
Evaluation of Cache Management
Algorithms for Shared Last Level Caches

Runar Bergheim Olsen

Master of Science in Computer Science

Supervisor: Magnus Jahre, IDI
Co-supervisor: Antonio Garcia Guirado, IDI

Department of Computer and Information Science

Submission date: June 2015

Norwegian University of Science and Technology

Problem Description

Chip Multiprocessors (CMPs) or multi-core architectures are becoming increasingly
popular, both in industry and academia. CMPs often share on-chip cache space
between cores. When the CMP is used to run multiprogrammed workloads, differ-
ent processes compete for cache space. Severe competition can lead to considerable
performance degradation.

In recent years, a large number of shared cache management schemes have been
proposed to alleviate this problem. The main aim of this project is shed some light
on the relative strengths and weaknesses of the different cache management tech-
niques. The project must contain a review of recently proposed cache management
techniques and identify similarities and differences. The student should implement
at least one cache management technique and compare its performance to a conven-
tional Least Recently Used (LRU)-managed cache. Additional cache management
techniques should be implemented and evaluated if time permits.

i

Abstract

The performance gap between processors and main memory has been growing over
the last decades. Fast memory structures know as caches were introduced to mit-
igate some of the effects of this gap. After processor manufacturers reached the
limits of single core processors performance in the early 2000s, multicore processors
have become common. Multicore processors commonly share cache space between
cores, and algorithms that manage access to shared cache structures have become
an important research topic. Many researchers have presented algorithms that are
supposed to improve the performance of multicore processors by modifying cache
policies. In this thesis, we present and evaluate several recent and important works
in the cache management field. We present a simulation framework for evaluation
of various cache management algorithms, based on the Sniper simulation system.
Several of the presented algorithms are implemented; Thread Aware Dynamic In-
sertion Policy (TADIP), Dynamic Re-Reference Interval Prediction (DRRIP), Util-
ity Cache Partition (UCP), Promotion/Insertion Pseduo-Partitioning (PIPP), and
Probabilistic Shared Cache Management (PriSM). The implemented algorithms are
evaluated against the commonly used Least Recently Used (LRU) replacement pol-
icy and each other. In addition, we perform five sensitivity analysis experiments,
exploring algorithm sensitivity to changes the simulated architecture. In total data
from almost 9000 simulation runs is used in our evaluation.

Our results suggest that all implemented algorithms mostly perform as good
as or better than LRU in 4-core architectures. In 8- and 16-core architectures
some of the algorithms, especially PIPP, perform worse than LRU. Throughout all
our experiments UCP, the oldest of the evaluated alternative to LRU, is the best
performer with an average performance increase of about 5%. We also show that
UCP performance increases to more than 20% when available cache and memory
resources are reduced.

ii

Sammendrag

Ytelsesforskjellen mellom prosessorer og hovedminne har økt gjennom de siste ti̊ar.
Raske minnestrukturer kjent som hurtigbuffer vart introdusert for å redusere effek-
ten av den økende forskjellen. Etter at produsenter møtte grensen for enkjernepros-
essorytelse p̊a starten av 2000-tallet har flerkjerneprosessorer blitt vanlige. Flerk-
jerneprosessorer deler vanligvis noe hurtigbuffer mellom kjernene, og algoritmer
som kontrolerer kjernenes tilgang til det delte omr̊adet har blitt et viktig forskn-
ingsomr̊adet. Flere forskere har presenter algoritmer som skal kunne øke ytelsen
til flerkjerneprosessorer ved å endre algoritmen som styrer hurtigbufferet. I denne
avhandlingen presenterer og evaluerer vi flere nylig publiserte og viktige arbeid
som omhandler kontroll av delt hurtigbuffer. Vi presenterer et simuleringssystem
som vi bruker til å evaluerer flere algoritmer, basert p̊a simuleringssystemet Sniper.
Flere av de presenterte algoritmene er implementert; Thread Aware Dynamic In-
sertion Policy (TADIP), Dynamic Re-Reference Interval Prediction (DRRIP), Util-
ity Cache Partition (UCP), Promotion/Insertion Pseduo-Partitioning (PIPP), og
Probabilistic Shared Cache Management (PriSM). De implementerte algoritmene er
evaluert mot den ofte brukte algoritmen Least Recently Used (LRU) og hverandre.
I tillegg utfører vi fem sensitivitetseksperimenter, hvor vi utforsker algoritmenes
sensitivitet til endringer i den simulerte arkitekturen. Totalt bruker vi data fra
over 9000 simuleringer i v̊ar evaluering.

V̊are resultat viser at alle de implementerter algoritmene for det meste yter like
bra eller bedre enn LRU p̊a 4-kjerne arkitekturer. For 8- og 16-kjerne arkitekturer
yter noen algoritmer, spesielt PIPP, d̊arligere enn LRU. Vi viser ogs̊a at UCP, den
eldste av de implementerte alternativet til LRU, gir best resultat p̊a alle v̊are test-
programmer med gjennomsnittlig ytelsesøkelse p̊a 5%. Vi viser ogs̊a at UCP ytelsen
øker til over 20% n̊ar vi begrenser tilgjengelig hurtigbuffer og minne resursser.

iii

Preface

This thesis is submitted to the Norwegian University of Science and Technology.

Acknowledgement

The author would like to thank Associate Professor Magnus Jahre and Dr. An-
tonio Garcia Guirado at the Department of Computer and Information Science,
Norwegian University of Science and Technology, for their excellent guidance and
useful critique during the planning and realization of this thesis. The author would
also like to thank his fiancée and family for all their support and encouragement
throughout his studies. All of our experiments were run on the Stallo cluster under
Nortur grant nn4650k.

iv

Contents

Contents vi

List of Tables vii

List of Figures ix

List of Algorithms x

Acronyms xii

1 Introduction 1
1.1 Chip Multiprocessors . 1
1.2 CMP Memory System . 2
1.3 Common Memory Access Patterns 5

1.3.1 Recency-friendly . 5
1.3.2 Trashing . 5
1.3.3 Streaming . 6
1.3.4 Combined . 6

1.4 Requirements . 6
1.5 Contributions . 7
1.6 Outline . 7

2 Cache Management Algorithms 9
2.1 Cache Replacement Algorithms . 11

2.1.1 LRU . 11
2.1.2 DIP . 12
2.1.3 TADIP . 14
2.1.4 DRRIP . 16
2.1.5 NUCache . 18

2.2 Cache Partitioning Algorithms . 19
2.2.1 UCP . 20
2.2.2 PIPP . 21
2.2.3 PriSM . 23
2.2.4 CLU . 25

v

3 Framework 27
3.1 Simulator . 27
3.2 Implementation . 28
3.3 Algorithm Details . 30

4 Methodology 32
4.1 Processor Model . 32

4.1.1 Cache Models . 33
4.2 Benchmarks and Workloads . 35

4.2.1 Benchmarks and Sample Extraction 36
4.2.2 Benchmark Classification . 37
4.2.3 Workloads . 39

4.3 Performance Metrics . 39

5 Results 41
5.1 Overall Results . 41
5.2 4-core Workload Results . 43

6 Sensitivity Analysis 47
6.1 Processor Model Parameter Sensitivity 47
6.2 Clock Skew Barrier Sensitivity . 50
6.3 L2 Cache Size Sensitivity . 51
6.4 L3 Cache Size Sensitivity . 54
6.5 Memory Bus Speed Sensitivity . 56

7 Discussion 59
7.1 Parameter Fitting and Lack of Implementation Details 59
7.2 Clock Skew Synchronization Barrier 60
7.3 Uniform Last Level Cache (LLC) Access 61

8 Conclusion 62
8.1 Conclusion . 62
8.2 Future Work . 63

Bibliography 63

A Workloads 67

vi

List of Tables

2.1 Overview of Cache Management Algorithms. 10

4.1 Model properties. 32
4.2 L1 cache properties. 34
4.3 L2 cache properties. 35
4.4 L3 cache properties. 35
4.5 Benchmark Classifications . 37
4.6 Model properties. 37

A.1 8-core workloads . 67
A.2 16-core workloads . 68
A.3 4-core workloads . 69

vii

List of Figures

1.1 Processor-Memory Gap . 2
1.2 Direct mapped and 2-way cache architecture. 3
1.3 Generic Chip Multiprocessor Architecture. 4
1.4 Recency-friendly access pattern. 5
1.5 Trashing memory access pattern. 6
1.6 Streaming memory access pattern . 6

2.1 LRU managed 4-way cache set. 11
2.2 Alternate Dynamic Insertion Policy (DIP) organizations. 13
2.3 DIP managed 4-way cache set. 14
2.4 Alternate duel set organizations for TADIP. 15
2.5 DRRIP managed 4-way cache set. 16
2.6 NUCache managed 4-way cache set. 18
2.7 UCP managed 4-way cache set. 21
2.8 PIPP managed 4-way cache set. 23
2.9 Binominal Insertion Policy (BIP) and LRU Insertion Policy (LIP)

utility plot in a 16-way cache. 26

3.1 Partial core memory model in Sniper. 28
3.2 Implemented algorithms and their relations. 29

4.1 Processor model architecture. 33

5.1 Average result grouped by core . 42
5.2 Average result for 4-core workloads 44
5.3 cabw workloads result . 45

6.1 Core model property sensitivity. 48
6.2 STP, Harmonic Mean of Speedup (HMS) and walltime sensitivity to

size of Clock Skew Minimization Barrier (CSMB). 50
6.3 Relative number of accesses to L3 cache with varying L2 size. 52
6.4 Speedup with increasing L2 size . 53
6.5 Speedup with decreasing L3 size . 54
6.6 MPKI normalized to LRU with decreasing L3 cache size. 56
6.7 Speedup with decreasing bus bandwidth 57

viii

6.8 Speedup of UCP normalized to LRU with reduced L3 cache. 58

8.1 Average algorithm performance by year of publication 63

ix

List of Algorithms

1 TADIP duel set selection. 16
2 UMON Lookahead Algorithm. 22
3 PriSM Hit Maximization. 25
4 Snip: Modified Utility Monitor (UMON) Lookahead Algorithm. . . . 30

x

Acronyms

ANTT Average Normalized Turnaround Time. 40

ATD Auxilliary Tag Directories. 13–15, 17, 20, 21, 24, 25, 29, 30

BIP Binominal Insertion Policy. 12–17, 25, 26

BRRIP Binominal RRIP. 17, 30

CLU Co-Optimizing Locality and Utility. 25

CMP Chip Multiprocessor. i, 2–6, 9, 32

CSMB Clock Skew Minimization Barrier. 50, 51, 60

DIP Dynamic Insertion Policy. 12–15, 17, 25

DRRIP Dynamic Re-Reference Interval Prediction. ii, iii, 16, 17, 29, 30, 44, 52,
53, 55, 57, 62

HMS Harmonic Mean of Speedup. 39–45, 50, 51, 57, 58, 60, 62, 63

ILP Instruction-Level Parallelism. 1, 2, 49

LIP LRU Insertion Policy. 12–16, 25, 26

LLC Last Level Cache. 5, 25, 37, 38, 40, 57, 58, 61

LRU Least Recently Used. i–iii, 7–9, 11–14, 16–21, 23–25, 29, 32, 35, 41–45,
51–56, 59, 62, 63

MPKI Misses Per Kilo Instruction. 40, 42–45, 51, 55–57

MRU Most Recently Used. 12–14, 17, 19, 21, 22, 24, 25

MSB Most Significant Bit. 13

MSHR Miss Status Holding Registers. 49

xi

NP Normalized Progress. 39, 40

NRU Not Recently Used. 17

NTT Normalized Turnaround Time. 40

NUCache Next Use Cache. 18, 19, 25

PIPP Promotion/Insertion Pseduo-Partitioning. ii, iii, 21–25, 29, 30, 41, 42, 44,
51, 53–57, 62

PriSM Probabilistic Shared Cache Management. ii, iii, 23, 24, 29, 30, 44, 45, 52,
53, 56, 57, 62

QoS Quality of Service. 9, 24

SRRIP Static RRIP. 17, 30

STP System Throughput. 39–45, 51, 55–58, 60, 62, 63

TADIP Thread Aware Dynamic Insertion Policy. ii, iii, 14–17, 25, 29, 30, 44, 51,
53, 55, 57, 62

TADIP-F TADIP-F. 15, 16, 29

TADIP-I TADIP-I. 15

UCP Utility Cache Partition. ii, iii, 20, 21, 24, 25, 29, 30, 41–45, 52–54, 56–58,
62, 63

UMON Utility Monitor. 20, 21, 23, 29, 30, 53

xii

Chapter 1

Introduction

In this chapter, we will first introduce chip multiprocessors and their memory
systems. We will also introduce the role of a cache management algorithm, and
introduce a set of common memory access patterns. Then, we will analyze our
problem description and introduce a set of requirements the thesis has to fulfill.
Finally, an overview of our contributions is given before we provide an outline of
the thesis.

1.1 Chip Multiprocessors

Moore’s Law [22], an observation made by G. E. Moore one of the co-founders of
Intel, has been the driving force behind processor development in the last decades.
The law is simply an observation; that scaling of transistors used to make inte-
grated circuits will allow for approximately twice the number of transistors per die
every 18 months. Up until the mid-2000s, manufacturers used these smaller transis-
tors to increase single-core performance. Smaller transistors allowed for increased
frequency, and more transistors per die allowed for increasingly complex processor
cores. Features such as speculative and out-of-order execution were added to take
advantage of Instruction-Level Parallelism (ILP) present in computer programs.
By the mid-2000s, processor cores had become so complex and were running at
such high frequencies that manufacturers had reached the limitation known as the
power wall. The power wall entails that manufacturers were unable to continue
increasing the frequency and the transistor count of each core, without also attach-
ing high-performance cooling systems to counter the increased power usage and
hence increased heat generation. Systems like water or even nitrogen cooling were
needed to continue the single core performance increase [30]; these systems are not
practical for personal computers.

Figure 1.1 shows the single core performance development from 1980 to 2010.
The effect of the power wall is clearly visible from 2005 and out where we observe
no improvement in single core performance. We also observe that in the five years
leading to the power wall, the yearly performance improvement decreased. This

1

Figure 1.1: Comparison of (single core) processor and memory performance from
1980 to 2010 based on data collected by J. Hennessy and D. Patterson [12].

decrease is observed because improving single core performance became harder, as
more advanced techniques for ILP exploiting where needed, ultimately resulting in
the power wall.

By 2005, most manufacturers had abandoned their plans for increased single
core performance and were all working towards Chip Multiprocessors (CMPs) [30].
CMPs are built using several simpler processing cores without many of the aggres-
sive ILP utilization features that were added to single core processors in the late
2000s to increase performance. This development is based on Pollack’s rule [3],
which states that performance increases proportionally to the square root of the
area, and that power usage increases proportionally to the area. Consider having
two cores, one large highly complex core, and a simple core at half the size. The
performance of the larger core will by Pollack’s rule be worse than the combined
performance1of the two smaller while having roughly the same power consumption.

Moving to simpler and smaller cores allowed manufacturers to continue overall
performance improvements while staying below the power wall. With an increasing
number of transistors due to scaling, even more processing cores can be added to
CMPs. Today CMPs are the de-facto standard, being used in everything from em-
bedded computers [1] and mobile phones [13] to commercial and high-performance
computing [31, 15].

1.2 CMP Memory System

Memory is a vital component of any computing system, without memory we are
unable to store our programs and computations. Traditionally the technology used
to create memory have differed from the technology used in processors [32]. As pro-
cessor performance increased, memory performance did not increase proportionally.
This development has resulted in what is known as the processor-memory gap [32].
Figure 1.1 shows how the gap in processor and memory performance has developed

1Single thread performance is only increased by creating more complex cores; multithreading
techniques are required in software to take advantage of CMPs performance increase.

2

sss ttttttt oooooo

=

Ta
g

V
al
id

Li
ne

D
at
a

(a) Direct mapped cache. Each set con-
tains only one block. The three most
significant bits used for set addressing,
7-bit tags.

 ss tttttttt oooooo

=

Ta
g0

Li
ne

0

=

Ta
g1

Li
ne

1

or

V
al

id

Way 0 Way 1

(b) 2-way associative cache. Each set
contains two blocks. Two bits used for
set addressing, 8-bit tags. Additional
hardware (not shown) required to select
output between line0 and line1.

Figure 1.2: Simplified architecture of a direct and 2-way cache under a read oper-
ation. With 64B lines and byte addressing.

from 1980 to 2010. The figure shows that memory performance has had a constant
development over the period of about 7% increase yearly. The processor-memory
gap made itself visible in 1986 when processor performance started increasing by
about 52% each year. If not handled, the increasing processor-memory gap would
become the limiting factor in processor performance, as processors are dependent
on the memory system providing both code and data. In response to the growing
gap small and fast memory structures known as caches were introduced. Caches
are produced using different techniques than main memory, proving faster access.
This comes at the cost of higher production cost and power usage. Today, most
single-core processors and CMPs have one or more caches integrated on the proces-
sor die. The caches filter all memory request made by the processing core. If one of
the caches has a copy of the requested data, it will stop the memory request from
going to main memory and respond with the correct data. This is known as a cache
hit. If a cache does not have the value of the requested address, it is known as a
cache miss. Because caches are faster and are located closer to the processor than
main memory they can to an extent hide the processor-memory gap, assuming a
high hit rate in the caches.

