
Supporting the Join Operation in a NoSQL
System
Mastering the internals of Cassandra

Christian Peter

Master of Science in Informatics

Supervisor: Svein Erik Bratsberg, IDI

Department of Computer and Information Science

Submission date: May 2015

Norwegian University of Science and Technology

i

Abstract
The join operation is one of the most valuable operations found in traditional
database management systems. With this operation, it is possible to join data from
multiple tables. Today, most NoSQL systems do not support the join operation.
One of the reasons for why these systems do not support this operation is that it
is too time-consuming when the data is replicated across multiple nodes. However,
it is possible to accomplish the same result with two other options, denormalizing
of the data or joining at the application level. Denormalizing will result in more
redundant data and both options will involve the user more in the execution of
join. Support for the join operation in the query language of a NoSQL system may
ease the change of database system for some users that only wants to use a NoSQL
system where data can be joined.

This thesis presents an implementation of the equijoin in Cassandra since the
two other options shown above are already covered by others. Cassandra is a
NoSQL system classified as an extensible record store that is quite similar to the
relational model used by, for example, MySQL. This implementation shows how the
parsing, preparation and execution of the query are performed. Enabling support
for queries that can be written in Cassandra Query Language (CQL) is done in
the parsing step. A way of finding the join order that allows only one read of the
table from memory or disk is also implemented. This join order is also slightly
optimized where selections in a where clause are executed early on in the execution
step. During execution, the nested loop join is used to accomplish the process of
joining tables.

The implementation of join in Cassandra shows a significant worse execution
time than MySQL. One of the problems with Cassandra is the underlying archi-
tecture that is not designed for the purpose of joining data from multiple tables.
However, this thesis shows that it is possible to support the join operation in Cas-
sandra, but it still need some further work to execute within a reasonable time.

ii

iii

Sammendrag
Join-operasjonen er en av de mest verdifulle operasjonene som finnes i tradisjonelle
database systemer. Med denne operasjonen er det mulig å kombinere data fra flere
tabeller. I dag har de fleste NoSQL-systemer ikke støtte for denne operasjonen.
En av grunnene til at disse systemene ikke støtter denne operasjonen er at det
er for tidkrevende når dataene blir replikert over flere noder. Imidlertid er det
mulig å oppnå det samme resultatet med to andre alternativer, denormalisering
av dataene eller join på applikasjonsnivået. Denormalisering vil resultere i mer
redundante data og begge alternativene vil involvere brukeren mer i utførelsen av
join-operasjonen. Støtte for operasjonen i spørrespråket til et NoSQL-system kan
lette bytte av databasesystem for noen brukere som kun ønsker å bruke et NoSQL-
system der data kan forenes.

Denne masteroppgaven presenterer en implementasjon av equijoin i Cassandra
siden de to andre alternativene vist ovenfor allerede er undersøkt. Cassandra er
et NoSQL-system klassifisert som et "extensible record store" som er ganske lik
relasjonsmodellen brukt av for eksempel MySQL. Denne implementasjonen viser
hvordan parsing, forberedelse og gjennomføring av spørringen utføres. Støtte for
spørringer som kan skrives i Cassandra Query Language (CQL) er gjort i parsing-
trinnet. En måte å finne join-rekkefølgen som gjør at det bare trengs én lese
operasjon for hver tabell fra minnet eller disken er også implementert. Denne join
rekkefølgen er også litt optimalisert der seleksjonene i en where-klausul blir utført
tidlig i gjennomførings trinnet. Under gjennomføringen blir nested loop join brukt
til å utføre prosessen med å forene tabeller.

Implementasjonen av join i Cassandra viser en betydelig dårligere kjøretid enn
i MySQL. Ett av problemene med Cassandra er at den underliggende arkitekturen
ikke er beregnet for det formål å forene data fra flere tabeller. Denne masteropp-
gaven viser at det er mulig å støtte join-operasjonen i Cassandra, men at det fortsatt
trengs noe videre arbeid for å gjennomføre operasjonen innen rimelig tid.

iv

v

Preface
This master thesis was written over an one year period at the Norwegian University
of Science and Technology (NTNU). It is assumed that the reader of this thesis has
basic knowledge about traditional database systems including transaction manage-
ment and the ACID properties.

I would like to thank Svein Erik Bratsberg for valuable guidance through this
master thesis. I would also like to thank the contributors of Cassandra making it
open source and answering my questions on IRC (Internet Relay Chat). This help
has been crucial for finishing my master thesis.

vi

Contents

Abstract i

Sammendrag iii

Preface v

List of Figures xi

List of Tables xiii

List of Listings xvi

1 Introduction 1
1.1 Background and motivation . 2
1.2 Definition and goals . 2
1.3 Report outline . 3

2 Background 5
2.1 Query processing . 5

2.1.1 Query optimization . 5
2.2 ANother Tool for Language Recognition 6
2.3 Join . 6

2.3.1 Join types . 7
2.3.2 Nested loop join . 9
2.3.3 Sort-merge join . 11
2.3.4 Hash join . 12

2.4 N-Way-Join . 13
2.5 Database management system . 13

2.5.1 Transaction management . 13
2.5.2 ACID . 14
2.5.3 SQL . 15

vii

viii CONTENTS

2.5.4 MySQL . 16
2.6 NoSQL . 16

2.6.1 CAP theorem . 17
2.6.2 BASE . 17
2.6.3 Key-value stores . 18
2.6.4 Document stores . 18
2.6.5 Extensible record stores . 18

2.7 Cassandra . 19
2.7.1 Storage . 20
2.7.2 Keys and indexes . 22
2.7.3 Cassandra Query Language 23

2.8 Other NoSQL stores . 26
2.8.1 MongoDB . 26
2.8.2 Redis . 27

3 Related work 29
3.1 Equijoin in a Ring Architecture Key/Value Database 29
3.2 UnityJDBC . 30
3.3 SimpleSQL . 31
3.4 CloudTPS . 32

4 Design space 35
4.1 Different roads - same destination . 35

4.1.1 Materialized view . 35
4.1.2 Application layer . 37
4.1.3 Query language . 37

4.2 Limitations . 41
4.2.1 Only primary keys and secondary indexes 41
4.2.2 Only equijoin . 41
4.2.3 Only index nested loop join 41
4.2.4 Locally supported . 41

4.3 Discussion . 41
4.3.1 Speed . 42
4.3.2 Memory . 42
4.3.3 Redundancy . 43
4.3.4 Maintenance . 43
4.3.5 Possibility implemented . 43

5 Implementation 45
5.1 Organization and explanation of the code 45
5.2 Parser and prepare . 46

5.2.1 Selectjoin clause . 46
5.2.2 From clause . 47
5.2.3 Standard where clause . 47
5.2.4 Joinon clause . 48
5.2.5 Other clauses . 48

CONTENTS ix

5.2.6 Example query . 48
5.2.7 Selection . 51
5.2.8 Join restrictions . 51
5.2.9 Standard restrictions . 52
5.2.10 Find join order . 53
5.2.11 Column families outside the join 55

5.3 Execute join query . 56
5.3.1 Decide inner and outer column families 57
5.3.2 Big row . 58
5.3.3 Outer loop . 59
5.3.4 Get correct command . 60
5.3.5 Column value . 61
5.3.6 Has single column restriction 62
5.3.7 Inner loop . 62
5.3.8 Return query results . 64

5.4 Execute standard select statements 64
5.5 Merge all results . 65
5.6 Example execution . 65

6 Evaluation 73
6.1 Method . 73
6.2 Test data . 73
6.3 Equipment used under testing . 74
6.4 Results . 75

6.4.1 Join without where relations and projections 75
6.4.2 Join with one where relation 76
6.4.3 Join with projections . 78
6.4.4 Single SELECT statement . 81
6.4.5 Inserting rows . 82

6.5 Discussion . 83
6.5.1 JVM options . 83
6.5.2 I/O usage . 84
6.5.3 Profiling of method calls . 85
6.5.4 Query optimization . 87
6.5.5 Other observations . 88

7 Conclusion 91
7.1 Contributions . 91
7.2 Conclusion . 91

8 Further work 93
8.1 Support different join types . 93
8.2 Distributed join . 93
8.3 Query optimization . 94
8.4 Efficiency . 94
8.5 Fault tolerance . 94

x CONTENTS

8.6 Temporary storage . 95
8.7 Support all key types in Cassandra 95

Bibliography 97

List of Figures

2.1 Simple nested loop join [46] . 10
2.2 Layout for data structure in work space [23] 11
2.3 CAP theorem . 18
2.4 Partition responsibility for four nodes [20] 19
2.5 Memtable and SSTable architechture [20] 21

3.1 ColumnFamily data model [49] . 30
3.2 Unity architecture [37] . 31
3.3 Architecture for SimpleSQL [24] . 32
3.4 System model for CloudTPS [50] . 32

4.1 A possible design for join in the application layer 38

5.1 Syntax diagram for the select clause 47
5.2 Syntax diagram for the join selector 47
5.3 Syntax diagram for the from clause 47
5.4 Syntax diagram for the where clause 47
5.5 Syntax diagram for the joinon clause 48
5.6 Syntax diagram for equijoin . 48
5.7 Hash map containing all column families with corresponding restric-

tions . 55
5.8 Join tree . 56
5.9 Finding column families outside any N-Way-Join in the query 67
5.10 Example hash map containing all column families with correspond-

ing restrictions . 67
5.11 Example of join tree for an N-Way-Join 69

6.1 All five tables/column families used during testing 74
6.2 This graph shows the execution time of a join without any where re-

lations or projections in Cassandra and MySQL for different number
of rows . 76

xi

xii LIST OF FIGURES

6.3 This graph shows the execution time of a join with a where rela-
tion on the primary key customernr in Cassandra and MySQL for
different number of rows . 79

6.4 This graph shows the execution time of a join with a where relation
on the secondary index/foreign key customernr in Cassandra and
MySQL for different number of rows 80

6.5 This graph shows the execution time of a join with projection in
Cassandra and MySQL for different number of rows 81

6.6 This graph shows the execution time of a select statement with only
one column family/table in Cassandra and MySQL for different num-
ber of rows . 82

6.7 This graph shows the execution time of insertion in Cassandra and
MySQL for different number of rows 83

6.8 Monitoring the garbage collector in JVM during read of one hundred
thousand rows . 84

6.9 Garbage collector design in JVM . 85
6.10 I/O statistics when reading one hundred thousand rows in Cassandra 86
6.11 This figure shows CPU profiling for an N-Way-Join on one hundred

thousand rows . 86
6.12 I/O statistics when inserting one hundred thousand rows in MySQL 88
6.13 I/O statistics when inserting one hundred thousand rows in Cassandra 89

List of Tables

2.1 Example data for owner and car . 7
2.2 Owner onOwner.ownerno=Car.ownerno Car 7
2.3 Owner onOwner.ownerno>Car.ownerno Car 8
2.4 Owner nOwner.ownerno=Car.ownerno Car 8
2.5 Left outer join for tables owner and car 9
2.6 Right outer join for tables owner and car 9
2.7 Full outer join for tables owner and car 10

4.1 Example column family for professor 36
4.2 Example column family for course 37
4.3 A denormalization of professor and course 37

5.1 Example column families for person, houseowner, house, and postal-
code. 49

5.2 A set of join restrictions with corresponding column families (CF)
in a 3-Way-Join. 59

5.3 All rows in column family postalcode with postalcode value 7030 . . 69
5.4 All big rows for postalcode onpostalcode.postalcode=house.postalcode house 70
5.5 All big rows for postalcode onpostalcode.postalcode=house.postalcode house

and house onhouse.houseid=houseowner.houseid houseowner 70
5.6 All rows from column family person 71

6.1 Different customer numbers used for each number of rows. 77

xiii

xiv LIST OF TABLES

Listings

2.1 Create table with a single primary key 22
2.2 Create table with a compound primary key 22
2.3 Create table with a composite partition key 23
2.4 Create a secondary index on a column in a column family 23
2.5 Create keyspace statement in CQL 24
2.6 Use keyspace statement in CQL . 24
2.7 Create table statement in CQL . 25
2.8 Create index statement in CQL . 25
2.9 Insert statement in CQL . 25
2.10 Simple select query in CQL . 25
2.11 Select query with one where relation in CQL 26
2.12 Select query with count in CQL . 26
4.1 Traditional style of writing join queries 38
4.2 ANSI style of writing join queries . 38
4.3 Possible layout for a join query . 39
4.4 Possible layout for a join query with where relations 40
4.5 Possible layout for a join query with projections 40
5.1 Create table statements for column families person, houseowner,

house and postalcode in CQL . 49
5.2 Create index on column in CQL . 50
5.3 A join query in CQL . 50
5.4 A join query with projections in CQL 50
5.5 A join query with where relations in CQL 51
5.6 Check if the left column family in the relation is biggest 52
5.7 If check for column families outside a join 56
5.8 Discover which column families that are in the outer and inner loop 58
5.9 Use of get command method and finding all inner rows 60
5.10 Returning correct command for join 60
5.11 Get column value for one row . 61
5.12 Check if the row matches the value in the where restriction 63
5.13 Create result message . 64

xv

xvi LISTINGS

5.14 Cartesian product of all result messages 65
5.15 Example CQL query . 66
6.1 Join query in CQL without where relations and projections used

during evaluation . 75
6.2 Join query in SQL without where relations and projections used

during evaluation . 75
6.3 Join query in CQL with one where relation used during evaluation.T

is either customer or trade. The question mark is one the values in
Table 6.1 . 77

6.4 Join query in SQL with one where relation used during evaluation.
T is either customer or trade. The question mark is one the values
in Table 6.1 . 78

6.5 Join query in CQL with projections used during evaluation 79
6.6 Join query in SQL with projections used during evaluation 80
6.7 Select query for CQL and SQL used during evaluation 81

Chapter 1
Introduction

The join operation is an important service that a database management system
(DBMS) should support. The most well-known providers of database management
systems provide this operation, however, most NoSQL (often referred to as Not only
SQL or Not relational) systems do not. When a user switches from a traditional
relation DBMS to a NoSQL system, it may be confusing to understand an entirely
new data model where the join operation (among others) is not supported. If the
join operation had been introduced to the different NoSQL stores, it could ease the
change of database system.

NoSQL is a common designation for many database systems that have emerged
because of big data. These systems often support good scalability (horizontal)
and the support for simple write/read operations. However, different from the
most well-known relation database management systems, each NoSQL system has
it own interface. Two NoSQL systems, Cassandra and MongoDB have completely
different query interfaces. Cassandra uses a query language (referred to as CQL)
very similar to SQL while MongoDB uses a query language based on JSON that
differs a lot from SQL.

When creating a database, different tables are created to best define the real
world. A manufacturer may want to store all its products and the customers. This
case will also include the trades between the customer and manufacturer. To find
all the trades between the manufacturer and the customer, a join of the different
tables must be executed. A web application may want to have a forum where
different users can write posts. A join is then required to find all the posts from
one particular user. As shown here, there are endless of opportunities for the join
operation. It is used for all types of applications where there exist relations between
tables.

This master thesis looks at how the join operation can be implemented in one
NoSQL store. Since each NoSQL store has different interfaces, the implementation
of join is not generalizable for all NoSQL systems, but it is possible to show that
the join operation can be supported in a NoSQL system.

1

2 CHAPTER 1. INTRODUCTION

1.1 Background and motivation
The join operation is used by many applications, and it is very useful in many cases
where you want to combine data from multiple related tables. NoSQL systems can
somehow be the future of database systems where scalability with high read/write
throughput is supported. However, today many NoSQL systems do not support
the join operation. With a join implementation in a NoSQL system, the transfer
from a relational DBMS (for example MySQL) is simplified. The interest for this
subject is also shown in Chapter 3, where already existing solutions exists on top
of one or more NoSQL systems.

To accomplish a join in a NoSQL system, a denormalization of the data is
needed to place all data that is related in the same table. A denormalization
requires that the user has knowledge about the query before starting the data
modelling. In SQL, there is possible to define different tables and to create the
queries afterwards if they are needed. For example a person and the cars that is
owned by this person. It is then possible to create multiple tables that contain the
relation between person and cars. However, in a NoSQL system, this data has to
be placed at the same table and thereby creating a lot of redundant data. With a
join implementation, this redundancy is avoided, and it is also possible to define
queries afterwards if needed. In addition to this, there is impossible for a user to
know all queries that may be needed in the future. A developer in a business may
not need the join query, but maybe another employee need it later on. Support for
the join operations may remove this problem.

Creating a join functionality in a NoSQL system will help the end user. It is
still possible to do the join with denormalization, but the user should also have the
possibility to join tables without denormalization. The main motivation for this
thesis is based on this. Implementing an operation in a NoSQL system that has the
potential to helping users of NoSQL systems. In addition to this motivation, the
join operation has had a significant influence on the database world (for example,
the number of research articles on this operation is high). Having the opportunity
to implement a join operation in a NoSQL system shows how complex this operation
is, but also the mechanics laying behind a successful database system.

1.2 Definition and goals
For this master thesis, a set of goals has been determined including a problem
definition. The definition is first presented, and then some formalized goals related
to the definition is given. The problem can be defined as following:

Problem definition. The purpose of this thesis is to evaluate the possibility of
incorporating the join operation in a NoSQL system. This includes how to for-
mulate joins in the query language or API. We would like to know if the lack of
join operation in NoSQL databases is due to architectural decisions, making join
hard to implement, or if it is straightforward to include it. The work will focus on
a single node since distributed join is considered hard to implement, and will not
bring forward issues which are specific to NoSQL databases only.

1.3. REPORT OUTLINE 3

The implementation should be seen as a proof of concept (POC). This POC
should be a basis for further work on the join operation in a NoSQL system. An
evaluation of the implementation should be executed and compared to an already
existing database management system that supports join. A conclusion based on
the findings found during the evaluation is made.

With this definition, a set of goals can be defined for this thesis. A NoSQL
system that is well-known should be used. The first NoSQL system that was
investigated was MongoDB. However, as seen in Chapter 3.2, some work has been
done where MongoDB is used at the main NoSQL store. Besides this, the query
language is quite different from SQL. A NoSQL system that has a similar language
as SQL is Cassandra. Cassandra is one of the most well-known extensible record
stores that can be found on the market. With a query language similar to SQL,
it is possible to define join queries similar to SQL. Cassandra is therefore used as
the NoSQL system in this thesis. Implementing the join operation in Cassandra
is a general goal that consists of multiple small goals. In addition to this, the
implementation must be tested, and compared against MySQL. This will reveal
possible strengths or weaknesses of the implementation. The following goals has
been set for this thesis:

Goal 1: Implement support for the join operation on one node in the Cassandra
source code.

Goal 1.1: Implement support for defining joins in the query language of
Cassandra.

Goal 1.2: Implement a possibility to add column families to a query that
does not belong to an N-Way-Join.

Goal 1.3: Implement a method for finding the correct join order.
Goal 1.4: Implement the possibility for multiple N-Way-Joins.
Goal 1.5: An implementation that supports the equijoin operation between

N column families.

Goal 2: Test and evaluate the implemented join functionality in Cassandra.

Goal 3: Comparison of the join operation in Cassandra to the well-known MySQL
database.

These goals were used as the main guidelines through this thesis. Some goals have
been created at a later stage since some problems were found at different stages
in the process. Finding a join ordering (Goal 1.3) is an example of this, since the
first implementation did not take this into account. However, the three goals (Goal
1-Goal 3) have been very clear from the beginning of this thesis.

1.3 Report outline
This master thesis has eight chapters, but can be seen as three parts. These are:
(1) background and related work, (2) design and implementation and (3) results
and conclusion including further work.

4 CHAPTER 1. INTRODUCTION

Chapter 2 presents the background theory for the relational DBMS and NoSQL.
It will also pay particular attention to the join operation and Cassandra. The next
chapter that also belongs to part (1), is Chapter 3. This chapter presents some
related work focusing on the join operation in NoSQL systems. Part (2) includes
Chapter 4 and 5. Chapter 4 presents three different ways of accomplishing a join in
Cassandra including the reason for why implementing the join functionality in the
source code of Cassandra was chosen. The implementation of the join operation
is described in Chapter 5. At last, a conclusion based on the evaluation and some
further work is presented in part (3). Chapter 6 presents different execution times
for the join operation in Cassandra MySQL. These results are then discussed and
based on this discussion a conclusion is presented in Chapter 7. Since this is a
thesis with limited time, a lot of work remains before this could be a production
ready functionality in Cassandra. This work is presented in Chapter 8.

Chapter 2
Background

This chapter looks at the background for how join and query processing are done
today. It will also look into Cassandra and the different tools associated with it.
Other NoSQL systems are also included, for example, MongoDB. In addition to
this, some general background on NoSQL and relational database management
systems are presented in this chapter.

2.1 Query processing
Query processing is a way of processing a query that is issued to the database. The
different steps of query processing are parsing, optimization, code generation and
execution [47, 30].

