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Abstract

This master thesis investigates the evolution of predator swarm intelligence in
predator-prey relationships. It aims to prove that we can evolve more efficient
behavior than a set of simple rules in simulated environments. The thesis con-
cludes that this can be achieved by combining vision models, genetic algorithms
and artificial neural networks. The combination is well suited for swarming prob-
lems; where size, combinations and constant change makes it very complex to
design simple rules. Our world is full of problems like this, where swarm intelli-
gence and swarm robotics can provide effective solutions. Experiments investigate
if and how performance is affected by changes in group size or environmental fac-
tors such as wall sight and noise. If robots are supposed to live in the real world,
they need to be able to learn in realistic simulated environments. An observa-
tional study experiment is done in addition to simulated experiments; it shows
that the evolved swarms clearly display intelligent swarming behavior.
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Chapter 1

Introduction

Spatial relocation relative to multiple moving objects has always been a challeng-
ing task, especially if the objects are moving in different directions, away or in
a seemingly random way. The difficulty of this task is in the continuous need
for successful predication, predication based on constantly changing and possibly
information. Even if objects properties such as location, type and velocity can
be fully observed, the task is problematic as these properties could alter or be
seen differently from your next point of view. One wrong move could result in
loosing the sight of the objects and an unaccomplished task as a whole. Reliable
prediction of safe and efficient movement are desired solutions in tasks like this,
solutions that could prevent failure and yet able to reach the objects within the
desired time limit. Nonlinear movement of one object is difficult to enough to
predict alone, even more so if multiple objects are involved. If all possible move
scenarios are known, one can certainly engineer basic simple rules for behavior,
that can handle those optimal every time. But, the same rules can prove totally
useless if only new scenarios are added, or if existing ones change.

Tasks like this are visible throughout modern society, yet no perfect solution
or approach exists because the problems are too different, large or constantly
changing; making them to complex for any universal equation. Clever mathe-
matics and graph theory can provide solutions when finding the shortest routes
between objects, but they can easily be exhausted or incorrect if objects move un-
predictably or not observable. Omniscient knowledge is unfortunately not often
the case in the real world tasks. Here, it’s more often that variables are unknown,
seems insignificant or is too complex to predict. The reality needs approaches
that can take intelligent decisions based on more information, learn, and adapt
based on feedback. We need approaches to identify solutions we can’t find.
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Figure 1.1: Spatial relocation relative to multiple moving objects

A typical problem with multiple moving objects: How can the red capture green
most efficient? An obvious approach is to let red follow the closest green until
they have captured all. Another possibility is to write a big set of behavioral rules
stating what red shall do in all possible situations. A more interesting way, and
the topic of this thesis is to just let red observe their surroundings and learn how
to capture green themselfs.

Nature’s evolved predators face similar challenges every day and their suc-
cess in predicating prey movements decides who gets to eat and who don’t. The
predator-prey relationship is classical survival and comes from the core of evo-
lution, it is straightforward and so feasible to abstract that it should inspire us
to engineer solutions for similar real life challenges. Challenges where relocating
resources in environments with changing information is highly dependent of good
predication to ensure success. Our need for such systems is endless and can be
employed in many areas of society, some easier imaginable than other. Hostile
military analogies for predatorily systems quick comes to mind, where offensive
systems and resources constantly move towards the areas that need them the
most, whether they are patrolling, experience threat or engaging multiple ene-
mies unprovoked. Other system exists for humanitarian reasons, such as fully
autonomous location of persons, equipment or vessels in desolate places, distri-
bution of aid packages, coordinating medical personnel or safely routing traffic.
Whether we use the approach for military purposes or not can be argued irrele-
vant, it’s the approach itself which are interesting so far, and which deserve our
focus. The ethical discussion related to creating technology that can be used by
either hostile purposes or by a futuristic artificial super-intelligence exceeds this
project, and will not receive much attention. The attention will be directed out
how we can let us inspired by hostile behavior in nature, as they display interest-
ing spatial relocation of groups. A key factor of success with nature’s predators
is that they often hunt in groups or swarms, leveraging their power in numbers
to find, hunt and eat their prey. And by doing so employing evolved strategies to
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outsmart preys co-evolved escape strategies. This could be replicated when cre-
ating multiple spatially moving autonomous agents, by constructing our nature
inspired intelligent predator swarms using simulated evolution to find the most
effective strategies in every scenario.
Artificial Intelligence (AI) in Computer Science is the study of how we could con-
struct intelligent machines. Because intelligence is a characteristic often thought
to be reserved for higher functioning living things, the field is often met with
skepticism, saying that machines are not alive and therefor cannot be intelligent.
Optimists claim that we create systems that observably take smart decisions, be-
have intelligent could therefor be considered intelligent. Naysayer’s claims that
the machines are only advanced statistical algorithms, performing calculations
to determine actions within a range of possibilities given by its human creator.
Regardless of standpoint in this debate, it is clear that the creativity in a so-
lution derived by a computer is often the main subject of this discussion, and
researchers should therefor seek to expand possible actions for the machine to
choose from. Thereby will letting AI create solutions we researchers can’t find
ourselves provide a greater form of creativity and possibly more intelligence in
the eyes of the observer.
Swarm Intelligence (SI) is a subfield in AI that study the collective behavior that
emerges when decentralized cooperative agents in a population infer actions based
on what other nearby agents are doing, creating a self-organizing super organism.
This emergence of self-organizing behavior is often observed in nature, and can
be very attractive to replicate for because of its elegant simplicity, robustness and
effectiveness. Nature’s evolved swarms are simple in the way that each individual
in a group is mostly governed by the same simple rules, rules evolved to ensure
individual and group success. Groups can most often afford to lose a few indi-
viduals, making it a fairly robust bunch as few or no one is irreplaceable. Their
size also helps secure effectiveness as each individual will contribute to common
challenges and share success with the rest. This combination of features proves
them effective as a group and interesting field of study. Nature’s many insect
colonies, immune systems, bacteria growth, bird flocks, fish schools and swarms
forms important inspiration for further SI research, inspiration we could benefit
from when creating AI multi-agent systems.

Engineering creative and effective swarm intelligence can be a challenging task
because of its infinite complexity, but by combining inspiration from natures’
predator-prey relationships, AI research and creativity; I will investigate how we
can evolve efficient SI behavior.
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1.1 Task description

The task of this project is to engineer predator swarm intelligence through arti-
ficial evolution that perform better than simple rules in a controlled simulated
environment. The ultimate utopian task should be to implement SI in real world
swarm robotics, which can benefit humanity, but this challenged would be to
great for this project. The reasearch focuses on investigating evolved predator-
prey swarm intelligence in a simulated environment. Predator agents should
be able to observe other nearby predators, prey and walls within a given vision
range, these observations should be the considered as local interactions and create
a global structure of predators. Spatial movement of this global structure will be
self-organizing, fully autonomous and considered as a strategy for hunting prey.
How each predator react to the sum of current observation should be the product
of a Artificial neural networks (ANNs), evolved by many generations of predator
ancestors and Evolutionary algorithms (EAs) called Genetic algorithms (GA).
The predator strategies should only be the result of local interactions, and there-
for not require any previous planning or memory. This simplification enables the
project to use a simple ANNs called Feedforward networks as decision-making
system.

1.2 Goals and Research Questions

Goal Gain understanding about how evolved predator swarm intelligence can be
used instead of simple rules.

Traditionally researchers have constructed sets of simple rules to control SI be-
havior, deciding how agents should behave in different scenarios and states. These
rules are commonly used to design flocking behavior or create stigmergy. The
goal of this project is to investigate how predators agents can employ evolve GA-
ANN SI behavior effectively in different predator-prey scenarios, and specifically
if GA-ANNs is an attractive alternative to simple rules.

Research question 1: Can GA-ANNs be proved to sucessfully evolve SI behav-
ior?

The question will investigate if and how an GA-ANN implementation can
evolve SI behavior, and if this can be proven.

Research question 2: Will GA-ANNs benefit from manual manipulation of
genotypes?
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Genetic manipulation and enhancement is important if preferable genotype
manipulations can be identified and exploited, without loosing exploration abili-
ties. I will research this by manipulating genotypes and comparing with normal
ones.

Research question 3: Does group size scaling of affect performance of previ-
ously evolved agents?

The research question seeks to investigate if the efficiency of a SI evolved
with a constant number of agents will change if the population size changes. The
strategies have evolved because they performed efficient with that size, and it
is therefor very possible that a change in population size will affected the re-
sults. The approach is very attractive if scalable without significant performance
loss, because simulations are computationally expensive and this would allow
researchers to use fewer resources when creating large population swarms.

Research question 4: Will the visibility of walls or environmental noise af-
fected performance?

I will research if the visibility of walls surrounding the closed environment
affects how predators hunt prey and evolve. It is natural to believe that preda-
tors would create strategies and tactics that use the walls to their benefit when
surrounding prey, as they would know when prey limited escape options. This
however is not guaranteed to be true in simulated evolved environment. Re-
search should be done with the ultimate goal that it could be used in the real
world and benefit humanity, and unfortunately the real world is a noisy place
very unlike simulated environments. It is therefor important to research if the
intelligence we create is sensitive to noise, in this case visual noise in form of
small random numbers fed into the predators ANN in addition to the normal
visual observations.

Research question 5: Will the evolved agents clearly display SI behavior

There exist many behavior patterns of behavior can be classified as swarm
behavior. Typical behaviors such as flocking, herding, and stigmergy are common
to observe in simulated swarms. I will research what is visible in the evolved
swarms by observation.

1.3 Research method

The research is carried out in a simulated environment where everything can
be controlled and measured. It is done so by many reasons, the most impor-
tant reason is that the work relies on using genetic algorithms to evolve swarm
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intelligence behavior in predator-prey scenarios. The GA-ANN approach needs
a large number of runs to simulation the natural selection necessary to produce
good behaviors; this would not have been feasible with physical robots. Secondly,
the simulated environment provides the possibility to manipulate all aspects of
the observable environment such as agent positions, weights, noise and speed in-
stantly; the manipulations enables more freedom to pursue interesting scenarios.
The third and final reasons is that engineering multiple physical robots would
have been a tedious, expensive and time consuming task, which could quickly
have led to false- or no results in case of hardware engineering difficulties or
equipment malfunction.

1.4 Thesis structure

The thesis is structured as follows: Chapter 2 presents the background informa-
tion and why it motivates further investigations. In Chapter 3, I will go through
the implementation I have created to accomplish my research. Chapter 4 explains
how I have planned and conducted experiments a discussions of the limitations of
the implementation. Finally in Chapter 5, I will conclude on the results produced
by this research, review research questions and suggest what needs more work in
the future.



Chapter 2

Background Theory and
Motivation

The background of this project is to evolve predator swarm intelligence in preda-
tor–prey relationships using evolutionary algorithms and artificial neural net-
works. The subject is inspired by nature, but neither predator nor prey is supposed
to imitate a specific species’ behavior, the idea is rather to investigate if preda-
tor swarming strategies will evolve effective and creative strategies if given the
freedom to adapt.

2.1 Background Theory

2.1.1 Predator-prey

The relationship is basic and found throughout nature: A predator is an organism
that hunt and eats another organism to survive; prey is the organism that the
predator eats[20]. The prey concept is not limited to animals, it can be any living
organism: such as an apple or plankton. Survivors of this relationship will pass
their genes one to the next generation, which will evolve further and thereby in-
creasing its chances to balance their offspring’s future in their favor. The evolved
generations can feature new or altered attributes, which again would be passed
on if proven useful. These attributes can be anything biologically possible, but
usually vary from improved eyesight, stamina, smell, hearing and camouflage.
It’s not only improvements unfortunately, some negative abilities are will also be
kept, this occurs because these individuals were more successful than their oppo-
nents in despite of these abilities. The evolution of useful attributes in predators
is a fascinating cycle, but only a necessary process for the primary objective: the

7
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hunt for prey.

Hunting strategies can possibly be what best defines a predator; each usu-
ally involves some typical phases. These phases can be described differently but
the most common is how they find, catch and kill their prey. They can often
involve sub phases to better describe the series of events inside. Encircling, herd-
ing, separating are examples of events that could occur in catching phases where
predators use these to control the spatial movement of prey to their benefit. An
example of similar herding can be seen in nature’s spinner dolphins:

Benoit-Bird [4] show that highly coordinated groups of foraging Spinner dol-
phins use herding to increase prey densities up to 200 times normal density.
When the aggregated prey is dense enough, individual dolphins take turn eating,
while the rest herd and maintain prey density. The coordinated dolphin strategy
is deadly and though to be more effective than individual hunting, even though
individuals use a lot of energy to help the rest of the group.