Traditionally there are three main ways of organizing cache memory; direct
mapped, set associative and fully associative. Caches used in commercial CMPs
today are set associative memory structures [31, 15, 1, 13]. A cache is organized
as a 2d array, where each row is called a set, and each set consist of one or more
blocks, sometimes known as cache lines. A block is the minimum unit of data a
cache stores, this is typically 64B. The cache divides all memory addresses into
three portions, the set address, block tag and block offset. The set address is used

3

L3

Core #0 L1I
L2

L1D

Core #1 L1I
L2

L1D

M
E
M
O
R
Y

. . .

Core #15 L1I
L2

L1D

Figure 1.3: Generic Chip Multiprocessor Architecture.

to determine which set is responsible for caching a value. Within a set, all blocks
are valid storage locations. Each block that contains valid data also stores the block
tag of the data it contains. During a cache lookup, all valid blocks will be scanned
looking for one containing the block tag from the address. In a direct mapped cache,
each set contains only one block, making the block scan trivial. Fully associative
caches have all blocks in a single set, and the block scan require that every block
be checked. This is expensive both measured in hardware required, and the critical
path of the cache. Set associative caches, also known as n-way caches, are a middle
ground organization that stores n blocks per set. Figure 1.2 shows both a direct
mapped and a 2-way cache under a read operation. The figure does not show
a fully associative cache organization but given the 2-way cache organization a
fully associative cache is created by duplicating the block scan hardware until each
column has only one row. In this thesis, we will show that increasing the number of
ways can improve performance of a cache via increased hit rate. However, the access
time and complexity of a cache also increases as the number of ways increases. As
a result, first level caches are often limited to 2- or 4-ways [27], because the access
latency must be short to prevent the CPU stalling while it waits for data. Even
third level caches rarely exceed 16- or 32-ways. Alternative cache organizations
have been proposed, such as zcache [27], that allows for higher associativity while
providing access times comparable to traditional caches. However, these techniques
are not currently used in commercial CMPs and hence are not considered further
in this thesis.

When data not present in the cache is requested by a processing core, a request
is sent to the next cache level, or possibly the main memory. Once the cache
receives a response, it normally stores the data to provide faster access times in
case of a re-reference. Caches also normally store data that is written to memory
by a processing core, speeding up the write operation. For a set-associative or fully
associative cache, there are multiple valid storage locations for a data block. An
algorithm known as the cache management algorithm decides which of the valid
blocks are used to store the value. If the block that was chosen by the algorithm
already contains valid data the cache removes or evicts the existing data.

In the memory hierarchy, smaller means faster. For instance, main memory is
much faster than disks, but disks can store much more data. The same is valid for
caches, a smaller cache has a shorter critical path and hence a lower access time

4

compared to a larger cache. Figure 1.3 shows an example 16-core CMP architecture
with three cache levels and main memory. For each cache level, both the size and
access time increases. First level caches are the smallest while the third level caches
are largest. To save area on CMPs, and also to provide an easy mechanism for data
sharing between cores, it is common to have at least one level of shared cache. In
Figure 1.3 each core has a private L1 and L2 cache, and a shared Last Level
Cache (LLC), the L3 cache. While sharing cache can improve performance, and
improve overall utilization, it also makes the memory system exposed to destructive
interference that potentially can hurt the performance of all processing cores. The
cache management algorithm, running on the shared cache, may either ignore the
effects of interference or it may attempt to reduce it by some form of prioritization.

1.3 Common Memory Access Patterns

In this section, we will define four memory access patterns [17]; recency-friendly,
trashing, streaming and combined access patterns. These patterns will later be
used to describe the strengths and weaknesses of the presented algorithms, and to
explain algorithm performance in our experiments.

1.3.1 Recency-friendly

Several cache management algorithms make an assumption known as the recency-
assumption. This is the assumption that recently accesses memory addresses have
a higher probability of re-use that less recently accesses addresses. A recency-
friendly access pattern is one that causes no misses under an algorithm that always
keeps the most recently used blocks in the cache. Figure 1.4 illustrates an example
memory access pattern that is said to be recency-friendly. Because the pattern
repeats and k is less than the number of ways we know that the least recently
used block will always be referenced before being evicted, if we assume a recency-
assumption based algorithm. Hence, the algorithm will be able to provide hits for
every access after the initial repetition, and the pattern is recency-friendly.

prf = (a0a1...ak−1)N

Figure 1.4: Recency-friendly access pattern (k <= number of ways, N > 1).

1.3.2 Trashing

A trashing memory pattern is one that repeats in a similar manner to a recency-
friendly pattern, but with more blocks per cycle than the number of cache ways.
Figure 1.5 shows an example of one such pattern, the only thing separating this
from the previous pattern in the value of k. Under a recency-assumption based
algorithm, an access pattern similar to this will never hit because all blocks are
evicted before they are re-referenced. A better management algorithm for these

5

patterns might keep some of the working set in the cache, providing hits for parts
of the access pattern.

prf = (a0a1...ak−1)N

Figure 1.5: Trashing memory access pattern (k > number of ways, N > 1).

1.3.3 Streaming

A streaming memory access pattern is one that has no re-references, or where the
period is so large that no pattern is detectable. Figure 1.6 illustrates one such
pattern, where k is infinite. No caching algorithm can provide hits for such an
access pattern, simply because there are no re-references.

prf = (a0a1...ak−1)

Figure 1.6: Streaming memory access pattern (k = ∞).

1.3.4 Combined

In reality, memory access patterns can be more complex than the simple examples
shown above. A single program might, for instance, behave both in a recency-
friendly and streaming fashion. An example would be a program performing a
reduction over a large dataset. Most accesses would be streaming as the program
iterates over the dataset, but some accesses will exhibit recency-friendly behavior
like when the program stores temporary results to memory during the iteration.

For shared caches, the observed pattern is the union of accesses from all cores.
A particular non-optimal situation for a cache assuming recency-friendly behav-
ior is when multiple cores execute recency-friendly applications, and one single
core execute a streaming application. In this case, the streaming application will
constantly clear the cache, degrading performance of the recency-friendly applica-
tions. An algorithm that could detect the streaming application and handle it as a
special case could potentially increase the performance of the recency-friendly ap-
plications without affecting the performance of the streaming application. Some of
the algorithms we cover in the following sections will attempt to detect streaming
applications.

1.4 Requirements

By analyzing the problem description, we have been able to extract a set of re-
quirements that this thesis has to fulfill:

R1 Introduce CMPs, their memory system, and the role of a cache management
algorithm.

6

R2 Present recent and important work in the cache management field. Compare
similarities and differences of the various proposed algorithms.

R3 Create a framework for evaluation of various cache management algorithms.

R4 Implement at least one of the presented algorithms and compare against a
conventional Least Recently Used (LRU)-managed cache.

Based on the problem description and discussions with the thesis advisors, we list
an additional set of optional requirements that the thesis may fulfill:

O1 Implement additional algorithms and evaluate them.

O2 Compare performance of the implemented algorithms against each other.

O3 Investigate algorithm sensitivity to changes in L2 cache size, L3 cache size,
and/or memory bus bandwidth.

1.5 Contributions

In our work with this thesis we have made the following contributions:

• We have created a curated list with detailed descriptions of several recently
published algorithms in the cache management field. The list has been limited
to only consider algorithms that target conventional caches and optimize for
cache miss minimization.

• A framework for evaluation of cache management algorithms has been built
on top of the Sniper [5] simulation system.

• Several of the algorithms presented in our list of existing works have been
implemented and tested within our simulation framework.

• We performed several sensitivity experiments further exploring the properties
of our simulation framework and the implemented algorithms.

• The implemented simulation framework and all our results will at the end of
this thesis be made available to NTNU and the CARD [4] research group for
future research.

1.6 Outline

The outline of the rest of this thesis is as follows:

• Chapter 1 introduces the thesis by putting it in a historical context, pre-
senting important background knowledge and summarizing the contributions
made, fulfilling requirement R1.

7

• Chapter 2 presents a selection of cache management algorithms and provides
a theoretical comparison of them, fulfilling requirement R2.

• Chapter 3 presents our simulator and the framework built on this simulator
to enable evaluation of cache management algorithms. It also presents the
subset of algorithms we have implemented. This fulfills requirement R3 and
O1.

• Chapter 4 contains a description of our simulated processor model and ex-
plains all metrics we later use to evaluate our experiments.

• Chapter 5 presents an experiment where we compare all implemented algo-
rithms against an LRU managed cache. Also, we compare all implemented
algorithms against each other. This fulfills requirement R4 and O2.

• Chapter 6 presents five different experiments all exploring either simulation
framework or algorithm sensitivity to various architectural changes, fulfilling
requirement O3.

• Chapters 7 and 8 contain a discussion of our results and a conclusion based
on these. Also, an overview of future work is given.

8

Chapter 2

Cache Management
Algorithms

A cache management algorithm manages the storage space in a cache. It decides
where to store new data blocks and which of the existing blocks are evicted to
make room for new blocks. Some algorithms are thread-aware and geared towards
shared caches. Others are thread-agnostic and work both for shared and private
caches. Some have advanced optimization goals such as Quality of Service (QoS)
while others use simpler metrics like miss minimization. Algorithms proposed for
shared caches may in general be divided into two groups, those that explicitly
divide storage space between cores sharing the cache and those that do not. The
term cache replacement algorithm is often used to describe algorithms that do
not divide the storage space while the term cache partitioning algorithm describe
algorithms that do divide the space. Throughout this paper, we will use the two
terms interchangeably.

The field of cache management is well researched, and there exists a large
number of proposed algorithms. In this thesis, we present a few recently proposed
algorithms and compare their performance. We will also present LRU, an algorithm
that is thread-agnostic and widely used both in private and shared caches today.
Table 2.1 lists the selected algorithms. Only algorithms that optimize for fewer
cache misses are included. This metric is easy to measure and also makes it easy
to compare the various algorithms. Also, we only consider algorithms that target
conventional caches, as they are designed in CMPs today. This limitation makes
the comparison of results from different algorithms easier. Also, we avoid having
to extend our simulator with a new cache type, which would be unfeasible given
the time constraints of this thesis.

9

Name Year Thread Repl. Insert. Promo. Hardware Partition
aware policy policy olicy overhead1

DIP 2007 No LRU LIP/
BIP

Promote
to MRU

1
counter,
set du-
eling

No

TADIP 2008 Yes LRU LIP/
BIP

Promote
to MRU

1
counter
per
core,
set
dueling

No

DRRIP 2010 Yes LRU
approx.

DRRIP/
BRRIP

Stepwise
promo-
tion

1
counter
per
core,
set
dueling

No

NUCache 2011 No LRU +
Deli-
Ways

LIP Promote
to MRU

NUTrack No

UCP 2006 Yes Per
core
LRU

LIP Promote
to MRU

UMON,
1 ATD
per
core

Yes

PIPP 2009 Yes LRU Utility
posi-
tion

Stepwise
promo-
tion

UMON,
1 ATD
per
core,
random
genera-
tor

Yes

PriSM 2012 Yes Per
core
LRU

LIP Promote
to MRU

1 ATD
per
core,
random
genera-
tor

Yes

CLU 2014 Yes LRU LIP/
BIP

Promote
to MRU

UMON
˜3
ATDs
per
core

Yes

Table 2.1: Overview of Cache Management Algorithms.

10

C
A B C D

MRU LRUHit C

C A B D
MRU LRU

Miss E

E C A B
MRU LRU

Miss D

D E C A
MRU LRU

Hit D

E

D

D

Figure 2.1: LRU managed 4-way cache set.

It is possible to divide all algorithms included in this evaluation into three
distinct policies:

• The replacement policy specifies which block a cache set evicts when inserting
a new block into that set.

• The insertion policy specifies the state of new blocks after insertion into the
cache set.

• The promotion policy specifies how the state of a block changes following an
access from a processor core.

In the following sections, we will explain how each of the selected cache partitioning
algorithms work, with an emphasis on this division to make comparisons easier.

2.1 Cache Replacement Algorithms

This section covers cache replacement algorithms, or algorithms that do not ex-
plicitly divide the available cache space between cores.

2.1.1 LRU

LRU replacement, or some simplification of LRU, is one of the dominant cache
management algorithms in hardware today. As a result, LRU is normally used
as the baseline for comparisons when presenting new cache management algo-
rithms [17, 25, 26].

The LRU algorithm relies on the temporal locality of data accesses; it assumes
that recently accessed data has a higher reuse frequency than less recently accessed
data. Theoretically one can envision a cache set managed by LRU as a stack, where
recently accessed cache blocks are near the top and less recently accessed blocks are
near the bottom. The bottom position of the stack is the LRU position, and the top

1Simplified hardware overhead compared to an LRU managed cached.

11

position is the Most Recently Used (MRU) position. In a hardware implementation,
the blocks are not stored in a sorted fashion, but additional storage bits are used to
keep track of LRU positions. The replacement policy of LRU is to evict the least
recently used cache block, the one on the bottom of the LRU stack. The insertion
and promotion policy of LRU is the same; a inserted or accessed block is always
moved to the MRU position unless it is already there.

Figure 2.1 shows how a 4-way cache set managed by LRU replacement handles
four requests. Initially, the set contains four blocks; A, B, C and D. A is in the
MRU position while D is in the LRU position. The first request is for block C;
this is a hit, and that causes the block to move to the MRU position, pushing both
block A and B one step closer to the LRU position. The second request is made to
block E; this block is not present in the cache. The LRU algorithm evicts block D
at the LRU position and then places block E at the MRU position. Then a request
for D follows, this is a miss and B is evicted. Finally, another request is made to
block D. Nothing changes since the block already is at the MRU position.

One important result of the LRU insertion, promotion, and replacement policies
is that an LRU managed cache satisfies the stack property. Given a 4-way LRU
managed cache with counters that count the number of hits in each way; then
we know that the number of misses in a 3-way LRU managed cache equals the
misses in the 4-way cache plus the number of hits in the 4th cache way. This effect
occurs because any request that hits in the 4th way of the 4-way cache would miss
in the 3-way cache, but in both caches the requested block is then moved to the
MRU position. No blocks can enter the cache set at any other position than the
MRU. As a result, the state of the three first ways of the caches is always identical
given an identical memory request sequence. The same argument holds for a 2-way
cache, by summing the hits in the third and fourth way of the 4-way cache we get
the additional misses in a 2-way cache. This property generalizes; we can find the
relative miss rate of any LRU managed cache with 1 to n ways by having a single
n-way cache with access counters per way. If we additionally have a total miss
counter in the n-way cache we can also find the absolute number of misses for each
cache size.

LRU is a simple replacement algorithm that is usable in both private and shared
caches. In shared caches, LRU will favor access frequency, giving cores that issue
many cache requests more cache space than those who issue fewer requests. In
some cases, this might be an acceptable solution. However, as we will discover,
several thread-aware replacement algorithms claiming to outperform LRU exists.

2.1.2 DIP

DIP [26] was originally proposed in 2007. The DIP algorithm views the cache set
as a stack, as in LRU. Replacement and promotion policies are equal to LRU, DIP
evicts the block at the LRU position, and following a cache hit a block moves to
the MRU position. In contrast to LRU, DIP is a combination of two insertion
policies, the standard LRU Insertion Policy (LIP) and Binominal Insertion Policy
(BIP). LIP inserts new blocks at the MRU position. BIP inserts new blocks either
at the LRU position or with a small probability, p = 1

32 , at the MRU position. The

12

Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

+ -

Saturating
counter

MSB used to select policy

Miss in set
dedicated to LIP

Miss in set
dedicated to BIP

Set dedicated to LIP

Set dedicated to BIP

Follower set

(a) Set-dueling architecture.

Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

Cache
Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

LIP ATD

Set 0

Set 1

Set 2

Set 3

Set 4

Set 5

Set 6

Set 7

BIP ATD

(b) ATD architecture.

Figure 2.2: Alternate Dynamic Insertion Policy (DIP) organizations.

overall DIP algorithm switches between the two insertion policies by always using
the one that is expected to cause fewer cache misses.

By mostly inserting at the LRU position the BIP insertion policy can theoret-
ically handle trashing memory access patterns. When most new blocks enter at
the LRU position, the upper parts of the LRU stack can contain blocks that have
been re-referenced. In a trashing access pattern, this results in part of the working
set residing in the upper part of the stack while the rest are inserted at the LRU
position and evicted at the next miss. By sometimes inserting at the MRU position
BIP will give blocks not referenced by the next miss a chance to stay in the cache.
Inserting at the MRU position will also force stale cache blocks in the upper part
of the stack to move towards the LRU position.

The authors of DIP present several methods to detect the best of the two
replacement algorithms, one of them is set-dueling. Set-dueling is implemented by
having some sets of the cache always use BIP and some always use LIP. A counter
tracks the performance of the dueling sets. Misses in LIP sets will increment the
counter and misses in BIP sets will decrement the counter. The Most Significant
Bit (MSB) of the counter can then be used to select the best performing of the two
algorithms. If the MSB is one, an overweight of misses in LIP sets are occurring,
and BIP is the best performing algorithm. If the MSB is zero, then an overweight
of BIP misses are occurring, and LIP is the best performing algorithm. Figure 2.2a
shows the set dueling and algorithm selection architecture. In the figure sets 0 and
5 are dueling sets for LIP while 3 and 6 are dueling sets for BIP. All other sets
are follower sets, meaning that they utilize the algorithm indicated by the selection
logic.

