope helper and its definition 33
5.4 The template types . 34
5.5 The template types . 35
5.6 The template snippet showing the template notation 36
5.7 The processing of duplicated templates 38
5.8 The endpoints of the generator, their inputs and the output 41
5.9 Merging process with custom code changes 43
5.10 Template behavior prediction . 46
5.11 The recommended setup for template development 48
5.12 The template development process (Source of GruntJS logo:http://

gruntjs.com/, MochaJS logo: http://mochajs.org/, NodemonJS
logo:http://nodemon.io/) . 49

5.13 The implemented extensions in the editor 50

6.1 The modeled endpoints in the use case 54
6.2 The entity Oven in the use case model 57
6.3 The actual object of type Oven returned from the generated REST API . . 58
6.4 Best practices checked with Dredd . 59
6.5 The REST API structured by a programmer 63

ix

http://gruntjs.com/
http://gruntjs.com/
http://mochajs.org/
http://nodemon.io/

6.6 File structure of the generated REST API 64
6.7 Dredd output . 66

x

Abbreviations

JSON = JavaScript Object Notation
REST = Representational State Transfer
API = Application Programming Interface
MDD = Model-Driven Development
MDSD = Model-Driven Software Development
DSL = Domain Specific Language

xi

xii

Chapter 1
Introduction

1.1 Background and Motivation

Application development has been divided into two main fields: web based development
and native application development. Web based applications are in general applications
which run in the browser and allow the user to interact with the interface shown as a web
page. Native applications are applications written for a specific platform or device. For
example iOS from Apple, Android developed by Google or Microsoft’s Windows Phone.
One of the keys to success for technology focused companies is to support all the platforms
in order to target a wide audience.

When targeting several platforms, one of the biggest challenges is to synchronize the
data between all applications so available data are the same on all the platforms. The ability
to cooperate with other systems, in this case different clients, is called interoperability.
To be exact, interoperability is the ”ability of a system or a product to work with other
systems or products without special effort on the part of the customer”(IEEE, 2010) and
that is exactly what is required from the system.

Web APIs solve this problem as they have a high level of interoperability. All the
applications have only one data source, in this case a server, which provides data to all
clients and makes sure that the data are up-to-date. The ability to communicate with the
server is achieved by standardization. It is a simple mechanism where the server has a
standardized interface and the clients implement this interface and use it. This is not an
easy task and the distributed system can get very complex. Roy Fielding, the author of
REST, therefore collected a number of constraints in order to get certain values from the
system. These constraints are known as a Representational State Transfer architectural
style or simply REST.

REST APIs can be very complex in terms of software architecture, error handling,
security, access rules etc. To implement this solution according to all the best practices
is time consuming and it is an expensive part of every software project. This time and
money should be used on the client development which is usually the desired end product.
Projects like Apiary, Restlet or Backendless try to attack this problem and make the server-

1

Chapter 1. Introduction

side development process as smooth as possible, but none of them focuses on the actual
code generation that would give a solid base for the REST API development or even better:
generate the entire API.

In this report, I will attack this problem with the Model-Driven Development paradigm
because the domain of REST APIs has a lot of repetitive code and MDD can abstract
from that. Model-Driven Development is a development paradigm that uses models as the
primary artifact of the development process. Usually, in Model-Driven Development the
implementation is semi-automatically generated from the model(Marco Brambilla, 2012).
Code generation has been introduced in the new version of Golang 1 and also in the latest
specification of ECMAScript 6, as can be seen in the presentation2 of Axel Rauschmayer
from the Rolling Scopes conference in March 2015. This shows that the idea of generating
code is not only present in the traditional programming languages such as Java. This report
therefore proposes a JavaScript based code generator tailored to generate REST APIs.

1.2 Research Questions
1. Is it possible to generate production ready, structured and testable REST APIs based

on a data model and endpoints?

2. How does one share the knowledge of best practices about REST APIs, so others
without knowledge can use it?

1.3 Thesis Outline
This report is structured into following chapters:

• 2. Background - This chapter describes what has been already done and summa-
rizes why and what should include the new solution.

• 3. Research - This chapter describes the research method of this report.

• 4. Theory - This chapter gives an introduction into the theory behind code genera-
tion, model-driven development and REST API best practices.

• 5. Requirements - This chapter specifies the requirements to the code generator.

• 6. Implementation - This chapter describes the implementation itself, the architec-
tural decisions that have been made and the usage of the code generator.

• 7. Evaluation - This chapter describes the evaluation of the implementation.

• 8. Discussion - This chapter describes the findings in relation to what has been
already done and how it improves the current status of the addressed problem.

1https://blog.golang.org/generate - The Go Blog - Generating code
2https://www.youtube.com/watch?v=Fg3bEZIcnUw - Dr. Axel Rauschmayer - Using ECMAScript 6 today

in 9:24

2

1.3 Thesis Outline

• 9. Conclusion and Future Work - This chapter describes the possibilities for future
research and wraps up the report.

3

Chapter 1. Introduction

4

Chapter 2
Background

This chapter describes already existing knowledge and the gaps this report is trying to fill
in. The chapter has three sections. First, the REST API standards are presented. In order
to show what has been already done, a couple of projects are presented. These projects are
somehow related to the domain of REST APIs and are worth to mention. At the end an
existing code generators are presented.

2.1 REST
REST is an acronym for REpresentational State Transfer and it is an ”architectural style
for distributed hypermedia systems”(Fielding, 2000). REST is not considered to be an
architecture but it is described as a ”set of constraints applied to elements within the archi-
tecture”(Fielding, 2000). Fielding describes the constraints in his dissertation as:

• Client-Server - This is nothing else than separation of concerns. The client should
focus on how to show the data and the server on how to provide and store the data.
There is no space for overlapping.

• Stateless - The client should provide all the information needed to handle the re-
quest. There should be no dependency on the previous communication between
these two.

• Cache - The data provided by the server shall be cacheable. This means that the
data shall be marked with cacheable or non-cacheable. If the response is cacheable,
the client can store the data and use it later. This constraint improves the efficiency
of the network.

• Uniform interface - All the services shall have an uniform interface. The only
drawback of this is that the data are sent in a standardized form which does not
always correspond with the application’s needs.

5

Chapter 2. Background

• Layered system - Every component of the system shall know exactly one layer of
the system. This helps encapsulate the legacy services and legacy clients. The draw-
back of the layered systems is the fact that they suffer from latency. This problem
can be solved with caching the data.

• Code-on-demand - This is an optional constraint of REST. Fielding says that the
clients shall be able to download scripts from the server and execute them in order
to simplify the clients.

By applying these constrains to a distribution system, one gets certain properties from
the system. Pete Hunt, engineer at Facebook, describes in his talk the properties as fol-
lowing(Hunt, 2014):

• performance

• scalability

• simplicity

• modifiability

• visibility

• reliability

As it can be seen, one of the constraints is an uniform interface. This is a very important
point and there are lot of misconceptions about how to design the interface according to
best practice. The next section therefore describes what is the best practice in this field.
This is highly relevant because the generator can then rely on the practices and predict the
behavior of each endpoint.

2.1.1 Best Practices When Creating URIs
Mark Mass describes in his book several rules which should be considered when creating
URIs(Massé, 2012):

1. Forward slash separator (/) must be used to indicate a hierarchy

2. A trailing forward slash (/) should not be included in URIs

3. Hyphens (-) should be used to improve the readability of URIs

4. Underscores () should not be used in URIs

5. Lowercase letters should be preferred in URI paths

6. File extensions should not be included in URIs

7. A singular noun should be used for document names

8. A plural noun should be used for collection names

6

2.1 REST

9. A plural noun should be used for store names

10. A verb or verb phrase should be used for controller names

11. Variable path segments may be substituted with identity-based

12. CRUD function names should not be used in URIs

The following figure illustrates the rules on a valid URI.

Figure 2.1: Valid URI illustrating the rules (red numbers)

The URI above is using slashes as a separator (rule number 1), has no slash at the end
(rule number 2) and is using hyphens instead of underscores (rule number 3). As it can be
seen, only the plural nouns are used (rule number 8 and 9) and the action on the resource
is specified by a verb (rule number 10). The last rule, number 11, is illustrated with using
IDs as a variable.

There is a well-known GitHub repository in the web community with REST API stan-
dards1. The standards described here are in most cases in harmony with the one Mark
Mass suggests, the only difference is that Carden allows to use file extensions at the end
of the URI (rule number 6).

According to both resources there are three different types of URIs:

1. URIs with a plural noun at the end returning a collection for example /cars or /uni-
versities/123/departments

2. URIs with a variable at the end returning a single object for example /cars/342 or
/universities/123/departments/456

3. URIs with a verb at the end describing an action /cars/123/wreck or /universi-
ties/123/rank

Another very important part of a request is a method which specifies what should be
done with the targeted resource. The next section describes how each methods shall be
used. This is again highly relevant because it can help predict the desired behavior of an
endpoint in the generator.

2.1.2 HTTP Methods
The HTTP protocol has 9 different methods. Only 6 of them are widely used: GET, POST,
PUT, DELETE, HEAD and OPTIONS. HEAD and OPTIONS are special methods. HEAD
is used to return only the headers of the response and OPTION is for getting allowed meth-
ods on a resource(Massé, 2012). The others are used for operating with resources. Mass

1https://github.com/WhiteHouse/api-standards - REST API standards by Travis Carden

7

Chapter 2. Background

xxx /universities /universities/233 /universities/293/rank
GET returns a collection

of universities
returns a single uni-
versity object

returns error

POST adds a new university
object

returns error executes the con-
troller attached to the
URI

PUT edits all universities
in the collection

edits a single univer-
sity

returns error

DELETE deletes the entire col-
lection

deletes a single uni-
versity

returns error

Table 2.1: Expected behavior of a request with a combination of a method and URI

in his book describes a couple of rules which should be followed when using them(Massé,
2012):

1. GET and POST must not be used to tunnel other request methods

2. GET must be used to retrieve a representation of a resource

3. HEAD should be used to retrieve response headers

4. PUT must be used to both insert and update a stored resource

5. PUT must be used to update mutable resources

6. POST must be used to create a new resource in a collection

7. POST must be used to execute controllers

8. DELETE must be used to remove a resource from its parent

9. OPTIONS should be used to retrieve meta-data that describes resource’s available
interactions

Carden’s description in general agrees with the one Mass gives, the only difference is
that Carden suggests to use PUT only to update a resource. An interesting use of PATCH
method can be seen in Vinay Sahni’s post, who suggests to use PATCH method for a
partial update2 . The same approach is suggested by Mario Cardinal in his presentation
about architecting a Pragmatic Web API3 . The following table shows the behavior of each
method with one of the three types of URI mentioned above.

2http://www.vinaysahni.com/best-practices-for-a-pragmatic-restful-api - Best Practices for Designing a Prag-
matic RESTful API by Vinay Sahni

3http://www.slideshare.net/mario cardinal/best-practices-for-designing-pragmatic-restful-api - Best Practices
for Architecting a Pragmatic Web API by Mario Cardinal

8

2.2 REST API Notations

2.2 REST API Notations
Introducing MDD into REST API development is not a new idea and there are already
some existing standards for expressing models.

2.2.1 RAML
RAML is a REST API Modelling Language which provides a way to practically describe
REST API parameters and endpoints. The philosophy of RAML is to have a platform
independent standard for describing REST APIs and do not include all the constrains of the
REST architectural style(MuleSoft, 2015). RAML is based on YAML data serialization
standard and JavaScript Object Notation also known as JSON. The picture below shows
an example of RAML document structure.

Figure 2.2: RAML standard in action (source: http://raml.org/index.html)

There are several tools which benefit from the RAML notation. The tools can be
divided into 3 groups:

1. tools for generating the client-side code based on the model

2. tools for mocking the REST API based on the model

3. tools supporting the user experience when creating the model

4. other tools for validation, continuous integration and bridges

The biggest problem with the notation is the lack of readability for humans. Some of
the parameters in the specification are not clear which can lead to a misuse of the standard.
A huge plus is the syntax used. RAML has an indentation based syntax so it does not force
the user to use any curly brackets.

2.2.2 Swagger
Swagger is presented as ”Framework for APIs”(Reverb, 2015). It has a YAML based
notation. The syntax of Swagger is shown below.

9

Chapter 2. Background

Figure 2.3: Swagger standard in action (source: http://editor.swagger.io/)

There are a lot of tools available including client-side SDK generators and server-side
generator called Swagger-Codegen. Swagger-Codegen is able to generate a server based
on the specification. It uses MustacheJS templates as a template engine. This solution has
several disadvantages:

• it does not support nested templates

• it supports a limited set of logic in the templates

• there is no way to inject custom helpers

• generated code has a very human unfriendly structure

This code generation is good for mocking the server but not for production. In general
Swagger is very similar to RAML, but it has better tool support.

2.2.3 API Blueprint

API Blueprint is a specification developed by a company called Apiary4. API Blueprint
has been developed, because CEO Jakub Nesetril found other notations very compli-
cated(Nesetril, 2012). The notation is based on Markdown markup language. An example
of the notation can be seen in the figure below.

Figure 2.4: API Blueprint in Apiary online editor

4https://apiary.io/

10

2.3 Projects

API Blueprint has been designed to be understandable for computers and humans at the
same time(Nesetril, 2012). There is a wide range of support tools available for this notation
including mocking of a passive server and automated testing of REST APIs against a
passed blueprint model.

2.2.4 JAX-RS
JAX-RS is not really a notation, but it is a set of annotations, which allow the developer
to annotate Java code and create REST web services. It aims to make development of
RESTful web services simple and intuitive (Burke, 2009). JAX-RS is tightly coupled to
the Java stack. Since I have decided to not use Java, JAX-RS is not an option due to its
tight dependency on Java. More about the technological decisions is in the section 5.2.