A successful hunt will sooner or later result in the final phase: the killing
phase. It can involve heavy direct attacks, gradually wounding or a combination
like paralyzing venom and later strangulation. Some strategies employ a com-
bination of making the prey first suffer from fatigue or an excess of metabolic
heat, followed by a finishing strike. The last strategy is usually called persis-
tence hunting are believed [7] to be one of hominid’s oldest forms of hunting. In
contradiction to some four-legged animals - hominids have evolved the ability to
regulate body temperature though sweating. This enabled hominids to pursue
faster game until it were hot and had to lower its pace to cool down, making it
significant easier to kill. I consider persistence hunting a killing phase because of
the strategic weakening of prey, but it can also be considered a catching phase.
Because of ambiguous examples like this, hunt strategies should be considered as
a whole when trying to evolve artificially in simulated environments. The amount
of work would be too time consuming if it were to engineer them separately and
combine them successfully, extending the scope of this project. This extensive
approach would have been interesting and should be the subject of further work.
This project will consider predators in the broad conceptual way, not limited
to specific animal specie. It’s popular to create AI that focus on mimicking a
specific predator-prey behavior or applying evolutionary pressure that can yield
other alternative solutions to an existing behavior. These are some impressive SI
implementations of predator-prey relationships done by researchers:

Olson et al. [22] have co-evolved spatially moving predators-prey relationships
with the idea that: Swarm behaviors among prey have evolved flocking to con-
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fuse predator vision and thereby increase the chance for survival. Olson et al. [22]
prove that prey successfully evolved strategies that used this approach, support-
ing the idea. Very similar approaches can be seen in nature, flocks of Australian
wild budgies employ it to confuse nearby predators. [33] PBS [23]

Wood and Ackland [38] created a individual-based model for evolving group
formation driven by the evolutionary pressure of selfish individual predator avoid-
ance, not only collective group survival. Genetic algorithms are used to simulate
natural selection and further evolution. Their model evolves on individual basis,
giving each of the groups individual similar characteristics, but with some indi-
vidual differences. The competing individual differences result in selfish behavior
and an effective group as a whole.

Ducatelle et al. [11] created a heterogeneous group of cooperative agents who
forage for food. The implementation uses an approach called ant colony opti-
mization algorithm, but as they are locating and foraging something to eat, I
consider them predators-prey because of the flexible definition.

The examples above are creative, impressive and motivate further research.
Even though the approach of evolving group behavior is not new, it’s reasonable
to believe it still can provide surprising and effective solutions to new problems,
as it have done in the past. The solutions from evolved scenarios emerge from the
evolutionary pressure created by system designers, crafted to best describe what
is needed to solve an abstracted problem without knowing the solution. This
work provides a simulated environment with the freedom for predators to evolve
their own strategies. I seek to be surprised by the results it yields, preferably
good results, but that is beside the point. Predator evolution is helped to un-
derstand what is good and bad by reinforced by rewarding prey kills and apply
small penalties proportional to time spent. This should make predators’ pattern
analysis easier, as they know what is wanted. It may seem ambiguous to say
that good results are besides the point while reinforcing wanted behavior. This
dilemma can be difficult when looking to find something effective and unexpected:
you don’t know how looks like; only what it should do. It is a balance tradeoff
how much reinforcement is necessary to create effective solutions, and yet remain
creative.

Nature and previous research tends to display co-evolution [22], where both
predator and prey evolves at the same time to compete with the opposite abilities,
thereby accelerating need for evolution. This work will not employ that approach,
but rather focus on pure predator evolution in predator-prey scenarios, letting
the prey behave approximately the same every time when identical events occur.
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This is done to creative agents that can adapt to their surroundings, because I
consider the ultimate goal of future work would be to create intelligent machines
that benefit humanity in the real world. Their real world counterpart or objective
would not be changing, learning or evolving in the nearly the same pace, making
simulated co-evolution less useful when only the predator is needed. A better
approach could be to better capture how this counterpart behaves in real life
and simulate realistic alternatives to that behavior. This simplification through
isolated predator evolution will focus how predator agents could best adapt to a
current given set of problems, instead of trying to learn from scenarios that never
could happen again.

Real world tasks

The end goal of nature’s predator-prey relationships is undoubtedly survival, eat
or be eaten. This is a fact and cannot be disputed, but I purpose that artificial
predator-prey strategies will be employed to benefit many other purposes as well,
especially when swarms of agents is used. The cooperating strategies multiple
hunting agents use to locate and move toward another objective(s) are valuable
and can be used in near endless scenarios. The eat/kill phase can be substi-
tuted and simplified with more friendly uses that only states that the objective
is accomplished or handled, and that the hunt for the next objective may begin.
The objectives in artificial predator-prey AI should be interchangeable with other
difficult rapidly changing need-based tasks such as:

• Distribution of aid packages (vaccines, food, materiel)

• Provide network access (Satellite networks, drone graphs)

• Locate missing people or objects in remote areas (at sea and in mountains)

• Maintain agriculture crops (only provide water and nutrients where needed)

• Locate missing people or objects in remote areas (at sea and in mountains)

• Emergency response (organize traffic autonomous to prioritize emergency
personnel)

• Autonomous redistribution of time expiring resources (eatables and goods)

It is easy to imagine real world tasks for smart artificial predator-prey in-
telligence if the objective changes, because the relationship is essentially based
on effective spatial relocation of resources relative to need-based objectives. The
evolutionary pressure of survival in these relationships demands constant adapta-
tion of more intelligent behavior. This motivates the use of predator-prey when
investigating swarming behavior.
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2.1.2 Artificial intelligence

Artificial Intelligence (AI) is as mention in the introduction a subfield in Com-
puter Science that focuses on construct machines or systems that can display
what is commonly called intelligent behavior[27]. What Intelligent behavior is
can be interpret differently: it can be behavior that chose the same decision a
smart organism would choose, a better decision, a worse decision, or who chose
no decision at all. The interpretation and definition of intelligence is subjective,
it’s not be the subject of this work and will not be addressed directly, as it would
far exceed the scope of this project. A more interesting perspective is to assume
that we are uninterested in defining true intelligence, only in creating systems
that appear intelligent to unknowing observers.

’Whether a system is intelligent or not is irrelevant for the observer of such
systems. - Shapiro [27]’

Focusing our research effort in creating AI systems can provide observable
intelligent behavior and decision making to areas where intelligent behavior is
needed. For a computer to display such behavior it would need three compo-
nents: information about a problem, a system for making decisions based on
that information and a way of expressing the chosen decision to users of the com-
puter. The input and output are easy: Input can be given with sensors or buttons
and output displayed with audio or visual signals. The difficulty is in creating an
intelligent decision-making system, an AI. The AI needs to decide which signal
it should output based on inputs and rules given provided the system designer,
this is easy in simple cases when the result signal can be calculated, but quickly
becomes impossible to calculate as input mass and combination grows. When
this happens, designers have three options:

• Accept that growing input and uncertainty will reduce displayed intelligence

• Create additional simple rules to cover more scenarios

• Provide the decision-system with the ability to learn from new scenarios

The most difficult and yet most attractive option here is to enable learn-
ing abilities, it is also a common criteria when characteristic of intelligence [27].
Learning abilities can possible be the most important and central subfield in
AI and Machine Learning because of its need and importance it’s approached in
many ways. The most popular is undoubtedly Unsupervised learning, Supervised
learning and Reinforcement Learning [31]. Unsupervised learning tries to learn
how to find a hidden structure or pattern in the stream of input information,
by comparing input to previously given examples sets, without knowing what
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the examples are meant to represent. The process can be challenging and time
consuming, as it does not know what the input or examples are, and because the
system will not give any positive or negative response to correct or wrong answers.
Supervised learning is similar to unsupervised learning, but the system here know
what examples mean, and gets a suitable response to correct or wrong answers.
This makes classification of input information easier and more predictable, but
may limit the possibilities because the system will have more difficulty to recog-
nize an input where no example sets exist. Reinforcement learning is used when
the systems is rewarded if wanted behavior is displayed, and punished if unwanted
behavior happens. Over time, this will help the system learn what is good and
what is bad. This approach is widely used and can easily be implemented in all
scenarios where the designer know what is good and bad behavior, by reward
and punishment. Reinforced learning usually doesn’t know what perfect input
is, because it hasn’t been shown examples, as supervised learning has. Because
if its similar nature, Reinforcement learning will be fitting learning approach to
use when engineering predators intelligence.

2.1.3 Swarm intelligence

Swarm Intelligence (SI) is AI for autonomous multi-agent systems that display
swarm-like behavior. The term itself was first used by Beni and Wang [3] to de-
scribe how a finite number of autonomous cellular robot agents could accomplish
a global task, only by using local communication. The agents would have low
complexity, cooperate efficiently and designed to be highly adaptive to their sur-
roundings. The number of individuals in a employed would ensure redundancy
and reliability; affording to lose a few robots and still work sufficiently, provid-
ing graceful performance degradation [30]. The general idea was that combined
groups could solve tasks no single robot could do on its own. Over time the
concept has grown and more ideas have been in incorporated in SI, but the main
idea of global structure formed by local interaction and cooperation remains in
center. SI is possibly best known for solving various optimization problems such
as Particle swarm optimization (PSO) and Ant colony optimization (ACO), these
approaches are impressive but have totally different use cases than this project
because they seek to solve static problems that don’t change often. PSO [15]
are used to find a global maximum in problems where we are dealing with the
combination of n-different parameters represented by an n-dimensional solution
space, each represented by a particle that is moving around with changing veloc-
ity. The combination of all particles in the n-space will represent the solution and
hopefully a global max to the optimization problem. ACO [10] is a optimization
technique inspired by how ants uses local interaction through pheromone distri-
bution to help their peers find their way. It uses a similar probabilistic approach
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to explore a parameter space of all possible solutions to hopefully locate the best
solution: An optimal path through a graph. This project does not use PSO or
ACO, but rather inspiration from predator-prey scenarios and a hunt optimiza-
tion. Even though effective swarm robotics is a strong motivation for further
research, its not longer the only appliance for SI, it have been successfully been
used in other areas: Such as simulated passenger crowding using ACO, to prove
improve efficiency and experiment with different boarding strategies on airplanes
[19]. This project will investigate relevant subfields pragmatically; it’s not an
attempt to cover the entire field of SI.

Self-organization and Stigmergy

Self-organizing [30] behavior is used when distributed agents cooperate by us-
ing local inter-agent communication. It could consist of anything perceivable
by other agents: Direct or indirect audio, visual or physical signaling. Even
observable spatial positions are enough to be called communications. Because
all agents behave relative to what the rest is doing, each event could trigger an
endless chain of events, hopefully establishing a favorable emergent functionality.
This process where a chain of events occur based on indirect communications is
also called Stigmergy[2]. It is inspired by how nature’s social insects use indirect
communications to from efficient collaborations among simple individuals; a typ-
ical example is how ants are leaving pheromone traces to indirect communicate
a good route through a spatial graph. [37] [19] Self-organization and Stigmergy
is attractive because the autonomous agents don’t need to rely on external com-
mands from outside the group; this makes them useful in desolate and inaccessible
remote places like at sea, mountains and other planets.

Flocking and Herding

Flocking is the aggregated motion of multiple nearby agents or boids, when mov-
ing in the similar directions influenced by each other [24] [18] . The behaviors
that lead to researchers creating simulated flocking by using a combination of col-
lisions avoidance, velocity matching and flock centering [24]. European starling
murmuration is possibly the most common example of flocking behavior in na-
ture, the starlings can gather in flocks of hundreds thousands of individuals and
fly together without a leader [22]. Its noted by Reynolds [24] that natural flock-
ing instincts seem to be sharpened by predators, the evolution of prey flocking
behavior have been observed in a simulated environment by [22]. This warrants
the need for more effective predator intelligence when facing prey swarms.

Herding Banerjee and Banerjee [1] behavior occurs when agents with intent
can control how others are behaving. While flocking is an aggregated motion
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where there may not be a specific goal, herding other agents is done with clear
intent and goal by controlling the behavior of others, instead of letting them use
their own information to make a decision. Both behavioral patterns are useful in
SI, and can each contribute with their features are needed. It could be interesting
with a combination in predator-prey SI scenarios: Where predators could flock
around searching until prey is located and then herd the group until they are
contained enough to begin the eating phase, this is done by the spinner dolphins
described in predator-prey [4]. Another interesting example is how customer
herding can be an effective marketing tool in supermarkets [36]. Owners can
track and let customers herd each other by strategic positioning of merchandise,
finding the most profitable combination of positioning. Similar approaches is
done on a individual level by letting goods like chocolate and sweets by located
near the exits, this approaches uses all customers as a herd and is much more
interesting.