Another solution is to utilize two Auxilliary Tag Directoriess (ATDs), as shown
in Figure 2.2b. An ATD is equal to the cache’s tag directory; it keeps track of blocks
present but does not store any data. ATDs are, for this reason, cheaper than a full
cache, but still requires more storage than duel-sets that use the existing cache.
As the figure shows, the two ATDs run one algorithm each and all operations on
the main cache execute in parallel on the ATDs. The same counter architecture

13

C
A B C D

MRU LRUHit C

C A B D
MRU LRU

Miss E

C A B E
MRU LRU

Miss D

C A B D
MRU LRU

Hit D

E

D

D

D C A B
MRU LRU

Figure 2.3: DIP managed 4-way cache set. (Assuming BIP insertion)

controlled by misses in either ATD is used to select the best performing algorithm
for the main cache. The main advantage of using an ATD is that all available
information is used when selecting between BIP and LIP. Also, the entire cache
will always use the best algorithm while in set-dueling a fraction of the sets will
always run the worst performing algorithm. The difference between using an ATD
and cache dueling sets in terms of misses were shown to be small in the original
paper. On their benchmarks, they measured an average decrease in misses by
22.3% using ATDs, compared to a 21.3% decrease when using 32 duel-sets [26], on
a 4096 set cache.

Figure 2.3 shows an example cache set managed by DIP. In the example, we
assume BIP insertion with no insertions at the MRU position. In the initial state,
there are four blocks; A, B, C, and D. A is at the MRU position and D is at the
LRU position. The first request is for C; this is a hit, and C is promoted to the
MRU position, A and B are pushed towards the LRU position. Then follows a
request for E, which is a miss. DIP evicts D at the LRU position, and E is inserted
in its place. Then follows two requests to D; the first request is a miss causing E
to be evicted and D to be inserted at the LRU position. The second request is a
hit and promotes D to MRU, pushing all other blocks one step towards the LRU
position.

2.1.3 TADIP

TADIP [16] proposed in 2008 is a thread-aware extension of DIP [26]. The main
issue with DIP that TADIP counters, is that DIP does not consider which core
initiates a cache access. In a workload with multiple benchmarks, some might
be recency-friendly while others are not. In a shared cache managed by DIP,
the algorithm choice is made based on the sum of the cache accesses and then
applied equally to all cores. The authors of TADIP recognized that improvements
in performance could be achieved by selecting the DIP policy on a per-core basis

14

<0, 0>

<1, 0>

<0, 1>

<p0,p1>

PSEL0

PSEL1

+
-
-

<p0,p1>

<p0,p1>

<p0,p1>

<p0,p1>

(a) Cache managed by TADIP-I
(TADIP-I).

<0, p1>

<1, p1>

<p0, 0>

<p0, 1>

PSEL0
+
-

<p0,p1>

<p0,p1>

<p0,p1>

<p0,p1>

PSEL1
+
-

(b) Cache managed by TADIP-F
(TADIP-F).

Figure 2.4: Alternate duel set organizations for Thread Aware Dynamic Insertion
Policy (TADIP).

when utilized in a shared cache.

When selecting the best performing algorithm per core, the ATD technique
requires two ATDs per core sharing the cache. This solution can quickly become
too expensive to be practical. Set-dueling in DIP requires a minimum of two
sets, one running LIP (1) and one running BIP (0). With two cores, the number of
combinations rises to four (00, 01, 10, 11). When the number of cores increases this
also seems to be an impractical solution. Based on this observation, the authors of
TADIP suggested two new selection techniques based on set dueling, which reduce
the number of duel sets required. Both solutions have one saturating counter per
core sharing the cache. This counter is used to select the best performing policy
for that core.

TADIP-I has one set per core running BIP for that core and LIP for all others.
In addition to these N sets, a single set runs LIP for all cores. A miss in the LIP
set will increment all the core counters while a miss in the core specific set will
decrement the counter for the specific core. For a large N, this solution requires
significantly fewer duel sets compared to having one per combination (N + 1 <<
N2). This solution assumes that all other cores run LIP, and, therefore, cannot
fully capture the effect of interactions between cores. Figure 2.4a shows an example
of a cache managed by TADIP-I. In the figure, PSEL0 is the saturating counter
used to select the best performing policy for core 0. Within a set; < 0, 0 > indicates
that both cores run LIP while < 1, 0 > indicates that core 0 runs BIP while core
1 runs LIP. The variables p0 and p1 represent the current best performing policy
for core 0 and 1 respectively.

TADIP-F attempts to reduce the error caused by the assumption of other cores

15

C
A B C D
3 1 1 0

Hit C

E
A B C D
3 1 0 0

Miss E

E B C D
2 1 0

D

0

Miss D

D B C D
2 2 1 1

Hit D D

D B C D
1 2 1 1

Figure 2.5: DRRIP managed 4-way cache set. (M=2, static insertion)

by having two sets per core, a total of 2N. A cache managed by TADIP-F is
illustrated in Figure 2.4b. For each of the cores, one duel set use LIP and the other
use BIP. Any insertions from other cores into the duel sets use the current best
performing algorithm for that core. Like in the other policies, a miss in the LIP set
for a core will increment that core’s counter and a miss the BIP set will decrement
the counter. For the remainder of this thesis when we refer to TADIP we assume
TADIP-F unless otherwise stated.

When implementing TADIP, some mechanism is required to select which sets
are duel sets, and which are follower sets. The authors of TADIP provide a simple
hash function that can be used to select dueling sets, shown in Algorithm 1. This
algorithm assumes a 4096 set cache. In the algorithm, set index is a number from
0-4095, core id is the zero-indexed id of the requester core and cores is the total
number of cores sharing the cache. If BIP or LIP is true, then the set is a duel
set for the given core, and the policy forced to either BIP or LIP. If both BIP and
LIP are false, then the set is a normal follower set and utilizes the current best
performing algorithm for the given core. It follows from the algorithms that the
original authors use a total of 32 duel sets spread evenly throughout the cache.

Algorithm 1 TADIP duel set selection.

1: LIP ← set no[11 : 7] + core id == set no[6 : 0]
2: BIP ← set no[11 : 7] + core id+ cores == set no[6 : 0]
3: FOLLOWER←!LIP+!BIP

2.1.4 DRRIP

Dynamic Re-Reference Interval Prediction (DRRIP) [17] was proposed in 2010.
DRRIP does not utilize the concept of an LRU stack as done by LRU and TADIP.
In DRRIP, each cache block has a number associated with it, called re-reference

16

interval. The re-reference interval is a relative measure of when the algorithm
expects a block to be re-referenced. Given two blocks with different re-reference
intervals, then the block with a lower interval is expected to be re-referenced before
the other block. A value between 0 and 2M −1 is used to represent the re-reference
interval. M is a configurable variable usually in the interval [2, 5] [17]. The value
of 0 indicates a near re-reference interval, the algorithm expects the block to be
re-referenced in the near future. The value 2M − 1 indicates a distant re-reference
interval while the value of 2M − 2 indicates a long re-reference interval. Multi-
ple blocks may have the same re-reference interval. Hence, blocks are not strictly
ordered as in the LRU stack. By setting M = 1, DRRIP degrades into the Not Re-
cently Used (NRU) [20] algorithm, which among others is used on the UltraSPARC
T2.

The replacement policy of DRRIP is to scan all blocks and evict the first one
found with a distant re-reference interval. If no blocks have a distant re-reference
interval the re-reference interval of all blocks is incremented by one and the scan
restarts. This process repeats until the algorithm finds a victim block. If multiple
blocks are potential victims, the algorithm uses the scan order as a tie-breaker. In
the original paper, the authors specify that the leftmost potential block, the one
with a lower block index, is the victim in the case of a tie.

DRRIP’s promotion policy is to decrement the re-reference interval of the ac-
cessed block. By doing this DRRIP utilize access history rather than access time
when calculating the re-reference interval. Hence, to reach a near re-reference in-
terval a block has to be accessed multiple times. This promotion policy is different
compared to LRU and TADIP, where a block will move to the MRU position
following a hit, independent of the previous access history.

The insertion policy of DRRIP, like DIP and TADIP, is composed of two dif-
ferent policies and a selection mechanism. Static RRIP (SRRIP) will always insert
new blocks with a long re-reference interval. Depending on the state of the cache,
there might be existing blocks with a higher re-reference interval than the blocks in-
serted by SRRIP. This gives the newly inserted blocks a chance to see a re-reference
before being replaced. Binominal RRIP (BRRIP) is analog to BIP in DIP. BRRIP
with either insert new blocks with a distant re-reference interval or, with a small
probability, insert like SRRIP with a long re-reference interval. Like BIP, BRRIP
will allow trashing access patterns to keep some of the working set in the cache
and hence improve performance over SRRIP. Selecting between the two insertion
policies can be done using set dueling or ATDs, similar to what was described for
TADIP. The authors use set-dueling in their original paper, and we opt to do this
in our implementation as well.

Figure 2.5 shows an example cache managed by DRRIP. In the example, M is
set to 2, making the distant re-reference interval 3 and the long re-reference interval
2. Also, we assume static insertion throughout the example. Initially, there are four
blocks A, B, C and D with re-reference intervals 3, 1, 1 and 0. First an access hits
the C block, and its value decrements to 0. Next a miss to block E occurs, block A
has a re-reference interval of 3 and is evicted, E is assigned a re-reference interval
of 2. Then a miss to block D occurs, as no blocks have a re-reference interval of 3

17

C
A B C D

MRU LRU

Hit C

A B C D
MRU LRU

Miss E

E A B C
MRU LRU

D E B D
MRU LRU

Hit D

E

D

D

Miss D

Figure 2.6: NUCache managed 4-way cache set. (M=2)

all values are incremented by one. After one incrementation E now has an interval
of 3 and is evicted. Then follows a hit to block D, causing its re-reference value to
decrease by one. The last row contains the final state of all blocks.

2.1.5 NUCache

Next Use Cache (NUCache) [19] was first proposed in 2011. NUCache does not
partition the cache by examining each core’s access pattern separately like many
of the other algorithms. Instead, NUCache uses the concept of delinquent PCs.
A delinquent PC is the PC value of a memory instruction that often causes cache
misses. By evaluating the properties of the delinquent PCs, NUCache selects a set
of PCs and allocates more cache space to blocks loaded by these instructions. Be-
cause all applications running may contain one or more delinquent PCs, NUCache
will implicitly share the cache between the applications.

To detect delinquent PCs, NUCache uses a novel DeliTrack structure. The
DeliTrack is a storage structure, indexed by PC that stores a miss count, insertion
time and a next use histogram. LRU is used to manage the DeliTrack, which
naturally ensures that PCs causing many misses are kept while others are replaced.
The next use histogram counts the next use value of blocks loaded into the cache
by the given PC in buckets of 8 from 0 to 64. This histogram is later used when a
set of prioritized delinquent PCs are selected.

The next use distance of a block is defined as the number of misses observed
by the cache between the time the block was evicted and the next time it is loaded
due to a cache miss. This number is then scaled by the number of sets in the
cache to get the set relative next use distance. An additional storage structure,
NUTrack, is used to generate the next use histogram in the DeliTrack. NUTrack
is a set-associative structure indexed by block address. Each row in the NUTrack
stores a evicted bit, eviction time, and PC. When a new block belonging to a PC
in the DeliTrack is inserted into the cache, an attempt is made to insert a new
row in the NUTrack. A row is inserted iff there is a valid replacement target in
the NUTrack. Two valid replacements exists; an unused row, or a row with the
eviction bit set to true and an eviction time older than the maximum tracked next

18

use value (64). When a block is evicted from the main cache, the eviction bit and
eviction time is set in the corresponding NUTrack row, if it exists. On insertion
in the main cache, the NUTrack searches for a matching row. If a matching row
exists the next use distance is calculated and if the value is lower than the max
value (64) the corresponding row in the DeliTrack histogram is incremented.

NUCache divides the ways in each cache set into two groups, MainWays, and
DeliWays. The MainWays are managed by LRU while the DeliWays are simply
first in first out. The value M defines the number of DeliWays. NUCache attempts
to reduce misses by not evicting blocks from selected delinquent PCs when they are
evicted from the MainWays, but rather let them enter the DeliWays. By using the
size of the DeliWays and the next use information in the DeliTrack structure, the
algorithm periodically selects a set of PCs that are allowed to use the DeliWays.
The selection is done using a greedy algorithm that attempts to ensure that each
block entering the DeliWays will receive a hit at least once before they are pushed
out by other blocks. DeliWays and MainWays are implemented by having two extra
bits per cache block, one indicating if the block can enter the DeliWays, another
indicating if the block is the DeliWays. On insertion, all blocks inserted into to the
MainWays. When the LRU block in the MainWays is about to be replaced, the
algorithm checks if it is marked to enter the DeliWays. If the block is allowed to
enter the DeliWays, it will not be evicted but rather moved from the MainWays.
If, after moving the new block into the DeliWays, the number of DeliWays blocks
has exceeded M the oldest block is removed. Otherwise, the new LRU block in the
MainWays is evaluated. Because of this implementation the MainWays may use
the entire cache if no DeliWays are in use, at the same time the DeliWays cannot
exceed M . This allows for an efficient use of every cache set.

Figure 2.6 shows an example cache set managed by NUCache with M set to
2. Initially, there are four blocks, A, B, C, and D. A and B are in the MainWays,
indicated by the blue background. While, C and D are in the DeliWays, as indicated
by the yellow background. Block B is eligible for insertion into the DeliWays, no
other blocks in the example are eligible for the DeliWays. The first request is for
block C; this is a hit. C is not promoted as it is a part of the FIFO managed
DeliWays. Next is a request for E, and this is a miss. The cache first attempts
to evict B, but B is eligible for DeliWays and is not evicted. After B enters the
DeliWays, it contains a total of 3 blocks, this is one more than the upper limit of 2,
and hence the first in, D, is evicted. E is then inserted at the MRU position. Next
is a request for D; this is also a miss, and A at the LRU position is evicted. The
final request is also for D, causing no change as D is already at the MRU position.

2.2 Cache Partitioning Algorithms

This section covers cache partitioning algorithms. In contrast to the replacement
algorithms, these algorithms explicitly assign a set number of blocks in each cache
set to each core.

19

2.2.1 UCP

Utility Cache Partition (UCP) [25] was first presented in 2006. UCP uses the
concept of utility when assigning ways to a core. Using a Utility Monitor (UMON),
UCP divides the ways in the cache between the cores. UCP then uses the same
insertion and promotion policy as LRU. The replacement policy is as in LRU but
with two modifications: First if the number of blocks owned by the requesting core
is less than the number of ways assigned to it, then the least recently used block that
is not assigned to the requester core is replaced. If however the number of blocks
owned is greater than or equal to the number of assigned ways the replacement
algorithm selects the least recently used block of those owned by the requester.
This replacement policy ensures that the division between cores in each set move
toward the global allocation following cache misses. At the same time, a core may
use more blocks that it is currently assigned, given that the space is not claimed
by any other core.

The UMON is the core of the UCP algorithm. It consists of one ATD per
core sharing the cache. The ATD is managed by normal LRU replacement and
has one access counter per way. Whenever a cache request hits in the ATD, the
access counter representing the way the block was in is incremented. In other
words, UMON uses the stack property of LRU, as explained in Section 2.1.1, to
find the hit rate of all valid partition sizes. In addition to the ATDs, there is a
monitor circuit that uses the access counters to calculate a new global partition at
set intervals. In the original paper, the authors recalculate the partitioning every
5M cycles.

The original paper proposes several algorithms for determining optimal par-
titioning based on the counter data. One of them is the Lookahead Algorithm
suitable when there are more than two cores sharing a cache. The Lookahead
Algorithm assigns ways based on an increase in marginal utility; it is given in
Algorithm 2. While there are more ways to distribute, the algorithm calculates
the maximum marginal utility achievable by each core. The core with the highest
value wins and is assigned as many ways as needed to achieve the increase. The
algorithm continue until all ways have been assigned. Lines 27-28 calculate the
marginal utility. First the number of misses prevented by increasing the allocation
from a to b is found. Due to the stack property of LRU, this is simply done by
summing the access counters for ways a to b − 1. The number of misses is then
divided by the number of sets introduced, to find the marginal utility. The rest of
the algorithm is simply a greedy algorithm selecting the highest marginal utility
at each iteration. After a reallocation of cache ways, the ATD counters are all
halved. By doing this, the UMON will keep historical data for future decisions
while prioritizing data from the current period.

Because the lookahead algorithm is greedy, finding a case where it makes a
non-optimal choice is rather easy. Consider a case with two cores, and two ways
left to assign. By assigning one way to core 0 it will receive 10 more hits, 2 ways
offers no improvement. Assigning one way to core 1 causes no additional hits, but
if given two ways it will receive 18 hits. In this case, the marginal utility is 10 for
core 0 and 9 for core 1. The algorithm assigns one way to core 0, and in the next

20

C
A B C D

MRU LRUHit C

C A B D
MRU LRU

Miss E

E C A B
MRU LRU

Miss F

F E C B
MRU LRU

E

F

Figure 2.7: UCP managed 4-way cache set. (Two cores each allocated two blocks)

iteration both have zero utility and it does not matter which is assigned the last
way. In this case, the algorithm saved 10 misses while it could have saved 18. In
order to guarantee optimal decisions the algorithm would have to do an exhaustive
search of the solution space, but this is infeasible as it requires a lot more resources
than the simplified greedy algorithm.