The first step is parsing, where the syntax of the query is checked (against
the rules of grammar). If no errors were found in the query, the next step is the
optimization step [47, 30]. This step makes sure that a good plan for execution
is created. However, this name can be misleading because the optimal plan may
not be generated. It is more important to create a suboptimal execution plan and
avoiding the worst [30]. After the optimization step is done, the next part is the
code generator. It will generate code to execute the plan created by the optimizer
[47, 30]. In System-R, the code generation replaces the parse tree with executable
machine code [47]. The code generated can either be executed immediately or
stored in the database for later execution [47, 30]. The last step is simply executing
and returning the results to the end user.

2.1.1 Query optimization
Query optimization is the part of query processing that has the biggest effect
on the execution time. As described in Chapter 2.4, an N-Way-Join consists of
multiple 2-Way-Joins. If we define the two relations in a 2-Way-Join as outer and
inner relation, the outer relation is usually (the first 2-Way-Join must join between

5

6 CHAPTER 2. BACKGROUND

relations) the composite of the already joined relations and the inner relation is
added to the composite result. This process continues for each 2-Way-Join. In
System-R, a mix of joining algorithms (explained in Chapter 2.3.1) may be used.
If there is a 3-Way-Join, the first 2-Way-Join may be executed with sort-merge
join and the last 2-Way-Join may be executed with nested loop join. Also, the
join ordering has a significant impact on how fast a join is completed. If it is n
relations that are being joined, the number of different orders for this join is n!.
For example will n = 7 result in 5040 possible different join orderings. However,
Selinger et al. presents a heuristics method that reduce the number of join orders
that are possible. For example, let’s say relations R1, R2 and R3 exists. R1 and R2

is joined on the same attribute, but R2 and R3 is joined on a different attribute.
Then the plans R1 on R3 on R2 and R2 on R3 on R1 are excluded. This method is
used whenever it is possible [47].

The next step is to find an optimal plan. Multiple trees are constructed which
contains different solutions, and each tree is built with some steps:

Step 1 Each access path for a single relation is scanned. The cheapest one is kept
with any ordering in mind. For example, if the sort-merge join or group/order
by clause is used.

Step 2 This step then examines all joins of two relations. The results that were
found in step 1 is used, and the cheapest solution is kept.

Step 3 The next step is to repeat step 2, but with three relations (with the results
from step 2).

Step 3 continues (with four or more relations) until it finds all complete solutions,
and the optimizer choses the cheapest solution [47]. This process is also defined
as the enumeration of left-deep plans [46]. However, the optimizer has more to it
than explained here. The reader is advised to the explanation of the optimizer in
System-R [47] for further reading.

2.2 ANother Tool for Language Recognition
Cassandra uses ANother Tool for Language Recognition (ANTLR) version 3.2 as
the parser and lexer. ANTLR is a parser generator that uses an underlying top-
down parsing strategy, called LL(*) [43].

ANTLR makes it possible to construct recognizer, compilers, and translators.
This construction is done by creating grammatical descriptions that contain actions.
It is also possible to add code snippets to the grammar. This means that recognizer
becomes a translator or interpreter [1].

2.3 Join
Join is an operation that is very useful in the relation algebra. It combines results
from two or more relations. It can be viewed as a cross-product (R x S) between

2.3. JOIN 7

relations where projections and selections are executed. However, a cross-product
will have a much larger result (number of rows) than a join [46].

In this chapter, different join types are presented and different algorithms to
accomplish a join are presented. Three popular join algorithms and variations of
these are described below.

2.3.1 Join types
The join operation can be defined as the cross-product (or Cartesian product) with
a following selection. Ramakrishnan and Gehrke [46] describes the join operation
as following:

R onc S = σc(R× S)

where c is the condition that usually are the attributes of both R and S. This is the
most general type of the join operation and this chapter includes some descriptions
of some special cases for the join operation. Mishra [39] also defines this as a theta
join where it is possible to use the theta operators, which are: =, 6=, >,<,≤,≥.

To exemplify the difference between the join types described in this chapter,
an example schema exists with two relations, owner (ownerno, name, age) and car
(regno, type, ownerno). The data in each relation is listed in Table 2.1. However,
the row in table car that has ownerno 1 is unrealistic (there is no owner with
ownerno 1), but it is necessary to exemplify the different join types.

regno type ownerno
AB1234 Sport 74
CC3344 Family 96
RR3333 Sport 1

(a) Car data

ownerno fname age
74 Kari 27
85 Hugh 36
96 Jack 55
99 Lars 77

(b) Owner data

Table 2.1: Example data for owner and car

Equijoin and nonequijoin

Equijoin consists of using the equal operator to join two or more relations. If
there are two relations A and B, an equijoin can be written on the form A.name
= B.name [39, 46]. However, if the theta operator equal is not used, the join is
defined as a nonequijoin [39]. An example of equijoin between car and owner can
be seen in Table 2.2.

ownerno fname age regno type ownerno
74 Kari 27 AB1234 Sport 74
96 Jack 55 CC3344 Family 96

Table 2.2: Owner onOwner.ownerno=Car.ownerno Car

8 CHAPTER 2. BACKGROUND

However, as mentioned earlier, there also exists nonequijoins. An example of
this type of join can be seen in Table 2.3.

ownerno fname age regno type ownerno
74 Kari 27 RR3333 Sport 1
85 Hugh 36 AB1234 Sport 74
85 Hugh 36 RR3333 Sport 1
96 Jack 55 AB1234 Sport 74
96 Jack 55 RR3333 Sport 1
99 Lars 77 AB1234 Sport 74
99 Lars 77 CC3344 Family 96
99 Lars 77 RR3333 Sport 1

Table 2.3: Owner onOwner.ownerno>Car.ownerno Car

Natural join

Another special case is the natural join that uses an equijoin. The equality is
specified in all the fields that have the same name. For instance, the join result
that is shown in Table 2.2 is a natural join (because the field ownerno is the same
in Owner and Car). It can be expressed in relational algebra like this:

Owner on Car

In another example, two relations may not have any attributes that have the same
name. If this happens and a natural join is executed on these two relations, the
cross-product will be found instead [46].

Semi join

Semi join differs from the joins explained so far, because equijoin contains all
attributes of the joined relations, whereas semi join only contains the attributes of
the first relation. It is a join between two relations, R and S, with a projection
where all the attributes of S is dropped. It is expressed like this:

Rn S = πa1,...,an(R onaθb S)

where a1, ..., an is all the attributes from relation R [39]. For the example data in
Table 2.1, the result of a semi join can be seen in Table 2.4.

ownerno fname age
74 Kari 27
96 Jack 55

Table 2.4: Owner nOwner.ownerno=Car.ownerno Car

2.3. JOIN 9

Outer join

SQL supports a join type that is known as the outer join. Three different types
of the outer join are described here. These are left, right and full outer join. A
standard join is expressed as following in relational algebra:

Owner onOwner.ownerno=Car.ownerno Car

This join only adds matching rows from the two relations to the result. However,
this is not the case for the outer join. If an outer join is executed on the tables in
Table 2.1, the result differs a lot from the standard join expressed above. A left
outer join will add all rows from the left table and the corresponding rows from
the right table. If there are no corresponding rows, null values are added instead
[46]. A left outer join of owner and car can be seen in Table 2.5. This shows that
all rows from owner are in the result and the matching rows from car. However,
two rows does not have matching rows in the car table, and the fields (from table
car) are therefore null.

ownerno fname age regno type ownerno
74 Kari 27 AB1234 Sport 74
85 Hugh 36 null null null
96 Jack 55 CC3344 Family 96
99 Lars 77 null null null

Table 2.5: Left outer join for tables owner and car

For right outer join, it is vice versa. All the rows from the right table are added
and only the matching rows from the left relation. If there are no matching rows in
the owner table (for the ownerno in the car table), the fields from the table owner
are set to null [46]. An right outer join is shown in Table 2.6.

ownerno fname age regno type ownerno
74 Kari 27 AB1234 Sport 74
96 Jack 55 CC3344 Family 96
null null null RR3333 Sport 1

Table 2.6: Right outer join for tables owner and car

The last version of outer join is the full outer join. This version will present
the rows that do not have any match from both the left and right table (including
those who have a match) [46]. A full outer join between owner and car can be seen
in Table 2.7.

2.3.2 Nested loop join
This is the simplest join algorithm of all the three algorithms explained in this
chapter. A nested loop consists of two relations, for example, A and B. Relation

10 CHAPTER 2. BACKGROUND

ownerno fname age regno type ownerno
74 Kari 27 AB1234 Sport 74
85 Hugh 36 null null null
96 Jack 55 CC3344 Family 96
99 Lars 77 null null null
null null null RR3333 Sport 1

Table 2.7: Full outer join for tables owner and car

A is the outer relation and B is the inner relation. Relation A consists of multiple
tuples, where each tuple a ∈ A and for each tuple a in A, all tuples in B are
iterated through. If there is a match, the tuples are added to the result R [46, 23].
An example of this type of join can be seen in Figure 2.1.

for each a ∈ A do
for each b ∈ B do
if ai == bj then

Add tuples a and b to R

Figure 2.1: Simple nested loop join [46]

In this nested loop, the outer relation is the smallest, and the inner is the
biggest. This is because the total I/O volume will be less when the outer relation
is the smallest [46, 23]. However, this simple algorithm does not utilize the buffer
pages efficiently. The optimal solution is if there are two buffer pages left over when
the smaller relation A is in memory. Then the smaller relation can be read and
one buffer page can be used to read the other relation B. Then matching tuples
from A and B can be added to the result. An output buffer is created with the
second buffer page. This solution will have an optimal I/O cost compared to the
simple nested loop join. However, the memory may be too small to hold the outer
relation. It is then possible to break up the outer relation A into blocks (where
each block fits into memory, and A is typically stored in blocks on disk). For each
block from A, the inner relation B is scanned. This algorithm is called the block
nested loop join [46].

Bratbergsengen [23] also presents a possible data structure for matching of rows
from two relations which is shown in Figure 2.2. As seen in the figure, a bloom
filter is used to filter away rows with keys that are not found in the work space
(an area in memory that should not be larger than relation A). The data structure
consists of a hash table and binary trees. The purpose of the hash table is to
create smaller problems that come from a big problem. Then the binary trees can
be used to search for the correct record. Each binary tree consists of four parts
that are left and right subtree pointer, a record pointer, and a signature. Then the
signature can be used to avoid comparison with the record if there is no match [23].
This data structure can be used to hold the blocks described above and, therefore,
reduce the execution time of nested loop.

2.3. JOIN 11

Figure 2.2: Layout for data structure in work space [23]

Another approach is called the index nested loop join where one of the relations
has an index on the join attribute(s). The relation with the index will be the inner
relation. For each outer relation, it is possible to find the matching tuples from the
inner and outer relation by retrieving all tuples from the inner relation with the
use of an index. This algorithm does not, unlike simple and block nested loop join,
enumerate the cross product of the inner and outer relation [46].

2.3.3 Sort-merge join
The sort-merge join consists of two phases, sort, and merge. The first phase consists
of sorting the two relations, A and B, on the join attribute. All tuples from A and
B that have the same value (in the join column) are grouped together during the
sorting step. This makes it easy to find partitions with tuples with the same value.
Then it is possible only to compare tuples from A with tuples from B within the
same partition and avoiding enumeration of the cross-product between A and B.
However, this partition strategy works only for equality operations [46, 27]. To
sort the relations, A and B, an external sorting algorithm (for further reading, a
possible external sorting algorithm is described by Ramakrishnan and Gehrke [46]
and Bratbergsengen [23]) can be used. However, if the relation is already sorted
on the join attribute, no sorting is needed.

During the merge step, the relations A and B are scanned with the purpose of
finding matching tuples. For example Ta in A and Tb in B where Tai = Tbj . It
is two scans, where each starts at the first tuple in each relation. The scan of A is
continued as long as the tuple (current in A) is less than the tuple (current) in B.
This check is done on the join attribute. This is the same for B, as it continues to
scan as long as the current tuple in B is less than current tuple in A. It changes

12 CHAPTER 2. BACKGROUND

between such approaches until matching tuples are found. When these are found,
the joined tuple needs to be output. However, there may be multiple tuples in A
and B, with the same join attribute value. These tuples are referred to as current
A partition and current B partition. Then for each tuple a in current A partition,
all tuples in current B partition is scanned. The tuples that are joined are written
as output. The scanning of A and B is continued, where it begins at the first tuples
that follow the partitions just processed [46].

2.3.4 Hash join
There are three types of hash join algorithms described by DeWitt et al. [27],
and Ramakrishnan and Gehrke [46] describes only one of them, namely grace hash
join. The two others are simple hash and hybrid-hash (which is also described by
Bratbergsengen [23] as partial partitioning) join algorithm.

If there are two relations A and B, the simple hash join builds a hash table
in memory (if there is enough space). After the hash table is created, it scans B,
hashing each tuple b in B for a match in the hash table. However, if the hash table
for A does not fit in memory, the simple hash join algorithm will fill the memory
with a part of A, scan B as above, then create a new hash table for the next part
of A, and scan the remainder of B. The algorithm will end when there are no more
tuples from A that are passed over [27].

The grace hash join algorithm is a bit different since it executes in two phases.
The first phase consists of using a hash function h1, same for both A and B, to
hash the join attributes. For both A and B, the hash function h1 is used to hash
the tuples and place them in the correct output buffer. When the buffer is filled,
it is flushed to disk creating a partition. The second phases, also referred to as
probing or matching is started. A partition of A (for example A1) is read and an
in-memory hash table is created with the hash function h2. This hash function is
different from h1 because the tuples should be uniformly distributed in the hash
table. Then the partition B1 is read from disk and matched against the table using
the hash function h2 (same used to create the hash table). Tuples that match from
A and B are written to the output. This matching is repeated for all partitions of
A [46, 27].

The third hash join algorithm is called the hybrid hash join algorithm. If there
is more memory available, this algorithm performs better because of minimized
disk traffic. During the first step, only as many buffers as needed is used to hold
k partitions for A (similar for B). A is scanned and hashed with the hash function
h1. If it belongs to partition 0, it is stored in a hash table in-memory. If the tuple
does not belong to this partition, it is written to disk on the correct partition.
Then B is scanned and hashed with the hash function h1. If this tuple belongs
to partition 0, it is matched against the hash table. When there is a match, a
result tuple is created. The tuple is tossed if there is no match and it belongs to
partition 0. However, if it belongs to another partition, it is written to disk to the
correct partition. The second step reads each partition on the disk. For example
is partition A1 read from disk and a hash table is created with the hash function
h2. Then partition B1 is scanned and probed against the hash table from A1. If

2.4. N-WAY-JOIN 13

there is a match, a result tuple is created. Otherwise, the tuple is tossed. This is
repeated for all partitions of A and B on disk. This algorithm saves I/O because
partition A0 and B0 does not need to be read from or written to disk. However, it
requires enough memory to be executed properly [46, 27].

As for the block nested loop join described in Chapter 2.3.2, a similar data
structure (see Figure 2.2) in memory can used to match partitions from two rela-
tions.

2.4 N-Way-Join
Each join between two tables is called a 2-way-join. In the case of join between
N tables, an N-Way-Join exist. Ramakrishnan and Gehrke [46] defines this as a
multiway join where multiple tables are joined to create one result table.

Selinger et al. [47] describes it as N-Way-Joins, and this is also the name that
will be used further in this master thesis. An N-Way-Join will consist of multiple
2-way-joins between two tables [47].

2.5 Database management system
This chapter focuses on transactions and the ACID properties that are used in a
database management system (DBMS). For further reading, Ramakrishnan and
Gehrke [46] and, Elmasri and Navathe [30] describes different parts of a DBMS.

2.5.1 Transaction management
A transaction can be seen as a set of actions or an executing program. This
program or actions performs reads or writes against the database. If there are
multiple transactions, for example, transaction T1 and T2, all their actions is part
of a schedule. The ordering of the actions in a transaction T must be same as the
ordering in the schedule [30, 46]. The different types of operations or actions can
be seen here:

• begin_transaction (b): When a transaction is started, this operation is used.

• read (r): Specifies a read operation.

• write (w): Specifies a write operation,

• end_transaction (e): When a transaction is finished, this operation is used,
and it may be needed to check if the transaction should be committed or
aborted.

• commit (c): If the transaction is successful, a commit operation is used.

• abort (a): On the other hand, if the transaction is unsuccessful, an abort
operation is used.

14 CHAPTER 2. BACKGROUND

The operations above are also used as transaction states for a possible recovery
if something fails [30]. A possible schedule can be seen here:

S1 : r1(a), w1(a), r2(b), w2(b), c1, c2

Schedule S1 has two transactions, T1 and T2 where T1 first reads item a and then
writes item a. The same happens for transaction T2, but with item b. In the end,
both transactions commit their actions. This is a complete schedule. By complete,
it is meant that all the transactions are either committed or aborted. Another
type of schedule, know as serial schedule, is that each transaction is executed from
start to finish. Schedule S1 is also known as a serializable schedule, which means
that S1 is equivalent to a complete serial schedule (with the same transactions)
[46]. The schedule above is serial because transaction T1 could have been executed
alone first, and then transaction T2 could have been executed. Another and more
complex schedule is:

S2 : r1(a), w1(a), r2(a), w2(a), r1(b), w1(b), r3(b), w3(b), c3, c2, c1

Schedule S2 is also serializable because transaction T1 could have been executed
first, then T2 and lastly T3. However, when a transaction aborts, it may be im-
possible to undo the changes from an aborted transaction. Ramakrishnan and
Gehrke [46] says that it not enough with a complete serial schedule, but that the
transactions must also be committed. For example, a unrecoverable schedule is
this:

S3 : r1(a), w1(a), r2(a), w2(a), r3(b), w3(b), c3, c2, a1

Transaction T1 reads and writes item a, T2 then reads and writes item a and T3
read and writes item b. Then T3 and T2 is committed, however T1 aborts. Then
T2 has written to item a based on what T1 wrote, but T1 aborted, and the value
from this transaction is not valid. The opposite of a unrecoverable schedule is
a recoverable schedule. For a schedule to be recoverable, each transaction in a
schedule only commits their changes after all the other transactions that it has
read anything from commits [30, 46]. It is also possible to classify a schedule as
avoid cascading aborts, which means that that a transaction only reads the changes
from committed transactions [46].

Having serializable and recoverable schedules is possible with the use of locks
in a DBMS. Then the committed transactions do not lose their changes because
another transaction aborts. There is possible to use different types of locks, where
one of them are named Strict Two-Phase Locking (Strict 2PL). However, these are
not described in this chapter. There are two mechanisms, blocking and aborting,
that are used in locking [46]. These mechanisms bring a performance penalty,
but as Ramakrishnan and Gehrke [46] says, blocking is the primary reason for the
overhead.

2.5.2 ACID
ACID stands for Atomicity, Consistency, Isolation and Durability. These four
properties should be supported by transactions in a DBMS. The DBMS manages

2.5. DATABASE MANAGEMENT SYSTEM 15

these properties with the use of recovery methods and concurrency control [30, 46].
In this chapter, each property is described and the enforcement of these.

Atomicity

Atomicity means that a transaction should be fully executed or not at all. In a
DBMS, the transaction recovery subsystem is responsible for ensuring this property.
A system may crash (for example power break), or a transaction may fail during
execution. Then all operations executed by a transaction on the database must
be undone with a recovery technique. However, if there was a committed write
operation, this change has to be written to disk (eventually). This is possible due
to the logging that happens in a DBMS [30, 46].

Consistency

With consistency, it is meant that a transaction should take the database from
one consistent state to another when it is completely executed without any other
transaction interfering. This property is ensured by the user (programmers that
write database programs) of the DBMS. Let’s say that the database is in a con-
sistent state and the transaction has not been executed yet. Then the transaction
is executed, and the database program should make sure that the database is in a
consistent state after the execution is finished [30, 46].

Isolation

By isolation, it is meant that a transaction is executed in isolation from other trans-
actions. No other transactions should interfere with the execution of a transaction.
The concurrency control subsystem in a DBMS makes sure of this. It can be seen
as execution all transactions in a serial order, even though they are not [30, 46].

Durability

A committed transaction and the changes from this should be sustained, even if
there is a system crash. This property is maintained by the recovery subsystem of
the DBMS, and it is possible to retain the system by reading the log [30, 46].

2.5.3 SQL
SQL stands for Structured Query Language [48, 46], which is a database language.
It was first developed at IBM in the projects SEQUELXRM and System-R. This
was the start and the other DBMS vendors started using this language shortly after
[46]. Formal and mathematical theory is the ground foundation for SQL, and this
is theory is based on the relation model that was first introduced by Codd in 1970
[48].

SQL supports multiple operations to be expressed and sent to the database.
Some operations that are supported is the possibility to select, insert, delete and

16 CHAPTER 2. BACKGROUND

modify rows. This is also known as a subset of SQL, known as the Data Manipula-
tion Language (DML) [31]. Another subset of SQL is the Data Definition Language
(DDL). It supports creation, deletion, and modification of definitions in tables and
views. Some SQL statements may be executed at a later time. This is known as
triggers, which will be executed by the DBMS. It will be executed if it meets the
specified condition in the trigger. Another aspect is to allow a host language (for
example Java) to call the SQL code, which is known as embedded SQL. Another
type is Dynamic SQL, which makes it (SQL) possible to be constructed at run-time.
There is also possible to specify how clients can connect to the database server.
The user also has the possibility to specify commands (in SQL) for transaction
management and different possibilities for user access are also possible to specify
in SQL [46]. There exist more advanced features in SQL, but these are not covered
in this chapter.