2.3 Projects
This section describes projects which are relevant to the REST APIs and their generation.

2.3.1 Apiary
Project Apiary has been established to solve 3 problems(Nesetril, 2012):

• waterfall programming cycle

• documentation

• API support

Apiary5 has a text editor which allows the user to specify the REST API by using API
Blueprint notation. While the user is typing, a documentation is generated based on the
textual model. Also a mocked REST API is generated according to the specifications in
the model. This makes collaboration between several developers on one API very easy. It
is also possible to develop client-side applications against the mocked API, but at the end
it does not solve the problem that somebody has to develop the server-side part.

Apiary is a great tool for developing REST APIs but does not attack the problem
of code generation. Thanks to the fact that they open sourced API Blueprint there are
several very handy tools developed by the community. The complete list can be seen here:
http://apiblueprint.org/.

2.3.2 Restlet
Restlet6 is an interesting project combining 3 products:

• Restlet Framework

• APISpark
5http://apiary.io/ homepage of the Apiary project
6http://restlet.com/ homepage of Restlet

11

http://apiblueprint.org/

Chapter 2. Background

• Restlet Studio

Restlet Framework is a Java based framework for developing REST APIs in Java. This
framework helps developers to build API according to the REST API standards. APISpark
is a platform for creating new APIs. This tools are able to turn for example a Google
Spread sheet into a REST API. The last product, Restlet Studio is a visual studio which
allows to create Swagger and RAML files without any knowledge of the formats.

2.3.3 Project Texo
Project Texo7 ”provides annotation driven code generation for server-side web applica-
tion environments”(Taal, 2015). Texo is implemented in Java and is tightly coupled to
the Eclipse Modeling Framework, Eclipse in general and Tomcat. It generates a REST
API according to an ecore model. It also has some handy features such as dummy data
generation. Texo is attacking the problem of auto generating REST APIs but has a lot of
drawbacks. They together create a strong argument why not to use the tool. The drawbacks
are:

• very strongly dependent on Java, Eclipse, EMF, JPA and Tomcat

• there is only one person actively improving the project which can really easily affect
the future of the project

• the generated API does not follow the best practices in creating URIs as can be seen
in the Texo’s demo video8

There is still a lot of work that needs to be done with Texo and at the moment it does
not seem mature enough for bigger projects.

2.3.4 EMF REST
EMF REST is a framework build on the top of the Eclipse/Java/EMF development stack
and it transforms an ecore model into a functional REST API. Eclipse Modeling Frame-
work is a ”code generation facility for building tools and other applications based on a
structured data model”(Fouquet and collective, 2012). This is a very nice solution for
people familiar with EMF and ecore models. It also provides a JavaScript library for
the generated API so the user can include this library and use it as a middle-man in the
communication between the server and the client. It is meant to be a solution useful for
prototyping and validation purposes(Ed-douibi and collective, 2015). This solution has a
couple of drawbacks:

• tight dependency on Eclipse, EMF and Tomcat

• no support for custom endpoints, only CRUD operations are supported

• it is not obvious if the solution is using any database or the returned data is just static
7https://projects.eclipse.org/projects/modeling.emft.texo homepage of the project Texo
8https://www.youtube.com/watch?v=shyas-9gvg8 - Demo video of the Project Texo

12

2.4 Model-Driven Software Development

• The supported HTTP methods are POST, PUT, DELETE and GET(EMF-REST,
2015). This means that it does not support preflighted requests which first ask the
server for available methods with an OPTIONS call(Mozilla, 2015). This is crucial
because most client-side libraries are using preflighted requests, namely AngularJS,
EmberJS or even jQuery.

2.3.5 Web Based Editor

I have created a web based editor in the course TDT4501 Specialization Project at Norwe-
gian University of Science and Technology. This editor allows to model data together with
their endpoints and then export the entire model into a JSON data format. This format can
be then used for code generation of any kind.

2.4 Model-Driven Software Development
This section describes some of the key concepts of MDSD. MDSD is a software develop-
ment methodology which aims to solve following problems(Stahl and Völter, 2005):

• increase development speed

• enhance software quality

• centralize the place for making changes

• higher level of re-usability

• manageability of complexity

• interoperability and portability

In the traditional software development models are only part of the documentation.
MDSD is looking at this differently. It embraces the models and includes them as a part of
the software(Stahl and Völter, 2005). This is possible due to transformations. Model trans-
formations ”allow the definition of mappings between different models”(Marco Brambilla,
2012). There are two major categories of the model transformation identified(Czarnecki
and Helsen, 2003):

• model-to-model transformation

• model-to-code transformation

Model-to-code transformation is the relevant one for this report. This transformation
can be divided into two different categories: visitor-based approaches and template-based
approaches. The template-based approach uses templates which ”usually consist of the
target text containing splices of meta-code to access information from the source and to
perform code selection and iterative expansion”(Czarnecki and Helsen, 2003).

13

Chapter 2. Background

2.4.1 Template deriving
The traditional and most effective approach of how to identify and create templates is to
analyze an existing application and divide the code base into 3 different groups(Stahl and
Völter, 2005):

• Generic Code - this code is the same and does not change in any way.

• Schematic Repetitive Code - this code is possible to divide into patterns and replace
the key information with the meta-code in order to create a template.

• Individual Code - this code is impossible to generate and the programmer needs to
fill in the code.

Figure 2.5: The process of template deriving, source: (Stahl and Völter, 2005)

The picture above shows the entire process of template derivation. An existing appli-
cation is shown in the top left corner. This application’s code is divided into the 3 groups
and then separated to an Application Model and the Schematic Repetitive Code. This code
is created by the transformation of the model described in the domain specific language.
By attaching the individual code identified in the first phase one gets the same application
like at the beginning, but with all the parameters and characteristics MDSD offers.

2.4.2 Protected areas
Protected areas are well known in the Model-Driven Development and they ”are used
to mark sections in the generated code that shall not be overriden again by subsequent
generator runs”(Stahl and Völter, 2005). This is achieved by marking a certain part of the
template with protected keyword as it can be seen in the figure below. The purpose is to
protect manually inserted code.

Figure 2.6: An example of a protected area in a template, source: (Stahl and Völter, 2005)

14

2.5 Code generators

2.5 Code generators
This section describes existing code generators.

2.5.1 Acceleo
Acceleo is an Eclipse based code generator which can also be used as a stand-alone ap-
plication, but its functionality is in that case limited. It is an interesting generator, that
treats templates as if they were regular modules. It has support for so called queries which
lets you define a module and then reuse it in other modules. Acceleo is generating any
kind of programming language so it is not strictly tailored to Java. As an input, it not
only supports ecore models, but also UML models and XMI models. The latest release
of Acceleo has been published in 2011 and it seems like no other releases are planned. I
have also checked the service http://www.stackoverflow.com and there are only
103 questions asked during the 9 years of existence. This indicates that the product is not
widely used and partially abandoned. The biggest problem I can see with Acceleo is that
it does not support any template sharing. I have tried to search for some templates I could
reuse but the result was disappointing. Due to these facts, I do not think that Acceleo is a
vital growing project.

2.5.2 Project Matilda
Matilda is a Java based modeling framework developed at Massachusetts Institute of Tech-
nology and it is addressing the following problems(Hiroshi Wada and Oba, 2010):

• abstraction gap between modeling and programming layers

• a lack of traceability between models and programs

• a lack of customizability

Matilda accepts UML and BPMN models and transforms them into runnable code. It
has a distributed pipeline system of plugins which allows collaboration on building and
integrating models between developers over a network. The important part of Matilda is
a meta-model which is used for validating the incoming models. The biggest weakness is
the number of people involved in the development. There is also no possibility to share
templates therefore an extensive knowledge of model transformation is required. Matilda
counts on 4 different roles in the process of development and covering all the roles by a
one developer creates a huge knowledge gap that needs to be filled.

2.6 Conclusion
The field of Model-Driven Development in REST APIs is known, but I believe it can be
brought even further. There are several notations which allow to model the important as-
pects of the REST API. There are also several open-source tools build on the notations,
so supporting at least one opens the door to already existing tools. The same counts for

15

http://www.stackoverflow.com

Chapter 2. Background

already existing projects which build on the notations. Apiary is generating a really nice
documentation from the API Blueprint file and also provides the first steps to make an
HTTP request regardless of which platform is used. It seems like that the world of Java
is much further in terms of code generation. There are code generators but they are in
general lacking the opportunity to share the knowledge and let the people cooperate as a
community. The projects are more or less abandoned and their future is therefore highly
unstable. The community cooperation is much more established in the world of web tech-
nologies as it can be seen in the blog post by Adam Bard comparing the amount of new
repositories based on the language9. I see an opportunity here for research on the position
of MDD in web technology, and how far one can go.

9http://adambard.com/blog/top-github-languages-2014/ - it is important to consider that CoffeeScript is
Javascript. It is just a syntax sugar for JavaScript

16

Chapter 3
Research

This chapter shows the guidelines I have decided to follow and introduces the design sci-
ence framework. There are seven guidelines in the framework and each guideline is com-
mented.

3.1 Design Science
I have decided to follow the design science research framework published by Alan R.
Hevner, Salvatore T. March, Jinsoo Park and Sudha Ram. This framework was published
in 2004 and distinguishes between two different types of research in the discipline of
information systems:

• behavioral science

• design science

Behavioral science ”seeks to develop and verify theories that explain or predict hu-
man or organizational behavior”(Hevner et al., 2004). Design science on the other hand
”seeks to extend the boundaries of human and organizational capabilities by creating a
new and innovative artifacts”(Hevner et al., 2004). The following section introduces the
framework’s guidelines and gives a description on how the guidelines are fulfilled.

3.2 Guidelines
1. Design as an Artifact - Design Science research must produce a viable artifact in the
form of a construct, a model, a method, or an instantiation.

This report describes a code generation engine which has been also implemented. The
code generator fills the gap between already known tools for developing REST APIs. It
is also using some of the well established tools for testing, versioning and distributing

17

Chapter 3. Research

purposes. Other artifacts are two templates compatible with the code generator’s meta-
model- a template for REST API written in NodeJS and a template for generating valid
API Blueprint.

2. Problem Relevance - The objective of design-science research is to develop technology-
based solutions to important and relevant business problems.

There are several reasons why to pay attention to the development of REST APIs:

• REST APIs are needed when developing any kind of client-heavy application. It is
a best practice derived from separating data and their representation.

• They are not very often the main focus in a project. It is just something which is
needed to power the developed applications.

• It is crucial to follow the best practices and have an up-to-date documentation.

The problems, when working on a project including REST API and a client-side ap-
plication, are as follows:

• The server-side programming is different from the client-side and introduces com-
pletely new challenges into the development.

• The development is a time consuming process. Time should be invested into what
brings value: the client-side application.

• Introducing a new endpoint very often means several changes in different places in
the code. These changes are done by copying existing code and making small edits
like a different name of the database table, a different controller name etc.

• There is no easy way how to share best practices between developers. This can lead
to poorly designed APIs which later make the client-side development costly.

• Ensuring an up-to-date documentation is again costly and in many cases it is omit-
ted. This is a problem since the documentation is crucial for the clients communi-
cating with the REST API.

This is a real problem and the fact that there are projects like Apiary which try to make
the development process as smooth as possible with mocking APIs, providing a standard-
ized form of documentation and helping developers to take the first steps when working
with the REST API. According to my correspondence with Lukas Linhart, CTO of the
project Apiary, they have reached 100.000 registered APIs. This proves that such services
are high in demand.

3. Design Evaluation - The utility, quality, and efficacy of a design artifact must be
rigorously demonstrated via well-executed evaluation methods.

The evaluation will be done based on the requirements in chapter 4.2. Each require-
ment shall have a separate section with all the evaluation details. The requirements are
based on goals. A goal is considered to be achieved only if all the requirements are ful-
filled.

18

3.2 Guidelines

4. Research Contributions - Effective design-science research must provide clear
and verifiable contributions in the areas of the design artifact, design foundations, and/or
design methodologies.

The contributions are summarized as:

• development of an artifact for generating production-ready REST APIs

• generation of a API Blueprint file based on the used notation for testing purposes
and integration with already existing tools. The API Blueprint can be a part of any
template set to ensure testability of the generated REST API.

• shortening the time needed to develop REST APIs respecting the best practices,
including documentation and automated testing

• advanced templating system tailored to the needs of REST APIs

• research on best practices in the world of REST APIs

5. Research Rigor - Design-science research relies upon the application of rigorous
methods in both the construction and evaluation of the design artifact.

The construction of the artifact is based on the research on what has been already done
in order to identify the gap between the existing solutions. Finding the gap was an impor-
tant process to establish the requirements. The evaluation of the software artifact is based
on the requirements. There are separate chapters to show the evaluation and the discussion
about how this report satisfies the research questions.

6. Design as a Search Process - The search for an effective artifact requires utilizing
available means to reach desired ends while satisfying laws in the problem environment.

This report is describing a second iteration over MDD of REST APIs. The first itera-
tion was published in December 2014 and it is focused on establishing the correct notation
and the implementation of an editor which supports this notation. The second iteration is
described in this report. The main focus is to develop a generator capable of generating
REST APIs based on a model with the notation described in the first iteration. The im-
plementation shall be evaluated based on the requirements. The results shall be used to
determine the focus of the future iterations.

7. Communication of Research - Design-science research must be presented effec-
tively both to technology-oriented as well as management-oriented audiences.

The whole research process is documented in this report. A technology-oriented au-
dience can study the Implementation chapter which documents and explains all decisions
that were made during the development phase. This chapter also includes all problems I
ran into so it is easy to extend the research by choosing a different path or trying a different
solution. The code is commented, fully open sourced and available on GitHub.

A management-oriented audience can benefit from the Theory chapter, where the basic
principles are described. This can give a basic understanding of the technological part
which can be beneficial when working on a related project.

19

Chapter 3. Research

I have also decided to send a proposal to three large JavaScript conferences to present
my findings and the tool I have developed.