Figure 2.7 show an example cache set managed by UCP shared by two cores.
We assume that both cores are allocated two blocks. Initially, core 0 has three
blocks in the cache as indicated by the blue background color; A, C, and D. The
first request is by core 0 for block C; this is a hit causing the block to be promoted
to MRU, pushing A and B towards the LRU position. Next is a request for E by
core 0; this is a miss. Because core 0 already has more than the number of allocated
blocks in the cache, the block closest to LRU owned by core 0 is evicted, D in this
case. Finally, a request for F is made by core 1; this is also an miss. Because core
1 has less than the number of allocated blocks in the cache, a block not owned by
core 1 is to be evicted. As a result, B owned by core 1 at the LRU position is
saved, and rather A at the next to LRU position is evicted.

2.2.2 PIPP

Promotion/Insertion Pseduo-Partitioning (PIPP) [34] proposed in 2009 is an al-
gorithm based on a slightly modified UMON circuit and a novel insertion and
promotion policy. The UMON changes are to enable stream detection. Where
the UCP algorithm only handles streaming applications indirectly, by assigning
few ways because of a low hit rate in the ATDs, PIPP’s UMON actively detects
streaming applications. Stream detection is implemented by adding a counter that
counts the total number of cache misses in the ATD. An application is then deemed
to be streaming if either the number of misses or the miss rate in a single allocation
period is above a threshold.

PIPP like UCP views the cache set as an LRU stack. The replacement policy
is as in LRU, but the insertion and promotion policy is novel. The insertion policy
inserts new blocks πn blocks from the LRU position. Here πn is the number of ways
assigned to the nth core. In a 4-way cache dual-core setup where both cores are

21

Algorithm 2 UMON Lookahead Algorithm.

1: balance← N /* Number of ways */
2: allocations[i]← 0 /* for each core i */
3: while balance do
4: for all cores i do
5: alloc← allocatations[i]
6: max mu[i]← get max mu(i, alloc, balance)
7: blocks req[i]← min blocks to get max mu[i] for i
8: end for
9: winner ← application with the maximum value of max mu

10: allocations[winner]+ = blocks req[winner]
11: balance− = blocks req[winner]
12: end while
13: return alloactions
14:

15: function get max mu(i, alloc, balance)
16: max mu← 0
17: for ii = 1; ii <= balance; ii+ + do
18: mu← get mu value(p, alloc, alloc+ ii)
19: if mu ≥ max mu then
20: max mu← mu
21: end if
22: end for
23: return max mu
24: end function
25:

26: function get mu value(p, a, b)
27: U ← change in misses for application p when number of blocks assigned to

it increases from a to b
28: return U

b−a
29: end function

assigned two ways, PIPP will insert all new blocks from either core in the second
to last position in the stack. In this situation, the two top positions in the cache
stack can only be reached by a cache block through promotion. On a cache access,
a block has a chance, pprom = 3

4 , to move one position upwards in the stack unless
it is already at the MRU position.

On insertion, the PIPP policy does not consider how many blocks are owned
by the requesting core, this is unlike UPC’s insertion policy that prevents a core
from claiming more ways that what it is assigned. However, cores with more ways
assigned to it will insert its blocks higher up in the stack. The core with the
highest number of ways assigned will not have any insertion competition pushing
its blocks out of the cache. The only way blocks from this core can be pushed
out is by other blocks from the same core, or by blocks from other cores that are

22

C
A B C D

MRU LRUHit C

A C B D
MRU LRU

A C E B
MRU LRU

Miss F

A C E
MRU LRU

E

F

Miss E

F

Figure 2.8: PIPP managed 4-way cache set. (Two cores each allocated two blocks)

re-referenced repeatably. Two cores with the same allocations will both have an
equal chance of keeping their blocks in the cache, as they both insert at the same
position. Statistically a core with a lower allocation, inserting at a lower position
in the stack, should also on average own fewer blocks in the cache compared to a
core with a higher allocation. This way PIPP obtains what the original authors
call pseudo partitioning, where overall a higher allocation will statistically result
in more cache space. However, the access frequency of cores can cause a core with
a low allocation to own most of or all blocks in the cache if the other cores have a
much lower access frequency.

When the UMON detects a core that is streaming PIPP will no longer insert
blocks from this core at the position given by the allocation. A special insertion
position, πstream, is used for all streaming cores. πstream is set to the number of
cores currently streaming. By inserting at this fixed position, PIPP attempts to
limit the interference the streaming core has on the non-streaming cores. Blocks
from streaming applications have a reduced chance of promotion after an access,
pstream = 1

128 . In the case where all cores are streaming, and there are no cores to
protect, PIPP inserts all blocks at the LRU position.

Figure 2.8 shows an example cache set managed by PIPP shared by two cores.
Both cores are allocated two blocks, and initially core 0 owns three blocks in the
set; A, C, and D. In this example we assume all hits cause a block promotion. The
first request is for C by core 0; this is a hit, and the block is promoted, effectively
swapping block B and C. Next is a request for E by core 0; this is a miss. E is
inserted at the second to last position of the cache set, as the core is allocated two
blocks, causing D to be evicted and B to move to the LRU position. Finally, a
request for F is made by core 1; again it is inserted at the second to last position,
evicting B. Note that after the initial request for C, the state of the two upper
blocks do not change.

2.2.3 PriSM

Probabilistic Shared Cache Management (PriSM) [18] was first presented in 2012.
PriSM is a framework for cache management with optimization algorithms target-

23

ting multiple performance goals. The original paper presents hit maximization,
fairness and QoS goals. We will focus on the hit maximization algorithm , or miss
minimization algorithm, as all other algorithms in this thesis also targets this goal.
PriSM utilizes ATDs to estimate private cache performance for each of the cores.
The ATD will keep track of total misses and hits. It will not track hits per cache
way like the ATDs in UCP and PIPP. In addition to the ATDs, the algorithm
requires three counters per core tracking hits, misses and number of blocks owned
by the core in the actual cache. PriSM utilizes the same insertion and promotion
policies as LRU, but the replacement policy is optimized based on the ATD and
the optimization target.

The replacement algorithm of PriSM utilizes eviction probabilities, Ei (
∑
Ei =

1), assigned to each core when selecting a victim block. On replacement, a victim
core is first selected by a random draw using the eviction probabilities. The LRU
block owned by the victim core within the cache set is the eviction target. In the
case where the selected target does not own a block in the set, all blocks owned
by cores with Ei > 0 are considered, and the LRU of these is the eviction target.
At set intervals, an optimization algorithm determines the eviction probability, Ei,
for each core. The original paper recalculated Ei values at every 10000 cache miss.

The insertion and promotion policy of PriSM is equal to LRU. On insertion, a
block is promoted to the MRU position, and on any subsequent accesses the block
is again promoted to MRU unless it already has that position.

Selecting an eviction probability Ei for each core is done by considering how
the eviction probability will effect a core’s usage of the cache. Consider an interval
of W misses where each core contributes a fraction of the misses, Mi. At the start
of the interval the blocks owned by corei equals a fraction Ci of the total number
of blocks in the cache. If we do not evict any blocks owned by corei during the
interval, then at the end of the interval the core owns a fraction Ti of the cache. Ti
is known as the target allocation, and is expressed by Ti = Ci +Mi ∗W/N . Here
Mi ∗W is the number of misses caused by corei during the interval, which also
is the number of blocks inserted by the core. N is the total number of blocks in
the cache, and the fraction Mi ∗W/N equals the fraction of the cache claimed by
corei during the interval. If the core has a non-zero eviction probability, then this
formula extends into Ti = Ci + (Mi − Ei) ∗W/N . As noted, PriSM defines three
optimization targets, each one of these is responsible for calculating the optimal
Ti that will fulfill the optimization target. Rearranging the above formula for Ei

yields: Ei = (Ci−Ti)∗N/W +Mi. Algorithm 3 shows how Ti values are calculated
for hit maximization. It is a relatively simple algorithm that will adjust the target
occupancy based on the current occupancy and the potential for gaining more hits.

While we have presented PriSM based on LRU replacement, as done in the
original paper, it should be noted that PriSM is not dependent on this underlying
replacement algorithm. Any algorithm is usable, as long as it is augmented to
prioritize the selected victim during replacement. The algorithm run on the ATDs
has to be the same as the underlying algorithm in the PriSM implementation.

24

Algorithm 3 PriSM Hit Maximization.

1: N /* Number of cores */
2: for all cores i do
3: PotentialGain[i]← StandAloneHits[i]− SharedHits[i]
4: end for
5: TotalGain←

∑
PotentialGain

6: for all cores i do
7: Ti ← Ci ∗ (1 + PotentialGain[i]

TotalGain)
8: end for
9: Ti = Ti∑

T /* Normalize target occupancy */

2.2.4 CLU

Co-Optimizing Locality and Utility (CLU) [36] was first presented in 2014. The
authors of CLU recognize that recent research in LLC partitioning has followed two
distinct directions. Some publications optimize for access locality and attempt to
improve performance by changing the lifetime of blocks in LRU managed caches.
DIP, TADIP, and NUCache are three such solutions that use novel methods to
reduce or extend the lifetime of blocks in an elsewise LRU managed cache. Other
publications recognize the usefulness of utility and do way-partitioning between
cores based on their utility values. Examples here are UCP and PIPP. Both UCP
and PIPP are forced to use LRU as the underlying algorithm because they both
depend on the stack property of LRU to do utility calculations [25, 34].

The authors of CLU present a novel approach for calculating the utility curve
of a BIP managed cache. BIP, as covered earlier, is one of the two insertion
policies under DIP and TADIP. BIP violates the stack property of LRU by mostly
inserting new rows at the MRU position, or at a low probability in LRU position.
To correctly measure the utility curve of a BIP managed k-way cache, one needs k
ATDs; ATD(1), ATD(2), ... ATD(k). Where ATD(x) is an x-way ATD. In contrast,
the utility curve of an LRU managed cache can be found using one ATD, due to
the stack property. Having k ATDs per core sharing the LLC is not a realistic goal
due to the required overhead. The authors of CLU propose a simplification where
there are m = log2k ATDs; ATD(1), ATD(21), ..., ATD(2m). A linear increase
between the sample points is assumed when calculating the final utility curve. It
should be noted that the storage overhead of m ATDs in total is less than twice
the overhead of the single ATD(k) required to sample the LRU curve.

CLU uses the two curves first to allocate ways to each core using the same algo-
rithm as shown for UCP in Section 2.2.1. The only difference is that the algorithm
uses either the LRU or BIP value when estimating utility given an allocation, de-
pending on which algorithm performs best. During runtime, CLU works like UCP.
The only exception is that the core’s ways are managed by either LRU or BIP,
depending on which algorithm has the best utility value for the number of ways
currently assigned to that core.

Figure 2.9 is an example LIP and BIP utility plot for a core sharing a 16-way

25

Figure 2.9: BIP and LIP utility plot in a 16-way cache.

cache. For each way value, the maximum achievable utility is the maximum of the
LIP and BIP line. Hence, when the lookahead algorithm is used to assign ways to
each core, the maximum of the LIP and BIP value is used. If the sample core were
assigned 2 ways it would use BIP replacement, this follows from the fact that BIP
has a higher utility at 2 ways. However, if the core were assigned 12 ways, it would
use LIP replacement because LIP has a higher utility at that point.

26

Chapter 3

Framework

This chapter presents our selected simulator and shortly outlines the structure of
the simulator’s memory simulation. We present the selection of algorithms we have
implemented and show how they relate to each other and the simulator. Finally,
we provide details regarding any assumptions or changes that were necessary to
implement working versions of the selected algorithms.

3.1 Simulator

There are several different simulators used in computer architecture research to-
day [5, 2, 21, 24]. Of the simulators used today, we evaluated two possible can-
didates for this work, Sniper [5] and gem5 [2]. These two candidates are mainly
chosen because they are both in active use by the CARD [4] research group at
NTNU where this thesis is performed. Gem5 is also an obvious candidate because
it is the simulator used in most computer architecture research today [6]. It is a
cycle accurate simulator meaning that it can theoretically simulate real hardware
perfectly. This accuracy comes at the cost of simulation time. The other candidate,
Sniper, is based on interval simuation [8]. Interval simulation allows it to simulate
benchmarks significantly faster than gem5 [5, 23] at the cost of reduced accuracy.

Sniper is multithreaded, and each simulated core runs in a separate simula-
tion thread. This separation allows Sniper to take advantage of today’s multicore
processors to speed up the simulation. On the other hand, gem5 performs all sim-
ulation in a single thread. By having multiple simulation threads, there is a chance
of clock skewing [5] during simulations in Sniper. Clock skewing is when one core
simulates faster or slower than the others, making the clock values in each core
different. When this happens, the simulator cannot correctly simulate inter-core
interactions, such as access to the shared cache. There are however techniques
implemented in Sniper that attempt to reduce errors caused by clock skewing.

Gem5 is an execution-driven simulator. It takes the benchmark binary as input
and simulates it by correctly executing instructions like a real processor. Sniper,
which is trace-driven, does not need the benchmark binary, but rather a trace of

27

Figure 3.1: Partial core memory model in Sniper.

instructions from a previous run. The instruction trace is generated by running the
benchmark ahead of time, and dumping committed instructions as the benchmark
progresses. As a result, the instruction trace does not contain instructions that
were executed along miss-predicted execution paths and later reverted. Because of
this, Sniper cannot correctly estimate the cost of a branch miss prediction, as this
may vary depending on the effect of the wrongly executed instructions. Gem5 will
execute the wrong execution path just like a real processor, and hence correctly
estimates this penalty. By using traces, Sniper does not have to simulate the effect
of each instruction correctly, it only needs to estimate the time it will take to
execute. This makes the simulator code base smaller, and it becomes easier to
extend it with new algorithms.

Based the authors previous work [23], we chose Sniper over gem5 because the
simplicity and speed of Sniper outweigh the reduced accuracy compared to gem5.
Because we know that clock skewing in Sniper might be an issue for our work, we
will perform an experiment investigating this error source further in Section 6.2.

3.2 Implementation

Figure 3.1 shows an overview of the classes involved in the Sniper memory sim-
ulation. The core class simulate the execution of instructions; this also includes
simulating memory accesses to get and store instructions and data. Each core has
a memory manager instance which again, in our case, has four cache controllers. A
cache controller represents a single cache. For shared caches, the cache controller
instance in all but core 0 is a proxy, any calls to the proxy cache controllers is
directed to the main controller at core 0.

When a core issues a memory request to the memory manager, the manager
will issue the request to caches in order until it finds the data. If none of the caches
have the requested data, the request is handled by the main memory simulation,
which is not in the scope of this simplified overview. Each cache controller knows its
response latency and handles updating of the simulation time during each request.
In other words, the classes from Core down to CacheController handle a mix of
functional and performance simulation.

Each cache controller has a cache instance, which is a purely functional cache
model. The cache class has methods for reading and writing to the cache, and
each method returns whether the request was a hit or a miss. This return value
is then used by the CacheController to update the performance simulation. Each

28

Figure 3.2: Implemented algorithms and their relations.

cache is built from several CacheSet instances, each representing a single set, and
possibly a single CacheSetInfo instance. By modifying how the CacheSet operates,
cache management algorithms can be implemented. The CacheSetInfo instance is
available to all cache sets and enables implementation of schemes that share data
between cache sets.

In the original Sniper implementation, only the block tag requested is made
available to the CacheSet. While this is enough to implement simple schemes, such
as LRU and TADIP, we need more information to implement cache partitioning
schemes such as UCP. We have therefore modified Sniper by adding a data structure
that is sent from the core when it initiates a memory request, all the way down to
the cache set. This data structure allows us to pass arbitrary data from the core
to the cache set, allowing for more complex schemes.

Of the schemes presented in Chapter 2, five have been implemented and tested
in our simulation framework; LRU, TADIP-F, DRRIP-3, PriSM, UCP, and PIPP.
Figure 3.2 shows how the five implemented algorithms relate to each other, and
the base CacheSet class. LRU, which is included in Sniper, and the two set duel-
ing schemes TADIP and DRRIP, are all implemented as direct subclasses of the
CacheSet class. Based on the CacheSet class we have also implemented a cache
with support for ATDs, also known as shadow tags. By default, the ATDs do
full sampling of the cache, but we made this configurable. PriSM, which requires
access statistics for each core, is implemented on top of the ATD implementation.
Also, we create a UMON implementation on top of the ATDs; this adds the utility
calculating and block assigning functionality needed by both UCP and PIPP. UCP
and PIPP, are then implemented on top of the UMON base class.

Our implementation using inheritance reduces the number of code lines required
when we implement multiple algorithms that share several properties. By reducing
the number of code lines required, we improve implementation time, and we reduce
the chance of bug causing issues in our simulations. Implementing additional algo-
rithms in this framework requires only an understanding of the algorithm, as all of
the simulator groundwork is already in place. This makes the framework strongly
suitable for future research.

29

3.3 Algorithm Details

Some of the original papers explaining the algorithms makes unstated assumptions
in their implementation. This section covers the assumptions we have had to make
when implementing algorithms in our simulation framework.

In the DRRIP paper, the authors specify that they make use of set dueling to
choose between SRRIP and BRRIP. The authors do not specify how they select
which sets are dueling sets and which are follower sets. We choose to use the
same algorithm for set classification as used by the authors of TADIP, shown in
Section 2.1.3. Our implementation of DRRIP uses 3-bit counters per cache block,
hence DRRIP-3.

As mentioned in Section 3.2 we have built a generic ATD, or shadow tag,
implementation. We choose to use full sampling in all algorithms that make use
of this implementation, PriSM, UCP, and PIPP. While previous work has shown
that the estimation error when using dynamic sampling with a sufficient number
of sets [16] is negligible, we still opted for full sampling in all our experiments. By
doing full sampling, we eliminate the error source caused by imperfect data and
allow the focus of our experiment to be on the decisions made by the algorithm
instead.