2.5.4 MySQL
MySQL [14] dates back to 1979, but was first public released in October 1996.
However, the most interesting part for this thesis is the indexing used in MySQL.
However, this is different based on which storage engine that is used. There are
multiple storage engines, ranging from MyISAM, Memory, and InnoDB [42].

InnoDB is the storage engine that was used in this thesis, and it is therefore
only InnoDB that is described here. It is the most complex storage engine in
MySQL, where transactions, foreign keys, row-level locks and multi-versioning are
supported. However, the most interesting part is how the data is stored. InnoDB
uses something called clustering index, and this is a B-tree where the primary key
is the key in the tree and the record in the data part. This implies that each table
must have a primary key, however if it is not specified by the user, InnoDB creates
one not visible to the user [42].

Besides this, it was mentioned logging in Chapter 2.5.2 to achieve the properties
of ACID. InnoDB has two types of logs, undo and redo. The undo log makes it
possible to undo all the actions of an aborted transaction while a redo log makes
it possible to recover from a crash [42].

2.6 NoSQL
The definition for NoSQL, which stands for either "Not Only SQL" or "Not Re-
lational", is not agreed upon [25]. However, Cattell [25] lists up six key features
for NoSQL database systems. A NoSQL store can scale horizontally and distribute
the data over many servers. The interface that the NoSQL stores have is usually
simple and not like SQL. The concurrency model supported by ACID transactions
is weaker in NoSQL. Distributed indexes and RAM are also used in a more effi-
cient way, and it is possible to add attributes dynamically. However, all NoSQL
stores are different, and the features mentioned above are not identical for all of
the different types.

2.6. NOSQL 17

The three types of architectures for NoSQL that is described in this chapter
are Key-Value, Document and Extensible record (also referred to as column-family
store [38, 33, 21]) stores. As Cattell [25] describes, some authors use a broad
definition of NoSQL. Some systems that fall under this definition are graph, object-
oriented and distributed object-oriented databases. These are not explained in this
chapter. For example, graph databases are defined as NoSQL system by Abramova
[21].

In the NoSQL world, the ACID properties (explained in Chapter 2.5.2) are not
supported (usually) [25]. Instead of the ACID properties, the BASE properties
have been introduced which are explained in this chapter. Another term that is
introduced in this chapter is the CAP theorem.

2.6.1 CAP theorem
The CAP theorem was first introduced by Eric Brewer [32], and it says that a
system only can have two out of three properties (see example in Figure 2.3).
These properties are Consistency (C), Availability (A) and Partition-tolerance (P).
With consistency, it is meant that all the nodes contain the same data (at the same
time). Availability means that if a request is sent, a response should be sent back
and the last one, Partition-tolerance, implies that if one node fails, the system
should not fail or crash [21, 44]. For example, a DBMS is most likely to be in
the CA (consistency and availability) part of Figure 2.3. Which of these three
properties that should be chosen are different from system to system [25, 21], but
as Cattell [25] describes, most NoSQL gives up consistency, but the trade-offs are
complex.

2.6.2 BASE
BASE stands for Basically Available, Soft state, Eventually consistent and is a
term that is used for NoSQL systems because the ACID properties are not present
in these systems. This is because giving up the ACID properties; it should be
possible to have higher performance and scalability [25, 21]. The first part, basically
available, means that if the data is distributed and a node fails, it still works. Soft
state means that there is no consistency guarantee, but this does not mean that
the data never will be consistent, hence eventually consistent [21, 44].

BASE is connected to the CAP theorem because, as explained in Chapter 2.6.1,
two of the three properties can only be chosen, and BASE follows this. For example,
the properties availability and partition-tolerance can be selected. Then the BASE
properties hold because the database only needs to be eventually consistent, but
there is no guarantee of the consistency. As may been noticed, between ACID and
BASE, the most noticeable difference is the consistency. If this property is essential,
a relational DBMS may be better to choose [21]. As Pritchett [44] describes: ACID
is pessimistic, and BASE is optimistic. This is because the consistency with BASE
changes over time (hence, eventually consistent), but ACID makes it so that each
transaction leaves the database in a consistent state.

18 CHAPTER 2. BACKGROUND

Figure 2.3: CAP theorem

2.6.3 Key-value stores
Key-value stores are, as the name suggest, a data store where the value is indexed,
and it can be found by the use of a key [38, 25, 21]. This type of store includes
features like transactions, locking, replication, persistence mechanism and other
features [25]. It is also possible to hold both structured and unstructured data
in key-value stores [38]. Some examples of key-value stores are Riak [17], Project
Voldemort [19] and Redis [16].

2.6.4 Document stores
A document store is a bit different than key-value stores. Document stores make
it possible to store more complex data than key-value stores. This type of store
can contain documents or objects where each object may have different fields and
data [38, 25, 21]. In addition to this, different types of documents can be used (for
example XML or JSON) [25, 21]. Two well-known document stores that exists are
MongoDB [13] and CouchDB [4].

2.6.5 Extensible record stores
Extensible record (or column-family) stores have the data model that is most simi-
lar to the relational data model. The data model for extensible record store consists
of columns and rows [38, 25, 21]. Both rows and columns are distributed over mul-
tiple nodes. Sharding on the primary key is applied to split the rows on multiple

2.7. CASSANDRA 19

nodes, and a range split is often used instead of a hash function. Columns are also
splitted across nodes and grouped together in column groups, and these column
groups are pre-defined [25]. Some different extensible record stores that exists are
Cassandra [3], HBase [8] and HyperTable [9].

2.7 Cassandra
Cassandra is a distributed storage system where it is possible to manage huge
amounts of data (structured) over multiple nodes. There is no master-slave archi-
tecture, so there is no single point of failure [36, 20]. Cassandra was created for the
Facebook inbox, where it was designed to handle high write throughput (billions
of writes per day). Another aspect that was put into Cassandra was that it should
scale well with the number of users [36].

In this chapter, some key techniques and components are mentioned. Not all
components that are used to create Cassandra is mentioned here, but the most
important. The data model in Cassandra is almost unrecognizable [28] from the
data model presented by Lakshman and Malik [36]. The data model today is similar
to the data model of tables and rows in SQL.

Cassandra needs to dynamically partition the data over multiple nodes because
it should be possible to scale incrementally [36]. To manage this, the partition key
is hashed, and a token is created. This partition key is unique for each row, and
the token is used to distribute the row on the correct node. Consistent hashing
is used to create this token. If then a node is removed or added, the reorganiza-
tion is minimized (only neighbor nodes may be affected). Each node is therefore
responsible for a range of hash values, as shown in Figure 2.4 [36, 20].

Figure 2.4: Partition responsibility for four nodes [20]

There is also used replication in Cassandra, to achieve high availability and
durability. There is possible to configure the replication factor in Cassandra. For
example, a replication factor of three means that each row is copied three times and

20 CHAPTER 2. BACKGROUND

placed on different nodes. However, the key for a row is managed by a coordinator
node. This node is also responsible to replicate the data (and all the other keys
that it handles) [36, 20]. There is also possible to select two different strategies for
replication that is based on the topology (racks and datacenters). These are [20]:

• SimpleStrategy: Used if there is only one data center (Nodes in the same
collection). The replicas are placed clockwise in the ring structure. This
strategy does not consider the topology.

• NetworkTopologyStrategy: This strategy is used when it is expected that the
data is going to be replicated over multiple data centers. This strategy tries
to place replicas on different racks (nodes on the same rack tends to fail at
the same time).

Cassandra is also using a technique called gossiping (communication protocol
that is peer-to-peer). This communication protocol helps Cassandra to share state
and find location information. This information is found on other nodes in the
cluster (all datacenters). A node does also exchange information about location
and state for itself and other nodes (only those that the node knows about). There
are sent multiple gossip messages, and a versioning number is associated with each
gossip message. This number is a way of discarding old messages [20]. Gossip state
and history can, for example, be used for failure detection. It is determined locally
if a node is up or down. This enables Cassandra to avoid request being sent to
nodes that have failed. Also, when a node starts up for the first time, a random
token is chosen, and this token is the position in the ring. Gossiping is then used
to send the information about the token to the other nodes that makes it possible
to know about the other nodes and their position in the ring. When it comes to
bootstrapping, a node that tries to join a cluster reads a configuration file that
contains some nodes referred to as seeds. These seeds are the contact points for
new nodes [36, 20].

Besides the components described above, Chapter 2.7.1 describes how data is
stored in Cassandra, Chapter 2.7.2 presents the different keys and indexes used in
Cassandra. The query language for Cassandra is also described in Chapter 2.7.3.

2.7.1 Storage
In Cassandra, the data can be stored on both SSTables and Memtables. As seen
in Figure 2.5, when data is written to Cassandra, the operation is first written to a
commit log (which ensures durability). If this is successful, the data is written to
a memtable. When the size of the memtable hits a threshold (it is configurable in
Cassandra), the data is flushed to an SSTable [36, 20]. The process is also referred
to as a minor compaction by Chang et al. [26]. In this chapter, these two types of
tables, which is very similar to the BigTable design [26], are described.

SSTables

Sorted String Table (SSTable) is used to store data on disk, and it is immutable.
It has a mapping between keys and values. The keys and values are both strings

2.7. CASSANDRA 21

Figure 2.5: Memtable and SSTable architechture [20]

that can have an arbitrary byte size [26]. The SSTables in Cassandra are also
append only, and they are maintained for each table in Cassandra. An SSTable in
Cassandra also has some structures associated with it. Each SSTable has a list of
partition keys (referred to as partition index) and the position for the start of a
row. A partition summary is kept in memory that is the sample of the partition
index, and a bloom filter is used to find data without needing to do any disk I/O
[20].

In addition to this, a lot of SSTables could exist over time (because each minor
compaction creates one new SSTable [26]). Cassandra uses a compaction strategy
that is very similar to the one found in BigTable [36]. This process happens in
the background and is periodical. This will remove data that is unnecessary. The
result of this compaction is a new SSTable [20, 26]. In Cassandra, the data is not
deleted in place, but a tombstone is created (which indicates that the data should
be deleted). This is done because the SSTables, as described above, are immutable.
Then when the compaction process starts, the tombstones are evicted, and deleted
data is removed. After this, the SSTables are merged. During this process, the old
and the new SSTable will exist at the same time which will give some more disk
and I/O usage. As mentioned above, the compaction happens in the background,
and the purpose is to minimize aggravated read speeds [20].

Memtables

As mentioned earlier, all write operations are written to a commit log and then to a
memtable. Memory table (Memtable) is a sorted buffer, and the data is written to
this after logging is done. If this structure reaches a threshold, the data is flushed
to an SSTable (minor compaction) [20, 26].

Memtables are also a part of the compaction process described for SSTables.
The memtable that was a part of the compaction can be deleted after the process
is done [26].

22 CHAPTER 2. BACKGROUND

2.7.2 Keys and indexes
In Cassandra, it is possible to define different keys when a column family is created.
In addition to this, a secondary index can be created on different columns. The
different types of keys and indexes are described in this chapter.

Primary key

Cassandra requires that at least one column is defined as a primary key. If it is
only one column, a primary key keyword after the column can be used as shown
in Listing 2.1

CREATE TABLE user (
username varchar PRIMARY KEY,
age int,
first_name varchar,
last_name varchar

);

Listing 2.1: Create table with a single primary key

However, there is also possible to define it as compound primary keys (described
below) does it (with parentheses and only one column in between these). However,
only one column is used between the parentheses. A single primary key will also
act as the partition key (it is also referred to as the row key) for the data [6].

Compound primary key

In this type, a primary key consists of multiple columns. The first part of the
compound primary key is defined as the partition key. The other columns are
referred to clustering columns. The partition key will decide which node the data
is stored on. The clustering column(s), on the other hand, will cluster (a process
where an index is created and an order for the data is made with this index) the
data on each partition [6]. This type of key can be created as shown in Listing 2.2.

CREATE TABLE user (
username varchar,
age int,
first_name varchar,
last_name varchar,
PRIMARY KEY (username, age)

);

Listing 2.2: Create table with a compound primary key

In this example, the username column is the partition key, and the column age is
the clustering column.

2.7. CASSANDRA 23

Composite partition key

A composite partition key is similar to the compound primary key described above.
However, the partition key can contain multiple columns. The clustering columns
are created identical as the compound primary key [6]. An example of how this
key can be created can be seen in Listing 2.3.

CREATE TABLE userposts (
user_id int,
post_id int,
content text,
post_date timestamp,
PRIMARY KEY ((user_id, post_id), post_date)

);

Listing 2.3: Create table with a composite partition key

In this example, if the user_id is the same for multiple columns, but post_id is
different, the columns will be partitioned to different nodes. However, if user_id
and post_id is the same, the columns will be on the same node [6].

Secondary Index

A secondary index in Cassandra makes it possible to retrieve data using other
attributes than the partition key (described above). With an index, it is possible
to have fast and efficient lookup when matching data based on a condition. An
index can be created as shown in Listing 2.4.

CREATE INDEX ON books(author);

Listing 2.4: Create a secondary index on a column in a column family

This statement will create a secondary index on the column author in column family
books. However, a secondary index should not always be used. For example, an
index should not be created on the book title. A query against Cassandra will
return a small number of results (assuming there are many books in the column
family). There should neither be created indexes in column families where there
are used counter columns or columns that are often updated/deleted. Besides this,
indexes should not be used if a query is used to look for a row in a large partition.
However, it is possible to this if the query also narrows down the search area (for
example by an id) [6].

2.7.3 Cassandra Query Language
Cassandra Query Language (CQL) is the query language for Cassandra and is
similar to SQL (described in Chapter 2.5.3). CQL does not support join operations

24 CHAPTER 2. BACKGROUND

or subquries like SQL does. However, Cassandra makes it possible to denormalize
the data through features like collections and clustering. It is possible to use CQL
by either start up the interface, named cqlsh or use a driver to access Cassandra
(DataStax has multiple drivers, including a Java driver). All information in this
chapter is based on the DataStax documentation for CQL. [6].

A small example is shown in this chapter. This example shows how some basic
operations work in CQL. In a relational DBMS (described in Chapter 2.5), it is
possible to have separate tables and define foreign keys (based on the id in the other
table) in one table to join the data when queried. However, in Cassandra the data
is denormalized to one table (column family). This example involves books and the
authors of them. First, we need to create a keyspace that is a namespace for the
cluster. It is possible to set the name, replication strategy, replication factor and
support for durable writes. Let’s say we only have one data center and with only one
node. We, therefore, set the replication factor to one and uses the SimpleStrategy
described above. The durable write option is not defined (it is possible to set it to
false and skip the writes to commit log) and it is, therefore, true. It should also not
be used when SimpleStrategy is used. An example statement is shown in Listing
2.5. This statement is used to create a keyspace in Cassandra.

CREATE KEYSPACE bookKeyspace WITH REPLICATION = { ’class’ : ’
SimpleStrategy’, ’replication_factor’ : 1 };

Listing 2.5: Create keyspace statement in CQL

This statement only needs to be executed the first time when the keyspace is
initialized. Before creating any column families in this keyspace, a use statement
must be executed. This is shown in Listing 2.6.

USE bookKeyspace;

Listing 2.6: Use keyspace statement in CQL

The next step is to create a column family in Cassandra. An example of how a
column family can be created can be seen in Listing 2.7.

2.7. CASSANDRA 25

CREATE TABLE book_authors (
bookauthor_id int,
author_id int,
book_id int,
author_name text,
book_title text,
book_date timestamp,
book_category text,
popularity int,
PRIMARY KEY (bookwriter_id, popularity)

);

Listing 2.7: Create table statement in CQL

In this column family, a compound primary key (described in Chapter 2.7.2) is
used where bookauthor_id column is the partition key, and the popularity column
is a clustering column. Besides this, it should be possible efficiently to execute a
query with a condition on the author name. A secondary index is therefore created
on this column as shown in Listing 2.8.

CREATE INDEX ON book_authors(author_name);

Listing 2.8: Create index statement in CQL

An insert statement is created to insert data to this column family. An example of
this type of statement can be seen in Listing 2.9 (assuming a popularity value of 0
are the most popular books).

INSERT INTO book_authors
(bookauthor_id, author_id, book_id, author_name, book_title,

book_date, book_category, popularity)
VALUES
(1, 33, 46, George R. R. Martin, A Game of Thrones,

06.08.1996, Fantasy, 0);

Listing 2.9: Insert statement in CQL

When some data has been inserted to the column family, different queries can be
executed on Cassandra. A simple query is shown in Listing 2.10.

SELECT *
FROM book_authors;

Listing 2.10: Simple select query in CQL

This query will return all rows from the column family book_authors. If the

26 CHAPTER 2. BACKGROUND

number of rows is larger than ten thousand, only the first ten thousand rows will
be returned. However, it is possible to specify the limit in a query by the use of
the keyword LIMIT. A query can be expressed as shown in Listing 2.11 to find all
the books that have the author George R. R. Martin.

SELECT *
FROM book_authors
WHERE author_name = ’George R. R. Martin’;

Listing 2.11: Select query with one where relation in CQL

There is also possible to count the number of rows as done in SQL. A simple ex-
ample of this is shown in Listing 2.12.

SELECT COUNT(*)
FROM book_authors;

Listing 2.12: Select query with count in CQL

This query will return the number of rows that matches this query. Besides the
different commands shown above, there is possible to update, drop, alter and trun-
cate a column family. It is also possible to define different security options for
users and list the different users/permissions. For a full overview of the different
CQL commands in Cassandra, a look at the DataStax documentation for CQL is
recommended [6].

2.8 Other NoSQL stores
Some other NoSQL stores are also briefly described in this chapter. Since Cassandra
is explained in Chapter 2.7, no other extensible record stores are presented here.
Two of the most well-known document and key-value stores are described in this
chapter. These are MongoDB and Redis, respectively.

2.8.1 MongoDB
MongoDB [13] is a document store defined as a NoSQL database. MongoDB is
written in C++ and developed by 10gen. It is also open source as Cassandra and
Redis. Master-Slave replication is supported by MongoDB [25, 21]. The master can
write and read data. A slave can only read data. If a master node fails, the slave
node that has the most recent data is replaced as the master [21]. The replication
is also asynchronous, which means that the updates are not spread instant, and
some updates may be lost during a crash. However, this gives the advantage of
high-performance [25, 21].

The data in MongoDB is stored as BSON (binary JSON-similar format). It
supports integers, strings, booleans, dates and binaries [25, 21]. As Cattell [25]

2.8. OTHER NOSQL STORES 27

says, MongoDB is lockless. However, he said this in 2010 and version 2.2 that came
after this, introduces locks to ensure consistency of data. Besides this, indexes are
supported and used to increase performance (as relational DBMS). The structure
used by these indexes are a B-tree. Read, create, delete and update operations are
also supported in MongoDB [21].

2.8.2 Redis
Redis [16] is written in C and is licensed under the BSD license as an open source
project. However, it started with only one person. Redis is a key-value store
where it is possible to use operations like insert, delete, and lookup. There is also
support for sets and lists, not only blobs or strings. In Redis, the client does the
distributed hashing to servers and each client is connected with the use of a library.
This library contains a wire protocol to the servers, and the servers have the data
in memory. However, the data can also be copied to disk (in case of shutdown).
There is support for atomic updates in Redis. This is possible with the use of
locking [25, 33].

It has been shown that Redis can make one hundred thousand requests per
second with the use of the memory [25, 33]. However, Redis has a limit on the
physical memory, and it will therefore execute best on smaller amounts of data
[33].

28 CHAPTER 2. BACKGROUND

Chapter 3
Related work

In this chapter, solutions related to implementation of join in NoSQL are inves-
tigated. The purpose of this chapter is to show that the join operation in or on
NoSQL systems is investigated.

3.1 Equijoin in a Ring Architecture Key/Value Database
Wang et al. [49] have proposed an approach for executing equijoins on a ring
architecture. As Wang et al. [49] mention, different solutions to perform a join on
the master-slave architecture exists with the use of MapReduce, but not for the
ring architecture. Their proposal for an efficient parallel execution of equijoin on
a ring architecture without MapReduce is the following:

1. A Column Value Index (CVI). The consistency hash algorithm is utilized to
store the CVI on the cluster.

2. Build a Memory Index(MI) to improve efficiency. This memory index is also
used to avoid/reduce useless disk access.

3. A Pre-Join Table Generator (PTJG) uses the CVI and MI to process equijoin
tasks on the ring architecture.

This implementation makes use of the column family data model that is illus-
trated in Figure 3.1. With this data model, three join conditions are represented.
These are the following, equality of two row keys, equality of one row key against a
column value (for one column key) and equality of two column values (for two dif-
ferent column keys). Based on this information, the PTJG algorithm is proposed,
and this contains three phases:

1. Build a Column Value Index.

2. Build a Memory Index.

29

30 CHAPTER 3. RELATED WORK

3. Accomplish the equijoin and generate the join result.

Figure 3.1: ColumnFamily data model [49]

3.2 UnityJDBC
Unity is a generalizable SQL query interface for both relational and NoSQL systems
described by Lawrence [37]. This system translates SQL queries to the underlying
API of the data sources (for example, MySQL and MongoDB). Unity allows queries
to span over multiple sources where each source will use their query engine to
perform joins across the different sources. It is therefore defined as an integration
and virtualization system.