20

Chapter 4
Goals and Requirements

This chapter describes the goals and derived requirements for the developed solution. The
goals are presented first and then I derive the requirements.

4.1 Goals
This section describes the goals. These goals have been established based on what has
already been done in the field of Model-Driven Development, the best of modeling REST
APIs and newly existing services which can be potentially helpful, but have not yet been
connected to Model-Driven Development of REST APIs. The main goal has been estab-
lished as Model-based generation of REST APIs. This goal has 6 sub-goals:

1. Independence - The generator shall not be tightly coupled to one meta-model. This
will allow to reuse the existing notations described in 2.2. It generator shall also be
able to generate any kind of programming language.

2. Output Quality - The generated code shall be as close as possible to a human
written code including its structure. There shall be an automatic way of testing
the generated code. This is because the programmer shall be able to immediately
understand how the code is structured and mainly what has been generated and what
needs to be manually added.

3. Validity - The generated REST API shall have the behavior based on best prac-
tice. The motivation for this is to increase the percentage of REST APIs with well
designed and intuitive interface.

4. Completeness - The model shall be reflected in the generated REST API. This
means that the code shall have all the endpoints specified in the model and the data
structures shall be the same. Nothing shall be skipped so the user does not need to
investigate what has been generated and what has not.

21

Chapter 4. Goals and Requirements

5. Maintainability - The generator shall be able to deal with the situation, when the
user generates code, makes custom changes in the generated code, changes the
model and then generates the code again. The custom changes shall not disappear.
The motivation for this is that the underlying model might change as the develop-
ment goes through different phases.

6. Shareability - The generator shall support sharing of the templates and reusing them
without any manual download from the internet. The motivation is to distribute the
work to experienced people. The templates shall be written by experienced people
within the field of back-end development.

4.2 Requirements
This section describes the requirements derived from all the goals mentioned in the previ-
ous section.

4.2.1 Functional Requirements
This section shows the concrete requirements derived from each goal. The goal is con-
sidered to be satisfied only if all the derived requirements are fulfilled. The figure below
shows the main goal and the sub-goals (green color) together with the derived requirements
(blue color).

Figure 4.1: The goals and derived requirements

A more detailed description is given in the following table.

22

4.2 Requirements

Name Description Priority
1. Meta-model independence The generator shall be independent

on the concrete meta-model
medium

2. Platform independence The generator shall be able to gen-
erate any kind of code regardless of
the programming language

high

3. Endpoint completeness The generated endpoints shall re-
flect the modeled endpoints in the
model

high

4. Model completeness The data structures the generated
REST API is working with shall
reflect the entity structures in the
model

high

5. Best Practice Behavior The behavior of the generated
REST API shall reflect the best
practices of REST APIs

high

6. Code Quality The code shall be structured as if
human writes it

high

7. Folder Structure Quality The folder structure of the REST
API shall be the same as if a human
structures it

medium

8. Re-Generating Management The generator shall support custom
changes in the code which shall not
disappear when the generation pro-
cess is run again

high

9. Template Re-usability The generator shall support tem-
plate sharing

low

10. Output Testability The generated REST API shall be
testable

medium

Table 4.1: Functional requirements

23

Chapter 4. Goals and Requirements

4.2.2 Non-Functional Requirements
There are several non-functional requirements which put constraints on the system’s func-
tionality. The non-functional requirements are shown in the table below.

Name Description Priority
N11. Cross-Platform The generator shall work on OS X,

Windows and Linux
medium

N12. Output Testability The tests of the generated REST
API shall be automatic

medium

N13. Template Sharing The template sharing shall be done
without any manual download

medium

N14. Speed The generator shall generate the
REST API in a reasonable time

medium

Table 4.2: Non-functional requirements

24

Chapter 5
Implementation

This chapter summarizes the technical decisions I have made and describes the complete
implementation of the generator and the example template.

5.1 Architecture
I have decided to implement the generator as a REST API because of several reasons:

• The generator has a couple of options when generating the code. By separating these
options into different endpoints I have achieved a cleaner implementation than if it
would be for example an executable file which adjusts its behavior based on passed
flags. Every endpoint has its pipeline of instructions and there are no branches in
the code representing any exceptional behavior.

• The generator has a better public access as a REST API. Even tools like Google
Closure Compiler, which is normally distributed as a .jar file, has its own server-
side implementation and can be used by simply inserting the code to an online form
in order to get the compiled version.

• It can be run as a localhost and easily modified or tailored to the special needs one
can have. Modification of an executable file is impossible.

• Requesting a REST API is much more friendly to client-side developers than a po-
tential executable script.

5.2 Technology
This section describes what kind of technology I have decided to use and why. The entire
stack is based on JavaScript, open-source tools and libraries. This section also contains
reasoning why I decided to not use Java.

25

Chapter 5. Implementation

5.2.1 NodeJS and NPM

NodeJS is ”a platform built on Chrome’s JavaScript runtime for easily building fast, scal-
able network applications”(Joyent, 2015). It was presented in 2009 and since that it has
revolutionized server-side programming. There are several reasons why I decided to use
this platform over another:

• NodeJS is using JavaScript as a primary language and the passed model to the gener-
ator is in JSON format. JSON is a shortcut for JavaScript Object Notation. Accord-
ing to Douglas Crockford, an author of many JavaScript books- ”JSON is JavaScript
without functions”. This language compatibility gives a huge freedom when oper-
ating with the model.

• NodeJS is using NPM as a package manager. This makes it very easy to resolve
all dependencies when including third party libraries for example for unit testing or
pluralization. NPM has a command line tool so installing any dependencies is very
easy.

• NodeJS has a huge active community and there are currently over 120,000 available
packages developed by the community around JavaScript. Thanks to that, there is a
huge chance that somebody has already written a module for a desired functionality
and this module has been tested and improved by the programmers.

NodeJS module patterns

Since the implementation is based on NodeJS I followed some of the common patterns
when writing modules for this environment. There are in total seven possible patterns one
can follow. These patterns can be found in this presentation1. There are no rules on which
pattern should be used when and it is highly dependent on the programmers taste. All
of my modules are using the pattern number 6: Export an anonymous prototype. Every
module is structured as a prototype with functions and properties and this prototype is then
exported, so any other module can used the prototype under the specified name. I have
chosen this pattern because it allows me to use inheritance and I believe that structuring
modules as prototypes improves the readability of the code.

The only exception are configuration files. Configuration files are exported as pat-
tern number 4 - Export an anonymous object. This pattern simply exports an object with
attributes specifying the configuration.

5.2.2 MongoDB

MongoDB is ”a schema-free document database written in C++ and developed in an open-
source project”(Strauch, 2012). MongoDB is not the dependency of the generator itself
but of the example template, which is tailored to generating NoSQL queries. There are
several reasons why to use MongoDB:

1http://darrenderidder.github.io/talks/ModulePatterns/ - NodeJS Module Patterns - Using Simple Examples
by Darren DeRidder

26

5.2 Technology

• MongoDB stores all the data in JSON format. Since the model is in JSON and the
REST API shall return data in JSON data format, it is logical to store them in the
same format.

• There are a lot of modules which allow a smooth cooperation between NodeJS and
MongoDB.

• MongoDB does not rely on a fixed relational model. The documents are stored in
collections and if there is an attempt to add a document to a non-existing collection,
this collection is created on the fly. This very flexible behavior allows me to abstract
from the traditional relation-based databases where the schema is a must.

The template is connected to the MongoDB database hosted on MongoLab2. Mongo-
Lab offers a free MongoDB-as-a-Service subscription so no installation is needed.

5.2.3 MochaJS

MochaJS is a ”feature-rich JavaScript test framework running on node.js and the browser”
(Holowaychuk, 2011). MochaJS is a standard between NodeJS testing frameworks, and
it is well tested and accepted by the community. There was no doubt about MochaJS,
because it is a simple, flexible and an easy to use testing framework. It is installed via
NPM which fits into my development stack as I used NPM for other modules.

5.2.4 GruntJS

GruntJS is a JavaScript-based task runner which allows to define various tasks and then
automatically trigger them on a certain event. This event can be for example a change in a
file. GruntJS is a very popular and reliable tool with over 4,000 available plugins. Plugins
are representing different tasks and these tasks can be chained in the Grunt’s configuration
file. Everything is manageable via NPM so it again fits into my development stack.

5.2.5 UnderscoreJS

UnderscoreJS is a JavaScript library that provides useful functional programming helpers
without extending any built-in objects(Ashkenas, 2015). UnderscoreJS was officially re-
leased in 2009 and it is a very handy set of various functions which include the best prac-
tices in handling with objects and arrays. This library plays a huge role in the generator
because it has a very simple templating function which has become the templating en-
gine in the generator. There are several reasons why I decided to use UnderscoreJS as my
templating engine:

• It allows to use the entire logic of JavaScript in the templates. There is no special
templating language with a limited set of keywords, it is just pure JavaScript. This
breaks the entry barrier most templating languages have.

2https://mongolab.com/

27

Chapter 5. Implementation

• It compiles templates in two steps. First, it creates a function from the template
and then it executes the function on a certain object. The fact that the templating
language is JavaScript and that the templates become functions allows to execute
templates inside of other templates. The reason why this is so beneficial is explained
in the separated chapter about templates.

• It is well tested library which has been available for over 6 years. The library’s last
version was released in August 2014 and it has over 13,000 stargazers on GitHub.
This shows how popular, used and well tested the library is.

5.2.6 Dredd
Dredd is a very useful JavaScript tool which is used for testing REST APIs based on the
passed API Blueprint. Dredd is a command line tool so it can be run from the terminal but
it also has a GruntJS plugin so it can be automated by adding this task into the pipeline of
plugins. This is a very handy functionality and the reason to include this tool is more than
obvious: automatic testing of the generated code is crucial to be sure that the generation
has been successful.

5.2.7 Git
Git is ”a free and open source distributed version control system”(Git, 2015). I am us-
ing Git for versioning of the generator itself, but the generator also has some Git related
behavior. The motivation for including Git and the behavior itself is described in section
5.3.10.

5.2.8 Why not Java?
Model-Driven Development is well established with Java programming language. The
very common development stack includes Eclipse as an IDE and Eclipse Modeling Frame-
work plugin all dependent on Java. This section therefore clarifies some of the reasoning
why I decided to not follow the same path. According to W3Techs3 Tomcat is the most
popular Java server used. There are a couple of speed tests, like this one4, which clearly
shows that NodeJS is 20% faster than Tomcat. I believe that the speed should not be the
main factor when developing a generator, but 20% is a huge difference for any kind of ap-
plication. Another interesting comparison has been done by PayPal5. PayPal claims that
the NodeJS application ”double the requests per second vs. the Java application”(Harrell,
2013). There has been also ”35% decrease in the average response time”(Harrell, 2013).
Another very important reason is the fact that Java is being replaced by JavaScript as it
can be seen in PayPal6, but also in Norwegian BankID7. The new version of BankID is

3http://w3techs.com/technologies/overview/web server/all - Usage of web servers for websites
4http://blog.shinetech.com/2013/10/22/performance-comparison-between-node-js-and-java-ee/ - Perfor-

mance Comparison Between Node.js and Java EE For Reading JSON Data from CouchDB by Mark Fasel
5https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
6https://www.youtube.com/watch?v=tZWGb0HU2QM - Clash of the Titans - Releasing the Kraken by Bill

Scott
7https://www.bankid.no/ - BankID homepage

28

5.3 Generation Process

completely Java free due to the problems many users all over Norway have encountered.

Java definitely is an interesting piece of technology but I think I can get much closer
to the targeted audience by using JavaScript. I personally believe that the ”one-platform
focus” is the main reason why Model-Driven Development is not that widely spread in
new companies and very often is not even considered as an option when deciding on the
development method.

5.3 Generation Process

The process of generation is divided into several steps. The following figure shows the
entire process.

29

Chapter 5. Implementation

Figure 5.1: The generation process

The first step is a validation of the passed model against the generator’s meta-model.

30

5.3 Generation Process

once the model is valid a scope is created. The passed model is attached to the scope. The
scope is an object used when executing the templates and it makes sure that the model is
accessible from the templates. The next step is to load atomic templates. These templates
are used as a sub-templates and they are attached also to the scope so they can be accessed
from the normal and duplicated templates. The normal and duplicated templates are loaded
and executed by using the scope object. Next step is to beautify the result. This step is
different for each file type. The last step is to make actual files out of the executed and
beautified templates and store them.

The following sections describe each components in the process in more depth to clar-
ify the implementation and behavior.

5.3.1 Meta-Model

The meta-model is located in app/metamodel and its only concern is to make sure that the
passed model is valid and complete. It is a set of complex if statements. The generator is
independent from the meta-model and the only function required is valid(). This function
returns true if the model is valid and false if not. To make the meta-model flexible there
is an abstract prototype Abstract Metamodel which shall be extended in case of a new
meta-model. The current meta-model checks the following characteristics of the model:

• Type checking of all parts of the model.

• Additional attributes of the model properties. This means for example that if a
property is a string then it should have an additional property regex and length.

• All endpoints have one of the valid types specified in the meta-model.

• All associations are done between existing models and there is no association with
a dead end.

The implementation is really straight forward and can be seen in the figure below. The
Abstract Metamodel prototype has a function valid(), which is overwritten in the concrete
meta-model defining the model notation.

31

Chapter 5. Implementation

Figure 5.2: The implementation of the Meta-Model

The figure above shows that the meta-model has several properties defining allowed
HTTP methods and primitive properties. The validation process is separated into smaller
functions for better readability of the code. The functions with an underscore at the end of
the name are considered to be private according to the Google Closure annotation rules8.