The UMON implementation, as covered in Section 2.2.1, allows a core to be
assigned zero ways. Sniper simulates inclusive caches, which requires a block to be
stored in all cache levels when it is first loaded. As a result, we cannot allocate less
than one block per core. To achieve this, we have modified the first two lines of
the UMON allocation algorithm, as shown in Algorithm 2. Algorithm 4 shows the
modification that ensures that each core is assigned at least one way. Several of
the previous works also did this modification to support inclusive caches [25, 34].

Algorithm 4 Snip: Modified UMON Lookahead Algorithm.

1: balance← N − cores /* Number of ways minus number of cores */
2: allocations[i]← 1 /* for each core i */

In the original PIPP paper [34], there are two conditions that cause an appli-
cation to be marked as streaming; miss rate and miss count. The original paper
uses dynamic sampling in the shadow tags while we use full sampling. Because
the miss count condition scaled badly with full sampling, it was removed in our
experiments. Additionally, the original paper used a miss limit of 0.125 as the
classification limit. However, using our workloads we observed that most bench-
marks always were marked as streaming, causing poor performance. As a result,
we increased the value to the next power of two, 0.25. This change resulted in most
benchmarks switching between streaming and not streaming as expected.

In addition to PIPP, we have implemented a variation we named PIPP-min8.
This variation works exactly like the normal PIPP algorithm, except that the
insertion policy always adds eight to every position. The theory is that blocks in
PIPP-min8 has a longer lifetime, and this may improve performance. Previous
works have mentioned this modification [18] as well.

30

The original PriSM paper states that the eviction probabilities, Ei, for all cores
should sum to 1 [18]. However, we discovered that this is not the case, at least for
the miss minimization algorithm. Simply normalizing the eviction probabilities is
not a viable solution. One or more cores may have an eviction probability of 1,
indicating that they are always the eviction target, while other cores have E > 0.
If we normalize, the core(s) with E = 1 are not guaranteed to be selected as the
eviction target breaking this assumption. As a result, we use a compound victim
selection algorithm;

1. If one or more cores have an eviction probability of 1 we choose a victim at
random between these cores.

2. If no core has an eviction probability of one or the selected core has no blocks
in the set; we select one of the cores with 0 < E < 1.

3. If neither of the two selected cores has blocks in the cache set, the algo-
rithm selects a random block owned by a core with E > 0 as in the original
algorithm.

This modification allows us to prioritize cores with E = 1, which is not possible
via normalization.

31

Chapter 4

Methodology

In this chapter, we introduce the processor model used in our experiments. We
also introduce our benchmarks, and how we built workloads of various sizes based
on these benchmarks. Finally, we introduce the various performance metrics used
to evaluate the implemented cache partitioning algorithms.

4.1 Processor Model

Processor core 3GHz, OOO, 6 inst. dispatch width,
128 rob entries, 4 inst. commit width,
3 Int. ALU, 1 FP MUL/DIV, 1 FP ADD,
2 Int. SSE ALU, 1 Int. SSE MUL

Private L1 inst. 32kB, 64B block-size, 4-way, 8 MSHRs, LRU
Private L1 data 32kB, 64B block-size, 8-way, 8 MSHRs, LRU

Private L2 unified cache 128/256/512/1024kB, 64B block-size, 8-way,
12 MSHRs, LRU

Shared L3 cache 4/8/16/32MB, 64B block-size, 24 MSHRs,
32-way, varying replacement algorithm

Memory controller 6.4GB/s, 100ns access latency
Clock Skew 100 cycle barrier synchronization

Table 4.1: Model properties.

Throughout this thesis, we utilize a CMP model simulated on Sniper [5]. In our
model, each processing core has two levels of private cache, the L1 data and code
caches and a unified L2 cache. Additionally there is a third cache level, L3, which is
shared by all cores. The private caches are managed by LRU, and the replacement
policy of the third cache level varies throughout our experiments. Figure 4.1 shows
an overview of the simulated architecture and Table 4.1 contains an overview of
the system properties.

32

L3

Core #0 L1I
L2

L1D

Core #1 L1I
L2

L1D

M
E
M
O
R
Y

. . .

Core #15 L1I
L2

L1D

Figure 4.1: Processor model architecture.

As the sniper simulation system implements a Nehalem core model, all our
processor core properties are based on Intel’s Nehalem architecture [31]. The first
level cache size is also selected based on the Nehalem architecture. We do note
that in more recent architectures such as Intel’s Haswell [15] the core properties
have changed compared to the older Nehalem, but the size of the first level cache
remains the same. The reason being that with increasing cache size the access
latency also increases. Increased latency can cause problems if the first level cache
is unable to feed the processor pipeline with a sufficient stream of instructions and
data.

For our second cache layer, we have selected four different size configurations.
We will use these configurations to evaluate how private cache size affects shared
cache behavior. Our third level cache has three configurations. During our exper-
iment, we will choose a configuration based on the number of cores used. For 4-,
8- and 16-core simulations we will respectively use a 4MB, 8MB, and 16MB L3
configuration.

Sniper’s memory model is very limited compared to models in cycle-accurate
simulators, such as gem5. In our processor model each memory request completes in
a constant 100ns, there is no simulation of row and column access delays. Because
inter-core interactions may be out-of-order, the memory bus model is a statistical
model that attempts to estimate queuing delays based on a history window. Both of
these limitations introduce an error source in our simulations, but previous work [5,
23] has shown that results are still comparable to cycle-accurate simulations. To
reduce clock skewing caused by having multiple simulation threads, we utilize a 100
cycle barrier synchronization. Barrier synchronization implies that all simulated
cores must wait every 100 cycles for all other cores to catch up. In Section 6.2
we cover an experiment where we measure the effect of various synchronization
barriers on our results.

4.1.1 Cache Models

In the following sections, we describe how CACTI [28] was used to estimate the
access latency for each of our caches. When using CACTI we model each cache with
parallel access to the tag directory and data. We also opted for high-performance
storage cells over the power saving ones that CACTI also supports. Finally, we

33

specify an optimization goal with a preference for lower access latencies. To get
a model that is as accurate as possible we have estimated the access latency for
each configuration in both the L2 and the L3 caches. As a result, we will correctly
observe increasing access latencies with increasing cache sizes.

L1 Code and Data Caches

Data Instruction
Size 32kB 32kB

Block size 64B 64B
Associativity 8 4

Banks 1 1
Technology 32nm 32nm

Access time (Tag) 0.16ns 0.16ns
Access time (Data) 0.38ns 0.32ns
Access cycles (Tag) 1 1

Access cycles (Data) 2 1

Table 4.2: L1 cache properties.

When choosing a first level cache size, we must consider that first level caches
are on the critical path of the processor core. Having a hit latency of more than
2-3 cycles in a first level cache will be a limiting factor in the overall processor
design. We can observe that first level cache sizes have remained constant between
Intel’s Nehalem [31] and the newer Haswell [15] architectures. We have for this
reason opted to simulate only a single size configuration at this cache level. Both
the first level caches have a size of 32kB, divided into sets of 4 and 8 blocks for
the instruction and data caches respectively. Both caches have 64-bytes long cache
blocks. Table 4.2 summarizes these values as well as the best bank count and
access latency for the tag directory and data as estimated by CACTI. We define
the best bank count to be the one that provides lowest access latency for data and
tag directory measured in cycles.

We convert the access latency to cycles assuming a period of 0.33ns, equal to a
clock speed of 3GHz. For example, a tag access latency of 0.16ns equals one cycle
while a data access latency of 0.38ns equals two cycles.

L2 Cache

For the unified second level cache we have modeled four different sizes; 128kB,
256kB, 512kB, and 1024kB. In all configurations, there are 8 blocks in each set
and each block is 64-byte long. Using CACTI, we have found the best number
of banks per size configuration and the corresponding access latency. Table 4.3
summarises these values. Again we have converted access times to cycles assuming
a 0.33ns period. As expected we observe an increased access latency as the cache
size increases.

34

Size 128kB 256kB 512kB 1024kB
Block size 64B 64B 64B 64B

Associativity 8 8 8 8
Banks 1 2 8 8

Technology 32nm 32nm 32nm 32nm
Access time (Tag) 0.28ns 0.29ns 0.26ns 0.32ns

Access time (Data) 0.57ns 0.66ns 0.88ns 0.95ns
Access cycles (Tag) 1 1 1 1

Access cycles (Data) 2 3 3 3

Table 4.3: L2 cache properties.

L3 Cache

Size 2MB 4MB 8MB 16MB
Block size 64B 64B 64B 64B

Associativity 32 32 32 32
Banks 2 4 4 4

Technology 32nm 32nm 32nm 32nm
Access time (Tag) 0.56ns 0.52ns 0.71ns 0.88ns

Access time (Data) 1.42ns 1.81ns 2.11ns 2.69ns
Access cycles (Tag) 2 2 3 3

Access cycles (Data) 5 6 7 9

Table 4.4: L3 cache properties.

Like the previous level we have three different size configurations for the L3
cache; 4MB, 8MB, and 16MB. Unlike the previous two cache levels, that all use a
standard LRU replacement policy, we will vary the replacement policy of the third
level. Many of the algorithms we are experimenting with in this work resemble
some form of way-partitioning by assigning some ways (or cache blocks) per cache
set to each core. For this reason, the third level cache has 32 cache blocks per cache
set, in contrast to the 16 cache blocks per set in the original Nehalem architecture.
Giving us an average of 8/4/2 sets per core during our 4/8/16 core experiments.
The block size is set to be 64-bytes as in the previous levels. Again using CACTI
we find the best bank count and the corresponding access latencies. Table 4.4
summarises the cache properties for the various cache sizes.

4.2 Benchmarks and Workloads

In this section, we will present the benchmarks used to evaluate cache partition-
ing algorithms in this thesis. We explain how we extracted simulation traces from
benchmarks and how we classified those traces based on their sensitivity to changes

35

in available cache space and memory bandwidth. Finally, we explain how we cre-
ated 4-, 8-, and 16-core workloads based on those benchmark traces.

4.2.1 Benchmarks and Sample Extraction

In all our experiments, we are utilizing benchmarks from the SPEC CPU2006 [29]
benchmark suite. We choose this suite because it is the newest of the CPU bench-
mark suites from SPEC, and it is specifically designed to test the performance of
various computer architectures with benchmarks based on real user applications.
Unless otherwise stated all benchmarks use the first reference input set. Because
simulating an entire benchmark is a time-consuming process, we choose to extract
a sample interval used to represent each benchmark. There are multiple ways of
extracting sample intervals. The naive way is to specify an offset and a length and
use this across all benchmarks. However, several more advanced methods of sample
selections exists, two examples are SimPoint [9] and SimFlex/SMARTS [11, 33].

SimPoint analyzes the benchmark and divides it into basic blocks. It then
divides the dynamic instruction stream of the running benchmark into intervals of
a set size. Each interval is classified by which of the basics blocks in the benchmark
the interval executes. Finally, the intervals are clustered using k-means, and the
algorithm selects the intervals closest to the centroid in each of the k-clusters to
represent the benchmark. The value of k is configurable. SimPoint is run ahead
of time and after it has been run an external simulator is used to simulate each of
the SimPoint selected intervals.

SimFlex also divides the dynamic instruction stream into intervals, but unlike
SimPoint this is done while the simulator is simulating the benchmark. Some
intervals are simulated in detail while others are simulated in a low detail fast
forward mode. SimFlex uses statistics to calculate the variation of simulation
results based on the intervals simulated in detail. The simulation ends after a
minimum number of intervals has been simulated, and the result variation between
the intervals is within a set limit.

Both solutions utilize the same idea of simulating only parts of the dynamic
instruction stream. The main difference is the selection criteria and the separation
between ahead of time processing and integration with the simulator. J. Yi et
al. [35] have shown that there is little variation in accuracy between SimPoint
and SimFlex selected intervals. SimPoint also integrates well with our existing
simulation framework. As a result, we chose to utilize SimPoint in our work.

Ideally a few sample intervals are needed per benchmark to get accurate sim-
ulation results. To simplify the simulation, we chose to extract one larger interval
per benchmark, in place of multiple smaller ones. By doing this, we are willingly
increasing the error [10] between simulating our interval and the results obtained
by simulating the entire benchmark. In our experiments, we are interested in ob-
serving performance change in our simulated intervals due to architectural changes.
Producing results comparable to the results of the full benchmark run is not re-
quired to achieve this. Also, it is not obvious how to correctly combine performance
metrics used in this thesis from multiple simulated intervals. Therefore, we choose
to use only one interval per benchmark.

36

The length chosen for our intervals may also affect the final results. As caches
are empty when the simulation starts the cold cache effect, caused by compulsory
misses at simulation start, may skew our results if the simulated interval is short.
Additionally, as we are experimenting with cache partitioning algorithms, we be-
lieve that a certain number of instructions are needed for our results to stabilize.
Finally, by increasing the number of instructions we are also increasing the time
required to simulate a benchmark. We choose to extract 250M instruction inter-
vals using SimPoint. This number of instructions will make the cold cache effect
negligible [9, 10, 23] while we keep the simulation time relatively low. We generate
an instruction trace using Sniper for each SimPoint extracted interval. All later
experiments utilize these traces in place of the actual benchmark executable.

4.2.2 Benchmark Classification

Cache Bandwidth Cache & Bandwidth Compute
astar bwaves bzip2 GemsFDTD
gobmk cactusADM mcf calculix
h264ref gcc omnetpp dealII
hmmer lbm soplex gamess
perlbench libquantum sphinx3 gromacs

milc leslie3d
wrf namd
xalancbmk povray
zeusmp sjeng

tonto

Table 4.5: Benchmark Classifications

To better understand our simulation results, we perform a benchmark classi-
fication experiment on each of the previously generated traces. This experiment
is intended to detect various properties in each trace that may affect how they
behave on our simulated architecture with various cache partitioning algorithms.
We choose to categorize traces based on their sensitivity to the size of the LLC and
the bandwidth of the bus connecting the LLC and the DRAM.

The system model used in this experiment is as shown in Table 4.1 with the
smallest of the L2 configurations, 128KB. The size of the L3 cache and the speed
of the memory bus is varied as shown in Table 4.6. By reducing the size of the L3
cache and the speed of the memory bus, we intend to simulate a situation where
the benchmark has reduced access to resources due to contention.

L3 Cache size 256kB, 512kB, 1024kB, 2048kB, 4096kB
Memory Bus Speed 1.6GB/s, 3.2GB/s, 6.4GB/s, 12.8GB/s

Table 4.6: Model properties.

37

We simulate each benchmark for each combination of LLC size and memory bus
bandwidth, in total 20 simulations per benchmark. Then we evaluate how changes
to the architecture affected the benchmarks performance using the reported IPC.
The evaluation is done by organizing the IPC measurements in a 2d data table with
LLC size on one axis and bandwidth on the other. Between each data pair along
each axis, we calculate the performance reduction. Using the arithmetic average
of reductions along each axis, we classify each benchmark as either sensitive or
not sensitive to changes in that axis property. The standard deviation is used to
increase the required limits on the average reduction if a benchmark shows high
variability along an axis. We observed this in cases where there is little change in
performance except for one point where performance is significantly worse, dragging
the average value down. We define four groups for our benchmarks as described
below. For each group, we define rules used to detect benchmarks in that group.

• Cache sensitive (ca) benchmarks are in general benchmarks with memory
access patterns that are recency-friendly. We required an average perfor-
mance reduction along the cache axis of at least 4% and a standard deviation
of less than 11% to classify a benchmark as cache sensitive. If the deviation
is higher than 11%, a performance reduction of at least 13% is required to be
classified as cache sensitive.

• Bandwidth sensitive (bw) are benchmarks with no to little temporal lo-
cality, often streaming access patterns. We required an average performance
reduction along the bandwidth axis of at least 8% and a standard deviation
of less than 11% to classify a benchmark as bandwidth sensitive. If the devi-
ation is higher than 11%, an average performance reduction of at least 20%
is required to be classified as bandwidth sensitive.

• Cache- and Bandwidth sensitive (cabw) are benchmarks with trashing
memory access patterns that will benefit from more cache (less trashing) and
more bandwidth (faster loading of previously trashed data). To be classified
as cabw both the requirements of the ca and the bw groups as described
above must be satisfied.

• Compute sensitive (co) are benchmarks limited by the processing power of
the simulated processor. These benchmarks do not satisfy the requirements
of the ca nor the bw groups as described above.

We set the classification limits based on manual observation of benchmark be-
havior. We noted that benchmarks that are bandwidth dependent, in general,
had a higher performance loss when we halved the available bandwidth compared
to cache sensitive when we halved the cache size. We also noted that one sam-
ple point dominates the average performance drop for some benchmarks, in these
cases the standard deviation also rose. To prevent false positives, we applied higher
cutoff limits when the standard deviation was high compared to the general case.
Table 4.5 lists all benchmarks and their classification according to the above rules.

38

4.2.3 Workloads

Based on the classified benchmarks we generated 4, 8 and 16 core workloads. The 4
core workloads come in five classes. One class per benchmark group, these contain
workloads only from that particular group. Also, one class with benchmarks picked
from all groups. The ca and cabw groups contain 5 workloads while the bw and
co groups contain 10 workloads. Table A.3 contains an overview of the 50 4 core
workloads and their short names used throughout the report. There is only a single
class of 8 and 16 core workloads, as there are not enough benchmarks per group to
make workloads of this size. The ten 8 and 16 core workloads contain benchmarks
from across all benchmark groups. Table A.1 and A.2 contains an overview of the
8 and 16 core workloads.