Robustness and Redundancy

Robustness and redundancy should in focus when developing swarm behavior.
The behavior needs to be robust enough to solve tasks in different settings, even
if the task and environment is perceived differently or reactions differ by the
individual agents in the group. Multiple agent’s cooperative who can replace
each others if some fail provide valuable redundancy, this increases the groups
robustness indirectly. More robustness could also be archived by reducing agent
complexity, the tradeoff is that this could also reduce functionality. This re-
duction in functionality would reduce production costs as fewer components are
needed, required debugging costs would also scale with the reduced complexity.
This makes low complexity very attractive as long as the group can accomplish
the given task, this surfaces another problem: How we can predict if our engi-
neered swarm is robust enough to accomplish tasks without actually testing it?
The short answer is: We can’t. The long answer is: We could create a mock up
simulated environment that replicates the real world to the best of our knowl-
edge and test in similar real world conditions: like testing Mars Rovers in nearby
deserts and simulate lower gravity.

The simulated environment would need to be perceived as similar as possible
for sensors and actuators to work correctly, and even if we replicate everything
perfectly things can change in the real environment. One solution is to engineer
our system robust by using extra random noise that I could work OK under ev-
ery condition. This would probably make it less sensitive and therefor lose some
functionality, but if the real job is somewhere so remote (like another planet) that
we cannot debug once deployed, that is an attractive solution. The real world is
a noisy place; we should therefor create solutions that tolerate some errors and
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imperfections in observations.

Brooks and Flynn [6] argue for using small cheap cooperating autonomous
robots in planetary exploration because they could among others reduce cost,
implementation time and provide redundancy and reliability. Brooks [5] also
mentions how robustness is important mobile robots: they need to work if some
sensors fail or giving erroneous readings followed by self-calibration and quick
recovery if it happened. He also argues that we are interested in robots that can
survive months without human assistance, in dynamic complex environments.
He’s ideas are very important when thinking robustness and redundancy in SI.

Simple rules

In SI, it is common to create behavior by carefully construct a set of simple rules
that decides how agents should do in every situation. In some cases this can
create a relative realistic simulation of nature, like in algorithms that simulate
the flocking behavior of birds in flight. These algorithms usually involve rules
for collision avoidance (avoid nearby agents), velocity matching (match the other
agents speed and direction) and flocking centering (stay close to other nearby
agents) like mentioned earlier [24]. Simple rules are very effective in simple sce-
narios, but can fail catastrophically if the scenario is to complex, and situations
where all or no rules apply. Example: If agents were not instructed to move
and search unless they actually observed others, noise or obstacles could quickly
cause total failure. Challenges where multiple options is attractive would force a
decision response, and the outcome could be dramatically worse if the designer
hadn’t design the system to handle challenges like these.

2.1.4 Virtual environments

When experimenting with simulated virtual creatures or agents, a virtual envi-
ronment for them to inhabit is needed. The virtual environment should be as
realistic as practically possible because the usefulness of experiment results will
scale with the level of realism included. Spears et al. [29] have noted how we
could employ artificial physics and that they should live in a 3d-world, because
we do, about artificial intelligences. Brooks [5] also state that the human world
is three dimensional, therefor robots environments should be. The 3d arguments
are simple and logical, and should therefor be taken in account when creating
virtual environments. Artificial physics or ’physicomimetics’ as Spears et al. [29]
mentioned is also important, especially if the implementations is largely depen-
dent of it to learn as what it should. Gravitation and centrifugal forces would be
essential if creating spaceships. As with [14] work where virtual creatures learns
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to swim, reduced gravity is essential. Some another key aspects of real environ-
ments are noise and obstacles. Noise should simply be included because the real
world is a noisy place; therefor the virtual environments should be. It could be
a good idea to increase the amount of noise in simulations as performance in-
crease, or evolve noise as well as solution [38]. Spatial limitations should always
be included in virtual environments, because limitations such as obstacles, ter-
rain and walls are everywhere in reality. All these elements should be considered
when modeling virtual environments, the ones crucial for the specific scenarios
success is necessary, but all should be considered as a missing essential modeling
element can render the entire implementation useless.

2.1.5 Vision models

Agents should possess abilities to sense their surroundings [29]. Physical robots
use different sensors to measure different physical phenomena, depending on what
the goal is. Some sensors measure by using sound or laser, others may use video
signal image analysis or even chemical signals [9] [2]. What and how surround-
ings are sensed depends on the implementations, different implementations have
different needs and resources when it comes to cost, precision, robustness and
resolution etc. It can be fatal for an implementation to employ the correct ap-
proach that captures and observe the surroundings correctly. The same idea goes
for sensors in simulated agents, they to have to be appropriate for the intended
usage. Simple simulated predator agents would need the ability to observe nearby
prey and possibly also other predators and environment. This have previously
been done in many different ways:

Olson et al. [22] created a directional 180-degree artificial retina model to rep-
resent predator and prey vision. The 180-degree retina was divided into twelve
15-degree vision zones used to separate where prey was located, giving the vision
model a resolution. The models have the ability to distinct between predator
and prey, giving individuals a idea of where it’s safe. Prey vision is limited to
100 meters and predator 200 meters, giving the predator an edge when hunting
as it can see prey before its seen. The implementation is created to investigate
if prey can involve confusion strategies to escape predators by using flocking in
front and hiding in its blind spot/dead angle.

Oboshi et al. [21] uses a two different vision models in the same system. One
for predator fish and one for prey fish, both simpler than simpler [22]. The preda-
tor vision model uses two different radiuses two decide behavior by simple rules.
Prey is captured if within the inner radius, and chases if within the second. If no
prey is visible within the second radius, the predator will search the environment
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Figure 2.1: Predator-prey vision model images from Olson et al. [22]

for others. Prey vision model is a bit more complicated, it uses three radiuses to
decide avoidance, parallel, attraction and searching. Similar to the flocking boids
described in Reynolds [24]. Both models have a dead angle area behind agents,
both much smaller than the 180-degree angle in Olson et al. [22].

Figure 2.2: Predator-prey fish vision model images from Oboshi et al. [21]

Both implementations give agents a good impression of other nearby, but
limits observations to a predefined range, so that searching becomes necessary.
Neither of the agents observes environmental factors such as walls or obstacles.
The implementations provide motivation for further development.

2.1.6 Evolutionary algorithms

Evolutionary Algorithms (EA) [34] is used to find solutions to complex problems
by simulating evolution inspired by biological evolution. Although simulations
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are run in a virtual environment, the approach can be used to engineer any solu-
tions in any form, physical and virtual. The virtual modeling of complex physical
challenges can be difficult, but it’s still a more feasible option than creating and
testing millions of different physical prototypes. A well-known example of this
simulated approach is NASA’s evolved radio antenna [17].

Simulated evolution includes environments and processes like reproduction,
mutation, crossover and survival of the fittest through natural selection. Individ-
uals in the evolution are referred to as candidate solutions, as they are candidates
for the final solutions that would emerge at the end of each evolution. The can-
didate solutions are represented in the evolutions by their own individual unique
phenotype encoded from their genotype, which they got at ’birth’. Genotypes
can be represented by large sets of simple atomic values such as bit arrays. Phe-
notypes are usually fewer in numbers but a little more complex and granular,
as an example can they be in the range 0-255, or -1.0 to 1.0. How phenotypes
are encoded by genotypes can also different in every system and done in many
ways, both direct and indirect. A common indirect approach is to use sub-ranges
from a bit array genotype to represent one granular phenotype number, by treat-
ing the genotypes as binary numbers and the phenotypes as decimal. This could
make small changes in genotype represent big changes in phenotype and opposite,
thereby increasing the diversity of what could happen. Another simpler solution
is to use direct encoding where there is identical encoding in both genotype and
phenotype, thereby removing the need for one and reducing the computations
needed to run simulations. Whichever encoding seems most fitting in the current
scenario is up to best practice and the system designer and to decide, because
the important thing is that it works, not that is fancy.

The EA approach is to start with a generation of simple or random seeded
candidate solutions, run simulations and perform individual fitness evaluation
based on their performance in the simulation. After fitness evaluation we should
keep and select those who performed good and let them reproduce and evolve by
using crossover and mutations, at last select some of the new children candidate
solutions and let them combine with their parents: creating a new generation of
possible candidate solution. Lastly, repeat the process until an either a perfect
candidate solution is found or we run out of resources or time. The best candi-
date solutions will now be an evolved solution, hopefully proven to perform well
in the assigned task.

Crossover and mutation algorithm schemes alter from system to system, and
can be the source of debate. It is common to use a predefined set constant per-
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centages ranges and a pseudorandom number generator to change the value of
genotype indices. Every time a new candidate solution is ’born’, the agent would
create a blank genotype and inherit each genotype index value from either the
mother or father candidate solutions, from whom will be decided by creating a
random number and copy from one parent if its within the given constant range,
and copy from the other if outside. Mutations are similar; it will loop through the
entire inherited genotype, creating a random number and perform mutation on
that index if the random number was within the constant range. Mutations could
be any altercations to the initial value, such as a bit- flip (1 becomes 0 and 0 be-
comes 1) or adding or subtracting small values (0.01). Different systems usually
want to promote evolution process through focusing on different schemes: some
focus on strong crossover processes (EA) and some focus on mutations (GA). A
possibility is to let the EA itself control the process by evolve constant percent-
ages or how the schemes work. Spears [28]

The designer of the system chose which and how different selection algorithms
and schemes is used and performs. It depends on how often it’s wanted to trim
away candidates from the group, and which candidates should be removed. It’s
typical for EAs to mimic nature and have individual selections at big moments
in life: who find a partner in life, which who children survive, and how grows up
stronger than their peers. The EAs equal to this would be: Parent selections,
children selections and adult selections. Other popular selection approaches is:
elitism (where only the best is kept), generation replacement (where only the
children survives) or mixes where selections uses combinations to provide the
wanted diversity.

It is important to evolve solutions that could perform acceptable under every
condition, not just perfect in some. This can often be accomplished by increas-
ing the candidate solutions diversity by letting solutions try different similar
task with the possible range and also keep some mediocre candidates and genes
through crossovers. And by using a fitness function that not only rewards perfect
behavior, but also rewards minor accomplishments. All done in hope of keeping
candidate solutions that solves task both creative and effective and avoid very
over-fitted ones, as they tend to be very good at some problems and terrible at
other.

The most common EA is called Genetic Algorithms (GA) [12] [16] [22]. It is
typically used to create virtual sets of characters or numbers directly represented
by the best solutions phenotype, evolved by the mentioned processes. These sets
can be used for many things: such as properties in complex system, letters in
handwriting recognition or in this case: weights in artificial neural networks.
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One of the most famous recent examples of evolved intelligence was created by
[14] in 1994, Sims work is displaying that virtual sea creatures can evolve to ac-
complish simple tasks like swimming and capturing objects, if given clear tasks
and freedom. The creatures could either evolve on their own, or co-evolve com-
peting with others.

2.1.7 Artificial neural networks

Artificial neural networks (ANNs) [12] [39] is statistical learning models used in
AI and cognitive sciences to take decisions based on sensory inputs in complex
tasks. ANNs are inspired by the central nervous systems in animals, and is very
simple abstractions by comparison. The use of ANNs in AI is not intended to
replications of the complex human brain; it’s only to provide systems with the
ability to take good decisions based on a large amount of information where en-
gineering simple rules may be to complex. Nevertheless, ideas of how networks
of dendrites (connections) connecting neurons (nodes), and how some chemical
combinations inside neurons can trigger and fire (activation function) small elec-
trical signals have enabled researchers to create impressive implementations. A
shared idea how ANNs work is that sensory signals is feed into a set of input
nodes, signals then propagate further into a networked graph of connected nodes
combining and crossing signals, until a signal reach an output nodes, triggering
a action represented by that output node.

The system makes decisions on which action to perform based on the current
sensory input based and how the network of nodes is. The strength and direction
of each node-to-node connection and network topology is usually decided by a
set of adaptive numeral weights and an activation function. The combination of
these will usually decide the performance of the ANN within its own capacity of
success. The activation function is static and decides how a signal has to look
like for it to be fired and propagated further in the net. The number of weights
representing nodes and/or connections will scale the ANN complexity and there
provide possibly better solutions, but also increase the difficulty in finding a so-
lution significantly. Good performance are largely dependent on finding good
weights, and that can be a cumbersome process if done manually, this work will
therefor employ EA to evolve weights through simulated natural selections.