5.3.2 Scope

Scope is an object passed to every template so the template can access the content and
operate with it. Its implementation is located in app/scope. It contains:

• the model itself

• scope helpers

• atomic templates

• pluralization object

• data generation function

8https://developers.google.com/closure/compiler/docs/js-for-compiler - Annotating JavaScript for the Clo-
sure Compiler

32

5.3 Generation Process

Scope helpers are functions defined in app/scope helpers and their purpose is simple:
preserve a complex logic from the template. There are cases when the model needs to be
altered in a certain way or when one specific entity from the model is needed. This logic
should be kept in a separate scope helper function. This ensures that there are no long
chunks of code in the templates and it also allows to reuse the logic in other templates.
Since the logic is in a separate function it is possible to unit test it. The unit tests can be
found in test/scope helpers.js. The figure below shows the usage of a scope helper in a
template (the left part of the picture) and its definition (the right part of the picture).

Figure 5.3: The usage of a scope helper and its definition

Atomic templates are a very powerful feature of the generator. It allows to use tem-
plates inside of another template. The templating engine goes through two phases when
executing the templates. First, it creates a function out of all templates and then it executes
this function on the passed scope object. The atomic templates are loaded first. After they
are loaded, the generator creates functions out of them and appends them to the scope
object. A detailed description of the atomic templates is given in the next chapter.

The pluralization object is used for handling pluralization. I have used PluralizeJS
library written by Blake Embrey9. This library has two main functions- plural(singular)
which returns a pluralized noun of the passed singular noun and singular(plural) which
returns a singular noun of the passed pluralized noun. This object solves the problem
which can be seen for example in the Texo project where URIs do not follow the REST
API standards because it uses the singular form.

The data generation function is based on the library RandExpJS written by Ben Burk-
ert10. It is a simple function which requires a regular expression and it returns a string.
This string fits to the passed regular expression. This functionality is required for the gen-
eration of random data in the API Blueprint file. More about API Blueprint is described
later in the report.

5.3.3 Templates

Templates are the essential part of the code generation. The rule in general is- the better
templates the better is the code. They are located in the templates/ folder. The generator
distinguishes between three different types of templates:

9https://github.com/blakeembrey/pluralize - PluralizeJS on GitHub
10https://github.com/benburkert/randexp - RandExpJS on GitHub

33

Chapter 5. Implementation

1. Normal templates - These templates has no special characteristics and are used
most of the time.

2. Atomic templates - Atomic templates are loaded first and the template function is
appended to the scope so these templates can be called from the normal and du-
plicated templates. The initial idea was to make them as a final templates but they
can also be called from within another atomic templates. The first intention was to
make these templates really atomic, but that would limit the possibilities. The name
”atomic” can be then a bit misleading.

3. Duplicated templates - Duplicated templates are specific for this particular domain.
They are able to create multiple files based on the specified array of objects.

Duplicated templates are used for example for data models. Every data model (user,
order, product etc.) has specific properties and all incoming data to the REST API should
be validated by this data model to prevent harming attacks or data inconsistency. The
standard is to use a single file per data model. This would be impossible to generate
without knowing how many of the data models are in the model because one would have
to create the same number of normal templates. Also the templates would all be the same
which is against the MDD paradigm. Another solution is to dump all the data models
into one single file but in case of a large model this file would really quickly become
unmanageable. The solution to this is duplicated templates as they are able to create
several files according to the rules specified in the configuration object. The following
figure shows the template types in a schematic view.

Figure 5.4: The template types

Every set of templates has a configuration file. This file must be located in the root
directory of the templates and it contains references to all the template files in the set. The
name of this file is config.json but this can be changed in the generator’s configuration
file located in config/config.js parameter TEMPLATE CONFIG FILE NAME. the config-
uration file has its own validator located in app/template config validator. This validator

34

5.3 Generation Process

makes sure that the configuration file is consistent and that all the parameters have only
allowed values. It also checks the structure of the file in order to not break the entire gen-
erator. I was considering a file name notation as an alternative to the configuration file but
there are several reasons why to prefer configuration over convention in this case:

• The configuration file is easy to extend. Any properties can be attached to the tem-
plate files and modify the generation itself. This opens space for future extensions.

• The duplicated templates would not be possible because they require a configuration
which would be impossible to squeeze in the file name.

• It is easier to experiment with the templates just by removing and adding templates
into the configuration file, instead of manipulating the file system.

An example of the configuration file can be seen in the figure below.

Figure 5.5: The template types

The header of the configuration file contains the name of the template set and the
description. These two parameters are used for documentation purposes. The templates
parameter contains three different arrays named after the template types. There are two
normal templates registered in the figure. The second one has an additional parameter des-
tination. Templates in general are executed and then stored in the same folder structure as
they have in the template folder. The parameter destination allows to overwrite the native
folder structure. There is one atomic template called random json builder.tmpl.apib. This
template will be added to the scope as a template function. One then can call this function
from templates in the following way scope.random json builder(). The most complex is

35

Chapter 5. Implementation

the setup of the duplicated templates. There is one duplicated template shown in the figure.
The parameters are as follows:

• path - The path to the template file.

• scope - The array over which should be looped in order to create a file for each item
in the array. The scope is a base for this variable. The value model.models means
that there is a model property of the scope and the property has a property called
models. The complete chain is translated as scope.model.models. Since scope.model
is a reference to the passed model to the generator and scope.model.models is a
reference to the array of entities defined in the model, this template will be used for
each entity defined in the model. In case of more complex needs, one can create a
scope helper function which creates the desired array and appends it to the scope.
This function can then be called when the scope is created.

• reference - This parameter specifies how to access the item from the passed array. It
is logical to make a singular form from the array name. Each item will be assigned
to the scope under this name so one can access the item properties in the template
by calling for example model.name.

• name property - The last parameter specifies which property of the item will be
used as a name of the file. In this case it is the name property so the generator will
generate file names based on the model.name property.

The syntax of the templating language is very simple and it can be seen in the picture
below.

Figure 5.6: The template snippet showing the template notation

The templating engine distinguishes between if one wants to interpolate a variable or
not. In the first case the <%= ”Hello Wold” %> notation shall be used. In the second
case <% var greeting = ”Hello World” %> shall be used. The templating engine allows
to modify these marks if needed11. As it can be seen in the picture, the model.name is
interpolated into the template so the variable will become for example OrderController.
On the other hand the loop command .each(model.endpoints, function(endpoint){}) does
not interpolate anything therefore the <%%> is used. Since the templating language is
pure JavaScript, the native JavaScript functions can be used. This gives the templating
language a high expressiveness.

5.3.4 Templates Load
All the templates are loaded based on the configuration file. The generator reads the con-
figuration file and loads all the template files defined by the path parameter. The atomic

11http://underscorejs.org/#template - changing the templating marks

36

5.3 Generation Process

templates are loaded first as they are needed for the execution. The result of this step is a
set of functions. Each function represents exactly one template file.

5.3.5 Templates Execution

This step takes the functions from the previous step and runs them with the scope passed as
a parameter. The module responsible for the execution is located in app/template executor/.
The execution of the normal templates is simple since there is no special behavior needed.
The Template Executor just loops over all the template functions and executes them with
the scope as a passed variable. The execution of the duplicated templates is a bit complex.
The process is shown in the picture below.

37

Chapter 5. Implementation

Figure 5.7: The processing of duplicated templates

The dashed connections are interpreted as used by while the dotted connections as

38

5.3 Generation Process

produces.The first step is to find the array in the model based on which the whole iteration
is done. The implementation does at the moment not support any complex filtering (for
example selecting every entity with the letter S at the beginning). The workaround for this
can be a scope helper which saves the filtered data to the scope and is called when the
scope is initialized. Once the array is known then the iteration over each item takes place.
The picture shows a snippet from the template configuration file where the duplicated
template is specified. The next step stores the item to the scope under the name specified
in the reference parameter. The template is then executed with the scope enriched by the
item. The next step is to determine the file names. This is done by looking in the template
configuration file and checking the parameter name property. This parameter contains the
property of the item in the array. In case of the picture it is item.name which is used as
a name. The determined name and the executed template are them used in the last step,
where the real file is created. This repeats for each item in the array so the result are
multiple files.

5.3.6 Code Beautification

The purpose of this step is to beautify the generated code and make sure that the formatting
follows some standards. The module is located in app/template beautifier. The tricky part
of this step is that the effect is different depending on the used language. Since the REST
API template is written in JavaScript the generator natively comes with the library called
JS-Beautify12. This is a free open-source library available on GitHub and maintained by
Liam Newman. This library has a function which receives the JavaScript code and re-
formats the structure of the code so it fits to the passed options. Apart from the other
options this library has, it also has an option for JSLint. JSLint is a JavaScript code quality
tool which specifies how high quality code should be structured. Therefore I am able to
say that the generated JavaScript code follows the standard as one would expect from a
programmer.

It is a bit complicated with other languages, because the condition for a nice formatting
is of course a tool or a library, which does this or a really precise template. Luckily the
modern languages like Golang have their own tools to do that. Golang natively supports
this with go fmt command13 so no additional code is necessary. PHP also has its own
formatter14.

5.3.7 Templates Saver

This module simply takes all the executed and beautified templates and saves them into the
result folder. This folder is specified in the generator’s configuration file located in config/
folder under the parameter OUTPUT DIR. The module goes through all the templates and
checks if there is the parameter destination defined. If so, the module saves the template
into the path defined there. Otherwise it takes the native template path and creates the
folder structure so it can be saved.

12https://github.com/beautify-web/js-beautify - JS-Beautify
13http://blog.golang.org/go-fmt-your-code
14http://beta.phpformatter.com/

39

Chapter 5. Implementation

5.3.8 Generator’s Configuration File

As it has been already mentioned in the previous sections, the generator has its own con-
figuration file and all the necessary configuration must be stored here and not hard-coded
in the code. The configuration file is located in the config/ folder and it acts like every
other module, so in can be required inside the other modules. It currently contains:

• TEMPLATE DIR - the name of the folder where the templates are located

• OUTPUT DIR - the name of the folder where the generated code will be stored

• TEMPLATE CONFIG FILE NAME - the name of the configuration file for tem-
plates

• TEMPLATE REPO - a link to a Git repository from which the templates shall be
cloned

• TEMPLATE CLONE TARGET - the name of the folder where the generator shall
clone the templates from GitHub before compiling them

• COMPRESSED OUTPUT FOLDER - the name of the folder where the compressed
generated code shall be stored

5.3.9 Generator’s Endpoints

The generator has several endpoints, which can be used to generate the REST API or to
generate example data and store them in the database. There are currently 5 available
endpoints.

40

5.3 Generation Process

Figure 5.8: The endpoints of the generator, their inputs and the output

The figure shows all the available endpoints (orange squares). A dashed connection is
interpreted as used by and the dotted as the output.

• folder-to-folder - This endpoint accepts the model and it uses the templates stored
in the template directory on the server. It generates the code, stores it in the output
folder, compresses this folder into a single file, stores this file in the compressed
folder and then it serves the compressed file to the client. The client is then able to
download this file.

• folder-to-github - This endpoint accepts the model and it uses the templates stored
in the template directory on the server. It generates the code, stores it in the output
folder and then it uploads the generated code via Git to GitHub or any other version
management tool, for example Bitbucket.

41

Chapter 5. Implementation

• github-to-folder - This endpoint accepts the model and then it clones templates from
a specified repository. Once the cloning is done, it generates the code, stores it in
the output folder, compresses this folder into a single file, stores this file in the
compressed folder and then it serves the compressed file to the client. The client is
then able to download this file.

• github-to-github - This endpoint accepts the model and then it clones the templates
from a specified repository. Once the cloning is done, it generates the code, stores it
in the output folder and then it uploads the generated code via Git to GitHub or any
other version management tool, for example Bitbucket.

• randomize/mongodb - This endpoint accepts the model and a MongoDB link, it
generates random data according to the model and then stores the generated data in
the specified database. The pluralized lower-cased name of the entities in the model
is used as a collection name. The random data are also returned to the client in the
JSON format.

5.3.10 Git Integration and Versioning
There are two endpoints that push the generated code to a GitHub repository at the end of
the generation. There are three conditions for using this feature:

• Git has to be installed on the machine which is running the generator.

• There has to be a Git repository initiated in the output folder.

• The machine on which the generator is running has to have the credentials to the
remote repository service (GitHub, Bitbucket etc.) set as a global settings. This
means, that when pushing to a remote repository, Git should not require the creden-
tials.

Once the conditions are met, the versioning to a remote repository can be used. Git is
used in the generation process in two different scenarios.

• use a remote repository as a source of templates

• use a remote repository as a storage of the generated code

The motivation for the first case is obvious- reuse of the best practices. The repository
can be accessed by many developers who collaborate and maintain the templates so it
follows the best practices and evolves in time as the best practices change. The user of
the code generator does not even need to know that something has changed as long as the
tests for the generated code are passing. It is also a solution for generating for several
platforms. If somebody creates templates for a certain language and puts it in a public
repository, anybody can access it and reuse the developers knowledge.

The second case is mainly for managing the code base itself. As it has been already
mentioned, the protected areas in the code are very important. Instead of introducing
a new notation for marking the protected areas, I have transformed this problem into a

42

5.3 Generation Process

well known problem with many automated solutions- merging. When using an endpoint
which automatically uploads the generated code, a new branch is created and this branch
is then pushed to the remote repository. One can then open the repository in a repository
management tool and merge the new branch with the master branch. This is helpful when
one performs code generation, then makes some changes in the generated code and then
for some reason (new entity, new property of an entity etc.) generates the code again.
The changes done between the two generations would be lost, but with the versioning
functionality one can simply decide what gets overwritten in the master branch and what
stays there. Git has also an automated merging mechanism which in some cases is able to
automatically figure this out.

Figure 5.9: Merging process with custom code changes

The figure shows the merging process when a custom code change is done between the
two code generations. The first generation is pushed into the repository. The programmer
can then clone the repository and do the custom changes (marked as a green rectangle).
Then he/she pushes the changes back to the repository. Suddenly a new endpoint needs
to be added to the model and therefore a new code generation has to be done. This code
will be identical as the one from the first code generation plus the new endpoint (marked
as a red rectangle). When the programmer pushes the changes a new branch is automat-
ically created and the code is pushed into this branch. The branch name is based on the
date and the time of the generation. The programmer can then manually (or automati-
cally if possible) merge the code including the custom changes with the code from the
second generation and get the desired result (shown as a combination of blue, green and
red rectangles).