All workloads are generated randomly, but with a few predefined rules. No
benchmark can occur twice within the same workload. This because we suspect that
running two instances of the same benchmark, issuing the same memory operations
in lock step, might cause unwanted interference that could skew our results. Also,
we require that all benchmarks eligible for a workload set must be present in at
least one workload in that set.

4.3 Performance Metrics

When we simulate our workloads, we expect destructive interference between bench-
marks to cause slowdowns. Performance metrics are needed to quantify the perfor-
mance of workloads and to compare the performance of different cache partitioning
algorithms. This section defines two metrics; System Throughput (STP) [7] and
the Harmonic Mean of Speedup (HMS) [7].

Two concepts are needed to define STP and HMS, private mode execution time
and shared mode execution time. Shared mode execution time is the simulation
time of a benchmark when run as a part of a workload. Private mode execution
time is the simulation time of a benchmark when run alone on the same processor
model. By definition, we expect a benchmark to execute slower in shared mode
than in private mode.

Based on private and shared mode execution time we can define Normalized

Progress (NP), or speedup, as NP i =
TP
i

TS
i

. Here TP
i and TS

i is respectively the

private and shared mode execution time for benchmark i. Normalized progress is a
measure of benchmark progression in shared mode. A perfect value of 1 indicates
that the benchmark progresses just as fast in shared and private mode. While
a value of 0.5 indicates that the benchmark progresses at half the rate in shared
mode compared to private mode. STP is defined by L. Eeckhout [7] as the sum of
NP for all benchmarks in a workload, as shown in Equation 4.1. By definition, a
perfect STP value equals the number of benchmarks in a simulation, in our case
either 4, 8 or 16.

STP =

k∑
n=1

TP
i

TS
i

(4.1)

39

We also define HMS as the harmonic mean of NP values, as shown in Equa-
tion 4.2. The summation kernel in HMS is also known as Normalized Turnaround
Time (NTT). HMS is therefore by definition the reciprocal of Average Normalized
Turnaround Time (ANTT) [7], and hence HMS has a system level meaning relating
to the benchmark’s average normalized turnaround-time.

HMS =
k

k∑
n=1

1
TP
i

TS
i

=
k

k∑
n=1

TS
i

TP
i

(4.2)

In general an increase in system throughput is also expected to improve turnaround
time. However, there are cases where this is not true. Given a workload where
most benchmarks are performing well while one is performing badly. The one
benchmark performing badly may pull the STP value down, indicating a badly
performing workload. At the same time, HMS could show another picture, as the
well-performing benchmarks may dominate the average performance. As a result,
both STP and HMS are needed to get an insight into system performance.

In addition to HMS and STP, we will use Misses Per Kilo Instruction (MPKI)
when evaluating cache partitioning algorithms. MPKI is defined as the total num-
ber of misses in the LLC, per 1000 instructions. MPKI is an important metric in
our experiments, especially because we are simulating an out of order core. Due to
latency hiding in the processor we cannot assume that a reduction in MPKI neces-
sarily will increase performance nor that a performance increase must be caused by
a reduction in MPKI. As a result, all three metrics are required to gain full insight
into the effects of various cache partitioning algorithms.

40

Chapter 5

Results

This chapter describes an experiment that will compare the various implemented
cache partitioning algorithms both against LRU and against each other. When
executing this experiment, we utilize the base system configuration as previously
detailed in Table 4.1. The L2 cache size is set to 128kB per core, and the L3 cache
size is set to 4MB, 8MB or 16MB for respectively 4-, 8- and 16-core workloads.
Each workload is simulated until all benchmarks in that workload have completed
at least once. The first time a benchmark completes we store its statistics. Af-
ter completion, a benchmark will be restarted unless it is the last benchmark to
complete in which case we end the workload. We generate reference statistics for
each benchmark by executing it in private mode. In private mode, we use the same
system as in this experiment but with only a single core, the L2 and L3 sizes are
set equal to the 4-core workloads; 128kB L2 and 4MB L3.

This chapter is divided into two sections. In the first section, we present average
algorithm performance by core count. We then take a closer look at the results of
the five 4-core workload groups.

5.1 Overall Results

Figure 5.1a shows the average speedup of all workloads normalized to LRU per-
formance grouped by workload size. We observe that most of the implemented
algorithms perform close to LRU for the four core workloads. UCP gives the best
speedup of 2.1% while PIPP performs badly with a 2.4% performance decrease.
The modified version of PIPP, PIPP-min8, performs as good as LRU. When con-
sidering the harmonic mean of speedups as shown in Figure 5.1b we observe that all
algorithms perform as good or better than LRU. Most noticeable is PIPP, which in
terms of HMS is equal to LRU. As explained in Section 4.3, STP is a measure of the
overall speedup of all benchmarks in the workload, and a decrease indicates that
completing all of them is slower. HMS, however, measures the average speedup of
each benchmark. Because PIPP is as good as LRU measured in HMS, it would
indicate that individual benchmarks on average runs equal under PIPP and LRU.

41

(a) STP (not shown; PIPP 0.55). (b) HMS (not shown; PIPP 0.61).

(c) MPKI

Figure 5.1: Average STP, HMS and MPKI normalized to LRU for all workloads,
grouped by number of cores.

Figure 5.1c shows L3 cache misses, and as expected there is a significant increase,
20%, in misses for PIPP compared to LRU, which explains the bad performance.
The modified PIPP algorithm has a lower increase of 6.7%. UCP, which is the
highest performer in terms of STP and HMS, gives the third highest miss increase
at 3.2% more misses than LRU.

The increase in both misses and performance for UCP could be an artifact of
the lookahead algorithm, as shown in detail in Section 2.2.1. If there is a core,
which has relatively few cache accesses per allocation period and also only accesses
a small number of different blocks. Then, this core will have a high initial marginal
utility as only a few ways are needed to provide hits for most accesses. Then on the
other side of the spectrum there might be a core with many accesses, spread across
all cache ways. This core, which causes more misses in total than the first one, may
still have a lower initial marginal utility. If this is the case, UCP will first allocate
ways to cache all the blocks accesses by the first core, before allocating any to the
other. On the other hand, LRU would have prioritized the second core because it
has a higher access frequency. By shielding the blocks of the first core UCP saves
all misses caused by this core, but the other core will miss more compared to the

42

LRU case. In total UCP might cause more misses than LRU. The overall speedup
might, however, be positive if the first core gains more from having fewer misses
than the other core loses from having more.

With increasing core count, we increase the size of the L3 cache, but the asso-
ciativity is unchanged. As a result, even more cores have to share the 32 blocks
in each cache set. For some algorithms, especially PIPP, this increased cache set
pressure significantly degrades performance. At 8-cores, PIPP has a 7.2% per-
formance decrease measured in STP compared to LRU. The modified PIPP-min8
outperforms PIPP, and even slightly outperforms LRU by 2.2%, in the same situ-
ation. This is an indication that blocks inserted by PIPP do not stay in the cache
for long enough to see much re-use. The modified algorithm seems to counteract
this problem by inserting with an offset of 8 blocks higher than normal PIPP. In
the 16-core case, this effect is even more visible, with PIPP performing 45% worse
than LRU measured in STP and PIPP-min8 at only 7.6% worse than LRU. DRRIP
and UCP, the two best performers in the 4-core case, continue to perform well for
both 8- and 16-cores. UCP beating LRU by 5.7% and 6.9% measured in STP in 8-
and 16-core workloads, and DRRIP at 1.8% and 2.6%. TADIP and PriSM, which
both perform equal to LRU in the 4-core case, lose some traction when core count
increases. TADIP performs equal to LRU for 8-cores, but 3.6% slower for 16-cores.
PriSM cannot keep up for more than 4-cores, and performs 4.7% and 7.6% slower
for 8- and 16-cores. As the number of cores increase, it might be tempting to
blame TADIP’s performance loss on an increased fraction of duel-sets, more duel-
sets means more sets forced to use a non-optimal policy. However, since we scale
the shared cache size linearly with increased core count while keeping the associa-
tivity static, the number of sets increase with the core count. Hence, the fraction
of duel sets is equal in all cases. Neither TADIP nor PriSM caused an increase
in misses, which is a good result considering they target miss-minimization. The
fact that UCP can increase STP while increasing misses, and TADIP and PriSM
decreases STP without affecting miss count is an important result that shows that
miss minimization does not directly imply a speedup.

5.2 4-core Workload Results

Our 4-core workloads consist of five distinct groups, where four of the groups
contain benchmarks with a specific characteristic. Section 4.2 lists each group
and explain their specific characteristics. Figure 5.2 shows average STP, HMS and
MPKI normalized to LRU for these five groups. Exploring the result from each of
these groups individually is useful as it will show how various algorithms react to
specific workload characteristics.

Bandwidth bound workloads contain benchmarks that do not benefit from in-
creased cache space. These are benchmarks with mainly streaming access patterns.
As expected the results show that none of the algorithms can significantly improve
performance compared to LRU. As seen in Figure 5.2c UCP causes 3% more misses
than LRU, and in return increases STP by 4.8% compared to LRU. We expect that
even our bandwidth bound benchmarks will have phases with memory re-references,

43

(a) STP (b) HMS

(c) MPKI (not shown ca4 pipp 1.9)

Figure 5.2: Average STP, HMS and MPKI normalized to LRU for all 4-core work-
load groups.

which means that their utility will increase. Based on our results, UCP seems to
detect these phases and prioritize benchmarks correctly. While PIPP in theory
also should be able to detect such changes, our result shows it does not. A possible
explanation to this is that PIPP uses both utility and streaming flags. While an
application may periodically have increased utility causing UCP to prioritize it,
PIPP might still consider it as streaming due to a high miss-fraction, if this is the
case, PIPP will ignore the increased utility.

Cache bound workloads contain benchmarks that are sensitive to changes in
available cache space. In general these benchmarks have recency-friendly access
patterns. Our results from these workloads show two main trends. First, as ex-
pected, LRU performs well, and none of the other algorithms increases performance
or significantly reduce misses. Secondly, UCP and PIPP, the two algorithms that
perform way partitioning, both reduce performance and cause a significant miss
increase. While TADIP and DRRIP, which both mimic LRU and PriSM, which
performs a variant of block level partitioning, performs as good as LRU in terms
of performance. From this, we see that way partitioning is not beneficial if all
benchmarks are recency-friendly. This is an expected result, as way-partitioning
is designed to improve performance by shielding recency-friendly access patterns

44

from thrashing caused by other cores. When all applications are recency-friendly,
it seems that having the cores dynamically share the cache based on access fre-
quency is a better solution. PriSM, which does block level partitioning, confirms
this assumption as it performs as good as LRU in terms of STP and HMS. It does,
however, cause a small increase in misses.

The performance of compute-bound workloads is expected to be mostly unaf-
fected by the partitioning algorithm. Our results support this assumption, with the
exception of PIPP, which again causes increased misses and a slight performance
decrease. Once again, PIPP-min8 seems to remedy this, pointing to an issue with
short block lifetimes in a PIPP managed cache, causing more misses.

Both cache and bandwidth bound workloads and the random workloads show
results that concur with the overall averages discussed earlier. One interesting
fact to note is that both versions of PIPP and UCP are equally good and also the
best performers when measuring in HMS in cache and bandwidth bound workloads.
This result points to PIPP being able to provide speedups of individual benchmarks
that are good enough to raise the average while still performing as good as LRU
measured in STP. Most likely this indicates that applications marked as streaming
are performing badly while those shielded are performing so good their performance
increase raises the average.

(a) STP (b) MPKI

Figure 5.3: STP and MPKI normalized to LRU for cache and bandwidth bound
workloads.

In all our previous findings, we have observed that UCP is raising performance
while also increasing misses. To ensure that this result is not just an artifact of
result averaging, we show the per workload STP and MPKI for the cache and
bandwidth bound workloads in Figure 5.3. As expected, the STP measurements
show UCP providing a speedup in four out of five workloads. In the fifth workload,
cabw01, UCP performs as good as LRU. When considering the MPKI measure-
ments, we observe that UCP increase misses by at least 30% in the four workloads
where performance is best. We also note that in the case where UCP performs as
good as LRU, it also causes the least number of misses. These same trends are
also visible in our other results. Based on this, we conclude that UCP can increase

45

performance while also increasing misses.

46

Chapter 6

Sensitivity Analysis

This chapter outlines a total of five experiments exploring the sensitivity of our sim-
ulated system and our cache partitioning results to various changes in the simulated
architecture. The first experiment, covered in Section 6.1, will investigate the sta-
bility of our processor model and attempt to uncover and remove any bottlenecks.
Then Section 6.2 explores how simulation clock skew in Sniper affects the out-
come of our experiments. Sections 6.3 and 6.4 explore how algorithm performance
is affected by the size of the L2 and L3 cache respectively. Finally, Section 6.5
explores how changing the bandwidth of the memory controller affects algorithm
performance.

6.1 Processor Model Parameter Sensitivity

As detailed in the processor model overview, in Section 4.1, we have based our
simulated processor core on the Nehalem [31] architecture. An experiment was
devised, with the goal of gaining a better understanding and improved confidence
in this model. Of the properties used to define the model, we selected a total of five
we believe to have an important impact on the performance of the simulated core.
We then varied each of the properties in isolation, keeping the others constant. For
each parameter combination, we ran all our benchmarks and calculated the average
speedup relative to the base configuration. The result of this experiment will show
us how sensitive our simulated core is to configuration changes. If we observe a
significant performance variation when changing one or more of the selected prop-
erties, we might have uncovered a bottleneck. In this case, it might be necessary
to tweak the model until we find one that is less sensitive to change.

47

(a) Outstanding Loads. (b) Outstanding Stores.

(c) L1 Miss Status Hold Register. (d) Re-order Buffer.

(e) Reservation Station.

Figure 6.1: Core model property sensitivity.

48

Figure 6.1 shows the average speedup of all benchmarks when we vary our five
selected properties; Outstanding loads (ol), outstanding stores (os), L1 Miss Status
Holding Registers (MSHR), re-order buffer size (rob) and reservation station entries
(rs). Outstanding loads and stores specify the number of outstanding memory
requests the core can have active in the rob. The number of L1 MSHRs decide how
many outstanding cache misses the first level cache can handle before it has to block
on a miss. The size of the rob and rs together decide how many instructions can be
live during execution. Increasing the number of live instructions can increase the
amount of ILP the processor can extract from the program while possibly increasing
the cost of a branch miss prediction.

For two of the memory related properties; os and ol, we observe no improvement
nor decrease in performance for the values we explored. When we increase the last
memory related parameter, MSHR, we do observe a slight performance change.
With an increasing number of MSHRs, the cache and hence the core can handle
more outstanding memory requests. As a result, the core will be able to exploit
more ILP, and a slight performance improvement is observed. Unlike the MSHRs,
we do not expect the value of os and ol to affect performance. If the core is to gain
performance from supporting more outstanding loads there has to be more than 48
loads among the 128 instructions that fit in the rob. Equally there must be more
than 32 stores per 128 instructions for an increased os limit to be beneficial. Also,
both os and ol are limited by the number of memory requests the memory system
can handle, and the total number of L1 MSHRs is less than the size of both os
and ol. The observed performance gain when increasing the number of MSHRs in
the first level caches, as seen in Figure 6.1c, is less than 1% with a 50% storage
increase. We also observe a standard deviation of more than 3%.

When Increasing the size of the rob and the number of rs entries, we observe a
slight increase in performance. Figures 6.1d and 6.1e show an average performance
increase of about 2% with more rob entries, and about a 3% increase with more rs
entries. We observe that these increases come at the cost of a 75% and 50% storage
increase respectively. Also, we observe that the standard deviation in both cases
is about the same as the average performance increase.

When reviewed, these results lead us to conclude that the processor model we
have presented, based on the Nehalem architecture, is stable and that we have
no obvious performance gains from small adjustments. As a result, we decide to
continue using this model for the rest of our experiments without making any
adjustments.

Considering that we base our model on an actual architecture and that our
simulator strives to simulate the core model of that same architecture, it is not
a far-fetched result observing little sensitivity to property changes. During the
design process of the architecture, it is natural to expect that the designers made
a conscious choice between speed and area using a similar analysis. The final
properties would then most likely have been selected to provide a stable middle
ground, which we see reflected in our simulation results.

49

6.2 Clock Skew Barrier Sensitivity

As explained in Section 3.1 one of the techniques that make Sniper faster than
conventional cycle-accurate simulators, such as gem5, is the use of multiple sim-
ulation threads that each simulate one processor core. A method that keeps the
simulation threads in sync is required to simulate inter-core interactions correctly.
The method used to keep the threads in sync affects both simulation accuracy and
simulation time. By having a relaxed synchronization method, one can improve
simulation time, at the cost of simulation accuracy. In our experiments, we have
used barrier synchronization with a barrier width of 100 cycles. Any inter-core in-
teractions that occur between two successive barriers are not guaranteed to occur
in the correct order, but events separated by a barrier will be simulated in the
correct order. In other words, within a single barrier there is the possibility that
all simulation threads run sequentially. For our work, this implies that there is a
possibility that memory requests within a barrier is sent to the cache sorted by the
core id, rather than by time. Because of this possibility we expect that changing
the Clock Skew Minimization Barrier (CSMB) value could have a noticeable effect
on our experimentation results.

(a) STP sensitivity to CSMB. (b) HMS sensitivty to CSMB.

(c) walltime sensitivity to CSMB.