The usage of ANNs is widespread in computer vision, speech and handwriting
recognition and self-driving robotics. Different use-cases, needs and complexities
have led to many different implementations of ANNs with, each having different
features, strengths and weaknesses. The least complex solution that solves a
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given task will often be the best solution, as is reduces the cost of engineering
and debugging time significantly. This especially applies to ANNs, because the
complex can be scaled infinitely. Therefore we should try the least complicated
thing that could possible work, and only extend if needed. This project will use a
relative simple ANN modeling called Feedforward Network for reasons mentioned
in implementation.

Feedforward neural network

Feedforward neural networks (FNNs) [35] are relative simple ANNs where sig-
nals only travel in one direction through connections across the network. Signals
can multiply and propagate through several connections, but never travel the
opposite way. Unlike more complex bidirectional networks like recurrent neural
networks (RNNs) [25]. RNNs signal can travel both ways or signal can be re-
tained until the next round of sensory input. FNNs was the first and simplest
form of ANNs, they usually consist of an input layer, one or more hidden lay-
ers and an output layer. Each layer can contain any number of nodes, but the
number of nodes in the input layer will be the same as the amount of sensory
inputs provided. Similarly, the number of nodes in the output layer(s) will be
the number of different actions the systems should be able to decide from. The
number of hidden layer(s) and number of hidden layer nodes in FNNs can be
anything above one, all depending of how complex the process of deciding action
should be. If no hidden layers were used, only input and output layer: the ANN
would be considered a Perceptron [8]. Example: If the FNN would receive a yes
and/or maybe answer from 3 people and provide a yes/maybe action the number
of input nodes would be 6 and output nodes 2. The number of hidden layers and
nodes is not determined by input or output, but should be at least one.

A early and important example of evolved ’neural networks’ was created and
presented by Selfridge [26]. He didn’t called it a neural network, but rather a
Pandemonium, which is a box of weighted connected cognitive demons nodes
and a decision demon. The demons were to receive information from a data or
image, this signal would propagate though the weighted demon graph, and each
demon would yell its assigned unique letter to nearby demons and thereby give of
a signal. The signal graph forming a hill-climbing problem and should result in
a decision at the global maximum. Selfridge also want promote an evolutionary
process by having weights and functions adapt by usefulness.
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2.2 Motivation

The background research motivates further work; Reinforced learning using GA-
ANN has great potential in creating better predator-prey swarm intelligence than
creating sets of simple rules. I believe this because the approach could provide
more creative strategies that have already been proved effective through evolu-
tion. In scenarios where large co-existing swarms of predators and prey would
result in virtually infinite different states, the challenge of designing simple rules,
handling all possible states effectively is near impossible in complex scenarios.
It is a better-suited approach to let the system adapt itself, by letting it the AI
experience and learn from all the given scenarios, and find a strategy that works
good every time. Adaptive approaches will become necessary if AI should be used
in the real and noisy world, human designed simple rules cannot successfully cap-
ture all possible combinations of events that may occur. The predatory nature
is highly adaptive to surroundings; the underlying raw hostility has justified na-
ture’s need for evolution for millions of years, this makes predator-prey swarms’
very inspiring and perfect pragmatic motivation when engineering evolved self-
organizing swarm intelligence. The most common related research area is to
investigate how prey can evolve to escape predators, not how predators can hunt
prey. I find this interesting because I consider the latter more suitable for real
world challenges. This motivates further research focus on increasing predator
behavior performance while prey behavior remains the same, as I consider iso-
lated predator evolution most relevant and necessary when creating real world
solutions.

A inspirational quote by Oliver Selfridge have stood out among all research
I have read, its describing his early idea of ’evolved neural network swarms’ –
evolved Pandemonium crowds:

’It is perfectly reasonable to conceive of this taking place on a broader scale –
and is fact it takes place almost inevitably. Therefor, instead of having but one
Pandemonium we might have some crowd of them, all fairly similarly constructed,
and employ natural selection on the crowd of them. Eliminate the relatively poor
and encourage the rest to generate new machine in their own image. - Selfridge
[26]’
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Implementation

This project has been researched using the implementation explained in this chap-
ter. It’s engineered specifically for this project, and portrays a general abstraction
of nature’s predator-prey relationships. It’s capable of running entire hunt/escape
simulations with any number of predators and preys in a wall-closed or torus en-
vironment. Simulated predator agents use GA evolved ANN for deciding move-
ments, or simple rules for comparison, while prey agents only use simple rules to
move. Observers can study pre-evolve ANNs simulations by using a third party
visualization library called Three.js, visualizations is used to investigate if signs
of typical swarm behavioral patterns is apparent.

3.1 JavaScript

The implementation model is built entirely in JavaScript programming language.
It includes an evolution simulation, which can be run in a command-line using
Node.js [13]. It also includes a visualized implementation that can employ evolved
weights to study how the weights and settings correspond to an observable be-
havior. JavaScript have mainly been chosen for the following reasons:

• Dynamic typing capable of handling of objects and adaptation
flexible
Creating, storing, extending and returning objects are done often throughout
the code. With dynamic typing, it is easy to adapt functionality if the
existing objects change or if other information is needed to succeed

• Command-line and Browser runtime compilation
Runtime compilation makes experimenting with new ideas agile and less

23
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time-consuming. The reuse of code, functionality and language in both vi-
sualization and simulation makes development much more effective as code
only has to be written once.

• Prototypical inheritance modeling
Prototyping in JavaScript is an effective approach for models inherit others
models. This way, core functionality only has to be located in one model,
to be inherited and specified by others.

• Third party libraries
JavaScript’s supply of third party libraries is extensive, which makes it easy
to find a fitting library if needed, such as Three.js for visualizations.

3.1.1 Three.js

Three.js [32] is popular JavaScript library that makes programming 3D visual-
izations trivial. It feature built-in support for creating box shapes, materials,
colors and lighting conditions. Because of its wide popularity, it’s easy to get
support and see best-practice approaches. Unfortunately, it does not include
a physics engine and object collision support, these have to be programmed or
found elsewhere and combined with Three.js.

3.2 Agents

All agents, predators and preys share some functionally; this is located in agent-
Controller.js. The agentController contains many variables and helper functions,
but most important is a simple rules algorithm called huntOrEvade. Its used
for moving relative to the closest nearby enemy within a given vision range.
Predators can use this algorithm to hunt, and predators can use it to evade, the
use depends if the result of this function is negated or use directly. Current agent
speed is multiplied with the function result so that predator and prey speed can
be adjusted independently.

Even though they have edge detection and different speeds in different states,
the rules only have two main objectives: 1: Escape the closest enemy if some-
one is visible, 1: move towards the center if nobody is visible. Simple rules
huntOrEvade algorithm is computed as follows:

1. FIND: Find the closest enemy by comparing enemies distances

2. MOVE: Add move toward the center if no enemies are nearby.
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3. MOVE: Add one move unit in both width and height direction relative
the closest enemy

4. MOVE: Add one move one extra unit in one direction, if the other direction
is not used

5. MULTIPLY: Multiply moves with the speed variable

6. EXECUTE: Exectue moves

7. CHECK: Check with torus or edge functions if agent is outside environ-
ment.

8. WIGGLE: Apply small random movements(wiggles) in addition to the
executed moves.

The algorithm enables agents to execute moves relative to nearby enemy
agents, but it does not handle friendly agent collisions, differ move relative to
the actual distance to closest enemy or consider two or more enemies at similar
distance, only the closest enemy. The algorithm is simple, but effective and can
be used by both predator and prey. Each of their respective controllers inherits
the agent controller and its functions.

3.2.1 Wiggles

In nature, millions of small biological events happens every second, events so small
and insignificant we call them random. These events and processes ensure that
nature keeps evolving and avoids stagnation. I will therefor include this in the
implementation so that agents can benefit from small random spatial movement,
called wiggles. The agents would perform extra random wiggles every time step,
in addition to the movements decide by the ANN.

3.2.2 Prey

Prey inherit the agent controller, and use the simple rules algorithm huntOrEvade
as a vision model with a vision range of 250 move units, and a speed of 1.5 units
per time step. This enables them to observe and move away from predators that
are a distance of 250 units away, and move towards the center if no predators is
visible.

3.2.3 Predator

The predator agents can also use the simple rules algorithm, but they can also
use a more creative and adaptive approach to hunt, the evolved neural networks
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(ANNs). All predators are homogenous, meaning that the swarm can either use
simple rules or ANNs, not both at the same time. Every agent has to use the
same decision system. This makes other predator behaviors more predictable,
as they all would take similar decisions, with just small differences depending on
additional observations, noise and small wiggles. By observing each other, preda-
tors communicate indirectly though observable behavior, and thereby forming a
global structure by local interactions, called Stigmergy.

The ANNs algorithm decision-making works in the following way:

1. Impressions: Nearby predator, prey and wall observations get computed
into input signal impressions.

2. Measurements: The signals are measured, strength decreases approach-
ing zero as distance increases until they are outside the vision radius.

3. Inputs: Input signals are sent into the ANNs, where they are combined as
into input layer neurons.

4. Propagation: The input signals propagate through the input, hidden and
output layer.Each signal passes through an activation function which de-
cides further signal strength.

5. Decision: The ANN uses output layer signals to decide an action, reflecting
which vision zone angle are most attractive to move towards.

6. Position calculation: Next x and y spatial values are calculated using
cos, sin and provided angle and predator speed

7. Edges: Torus or edge functions checks and adjusts if the agents are outside
the environment.

8. Wiggles: Wiggle function applies small random movements to the agent
in addition to the actual move

The ANNs algorithm provide more information and a more complex deci-
sion making process. This can possibly create better solutions, but does also
require much more computing resources (CPU, RAM). This will make the feasi-
ble maximum number of simulated evolution agents lower when using the ANNs
algorithm, than simple rules algorithm. Because of this, it is attractive to evolve
behavior using a small amount of agents that also would work if the amount
scaled up.
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3.2.4 Vision model

Predators observe can their surroundings with a vision model: a 360-degree arti-
ficial retina divided into twelve 30-degree vision zones, representing the resolution
of the vision. Each zone gets three separate inputs to differentiate between preda-
tors, prey and walls. Multiple similar agent impressions in the same zone will be
summed into one input signal. All 36 input signals will be weighted in the ANN.
Olson et al. [22] used a similar approach when using evolved swarm intelligence
to test if prey evolved behavior that could confuse nearby predators. Their model
was a 180-degree 2D retina, capable of observing nearby prey only. The limita-
tion posed by 180-degree vision enabled prey to benefit from predator blind spot.
This work uses a vision model which is created to let predators get a full 360
impression of their environment, including predators, prey and walls relative to
distance. The visual impressions of similar objects in a vision zone is combined
into one input, so two prey in one vision zone only becomes one input signal.
The vision impression resolution is half of what [22] used, but will still provide
predators with great possibilities to evolve creative and effective strategies, using
nearby predators and walls to their benefit in the hunt. The predators have a
vision range of 300 units.

Figure 3.1: Vision model: The illustration show how an agent positioned in a
corner employ the vision model to observe nearby predators, prey and walls.
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Vision zone values recieve a input of 0 if no agents are located that spesific
vision zone. The model gather a total of 36 inputs, 12 zones * 3 object types =
36. A spherical 3D extension of this model would use 12 * 12 * 3 = 432 inputs,
if the same resolution were used. Or 432 / 2 = 216 in a 180-degree vision model

The environment does not provide any built-in functions to perform object
observations, these is custom implemented. The necessary observations are to
detect and measure distance to other agents and walls.

Agent detection

To detect agent observations inputs, both predator and prey agents are loop
through every time step, investigating each individual agent. The absolute dis-
tance and angle to every agent is calculated by using their relative x and y posi-
tions, and used to calculate how strong the input signal should be, and in which
vision zone it belongs. The input signal is normalized so it gives a value between
0 and 1. The code is located in the getInputData function in agentController.

Wall detection

Wall detection is somewhat more complicated because I as the system designer
construct the walls; they only exist where I make them exist. The approach is to
calculate distance to nearby walls at all vision zone angles is based on calculating
the distance to line intersections, because where the wall should be, is informa-
tion I control. The first challenge is to find out which wall; the vision zones angle
points towards, secondly the intersecting point on that wall has to be found, and
at last, the distance to the intersecting point needs to be calculated. The algo-
rithm is designed to be as fast as possible by using trigonometric, because it has
to be used every time step.