Git is just a beginning. It is very popular for continuous integration15 and Git is a
great tool for this. Every time a new commit is registered in the Git repository, the code is
loaded by the integration server, it passes several building steps including testing and then
it is deployed to production.

15http://www.martinfowler.com/articles/continuousIntegration.html - Continuous Integration by Martin
Fowler

43

Chapter 5. Implementation

5.3.11 Download, Installation, Run and Test
The code generator has been released as an open source project and is available online16.
To download the code generator, simply clone the repository to your local machine by
using git clone https://github.com/RassaLibre/rest-api-generator.git. These are the prereq-
uisites to run the generator on a local machine:

• NodeJS with NPM

• GruntJS

• MochaJS

In order to download the dependencies simply run npm install. This will install all nec-
essary dependencies the generator needs. To run the generator, simply run node server.js.
This will start the generator on port 3000. The port can be changed in the server.js file.
The generator is covered by unit tests. The unit tests can be run by executing the command
mocha -w.

5.4 REST API template
The generator comes with a template for generating a REST API based on NodeJS and
MongoDB. This template can predict the behavior of specified endpoints and has a couple
of testing mechanisms in order to get a quick overview over what has been generated.
This chapter describes the template and all the ideas implemented in it. The template is
available on GitHub17.

5.4.1 Folder Structure
The template has two folders in the root directory and the configuration file. The api folder
contains all the templates related to the REST API. The blueprint folder contains templates
related to the generation of API Blueprint. The purpose of API Blueprint will be described
later in this chapter.

The REST API has a main file api/server.templ.js. This contains the registration of
all endpoints and registers callbacks for handling the incoming requests on each endpoint.
This template is registered as a normal template. The folder api/test/ contains unit tests
so the generated code is covered by unit tests. api/app/Db.js is a configuration file and it
contains the database configuration. api/app/Error Map.js is a module for handling any
kind of errors which may occur when resolving the requests.

api/app/models/ is a folder containing data models. This folder contains the template
api/app/models/data structure.tmpl.js. This is a duplicated template and it is generated
for each entity in the passed model. The generation of this template will result in mul-
tiple files each named after an entity reflecting the data structure defined in the passed
model. The generated data structures inherit the behavior from api/app/modes/model.js.

16https://github.com/RassaLibre/rest-api-generator - The code generation repository
17https://github.com/RassaLibre/rest-api-generator-templates - The template available for code generation

44

5.4 REST API template

api/app/models/field properties.tmpl.js is a simple atomic template used when generating
the data structures and its purpose is to manage whether the variable is shown in quotes
or not. This is necessary for distinguishing a string variable from integers. The last file
api/app/models/index.tmpl.js is used as an export of the entire Models module.

api/app/nested/ is a folder containing functions for easy handling of the nested objects
inside the structures returned from the database. They are all registered as normal tem-
plates so the generator places them in the target folder. api/app/db query builder/ folder
contains a module which allows filtering and sorting the results. This is possible via addi-
tional parameters passed with the URI. This module is covered by unit tests which can be
found in api/test/db query builder.js.

api/app/routes/ is a folder containing all the behavior for resolving incoming requests.
api/app/routes/controller.tmpl.js is a duplicated template generated for each entity in the
passed model. The generation of this template results in multiple files named after each
entity in the passed model. Each file contains the logic behind handling a particular request
on a particular resource/entity. app/api/routes/index.tmpl.js is a normal template exporting
the entire module so it can be reached in the api/server.tmpl.js file.
app/api/routes/query selector.tmpl.js is a simple atomic template which is used to deter-
mine how the query to the database should look like. The remaining files
app/api/routes/set DELETE controller.tmpl.js, app/api/routes/set GET controller.tmpl.js,
app/api/routes/set POST controller.tmpl.js and app/api/routes/set PUT controller.tmpl.js
are atomic templates containing the behavior for handling requests. These templates are
called in api/app/routes/controller.tmpl.js based on which method is used in the current
request.

The blueprint folder contains the main template blueprint/blueprint.tmpl.apib.
blueprint/endpoint parameters.tmpl.apib is an atomic template for inserting a common
construction for endpoints with parameters. blueprint/random json builder.tmpl.apib is a
template for generating random data based on the passed entity in the model. The remain-
ing templates blueprint/array GET request.tmpl.apib, blueprint/DELETE request.tmpl.apib,
blueprint/POST request.tmpl.apib, blueprint/PUT request.tmpl.apib and
blueprint/single GET request.tmpl.apib are atomic templates which contain the content of
the API Blueprint file based on the HTTP method of each endpoint. These templates are
called in the blueprint/blueprint.tmpl.apib file.

5.4.2 Filtering and Sorting

The template supports filtering and sorting of the results. This can be achieved by passing
additional parameters with the URI for example
ovens?SKU=AA-AA-AA&orderBy=price&orderDirection=desc. This means that the re-
sult will contain only ovens with the property SKU equal to AA-AA-AA. The result will be
ordered by the parameter price in the descending order (from the highest price to the low-
est price). The logic behind this functionality is very simple. The additional parameters are
compared to the entity’s properties and if there is a match, the parameter is considered to
be a filter. The parameters which do not match any property are simply ignored. orderBy
and orderDirection are special keywords which are used for the ordering and therefore
should not be used as a name for a property in any entity.

45

Chapter 5. Implementation

The filtering is dependent on the property type. If the property is of type string then
the database query contains a regular expression with the passed value. If the property
is of type integer then the passed value is parsed into an integer so it can be used in the
database query. A special case are dates. In that case, the passed value shall start with the
< or > sign. This indicates if the user is searching for the documents with a date younger
or older than the passed value.

5.4.3 Behavior prediction
The template has build-in behavior prediction. This means that the template is able to
recognize what each endpoint shall do. The template currently supports all major HTTP
methods- GET, POST, PUT, DELETE. The following types of endpoints are supported:

• endpoints with a noun at the end- for example /ovens or /ovens/:id/parts

• endpoints with a parameter at the end- for example /ovens/:id or /ovens/:id/parts/:id

• endpoints with a verb at the end - for example /ovens/:id/move

The template first figures out which method is used and then it matches the URI with a
regular expression. If the match is found the template knows which part of the predefined
code shall be used. If the URI matches the format noun1/parameter/noun2 it figures out
the entity related to noun1 and checks, if this entity contains a field in the data structure
with the same name as noun2. If so, the template classifies the endpoints as an endpoint
with a noun at the end. If the fields is not in the data structure, the endpoint is classified as
an endpoint with a verb at the end. The process is shown in the figure below.

Figure 5.10: Template behavior prediction

The first matching is done based on the first noun (shown as purple in the figure) of the
inspected URI and the entities in the passed model. According to the best practice when
creating URIs it is good to use lowercase letters and the plural form. The entities shall

46

5.5 Template Development Workflow

always be in the singular form and start with a capital letter. This is not a problem because
PluralizeJS takes care of the transition between the plural and the singular version. Capital
letters are also not a problem because JavaScript has native functions converting uppercase
to lowercase. The second matching is done based on the second noun (shown as blue in
the figure) and the name of the property. In this case the best practices for naming are the
same so no transformation is needed. Parameters in the URI and the attributes in the data
structure should consist of lowercase letters and should both be in a form based on the data
type- plural for array, singular for everything else. Since the data type is an array the form
shall be plural.

The third matching is the easiest one because the attribute’s type shall reflect the en-
tity’s name so no transitions are needed. If this process fails in any step a general template
is applied. This means that the endpoint is not forgotten, it still has its place in the gen-
erated code but its implementation is blank and it is up to the programmer to fill in the
implementation because the template is not able to predict the behavior of this endpoint.
The same counts for the endpoints with the verb at the end. It is impossible to predict any
sort of behavior in that case. All the matching functions are stored as scope helpers so they
can be covered by unit tests and reused.

5.4.4 API Blueprint

As it has been already mentioned, the second part of the template set is a template for
generating an API Blueprint file. This file contains the specification of the generated
REST API including all endpoints, URI parameters and incoming and outcoming data.
There are several reasons why I have included this file:

• API Blueprint is a well known and standardized notation for describing REST APIs.
There are several tools available for this notation18. These tools are developed by the
community around the API Blueprint and its main purpose is to ease the REST API
development. By generating this file I made sure that if there will be an interesting
tool developed in the future, the generated APIs will support it.

• The Apiary project is generating documentation based on this file. This means that
every generated API shall be provided with documentation for each endpoint. This,
in addition to the visual model creates a powerful base for the documentation.

• Apiary offers SDKs for any platform to make an HTTP request to the server. This
is very useful for anybody who has never worked with REST APIs and can dramat-
ically reduce the problems one has to overcome.

5.5 Template Development Workflow

This section is about the template development process and the mechanisms the generator
has in order to ease this process.

18https://apiblueprint.org/

47

Chapter 5. Implementation

5.5.1 Prerequisites

The prerequisites are that the user has the following packages installed:

• GruntJS for file watching the templates. This is run by the command grunt devel-
opment in the root folder of the generator.

• MochaJS for running the unit tests. This is run by the command mocha -w in the
folder with the generated REST API. The -w ensures that the tests will re-run on
every file change.

• NodemonJS for file watching the generated API as a whole. This is run by the
command nodemon server.js in the folder with the generated REST API.

I recommend four different terminal windows. One is the generator, one for GruntJS,
one for MochaJS and the last one for running the generated REST API via NodemonJS.
This setup is shown in the following figure.

Figure 5.11: The recommended setup for template development

5.5.2 Template Development Process

The development process is shown in the figure below. The whole chain of processes is
triggered once the user makes a change in the templates. This change is registered by
the GruntJS task and it grabs the example model located in test/example data.js. The
same model is used for the unit tests of the generator. This model is sent to the generator
via HTTP request as the editor would do. The generator accepts the model and uses the
freshly edited templates to generate the code base of the REST API. The generated code
overwrites the previously generated REST API which is running via NodemonJS. The
overwriting triggers NodemonJS to restart the generated REST API so the changes made
in the templates are immediately available. The overwriting also triggers the unit test to
re-run themselves. The described process is shown in the figure below.

48

5.6 The Editor Extensions

Figure 5.12: The template development process (Source of GruntJS logo:http://gruntjs.
com/, MochaJS logo: http://mochajs.org/, NodemonJS logo:http://nodemon.io/)

By following this process, one can get a lot of advantages. It is mainly the fact that the
generated REST API gets constantly updated with every saved change in the templates. To
check that the changes are correct and do what is expected, the unit tests of the generated
REST API are re-run together with the generation. One can then clearly see the impact of
the changes. This together with Dredd creates a very strong foundation for the template
development.

5.6 The Editor Extensions

In order to support all the functionality of the generator in the editor, I had to extend the
editor. This section therefore describes the extension I had to make.

49

http://gruntjs.com/
http://gruntjs.com/
http://mochajs.org/
http://nodemon.io/

Chapter 5. Implementation

5.6.1 Endpoint handling
There are different endpoints the user can choose between. This resulted in a component
with different radio boxes one for each endpoint. A button for firing requests to the gen-
erator has been also implemented. If the user selects one of the endpoints which returns
the REST API as a compressed file, the file is automatically served after the generation
and the browser downloads it. If the user selects one of the endpoints which results in
an interaction with GitHub a success message is shown after the interaction. If the user
selects ”Data generator” an extra text field is shown because the user needs to enter the
MongoDB link to the database. The picture below shows the implemented extensions in
the control panel.

Figure 5.13: The implemented extensions in the editor

50

Chapter 6
Evaluation

This chapter describes the evaluation of the developed software. The evaluation is based
on the requirements specified in chapter 4.2. The study case is described in appendix A.
The model can be found here 1. Some of the evaluation points are comparing the actual
output to a programmer written REST API. The programmer written REST API is based
on one of the production REST APIs developed by Searis AS2. The company is focusing
on software integration and REST APIs are included in all the projects Searis AS has been
working on.

6.1 Functional Requirements
This section shows the evaluation of the functional requirements against the actual imple-
mentation.

6.1.1 Meta-Model Independence

Name Description Priority
1. Meta-model independence The generator shall be independent

on the concrete meta-model
medium

The concrete meta-model, which fits to the notation the editor is generating is implemented
as a child of the prototype Abstract Metamodel. The only dependency the generator has
is the validate(model) function which accepts the model and returns a boolean variable
weather the model is valid or not. This function is in the prototype Abstract Metamodel so
if a new meta-model needs to be created, it simply needs to inherit the Abstract Metamodel

1http://tdt4501.bitballoon.com/ - The model of the case used to evaluate the result
2http://searis.no/ - Searis AS homepage

51

Chapter 6. Evaluation

prototype and then overwrite the validate(model) function with custom rules reflecting the
new notation.

Since the only dependency is expressed in the abstract prototype it is therefore possible
to use custom meta-models, which means that the generator is not dependent on the
concrete meta-model.

6.1.2 Platform Independence

Name Description Priority
2. Platform independence The generator shall be able to gen-

erate any kind of code regardless of
the programming language

high

The example template is written in JavaScript and is targeting the NodeJS environment.
This is not the generators constraint because it can be used for any kind of language. The
code snippet below shows a very simple PHP template.

<?php
$ s e r v e r = new S e r v e r () ;
<% . each (s cope . model . models , f u n c t i o n (model) { %>

$ s e r v e r−>r e g i s t e r m o d e l (”<%=model . name%>”) ;
<% }) %>

?>

The execution of the template results in the following PHP code.