Figure 6.2: STP, HMS and walltime sensitivity to size of CSMB.

50

We devised an experiment to investigate how much the choice of synchronization
barrier width affects our results, and also how much it affects simulation time. In
the experiment, we vary the value of the CSMB and compare average STP, HMS
and MPKI values for all 4-core workloads. Figure 6.2 contains plots for both STP
and HMS relative to the default 100 cycle barrier. From the graph, it is apparent
that lowering the value below 100 cycles causes negligible variations in our average
results. The most noticeable is PIPP; that varies by about 0.2% with a tighter
barrier interval. Increasing the interval to 1000 cycles results in a more noticeable
difference in measurements. For both HMS, shown in Figure 6.2b, and MPKI, not
shown, the trends are the same.

The variance in simulation walltime when we vary CSMB values, as shown in
Figure 6.2c, is as expected. When lowering the barrier interval we measure an
increase in average walltime. Increasing the barrier value causes a slight decrease
in walltime. We observe that the performance gain by increasing the barrier is
small compared to the result variation. When decreasing the barrier, the opposite
is true; the result variation is small compared to the walltime increase. These
observations suggest that a barrier width of 100 cycles is a good trade-off between
accuracy and walltime.

6.3 L2 Cache Size Sensitivity

In this section, we investigate how increasing the size of the private cache affects
the performance of the cache partitioning algorithms. We ran the same experiment
as in Section 5.1, but with varying L2 sizes. The L2 configurations are as shown in
Table 4.3, to summarize we utilize cache sizes of 128kB, 256kB, 512kB, and 1024kB.
As in previous experiments, we set the L3 size depending on the workload size. In
this experiment, we only utilize the three random workload groups. We do this to
be able to aggregate and compare 4-core results to 8- and 16-core results. We omit
the 4-core workloads with specific traits because they would bias the overall 4-core
averages. Also, we have only included plots of the STP results, this because HMS
and MPKI results did not add any additional insight in this experiment.

Figure 6.3 shows the average number of L3 accesses for random workloads with
varying L2 cache size. As can be seen from the graph, by increasing the size of
the L2 cache we are decreasing the number of accesses to the L3 cache. In other
words, the L2 caches are hiding an increasing amount of memory requests from the
shared level. We expect this increased filtering of requests to have an impact on
the performance of the implemented algorithms.

Figure 6.4a shows the speedup of TADIP normalized to LRU measured in STP.
As seen previously, TADIP performs as good as LRU in both 4- and 8-core work-
loads with a 128kB L2 cache. With increasing L2 cache size TADIP steadily out-
performs LRU with between 0.1% and 0.6% depending on the configuration. At
16-cores, TADIP underperforms compared to LRU, as previously shown. We note
that, in this case, increasing the L2 size seems to cause a further decrease in TADIP
performance, while the opposite is true in the 8-core case. We expect that TADIP
will react slower to changes in application phases as memory filtering increases,

51

Figure 6.3: Relative number of accesses to L3 cache with varying L2 size.

because of the counter architecture used to switch between algorithms. This effect
does not seem to have a noticeable impact on results for the 4- and 8-core runs, but
we assume it is causing the visible decrease in performance for the 16-core runs.

DRRIP as already covered outperforms LRU, Figure 6.4b confirms this. The
figure also shows that increasing the L2 size causes a reduction in DRRIP per-
formance. We know that DRRIP uses a step-wise promotion policy where each
successive access promotes a block one position. Naturally less information about
successive accesses will be available to the shared level as filtering in the private lev-
els increase. It is consequently not unexpected that DRRIP suffers from increased
filtering by private cache levels. From the figure, we note that DRRIP seems to be
slightly less sensitive to small changes in L2 size with increasing core count, but in
all cases a 1024kB L2 causes DRRIP performance to mimic LRU performance.

In contrast to the previous algorithms, UCP performance increases with L2
cache size in all workloads, as seen in Figure 6.4c. We know that UCP uses a
utility algorithm as the mechanism for allocating ways to cores. The input to this
algorithm changes when we increase filtering of requests to the shared cache level.
As a result, the allocation of ways to cores is also expected to change, but this is the
intended mechanism of UCP and should not negatively affect performance. UCP
uses LRU to manage replacement for each core, but UCP under normal circum-
stances only allows a core to evict one of its own blocks. We have already covered
that this is why UCP outperforms LRU in the base configuration, in Section 5.1.
As filtering increases at the private level, we notice that UCP increases its perfor-
mance compared to LRU. We expect that this is because, with increased private
cache, more requests from recency-friendly applications can be satisfied by the pri-
vate levels and less information reaches the shared level. Trashing and streaming
applications will still have its requests propagate to the shared cache, largely in-
dependent of the size of the private cache. Hence with increasing private cache
size we expect LRU to make worse decisions by prioritizing trashing and streaming
patterns due to their access frequency. UCP with utility-based way-partitioning
will not suffer as much from the lack of information about recency-friendly appli-
cations, and as the results state, can take advantage of increasing private cache
size.

52

(a) Speedup of TADIP normalized to LRU. (b) Speedup of DRRIP normalized to LRU.

(c) Speedup of UCP normalized to LRU. (d) Speedup of PriSM normalized to LRU.

(e) Speedup of PIPP normalized to LRU.
(f) Speedup of PIPP-min8 normalized to
LRU.

Figure 6.4: Speedup of cache partition algorithms normalized to LRU with increas-
ing private L2 size

PriSM calculates target allocations for each core with the goal of reducing
misses. This technique bears some resemblance to the utility calculation done by
the UMON. As with UCP, we expect PriSM to be able to increase its performance
compared to LRU with increased private cache size because it will continue to

53

limit the cache use of streaming and trashing applications. We find this expectation
reflected in our results. For both 4- and 16-core workloads we observe an increase in
performance compared to LRU as the size of private cache increases. In the 8-core
results we see the same trend between the smallest and largest L2 configuration, but
we unexpectedly observe a performance drop for 256kB and 512kB configurations.
It is unclear what causes this performance drop, and further work is required to
analyze this.

Finally Figure 6.4e show the performance of PIPP, and Figure 6.4f shows the
performance of the modified PIPP algorithm. Since PIPP uses the same utility
algorithm as UCP and also aims to achieve the same allocations as UCP, we expect
them to show similar trends. This expectation somewhat holds true for the 4-core
case, where there is a slight upward trend with increasing L2 size. However, PIPP
underperforms compared to LRU in all workloads, and with increasing core count
performance drops significantly. We expect the short lifetime of blocks in PIPP
managed caches to be the cause of this, as covered in Section 5.1. The modified
PIPP algorithm shows a performance development much closer to what is expected,
at least for 4- and 8-core workloads. We observe the same increase in performance
with increased L2 cache size as seen in the UCP case. In the 16-core workloads,
the performance trend is still as expected, but the modified algorithm performs
worse than LRU. This performance reduction for larger core counts has also been
observed in previous research [18].

6.4 L3 Cache Size Sensitivity

Figure 6.5: Speedup of cache partition algorithms normalized to LRU with de-
creasing shared L3 size

In this section, we cover an experiment where we run all 4-core workloads

54

with varying L3 cache size. While we have already shown in Section 4.1 that
our simulated model is realistic compared to current processor architectures, we
want to explore how algorithm performance changes when we constrain available L3
cache. This experiment uses the same simulated system as in the cache partitioning
experiment, Section 5.1. We use four different L3 sizes; 4MB, 2MB, 1MB, and
0.5MB. When we reduce the size of the shared cache level, we keep the associativity
constant. As a result, we have fewer sets in the cache and hence, more addresses
map to the same set. Table 4.4 shows detailed information about the two larger
configurations. The details for the two smaller configurations are equal to the L2
configurations of the same size, shown in Table 4.3, but with an associativity of
32. Fewer sets cause increased pressure on each set. We expect to see some of the
algorithms further their improvement over LRU in this situation. Also, we expect
PIPP, which already has shown bad performance compared to LRU, to continue
this trend.

Before showing the results of this experiment, we will briefly discuss a special
case that arises in this experiment. When we set the L3 cache to 0.5MB, we have a
situation where the sum of the L2 caches equals the L3 cache. This is an extreme
case in an inclusive cache architecture because when the L2 caches are fully utilized
there is no spare room in the L3 cache. In a real processor, it would not make sense
to have an L3 of this size. We still experiment with this configuration, as interesting
results may arise in situations where the L2 caches are not fully utilized, such as
in a mixed workload with streaming and recency-friendly applications.

Figure 6.5 show the speedup of all algorithms normalized to LRU for varying
shared cache size. DRRIP is the algorithm that shows least variation across the
various shared cache sizes. The figure shows DRRIP performing comparable to
LRU in all cases, with a negligible increase of 0.3% in the 1MB case. TADIP that
in the baseline scenario performs as good as LRU seems to suffer from the increased
set pressure, with increasingly worse performance as the cache size decreases. In
our implementation, we scale the number of duel-sets relative to the total number
of cache sets. Hence, for both DRRIP and TADIP the fraction of duel sets is
constant across the various L3 configurations.

As expected the performance of PIPP decreases as the set pressure increases.
We have previously, in Section 5.1, postulated that the potentially short lifetime
of blocks in a PIPP managed cache may be the cause of the performance decrease
compared to LRU. This experiment further shows that when the number of accesses
to a single set increases the performance of PIPP further decreases compared to
LRU. The MPKI in the 0.5MB cases, not shown here, is over 50% worse than the
LRU case, compared to only 20% worse in the 4MB case. PIPP-min8, a modified
version of PIPP, have previously been shown to improve performance over normal
PIPP replacement. This is also the case when reducing shared cache size. Figure 6.5
shows that PIPP-min8 not only performs as good as LRU in the base experiment,
but with increased set pressure actually performs better than LRU. With a 0.5MB
L3 cache, the modified PIPP algorithm performs 4% better than LRU measured
in STP. In the same configuration, the unmodified algorithm performs about 18%
worse compared to LRU. This result clearly shows the advantage of the extended

55

(a) PriSM (b) UCP

Figure 6.6: MPKI normalized to LRU with decreasing L3 cache size.

block lifetime in the modified PIPP algorithm, and at the same time points a
fundamental performance problem with PIPP.

Next, we have PriSM, which shows a slight performance increase with the 2MB
and 1MB cache. At both 4MB and 0.5MB PriSM performs as good as LRU.
Figure 6.6a shows the MPKI for PriSM. From this figure, we observe that PriSM
in all configurations causes the same number of misses as LRU. This is true even
when PriSM shows an performance increase measured in STP. Finally, we observe
a performance increase by UCP in Figure 6.5. In previous sections (5.1 and 6.3)
we have shown that UCP is the top performer of our algorithms when measured
in STP. This is also the case in this experiment. We observe that UCP increases
performance compared to LRU in both the 2MB and 1MB case, in the 0.5MB case
is comparable to the 1MB case. Interestingly, Figure 6.6b shows that while UCP
increases performance compared to LRU it also causes more misses, shown by an
increase in MPKI. Previous experiments have also shown this effect, as seen in
Section 5.1.

6.5 Memory Bus Speed Sensitivity

In this experiment, we explore how changes to the memory bus bandwidth affect
the performance of the cache partitioning algorithms. With lower bandwidth, we
expect that memory requests will take longer to complete, also we expect memory
queue times to increase in periods with high utilization. However, we know that
increased memory latency does not necessarily imply lower performance, as the
OOO-core may be able to hide the increased memory latency. We also know that

56

Figure 6.7: Speedup of cache partition algorithms normalized to LRU with de-
creasing memory bus bandwidth

increasing the memory latency may have an impact on the amount of speculative
execution performed by the cores. As a result, we might see a change in the number
of memory requests and also MPKI in our experiments. For this experiment, we
use the same base system as in all previous experiments, and we utilize all our 4-
core workloads. The memory bus bandwidth is varied, from the standard 6.4GB/s
down to 3.2GB/s and 1.6GB/s.

Figure 6.7 show average STP of all 4-core workloads for each algorithm. TADIP
shows no sensitivity to reduced memory bandwidth, both the STP measurements
shown in the figure and the MPKI measurements are about equal in all cases.
The results for DRRIP show a slightly better performance compared to LRU with
reduced memory bandwidth. UCP has the best speedups in this experiment, in-
creasing from about 4.8% in the base case to about 7% with reduced memory
bandwidth. The only algorithm that shows a decline in performance measured
in STP is PriSM. However, the HMS measurements for PriSM show a steady in-
crease from about 2% better than LRU in the base case to about 4% in the most
constrained case. This indicates that some of the benchmarks are seeing a per-
formance improvement, while others are slowed down enough to affect the STP
measurements negatively. For the two final algorithms, PIPP, and PIPP-min8, we
see a slight performance improvement. Most notably we see that PIPP performs
as good as LRU in the most constrained case. The performance development in
PIPP-min8 mimics that of PIPP, which has been shown to be the case in several
previous experiments. PIPP-min8 outperforms both PIPP and LRU.

In all our experiments, we have shown that UCP outperforms the other im-
plemented algorithms. Both when reducing the available memory bandwidth in
this experiment, and when we reduced the size of the LLC in Section 6.4, UCP
has show improved performance over LRU. Because of this, we ran an additional

57

(a) STP. (b) HMS.

Figure 6.8: Speedup of UCP normalized to LRU with reduced L3 cache.

experiment varying the memory bandwidth, but this time utilizing the smallest L3
cache configuration used in Section 6.4, 0.5MB. Because of the time constraints on
this thesis, we only have results for UCP compared to LRU. Figure 6.8 shows the
speedup for UCP compared to LRU with varying memory bus bandwidth. These
results show that when we combine the high cache pressure caused by reduced
LLC size, with increased memory latency, UCP can outperform LRU greatly. Our
results show UCP performing more than 21% better than LRU measured in STP
in the most constrained case. Also, UCP shows a 15% increase in HMS compared
to LRU in the most constrained case.

58

Chapter 7

Discussion

In this chapter, we discuss various shortcomings in our implementation, our sim-
ulator framework, and our processor model. We explain why various choices were
made and what might have influenced our final results.

7.1 Parameter Fitting and Lack of Implementa-
tion Details

All of the algorithms we have implemented and evaluated in this thesis have one or
more parameter controlling its operation. As Chapter 3 explains, we have mainly
opted to use parameter values from the original papers. Each of the original pa-
pers has attempted to show how their algorithm performs better that LRU and the
current best theoretical algorithm. It is fair to assume that the authors have cho-
sen parameter values that are fitted to provide good results on their benchmarks.
Because none of the papers uses the same benchmark set, and none of the bench-
mark sets matches the one we used in this thesis, there is a potential optimization
opportunity here.

By performing experiments selecting the property values that give the best
overall performance on our workloads we could potentially improved performance
of several algorithms. Even though it might seem like an unfair comparison, com-
paring algorithms with nonoptimal parameter values, we still choose to not fit
parameters to our benchmarks. The reasoning behind this is that an algorithm
has to not only perform well under benchmarking, but also under a real world sce-
nario. In this case, one cannot reliably fit parameters because the workload is not
known ahead of time. Hence, running the algorithms using the authors selected
parameter values on an unknown workload set might give results closer to a real
life scenario. Also by fitting parameters, one might end up overfitting. In this case,
the parameters result in a good performance on the workload set, but performance
on all other workloads decreases. We feel this would also be an unfair comparison.

As mentioned in Section 3.3 we also had to make some assumptions in our
implementations. These assumptions were necessary due to missing or unclear

59

implementation details in the original papers. While we made all attempts to keep
our implementation identical to the algorithm described by the original authors,
there is still a chance some of our algorithms function slightly different due to one
of these assumptions. As a result, our performance evaluations results may not
follow those of the original papers.

7.2 Clock Skew Synchronization Barrier

One of the advantages of Sniper is the use of multiple simulation threads [5]. We
detailed how this could improve performance in Section 3.1, and also how this speed
improvement could result in decreased accuracy. In the context of this thesis, there
are two effects of having multiple simulation threads that could bias our results.
The problem relates to the ordering of memory events. With multiple simulation
threads, the only guarantee the simulator gives regarding the ordering of memory
events from different cores are that events from different intervals execute in the
correct order. The order of events from different cores within the same interval
depends on the OS scheduler. In the worst case the OS scheduler may schedule all
simulation threads serially, this will cause the ordering of memory events to be by
core id and not by time. All the implemented cache partition algorithms assume
that memory requests are in order, and this inaccuracy will break this assumption.
In addition to the effects on the cache partitioning, memory bus scheduling is hard
to estimate when requests come out of order, this was an issue covered in the
author’s autumn project [23].

Section 6.2 presents an experiment where we attempted to vary the CSMB in-
terval, and we evaluate the performance using changes in measured STP and HMS.
The results of this experiment showed that there is little change when lowering the
CSMB from the default value of 100 cycles all the way to 1 cycle. This would
indicate that although the potential issues outlined above are serious, they seem
to not affect results when we synchronize every 100 cycles. The cache used in this
experiment and all other four core experiments is 4MB with 32 blocks per set. In
other words, there are 2048 sets. For out of order memory accesses to have an im-
pact on our accuracy there would have to be at least one of the 2048 sets accessed
by two cores within the same interval. Additionally the order of the requests have
to be reversed. For this to have a serious effect, we expect there would have to
be a significant larger number of requests resolving the same set within the same
interval. This seems to be an unlikely situation, and our experiment supports this
assumption.

The experiment only did a sensitivity analysis of 4-core workloads. We chose
to do this because repeating it for 8- and 16-cores would have been unpractical
given the time constraints of this work. However, as we scale the number of sets in
the cache linearly with the number of cores, there is no reason to doubt that the
results would have been similar also for 8- and 16- cores.