The architecture of unity can be seen in Figure 3.2. This architecture consists of
one SQL query parser that converts an SQL query into a parse tree and validates the
query. This query parser supports standard SQL-92 syntax for SELECT, INSERT,
UPDATE, and DELETE statements including inner and outer joins. This parse
tree is sent to the query translator that converts it into a relational operator tree
that consists of selection, projection, grouping and join operators. Besides this, it
also validates field and table names. The join ordering is found in the optimizer
with the use of the parse tree. It also discovers which parts of the query plan
that should be executed on individual sources. Lawrence [37] describes different
techniques to perform a join between multiple sources:

1. Push down filers: Selection operators are sent to the data source for execution.

2. Join ordering: The ordering of the join is found by using a cost based opti-
mizer.

3. Push-down, staged joins: If a join is across two systems, the result from the
first system is used to modify the query sent to the second system.

After the execution plan is generated, the execution engine takes over. It inter-
acts with the data sources to submit queries and retrieve results and then perform
any additional operations.

Experimental results for Unity shows that the performance is a bit slower and
that the overhead is minimal in the SQL translation process. Further work is
benchmarking the performance of other NoSQL systems, like Cassandra.

3.3. SIMPLESQL 31

Figure 3.2: Unity architecture [37]

3.3 SimpleSQL
Calil [24] proposes a relational layer over Amazon SimpleDB, called SimpleSQL. It
has an SQL interface for performing operations on SimpleDB where it is storage
and operation transparency.

The four standard operations known from SQL are supported, which are: SE-
LECT, UPDATE, DELETE and INSERT. A select statement in SimpleSQL can
contain join operations. When a join operation is executed, each attribute must
have the format "table.attribute".

When a command is executed on SimpleSQL, the first step is to decompose the
SQL command and convert it to SimpleDB syntax. Once converted, is the com-
mand converted to a SimpleDB REST method call. The architecture of SimpleSQL
is shown in Figure 3.3.

The results are returned to SimpleSQL after processing in SimpleDB. Evalu-
ation of SimpleSQL shows a slight increase in processing overhead compared to
pure SimpleDB. The processing time for select statements shows a 40% increase,
but this was expected since SimpleSQL has to process the data retrieved from the

32 CHAPTER 3. RELATED WORK

Figure 3.3: Architecture for SimpleSQL [24]

cloud.

3.4 CloudTPS
Wei et al. [50] present join query support in CloudTPS. CloudTPS is a middleware
layer. This layer is between the web application and the corresponding cloud data
source (BigTable, SimpleDB and Cassandra). CloudTPS supports one type of
join queries. This is equijoins where foreign keys are used. This is also known as
a foreign-key equijoin (a relationship between two tables where a primary key is
equal a foreign key). This design chose is done because this is one of the most
common types of join.

The data model that CloudTPS defines is a collection of tables. Each table
in CloudTPS contains a set of records. These records then again contain one
primary key and an arbitrary number of attribute-value pairs. The foreign keys
are attributes that refer to a primary key in another table (or the same).

A Java client-side library is used by web applications to access the API of
CloudTPS. Join queries can then be sent to this API. Each join query in CloudTPS
is then a collection of JoinTable (the tables in the join) and JoinEdge (the relation
between two tables) objects in Java.

Figure 3.4: System model for CloudTPS [50]

As seen in Figure 3.4, each client can send an HTTP request to a web application
and this uses CloudTPS to send the queries and transactions. There are multiple
Local Transaction Managers (LTMs) in CloudTPS. Each of the LTMs is responsible
for a subset of all data items. When CloudTPS is used by an application, the LTM

3.4. CLOUDTPS 33

that is requested is referred to as the coordinator. If some data is needed and this
is missing from the main memory of the LTM, the LTM that holds this data will
load it from the cloud data store. CloudTPS was compared against PostgreSQL,
and Wei et al. [50] shows that it performs better than replicated PostgreSQL, when
the amount of data is large.

34 CHAPTER 3. RELATED WORK

Chapter 4
Design space

This chapter looks at how a join can be implemented in Cassandra. It will not focus
on how the architecture can be designed because no design process was needed to
start the implementation. Cassandra is already designed, and the primary focus is
to justify why the join functionality is implemented in the query language. Three
different possibilities are described in Chapter 4.1. Certain limitations have been
made for this thesis, and they are presented in Chapter 4.2. Each possibility has
it pros and cons; these are highlighted in Chapter 4.3. These possibilities are also
discussed in this chapter and a justification on why an implementation in the query
language was chosen is presented.

4.1 Different roads - same destination
It is possible accomplish a join in different ways with the same result, hence differ-
ent roads. In this chapter, three different possibilities that could have been used
to accomplish a join operation in Cassandra are presented. These are material-
ized view (Chapter 4.1.1), application layer (Chapter 4.1.2) and query language
(Chapter 4.1.3).

4.1.1 Materialized view
In SQL, a materialized view is a precomputed view where the query has been
executed in advance and the result is stored in a table [41]. This is also used in
decision support as Ramakrishnan and Gehrke describe [46] where fast response
time is needed. With this technique, all results are already processed when a
query is executed. This will enable faster retrieval of results. Different types of
materialized views exist [45, 46]. The only type of materialized view considered
here is the join view since the others (aggregation and projection) is out of scope.

In Cassandra, there is no way to create materialized views (Rabl and Jacobsen
[45] presents an implementation of view creation in Cassandra) or join data be-

35

36 CHAPTER 4. DESIGN SPACE

Id Name Age
5353 Ola Nordmann 50
7154 Kari Hansen 63
7235 Rolf Kittelsen 42
9476 Jens Jensen 38

Table 4.1: Example column family for professor

tween column families in the query language. However, it is possible to manually
denormalize the column families and create a new column family. Planning your
data model, so each column family answers a query, helps Cassandra because the
data for one query is gathered in one column family [15]. This will give less disk
seeking and network traffic, but increases the use of disk space (which is cheap).

In an SQL design, the normal forms are used to give guidance on how good
design the relation schema has [46] and normalize the database if the design needs
to be better. This is not the case in Cassandra, where it is more important to look
at how a query can be answered with only one column family.

The denormalized column family must be maintained somehow. A straight-
forward approach to this problem could be to update the column family when
one of the underlying column families are changed. This can be managed in the
application layer where a change is registered. All rows that are affected in the
denormalized column family is inserted, deleted or modified.

Another method is only to have the denormalized column families. All reads
and writes are done on this denormalized column family. This means that only one
column family has to be updated. With this design (denormalized), no base column
families are required, and extra maintenance is not needed. All column families (if
it was normalized) from the biggest join that is needed is stored together to avoid
multiple column families that contain the same values. With biggest, it is meant
the number of column families. If there is a row where there is no match in the other
column families (in a normalized design), the values from these column families are
null. When a select statement is issued against the denormalized column family,
only results not containing null is retrieved.

An example of a denormalization is that you have two column families, profes-
sor, and course. To get all courses that are thought by one professor, a denormal-
ization of these two column families could be performed. The first column family
is professor, and this can be seen in Table 4.1.

Since a professor can have multiple courses, each course has a professor id (it is
assumed that there is only one professor per course). This column family is shown
in Table 4.2.

To answer the query "Which courses does professor Ola Nordmann teach?",
a denormalization of these two column families is executed, and the result can be
seen in Table 4.3. This column family can be updated at the application level when
something changes. This fits well with Cassandra, which is designed to handle high
write throughput [36].

4.1. DIFFERENT ROADS - SAME DESTINATION 37

Courseid Title Professorid
TDT4186 Operating Systems 5353
TDT4117 Information Retrieval 5353
TDT4175 Information Systems 9476

Table 4.2: Example column family for course

Id Name Age Courseid Title Professorid
5353 Ola Nordmann 50 TDT4186 Operating

Systems
5353

5353 Ola Nordmann 50 TDT4117 Information
Retrieval

5353

9476 Jens Jensen 38 TDT4175 Information
Systems

9476

Table 4.3: A denormalization of professor and course

4.1.2 Application layer
A possible way to join different column families in Cassandra is to perform it on
the application layer. Examples of this type of join are presented in UnityJDBC
[37] and SimpleSQL [24]. Both solutions are presented in Chapter 3, where they
perform joins between tables on the application layer.

For this thesis, a possible design for this type of join design would be to create
an application layer where it is possible to submit CQL queries. If the query does
not contain a join, it is forwarded to Cassandra and the result is returned to the
user through the application layer. Otherwise, a preparation has to be done before
multiple select queries can be executed on Cassandra. A possible design for this can
be seen in Figure 4.1. Cassandra data store refers to the memtables and SSTables
(described in Chapter 2.7.1) for the column families in the join.

During join preparation, multiple select queries have to be generated, where all
rows for one column family are fetched. These rows can then be used to create new
select statements with a where clause. This where clause will contain relations on
the correct column with values from the retrieved rows. If it is an N-Way-Join, one
or more column families are reused in the relations. The result from these can be
stored temporarily and used again without needing to access Cassandra. A column
family should only need to be read once.

4.1.3 Query language
By query language, it is meant that the join can be written in CQL and executed
in Cassandra. No materialized views or join in the application layer is needed.

Today, SQL supports join in the query language. For example, a join between
the two tables (called column families in Cassandra.) in Table 4.1 and 4.2 can be
expressed as shown in Listing 4.1.

38 CHAPTER 4. DESIGN SPACE

Figure 4.1: A possible design for join in the application layer

SELECT *
FROM Professor P, Course C
WHERE P.id = C.professorid;

Listing 4.1: Traditional style of writing join queries

This is the traditional way of writing join queries in SQL, called theta style [35].
Another SQL style, is the ANSI style [35, 31]. An example of this type is shown in
Listing 4.2.

SELECT *
FROM Professor P JOIN Course C ON P.id = C.professorid;

Listing 4.2: ANSI style of writing join queries

This will produce the same results as the traditional way. The difference is that
the join is explicitly stated in the from clause [31] and not in the where clause as
the traditional style.

In Cassandra, it is no support for this type of complex queries. To support a
join through the query language in Cassandra, a change in the implementation has
to be done. The design of this possibility is based on the query processing steps,

4.1. DIFFERENT ROADS - SAME DESTINATION 39

described in Chapter 2.1. These steps are as following:

1. Parsing

2. Optimization

3. Code generation

4. Execution

These steps may differ a bit from the steps in Cassandra. The select statement
that is already implemented in Cassandra is the model for how the join statement
should be designed. It is three steps that can be found in this class, and these are:

1. Parsing

2. Prepare

3. Execution

These three steps are almost the same as the four steps for query processing. For
the join in the query language, the prepare step will contain both the optimization
and code generation step.

The first step is the parser, that has to be changed to support joins. Only
the traditional way of writing queries (also called theta style), is considered for this
design possibility. The join is separated from the where clause to a new clause called
JOINON. This separation is done to avoid confusion between new functionality and
already implemented functionality. The SELECT clause must also be changed to
support a projection on different columns in different column families. A new
clause for this is also needed, called SELECTJOIN. The FROM clause must also
be changed. However, this change is minimal, so no new clause is required here.
A list of column families must be possible to add here since standard Cassandra
only supports one column family per query. The WHERE clause is also almost
unchanged, and the only difference will be that each column must be represented
with the column family. An example of this type of query is shown in Listing 4.3.

SELECTJOIN *
FROM professor, course
JOINON professor.id = course.professorid;

Listing 4.3: Possible layout for a join query

This is a query where the where clause is not used. A query that contains a where
clause can be written like Listing 4.4.

40 CHAPTER 4. DESIGN SPACE

SELECTJOIN *
FROM professor, course
WHERE course.courseid = ’TDT4175’
JOINON professor.id = course.professorid;

Listing 4.4: Possible layout for a join query with where relations

Both queries, executes a join between the two column families on the columns id
and professorid. However, the latter query will only return the rows that have
TDT4175 as their value in the column courseid. The first query will return all
rows from the join. There should also be possible only to select some columns as
the result. An example can be seen in Listing 4.5.

SELECTJOIN professor.name, course.title
FROM professor, course
JOINON professor.id = course.professorid;

Listing 4.5: Possible layout for a join query with projections

All rows that came through the join will be returned. However, only two columns
will be returned. The examples above shows how a join could be written in the
query language of Cassandra.

After the parsing step has been executed, the query must be prepared. This
will involve optimization and code generation. The first part is the optimization.
This step will discover which column families that are biggest and create a plan for
execution for each N-Way-Join. This plan is based on query optimization described
in Chapter 2.1.1. However, it only finds one plan and does not enumerate different
left deep plans. It is based on that there must be a connection between each 2-Way-
Join and reducing volume early if there is possible (for example with the use of
where relations). This plan will be used during the execution to avoid unnecessary
reads from the disk.

In the current implementation of Cassandra, the raw select statement is pre-
pared and returned to the query processor (this class makes use of the different
statements supported in Cassandra). This can be seen as the code generation in
Cassandra, and the same operation must be done with the join statement. Besides
this, each join relation generates a join restriction that is stored in the prepared
join statement. This also happen in the current implementation with the relations
in the where clause. However, if this can be classified as code generation is not
critical and it differs a lot from the code generation in System-R (see Chapter 2.1).

During execution, different approaches (described in Chapter 2.3) for join can
be chosen. In this design, the nested loop join algorithm is used to execute the
join. This is the simplest join algorithm [46] of the three described in Chapter 2.3
and is therefore used in this design.

The design of the nested loop join may be different in Cassandra because some
modifications may be done to make it work with existing implementation. If there

4.2. LIMITATIONS 41

exist methods or lists that can be used by the join implementation, the current
code base of Cassandra is something that should be used for this possibility. It is
unnecessary to implement new functionality if it already exists.

4.2 Limitations
Some limitations have been made concerning the join types and algorithms includ-
ing which index types that are supported in a join (for Cassandra). These are
presented in this chapter.

4.2.1 Only primary keys and secondary indexes
Only single primary keys and secondary indexes (explained in section 2.7.2) are
supported when a join statement is issued. The two other types of keys described,
composite partition and compound primary key is not supported. In this first
prototype, it was only important to show that join could be executed in Cassandra.
However, this should be supported if the join operation is used and the data is
distributed over multiple nodes.

4.2.2 Only equijoin
Only equijoin will be considered, since this is by far the most used type of join in
web applications as stated by Wei et al. [50]. Other types of join, like semi join,
natural join and outer join (described in Chapter 2.3.1) are out of scope.

4.2.3 Only index nested loop join
One of the join algorithms described in Chapter 2.3 must be used to implement
the join functionality in Cassandra. Originally, the simple nested loop join was
thought of as the algorithm to use. However, the design of Cassandra made it
easier to implement the index nested loop join algorithm. Sort-merge and hash
join are excluded since there exists a time limit on this thesis, and these algorithms
would require more adjustments of the underlying architecture to implement.

4.2.4 Locally supported
This version is only supported and tested at a single node. Implementing and
testing a join operation on multiple nodes are out of scope and should be further
work.

4.3 Discussion
Query language (described in Chapter 4.1.3) is the one possibility that was chosen
for this thesis. In this chapter, this possibility is discussed with the two other
possibilities described in Chapter 4.1. These three options are compared with

42 CHAPTER 4. DESIGN SPACE

speed, memory, redundancy, and maintenance in mind. A justification for why the
query language was chosen is presented in Chapter 4.3.5.

4.3.1 Speed
The first possibility presented was materialized views. This is most likely the
possibility that is the fastest of these three. The reason for this statement is that
no join has to be done by the user and only one column family has to be read to
answer a query. As explained in Chapter 4.1.1, Cassandra performs best when an
answer for a query is stored in one column family (denormalized). This gives less
disk seeking and network traffic, which is read in this case. Cassandra does not
handle reads as good as it does with writes [40, 36]. However, it still has good read
speeds. But, the materialized view option will have fewer disk reads than the two
other options. This will result in a slower execution if a join is performed in the
application layer or query language. However, it is assumed that the query language
will execute faster than the application layer. This is because the network traffic
for the application most likely will be higher. For example, there are two column
families A and B. Column family A has 1,000,000 rows and B has 500,000 rows.
The result of a join between A and B is 300,000 rows. In the application layer,
column family B must be read in its entirely first, which implies that 500,000 rows
must be transmitted over a network. After this, as explained for the application
layer, each of these 500,000 rows is iterated through and a select statement is sent
against Cassandra (gives 500,000 more reads). Each select statement will return
0 or more rows that are combined the row used to create the select statement
(300,000 rows will be returned in total). In the query language, the back and forth
operation is not needed because the complete result of the join is found before
it is sent to a user. Only 300,000 rows must be sent over the network while the
application layer will need to transmit 800,000 rows (500,000 from column family B
and 300,000 from column family A). The application layer will also need to prepare
and interpret a query as the query language. So both the application layer and
query language must almost do the same operations like parsing, preparation and
iterating through each row. The biggest difference is that the number of rows from
the query language will be significantly smaller. With this example, 300,000 rows
must also be returned from the materialized view. However, the join is already
executed, and no operation is needed to combine the results as the query language.

4.3.2 Memory
If the join is executed in the application layer, results during the join process are
stored in the virtual memory. If the size of the result is too big, it may exceed the
virtual memory size and the application layer may crash. With this functionality
implemented in the query language, a possibility is to store the temporary results
on disk. These results can then be used when they are needed.

4.3. DISCUSSION 43

4.3.3 Redundancy
Since the materialized view is denormalized, some data will be stored redundantly.
In the query language or application layer, this is not a problem. In the mate-
rialized view, this requires maintenance of the column family. Since there is no
implementation of this in Cassandra, this requires the developer of the application
that uses Cassandra to handle this.

4.3.4 Maintenance
Materialized views and the application layer requires more actions to complete a
join than the query language does. The materialized view requires the user to create
and maintain the view. An implementation in the application layer can require the
user to implement some functionality for the join. The user may use a library
for the join functionality and this does not require much more work for the user.
However, it still requires more work than the query language because the library
must be included in the application code. Besides this, the library may break
if something is changed in Cassandra if the library is developed by a third-part.
Then the user has to manually change the library to be compliant with Cassandra.
Instead of letting the user do the work, the query language makes it possible for
the user to send queries that contain joins to Cassandra. No maintenance or extra
implementation is needed to execute the join.

4.3.5 Possibility implemented
The query language is the one possibility that is implemented for this thesis, and the
implementation is described in Chapter 5. Materialized views would probably be
faster than the query language, but it will have more maintenance and redundancy.
Creating a join functionality in the application layer is a solution that needs to
transmit more data over the network than the query language. Besides this, trying
to implement a join functionality into CQL is interesting to look at because this is
how SQL works, where it is possible to write queries that contain joins.

Join functionality in the application layer has already been investigated [37, 24].
It has also been investigated on the implementation of materialized views in Cas-
sandra and CQL [45]. However, no work has been found on join implementation
in Cassandra (query language) after searching with best efforts. With this infor-
mation, it is known that the application layer and materialized views are possible.
Therefore was a join implementation in Cassandra, which support joins defined in
the query language, chosen as the subject for this thesis.

44 CHAPTER 4. DESIGN SPACE

Chapter 5
Implementation

This chapter will explain how equijoin was implemented in the source code of
Cassandra. All sections and subsections are chronologically ordered in the way
they occur when a user executes a query against Cassandra. Chapter 5.1 looks at
what tools that were used during the implementation period and how the code is
organized. Chapter 5.2 and 5.3 looks at how the actual implementation for join
was done. Chapter 5.4 describes how column families that are not in any join are
executed and Chapter 5.5 explains how all the results are merged. Chapter 5.6
will look at an example execution with the purpose of showing what happens in
Cassandra.

The reader of this chapter should also know that the term "reading from the
data store" is referred to as reading from both memtables and SSTables. Besides
this, selections refer to projections in this chapter because the object referring to
projections in Cassandra is named "Selection". The term selection known from
relation algebra is also avoided because of this. Instead, terms like where relations
and restrictions are used.

5.1 Organization and explanation of the code
This implementation is done in Cassandra source code for version 2.0 that can be
found on the GitHub page for Cassandra [22]. All code implemented in this thesis
tries to use the same name convention as Cassandra when it is possible. However,
sometimes the naming convention is a bit different because it does not exist any
similar functionality in the source code of Cassandra.

GitHub [7] is used as a tool for source code management and as a backup
solution for the implementation. This tool also gave the possibility to create stable
versions and experiment with new functionality without destroying the existing
implementation. All code implemented during this thesis can be found on GitHub
[10]. Most of the work in this thesis was done in Java, but ANTLR version 3 [1]
was used for the parser and lexer.