The code is located in the getAgentWallInputs function in predatorController
and the algorithms is as follows:

1. Defining a radius R large enough to always be outside the environment

2. Defining the agents angle to all the environments corners C (northwest,
northeast, southwest, southeast)

3. Defining a distant point X outside the environment by using the angle A
in the center of the vision zone and R, and make an imaginary line of sight
L to this point.
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4. Check if the angle A is identical to any of the environment corners, if
so: calculate the distance to the known corner location C and jump to 7,
continue if not found.

5. Check which two corners C angles the angle A is within, these corners
define which wall W line to use.

6. Calculate the distance to the point P where the line L and W intersect

7. Use the distance as input if it’s within the defined vision range V

8. Repeat the algorithm on all 12 vision zones

Figure 3.2: Vision model: Wall detection.

The illustration show R as the outer red circle, yellow corners C, Red distant
points X, black lines L from the agent with angle A, walls W between two yellow
points. Blue interesection points P and vision range V as a blue circle.

3.3 Environment

The agent environment is a rectangular box with the width and height of 500
move units. The environment is created in 3D with Three.js, but agents only use
the x- and y-axis. It was intentionally designed to use the z-axis as well, but that
would have increased the required calculations dramatically if the predator vision
resolution would be kept as is the described vision model. The environment uses
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no form of artificial physics or object collisions, other than containing walls and
floor. The walls are observable by predators, and be used to their advantage.
The predator implementation has the ability to add random addition random
noise to the sensory inputs, at all predator, prey and wall sightings. The noise is
added to simulate errors in visual sensors and distance estimate assumptions in
the real world.

3.3.1 Scenarios

The implementation includes some predefined initial start positions to be used in
the environment; this is suitable make comparable simulations and reproducible
results by using similar scenarios. The implementation also includes generative
and random approaches to assign positions; the generative approaches distribute
agents along a vertical or horizontal line and the random approach assign pseu-
dorandom initial positions. The generative and random positions are used to
avoid overfitting behavior, performing perfect in only some predefined positions.
The idea is to let agents learn on a set of different scenarios, some predefined
and generative to increase performance in known scenarios and some random to
increase creativity in all possible scenarios. All scenarios are in the appendix,
viewable as images.

3.4 Genetic Algorithms

Genetic algorithms (GA) are used to evolve solutions directly encoded into weights
use by predator’s artificial neural networks (ANNs). The best solution is selected
from a population pool of possibly candidate solutions, evolved through many
generations of selections. The selection process is to test the solutions perfor-
mance in simulations and conduct fitness evaluations. The fitness decides which
solutions reproduce new children solutions in their image by using crossover. The
solutions are mutated to possibly produce new attractive behavior. The solutions
that don’t reproduce will be discarded; only the parent and children solutions will
represent the next generation’s population.

Each candidate solution individual represents a set of weights used to deter-
mine how a group of predators should decide actions by using the weights in their
identical ANNs. Every predator in the group will therefor display same behavior
in identical scenarios.
The GA doesn’t use a typical indirect genotype to phenotype encoding, but rather
a simple direct type called solution as genotype, without extra mapping. Solution
is an array of numbers, each index represent a neuron weight in the ANNs. The
weights can be anything in the range of -0.1 to 1.0; higher numbers will increases
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the chance of neuron firing signal further.

3.4.1 Fitness function

Simulation performance is measured after each simulation by assigning a fitness
score; the entire predator groups share its fitness score, as it’s the groups’ perfor-
mance that’s interesting in swarm intelligence. The individual fitness scores are
aggregated and averaged if multiple world scenarios are simulated with the same
weights. Using multiple different scenarios is a safeguard against overfitting the
group behavior. The implemented fitness function consists of two factors, each
theoretically capable of receiving a score of 50, together 100. The first is only
kill-ratio dependent, the other is kill-ratio but also time dependent and thereby
punishing in nature. The fitness evaluation is not very strict, as it does not pun-
ish factors such as: total movement, energy consummation or pattern specific
behavior. The second fitness factor is meant to abstract predator efficiency and
measure the killing of prey in the shortest amount of time. The factor only mea-
sures efficiency when prey is killed, not every time step, so if a prey kills prey
only in the beginning, but not later, this would still yield some efficiency. If all
prey were killed in zero time, this would yield a perfect score, but if all prey gets
killed in the last time step, no score is applied to the second fitness, resulting in
a total score of 50. The combination is used so that the wanted behavior is to
kill all prey, preferably as early as possible.

killratio = killed
preys ∗ 50

timeratio = 1 − ( time
totaltime )

efficiency = (killratio ∗ timeratio) ∗ 50

fitness = (killratio + efficiency)

3.4.2 Selections

The implementation uses a set of relatively trivial selection algorithms to sim-
plify the evolution process and reduce the amount of computations. The se-
lections always automatically select the best candidate solution, favoring strong
elitism.After fitness values are assigned to candidate solutions representing the
performance of generation of predator groups, the adult selection decides which
that survives and grows up. The best solution is automatically transferred into
the next generations candidate parents, so is the rest of the solutions performed
above average in their generation. If only the best survived, the second best is
also added to the group of candidate parents. The next is the parent selection,
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the best solution is assigned as father and random other solution is assigned as
mother, a solution cannot be both father and mother. This efficient couple will
produce the entire set of children solutions in the children crossover algorithms.

1. Fitness evaluations: Perform fitness evaluation and Sort all candidate
solutions after performance.

2. Adult selection: Keep the best and all above average. Add the second
best if only the best is added.

3. Parent selection: Assign the best as father, and a random above average
as mother.

4. Reproduction: Create enough children to fill up the available space

5. Crossover: Perform random crossovers with both parents on all children.

6. Mutation: Perform random mutations on all children.

7. Replacement: Replace the old generation with the new, consisting of the
new children, the best and above average solutions.

Figure 3.3: Simulated evolution.

3.4.3 Crossovers and mutations

The process of creating a new child solutions starts with evaluations and fitness
selections, the selections result in mother and father solutions, who together
create new children solutions. Children is in this implementations is created
by cloning the father solution, then inheriting some genes from their mother
using crossover, and at last provided with random mutations to differ from their
parents. Crossover and mutations occurrences are based on two probabilistic rate
variables and JavaScript’s pseudo random Math.random function. Because this
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is a GA, the probability of evolutions through mutations is higher, than with
crossover Spears [28]. Changing the mutation- and crossover-rates can change
this if other evolution process is wanted. The children solutions genotypes are
loop through, if a generated random number is within the crossover rate, the value
on current index value is replaced by its mother current index value. Similarly,
the mutations loops through the solutions, and a small value 0.1 is either added
or subtracted from the current index value if a random number is within the
mutation rate.

Figure 3.4: Genotype crossover and mutation

3.5 Artificial neural network

The artificial neural network (ANNs) used by each individual predator in the
groups is based on Feedforward networks, as described in [35]. The ANNs don’t
use memory or recurrence in the networks. This simplification is done because
of the increased system complexity caused by the number of agents and inputs.
However, the implementation has more information and should be able to take
more intelligent decisions than simple rules would produce. In ANNs, every
agent’s relative observations of nearby predators, prey and walls are input infor-
mation. Agents also have the possibility to chose between 12 or none actions,
deciding if and where they should move relative to their surroundings. Groups of
predators can use this information to employ strategies and tactics when hunting
prey, displaying intelligent behavior. For this ANN to work, the ANNs to har-
monies inputs and output, through a network of weighted neurons, evolved by
using GA. The implementation uses a total of 72 neurons, needing 72 weights. 36
sensor input neurons for different object types; the sensor neurons are combined
into 12 input neurons in an input layer, one for each of the 12 vision zones. The
input layer neurons are fired and crossed further to 12 neurons in the hidden
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layer. The last process is repeated once more two the 12 neurons in the output
layer. Here, the strongest signal is sent to the predator as an action, deciding
where to move. If no signal is strong, but a signal is very weak, another action
is sent instead. If no action is wanted, the ANNs will return a -1 action: de-
ciding that the predator should not move. Each firing signal is sent through an
activation function, normalizing the signal before signals aggregate at the next
neuron. This is an abstraction of chemical processes inside neurons in in the cen-
tral nervous system, ensuring that only some impulses propagated further and
result in actual actions. Each of the neurons are weighted by numerical values
between -1.0 and 1.0. The weights are directly mapped from genotypes. Good or
interesting weights are saved in weights.js.72 neurons can be used at every time
step, for every predator. By an entire lifetime of 500 timesteps for a small group
of 10 individuals, there could be 360.000 neurons firing. And if these was only
one of 1000 generations of 10 candidate solutions. The numbers of firing neurons
would be:72 ∗ 10 ∗ 500 ∗ 1000 ∗ 1000 = 360.000.000.000

3.5.1 Activation function

The implementation use a sigmoid function to decide how strong signals should
be activated and fired further into the ANNs. 0.5 is subtracted from the result, so
only strong signals above 0 propegate and combined at the next neurons. signal0
is sent from its neuron through the following sigmoid function:

signal1 = ( 1
1+E−signal0

) − 0.5

signal1 is fired further to the next 3 neurons, possibly combining with two other
signals who have been through the same function.

The illustration show the ANNs model used in this project. It feeds 36 inputs
for predator, prey and walls(red, green and blue) to create a input layer(yellow),
the input neuron is mapped to a hidden layer(dark green), which is again mapped
to an output layer(dark red). The output layer creates an output action(purple
node). Each of the 72 neurons are weighted with the respective weights, at each
layer node, the previous inputs are passed through an activation function, de-
ciding if they should propegate further. The circular cross mapping allow vision
impressions in nearby vision zones to greater affect the outcome in others.
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Figure 3.5: Artificial neural network model with 72 neurons.
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Chapter 4

Experiments and Results

This chapter will experiment with the implementation to investigate research goal
and questions. The investigation will use evolutionary algorithms and ANNs to
create SI behavior in predator-prey scenarios. This approach should be able to
produce more interesting, effective and creative behavior than using simple rules
as approach. The chapter will lastly discuss implementation limitations and what
could have been done differently.

4.1 Experiments

Results will be found by conducting experiments and observations related to re-
search goal and questions. Experiments consist of multiple grouped simulations,
each related to a specific purpose or separate research questions, but with the
general research goal in mind. Discussion of results will be done directly after
the experiment is completed. Common limitations will be discussed after the
experiments.

To provoke discussion and gain better understanding of the results, hypothesis
always will be made before any are conducted. I first have to establish that the
GA-ANN implementation works and can successfully evolve SI. It will be proved
by first evolving an over-fitted behavior from a simple genotype in the most basic
scenario possible. The same simple genotype will be used to evolve more normal
SI behavior by increasing the number of scenarios and complexity. And lastly
evolve a manipulated SI behavior using the same setup as the normal SI behav-
ior and manual genotype manipulation. The three experiments will be compared
with simple rules in identical scenarios. The results will be used as a proof that
the implementation works. The follow three experiments: Scaling group, invis-

37
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ible walls and environmental noise is setup to investigate aspects SI behavior,
with the respect to research questions. Behavioral pattern observations will be
done, by studying two visualizations of predator-prey scenarios, where predator
employ evolved GA-ANN. The visualizations will be recorded as evidence. This
combination of experiments and observations will provide me with deeper insight
towards my goal: Gain understanding about how evolved predator swarm intel-
ligence can be used instead of simple rules.

All experiments will be conducted in controllable simulated environments
where most aspects can be measured. The Overfitting experiment will only be
done one predefined scenario. The normal and manipulated experiments will be
done with predefined, generative and random scenarios. Scaling group, invisible
walls and environmental noise experiments will be done in a simulation as the
overfitting experiment, except for using a different generative scenario and small
variation in attributes: group size, wall vision or environmental noise.

Result discussion given in each separate experiment, it will be derived from the
measure results simulations yields; the number of simulations in each experiment
would have to be significant to ensure the results are not just lucky or cherry-
picked. The number of simulations necessary to investigate each experiment will
be set to 20 simulations, from these simulations, an average performance can be
observed and discussed. Standard deviation will also be calculated and visible as
thin grey error lines on the average fitness. The complete results are in located
in large excel files and will be included with the code.

The experiment overview is as follows:

1. Overfitted experiment

2. Normal experiment

3. Manipulated experiment

4. Scaling group experiment

5. Invisible walls experiment

6. Environmental noise experiment

7. Observation study
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4.1.1 Overfitting

Plan

Begin to establish that the GA-ANN works by evolving over-fitted behavior from
simple initial genotypes in one scenario, as simple as possible. The results will
be compared with using simple rules.