<?php
$ s e r v e r = new S e r v e r () ;
$ s e r v e r−>r e g i s t e r m o d e l (”Oven”) ;
$ s e r v e r−>r e g i s t e r m o d e l (” P a l l e t ”) ;
$ s e r v e r−>r e g i s t e r m o d e l (” L o c a t i o n ”) ;
$ s e r v e r−>r e g i s t e r m o d e l (” P a r t ”) ;

?>

A bit more complex language such as Golang is also possible. Golang is a program-
ming language developed and maintained by Google and its popularity is raising3. The
following code snippet shows a very simple template for Golang code.

<% . each (scope . model . models , f u n c t i o n (model) { %>
f unc h e l l o </%=model . name%>(w h t t p . ResponseWr i t e r , r ∗ h t t p . Reques t) {

i o . W r i t e S t r i n g (w, ”<%=model . name%>”)
}

<% }) %>

The execution of the template results in the following code.

f unc he l loOven (w h t t p . ResponseWr i t e r , r ∗ h t t p . Reques t) {
i o . W r i t e S t r i n g (w, ”Oven ”)

}

3http://herman.asia/the-popularity-of-go - The popularity of Go by Herman Schaaf

52

6.1 Functional Requirements

f unc h e l l o P a r t (w h t t p . ResponseWr i t e r , r ∗ h t t p . Reques t) {
i o . W r i t e S t r i n g (w, ” P a r t ”)

}

f unc h e l l o P a l l e t (w h t t p . ResponseWr i t e r , r ∗ h t t p . Reques t) {
i o . W r i t e S t r i n g (w, ” P a l l e t ”)

}

f unc h e l l o L o c a t i o n (w h t t p . ResponseWr i t e r , r ∗ h t t p . Reques t) {
i o . W r i t e S t r i n g (w, ” L o c a t i o n ”)

}

It is obvious that the generator is not limited to a certain programming language. It can
even generate files which are not related to the code at all. The perfect example is the API
Blueprint file which has its own notation based on Markdown notation. The generator is
therefore platform independent and can generate any kind of programming language.

6.1.3 Endpoint Completeness

Name Description Priority
3. Endpoint completeness The generated endpoints shall re-

flect the modeled endpoints in the
model

high

The model from the use case contains 27 endpoints in total as can be seen in the picture
below.

53

Chapter 6. Evaluation

Figure 6.1: The modeled endpoints in the use case

The generated REST API also contains 27 endpoints in total as it can be seen in the
code snippet below.

exp . g e t (’ / ovens / ’ , r o u t e s . oven . g e t o v e n s w) ;

exp . g e t (’ / ovens / : id ’ , r o u t e s . oven . g e t o v e n s x) ;

exp . p u t (’ / ovens / : id ’ , r o u t e s . oven . p u t o v e n s y) ;

exp . d e l e t e (’ / ovens / : id ’ , r o u t e s . oven . d e l e t e o v e n s z) ;

exp . p o s t (’ / ovens / ’ , r o u t e s . oven . p o s t o v e n s 1 0) ;

exp . g e t (’ / p a l l e t s / ’ , r o u t e s . p a l l e t . g e t p a l l e t s 1 1) ;

exp . g e t (’ / p a l l e t s / : id ’ , r o u t e s . p a l l e t . g e t p a l l e t s 1 2) ;

exp . p u t (’ / p a l l e t s / : id ’ , r o u t e s . p a l l e t . p u t p a l l e t s 1 3) ;

exp . d e l e t e (’ / p a l l e t s / : id ’ , r o u t e s . p a l l e t . d e l e t e p a l l e t s 1 4) ;

exp . p o s t (’ / p a l l e t s / ’ , r o u t e s . p a l l e t . p o s t p a l l e t s 1 5) ;

exp . p o s t (’ / p a l l e t s / : i d / p a r t s ’ , r o u t e s . p a l l e t . p o s t p a r t s i n p a l l e t s 1 6) ;

54

6.1 Functional Requirements

exp . g e t (’ / p a l l e t s / : i d / p a r t s ’ , r o u t e s . p a l l e t . g e t p a r t s i n p a l l e t s 1 7) ;

exp . g e t (’ / p a l l e t s / : i d / p a r t s / : p a r t i d ’ , r o u t e s . p a l l e t .
g e t p a r t s i n p a l l e t s 1 8) ;

exp . p u t (’ / p a l l e t s / : i d / p a r t s / : p a r t i d ’ , r o u t e s . p a l l e t .
p u t p a r t s i n p a l l e t s 1 9) ;

exp . d e l e t e (’ / p a l l e t s / : i d / p a r t s / : p a r t i d ’ , r o u t e s . p a l l e t .
d e l e t e p a r t s i n p a l l e t s 1 a) ;

exp . g e t (’ / l o c a t i o n s / ’ , r o u t e s . l o c a t i o n . g e t l o c a t i o n s 1 b) ;

exp . g e t (’ / l o c a t i o n s / : id ’ , r o u t e s . l o c a t i o n . g e t l o c a t i o n s 1 c) ;

exp . p u t (’ / l o c a t i o n s / : id ’ , r o u t e s . l o c a t i o n . p u t l o c a t i o n s 1 d) ;

exp . d e l e t e (’ / l o c a t i o n s / : id ’ , r o u t e s . l o c a t i o n . d e l e t e l o c a t i o n s 1 e) ;

exp . p o s t (’ / l o c a t i o n s / ’ , r o u t e s . l o c a t i o n . p o s t l o c a t i o n s 1 f) ;

exp . g e t (’ / p a r t s / ’ , r o u t e s . p a r t . g e t p a r t s 1 g) ;

exp . g e t (’ / p a r t s / : id ’ , r o u t e s . p a r t . g e t p a r t s 1 h) ;

exp . p u t (’ / p a r t s / : id ’ , r o u t e s . p a r t . p u t p a r t s 1 i) ;

exp . d e l e t e (’ / p a r t s / : id ’ , r o u t e s . p a r t . d e l e t e p a r t s 1 j) ;

exp . p o s t (’ / p a r t s / ’ , r o u t e s . p a r t . p o s t p a r t s 1 k) ;

exp . g e t (’ / p a r t s / : i d / p a l l e t s ’ , r o u t e s . p a r t . g e t p a l l e t s i n p a r t s 1 l) ;

exp . p o s t (’ / p a r t s / : i d / p a l l e t s ’ , r o u t e s . p a r t . p o s t p a l l e t s i n p a r t s 1 m) ;

The following table shows the modeled endpoints in detail and each endpoint has a
flag whether there is a generated endpoint which matches or not. The table is based on
comparing the two figures above.

55

Chapter 6. Evaluation

URI Method Is generated?
ovens/ GET Yes
ovens/:id GET Yes
ovens/:id PUT Yes
ovens/:id DELETE Yes
ovens/ POST Yes
locations/ GET Yes
locations/:id GET Yes
locations/:id PUT Yes
locations/:id DELETE Yes
locations/ POST Yes
parts/ GET Yes
parts/:id GET Yes
parts/:id PUT Yes
parts/:id DELETE Yes
parts/ POST Yes
parts/:id/pallets GET Yes
parts/:id/pallets POST Yes
pallets/ GET Yes
pallets/:id GET Yes
pallets/:id PUT Yes
pallets/:id DELETE Yes
pallets/ POST Yes
pallets/:id/parts POST Yes
pallets/:id/parts GET Yes
pallets/:id/parts/:part id GET Yes
pallets/:id/parts/:part id PUT Yes
pallets/:id/parts/:part id DELETE Yes

Table 6.1: Comparison of the modeled endpoints with the generated ones

As can be seen in the table, the generator does generate all the endpoints with the
correct URI and the HTTP method therefore the requirement is satisfied.

6.1.4 Model Completeness

Name Description Priority
4. Model completeness The data structures the generated

REST API is working with shall
reflect the entity structures in the
model

high

56

6.1 Functional Requirements

For this evaluation I will use just one entity, because all the entities are compiled with the
same algorithm. If one is correct the others are too. The entity Oven seems to be the most
complex one, since it includes the most parameters of different types. The entity is shown
in the figure below.

Figure 6.2: The entity Oven in the use case model

The generated data model for this entity is shown in code snippet below.

t h i s . f i e l d s = {

SKU: {
t y p e : ’ s t r i n g ’ ,
l e n g t h : 30 ,
r e g e x : ’ ˆ [A−Z1−9]{2}−[A−Z1−9]{2}$ ’ ,

} ,

name : {
t y p e : ’ s t r i n g ’ ,
l e n g t h : 30 ,

} ,

p a r t s : {
t y p e : ’ a r r a y ’ ,
key : ’ i n t e g e r ’ ,
v a l u e : ’ P a r t ’ ,

} ,

s t a t u s : {
t y p e : ’ s t r i n g ’ ,
l e n g t h : 30 ,

} ,

c r e a t e d A t : {
t y p e : ’ t imes tamp ’ ,

} ,

upda t edAt : {
t y p e : ’ t imes tamp ’ ,

57

Chapter 6. Evaluation

} ,

l o c a t i o n : {
t y p e : ’ Loca t i on ’ ,

} ,

} ;

By comparing the two figures, one can see that the modeled properties of the entity
Oven are exactly the same as the one in the generated data structure. It is also possible
to observe that all additional fields (min, max, regex etc.) dependent on the main type
(integer, string etc.) are also present in the structure. If the field is not filled, then it is
simply not in the data structure.

Based on that, it is obvious that the modeled data structure is reflected in the data
structure the generated REST API is operating with. To be sure that this is correct, lets
compare the figures to the output of the generated REST API when the endpoint GET
ovens/:id is called. The figure below shows the data when such a call is performed.

Figure 6.3: The actual object of type Oven returned from the generated REST API

As can be seen, the structure of the object is the same, but there is an additional prop-
erty id. This is a unique identifier of the object and it has been said in the report related to
the editor that ”this parameter therefore shall not be modeled because it does not really de-
scribe the reality, it is an unique identifier used for identifying each resource”(Prochazka,
2014). The id parameter is therefore completely valid here.

Based on the comparison of the modeled structure, generated structure and an actual
structure of a real object from the generated REST API it is obvious that this requirement
is satisfied.

58

6.1 Functional Requirements

6.1.5 Best Practice Behavior

Name Description Priority
5. Best Practice Behavior The behavior of the generated

REST API shall reflect the best
practices of REST APIs

high

The best practices have been established in chapter 2.1.2. The chapter contains the table
with defined behavior of each HTTP methods related to the URI. These practices were
implemented in the API Blueprint. Dredd, the software that uses the API Blueprint to
actually test the generated REST API, checks:

• the structure of incoming data

• the structure of outcoming data

• the type of each property (integer, string, array, etc.)

The result of the Dredd testing can be seen in the following picture.

Figure 6.4: Best practices checked with Dredd

As can be seen, all the endpoints are passing except two. These two are exceptional
because they do not fit to the passed model and require the programmer to fill in the
implementation. The following table is the same table as the one in the chapter 2.1.2 but it
shows which URI type and HTTP method combinations were tested and what is the result.

As can be seen in the table, there are two combinations which where not tested because
there are not covered in the use case, and four combinations are skipped because they do
not make sense. All the other combinations are tested and the result is positive.

59

Chapter 6. Evaluation

xxx /ovens /ovens/233 /ovens/293/parts /ovens/293/parts/676
GET passed passed passed passed
POST passed XXX passed XXX
PUT not tested passed XXX passed
DELETE not tested passed XXX passed

Table 6.2: Expected behavior related to the Dredd test results

It is important to mention that the behavior of the endpoints is completely dependent
on the templates and not on the generator itself. The generator just executes the templates.
The best practice knowledge is hidden in the templates.

Based on the comparison table I am able to say that the generator is capable of gen-
erating REST APIs with the best practice behavior specified in the chapter 2.1.2. The
requirement is therefore satisfied.

6.1.6 Code Quality

Name Description Priority
6. Code Quality The code shall be structured as if a

programmer writes it
high

To measure that the generated code has the same quality as a programmer written code,
I will compare the generated code to the hand written code. The following code snippet
shows the controller, which returns all objects type of Parts.

/∗∗
∗ r e t u r n s l i s t o f p a r t s
∗ /
g e t P a r t s : f u n c t i o n (req , r e s) {

m o n g o c l i e n t . c o n n e c t (mongo url , f u n c t i o n (e r r , db) {
i f (e r r) e r r o r h a n d l e r . s e n d e r r o r (r e s , 102) ;
v a r c o l l e c t i o n = db . c o l l e c t i o n (’ p a r t s ’) ;
v a r q u e r y s t r i n g = d b q u e r y b u i l d e r . b u i l d d b q u e r y (r e q . query , new

model . P a r t () . f i e l d s) ;
c o l l e c t i o n . f i n d (q u e r y s t r i n g) . t o A r r a y (f u n c t i o n (e r r , docs) {

i f (e r r) e r r o r h a n d l e r . s e n d e r r o r (r e s , 100) ;
r e s . send (docs) ;
db . c l o s e () ;

}) ;
}) ;

} ,

The controller accepts a request from the client, executes a database query based on
what kind of parameters are attached to the URI and returns the result. The code snippet
below shows how the same part looks like when the code is generated.

/∗∗

60

6.1 Functional Requirements

∗ r e t u r n s l i s t o f P a r t s
∗ /

g e t p a r t s 1 g : f u n c t i o n (req , r e s) {
m o n g o c l i e n t . c o n n e c t (mongo url , f u n c t i o n (e r r , db) {

i f (e r r) e r r o r h a n d l e r . s e n d e r r o r (r e s , 102) ;
v a r c o l l e c t i o n = db . c o l l e c t i o n (’ p a r t s ’) ;
v a r q u e r y s t r i n g = d b q u e r y b u i l d e r . b u i l d d b q u e r y (r e q . query , new

model . P a r t () . f i e l d s) ;
c o l l e c t i o n . f i n d (q u e r y s t r i n g) . t o A r r a y (f u n c t i o n (e r r , docs) {

i f (e r r) e r r o r h a n d l e r . s e n d e r r o r (r e s , 100) ;
r e s . send (docs) ;
db . c l o s e () ;

}) ;
}) ;

} ,

As it can be seen, there are some minor differences. In the generated code, the name of
the function is get parts 1g. The fact that the original is camel-cased is not a problem, this
is just a matter of the notation but the 1g in the name of the generated function is extra. It is
an unique ID in the model and it is there to ensure that the name of the controller is unique.
It is a great source of uniqueness and it helps to quickly search for the one endpoint the
controller is handling. Apart from that, the snippets are identical.