45

46 CHAPTER 5. IMPLEMENTATION

Further, the tool used for building the project was Apache Ant [2]. Some of
the main commands used for this implementation are (see Cassandra build file at
GitHub [22] for documentation on all ant commands):

ant build Compiles all Cassandra classes.
ant artifacts Generate artifacts for all Cassandra classes.
ant test Executes all unit tests.
ant clean Removes all locally created artifacts

The most used command was ant build. This command was used each time some-
thing in the code was changed. After this command was executed, the server could
be started up, and users could connect to the server. If the project was pulled from
the GitHub directory to a new computer, ant clean had to be run because locally
created artifacts had to be removed. Ant build could then be run after this. Ant
test was used to check that this implementation did not destroy any existing code.
During the implementation of join in Cassandra, some documentation was used to
understand the existing code. The command for retrieving this information was
ant artifacts. Due to the lack of documentation in Cassandra, there was not so
much information to extract here. To understand how the existing implementa-
tion worked, printing and logging at different places in the code was done. This
gave some information on how the flow was and what was done. Trying to change
different variables in the code and see if it failed was also done.

Since there already existed an organization of the code, no changes were done
here. All statements are under the cql3 package and then under the statements
package. The join statement was also implemented in this package. All other
classes created was saved under packages where the other classes were similar (in
means of what they do). Most of the implementation was done in the package cql3.

5.2 Parser and prepare
This chapter describes how ANTLR was used to implement a parser that supports
join statements in Cassandra and how the prepare step was implemented. The
final result of this chapter is a prepared statement that will be used by the query
processor in Cassandra to execute the join statement.

5.2.1 Selectjoin clause
Selectjoin is similar to the select clause found in standard CQL. A join select can
contain multiple join selectors separated by a comma, shown in Figure 5.1. This
figure also shows that it is possible only to write ’*’ (asterisk). This will select all
columns from all column families in the query at a later stage. JoinSelector returns
a raw join selector and join select clause returns a list of raw join selectors. This
list is returned only if the user has selected one or more columns and not when the
asterisk is used.

5.2. PARSER AND PREPARE 47

Figure 5.1: Syntax diagram for the select clause

If a query contains selections on columns, there are some differences from a
standard CQL query. Each column must be represented on the form "column-
family.column-name" as the syntax diagram in Figure 5.2 shows. A representation
in this form is chosen because some column families may have the same column
names. Join selectable will set the column family and column.

Figure 5.2: Syntax diagram for the join selector

5.2.2 From clause
Since a join statement must support the use of multiple column families in one
query, a rule in ANTLR was created so multiple column families could be used.
Each column family is separated by a comma, shown in Figure 5.3. A list of column
family names is returned from the from clause (named "columnFamiliesName" in
Figure 5.3).

Figure 5.3: Syntax diagram for the from clause

5.2.3 Standard where clause
A standard where clause should be possible in this implementation. As in a select
in Chapter 5.2.1, each column must be represented with the column family. Only
single column relations will be allowed. An extra method for storing the column
family name was implemented in the single column relation class. This information
is used by the prepare step. As seen in Figure 5.4, a where clause can contain one
or more single column relations which is found in "joinSingleColumnRelation".

Figure 5.4: Syntax diagram for the where clause

48 CHAPTER 5. IMPLEMENTATION

5.2.4 Joinon clause
In a select statement, the where clause may contain one or more relations, for
example, "WHERE id=6". Based on the input, the relations are either single
column or multi column. A single column relation is a standard relation, for ex-
ample, "id=3". A multi column relation is a relation that spans over multiple
columns, for example "(a, b, c) IN ((1, 2, 3), (4, 5, 6), (7, 8, 9))". The implemen-
tation of equijoin in Cassandra is a single column relation on the form "column-
family1.id=columnfamily2.id", but it is not called a single column relation. The
relation is called join relation because a relation in a join requires other variables
than a standard single column relation.

Figure 5.5 shows that a joinon clause can have multiple relations separated by
a "K_AND" (this is and). Each relation is created in equijoin which returns a
join relation. A query that contains a join will use a join relation that contains a

Figure 5.5: Syntax diagram for the joinon clause

left and right column family. A left and right column identifier is also stored in
the relation. As explained in Chapter 5.2.1, each column is represented with the
column family. This can be seen from Figure 5.6. EachSideOfJoin checks each side
of the equal operator. By the use of a boolean, correct column family and column
name is stored either on the left side or right side. This method will also check that
only letters allowed by Cassandra is used. A list of join relations will be created

Figure 5.6: Syntax diagram for equijoin

and used by the prepare step in the join statement.

5.2.5 Other clauses
Clauses like ORDER BY or GROUP BY exists in standard CQL. These clauses
are not implemented in the join statement because it is not important to support
these operations to show that a join statement can work in Cassandra. Aggregate
functions like MIN and MAX are neither implemented.

5.2.6 Example query
An example can be shown with four column families that should be joined. The
example case is: there are many persons in Norway, where many persons own one
or more houses (multiple persons can own a house). These houses are located by

5.2. PARSER AND PREPARE 49

Column
family

Primary key Secondary
index

Attributes

Person personid – givenname,
familyname
and adress

HouseOwner id houseid and
personid

–

House houseid postalcode color, size
PostalCode postalcode – cityname

Table 5.1: Example column families for person, houseowner, house, and postalcode.

a postal code and a city. The different column families will contain a primary key.
It may contain one or more secondary indexes or attributes as shown in Table 5.1.
Four create table statements must be executed first and they are listed in Listing
5.1.

CREATE TABLE person (
personid int PRIMARY KEY,
givenname text,
familyname text,
adress text

);

CREATE TABLE houseowner (
id int PRIMARY KEY,
houseid int,
personid int

);

CREATE TABLE house (
houseid int PRIMARY KEY,
postalcode int,
color text,
size text

);

CREATE TABLE postalcode (
postalcode text PRIMARY KEY,
cityname text

);

Listing 5.1: Create table statements for column families person,
houseowner, house and postalcode in CQL

50 CHAPTER 5. IMPLEMENTATION

When each column family has been created, all columns that will be used in the
join must either be a primary key or secondary index. A secondary index is created
as shown in Listing 5.2.

CREATE INDEX ON columnfamily (column);

Listing 5.2: Create index on column in CQL

After the secondary index is created, some test data is inserted into the column
families. It is required that the whole column family name is written and not with
an alias since this is not supported by join statements. A query that contains a
join looks like Listing 5.3.

SELECTJOIN *
FROM person, houseowner, house, postalcode
JOINON person.personid=houseowner.personid AND houseowner.

houseid=house.houseid AND house.postalcode=postalcode.
postalcode;

Listing 5.3: A join query in CQL

This query returns all four column families with all columns with all rows that
match the restrictions in the joinon clause. A query containing a join can also
include different columns in the selectjoin clause. A query with a projections and
join is written as shown in Listing 5.4

SELECTJOIN person.familyname, person.givenname, postalcode.
postalcode, postalcode.cityname

FROM person, houseowner, house, postalcode
JOINON person.personid=houseowner.personid AND houseowner.

houseid=house.houseid AND house.postalcode=postalcode.
postalcode;

Listing 5.4: A join query with projections in CQL

This query returns all queries as the first example, but only four columns. A join
query can also contain single column relations. An example of this is shown in
Listing 5.5.

5.2. PARSER AND PREPARE 51

SELECTJOIN *
FROM person, houseowner, house, postalcode
WHERE postalcode.postalcode=’7030’
JOINON person.personid=houseowner.personid AND houseowner.

houseid=house.houseid AND house.postalcode=postalcode.
postalcode;

Listing 5.5: A join query with where relations in CQL

This query returns all rows where the column postalcode in column family postal-
code is 7030. All other rows are excluded from the result.

5.2.7 Selection
When a user executes a join statement, all column families that the user has selected
have to be validated by Cassandra. This validation generates a column family
definition (CFDefinition) that holds metadata on a column family preprocessed for
use by CQL queries.

In standard Cassandra, the select clause only contained the column identifiers
since there was only possible to select from one column family per query. Since a
join statement requires joins from multiple column families (at least two), is there a
possibility that this can create a conflict if some of the column names are the same.
To solve the potential problem with identical column names, each column name
must have a column family represented with it, in the form "column-family.column-
name". All columns from one column family in the selectjoin clause is stored in
a hash map with the corresponding CFDefinition as the key and a join or simple
selection object as the value. If there is one column that is used in the selectjoin
clause, there will exist a join selection object for each column family in the join.
However, all these objects will have an empty list of columns except the column
family that has the column in the selectjoin clause. If it is used an asterisk in the
selectjoin clause, all column families will have a simple selection object as the value
in the hash map. This object is already an implemented class in the source code of
Cassandra [22]. Under the execution, when the result is processed for each column
family, the correct selector is found by looking up the CFDefinition in the hash
map. If a column family does not have any columns in their join selection object,
no columns are shown from this column family. However, all columns are used if
the column family has a simple selection object in the hash map. As explained in
Chapter 5.2.1, the parser ensures that all selections in the selectjoin clause are on
the form "column-family.column-name" if not an asterisk is used.

5.2.8 Join restrictions
A standard restriction in Cassandra contains all conditions for a column in a se-
lect statement [22]. A restriction can either be a single column or multi column
restriction.

52 CHAPTER 5. IMPLEMENTATION

A relation is converted to a restriction when the query has been parsed. If it is
a single column or multi column restriction depends on if it was a single column or
multi column relation. What type of relation that is used, is decided in the parser
step, explained in Chapter 5.2.4. Since a join statement does not get the join value
before one of the column families have been read, a specialized join restriction class
is implemented. This restriction can store two column families and two columns.

When each join restriction is prepared, there are some rules for which columns
that can be used in a restriction. Both columns in a restriction must be a primary
key or secondary index (see Chapter 2.7.2). A reason for this choice is that an
index provides a means to access data with the benefit of efficiency [6, 5]. If a
column is indexed is found in the metadata for the column family.

As explained in Chapter 2.3.2, the smallest table (in Cassandra, the term table
is referred to as a column family) is in the outer loop. To find the smallest column
family in Cassandra, a method that checks if the left column family in the relation
is bigger than the right column family is implemented. This implementation can
be seen in Code 5.6. A method, called "getTotalDiskSpaceUsed" is used to decide
if the left column family is biggest. This method returns the total disk space
used by all SSTables that belongs to either left or right column family [22]. If left
column family (in the relation) is biggest, this will be the left column family in the
restriction and the right column family will be the right column family. Otherwise
will the right column family be the left column family in the restriction and the
left column family will be the right column family. In addition to containing this,
information about the column types (if they are primary keys or secondary indexes)
are stored for the left and right column family. The information found Code 5.6 and
the type of column (primary key or secondary index) is used during the execution
step.

Code 5.6 Check if the left column family in the relation is biggest

1 private boolean isLeftColumnFamilyBiggest(ColumnFamilyStore left,
ColumnFamilyStore right){

2 return left.getTotalDiskSpaceUsed() > right.getTotalDiskSpaceUsed
();

3 }

After each relation is processed and transformed to a join restriction, it is added
to a hash map. This hash map contains the column family as the key and a list of
join restrictions for each key. Since a join restriction contains two column families,
the join restriction will be added twice in the hash map (at different keys). This
hash map is then used in Chapter 5.2.10 to find the ordering for each N-Way-Join.

5.2.9 Standard restrictions
Because this thesis looks into joins in Cassandra, a simple implementation of the
standard where clause was implemented in this prototype. Only the equal operator
is allowed in a relation. If a user tries to use something else, an exception will be

5.2. PARSER AND PREPARE 53

thrown. Greater or smaller than operators could also have been implemented, but
for testing purposes, it is enough with the equal operator.

Since the parser only uses single column relations (see Chapter 5.2.3), all the
single column relations are transformed into two types of single column restrictions.
These types are either a join single column restriction or a modified standard single
column restriction (which is a modified class already implemented in Cassandra).
The reason for separating these types are because the usage is different in the
implementation. If a relation is used on a column in a column family which is also
used in the join, a join single column restriction created. This object contains a
single column restriction, boolean variables about the column (if it is a primary
key or secondary index) and the column name including the column family name.
The single column restriction will contain the value that have been specified by the
user. Only one column in a column family can be restricted if the column family
is part of the join because this functionality is not important to show that a join is
possible in Cassandra. All join single column restrictions are added to a hash map
as a value where the key is the column family name. The column family name is
also added to an array list that will be used for the join ordering (usage is described
in Chapter 5.2.10).

If the column family is not part of the join, a standard modified single column
restriction is created. By modified, it means that some additional variables have
been added to the class "SingleColumnRestriction" found in Cassandra. These
variables are the same boolean variables as in a join single column restriction.
These restrictions are further used, either in the standard execution or the nested
loop execution.

5.2.10 Find join order
When a query that contains join restrictions is executed by a user, the ordering of
the different join restrictions has to be decided. This ordering is found because the
number of column families read from the data store should be kept at a minimum.

When the join restrictions were transformed from join relations, a hash map
was created. As seen in Figure 5.7, this hash map has a set of column family names
that are the keys. Each column family name (CF1, CF2, ..., CFN , where N is the
number of column families in one N-Way-Join) has one corresponding array list
that contains all join restrictions. Each restriction connected to a column family
is represented as res-1, res-2, ..., res-R where R is the number of join restrictions.

If there exist a column family that is used in the where clause and belongs to
a join restriction, it is beneficial to have this join restriction first in the join order.
A lot of rows may be excluded at an early stage, and unnecessary iterations are
avoided in the nested loop. The list, let’s say L, created in Chapter 5.2.9, which
contains all column family names that is used in the where clause and belongs to an
N-Way-Join, is iterated over first. A temporary list, let’s say TL, is created before
the iteration starts. During the iteration, all column families found in the hash
map (described above) that matches any column family name in list L, is added
to the list TL. After this, all other column families are added to the list TL. This
temporary list is then used when each N-Way-Join object is created.

54 CHAPTER 5. IMPLEMENTATION

An iteration over the temporary list, TL, is executed. For each column family
in TL, a method is called and the N-Way-Join is created. All column families
belonging to that N-Way-Join is added in this method. However, this only happens
if the hash map contains a list for that column family with size bigger than zero.
If the size is zero, it means that the column family has already been added to an
N-Way-Join. In an N-Way-Join, each restriction must have a connection to at least
one other restriction. This connection is represented by the use of column family
names. With this connection, it is possible to start at one column family, iterate
over each corresponding restriction. At each restriction, the second column family
is checked. If there is only one restriction at the other column family, this must be
the same restriction, and it is removed from the hash map. Another possibility is
that the second column family contains more than one restriction. If this happens,
the restriction is removed from the second column family and a new iteration of
the restrictions found on the second column family is done in the same way as
described above. This operation continues until all restrictions have been assigned
to an N-Way-Join, and each N-Way-Join contains a list of join restrictions.

After the N-Way-Join is created, the ordering of the different restrictions has to
be decided. An unordered and ordered list of all restrictions is maintained in each
N-Way-Join. The unordered list has to be ordered so that only the first restriction
has to read both column families from the data store. All other restrictions only
need to read one column family from the data store. The ordered list is achieved
by having a nested for loop where the same unordered list is used on the inner and
outer for loop. A join restriction that contains a column family that is also used
in the where clause will be first in the unordered list and the ordered list as well.
However, it is only guaranteed that the first element of the unordered list will be
the first element of the ordered list. In the outer loop, the first restriction is added
to the ordered list. In the inner loop, all the join restrictions that matched on
either the left or right column family in the outer loop is added to the ordered list.
This process is repeated until all elements are added. Duplicates in the ordered list
are avoided with a check that ensures that only one instance of the join restriction
is added.

An example of this operation can be shown from Figure 5.7. This example
does not have any column family that was used in the where clause and at the
same time belongs to a join. The first column family that is read from the list L
(described above) is CF1 and the method creating the N-Way-Join is called. This
column family has the corresponding restrictions Res-1, Res-2, and Res-3. CF2 is
the second column family, but it only contains a list of size one. Res-1 is therefore
removed from CF2, and the next restriction is Res-2. Res-2 also belongs to CF4

and is removed from this list. Since CF4 originally had a list of size two, Res-4 is
read next. Res-4 has CF5 as the second column family and Res-4 is removed from
this list. Since this list has size one, it jumps back to Res-3. This restriction also
has column family CF3 which is size one. The operation is done and Res-1, Res-2,
Res-3, and Res-4 belongs to the same N-Way-Join. This N-Way-Join have this list
of restrictions after the operations is done: [Res-1, Res-2, Res-4, Res-3]. Since all
column families have been added to an N-Way-Join, the next operation is to order

5.2. PARSER AND PREPARE 55

Figure 5.7: Hash map containing all column families with corresponding restrictions

the N-Way-Join to create a join tree. Res-1 is the first element in the list, and,
therefore, the first restriction to be added to the list. Res-2 is then checked against
Res-1 in the inner loop. CF1 is a match and Res-2 is therefore the next element to
be added. Res-3 is also added because of CF1. In the outer loop, Res-2 and Res-3
will not be added again since they already are in the list. Res-4 will be the last
restriction to be added. As shown in Figure 5.8, a join tree has been created. At
the execution stage, this enables only one reading of a column family in the join
restriction from the data store except the first.

5.2.11 Column families outside the join
When a query that contains both column families in an N-Way-Join and outside
an N-Way-Join, two different lists are created. The first list is an N-Way-Join list
containing each N-Way-Join described in Chapter 5.2.10 and the second list is all
column families outside any N-Way-Join. When the join restriction is prepared,
the column family name (both left and right side of the equijoin) is checked against
hash map as seen in Code 5.7. This code uses the CFDefinition metadata to check
if the hash map contains the column family name. If it contains the name, the
insertion is removed from the hash map. After all column families appearing in the
query is prepared, all the column families in any N-Way-Join is removed and the
hash map only contains column families outside an N-Way-Join.

56 CHAPTER 5. IMPLEMENTATION

Figure 5.8: Join tree

Code 5.7 If check for column families outside a join

1 if(columnFamiliesOutsideJoin.containsKey(leftCdef.cfm.cfName)){
2 columnFamiliesOutsideJoin.remove(leftCdef.cfm.cfName);
3 }
4 if(columnFamiliesOutsideJoin.containsKey(rightCdef.cfm.cfName)){
5 columnFamiliesOutsideJoin.remove(rightCdef.cfm.cfName);
6 }

5.3 Execute join query
This chapter looks at how an N-Way-Join is executed. A list of join restrictions
was ordered in each N-Way-Join as described in Chapter 5.2.10. This list is used to
iterate through each join restriction and execute reads against the column families
to create a final result for an N-Way-Join. All subsections of this section are ordered
chronologically as they happen in the code.

5.3. EXECUTE JOIN QUERY 57

5.3.1 Decide inner and outer column families
Originally, the right column family is the smallest and should, therefore, be in the
outer loop, and the left column family should be the inner. This rule only applies to
the first join restriction in the list and no column families from this join restriction
are used in the where clause. The decision on the inner and outer column family
can be separated in two sections:

(a) The join restriction is the first element in the list and, therefore, the first join
restriction that is executed in the N-Way-Join.

(b) All other join restrictions are dependent on a join restriction that is already
executed.

In case (a), the join restriction may include a column family that is also used
in the where clause. If this is the case, this column family should be in the outer
loop. This is because the size will most likely be significantly smaller than the
other column family (in the join restriction). If neither the left or right column
family are used in column family, the left column family is employed in the inner
loop and the right column family is used in the outer loop. Three if checks are used
to enforce this rule as shown in Code 5.8. In addition to this, a boolean variable is
set to true and used in the outer loop.

If a join restriction is not the first element in the list, case (b), either left or
right column family has been read earlier. This requires two if checks (shown in
Code 5.8), to find out which column family that have been already read. If none is
read earlier, an exception is thrown. In the first case, if the left column family has
been read before, it will be the outer column family and the right column family
will be the inner. In the second case, it will be the opposite. A boolean variable
will also be set, but to false. This boolean variable is then used in the outer loop
to decide if the column family should be fetched from the data store or not. Each
join restriction is executed after this step.

58 CHAPTER 5. IMPLEMENTATION

Code 5.8 Discover which column families that are in the outer and inner loop

1 for (int i = 0; i<joinRestrictions.size(); i++){
2 //All elements in the list except the first
3 if(i != 0){
4 if(previousCfs.contains(joinRestrictions.get(i).joinFields().left

.cfName)){
5 //Left column family in the outer loop
6 }
7 else if(previousCfs.contains(joinRestrictions.get(i).joinFields()

.right.cfName)){
8 //Right column family in the outer loop
9 }

10 else{
11 throw new InvalidRequestException("Something wrong on nested

loop with: " + bigColumnFamily.cfm.cfName + " and: " +
smallColumnFamily.cfm.cfName);

12 }
13 }
14 //First element in the list, no results from prior CFs exists yet.
15 else{
16 if(columnFamiliesInWhereClause.contains(smallColumnName.cfName))

{
17 //Left column family in the outer loop
18 }
19 else if(columnFamiliesInWhereClause.contains(bigColumnName.cfName

)) {
20 //Right column family in the outer loop
21 }
22 else {
23 //Right column family in the outer loop
24 }
25 }
26 }

5.3.2 Big row
Big row is an object implemented in this prototype that contains one row from
each column family in the N-Way-Join when the join is finished. These rows are
stored in a hash map where the column family is the key, and the value is a row
fetched from that column family. Each big row only contains one standard row per
column family. The result is also stored in byte buffers in the same column order
as the rows. For example, a 3-Way-Join has three restrictions as shown in Table
5.2, where each restriction is on two column families. Join restriction 1 is executed
first. This execution retrieves M rows and creates M big rows. Each big row has a
hash map containing one row from CF1 and one row for CF2. Only those rows that

5.3. EXECUTE JOIN QUERY 59

have matching column values between CF1 and CF2 will be used by join restriction
2. This operation is repeated with join restriction 2 and 3. In the end, a set with
big rows survived and is therefore used in the result. This implementation is used
by the outer and inner loop implementation described in Chapter 5.3.3 and 5.3.7,
respectively.