Setup

All predators start at the coordinates 300x250y A and prey at 100x250y B, called
Scenario A in the appendix. Predators will need to learn to move left toward prey.
The initial genotype weights used as seed is called initial (W1 in appendix), it
sets predator, prey and wall weights to 0.1 and input hidden and output layer to
1. It will use the follow simulation settings:

Simulations: 20
Runtime: 10 minutes
Time steps 500
Generations 100
Population 5
Genotype W1 (initial)
Mutation rate 0.5
Crossover rate 0.1
Predators position A
Scenarios B
Wiggle False
Noise False

Table 4.1: Experiment overfitting setup

Predator ANNs have identical initial weights for predator, prey and walls
in this experiment. Which means their attraction to predators and prey are
identical, and that evolution is necessary to learn hunting. Predators need to
develop a strategy that enables them to prefer and hunt prey. The necessary
learning process is reinforced by evolutionary pressure through fitness evaluations
and natural selections.

Baseline

The simulations will use simple rules as a baseline for comparison. Predators
using simple rules will always receive a fitness score of 90.7 in an identical scenario,
no random variables is used, so this will always happen. The baseline results can
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easily be reproduced using the same parameters as above and the simple rules
described in implementation chapted. Selected by setting useANN to false in
simulation.js.

Hypothesis

Predators will successfully evolve a strategy to kill prey; they will be able to reach
a fitness score of 90, proving them almost as successful as simple rules (90.7).

Result

Experiments show that average solutions reach a fitness score of 90.785, match-
ing the performance of the simple rules. The highest recorded fitness score was
92.3(!), beating the simple rules by 1.6. Standard deviations were only 2.19 at
generation 100. This is very low, meaning all generations were performing very
well.

Figure 4.1: Experiment overfitting fitness landscape

Study of the fitness landscape of provided some interesting aspects of the
simulations, described in chronological order:
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• Generation 1-22: The average solutions where in a growth phase, steadily
climbing and improving performance until they reach a fitness of 60 at the
age of 22 generations, then they faced a temporary stagnation.

• Generation 23-49: The stagnation process continued until generation 49,
then they finally began improving fitness again. One possible explanation
to is that because the fitness function both reward on total kills ratio and
killing/time ratio efficiency, the solutions first learned to kill, then later
evolved swarming behavior like stigmergy or herding to approach and sur-
round prey from different angles quickly.

• Generation 49-85: The average fitness is advancing with big improve-
ments at the time, creating a platform structures in the fitness landscape.
A possible explanation could be that the different simulations predators
are learning how to kill faster by trying similar approaches at a similar
time. Because the platforms are clearly visible and distinct in the fitness
landscape, its probable that they simulations improve similarly at the same
time. Improvements at different generations would smooth out the fitness
landscape.

• Generation 85-100: The fitness landscape is flatting out after 90 and
standard deviations are decreasing to 2.19. It still growing slightly, but it
has almost peaked and cannot grow much longer.

The implementation proved the GA-ANNs approach could successfully evolve
over-fitted predator swarm intelligence in this simple scenario. The average fit-
ness values started at zero and improved gradually to over 90, which is a successful
evolution of behavior. The best scores quickly became over-fitted and the worst
struggled for a long time, but eventually reach the others. This is typical in
overfitting scenarios, as it is essentially an easy problem to solve and should be
possible for all to solve.

The hypothesis however, was disproven by the results. This is impressive, but
surprising because the scenarios is very simple, and it is reasonable to believe
the simple rules will perform better in this scenario, because the task can be
accomplished by moving in a straight line towards prey. A possible explanation
is that the simple rules implementation gives predators a slightly slower move
speed as it’s calculated differently. The speeds appear to be identical to visual
observations, but it should be noted to future work that speed comparisons would
have to be done more thorough. This problem only is critical in simple scenarios,
where small speed differences can make or break the hypothesis. Much less so
in complex scenarios, where effective swarming behavior can yield big differences
and improve efficiency dramatically.
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4.1.2 Normal

Plan

Explore the capabilities of the GA-ANN by the same initial weights as the over-
fitted experiment, but with added random wiggles and multiple different scenar-
ios. This is done with the goal to create a predator SI behavior that can prove
efficient in different scenarios. This experiment challenges the implementation to
greater extent than the over-fitted experiments, because it will use more of its
features to evolve a more intelligent behavior. The results will be compared with
using simple rules as a baseline.

Setup

The initial genotype weights are identical to those used in the overfitting exper-
iment: 0.1 is used for prey, predator and walls, input, hidden and output layers
weights are set to normal (1), to allow full propagation at default. The weights
are in the appendix as custom W1.
The simulations will each use 8 different scenarios: Predators start at the position
C in the center of the environment with coordinates 250x250y every run. Prey
start at 8 different initial scenarios: 1 predefined, 4 generative and 4 randomly
scattered.

Simulations: 20
Runtime: 1 hour and 40 minutes
Time steps 500
Generations 100
Population 5
Genotype W1 (initial)
Mutation rate 0.5
Crossover rate 0.1
Predators position C
Scenarios B, D, V100, V400, H100, H400, R1, R2, R3, R4
Wiggle True
Noise False

Table 4.2: Experiment normal setup

Baseline

The experiment will use simple rules as a baseline for comparison. Simple rules
also use the wiggle feature and will therefor perform differently every run, re-
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sulting in different fitness scores. An identical experiment is therefor conducted
with useANN set to false, and simple rules enables. The simple rules experiment
average is visible in the fitness landscape for comparison. Extended results are
in the included files

Baseline Results The baseline fitness scores were stable around 40, on aver-
age 40.34. This was surprisingly high, considered the multiple different scenarios.
The stable results is due to no random variables were used, except for the random
wiggles every timestep.

Hypothesis

Normal simulations will perform better than the simple rules; predators will
evolve swarming behavior that allows them to benefit from their power in num-
bers.

Results

Hypothesis disproved, the normal simulations scored on average much lower than
the simple rules scores. They scored on average 5.15, while simple rules score
40.34. The highest recorded average score was 7,14, and lowest 0. The fitness
landscape clearly shows an evolution process, slowly facing stagnation. The land-
scape provide some interesting aspects by inspection:

• The highest fitness values are increasing from generation 89 to generation
100, suggesting that the behavior could possible evolved further, if given
the opportunity to continue.

• Standard deviation is very similar during the entire experiment, and never
faced stagnation as in the overfitting experiment.

• The lowest fitness scores were more fluctuating after generation 69 and
towards the end, meaning all candidate solutions were performing better
than the initial genotype.

The combination of these aspects imply that the simulations were still evolving
at generation 100, and that it could possibly have perform better if given enough
time. 100 generations was probably to few generations for the experiments to
reach its optimal performance. This was surprising and valuable information,
noteworthy for future work. The wide combination of different scenarios made
evolution of SI behavior a much bigger challenge without a doubt. But the results
don’t show if the challenge was made any harder, of it just needed more time.
This forms an important question for future works.
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Figure 4.2: Experiment normal fitness landscape

4.1.3 Manipulated

Plan

Extend the Normal experiment further by using manual genotype manipulation.
The results will be compared with using simple rules.

Setup

The setup is identical to the setup used in the normal experiment, with the ex-
ception of using manual genotype manipulation before starting simulations. The
setup is manipulated to create the best possible starting point for evolution of
efficient SI behavior. Genotype weights are manipulated at custom to be very
attracted to prey (0.5), and to avoid nearby predators (-0.1), walls are visible,
but no weights are set to prefer attraction or distraction (0.0). Input, hidden and
output layers weights are set to normal (1), to allow propagation at default. The
weights are in the appendix as custom W2.
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Simulations: 20
Runtime: 1 hour and 40 minutes
Time steps 500
Generations 100
Population 5
Genotype W2 (manipulated)
Mutation rate 0.5
Crossover rate 0.1
Predators position C
Scenarios B, D, V100, V400, H100, H400, R1, R2, R3, R4
Wiggle True
Noise False

Table 4.3: Experiment mainpulated setup

Hypothesis

The manipulated approach will perform better than the simple rules; predators
will evolve swarming behavior that allows them to benefit from their power in
numbers.

Results

Hypothesis proven. The average performance was stable around a fitness score
of 61. It started at 61 and ended at 61, with maximum at 62 and minimum at
59.46.

This was surprising high and stable results. Even though the hypothesis got
proven as predators performed better than simple rules, it has an important flaw.
Predators did not learn to benefit from their power in numbers through evolution,
the behavior were already there, and did not improved or adapted any further.
The manipulated genotypes provided predators with a robust self-organizing,
flocking behavior. Genotypes were altered to slightly prefer prey and avoid nearby
predators if they came very close and no prey were close. This SI behavior proved
successful in a large (8) group of scenarios. It is very likely that it is not the
optimal solution, and that even better solutions can be found. This makes it very
attractive to evolve further on the genotypes, or at least draw inspiration from
when manipulating others. The experiment proves how good the implementation
can perform if given enough time, freedom and evolutionary pressure to evolve.
It is evidently better than simple rules in the group of scenarios.
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Figure 4.3: Experiment manipulated fitness landscape

4.1.4 Scaling group

Plan

Experiment with different group sizes to investigate if SI behavior evolved for a
defined group size can benefit from an increased group size. The experiment will
evolve a normal SI behavior as baseline, then alter the group size and investigate
if the results change.

Setup

The baseline evolution setup is identical to the setup in the overfitting experiment,
except for using a different scenario, where prey is generated along a vertical line.
This evolution is used to evolve a normal SI behavior to be used as a baseline.
The experiment will scale the amount of agents by 2x, 4x, 6x, 8x and 10x, both
predator and prey. This will help to investigate if they maintain the same fitness
by running single simulations and investigate each time step. The experiment
does not involve any random elements, and will therefor be identical each time;
it is not necessary to run 20 simulations because the result cannot change.
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Simulations: 20
Runtime: 10 minutes
Time steps 500
Generations 100
Population 5
Genotype W1 (initial)
Mutation rate 0.5
Crossover rate 0.1
Predators position A
Predators 5, 10, 20, 30, 40, 50
Preys 20, 40, 80, 120, 160, 200
Scenarios V100
Wiggle False
Noise False

Table 4.4: Experiment scaling group setup

Hypothesis

Fitness will increase as the numbers are scaled, because this is a closed envi-
ronment and they can benefit from their numbers, even though they have not
evolved to do so.

Results

Hypothesis disproven. Every fitness landscapes remained almost identical to the
baseline; the scaled groups did not increase or decrease the fitness scores. This
lead me to believe predators have to learn to use their power in numbers. It could
be interesting to evolve a group of predators with constant variations group size.
The variations could let predators evolve different intelligences to be used when
the same size appear again.

4.1.5 Visible walls

Plan

Experiment with different wall visibility to investigate if SI behavior pre-evolved
for a defined scenario can be used in environments where the walls are less or
not visible. The experiment does not include any random events, and will not
benefit from multiple simulations.
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Figure 4.4: Experiment scaling group performance

Setup

The setup is identical to the setup in the scaled group experiment, but with
constant agent numbers and a lower wall visibility.

Baseline

Baseline is the identical to the one used in the scaling group experiment.

Hypothesis

Predators will perform considerably worse, as they have a GA-ANN that’s adapted
to benefit from the environmental walls as obstacles used to constrain prey.

Results

Hypothesis proven, performance became considerably worse. The performance
began decreasing slowly until it reached 10%, the fitness scores dropped to zero
after that. The beginning can be explained with the impressions the walls con-
tributed with, increased the input from prey and stimulated the hunting phase.
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Simulations: 20
Runtime: 10 minutes
Time steps 500
Generations 100
Population 5
Genotype W1 (initial)
Mutation rate 0.5
Crossover rate 0.1
Predators position A
Predators 5
Preys 20
Scenarios V100
Wiggle False
Noise False
Wall visibility 75%, 50%, 25%, 20%, 15%, 10%, 5%, 0%

Table 4.5: Experiment visible walls setup

With the reduction of walls impressions, the stimulations were also reduced. The
catastrophically decrease after 10% can be due to that the ANNs have evolved
to be used in the closed environment. When the surrounding environment sud-
denly disappears, the ANNs seize to work as well, as prey impressions alone is
not strong enough to fire neuron responses. If the swarm had trained on similar
scenarios, they might have learned and evolved behavior that could flock around
searching, only by using local interactions with each other. The disappointing
lack of this behavior could be due to the simple evolved genotypes, only created
to survive in one overfitting scenario.

4.1.6 Environmental noise

Plan

Experiment with environmental noise added to the ANN inputs as random events.

Setup

The setup is identical to the setup in the scaled group experiment, but with addi-
tion random noise. Extra noise will be added to predator, prey and wall inputs.
Noise will be created by using JavaScript random function, creating a number
between 0 and 1, and then divided by 50 to make it smaller. Regular single agent
inputs are between 0 and 1.
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Figure 4.5: Experiment visible walls performance

This simulation includes random variables; it will therefor be conducted 20 sim-
ulations.