It is important to understand that the generator itself has a small impact on how the
resulted code will look like. It is the templates that can affect the final look. The generator
has a beautifier but that is currently available only for JavaScript files. However modern
languages have their own style fixers. The reason why the fixers for, for example Golang,
PHP or Ruby are not included in the generator is that there is no NPM module which
would allow to do that. Therefore this needs to be a separate action after the generation
process.

There are cases when the generated code does not look like the hand written one at all.
The problem is that the programmer structures the code so it is aesthetically nice for the
eye. This does not always match with the best practices included in the beautifier. The
following code snippet shows defined fields in a hand written REST API.

t h i s . f i e l d s = {
SKU: { t y p e : ’ s t r i n g ’ , l e n g t h : 30 , r e g e x : ’ˆ[1−9]{2}−[A−Z1−9]{2}−[A−Z1

−9]{2}$ ’} ,
name : { t y p e : ’ s t r i n g ’ , l e n g t h : 30} ,
c o u n t : { t y p e : ’ i n t e g e r ’ , min : 0} ,
p r i c e : { t y p e : ’ double ’ , min : 0} ,
v a l u e : { t y p e : ’ double ’ , min : 0} ,
c r e a t e d A t : { t y p e : ’ t imes tamp ’} ,
upda t edAt : { t y p e : ’ t imes tamp ’}

} ;

This is significantly different from the generated code which can be seen in the code
snippet below.

t h i s . f i e l d s = {

SKU: {
t y p e : ’ s t r i n g ’ ,
l e n g t h : 30 ,
r e g e x : ’ˆ[1−9]{2}−[A−Z1−9]{2}−[A−Z1−9]{2}$ ’ ,

61

Chapter 6. Evaluation

} ,

name : {
t y p e : ’ s t r i n g ’ ,
l e n g t h : 30 ,

} ,

c o u n t : {
t y p e : ’ i n t e g e r ’ ,
min : 0 ,

} ,

p r i c e : {
t y p e : ’ double ’ ,
min : 0 ,

} ,

v a l u e : {
t y p e : ’ double ’ ,
min : 0 ,

} ,

c r e a t e d A t : {
t y p e : ’ t imes tamp ’ ,

} ,

upda t edAt : {
t y p e : ’ t imes tamp ’ ,

} ,

} ;

The generated version is different because the beautifier re-styles the code so it is
according to the specification. The hand written version is obviously more aesthetically
correct, but not necessarily according to the specification.

This requirement is highly dependent on the templates. The templates determine the
main structure of the code. Making a proper template is not always easy because once
one starts to use sub-templates, it is hard to determine the indentation of the code. This is
solved by the beautifier which is a part of the generator. The problem is that the beautifier
changes also other parts of the code so the result is not the same as if a programmer writes
it. By applying the beautifier on the hand written code I got the same result as when I
applied the beautifier on the executed template. One can say that the generator produces
even better code than a programmer, because it abstracts from the personal aesthetics and
only focuses on the well-known standards.

This requirement is therefore not satisfied but it is important to ask if it is a programmer
written code that should be compared to the generated code or if it is a code implementing
the style specification.

62

6.1 Functional Requirements

6.1.7 Folder Structure Quality

Name Description Priority
7. Folder Structure Quality The folder structure of the REST

API shall be the same as if a pro-
grammer structures it

medium

To evaluate this point, I will compare the generated REST API folder structure to a pro-
grammer written one. The following figure shows the REST API structured by a program-
mer.

Figure 6.5: The REST API structured by a programmer

The logic is in the app/ folder. This folder has a couple of sub-folders. db query builder/
for translating the URI parameters to an SQL query. models/ for storing the data models.
nested/ for operations with the nested objects and finally routes/ for the controllers related
to each endpoint grouped by the data model.

The following figure shows the file structure of the generated REST API.

63

Chapter 6. Evaluation

Figure 6.6: File structure of the generated REST API

It is obvious that the file structures are the same. The generated REST API has 2
additional files test/nested.js and app/nested/get nested.js. This is due to the fact that the
generated REST API includes unit tests for the Nested module and it also has a function
for getting a nested object.

It is again important to say that the templates affect the result file structure much more
than the generator itself. The generator’s part in the process is the fact that the generator
supports duplicated templates and is able to handle a different destination specified in the
destination parameter in the template configuration file. The rest is in the templates.

Based on the comparison of the two file structures I am able to say that the generator
is able to generate REST APIs with the same structure as programmer written REST APIs
have. The requirement is therefore satisfied.

6.1.8 Re-Generating Management

Name Description Priority
8. Re-Generating Management The generator shall support custom

changes in the code which shall not
disappear when the generation pro-
cess is ran again

high

64

6.1 Functional Requirements

This requirement is satisfied because the generator has the ability to create a new branch
in a specified GitHub repository and then the user can merge the two branches and pick
what should be in the master branch. This functionality is described in section 5.3.10.

6.1.9 Template Re-Usability

Name Description Priority
9. Template Re-usability The generator shall support tem-

plate sharing
low

The generator supports Git so it is able to clone any repository and then use this repository
as a source of templates. The only limitation is that the generator needs to be run on
a machine which has Git installed. This feature allows to use any kind of template set
from GitHub or Bitbucket. This is very powerful feature because developers from all
around the world can collaborate on a template set and anyone can use the template set
if the repository is publicly available. This requirement is therefore satisfied because the
generator supports getting templates from publicly available repositories.

6.1.10 Output Testability

Name Description Priority
10. Output Testability The generated REST API shall be

testable
medium

There are two different ways how to test the output of the generator. First of all, there are
unit tests. It is a best practice to have them included so once the generator generates the
REST API, the programmer can run the unit tests. This will make the programmer sure
that the functions in the code are working as intended.

The second way is to use Dredd. By running Dredd, one can immediately see which
endpoints are working as intended and which need to be inspected by a programmer. The
output of Dredd can be seen on the figure bellow.

65

Chapter 6. Evaluation

Figure 6.7: Dredd output

The figure shows 26 endpoints which are working according to the best practice be-
havior and one (marked in the red color) which has failed.

There are two different mechanisms to ensure the user that the endpoints of the gener-
ated REST API are working according to the best practices. Both processes are automatic
and the only action required from the user is to actually start the testing processes. This
requirement is therefore satisfied.

6.2 Non-Functional Requirements
This section provides an evaluation of the developed system against the non-functional
requirements.

6.2.1 Cross-Platform

Name Description Priority
N11. Cross-Platform The generator shall work on OS X,

Windows and Linux
medium

The generator is a REST API so it does not matter what kind of operational system the
client is running. If one wants to run the generator, it requires a NodeJS environment.
NodeJS as it can be seen on the official pages4 has packages for OS X, Windows and
Linux. In addition to that it also supports SunOS and one can also download the entire
source code of the environment.

Since the only dependency is NodeJS which is supported on OS X, Windows and
Linux, the requirement is satisfied.

4https://nodejs.org/download/ - NodeJS download page

66

6.2 Non-Functional Requirements

6.2.2 Output Testability

Name Description Priority
N12. Output Testability The tests of the generated REST

API shall be automatic
medium

This constraint is fully satisfied because there are two different mechanisms- unit tests and
Dredd for behavioral tests and they are both automatic.

6.2.3 Template Sharing

Name Description Priority
N13. Template Sharing The template sharing shall be done

without any manual download
medium

The shareability of the templates is done via GitHub. The generator offers endpoints
/github-to-zip and /github-to-github which clone the template set from the specified repos-
itory and then use them as a source to generate the REST API. There is therefore no man-
ual downloading and copy-pasting needed in order to use somebody’s templates. This
requirement is satisfied.

6.2.4 Speed

Name Description Priority
N14. Speed The generator shall generate the

REST API in a reasonable time
low

The speed of the generator is dependent on many factors:

• complexity of the templates

• complexity of the model

• network speed

To abstract from the network I will measure the time from the point when the generator
receives a request until the time when the generator responds. I used to model from the
use case with 4 entities. I did 10 measurements and the average time was 38.5ms. I also
performed a measurement from the point when a request is fired to the point when the
response is sent to the client. The average time of 10 requests is 1260.625ms.

67

Chapter 6. Evaluation

When comparing those two numbers it is obvious that the network plays a huge role
in the generation process. I believe that both numbers are reasonable as one can trigger
the code generation on every change in the templates and in 1.2s see the impact of the
changes. I believe that the validity of the generated code is much more important than the
speed of the generator. I therefore believe that this requirement is satisfied.

6.3 Limitations
There are several limitations in the implementation. The entire functionality has been
evaluated on one single case. In practice, every case might have different needs, which
might not be supported at the moment. The demo videos attached to this report in the
appendix B show a different case which does not require anything extra in comparison to
the one used for the evaluation.

The current implementation supports following data types:

• primitive types such as String, Integer, Double, GeoJSON and Timestamp

• another entity as a data type

• array of primitive types or another entity type

The current prediction is limited to hierarchical REST APIs. This means that the URIs
have a hierarchical structure and reflect the data model (for example
universities/34/faculties/15/institutes/19). URIs such as education/universities/34 are not
understood and the generator is not able to predict the behavior of such endpoint. It makes
sense to create hierarchical REST APIs but it is not a rule. These is another limitation
connected to the behavior prediction and that is the first step when matching URIs to the
entities in the data structure. This step is based on the naming conventions which can be
broken for example with a self-relation. Self-relation is needed for example when entity
Person is parent of another Person. The editor and the NodeJS template set currently does
not support that. The good this is that the generator places an empty function instead of
the generated code so there is nothing lost in the process of generating the REST API.

68

Chapter 7
Discussion

This chapter discusses the research questions and whether they were answered or not.
Is it possible to generate production ready, structured and testable REST APIs

based on a data model including endpoints?
This question has several parts so I will take each part and answer them separately. A

REST API is production ready when it can be deployed to a server and can be immediately
used for the application development. This is possible but there will always be some
minor steps before the deployment. Every REST API needs to be connected to a database
therefore database connection information needs to be filled. Some minor configuration
might be also required because the templates might require that. Every template set should
come with a list of after generation steps, that need to be fulfilled before deployment. The
example template set for NodeJS requires only to enter the database settings and then run
npm install to get the dependencies. Once that is done, the REST API can be used in the
template development process which proves that the output of the generator is ready to be
immediately used.

structured is a REST API which has a logical file structure and an easy to read code.
The user should feel that the code is written by a human and it should feel natural to make
changes in the code. This is in general difficult to achieve because every programmer
has a different style. The template set should contain an explanation of the file structure
and which module is responsible for what. The generator has enough mechanisms to
support a wide range of file structures. When it goes about the code style, it is very hard
to achieve the human written style. Every programmer has different habits and the desired
state would be that the generator would generate the style the programmer is using. This
is currently impossible, but the beautifier has a couple of settings every programmer can
tweak to come closer to the desired style. In general, the emphasis is on generating code
which has the style good enough and follows the general rules of JSLint.

Testability is an important part of the generation process. There are in general two ways
how to test the result- unit testing and behavioral testing. Unit tests are just templates being
executed and run when needed. The behavioral testing is based on the API Blueprint file.
There are a couple of challenges with the API Blueprint based behavioral testing. The

69

Chapter 7. Discussion

main problem is that the file needs real IDs from the database in order to perform the
testing. There are two ways how to pass this information. There is a scope helper function
which contains the URIs and real values for each parameter in the URI. The other option
is to tweak the API Blueprint file after it has been generated. Dredd has a system of
hooks which might be helpful in the future, but this functionality is not currently mature
enough. There are therefore still some challenges when it goes about behavioral testing of
generated REST APIs.

This report shows that it is possible to generate production ready, nicely structured and
testable REST APIs just with a data model and endpoints. There are still some challenges
to overcome, but the output of the generator is a way better start for client-side developers
than any other available solution.

How does one share the knowledge of best practices about REST APIs, so others
without the knowledge can use it?

One shares the knowledge via templates. By applying MDD on the domain of REST
APIs the knowledge simply gets divided between two sides- a client-side developer who
makes a simple data model and a server-side developer who makes the templates. To
make this process even easier for the client-side developers the templates (= server-side
programming knowledge) can be shared via GitHub. This opens a huge opportunity for
the entire community to create new templates based on always changing best practices and
maintain the existing one. Everyone can get involved. Using GitHub is definitely a natural
solution for all developers. It is not only GitHub but the Git command itself.

70

Chapter 8
Conclusion and Future Work

I believe that code generation together with the merging mechanisms is a perfect way to
attack domains with a lot of repetitive code. The possibility to include the community as a
source of knowledge makes the platform even more flexible and accessible for people with-
out the necessary server-side knowledge. This can dramatically increase the development
speed in companies using REST as an architectural style. According to my discussion
with Tor-Inge Eriksen from Searis AS the development of REST API takes about 70% of
the budget. This number has been estimated based on the time tracked in a time tracking
software and compared to the other expenses in the project. The code generation reduces
this number dramatically so the budget can be used on the client-side application which is
the part of the entire system which matters way more for the client and the end users.

I believe that the smaller the generated part of the entire system is, the more accurate
are the results. Another very strong argument is that the architecture of the entire REST
API is changing based on its size. This is of course true but the latest trends are focused on
micro services which breaks huge REST APIs into small flexible pieces. What I believe
is the problem with the generated code is the perception of programmers. Not every pro-
grammer is happy with the idea of working with generated code. This is understandable
because the programmer suddenly becomes just a maintainer.