Join restriction 1 Join restriction 2 Join restriction 3
CF1 CF2 CF2 CF3 CF1 CF5

Table 5.2: A set of join restrictions with corresponding column families (CF) in a
3-Way-Join.

5.3.3 Outer loop
Outer rows are the rows that are looped through in the outer loop in nested loop
join. This nested loop algorithm can be defined as an index nested loop join
(described in Chapter 2.3.2). It is defined as this type since, as described below, all
inner rows are found in the outer loop and only processed with the outer rows in
the inner loop. The outer rows will always be big row objects, which is explained in
Chapter 5.3.2. If the outer column family has been read before, a boolean variable
is set to true (all join restrictions in the N-Way-Join except the first). The boolean
variable is set to false (first join restriction executed in the N-Way-Join) if it has
not been read before. False will require a read of the outer column family from the
data store. This boolean variable is set when the outer and inner column family
in the loop is decided (described in Chapter 5.3.1). The boolean variable makes
it possible to either retrieve old results or read the column family from the data
store. In the first case, where the outer column family has been read earlier, the big
rows that survived the previous join restriction are used. In the second case, if the
outer column family is first, it has to be read from the data store. All rows from
both column families in that join restriction will be read from the data store. The
rows from the outer column family (also the smallest) are converted to big rows
that will be used to remove rows that do not match any other rows in the inner
column family (biggest). When the rows are converted to big rows, the method
"hasSingleColRestriction" (explained in Chapter 5.3.6) is also performed if there
exists a join single column restriction on the outer column family. Only the rows
that match the restriction (from the where clause) are converted to big rows.

It is the row object for the outer column family that is going to be used in
the join (a big row may contain one row from multiple column families). To
retrieve this, a get operation on the hash map in the big row with the column
family name is done, and the correct row is fetched, shown in Code 5.9. This
row is then used to fetch the inner rows, which will be row objects. A com-
mand to find all rows are used in Code 5.9 (This method is described in Chapter
5.3.4). This command is sent to the method "ExecuteJoinRows" which returns
all inner rows matching the join value. These rows are further processed in the

60 CHAPTER 5. IMPLEMENTATION

inner loop together with the outer rows which are described in Chapter 5.3.7.

Code 5.9 Use of get command method and finding all inner rows

1 Row row = outerRow.getRows().get(outerColumnFamily.cfm.cfName);
2 innerCommand = getCommand(joinRestriction,variables,

innerColumnFamily,innerColumnName, row, outerColumnName);
3 innerRows = executeJoinRows(innerCommand, cl, new ArrayList<

ByteBuffer>(), limit, System.currentTimeMillis());

5.3.4 Get correct command
Whenever a column family is read, three different read commands can be used based
on the query type [29]. These are SliceFromReadCommands, SliceByNamesRead-
Commands, and RangeSliceCommand. A standard select statement in Cassandra
only enables the user to select from one column family for one query, and it is,
therefore, only one command per statement. A join statement needs to have mul-
tiple commands since there are two or more column families in a join. As shown in
Code 5.10, if the column in a column family is a secondary index, a range command
will be returned. Otherwise, a command for use on single primary keys are issued.
The boolean variable "isKeyRange" will always be the same as "UsesSecondaryIn-
dexing" in this implementation since this applies to all keys except the first key in
the primary key. As explained in Chapter 4.2.1, only secondary indexes or single
primary keys are allowed in this prototype. The join value (how the join value is
found is explained in Chapter 5.3.5), which is used in the command is also fetched
before this happens. This value is stored in the array list "temp" seen in Code
5.10. These commands are generated with the use of already implemented code
(line 2 and 5 in Code 5.10).

Code 5.10 Returning correct command for join

1 if(isKeyRange || usesSecondaryIndexing){
2 return getRangeCommand(temp, joinRestriction, limit, System.

currentTimeMillis(), columnFamily, column, false);
3 }
4 List<ReadCommand> commands = getSliceCommands(temp, limit, System.

currentTimeMillis(), columnFamily, joinRestriction);
5 return commands == null ? null : new Pageable.ReadCommands(

commands);

This command is used in the method "ExecuteJoinRows" (see Code 5.9) and the
rows are read from this method. If the command is null, an empty list is returned
from this method. If not, the rows are returned.

5.3. EXECUTE JOIN QUERY 61

5.3.5 Column value
Code 5.11 shows how the value for a column in an outer row is found. This value is
then used in Chapter 5.3.4 to create a command that will fetch the inner rows that
matches the outer rows. There are two ways of finding the value of the column in
the outer row. These options are:

1. The column is a primary key and the row key is returned (line 1-3).

2. A secondary index is used on the column, and the value needs to be found
and returned (line 4-10).

If the column that is being checked is a primary key (option 1), it will return
the row key. If the column is a primary key is checked with the boolean vari-
ables "isKeyRange" and "usesSecondaryIndexing". These variables are false if the
column is a primary key. If the column is a secondary index (option 2), another
approach is needed to get the value for a column in a row. Each column is stored
in a row as a null prefix terminated string. This means that each column starts
with a null, then the length of the column name, then the column name and it
is ended with a null. For example, a column that is named personid will have a
corresponding hex value: "0008706572736f6e696400". It starts with 00 which is
null and then 08, which is the length of personid. The string personid alone has
this hex value: "706572736f6e6964". The hex value ends with 00 again. This hex
string is created for the column and is then converted to a byte buffer (see Code
5.11). The correct column is retrieved based on this byte buffer. The value for the
column in the outer row will be returned to the get command method, explained
in Chapter 5.3.4.

Code 5.11 Get column value for one row

1 if(!isKeyRange || !usesSecondaryIndexing){
2 return row.key.key;
3 }
4 int columnNameLength = column.toString().length();
5 int nullTerminator = 0;
6 //Since the columns are stored as null prefix terminated strings:
7 String columnWithTerminator = "" + (char) nullTerminator + "" + (

char) columnNameLength + "" + column.toString() + "" + (char)
nullTerminator + "";

8 ByteBuffer bb = ByteBufferUtil.bytes(columnWithTerminator,
StandardCharsets.UTF_8);

9 Column joinOnCol = row.cf.getColumn(ByteBufferUtil.bytes(
columnWithTerminator, StandardCharsets.UTF_8));

10 return joinOnCol.value();

62 CHAPTER 5. IMPLEMENTATION

5.3.6 Has single column restriction
This method compares the value of the column that a row contains against a join
single column (described in Chapter 5.2.9) restriction where the row and the restric-
tion belong to the same column family. A hash map that was created in Chapter
5.2.9, contains all the restrictions (values) on column families (keys) that are also
present in an N-Way-Join. Before this method, "hasSingleColumnRestriction", is
called, a check against this hash map is executed. However, it is only called if there
exists a restriction on the column family. This method is used at two places in the
code. The first place is the outer loop where outer rows are transformed into big
rows (described in Chapter 5.3.3). The second place is the inner loop where the
inner rows are processed (described in Chapter 5.3.7).

When a column value is checked, it first checks if there even exist a single
column restriction. If not, true is returned because the column family has not been
used in the where clause. Even though this method is not called if there does not
exist a single column restriction, a check is used to avoid null pointer exceptions.
This method returns true if there exists a column in a row that matches the value
of the single column restriction. The column that is used in the where clause can
either be on the same column as the join restriction or it can be a different column.
However, both cases are executed in the same way. The column value is sent to
this method and is used to compare with the value in the single column restriction.
This column value is found in the same way as described in Chapter 5.3.5. Both
values are translated from bytes to a string with hexadecimals. This translation
ensures that not only integer values can be checked, but also strings. If there is a
match, true is returned. False is returned if there is no match and this will exclude
the row from the result and thereby the big row explained in Chapter 5.3.2.

5.3.7 Inner loop
In the inner loop, the outer row is merged with all the inner rows that matched on
the join value. Since the column family of the inner row also can be in the where
clause, a check for this is also needed here. The method "hasSingleColRestriction"
explained in Chapter 5.3.6 is used for the inner rows (the same method is used for
the outer rows). There is also a possibility that the column family is not used in
the where clause. These checks are performed by the if and else clause as shown in
Code 5.12. If the column family is not found in the hash map (created in Chapter
5.2.9), the variable res will remain null. The inner and outer rows will just be
merged without removing some of the rows. If res is assigned, some rows may be
removed during execution.

5.3. EXECUTE JOIN QUERY 63

Code 5.12 Check if the row matches the value in the where restriction

1 if (singleColumnRestrictionsOnJoinCFs.containsKey(innerColumnName.
cfName)) {

2 res = singleColumnRestrictionsOnJoinCFs.get(innerColumnName.cfName
);

3 }
4 if (res != null) {
5 ByteBuffer colValue = getValue(innerRows.get(i), res.getColumn().

toString(), res.isKeyRange(), res.isUsesSecondaryIndexing());
6 if (hasSingleColRestriction(res, colValue, innerColumnName,

variables, res.getColumnFamily(), res.getColumn().toString(),
innerRows.get(i))){

7 BigRow tempBig = getBigRow(outerColumnFamily, outerColumnName,
innerColumnFamily, innerColumnName, innerRows.get(i),
specifications, variables, outerRow, outerByteBufferRows,
limit);

8 surviningBigRow.add(tempBig);
9 }

10 }
11 else {
12 BigRow tempBig = getBigRow(outerColumnFamily, outerColumnName,

innerColumnFamily, innerColumnName, innerRows.get(i),
specifications, variables, outerRow, outerByteBufferRows,
limit);

13 surviningBigRow.add(tempBig);
14 }

As can be seen in Code 5.12, method "getBigRow" is mentioned twice. This is
because both cases (column family is or is not in the where clause) must do the
same operation. What this method does, is that it creates a new big row object
containing the old results. The new result is first merged into a new list containing
byte buffers and then added to the big row. When the result is printed, column
specifications are used to print the column name at the end (Column specifications
contains keyspace name, column family name, column name, and type [22]). It
is, therefore, necessary to store these column specifications during execution for
later use when the result is returned (see Chapter 5.3.8). After the specifications
have been added, the big row is added to a list called surviving big row. When
the execution is done for one join restriction, the list with the surviving big rows
are returned (this happens outside the outer loop). A list that is accessible by
all methods in the class will be cleared, and the new big rows are added. All
join restrictions in an N-Way-Join except the first relies on the results found in
the previous join restriction. The list of big rows can be used by all these join
restrictions. After the join restriction is finished, the method described in Chapter
5.3.1 goes to the next join restriction in the N-Way-Join.

64 CHAPTER 5. IMPLEMENTATION

5.3.8 Return query results
So far, each section in Chapter 5.3 has been focusing on each join restriction. In
the end, all results for a single N-Way-Join must be put together. Under the
inner loop execution, the big rows that survived were returned and added to a
new list. Since each row is a list with bytes, and these are stored in the big
row objects, these lists are added to a new list that will be used to create the
result message. An implementation of this solution can be seen in Code 5.13.

Code 5.13 Create result message

1 ArrayList<List<ByteBuffer>> endResult = new ArrayList<List<
ByteBuffer>>();

2 for (BigRow bigRow : lastBigRows){
3 if(bigRow.getResult().size() == specifications.size()) {
4 endResult.add(bigRow.getResult());
5 }
6 else{
7 throw new InvalidRequestException("Error");
8 }
9 }

10 ResultSet returnResultSet = new ResultSet(new ResultSet.Metadata(
specifications), endResult);

11 return new ResultMessage.Rows(returnResultSet);

Result messages are already implemented in Cassandra and are used by standard
select statements. This implementation of join also uses the result message object
found in Cassandra, so it fits with already existing architecture. A result message
will be used when all the N-Way-joins and standard select statements are merged,
creating a Cartesian product described in Chapter 5.5.

5.4 Execute standard select statements
A join statement can also contain column families who are not part of an N-Way-
Join. The list created in Chapter 5.2.11 are used in this implementation. Each
column family is iterated through, and each column family is processed where a
result message is returned. This result message is used when the results are merged.

Since the standard select statement from Cassandra only supports one column
family, there are some modifications needed for this implementation. In Cassan-
dra, all restrictions belong to one column family with all restrictions stored in single
arrays [22]. With multiple column families, a hash map with the column family
definition as the key and the array as the value is needed instead. When each
column family is executed, a lookup on the key in the hash map can be done to
execute it as a standard select statement in Cassandra. As described in Chapter
5.2.9, the restrictions contains boolean variables about the columns that are af-
fected by the where clause. These boolean variables are used to separate between

5.5. MERGE ALL RESULTS 65

restrictions on primary keys and secondary indexes. When this execution is done,
a result message is returned.

5.5 Merge all results
When all results have been found, a Cartesian operation is performed. As shown
in Code 5.14, this method is recursive because each row from one result message
must be combined with all other rows from the other result messages. The list
resultRows is accessible by the whole class and all new rows are added to this class.
Variable k keeps track on which result message that is accessed. For example, one
row from result message one is combined with all other rows in result message two.

Code 5.14 Cartesian product of all result messages

1 private void cartesianProduct(List<ResultMessage.Rows>
resultMessages, List<ByteBuffer> newRow, int k){

2 List<ByteBuffer> prev = new ArrayList<ByteBuffer>();
3 prev.addAll(newRow);
4 if(k==resultMessages.size()){
5 resultRows.add(newRow);
6 }
7 else{
8 for (int j = 0; j < resultMessages.get(k).result.rows.size(); j

++){
9 newRow.addAll(resultMessages.get(k).result.rows.get(j));

10 cartesianProduct(resultMessages, newRow, k + 1);
11 newRow = new ArrayList<ByteBuffer>();
12 newRow.addAll(prev);
13 }
14 }
15 }

This final result is returned as a result message to the query processor class that
was already implemented in Cassandra (a select statement also uses this class).
After this, the result is printed to the user and the operation is done.

5.6 Example execution
For a better understanding of the execution of a query that contains a join, an
example is given here with the use of the column families in Table 5.1. To exemplify
the method in Chapter 5.5, only houseowner, house, and postalcode is joined. There
is also a restriction on the postalcode column in column family postalcode. Person
is just added to the query in the from clause and the following query is shown in
Listing 5.15.

66 CHAPTER 5. IMPLEMENTATION

SELECTJOIN *
FROM person, houseowner, house, postalcode
WHERE postalcode.postalcode=’7030’
JOINON houseowner.houseid=house.houseid AND house.postalcode=

postalcode.postalcode;

Listing 5.15: Example CQL query

The first thing that happens is that the parser checks if the syntax is correct.
Since it is an asterisk in the selectjoin clause, an empty list of raw join selectors is
returned. If there had been some variables in the selectjoin clause, the list would
not be empty. All column families in the from clause are returned in a list that is
used to find the CFDefinitions.

To convert the column families to CFDefinitions, the list of column families is
iterated over. During this iteration, selections from the selectjoin clause are also
created. Since no columns are defined in the selectjoin clause, each column family
will have a simple selection in the hash map where the CFDefinition is the key.
If there had been a selection on a column, each column family would have had a
corresponding join selection with an empty list of columns except the column family
with the column in the selectjoin clause. The column family in the selectjoin clause
would also have a join selection, but with a list that contained the column. During
this iteration, all column families are also added to a hash map that will consist of
the column families that are not part of the join.

In the joinon clause, there are three column families involved where two join
relations are returned from the parser. These column families are houseowner,
house, and postalcode. Houseowner and house are the first join relation and is,
therefore, prepared first. The first thing that happens is that the column family
name is checked against the hash map (see Figure 5.9a). This hash map will
contain the column families outside the join when all column families in the join
are prepared. House and houseowner will be removed from the hash map with the
resulting hash map only containing two column families as shown in Figure 5.9b.
In the next step, postalcode and house are the two last column families. House
has already been removed, but postalcode has to be removed resulting in the hash
map in Figure 5.9c. This hash map will be used under the standard execution and
not in the join. The second step explained here will not happend before it is done
with the join relation containing house and houseowner.

The next step is to check if the left column family in the join relation is bigger
(in means of megabytes) than the left column family. Houseowner is the left column
family in the join relation and is biggest. With this result, houseowner is assigned
to the left column family in the join restriction and house will be the right column
family (left column family in the join restriction is always the biggest). The column
houseid in column family houseowner is a secondary index, and both "isKeyRange"
and "usesSecondaryIndex" is true. This information is stored in the join restric-
tion as the left boolean variables. In the right column family, "isKeyRange" and
"usesSecondaryIndex" is false because the column houseid in column family house

5.6. EXAMPLE EXECUTION 67

(a) Initial hash map
(b) Removal of house and
houseowner (c) Removal of postalcode

Figure 5.9: Finding column families outside any N-Way-Join in the query

is a primary key. This information is also stored in join restriction, but as the
right boolean variables. This join restriction (Res-1 in Figure 5.10) is then added
to a hash map, where the column family name is the key, and a list of join re-
strictions is the object. The final hash map when all join restrictions have been
created is shown in Figure 5.10. This hash map is used when the ordering of the
join is decided. This process is repeated with the second join relation, with left
column family house and right column family postalcode where the outcome is a
join restriction (Res-2 in Figure 5.10).

Figure 5.10: Example hash map containing all column families with corresponding
restrictions

As stated in the query, all final rows must have 7030 as their value in the
column postalcode. Since this restriction is on a column in a column family that
is used in the join, a join single column restriction is created. If a column family
outside the join was in the where clause, a modified single column restriction would

68 CHAPTER 5. IMPLEMENTATION

have been created. Boolean variables about the column is also stored in the join
single column restriction (if it is a primary key or secondary index). Since the
column postalcode in the column family postalcode is a primary key, both boolean
variables are false. Column and column family name is stored in the join single
column restriction too. In addition to this, the column family postalcode is added
to an array list that contains all the column families present in both the where
clause and an N-Way-Join. This array list is used when the join ordering is found.

It is desirable remove data early if it possible. If a column family is used in
an N-Way-Join and in the where clause, some data may be removed early. The
list created when the relations in the where clause was iterated is used here. A
temporary list TL is created that will contain all column families in all N-Way-
Joins. Then the array list that contains column families present in both an N-
Way-Join and the where clause is iterated. A match is found on the column family
postalcode and this is therefore added to the list TL. The next step is to add all
the column families in the hash map in Figure 5.10. When the keys are iterated
through, houseowner and house will be added to the list TL. Since postalcode is
already added, it will skip this column family.

The next step is to create the N-Way-Joins where each join restriction belongs
to only one N-Way-Join. To accomplish this, an iteration over the list TL is done.
Column family postalcode is read first from TL. Each join restriction in the hash
map in Figure 5.10 with column family postalcode (the other column family in
the join restriction) is iterated through in a recursive method. Since this join
restriction (Res-2 in Figure 5.10) is the only one, it is added to the N-Way-Join.
The second column family in the join restriction is found, which is house. The
method is recursively called, but there are two possible scenarios. If the size of the
list for the column family house is one, the join restriction is removed from this
hash map. However, the list for house is two so Res-2 is removed from this list and
the method is recursively called. Then all the join restrictions that uses the column
family house is iterated through. The first join restriction (Res-1 in Figure 5.10) is
then added to the N-Way-Join and the method finds out that the second column
family is houseowner. It then checks the hash map in Figure 5.10 and discovers
that the size is one. Res-1 is just removed from the hash map. The method then
returns to the iteration of TL. It will also iterate over house and houseowner, but
they will be ignored since they are already added to an N-Way-Join.

After creating the N-Way-Joins, all join restrictions in each N-Way-Join is
sorted based on matching column families with the previous join restriction. This
creates a join tree seen in Figure 5.11. For the one N-Way-Join created above,
the first join restriction added to the ordered list is Res-2 (house and postalcode
column family). This join restriction is matched against the other join restrictions.
However, it is only one other join restriction and this is Res-1 (house and house-
owner). This is then added to the ordered list since there is a match on the column
family house. No more checks are done since only two join restrictions are used in
the N-Way-Join.

As Figure 5.11 shows, Res-2 will be executed first, and then Res-1 will be
executed where the result from column family postalcode will be used. In the end,

5.6. EXAMPLE EXECUTION 69

a list with all N-Way-Joins (in this case, only one) is completed and stored in the
join statement for use under the execution step. After the prepare step is done,
a prepared statement is returned to the query processor that will execute the join
statement.