Baseline

Baseline is the identical to the one used in the scaling group experiment.

Hypothesis

Random environmental noise will affect the performance with a reduction of 50%
in fitness scores.

Results

Proven, the fitness scores got reduced by ca 50%. The scores and standard
deviation remained stable after timestep 110, same as the baseline. This could
mean that both baseline and experiments have faced stagnation in a corner or
situation - where they don’t have evolved intelligent behavior for yet.
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Simulations: 20
Runtime: 10 minutes
Time steps 500
Generations 100
Population 5
Genotype W1 (initial)
Mutation rate 0.5
Crossover rate 0.1
Predators position A
Predators 5
Preys 20
Scenarios V100
Wiggle False
Noise Random number in the range (0.02 - 0.002)+/-

Table 4.6: Experiment environmental noise setup

4.1.7 Observation

This observation study will investigate two video clips of evolved GA-ANNs SI
behavior and explain the observable patterns that emerge. Videos are supplied
as an addition to the appendix.

Video 1

The scene is set in a typical, where 5 predators hunt 20 preys. It lasts 8 seconds.

• Predators eagerly flock toward a group of prey that splits into to separate
groups; predator maintains the stable direction towards the center.

• All predators decide two pursue the hunt for the group with the highest
density of prey.

• Predators catch and kill most prey in the big group; only one prey manages
to escape. Predators split up, three goes after the closest one: The escapee.
The other two starts to search for the prey that flew earlier.

• One predator manage to herd prey in the upleft corner, managing to kill
the prey alone, before he quickly joins his predator peer in the hunt for the
one escaping at the top. Meanwhile, three predators are flocking together,
chasing the escapee, before one decides to stop, as the predator group be-
comes dense and it’s not necessary for him to contribute. His friends herd
the prey into the downright corner and successfully kill him off.
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Figure 4.6: Experiment environmental noise performance

• The last living prey are fleeing along the right edge as he tries to escape
from the predator, persistently lurking behind him, while making sure he
always stay one step behind so the prey don’t have anywhere to escape.

• Two predators collaborate to encircle, capture and kill the last prey.

Video 2

The scene is set in a Random scenario, where 5 predators hunt 20 preys that is
scattered across the environment. It lasts 11 seconds.

• Predators start together but quickly hunt toward nearby prey, until all
predators have formed a diagonal predator line structure. They use this
structure to herd prey towards the left wall.

• One predator breaks the formation to hunt a kill a three prey that have
escaped and hide in a corner. After this, he resume his position in the
formation, pushing prey closer to the left wall.

• As one of the predators in formation decide its time to strike, creating a
small gap, two preys see this and escapes through the gap. All predators
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quickly stop what they were doing and chase after the escapees like a flock,
then quickly forming a new line structure before they continue.

• The line structure moves towards the escapees and herd other prey toward
the upright corner, making them easy to kill.

• Meanwhile, a lone wolf predator is killing two preys near the left alone.

• The group engages on the corner, killing all but on. One prey manages
to escape but on single predator sees it and begins hunting after him. He
succeeds.

• The group and lone wolf divides up into small groups that hunt down the
last remaining prey.

Results

The videos clearly show signs of eager active behaviors in some predator phases,
and some more cold and calculating behavior in other phases. Predators are
flocking together to hunt for prey, but self-organize when multiple groups can
be captured. Predator herded prey into corners, in groups and alone. They see
each other and sometimes decide not to engage if nearby predator have better
chances; this is due to stigmergy as global structure is formed through local
interactions. This is also visible when predators form the line structure, created to
herd multiple preys into a wall or corner. When prey escape outside the structure,
predators quickly respond by chasing escapees. Predators don’t rush when they
know they are going to capture prey at last, this is similar to persistence hunting.
The behaviors are robust, as one or few individuals can successfully capture prey,
although more is better.

4.2 Limitations

Although I am satisfied with the implementation and the results it yielded, several
flaws or limitations become apparent after running experiments.

4.2.1 Speed

The overfitting experiment showed that GA-ANNs agents were possibly slightly
faster than the simple rules, not by much, but still faster. This is a flaw that
was not supposed to happen, because the approaches were though to be equal
in this sense. Luckily, the flaw will only have significant impact on very simple
experiments like this, which could be compared with something like: learn how
to drag race in equal cars and beat the opponent with one second. The flaw is
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less important in bigger experiments; where strategy and tactics play a bigger
role in determine performance. The flaw however should motivate future work
to design performance comparisons of different solutions; this would be better,
more stable and number-driven way.

4.2.2 Environment

The environments plays a big role in experiments and the performance of new
solutions, this should be made easier to alter and change, so that solutions can
learn from a bigger pool of different environment. It quickly become too dif-
ficult to alter the environments in a big way, this was an obvious limitation.
Physics, shapes, terrain, friction, obstacles, noise are all interesting aspects that
would benefit the complexity of evolved intelligence, if given enough time. The
implemented environment was initially design to work in three dimensions, but
the task quickly grew to big for me to incorporate a full 3D world with all as-
pects and still focus on the predator-prey relationship. Future work should try
to devote more attention to this, and experiment with scoping down the solution
and scoping up the environment. The solution and environment will always be
paired together, and a more complex environment will need a more complex so-
lution eventually. Environment should not be a limitation, but rather an reason,
enabler and facilitator for evolution.

4.2.3 Simple rules

The experiments only compares to one set of simple rules. The rules only have
two main objectives: 1: Escape the closest enemy if someone is visible, 2: move
towards the center if nobody is visible. The rules are simple and effective, but
more effective simple rules could most likely be written. A interesting exercise
would be to try creating simple rules to always beat the evolved approach, this
will be suggested for future work.

4.2.4 Vision

3D worlds would need a 3D spherical vision; this can be engineered by extending
the existing 2D vision with an additional 12*12 = 144-12 = 132 vision zones or
132 * 3 = 396 vision inputs. The increased number of inputs would of course
also scale up the ANNs equivalently. This scaled up vision model would not
have been feasible with the used implementation, therefor simplifications had to
be made to overcome the limitation. Another limitation concerning the vision
model is the lack of dead zones/blind spot, as described in related work. It
would have been interesting to investigate further how agent direction and a
dead zone/blind spot would have affected performance. Selection algorithms
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were simplified to ensure that fit solutions survived, the approach favored strong
elitisms, and this can possibly have led to limited SI creativity. Experiments
with different selection algorithms would have been very time-consuming, but
could have benefitted performance greatly. The system complex needed when
designing swarms and following heavy experiments set a limitation on exploration
of different evolution approaches. Multiple researchers working together on the
same project would probably have done this more effectively, and could yielded
better results.

4.2.5 Evolution

The GA produced less impressive results than imagined. The strong selection
elitism and low number of candidate solutions may result in less solution diver-
sity than wanted, and suppressed the right to live for new creative new solutions
if they performance bad overall. This limitation could be experimented with fur-
ther, by creating more selections algorithms and test multiple setup combinations
to evolved more creative behaviors. More interesting genotypes can be used, and
mapped to richer phenotypes. This could probably also make the challenge of
keeping solutions that ’only’ performs creative and good, not perfect. The com-
binations of these approaches can possibly overcome the limitations the GA has
today, and produce more interesting behaviors.

4.2.6 Computer performance

Simplifications and abstractions done in the GA-ANNs implementation are nec-
essary to evolved SI within the scope of this project. This is necessary because
of the massive amount of calculations needed to evolve and use weights on a
swarm of predators, not just one individual. Each experiment consisted of at
least 20 simulations, each simulation contains numerous generations, each gener-
ations contains many solutions, each solution is tested in several different world
scenarios, each solution contains a group of predators, each predator lives a short,
but intensive life hunting preys using visual inputs to chose actions, each preda-
tor chose a action every time step. The amount of calculations and processing
power needed to evolve SI behavior became an obvious limitation, which limited
how many scenarios could be learned or how many generations that was used.
The experiments were big and complex, but still feasible to calculate on a nor-
mal desktop computer. The implementation complexity is designed to run on
a normal computer (2.4Ghz Intel 2 Cores, 8gb RAM) and used ca 1 hour and
40 minutes to complete a large experiment with 20 simulations. Bigger experi-
ments would be to computationally expensive and not feasible with the current
implementation.
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Chapter 5

Conclusion

This chapter will provide conclusion on evolving predator swarm intelligence,
review research questions, explain research contributions and suggest future work.

5.1 Conclusion

Effective predator-prey swarm intelligence can be engineered by using genetic
algorithms and artificial neural networks. The combination is well suited for
swarming problems. Problems where size, combinations and constant change
makes it very complex to design simple rules. The employed vision model en-
ables predators to capture enough environmental impressions in a satisfactory
way; it can be built upon when designing vision models in the future. However,
agent, ANN and vision model complexity have to be adapted to the environments,
not the opposite. Simulated environment richness should receive more and ear-
lier attention to avoid the evolution of handicaps in real complex environments. I
humbly advise that the entire environments and assigned task should be modeled
before agents and possible solutions are considered. In hindsight, this seems very
obvious, but it is difficult to model an environment without accidentally consider
possible solutions. A way of doing this is to assign different tasks isolated groups
of researchers, so that solution designers do not know what the environmental
designers are thinking, and visa versa. The similar approach could be used with
teams designing separated simple rules and ANNs, each with the goal to prove
their solution is the most efficient. I can also conclude that manual manipulation
of agent properties such as genotypes can be an effective way of exploring and
mapping of performance.

The research have not produced any earth shattering results, but still provided
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some focus and attention to areas in need: Predator-prey relationships, Swarm
intelligence, GA-ANNs, simulated environments and vision models. The exper-
iments proved that the implementation can perform better than the set simple
rules used for comparisons, but this could only mean they were too simple and
deserve to be developed further. Regardless of the fallout from that comparison,
the research contributed by pushing the need for future exploring and evolution
of swarm behavior, both simple and evolved.

5.1.1 Research questions

The following research questions was created and posed in the introduction chap-
ter. Even though I only have scratched surface of evolving predator swarm intel-
ligence, I now possess the knowledge to answer them with conclusions.

• Research question I: Can GA-ANNs be proved to sucessfully evolve SI
behavior?
Hypothesis: Yes, the implementation should be fitted to sucessfully evolve
behavior.
Conclusion: Hypothesis proved, the combination of the Overfitting, Nor-
mal and Manipulation experiment proves that it can be used to evolve SI
behavior. Overfitting proved that it could be done, at least in easy sce-
narios. Normal shows that it’s capable of evolving towards more complex
behavior, but that it will need enough time to so, if the scenarios are many
and complex. Manipulation proved that the GA-ANNs implementation is
capable of solving complex problems if it uses good genotypes.

• Research question II: Will GA-ANNs benefit from manual manipulation
of genotypes?
Hypothesis: Yes, there will exist a combination of genotype values that
result in good behavior. When we know which genotypes and weights are
mapped together, we can remove all probabilistic factors and try manipu-
lation until we find a combination that is beneficiary.
Conclusion: Hypothesis proved. The Manipulation experiment proved
that the implementation benefit from manual manipulation. Manipulations
were done to favor prey and disfavor predators, this led to self-organizing
flocking behavior, where predators moved together towards prey, while
keeping a small distance between each other. This enabled the swarm to
explore a bigger area and improve predation.

• Research question III: Does group size scaling of affect performance of
previously evolved agents?
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Hypothesis: Yes, A reduced amount of agents will become much less ef-
ficient because the predators are evolved to use their power of numbers to
their benefit. Hence, the benefit and following performance will decrease.
An increased amount of agents, benefit and a performance should increase
some, but not so much as it will decrease. This is because the new larger
amount of predators haven’t learned to benefit from their numbers yet,
both the number of predators in the group, and the number of available
prey to be hunted. The neural input of more prey can seem overwhelming
to ANNs evolved to find and hunt after few individuals.
Conclusion: Hypothesis disproven, The Scaling experiment showed that
predators have to evolve SI behavior that can benefit from different scales;
the increased scales did not improve the results. To increase solution ro-
bustness, this should be experimented with.

• Research question IV: Will the visibility of walls or environmental noise
affected performance?
Hypothesis: Yes, the environmental changes will have big impact on per-
formance, because the GA-ANN is evolved in simple environments without
these changes.
Conclusion: The wall and noise experiments proved this hypothesis cor-
rect, at least in the simple scenario used. Results may have been different if
other scenarios and combinations were used, but this is the topic of future
work.