The domain of REST APIs has a highly repetitive code and the proposed solution in
this report does solve a lot when the REST API is not the main product. It is logical that
when the end product is a REST API this tool is not probably the best choice but it can set
a good starting point. There are several fields which can be further investigated in order to
improve the generator and the generated code:

• Behavioral testing of the REST API - Dredd and API Blueprint are very strong
combination, but there is still a manual step required in order to fully test the resulted
REST API. Dredd does not implement the necessary functionality to correctly order
the requests in the blueprint so it is not possible to have the database in the same
state before and after the testing. This is only possible by seeding the database and
then reseed it to get it into a known state(Cordell, 2015). It would be interesting to
see a research on how to avoid the manual step.

71

• Syntax highlighting for the templates - The generator has enough mechanisms to
make writing templates easy and in some structure. The only difficulty is when one
writes the templates. A research on how to distinguish the template code from the
actual code is more then welcome.

• GitHub authentication and the related security issues - Currently it is only pos-
sible to use GitHub when the generator runs on a local server. There is space for a
research on how to enable this functionality with the generator on the server. This
means that one would have to pass his/her credentials over the network which has
some security risks which needs to be taken in account.

• Auto-deployment - There is a huge potential for auto-deployment of the generated
code. This is possible with platforms like Heroku and it would be interesting to see
different versions of the generated REST API being automatically deployed. This
of course has some difficulties which need to be researched first.

• Behavior prediction - Probably the weakest part of the template set is the ability
to predict behavior. It works but it might break in some edge cases. At the moment
it only means that the programmer needs to fill in the implementation even if the
behavior is predictable. It is important to realize that the level of understanding can
be increased by enriching the model with some additional information that would
help the generator in determining the correct behavior. This comes with a price of
more possible settings in the editor and therefore a more steep learning curve the
user has to overcome. It would be helpful to conduct research on how to extend
the model/editor/generator so the prediction works every time and the user is not
overwhelmed by options and settings.

• Formatting API Blueprint - API Blueprint files has a very specific formatting and
I was not able to follow the formatting when generating the file. There is currently
no beautifier available so every time one runs Dredd, there are a couple of warnings
which point out that the formatting is not correct. It does not affect the functionality
of the file but it does not always look aesthetically correct.

72

Bibliography

Ashkenas, J., 2015. Last checked: 11.3.2015.
URL http://underscorejs.org/

Burke, B., 2009. RESTful Java with JAX-RS. O’Reilly Media, Inc., iSBN:
9781449383053.

Cordell, E., 2015. –sorted does not really sorts how it should. Last checked: 10.5.2015.
URL https://github.com/apiaryio/dredd/issues/170

Czarnecki, K., Helsen, S., 2003. Classification of Model Transformation Approaches. Uni-
versity of Waterloo, Canada, 17.

Ed-douibi, H., collective, 2015. EMF-REST: Generation of RESTful APIs from Models.
Tech. rep., Inria, Mines Nantes, LINA.

EMF-REST, Last checked: 26.5.2015 2015. Documentation.
URL http://emf-rest.com/documentation.html

Fielding, R. T., 2000. Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine.

Fouquet, F., collective, 2012. An Eclipse Modelling Framework Alternative to Meet the
Models@Runtime Environments. Tech. rep., University of Rennes, SnT University of
Luxembourg, SINTEF.

Git, 2015. Git –everything-is-local. Last checked: 24.2.2015.
URL http://git-scm.com/

Harrell, J., 2013. Node.js at PayPal. Last checked: 16.3.2015.
URL https://www.paypal-engineering.com/2013/11/22/
node-js-at-paypal/

Hevner, A. R., March, S. T., Park, J., Ram, S., March 2004. Design Science in Information
Systems Research. MIS 28 (1), 75–105.

73

http://underscorejs.org/
https://github.com/apiaryio/dredd/issues/170
http://emf-rest.com/documentation.html
http://git-scm.com/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/
https://www.paypal-engineering.com/2013/11/22/node-js-at-paypal/

Hiroshi Wada, Junichi Suzuki, A. M., Oba, K., 2010. Matilda: A Generic and Customiz-
able Framework for Direct Model Execution in Model-Driven Software Development.
Department of Computer Science University of Massachusetts, Boston, 28.

Holowaychuk, T. J., 2011. Last checked: 11.2.2015.
URL http://mochajs.org/

Hunt, P., 2014. React: RESTful UI Rendering. Last checked: 3.5.2015.
URL https://www.youtube.com/watch?v=IVvHPPcl2TM

IEEE, 2010. Standards Glossary. Last checked: 3.5.2015.
URL http://www.ieee.org/education_careers/education/
standards/standards_glossary.html

Joyent, I., 2015. Last checked: 11.2.2015.
URL http://nodejs.org/

Marco Brambilla, Jordi Cabot, M. W., 2012. Model-Driven Software Engineering in Prac-
tice. Morgan and Claypoool publishers.

Massé, M., 2012. REST API Design Rulebook. No. 9781449310509 in 1. O’Reilly.

Mozilla, May 2015. Preflighted requests. Last checked: 26.5.2015.
URL https://developer.mozilla.org/en-US/docs/Web/HTTP/
Access_control_CORS#Preflighted_requests

MuleSoft, 2015. About RAML. Last checked: 31.1.2015.
URL http://raml.org/about.html

Nesetril, J., 2012. Avoid API Waterfalls, Build Faster and Better. Last checked: 31.1.2015.
URL https://www.youtube.com/watch?v=tP7fpu4r1wo

Prochazka, T., 2014. Model-Driven Development of REST APIs. Tech. rep., NTNU.

Reverb, 2015. Swagger. Last checked: 31.1.2015.
URL http://swagger.io/

Stahl, T., Völter, M., 2005. Model-Driven Software Development. No. 0470025700 in 1.
Wiley.

Strauch, C., 2012. NoSQL Databases. Tech. rep., Stuttgart Media University.

Taal, M., 2015. EMFT Texo. Last checked: 31.1.2015.
URL https://projects.eclipse.org/projects/modeling.emft.
texo

74

http://mochajs.org/
https://www.youtube.com/watch?v=IVvHPPcl2TM
http://www.ieee.org/education_careers/education/standards/standards_glossary.html
http://www.ieee.org/education_careers/education/standards/standards_glossary.html
http://nodejs.org/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS#Preflighted_requests
https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS#Preflighted_requests
http://raml.org/about.html
https://www.youtube.com/watch?v=tP7fpu4r1wo
http://swagger.io/
https://projects.eclipse.org/projects/modeling.emft.texo
https://projects.eclipse.org/projects/modeling.emft.texo

Appendix A- Study Case

75

Inventory system

This material has been given to Tomas Prochazka as a practical case study for his
specialization project at NTNU. The following case is part of an inventory system which we
developed at Searis AS and which is in daily use by our customers. Our system consists of a
backend system which exposes a REST API for interacting with the inventory (add/remove
part, move pallet, register new orders etc.) Endusers access the system either through an
iPad app or through a singlepage web application, both of which are developed inhouse.

Within our inventory system we have four main datastructures, which are presented to the
enduser in different combination in order to provide the required functionality. The primary
datastructures are:

● Oven
● Pallet
● Part
● Location

Firstly we have Locations, which represents physical position within a storage area, which in
practice either means that they represent an actual rack, or a designated area on the floor.
These position are named in such a way that the user can easily locate them within the
factory, in addition they are clearly marked with signs. Since all Pallets are located at a
Location users are able to locate individual Pallets easily.

Each pallet can contain a quantity of Parts, often these will all be of the same type, but we
support a single Pallet containing different Parts. An Oven object represents a physical Oven,
which is made up of a number of different Parts. In order to describe an Oven we require two
numbers, one which specifies the total amount needed of a given Part, and another one which
tells us how many Part of a given type which in actually contained in that Oven. This allows us
to represent both complete and noncomplete Ovens. Like Pallets, Ovens are located at a
Location.

In order to use as few tables as possible for our database, the system combines the base
datastructures in order to represent different use cases. In practice, this means that for a
given Part (e.g. “Octo 50, standardstein”), we will only have a single entry in the database.
When a Pallet contains this part, we use a mediary table to combine them and to add the
notion of a count of Parts for that specific Pallet. This is also true for Ovens, but here we add
two numbers, one for required and one for packed.

Our REST API closesly follows a set of guidelines
(https://stormpath.com/blog/designingrestjsonapis/) proposed by User Management API
company Stormpath. In addition we have added a concept called Hydration, inspired in part

by a series (http://openmymind.net/PracticalSOAHydrationPart1/) of blog posts
(http://openmymind.net/PracticalSOAHydrationPart2/). These concepts allow us to make a
highly structured, and hopefully useable API.

The following tables show the details of each data structure

Oven
{

 "id": 1,

 "sku": "AA-AA",

 "name": "OCTO 50",

 "status": "delivered",

 "createdAt": "2014-11-13T15:15:38Z",

 "updatedAt": "2014-11-19T13:52:50Z",

 "meta": {

 "href": /inventory/ovens/1,

 "mediaTypes": "application/json;application/xml"

 },

 "parts": {

 "meta": {

 "href": /inventory/ovens/1/parts,

 "mediaTypes": "application/json"

 }

 },

 "location": {

 "meta": {

 "href": /inventory/locations/1,

 "mediaTypes": "application/json"

 }

 }

}

Pallet
{

 "id": 1,

 "sku": "AA-AA",

 "createdAt": "2014-11-13T15:15:38Z",

 "updatedAt": "2014-11-19T13:52:50Z",

 "meta": {

 "href": /inventory/pallets/1,

 "mediaTypes": "application/json;application/xml"

 },

 "location": {

 "meta": {

 "href": /inventory/locations/1,

 "mediaTypes": "application/json"

 }

 },

 "parts": {

 "meta": {

 "href": /inventory/pallets/1/parts,

 "mediaTypes": "application/json"

 }

 }

}

Part
{

 "id": 1,

 "sku": "01-01-01",

 "name": "Teststein 1",

 "count": 250,

 "price": 150,

 "value": 50,

 "createdAt": "2014-11-13T15:15:34Z",

 "updatedAt": "2014-11-15T15:40:47Z",

 "meta": {

 "href": /inventory/parts/1,

 "mediaTypes": "application/json;application/xml"

 }

}

Location
{

 "id": 1,

 "sku": "A01-01",

 "name": "Uteområde A",

 "geoLocation": {

 "type": "POINT",

 "coordinates": [

 63.1,

 10.2

]

 },

 "createdAt": "2014-11-13T15:15:37Z",

 "updatedAt": "2014-11-13T15:15:37Z",

 "meta": {

 "href": /inventory/locations/1,

 "mediaTypes": "application/json;application/xml"

 }

}

Our REST API has following endpoints:

Method URL

GET parts/

GET parts/:id

POST parts/

PUT parts/:id

DELETE parts/:id

GET parts/:id/pallets

POST parts/:id/pallets

GET pallets/

GET pallets/:id

POST pallets/

PUT pallets/

DELETE pallets/:id

GET pallets/:id/parts

POST pallets/:id/parts

GET pallets/:id/parts/:part_id

PUT pallets/:id/parts/:part_id

DELETE pallets/:id/parts/:part_id

GET locations/

GET locations/:id

POST locations/

PUT locations/:id

DELETE locations/:id

GET ovens/

GET ovens/:id

POST ovens/

PUT ovens/:id

DELETE ovens/:id

Appendix B- Videos

• MDD of REST APIs - #1 Modeling - https://www.youtube.com/watch?
v=R3xzHKp_RWo

• MDD of REST APIs - #2 Testing - https://www.youtube.com/watch?v=
xSsYVvBgsbU

• MDD of REST APIs - #3 Git integration - https://www.youtube.com/watch?
v=qc226BCrhnQ

84

https://www.youtube.com/watch?v=R3xzHKp_RWo
https://www.youtube.com/watch?v=R3xzHKp_RWo
https://www.youtube.com/watch?v=xSsYVvBgsbU
https://www.youtube.com/watch?v=xSsYVvBgsbU
https://www.youtube.com/watch?v=qc226BCrhnQ
https://www.youtube.com/watch?v=qc226BCrhnQ

Appendix C- External
Assessment

85

Appendix D- Unit Tests

87

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background and Motivation
	Research Questions
	Thesis Outline

	Background
	REST
	Best Practices When Creating URIs
	HTTP Methods

	REST API Notations
	RAML
	Swagger
	API Blueprint
	JAX-RS

	Projects
	Apiary
	Restlet
	Project Texo
	EMF REST
	Web Based Editor

	Model-Driven Software Development
	Template deriving
	Protected areas

	Code generators
	Acceleo
	Project Matilda

	Conclusion

	Research
	Design Science
	Guidelines

	Goals and Requirements
	Goals
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Implementation
	Architecture
	Technology
	NodeJS and NPM
	MongoDB
	MochaJS
	GruntJS
	UnderscoreJS
	Dredd
	Git
	Why not Java?

	Generation Process
	Meta-Model
	Scope
	Templates
	Templates Load
	Templates Execution
	Code Beautification
	Templates Saver
	Generator's Configuration File
	Generator's Endpoints
	Git Integration and Versioning
	Download, Installation, Run and Test

	REST API template
	Folder Structure
	Filtering and Sorting
	Behavior prediction
	API Blueprint

	Template Development Workflow
	Prerequisites
	Template Development Process

	The Editor Extensions
	Endpoint handling

	Evaluation
	Functional Requirements
	Meta-Model Independence
	Platform Independence
	Endpoint Completeness
	Model Completeness
	Best Practice Behavior
	Code Quality
	Folder Structure Quality
	Re-Generating Management
	Template Re-Usability
	Output Testability

	Non-Functional Requirements
	Cross-Platform
	Output Testability
	Template Sharing
	Speed

	Limitations

	Discussion
	Conclusion and Future Work
	Bibliography
	Appendix A- Study Case
	Appendix B- Videos
	Appendix C- External Assessment
	Appendix D- Unit Tests