Figure 5.11: Example of join tree for an N-Way-Join

During the execution, three different operations will be executed. First, each
N-Way-Join is executed. Second, all column families outside the join is executed
and third, all results are merged where the result is a Cartesian product. First,
each N-Way-Join is executed and in this case, there only exists one N-Way-Join.
When this N-Way-Join is executed, each join restriction is looped through and the
first join restriction is executed. Since it is the first join restriction, both column
families (postalcode and house) has to be read from the data store. Column family
postalcode is in the outer loop and is read from the data store first. This is only a
simple read operation where all rows (see Table 5.3) in postalcode are fetched.

postalcode cityname
7030 Trondheim

Table 5.3: All rows in column family postalcode with postalcode value 7030

There is only one row that is converted to big row because only one row has a
match on the value 7030 for the column postalcode. To find the inner rows that
match with the column postalcode, each outer big row (in this case, one) has a
hash map where the key is the column family and a single row from that column
family as the object. For the big row described above, a get operation on the hash
map with the key postalcode is executed. The correct command is then generated
where the join value (7030) is found. This command is then used to fetch all the
inner rows from the column family house. When all inner rows have been found for
one outer row, an iteration over each inner row is done. A new big row is generated
where the outer row from postalcode and one row from house are merged. During
iteration, each big row that is created in the inner loop is added to a surviving big

70 CHAPTER 5. IMPLEMENTATION

row list that will be used by the next join restriction. When this join restriction is
done, the result contains two rows as shown in Table 5.4.

postalcode cityname houseid color postalcode size
7030 Trondheim 2 Blue 7030 Big
7030 Trondheim 3 Green 7030 Medium

Table 5.4: All big rows for postalcode onpostalcode.postalcode=house.postalcode house

For the next join restriction (between house and houseowner), the results from
the previous join restriction (between postalcode and house) are used as the outer
big rows. The results from the join between postalcode and house can be seen in
Table 5.4. The column family house does not need to be read from the data store
again, and this is, therefore, the outer column family in the nested loop. When
each outer big row is iterated through (two iterations in this case), a get operation
on the hash map in the big row is executed, and the correct outer row is fetched.
With this row, a join value for the column houseid (2 and 3 as seen in Table 5.4) in
column family house is found. This value is then used to find the correct command
and fetch the matching rows from the column family houseowner. The matching
rows from houseowner is merged with the matching big row, and the final result
can be seen in Table 5.5. A result message is returned and stored in a list for later
use under the merge operation.

postal-
code

city-
name

house-
id

color postal-
code

size id house-
id

person-
id

7030 Trond-
heim

2 Blue 7030 Big 3 2 1

7030 Trond-
heim

3 Green 7030 Med-
ium

4 3 4

Table 5.5: All big rows for postalcode onpostalcode.postalcode=house.postalcode house
and house onhouse.houseid=houseowner.houseid houseowner

The next operation is to read all column families that are outside any join.
Since it does not exist any restrictions on the column family person, all rows are
read. The result from this column family can be seen in Table 5.6. A result
message is created for this column family, and it is also stored in the same list
as the result message from the N-Way-Join. The last step is to merge all results
from all result messages. It is only two result messages from this query since each
N-Way-Join creates one result message and each standard select also generates one
result message. As shown in Table 5.6, there are four rows from column family
person. The N-Way-Join has two rows, as shown in Table 5.5. When the result is
merged, a Cartesian product from the result messages is created. Each row in the
N-Way-Join is combined with each row in the column family person that creates
eight rows as the final result. This result is returned to the query processor, and
the final result is printed to the user.

5.6. EXAMPLE EXECUTION 71

personid adress familyname givenname
1 P.A. Munchs Gate 6 Peter Christian
2 Riisalleen 26 Nordmann Ola
4 Osloveien 66 Jensen Jens
3 Riisalleen 26 Nordmann Kari

Table 5.6: All rows from column family person

72 CHAPTER 5. IMPLEMENTATION

Chapter 6
Evaluation

This chapter looks at how the join implementation presented in Chapter 5 performs
compared to the well-known MySQL. In Chapter 6.1, the method for evaluating the
performance of this join implementation is presented. Chapter 6.2 presents the test
data and Chapter 6.3 describes the equipment used during the tests. The result is
presented in Chapter 6.4, where different queries are tested. The execution times
for insertion of rows are also given here because this gives an interesting look at the
differences between MySQL and Cassandra. All results are discussed in Chapter
6.5.

6.1 Method
To test the join implementation, five warm up runs are done first before twenty
test runs are done. The warm up runs are used to warm up the servers in case of
caching on the server side. It is the average of the twenty test runs that is used as
results, but all runs can be found on GitHub [10].

Different queries were also tested to check performance, including insertion
and selection to both Cassandra and MySQL. This gives a broader picture on the
strengths and weaknesses of Cassandra, compared to an SQL database system.

6.2 Test data
For this test, a data generator created for this master thesis was used. This source
code can be found on GitHub [18]. This source code was also used to perform the
test.

For this test, five column families/tables are used to create a 5-Way-Join. These
tables can be seen in Figure 6.1. Each customer can have zero or more trades. One
trade can include multiple products, but one product can belong to multiple trades.

73

74 CHAPTER 6. EVALUATION

This requires an additional column family/table to store this relation called pro-
ducttrade. This table contains an id and two columns that are either secondary
indexes (Cassandra) or foreign keys (MySQL). In MySQL, the table trade also con-
tains a foreign key for customer (customernr), and the table product has one foreign
key for the manufacturer (manufacturernr). In Cassandra, secondary indexes are
used instead of foreign keys. All datasets can be found on GitHub [18].

Each column family/table is created six times, one for each number of rows.
For example, will the column family/table customer exist as customer_10, cus-
tomer_100 and up to customer_1000000. This makes it easier to test since an
insertion to the database is not needed for each test.

Figure 6.1: All five tables/column families used during testing

6.3 Equipment used under testing
This test was executed on Cassandra version 2.0 and MySQL version 5.5.41 with
a single node. This node is running on a local Ubuntu machine with eight Intel
i7-4770 CPU cores with 3.40GHz and 16 gigabyte of ram. Also, the heap size for
Cassandra has been set to 8GB and 800MB per physical CPU core.

The read timeout option in Cassandra has also been changed (originally 5000
milliseconds), on the client and server side. This was done because this enables
large column families to be joined without having timeouts. Since this is a testing
environment, the timeout value was set to the max value of the integer object in

6.4. RESULTS 75

Java, but in a production setting this should be set to a reasonable value or not
changed at all.

6.4 Results
All results generated from the performance testing are presented in this chapter.
The results from a join without any where relations or projections are presented,
but also with projections and where relations. Performance testing of insertion and
a select statement with one column family/table are also included in this chapter.
Each graph presented uses a logarithmic scale (log10) on the y-axis to show better
the difference between Cassandra and MySQL.

6.4.1 Join without where relations and projections
For this test, two queries are used (one for MySQL and one for Cassandra). The
query used for Cassandra can be written as shown in Listing 6.1.

SELECTJOIN *
FROM customer, product, trade, producttrade, manufacturer
JOINON customer.customernr = trade.customernr AND trade.

tradenr = producttrade.tradenr AND producttrade.productnr
= product.productnr AND product.manufacturenr =
manufacturer.manufacturenr;

Listing 6.1: Join query in CQL without where relations and projections
used during evaluation

MySQL uses a different query and it can be seen in Listing 6.2.

SELECT *
FROM customer, product, trade, producttrade, manufacturer
WHERE customer.customernr = trade.customernr AND trade.

tradenr = producttrade.tradenr AND producttrade.productnr
= product.productnr AND product.manufacturenr =
manufacturer.manufacturenr;

Listing 6.2: Join query in SQL without where relations and projections
used during evaluation

Figure 6.2 shows how a join query without where relations and projections perform
in Cassandra and MySQL. It can be seen from this graph that MySQL performs
better from ten rows to one million rows. However, when the number of rows is
only ten, the difference is minimal. Cassandra uses 7 milliseconds to perform the
join, but MySQL uses 0 milliseconds (close up to 1 millisecond). When the number

76 CHAPTER 6. EVALUATION

of rows is increased to one hundred rows, MySQL performs even better than Cas-
sandra. Cassandra uses 50 milliseconds, and MySQL uses close up to 1 millisecond.
When the number of rows is increased to one thousand rows, Cassandra uses 301
milliseconds, and MySQL uses 1 millisecond. At ten thousand rows, MySQL only
uses 50 milliseconds. The execution time for ten thousand rows in MySQL is 75
times faster than Cassandra, which uses 3772 milliseconds. When one hundred
thousand rows are used, MySQL uses 587 milliseconds and performs only 69 times
faster than Cassandra (40689 milliseconds). For one million rows, Cassandra uses
669985 milliseconds. MySQL uses 33014 milliseconds. As seen in the graph, the
biggest difference between Cassandra and MySQL is at one thousand rows.

Figure 6.2: This graph shows the execution time of a join without any where
relations or projections in Cassandra and MySQL for different number of rows

6.4.2 Join with one where relation
In both Cassandra and MySQL, there is possible to decrease the number of relevant
rows to a query by using one or more where relations. For this test, two queries are
used creating two performance tests. One query will make use of a column that is
a foreign key/secondary index, and the other query makes use of a column that is
a primary key. Both types use the same query for Cassandra and MySQL shown in
Chapter 6.4.1. The only difference is that MySQL adds another relation (including

6.4. RESULTS 77

Number of rows Customer number
10 7
100 59
1000 33
10000 5335
100000 47000
1000000 862912

Table 6.1: Different customer numbers used for each number of rows.

the join relations) in the where clause. Cassandra adds the relation in the where
clause and the join relations are still placed in the joinon clause. When the data
set was generated, different customer numbers were used (one match at least in
the column family/table trade). The different numbers can be seen in Table 6.1.
The queries that are used for Cassandra and MySQL can be seen below (for both
primary key and secondary index/foreign key). Since each query is unique for each
number of rows, the question mark in the queries is one of the values represented
in Table 6.1. Both queries also have a column family/table T represented in the
where relation. This is either the column family/table customer or trade. The
query used for Cassandra can be seen in Listing 6.3. MySQL uses a different query
and it can be seen in Listing 6.4.

SELECTJOIN *
FROM customer, product, trade, producttrade, manufacturer
WHERE T.customernr=?
JOINON customer.customernr = trade.customernr AND trade.

tradenr = producttrade.tradenr AND producttrade.productnr
= product.productnr AND product.manufacturenr =
manufacturer.manufacturenr;

Listing 6.3: Join query in CQL with one where relation used during
evaluation.T is either customer or trade. The question mark is one the
values in Table 6.1

78 CHAPTER 6. EVALUATION

SELECT *
FROM customer, product, trade, producttrade, manufacturer
WHERE T.customernr=? AND customer.customernr = trade.

customernr AND trade.tradenr = producttrade.tradenr AND
producttrade.productnr = product.productnr AND product.
manufacturenr = manufacturer.manufacturenr;

Listing 6.4: Join query in SQL with one where relation used during
evaluation. T is either customer or trade. The question mark is one the
values in Table 6.1

With primary key

This query uses the column customernr in column family/table customer. Figure
6.3 shows how Cassandra and MySQL perform when a query with a where relation
on the primary key is executed. MySQL uses 0 or 1 millisecond on all the number of
rows. When Cassandra executes the similar query on ten rows, it uses 1 millisecond.
When the number of rows is increased to one hundred, the execution time does not
change from ten rows. At one thousand rows, it takes 3 milliseconds to complete
the query. With ten thousand rows, the execution time is 24 milliseconds and at
one hundred thousand rows it is 213 milliseconds. One million rows in each column
family make Cassandra use 2920 milliseconds. As seen in the graph, the difference
gets larger and larger when the number of rows is increased for Cassandra.

With foreign key/secondary index

This query uses the column customernr in column family/table trade. As seen
from the graph in Figure 6.4, MySQL has the same execution time (0 or 1 mil-
lisecond) as the query using a where relation on a primary key. For Cassandra,
the execution time is almost the same. However, at one hundred rows Cassandra
uses 10 milliseconds. This is because one of the test runs used 169 milliseconds
and all the other runs used 1 or 2 millisecond(s). At ten thousand rows, Cassandra
uses 35 milliseconds and the execution time for one hundred thousand rows is 246
milliseconds. For one million rows, the execution time is 2982 milliseconds that are
almost the same as the query with the where relation on a primary key.

6.4.3 Join with projections
The graph in Figure 6.5 shows the execution time for Cassandra and MySQL for a
query containing projections. The queries for Cassandra and MySQL can be seen
in Listing 6.5 and 6.6, respectively.

6.4. RESULTS 79

Figure 6.3: This graph shows the execution time of a join with a where relation
on the primary key customernr in Cassandra and MySQL for different number of
rows

SELECTJOIN customer.name, customer.address, manufacturer.
manufacturer.name, manufacturer.country

FROM customer, product, trade, producttrade, manufacturer
JOINON customer.customernr = trade.customernr AND trade.

tradenr = producttrade.tradenr AND producttrade.productnr
= product.productnr AND product.manufacturenr =
manufacturer.manufacturenr;

Listing 6.5: Join query in CQL with projections used during evaluation

80 CHAPTER 6. EVALUATION

Figure 6.4: This graph shows the execution time of a join with a where relation on
the secondary index/foreign key customernr in Cassandra and MySQL for different
number of rows

SELECT customer.name, customer.address, manufacturer.
manufacturer.name, manufacturer.country

FROM customer, product, trade, producttrade, manufacturer
WHERE customer.customernr = trade.customernr AND trade.

tradenr = producttrade.tradenr AND producttrade.productnr
= product.productnr AND product.manufacturenr =
manufacturer.manufacturenr;

Listing 6.6: Join query in SQL with projections used during evaluation

It can be seen that Cassandra uses 4 milliseconds for ten rows, and MySQL uses
0 milliseconds. At one hundred rows, Cassandra uses 31 milliseconds whereas
MySQL still uses 0 milliseconds. It is the same execution time for MySQL at one
thousand rows, but Cassandra uses 250 milliseconds. When the number of rows is
increased to ten thousand, MySQL has an execution time of 2 milliseconds while
Cassandra has 3660 milliseconds. For one hundred thousand rows, Cassandra uses
39746 milliseconds while MySQL executes on 438 milliseconds. One million rows

6.4. RESULTS 81

takes Cassandra 673211 milliseconds and MySQL 25394 milliseconds.

Figure 6.5: This graph shows the execution time of a join with projection in Cas-
sandra and MySQL for different number of rows

6.4.4 Single SELECT statement
For this test, a simple select query was used. It is identical for CQL and SQL and
can be seen in Listing 6.7. The variable k in the query represents the number of
rows, for example ten or one million (it must be specified in Cassandra since it is
default ten thousand if no other limit has been set [6]).

SELECT *
FROM trade
LIMIT k;

Listing 6.7: Select query for CQL and SQL used during evaluation

As seen in the graph from Figure 6.6, Cassandra returns ten rows in 0 milliseconds,
and MySQL does the same. When the number of rows is increased to one hundred,
Cassandra uses 1 millisecond and MySQL still uses 0 milliseconds. At one thousand
rows, the execution time is still 0 milliseconds for MySQL, but Cassandra executes

82 CHAPTER 6. EVALUATION

in 4 milliseconds. For ten thousand rows, MySQL uses 1 millisecond, and Cassandra
uses 18 milliseconds. However, when the number of rows is one hundred thousand,
MySQL (23 milliseconds) uses longer time than Cassandra (18 milliseconds). The
difference is increased when the number of rows is one million. Cassandra uses 17
milliseconds, and MySQL uses 375 milliseconds.

Figure 6.6: This graph shows the execution time of a select statement with only
one column family/table in Cassandra and MySQL for different number of rows

6.4.5 Inserting rows
For the insertion of data, five different insert statements are used. Figure 6.7 shows
how Cassandra performs compared to MySQL when different number of rows are
inserted. In both Cassandra and MySQL, the insert statements are executed one
by one. In MySQL, it is also possible to execute insert statements as a batch or
use a file as the input to insert rows.

As seen from the graph, Cassandra (14 milliseconds) performs slightly better
than MySQL (28 milliseconds) when inserting ten rows. When the number of rows
is increased to one hundred rows, Cassandra uses 51 milliseconds, and MySQL uses
274 milliseconds. The difference increases when the number of rows is increased to
one thousand and up to one million rows. This difference can also be seen in the
graph in Figure 6.7.

6.5. DISCUSSION 83

Figure 6.7: This graph shows the execution time of insertion in Cassandra and
MySQL for different number of rows

6.5 Discussion
There may be different reasons for why Cassandra is slower than MySQL when a
join is executed. There may be reading from the disk that is the bottleneck, or it
may be the garbage collector in Java that makes Cassandra slower than MySQL
for join. However, it is most likely the implementation of join in Cassandra that
makes it slow compared to MySQL. In this chapter, all of these possibilities are
discussed with the purpose of trying to discover the cause of the poor performance
of Cassandra compared to MySQL.

6.5.1 JVM options
To better understand what happen with the garbage collector for Java during
execution, both the jstat command was used and the VisualVM plugin Visual
GC. The command used for monitoring the garbage collector was the Java Virtual
Machine Statistics Monitoring Tool (jstat) [12]. The command is

jstat -gc <pid> 250ms 0

84 CHAPTER 6. EVALUATION

where pid is the process identification and a sample is printed each 250 milliseconds.
The last number represents number of samples to print out (0 indicates infinite or
until the user aborts the program). Figure 6.8 shows a part of the result from the
jstat command when a query is sent to Cassandra.

Figure 6.8: Monitoring the garbage collector in JVM during read of one hundred
thousand rows

The heap used during execution has multiple parts, also known as generations
[11]. All parts can be seen in Figure 6.9. The young generation will contain all the
new objects with two survivor spaces and one eden space (this fills up first). The
old generation stores all objects that have survived a long time (a threshold may
have been set for the young generation for movement to the old generation). The
last generation is called permanent. This generation contains metadata that the
JVM requires describing the classes and methods [11].

As you can see in Figure 6.8, each time the eden space (EU) fills up, this space
is garbage collected, and the surviving objects are moved to either S00 or S01. If
S00 or S01 contains objects, the surviving objects from one of them are also moved
(only one survivor space contains data at once). It is possible to see that the OU
(old generation utilization) fills up during execution (never close to the capacity of
the old generation). However, this does not affect Cassandra much compared to
the execution times from the graphs in Chapter 6.4. From Visual GC, it can also
be seen that the total GC time is 1.9 seconds (for one hundred thousand rows).

With this information, it is not likely that the garbage collector in Java makes
the execution time high. It must, therefore, be something else that causes Cassan-
dra to perform poorly when a join query is executed.

6.5.2 I/O usage
Another aspect that was investigated was the I/O usage for Cassandra. However
this is not likely to be the problem because most of the data will be in memtables

6.5. DISCUSSION 85

Figure 6.9: Garbage collector design in JVM

(explained in Chapter 2.7.1). Retrieval of data in memtables (if SSTables are
avoided) does not require disk reads, hence no I/O against the disk. If reads from
SSTables had to be done, the search time for all rows might have been higher since
the SSTables are stored on disk while the memtables are stored in the memory.
However, the SSTables may also be located in the memory if they are mapped to
the memory, and disk I/O is avoided [26].

However, the I/O usage should be checked since it may be a bottleneck in
some circumstances (for example heavy reads from SSTables). A Linux command
called iostat is used to retrieve some statistics about the I/O for the devices and
partitions on the machine. The iostat command was used to monitor the I/O during
execution (it monitor all I/O operations on the machine and not only Cassandra).
The command used on the Linux machine can be seen here:

iostat -dmx 1

With this command, some results can be seen in Figure 6.10. As you can see
in this figure, there is no reads per second (r/s), and this shows that Cassandra
uses the memtables that does not need to read from the disk. Hence, this does
not explain the execution time for Cassandra. However, there are some writes per
second (w/s). As mentioned earlier, this command monitors all I/O on the whole
machine. This means that these writes most likely does not belong to Cassandra
(or they may be writes to commit log which is cheap). This implies that there must
be something else that causes the execution time to be high.

6.5.3 Profiling of method calls
To get an overview of the CPU usage for each method in Cassandra (those used
during a join), profiling was done with the program VisualVM on the CPU. Some
of the results from this profiling can be seen in Figure 6.11. Self time is the time
used only in the method. Total time is all the time from all methods called from
the first method. For example, the nested loop join method uses other methods
and the total time will be all these methods execution time including the self time.

All methods belonging to the class JoinStatement are either implemented or
changed in this master thesis. As explained in Chapter 5.3, many read commands

86 CHAPTER 6. EVALUATION

Figure 6.10: I/O statistics when reading one hundred thousand rows in Cassandra

Figure 6.11: This figure shows CPU profiling for an N-Way-Join on one hundred
thousand rows

are issued and used in other parts of Cassandra for retrieving the correct rows.
All other methods that are seen in Figure 6.11 that does not belong to the class
JoinStatement is not implemented in this master thesis.

When investigating the code, it is possible to see that there are two possible read
paths. Either through the method getRangeSlice or read, where the first applies to
all commands where it is a restriction in the joinon caluse on the secondary index
or no restrictions in the joinon clause at all. The latter one applies to all commands
where there exists a restriction in the joinon clause on a primary key.

Both methods end up in the same method await. This method can be seen in
Figure 6.11. This method has one of the highest self times compared to the others.

6.5. DISCUSSION 87

The await method has a while loop where there are two conditions, one if the
rows have been found (a boolean variable), and a timeout check. The while loop
iterates when the boolean variable is false and the elapsed time has not exceeded
the timeout value. However, the while loop aborts when the boolean variable is set
to true. This happens when the signalAll method (in the same class as the await
method) is called. Both the await and signalAll method are synchronized methods.