• Research question V: Will the evolved agents clearly display SI behav-
ior?
Hypothesis: Flocking, herding, stigmergy and self-organization can be
observed.
Conclusion: Hypothesis proven, all the behaviors can be observed in
evolved predators, even though they have not been programmed directly
to do so, as simple rules would do. They also showed persistent hunting
phases and eager phases.

5.2 Contributions

The research has provided me with deeper knowledge about evolved predator
swarm intelligence in simulated environments, insight I want to communicate to
future researchers. The most important insight in this thesis is:

• The importance of analyzing simulation environment complexity.

• How vision models and artificial neural networks can be used by autonomous
agents.
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• The difficulty of evolving predator swarms using evolutionary algorithms.

• Observational study of swarm behavior using visualization of evolved be-
havior.

• Designing and comparing simple rules with evolved behavior

Researchers who study similar and related subjects will benefit from reading
this thesis, especially with these insights in mind.

5.3 Future Work

This research has investigated evolved predator swarm intelligence. It has been an
exciting and challenging journey that has led me places and showed by related
research; subjects and ideas I didn’t knew existed. Those areas deserve more
attention, attention I didn’t have the time and resources to afford and opportunity
to pursue alone at this time. This is the most interesting future work I can suggest
as future work:

• Evolve individual behavior in additional to group behavior.

• Employ several fitness functions for different behavioral traits.

• Flip the scenario; try to design simple rules to beat the evolved GA-ANNs
approach.

• Create a simple rules competition, where the goal is to beat each others
rules.

• Explore simulated environments with altering factors, physics and real ter-
rain data.

• Replicate Spinner dolphins’ prey-aggregation swarm behavior.

• Experiment with evolving encoding in ANNs to find better neuron mapping
patterns.

• Automate swarm behavior pattern recognition by using machine-learning
classification instead of manual observation.

• Investigate performance of predator-prey co-evolution



Bibliography

[1] Banerjee, V. and Banerjee, A. V. (1992). A simple model of herd behavior.
Quart. J. Econom, pages 797–818.

[2] Beckers, R., Holland, O. E., and Deneubourg, J. L. (1994). From local actions
to global tasks: Stigmergy and collective robotics. pages 181–189. MIT Press.

[3] Beni, G. and Wang, J. (1989). Swarm intelligence in cellular robotic systems.

[4] Benoit-Bird, K. J. (2008). Cooperative prey herding by the pelagic dolphin,
stenella longirostri.

[5] Brooks, R. (1985). A robust layerd control system for a mobile robot. Tech-
nical report.

[6] Brooks, R. A. and Flynn, A. M. (1989). Fast, cheap and out of control. In
Artificial Intelligence Laboratory, Massachusetts Institute of Technology (MIT.

[7] Carrier, D. R., Kapoor, A. K., Kimura, T., Nickels, M. K., Satwanti, Scott,
E. C., So, J. K., and Trinkaus, E. (1984). The energetic paradox of human
running and hominid evolution. Current Anthropology, 25(4):pp. 483–495.

[8] Collins, M. (2002). Discriminative training methods for hidden markov mod-
els: Theory and experiments with perceptron algorithms. pages 1–8.

[9] Dash, G., Weaver, J. N., Arroyo, A. A., Wright, S., and Schwartz, E. M.
(2012). Orchestration of intelligent ground vehicles into a homogeneous swarm
via the google cloud.

[10] Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The ant system: Op-
timization by a colony of cooperating agents. IEEE TRANSACTIONS ON
SYSTEMS, MAN, AND CYBERNETICS-PART B, 26(1):29–41.

[11] Ducatelle, F., Caro, G. A. D., Gambardella, L. M., Ducatelle, F., Caro,
G. A. D., and Gambardella, L. M. (1999). Cooperative self-organization in a
heterogeneous swarm robotic system.

61



62 Bibliography

[12] Garis, H. D. (1990). Genetic programming - building artificial nervous sys-
tems with genetically programmed neural network modules.

[13] Joyent, I. (2015). Node.js - http://nodejs.org.

[14] karl Sims (1994). Evolving virtual creatures.

[15] Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization.

[16] Koza, J. R. (1997). Genetic programming.

[17] Lohn, J. D., Hornby, G. S., and Linden, D. S. (2006). An evolved antenna
for deployment of nasas space technology 5 mission.

[18] Mataric, M. J. (1994). Interaction and intelligent behavior. Technical report.

[19] Miller, P. (2010). The Smart Swarm: How Understanding Flocks, Schools,
and Colonies Can Make Us Better at Communicating, Decision Making, and
Getting Things Done.

[20] (NECSI), T. N. E. C. S. I. (2015). Predator-prey relationships.

[21] Oboshi, T., Kato, S., Mutoh, A., and Itoh, H. (2002). A simulation study
on the form of fish schooling for escape from predator.

[22] Olson, R. S., Hintze, A., Dyer, F. C., Knoester, D. B., and Adami, C. (2013).
Predator confusion is sufficient to evolve swarming behaviour. Journal of The
Royal Society Interface, 10(85).

[23] PBS, P. B. S. (2014). Nature: The gathering swarms.

[24] Reynolds, C. W. (1987). Flocks, herds, and schools: a distributed behavioral
model. Computer Graphics.

[25] Schuster, M., Paliwal, K. K., and General, A. (1997). Bidirectional recurrent
neural networks. IEEE Transactions on Signal Processing.

[26] Selfridge, O. (1959). Pandemonium: A paradigm for learning. Mechanisation
of Though Processes.

[27] Shapiro, S. C. (1982). Artificial intelligence.

[28] Spears, W. M. (1995). Adapting crossover in evolutionary algorithms. In
Proceedings of the Fourth Annual Conference on Evolutionary Programming,
pages 367–384. MIT Press.



Bibliography 63

[29] Spears, W. M., Spears, D. F., Hamann, J. C., and Heil, R. (2004). Dis-
tributed, physics-based control of swarms of vehicles. Autonomous Robots,
17:137–162.

[30] Steel, L. (1989). Cooperation between distributed agents through self-
organisation. Technical report.

[31] Sutton, R. S. (1990). Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming. In Proceedings of the
SevenLh International Conference on Machine Learning, pages 216–224.

[32] Threejs (2015). Three.js - http://threejs.org.

[33] Tollrian, J. M. J. R. (2006). Prey swarming: which predators become con-
fused and why?

[34] Tomassini, M. (1996). Evolutionary algorithms. IEEE Transactions on Evo-
lutionary Computation, 6:443–462.

[35] Trentelman, H. L. (1993). Representation and learning in feedforward neural
networks.

[36] ul-hassan Usmani, Z. and Tariq, A. (2009). Influencing customers through
customers – simulation of herd behavior in supermarkets.

[37] Wander Meer, R., Breed, M., Winston, M., and Espelie, K. E.
(1998). Pheromone communication in social insects: sources and secretions.
Pheromone Communication in Social Insects: Ants, Wasps, Bees, and Ter-
mites.

[38] Wood, A. J. and Ackland, G. J. (2007). Evolving the selfish herd: emergence
of distinct aggregating strategies in an individual-based model. Proceedings of
the Royal Society of London B: Biological Sciences, 274(1618):1637–1642.

[39] Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE.



64 Bibliography



Appendices

5.4 Implementation

The implementation can be run in two different ways: Visualization or simu-
lation. Visualization uses a predefined set of weights and a selected scenario.
Simulation is used to evolve weights, and test performance of many scenarios.
After a simulation run complete, the weights are visible in the terminal window,
these can be copied into the weights.js file and used in visualization to study
behavior.

It is build in mostly JavaScript, using a simple text editor. With the help of
Safari, Node.js and a few others:

• Three.js - Used for visualizations.

• OrbitControls - qiao, mrdoob, alteredq, Westley Lang and erich666: used
for camera controls in Three.js

• jQuery.js: Enables interactive content in web browsers, essential for Three.js

• colors.js, Used for color outputs in terminal output.

5.4.1 Visualization

Visualization is run by opening index.html in Safari, it starts immediately. It is
possible to switch between ANN and simple rules live during the visualizations
by clicking the visible buttons. The variables below can be experimented with:

var maxTimestep = 500;

var numberOfPredators = 5;

var numberOfPreys = 20;

var useANN = true;
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var wiggle = true;

var noise = false;

//Positions are located in the testing/positions.js

var predatorsStartPositions = Positions.Center(numberOfPredators);

var preysStartPositions = Positions.Random(numberOfPreys);

predators.setWeights(Weights.manipulated());

5.5 Simulation

For simulations to begin, it is necessary to uncomment the follow lines of code.
The require statements are necessary for simulations to work.

predatorController.js:

//var Agents = require(’./agentController.js’);

//var NeuralNetwork = require(’./ann.js’);

//var Weights = require(’../testing/weights.js’);

preyController.js:

//var Agents = require(’./agentController.js’);

agentController.js:

//var THREE = require(’../testing/threemock.js’);

After the comments are removed, the files should work as aspected and simula-
tions can be performed. It can be runned by starting simulations.js in a command
line window, it can be done like this:

$node simulations.js

All aspects of the simulations can be configured, to test a spesfic hypothesis.
But different variables are located in different files. These are the most important
variables and settings to explore.

simulation.js:

var numberOfPredators = 10;

var numberOfPreys = 40;

var timesteps = 500;

var generations = 100;

var weights = Weights.manipulated();

var worlds = [];
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var numberOfExtraWorlds = 0;

var useAnn = true;

var wiggle = true;

var ANNnoise = false;

function addPredefinedAndGenerativeWorlds() {

worlds.push(Positions.Left(numberOfPreys));

...

}

ga.js:

this.mutationRate = 0.6;

this.crossoverRate = 0.1;

this.populationSize = 2;

predatorController.js:

this.visionRange = environment.width-200;

agentController.js:

this.killDistance = 2;

this.wiggleRoom = 0.2;

this.speed = 1;

5.6 Weights

These are the genotype weights used in experiments. The weights.js file contains
more weights and functions to create random weights and sets of identical ones.

Initial

[

//Prey

0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,

//Predators

0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,

//Walls

0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,

//Inputs

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
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//Hidden

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

//Outputs

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

]

Overfitted

[

// Prey

0.2, 0.1, 0.1, 0, 0, 0.1, 0.1, 0.4, 0.20000000000000004, 0.1, -0.2, 0.2,

// Predators

0, 0.2, -0.1, -0.1, 0, 0.2, 0, 0.30000000000000004, 0.1, 0.2, 0.1, 0.1,

// Walls

-0.2, -0.1, 0.30000000000000004, -0.2, 0.1, 0.2, 0, 0.2, 0.2, 0, 0.1, -0.30000000000000004,

// Inputs

0.9, 0.9, 0.9, 0.9, 1, 1, 0.8, 0.7000000000000001, 1, 1, 0.9, 1,

// Hidden

0.9, 1, 0.8, 0.8, 0.9, 1, 0.8, 0.9, 0.9, 0.9, 1, 1,

// Output

0.9, 1, 0.8, 0.9, 1, 1, 0.9, 1, 1, 0.9, 0.9, 0.6000000000000001

]

Manipulated

[

//Prey

0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,

//Predators

-0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1,

//Walls

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

//Inputs

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

//Hidden

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

//Outputs

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

]

Scaling baseline
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[

0.2,0,0.1,0,0.1,0,0,0, -0.2,0.1,0.2,0,0.1,

0.30000000000000004,0.1,0,0, -0.2, -0.1,0,0.30000000000000004,0,0,0.2,0, -0.1,

0.2, -0.1,0.2,0.1,0.2,0,0,0.1,0.2,0.1,1,1,

1,1,0.9,1,1,1,0.8,1,1,1,1,1,

1,0.9,0.8,0.8,0.9,1,1,1,1,0.9,

1,0.9,1,0.8,0.8,0.9,0.9,1,1,1,1,1

]

5.7 Scenarios

These are the scenarios used in experiments. The positions.js file contains more
predfined positions and functions to generate a infinte amount of random scenar-
ios.
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Figure 5.1: Scenario: Predator:A - Prey:B
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Figure 5.2: Scenario: Predator:C - Prey:B
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Figure 5.3: Scenario: Predator:C - Prey:H100
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Figure 5.4: Scenario: Predator:C - Prey:H400
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Figure 5.5: Scenario: Predator:C - Prey:V100
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Figure 5.6: Scenario: Predator:C - Prey:V400
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Figure 5.7: Scenario: Predator:C - Prey:R1
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Figure 5.8: Scenario: Predator:C - Prey:R2



78 Scenarios

Figure 5.9: Scenario: Predator:C - Prey: R3
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Figure 5.10: Scenario: Predator:C - Prey:R4
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