We note that in the most constrained case in the in the L3 sensitivity exper-
iment, in section 6.4, there are only 256 sets in the cache. With this reduced
number of cache sets the effects of the clock skew, as investigated in section 6.2,

60

might become more visible. We still however expect the effect to be minimal be-
cause multiple memory requests must issued out of order within the 100 cycle
barrier and resolve to the same set, for the effect to be noticeable.

7.3 Uniform LLC Access

In Section 4.1 we present the processor model used on our experiments. Our
architecture, as shown in Figure 4.1, assumes a uniform access latency to the LLC.
All the algorithms presented in this thesis also assume uniform access latency to the
LLC or rather does not take into account non-unform access latency when assigning
cache space. This assumption of uniform access latency is reasonable for 4- and
8-core processors and requires a uniform access method between the L2 caches and
the LLC. One possible solution is a crossbar. However, scaling this architecture
to 16 cores is somewhat unreasonable as the crossbar grows exponentially. This is
visible in the newer 18 core Intel i7 where the last level cache is distributed around
the chip and interconnected using ring interconnects [14]. This solution results in
non-uniform access to the LLC. Due to this fact, we chose not to simulate 32 and
higher core workloads, even thought our simulation framework supports it.

61

Chapter 8

Conclusion

8.1 Conclusion

In this thesis, we have curated a list of important and recent work in the cache
management research field. We have presented a theoretical explanation of all
algorithms and compared them with each other. A simulation framework based on
Sniper was created, and several of the algorithms presented have been implemented
within this framework. We have presented some potential error sources within
Sniper; most notably is the lack of precision when simulating inter-core interactions.
However, experiments were conducted to investigate the severity of this inaccuracy,
and based on the results we conclude that Sniper is a viable choice for this research.

Figure 8.1 is a highly simplified view of 4-core random workload results, showing
average STP and HMS for all algorithms by publication year, normalized to LRU
performance. Throughout our work, UCP has proven to be the best performer
providing up to 5% speedups measured in STP for our main experiment. With
constrained resources, we observed more than 20% performance improvement with
UCP. PIPP has shown comparable performance to LRU in 4-core random work-
loads, but has been unable to compete with LRU in most other cases. We suspect
this is due to a short lifetime of cache blocks in a PIPP managed cache. Both
DRRIP and TADIP, which are arguably simpler schemes compared to UCP and
PIPP, have shown to outperform LRU. Neither has been able to achieve speedups
comparable to UCP. In terms of misses, we have observed that DRRIP, TADIP,
and PriSM have succeed in reducing the number of misses compared to LRU. UCP
has proven to cause an increased number of misses. We suspect that this may be an
artifact of the greedy lookahead algorithm, which prioritizes high marginal utility
and that might not always equal fewer misses. Section 5.1 covers in detail how this
might result in both increased miss count and performance in the same workload.

Independent of the performance metric used, none of the implemented algo-
rithms has proven to beat UCP on average. Our results make it is tempting to
conclude that UCP is the best solution. In sections 6.4 and 6.5 we demonstrated
that changes in the simulated architecture can greatly affect algorithm performance,

62

Figure 8.1: Average algorithm performance measured in STP and HMS normalized
to LRU by year of publication.

and in all cases UCP had a positive trend. While we claim that UCP is the best
solution in our setup, this might not be the case in all architectural configurations.
LRU is still the dominating algorithm in hardware implementations, even if UCP
has existed for nine years, and several publications have shown its improvement
over LRU. Compared to LRU, UCP requires more hardware to implement. In a
real design process, this additional hardware will come at the cost of reduced area
for some other functionality. In the end, this might cause the improvement of cache
performance to be reverted by a decrease in performance of some other component.

8.2 Future Work

The time constraints put on this thesis has limited the number of algorithms pre-
sented. Given more time we would like to continue exploring the vast research
field that is cache management, and bring further algorithms into this comparison.
Implementing more algorithms within the simulation framework would also allow
for more interesting results.

The Sniper simulation system has integrations to various power estimation
tools. Given that power is a concern when designing processor cores today, it
would make sense to extend the simulation framework to provide power estima-
tions as well. With this data at hand, we would be able to use not only performance
but also increased power consumption when comparing algorithms. The potential
for implementing this was not considered during this thesis, mainly because of the
time constraint.

63

Bibliography

[1] ARM. Cortex-A5. 2010.

[2] Nathan Binkert, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muham-
mad Shoaib, Nilay Vaish, Mark D. Hill, David a. Wood, Bradford Beckmann,
Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,
Derek R. Hower, and Tushar Krishna. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 39(2):1, August 2011.

[3] Shekhar Borkar. Thousand Core Chips—A Technology Perspective. pages
746–749, 2007.

[4] CARD. https://www.idi.ntnu.no/grupper/dm/start, 2015.

[5] Trevor E. Carlson, Wim Heirmant, and Lieven Eeckhout. Sniper: Exploring
the level of abstraction for scalable and accurate parallel multi-core simulation.
2011 International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pages 1–12, 2011.

[6] TNJM Chen-Han and HK Sankaralingam. gem5, GPGPUSim, McPAT,
GPUWattch,” Your favorite simulator here” Considered Harmful. re-
search.cs.wisc.edu, 2014.

[7] Lieven Eeckhout. Computer Architecture Performance Evaluation Methods.
Morgan & Claypool Publishers, 2010.

[8] Davy Genbrugge, Stijn Eyerman, and Lieven Eeckhout. Interval simulation:
Raising the level of abstraction in architectural simulation. . . .Computer Ar-
chitecture (. . . , pages 1–12, January 2010.

[9] Greg Hamerly and Erez Perelman. SimPoint 3.0: Faster and More Flexible
Program Phase Analysis. Journal of Instruction-Level Parallelism, 7(7):1–28,
2005.

[10] Greg Hamerly, Rez Perelman, and Bard Calder. How to use simpoint to pick
simulation points. ACM SIGMETRICS Performance . . . , pages 25–30, 2004.

64

[11] Nikolaos Hardavellas, Stephen Somogyi, Thomas F Wenisch, Roland E Wun-
derlich, Shelley Chen, Jangwoo Kim, Babak Falsafi, James C Hoe, and An-
dreas G Nowatzyk. SIMFLEX : A Fast , Accurate , Flexible Full-System Sim-
ulation Framework for Performance Evaluation of Server Architecture. Per-
formance Evaluation Review, 31(4):31–35, 2004.

[12] John L Hennessy and David A Patterson. Computer architecture: a quantita-
tive approach. Elsevier, 2012.

[13] Joshua Ho, Brandon Chester, Chris Heinonen, and Ryan Smith. The iPhone6
Review, 2014.

[14] Joel Hruska. Intel’s new 18-core Haswell Xeon chips will try to preempt the
ARM server onslaught, 2014.

[15] Tarush Jain and Tanmay Agrawal. The Haswell Microarchitecture - 4th Gen-
eration Processor. 4(3):477–480, 2013.

[16] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien Sebot, Simon
Steely, and Joel Emer. Adaptive insertion policies for managing shared caches.
Proceedings of the 17th international conference on Parallel architectures and
compilation techniques - PACT ’08, page 208, 2008.

[17] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, and Joel Emer. High
performance cache replacement using re-reference interval prediction (RRIP).
Proceedings of the 37th annual international symposium on Computer archi-
tecture - ISCA ’10, page 60, 2010.

[18] R Manikantan, K Rajan, and R Govindarajan. Probabilistic shared cache
management (PriSM). ACM SIGARCH Computer . . . , 00(c), 2012.

[19] R. Manikantan, Kaushik Rajan, and R. Govindarajan. NUcache: An efficient
multicore cache organization based on next-use distance. In Proceedings -
International Symposium on High-Performance Computer Architecture, pages
243–253, 2011.

[20] Sun Microsystems. UltraSPARC T2 Processor. (8):1–2, 2007.

[21] Jason E Miller, Harshad Kasture, George Kurian, Charles Gruenwald Iii,
Nathan Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agar-
wal. Graphite : A Distributed Parallel Simulator for Multicores. (January),
2010.

[22] Gordon E. Moore. Cramming more components onto integrated circuits. Pro-
ceedings of the IEEE, 86(1):82–85, 1998.

[23] Runar Bergheim Olsen. Comparison of Cycle-accurate Simulation and Ana-
lytical Modelling for Multi-core Memory System. 2014.

65

[24] Michael Pellauer, Michael Adler, Michel Kinsy, Angshuman Parashar, and
Joel Emer. HAsim: FPGA-based high-detail multicore simulation using time-
division multiplexing. 2011 IEEE 17th International Symposium on High Per-
formance Computer Architecture, pages 406–417, February 2011.

[25] MK Qureshi and YN Patt. Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches. Proceedings
of the 39th Annual IEEE/ACM . . . , pages 423–432, December 2006.

[26] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and
Joel Emer. Adaptive insertion policies for high performance caching. ACM
SIGARCH Computer Architecture News, 35(2):381, June 2007.

[27] Daniel Sanchez and Christos Kozyrakis. The zcache: Decoupling ways and
associativity. Proceedings of the Annual International Symposium on Microar-
chitecture, MICRO, pages 187–198, 2010.

[28] Premkishore Shivakumar and Norman P Jouppi. CACTI 3.0: An Integrated
Cache Timing, Power, and Area Model. Computer, (2001/2), 2001.

[29] SPECCPU. http://www.spec.org/cpu2006/, 2006.

[30] H Sutter. The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal, pages 1–9, 2005.

[31] ME Thomadakis. The architecture of the Nehalem processor and Nehalem-EP
SMP platforms. Resource, 2011.

[32] Maurice V. Wilkes. The memory gap and the future of high performance
memories. ACM SIGARCH Computer Architecture News, 29(1):2–7, 2001.

[33] R.E. Wunderlich, T.F. Wenisch, B. Falsafi, and J.C. Hoe. SMARTS: accelerat-
ing microarchitecture simulation via rigorous statistical sampling. 30th Annual
International Symposium on Computer Architecture, 2003. Proceedings., 2003.

[34] Yuejian Xie and GH Loh. PIPP: promotion/insertion pseudo-partitioning of
multi-core shared caches. ACM SIGARCH Computer Architecture News, pages
174–183, 2009.

[35] J.J. Yi, S.V. Kodakara, R. Sendag, D.J. Lilja, and D.M. Hawkins. Charac-
terizing and comparing prevailing simulation techniques. 11th International
Symposium on High-Performance Computer Architecture, 2005.

[36] Dongyuan Zhan, Hong Jiang, and Sharad C. Seth. CLU: Co-optimizing lo-
cality and utility in thread-aware capacity management for shared last level
caches. IEEE Transactions on Computers, 63(7):1656–1667, 2014.

66

Appendix A

Workloads

Group Workload Benchmarks

ra ra8-0 tonto bzip2 gobmk h264ref
soplex astar hmmer mcf

ra8-1 sjeng omnetpp GemsFDTD calculix
perlbench xalancbmk gcc mcf

ra8-2 h264ref sjeng gromacs milc
tonto libquantum povray astar

ra8-3 calculix omnetpp gromacs mcf
gobmk leslie3d xalancbmk soplex

ra8-4 dealII leslie3d povray gamess
wrf sphinx3 cactusADM perlbench

ra8-5 lbm xalancbmk libquantum sjeng
cactusADM zeusmp hmmer povray

ra8-6 h264ref lbm mcf wrf
omnetpp hmmer perlbench gamess

ra8-7 libquantum leslie3d h264ref namd
cactusADM astar perlbench dealII

ra8-8 astar sjeng povray h264ref
calculix gcc gamess wrf

ra8-9 gcc gamess milc gromacs
tonto hmmer wrf sphinx3

Table A.1: 8-core workloads

67

Group Workload Benchmarks

ra ra16-0 bzip2 calculix astar omnetpp
wrf gamess gobmk povray
leslie3d xalancbmk namd milc
hmmer GemsFDTD lbm gcc

ra16-1 wrf gobmk zeusmp leslie3d
perlbench hmmer milc cactusADM
calculix tonto bwaves povray
omnetpp h264ref gromacs bzip2

ra16-2 wrf GemsFDTD libquantum tonto
omnetpp dealII perlbench soplex
lbm leslie3d bwaves calculix
xalancbmk milc gamess namd

ra16-3 soplex povray h264ref leslie3d
namd gobmk hmmer sjeng
astar omnetpp gcc lbm
gamess wrf sphinx3 GemsFDTD

ra16-4 astar bwaves cactusADM zeusmp
h264ref omnetpp namd gromacs
GemsFDTD libquantum sphinx3 hmmer
xalancbmk leslie3d gcc gamess

ra16-5 sphinx3 GemsFDTD soplex milc
libquantum astar zeusmp omnetpp
namd bwaves bzip2 lbm
povray cactusADM h264ref dealII

ra16-6 bwaves hmmer sjeng leslie3d
astar mcf GemsFDTD gromacs
libquantum sphinx3 bzip2 omnetpp
gcc milc cactusADM zeusmp

ra16-7 omnetpp calculix tonto hmmer
h264ref astar wrf sjeng
soplex namd zeusmp povray
leslie3d gromacs gamess perlbench

ra16-8 lbm h264ref soplex gobmk
cactusADM tonto zeusmp GemsFDTD
calculix gromacs bzip2 gcc
sphinx3 mcf sjeng namd

ra16-9 lbm sjeng sphinx3 tonto
milc mcf wrf omnetpp
bzip2 leslie3d gcc perlbench
gamess calculix namd xalancbmk

Table A.2: 16-core workloads

68

Group Workload Benchmarks

ca ca4-0 perlbench h264ref gobmk hmmer
ca4-1 perlbench gobmk astar h264ref
ca4-2 perlbench hmmer h264ref astar
ca4-3 perlbench astar gobmk hmmer
ca4-4 h264ref gobmk hmmer astar

bw bw4-0 wrf gcc milc libquantum
bw4-1 libquantum milc gcc xalancbmk
bw4-2 libquantum cactusADM milc zeusmp
bw4-3 xalancbmk libquantum lbm milc
bw4-4 bwaves gcc lbm xalancbmk
bw4-5 xalancbmk wrf cactusADM libquantum
bw4-6 libquantum gcc xalancbmk bwaves
bw4-7 cactusADM milc zeusmp gcc
bw4-8 wrf gcc bwaves cactusADM
bw4-9 libquantum gcc milc lbm

ca-bw cabw4-0 omnetpp sphinx3 soplex bzip2
cabw4-1 sphinx3 mcf soplex omnetpp
cabw4-2 sphinx3 mcf soplex bzip2
cabw4-3 bzip2 sphinx3 omnetpp mcf
cabw4-4 soplex bzip2 omnetpp mcf

co co4-0 sjeng calculix namd dealII
co4-1 namd GemsFDTD sjeng tonto
co4-2 povray gamess calculix namd
co4-3 calculix tonto gromacs povray
co4-4 gromacs namd leslie3d calculix
co4-5 namd dealII sjeng tonto
co4-6 sjeng povray gromacs dealII
co4-7 leslie3d gromacs povray dealII
co4-8 GemsFDTD dealII calculix povray
co4-9 dealII namd calculix gromacs

ra ra4-0 libquantum namd perlbench gcc
ra4-1 calculix gobmk GemsFDTD cactusADM
ra4-2 astar mcf omnetpp gcc
ra4-3 lbm povray sphinx3 gamess
ra4-4 calculix dealII lbm perlbench
ra4-5 libquantum h264ref GemsFDTD gamess
ra4-6 astar sphinx3 lbm libquantum
ra4-7 sphinx3 soplex povray perlbench
ra4-8 sphinx3 bwaves gobmk bzip2
ra4-9 milc calculix astar povray

ra4-10 lbm hmmer calculix gamess
ra4-11 bwaves soplex GemsFDTD milc
ra4-12 mcf hmmer cactusADM wrf
ra4-13 sphinx3 leslie3d namd tonto
ra4-14 sphinx3 libquantum calculix povray
ra4-15 cactusADM perlbench povray gromacs
ra4-16 astar libquantum calculix soplex
ra4-17 tonto povray libquantum cactusADM
ra4-18 xalancbmk mcf cactusADM sjeng
ra4-19 h264ref soplex astar libquantum

Table A.3: 4-core workloads

69

	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Acronyms
	Introduction
	Chip Multiprocessors
	CMP Memory System
	Common Memory Access Patterns
	Recency-friendly
	Trashing
	Streaming
	Combined

	Requirements
	Contributions
	Outline

	Cache Management Algorithms
	Cache Replacement Algorithms
	LRU
	DIP
	TADIP
	DRRIP
	NUCache

	Cache Partitioning Algorithms
	UCP
	PIPP
	PriSM
	CLU

	Framework
	Simulator
	Implementation
	Algorithm Details

	Methodology
	Processor Model
	Cache Models

	Benchmarks and Workloads
	Benchmarks and Sample Extraction
	Benchmark Classification
	Workloads

	Performance Metrics

	Results
	Overall Results
	4-core Workload Results

	Sensitivity Analysis
	Processor Model Parameter Sensitivity
	Clock Skew Barrier Sensitivity
	L2 Cache Size Sensitivity
	L3 Cache Size Sensitivity
	Memory Bus Speed Sensitivity

	Discussion
	Parameter Fitting and Lack of Implementation Details
	Clock Skew Synchronization Barrier
	Uniform llc Access

	Conclusion
	Conclusion
	Future Work

	Bibliography
	Workloads