During each read for the inner rows, a Runnable object is created and managed
by the ThreadPoolExecutor. This runnable will manage the read, and when it is
finished, the signaAll method described above will be called.

The problem is that for each outer row in the nested loop, a read or getRangeS-
lice method call is issued. Each of these calls must scan the table for the correct
rows to finish. The total time will, therefore, be significantly higher compared to
MySQL. It can also be seen from the joins with a where relation, that Cassandra
improves quite drastically. However, compared to MySQL, Cassandra performs
poorly. This is because many rows have to be scanned when the size of a column
family is large. The reason for the reduction of execution time is because the num-
ber of outer rows is reduced. As seen from the results for a join statement with a
projection, the execution is almost unchanged from the standard join statement.
This is because it is the same number of rows that is iterated in the nested loop
including all the scans.

The await method described above has a big self time. This is because the
program must wait on the result to be fetched from the memory or disk. When
each read uses some nanoseconds or 1 millisecond to fetch some rows, combined with
the number of reads that is necessary, the total time for completing a join will have
a longer execution time than MySQL. This is because the underlying architecture
in Cassandra was not implemented by the creators with a join opportunity in their
thoughts. It is possible that a join could be more efficient if there were more support
for this in the underlying architecture.

6.5.4 Query optimization
No special effort has been invested to create a query optimizer to avoid the worst
plan. However, there are one optimization that has been implemented. If there is
a where relation on a column in a column family that is in the join, this column
family is the first one to be executed. It is likely that this where clause removes
many rows from the result. It is, therefore, advantageously to execute this first to
avoid unnecessary iterations in the nested loop. As Bratbergsengen [23] describes,
it is beneficial to reduce the operand volume as early as possible.

However, the ordering of the join is random, in terms of how the user enters
the restrictions in the joinon clause. If the user is lucky, an optimal or suboptimal
ordering is chosen. However, this is not a good idea since the user does not know
which ordering that creates a plan that is not the worst. As described in Chapter
2.1, it is more important to avoid the worst plan and creating a suboptimal plan.
This does not happen in this implementation, because of the lack of statistics to
create this plan. This may affect the result because the worst plan may iterate
through more rows than other suboptimal plans.

88 CHAPTER 6. EVALUATION

6.5.5 Other observations
During this evaluation, the select statement and insert statement was also moni-
tored and the results can be seen in Chapter 6.4.4 and 6.4.5, respectively.

As can be seen from the results in Chapter 6.4.5 (insertion), Cassandra is better
than MySQL when it comes to insertions. One reason for this can be the use of
memtables in Cassandra while MySQL stores the data on a disk. Since the heap
size for Cassandra is set quite high, the memtables are not flushed to SSTables
and disk I/O is therefore avoided. As you can see in Figure 6.13, the I/O for
Cassandra is less than the I/O for MySQL, shown in Figure 6.12. However, the
insert queries written for MySQL may not be the best suited for the insertion. A
different approach, like executing batches of insertions, may have decreased the
execution time for MySQL (because less transaction management is needed).

Figure 6.12: I/O statistics when inserting one hundred thousand rows in MySQL

Another aspect that is important is the use of ACID properties (described in
Chapter 2.5.2) in MySQL. This makes the insertion slower because MySQL must
ensure that data inserted is compliant with the ACID properties. The RDBMS
ACID transactions (with rollback and locking mechanisms) are not used in Cas-
sandra. However, it offers atomic, isolated and durable transactions where it is
eventual/tunable consistency. Since no consistency level has been set during the
evaluation, the default consistency level is ONE [6]. This means that the data only
has to be written to a memtable and commit log at one replica [20]. This is the
consistency level that has the highest availability, but also the lowest consistency.
This can explain some of the insertion times for Cassandra compared to MySQL.
Another reason for why Cassandra is faster than MySQL is that the data inserted
in Cassandra is written to memtables and commit log without having to flush to
the disk all the time. Another point that can make Cassandra faster is that log-
structured merge trees are used on the disk, which implies that all writes are done

6.5. DISCUSSION 89

Figure 6.13: I/O statistics when inserting one hundred thousand rows in Cassandra

sequentiality. For MySQL and InnoDB, a B+-tree is used. This may give more
random disk seeks during a write, and this may cause the higher execution time for
MySQL. However, since all rows are stored with auto-incremented primary keys,
there should not be so many random disk accesses.

Another query that was evaluated was a simple select statement. Figure 6.6
shows that Cassandra and MySQL have the same execution time up to one hundred
rows. At one thousand and ten thousand rows, MySQL performs better than
Cassandra. However, at one hundred thousand rows and up to one million rows,
Cassandra performs better than MySQL. It is a bit unclear why Cassandra is better
than MySQL at one million rows. Running the iostat command does not show any
reads or writes that can explain the higher execution time for MySQL. However,
the difference is not significant, and a possible explanation is the use of memtables
in Cassandra. However, this is not so important.

With the results from the join and select and insert statements, it is possible
to see that the implementation in this thesis does something wrong. As discussed
in Chapter 6.5.3, the main problem is the number of threads created where each
scans a table. With a select without any where relations, it possible to just read the
whole column family and return it. With the current join implementation, many
scans are needed, and this makes the execution time slow.

90 CHAPTER 6. EVALUATION

Chapter 7
Conclusion

This chapter presents the different contributions to the research field of join and a
conclusion that will try to answer the goals described in Chapter 1.2.

7.1 Contributions
This thesis shows that it is possible to implement the join operation in Cassandra.
This may encourage other developers to implement support for the join operation in
other NoSQL systems. However, this implementation is currently only supported
on one node. This should not be seen as an obstacle, but as a possibility to
implement support for join in a NoSQL where multiple nodes are deployed. It
must be possible to execute the join on a single node before it can be implemented
as a distributed solution

7.2 Conclusion
The first goal of this thesis was to implement support for the join operation on
one node in Cassandra. This goal was successfully reached. The grammar for CQL
was changed to support the expression of equijoins in a query. Besides this, an
index nested loop join was implemented in the source code of Cassandra. The
implemented solution for this thesis also supports multiple N-Way-Joins including
queries that contain both join and column families outside any join. When a join
query is prepared for execution, an appropriate join ordering is found. However,
this join ordering is not optimized in any way, except column families used in the
join and the where clause. These column families are executed early on in the
process. The implemented code was separated in an own class. Comparison of a
join result in both MySQL and Cassandra shows the same output data.

The implemented join operation was evaluated with different types of join
queries. This evaluation shows that there are multiple problems that need to

91

92 CHAPTER 7. CONCLUSION

be addressed before this can be a production ready functionality in Cassandra. If
the join only contains the join restrictions or join restrictions with projection, the
execution time is much higher for Cassandra than MySQL. However, the execution
time is significantly reduced if there exist selections. It turned out that the main
problem was and is that the underlying architecture does not work well with a
join operation. The only reason for why join queries with selections have a better
execution time is that the number of rows is stripped away early. This time is
still high compared to MySQL. For each outer row in the index nested loop join, a
thread is started, and this thread executes a scan on the inner column family. This
method increases the execution time greatly.

The conclusion is that it is possible to execute a join in a NoSQL system, but
the current implementation does not utilize the architecture of Cassandra in an
efficient way. Further work is therefore needed to decrease the execution time.
Besides this, the current and further implementation should support a join over
multiple nodes.

Chapter 8
Further work

This implementation of join in Cassandra is only a proof of concept. As seen in
Chapter 6, Cassandra performs slower than MySQL. It is, therefore, necessary to
pinpoint some further work on this implementation. This chapter looks at some
subjects that may be interesting to work with in the further. This work may include
distributed join, better query optimization, and fault tolerance including the use
of intermediate storage if the memory usage is big.

8.1 Support different join types
Only equijoin is supported in this prototype. As further work, an implementation
that supports all the different join types described in Chapter 2.3.1 should be made.
A user will expect that the join types are supported by Cassandra since most of the
database systems using SQL supports them. Since data is distributed over multiple
nodes at different locations, different strategies may be chosen.

8.2 Distributed join
Today, no effort has been put into making the implemented join operation work on
multiple nodes. Since Cassandra is designed as a distributed data store, distributed
joins must be supported if the join operation is going to be seen as a standard
operation. Bratbergsengen [23] presents a partition-based algorithm where each
node executes the relational algebra locally. When performing a join query in a
distributed system, each node can then hash the attribute that is joined and send
the row to the correct node (also referred to as meeting place). At the meeting
node, the join can then be executed. This algorithm shows that it is possible to
implement a join functionality in a distributed system.

93

94 CHAPTER 8. FURTHER WORK

8.3 Query optimization
A small optimization was implemented in this thesis. If there is a selection on a
column family in a join, this column family is first in the join order. Then a lot
of potential data is removed early in the joining process. This small optimization
decreased the execution time significantly. However, no other query optimization
techniques are implemented in the current version of the join operation in Cassan-
dra. Query optimization (described in Chapter 2.1.1) should be implemented with
the purpose of finding a optimal or suboptimal execution plan. With this plan,
the cost of execution most likely is cheaper than choosing a bad plan. Today, the
most ineffective join ordering may be used. However, a suboptimal or optimal or-
dering should be used instead, and this ordering can be found using optimization.
Besides supporting optimization on one node, distributed optimization should be
supported if there are multiple nodes involved. Hevner and Yao [34] presents an
algorithm for query processing in distributed database systems. This shows that it
is possible to implement query processing in a distributed database system, similar
to Cassandra.

8.4 Efficiency
The efficiency of the current join implementation is bad and should be improved
significantly before it can be used by real users. Today, an index nested loop join is
used to perform the join. Instead of using this algorithm, a block nested loop join
algorithm could have been used. Then a data structure (for example a hash table
pointing to different binary trees) with a bloom filter could be used to store blocks
from the outer row. The inner relation can then be scanned for each block from the
outer relation and matched against this data structure. Unnecessary scans (which
returns few rows) of the inner relation (as the current implementation does) could
have been avoided. There is probably other methods that could be used to increase
the efficiency of this implementation. The most beneficial solution would have been
to redesign the architecture so that a join could be supported while maintaining
good horizontal scalability.

8.5 Fault tolerance
There are many possible ways the current implementation of the join operation can
crash. If this implementation is going to be used by real users, it is expected that
errors can happen. However, today the system can crash if a query is written wrong
and this should not occur. For example, if a column family is used in the join, but
the user forgot to type it in the from clause, the Cassandra server will crash with
a "TSocket read 0 bytes" message returned to the user. Instead of crashing, the
Cassandra server should return an understandable error message explaining that
the column family is missing in the from clause.

8.6. TEMPORARY STORAGE 95

8.6 Temporary storage
In the current implementation, all data in the join is matched and stored in memory.
However, if the amount of data is bigger than the memory size, a solution for storing
temporary data on disk should be possible. The memory is a limited resource
compared to the disk space available and avoiding memory leakage is important.

8.7 Support all key types in Cassandra
Only single primary keys and secondary indexes are supported in a join operation.
However, a join operation in Cassandra should also support composite partition
key and compound primary key (described in Chapter 2.7.2) that can be used in
Cassandra.

96 CHAPTER 8. FURTHER WORK

Bibliography

[1] ANTLR parser generator. http://www.antlr3.org/. Accessed: 2014-9-28.

[2] Apache Ant. http://ant.apache.org/. Accessed: 2014-9-29.

[3] The apache cassandra project. http://cassandra.apache.org/. Accessed:
2014-11-26.

[4] Apache CouchDB. http://couchdb.apache.org/. Accessed: 2015-5-5.

[5] Cassandra Query Language.
https://cassandra.apache.org/doc/cql3/CQL.html. Accessed: 2015-1-19.

[6] DataStax CQL 3.1.x documentation. http:
//www.datastax.com/documentation/cql/3.1/cql/cql_intro_c.html.
Accessed: 2015-1-22.

[7] GitHub. https://github.com/. Accessed: 2014-9-1.

[8] HBase. http://hbase.apache.org/. Accessed: 2015-5-5.

[9] Hypertable. http://hypertable.org/. Accessed: 2015-5-5.

[10] Implementation code for join in Cassandra.
https://github.com/chrpeter/Masteroppgave.

[11] Java garbage collection basics. http://www.oracle.com/webfolder/
technetwork/tutorials/obe/java/gc01/index.html. Accessed: 2015-4-14.

[12] Java Virtual Machine Statistics Monitoring Tool. http://docs.oracle.
com/javase/7/docs/technotes/tools/share/jstat.html. Accessed:
2015-4-14.

[13] MongoDB. https://www.mongodb.org/. Accessed: 2015-5-5.

[14] MySQL: The world’s most popular open source database.
https://www.mysql.com/. Accessed: 2015-5-4.

97

http://www.antlr3.org/
http://ant.apache.org/
http://cassandra.apache.org/
http://couchdb.apache.org/
https://cassandra.apache.org/doc/cql3/CQL.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_intro_c.html
http://www.datastax.com/documentation/cql/3.1/cql/cql_intro_c.html
https://github.com/
http://hbase.apache.org/
http://hypertable.org/
https://github.com/chrpeter/Masteroppgave
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jstat.html
http://docs.oracle.com/javase/7/docs/technotes/tools/share/jstat.html
https://www.mongodb.org/
https://www.mysql.com/

98 BIBLIOGRAPHY

[15] Planning your data model.
http://www.datastax.com/docs/1.0/ddl/data_model_planning.
Accessed: 2015-2-27.

[16] Redis. http://redis.io/. Accessed: 2015-5-5.

[17] Riak – basho technologies. http://basho.com/riak/. Accessed: 2015-5-5.

[18] Source code for data generator and benchmarking.
https://github.com/chrpeter/Cassandra_and_mysql_tester.

[19] Voldemort. http://www.project-voldemort.com/voldemort/. Accessed:
2015-5-5.

[20] Apache Cassandra 2.0 Documentation, 14 January 2015.

[21] Veronika Abramova and Jorge Bernardino. NoSQL databases: MongoDB vs
Cassandra. In Proceedings of the International C* Conference on Computer
Science and Software Engineering, pages 14–22. ACM, 10 July 2013.

[22] Apache. Apache/Cassandra.
https://github.com/apache/cassandra/tree/cassandra-2.0/,
25 August 2014. Accessed: 2014-9-12.

[23] Kjell Bratbergsengen. Storing and Management of Large Data Volumes.
11 June 2014.

[24] Andre Calil and Ronaldo dos Santos Mello. SimpleSQL: A relational layer
for SimpleDB. In Advances in Databases and Information Systems, Lecture
Notes in Computer Science, pages 99–110. Springer Berlin Heidelberg,
1 January 2012.

[25] Rick Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec.,
39(4):12–27, May 2011.

[26] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E.
Gruber. Bigtable: A distributed storage system for structured data. ACM
Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

[27] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro,
Michael R. Stonebraker, and David A. Wood. Implementation Techniques
for Main Memory Database Systems. In Proceedings of the 1984 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’84,
pages 1–8, New York, NY, USA, 1984. ACM.

[28] Jonathan Ellis. Facebook’s Cassandra paper, annotated and compared to
Apache Cassandra 2.0.

http://www.datastax.com/docs/1.0/ddl/data_model_planning
http://redis.io/
http://basho.com/riak/
https://github.com/chrpeter/Cassandra_and_mysql_tester
http://www.project-voldemort.com/voldemort/
https://github.com/apache/cassandra/tree/cassandra-2.0/

BIBLIOGRAPHY 99

[29] Jonathan Ellis. Architecture Internals.
https://wiki.apache.org/cassandra/ArchitectureInternals,
16 November 2013. Accessed: 2015-1-16.

[30] Ramez Elmasri and Shamkant B. Navathe. Database Systems: Models,
Languages, Design, and Application Programming. Pearson, sixth edition,
2011.

[31] Elvis C. Foster and Shripad V. Godbole. SQL data manipulation statements.
In Database Systems, pages 219–258. Apress, 2014.

[32] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. ACM SIGACT News,
33(2):51–59, 1 June 2002.

[33] Jing Han, E Haihong, Guan Le, and Jian Du. Survey on NoSQL database.
In Pervasive Computing and Applications (ICPCA), 2011 6th International
Conference on, pages 363–366. ieeexplore.ieee.org, October 2011.

[34] Alan R. Hevner and S. Bing Yao. Query processing in distributed database
system. IEEE Trans. Software Eng., SE-5(3):177–187, May 1979.

[35] Michael Kruckenberg and Jay Pipes. Essential SQL. In Pro MySQL, pages
235–297. Apress, 2005.

[36] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized
structured storage system. Oper. Syst. Rev., 44(2):35–40, April 2010.

[37] Ramon Lawrence. Integration and virtualization of relational SQL and
NoSQL systems including MySQL and MongoDB. In Computational Science
and Computational Intelligence (CSCI), 2014 International Conference on,
volume 1, pages 285–290, March 2014.

[38] Neal Leavitt. Will NoSQL databases live up to their promise? Computer,
43(2):12–14, February 2010.

[39] Priti Mishra and Margaret H Eich. Join Processing in Relational databases.
ACM Comput. Surv., 24(1):63–113, March 1992.

[40] Vivek Mishra. Cassandra data modeling. In Beginning Apache Cassandra
Development, pages 27–42. Apress, 2014.

[41] Karen Morton, Kerry Osborne, Roby Sands, Riyaj Shamsudeen, and Jared
Still. Pro Oracle SQL. Expert’s Voice in Oracle. Apress, 2013.

[42] Sasha Pachev. Understanding MySQL Internals. O’Reilly Media, Inc., April
2007.

[43] Terence Parr and Kathleen Fisher. LL(*): the foundation of the ANTLR
parser generator. In Proceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation, volume 46, pages
425–436. ACM, 4 June 2011.

https://wiki.apache.org/cassandra/ArchitectureInternals

100 BIBLIOGRAPHY

[44] Dan Pritchett. BASE: An acid alternative. Queueing Syst., 6(3):48–55,
1 May 2008.

[45] Tilmann Rabl and Hans-Arno Jacobsen. Materialized Views in Cassandra.
In Proceedings of 24th Annual International Conference on Computer
Science and Software Engineering, CASCON ’14, pages 351–354, Riverton,
NJ, USA, 2014. IBM Corp.

[46] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
McGraw-Hill, third edition, 2003.

[47] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin,
Raymond A. Lorie, and Thomas G. Price. Access Path Selection in a
Relational Database Management System. In Proceedings of the 1979 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’79,
pages 23–34, New York, NY, USA, 1979. ACM.

[48] Rick F. Van der Lans. Introduction to SQL. In Introduction to SQL:
Mastering the Relational Database Language, Fourth Edition/20th
Anniversary Edition, pages 3–28. Addison-Wesley Professional, September
2006.

[49] Xite Wang, Derong Shen, Tiezheng Nie, Yue Kou, and Ge Yu. The Equi-Join
processing and optimization on ring architecture Key/Value database. In
Web Technologies and Applications, Lecture Notes in Computer Science,
pages 243–254. Springer Berlin Heidelberg, 1 January 2012.

[50] Zhou Wei, Guillaume Pierre, and Chi-Hung Chi. Scalable join queries in
cloud data stores. In Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pages
547–555. IEEE Computer Society, 13 May 2012.

	Abstract
	Sammendrag
	Preface
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Background and motivation
	Definition and goals
	Report outline

	Background
	Query processing
	Query optimization

	ANother Tool for Language Recognition
	Join
	Join types
	Nested loop join
	Sort-merge join
	Hash join

	N-Way-Join
	Database management system
	Transaction management
	ACID
	SQL
	MySQL

	NoSQL
	CAP theorem
	BASE
	Key-value stores
	Document stores
	Extensible record stores

	Cassandra
	Storage
	Keys and indexes
	Cassandra Query Language

	Other NoSQL stores
	MongoDB
	Redis

	Related work
	Equijoin in a Ring Architecture Key/Value Database
	UnityJDBC
	SimpleSQL
	CloudTPS

	Design space
	Different roads - same destination
	Materialized view
	Application layer
	Query language

	Limitations
	Only primary keys and secondary indexes
	Only equijoin
	Only index nested loop join
	Locally supported

	Discussion
	Speed
	Memory
	Redundancy
	Maintenance
	Possibility implemented

	Implementation
	Organization and explanation of the code
	Parser and prepare
	Selectjoin clause
	From clause
	Standard where clause
	Joinon clause
	Other clauses
	Example query
	Selection
	Join restrictions
	Standard restrictions
	Find join order
	Column families outside the join

	Execute join query
	Decide inner and outer column families
	Big row
	Outer loop
	Get correct command
	Column value
	Has single column restriction
	Inner loop
	Return query results

	Execute standard select statements
	Merge all results
	Example execution

	Evaluation
	Method
	Test data
	Equipment used under testing
	Results
	Join without where relations and projections
	Join with one where relation
	Join with projections
	Single SELECT statement
	Inserting rows

	Discussion
	JVM options
	I/O usage
	Profiling of method calls
	Query optimization
	Other observations

	Conclusion
	Contributions
	Conclusion

	Further work
	Support different join types
	Distributed join
	Query optimization
	Efficiency
	Fault tolerance
	Temporary storage
	Support all key types in Cassandra

	Bibliography

