

LogicTile Express 20MG

CoreTile Express ? T
(V2F-1XV7) 11
93

(170)
ARM
CORE
(A5,A9,A15)

SATA
Host/Device

FPGA
XC7V2000T

<mOETm=

— —AXIS— — 1S (1
(dependent on

Y

JTAG

Xilinx ILA Clock Generator
Parallel Trace | %4 Switches & LEDs

Yvy YVYVY

Motherboard Express
(V2M-P1)

Figure 2.6: Architectural relationship between CoreTile Express and LogicTile
Express [15].

Scratchpad Tile — A memory tile providing a small amount of memory for
use by software. This memory is provided by the on-chip block RAM
resources of the FPGA [9].

DDR Memory Tile — Memory controller tile that gives SHMAC access to
off-chip DDR memory.

APB Interface (I/O tile) — This tile implements the Advanced Peripherals
Bus (APB) slave which gives the host processor on the Versatile Express
board access to SHMAC’s memory space for use when programming the
memories. [9]

Dummy Tile — Empty tile which only contains router functionality. Can be
used, for instance, as a filler tile. [9]

2.5.3 SHMAC Memory Map

Figure 2.8 shows how the memory is mapped in the ARM-based SHMAC. All
processor tiles share the same address space with only the tile register space
being private for each tile. This memory area contains information about the
tile itself, such as its coordinates, the CPU ID number and other useful data.
In addition the tile register space contains the memory-mapped peripherals for
each tile, such as timers and the interrupt controller. Any custom peripheral,
such as the DMA and the hashing accelerator developed in the project is mapped
into this address space. The system registers are used for communication with
the host system.

2.5.4 SHMAC Interconnection Network

SHMAC utilizes a 2D mesh-based interconnection network to connect all the
tiles, which is used to transport data packets of 128 bits length. Store-and-

19

3 Instruction cache
Accelerator ! CPU i

Data cache ‘

Interrupt

Tile registers Router
controller

Accelerator | Timers

Tile peripherals

Figure 2.7: SHMAC processor tile [9].

forward switching with on/off flow control is used, and the XY-algorithm is
used for deciding the route of each data packet. Each tile consists of a router
with five ports, one for each of its neighbours and the local connection. When
multiple packets are inbound from different directions, a round-robin scheme is
used to arbitrate between which packet to route through, and packets from the
local tile has equal priority to those arriving from the other directions. [9]

In the current implementation, it takes 3 cycles for a data packet to transfer
from one tile to the next. The architecture of the router can be seen in Figure
2.9.

2.5.5 Wishbone Bus

Wishbone is a bus architecture developed by OpenCores to create a common
interface for use between IP cores, especially in open source designs. It supports
single-word transfers as well as burst transfers. A pipelined transfer mode is also
provided which allows multiple requests to be sent from a module without the
module having to wait for an acknowledge.

Wishbone is used as internal bus on the CPU tiles of SHMAC. Burst or
pipelined transfers are not currently supported, neither internally on the tiles,
or by the interconnect network, which can limit performance.

20

OXFFFF FFFF

OxFFFF 0000

OxFFFE 0000

0xF800 0000

0x0000 0020

0x0000 0000

System Registers

Tile Registers

Scratchpad Tile k

Scratchpad Tile

Memoi
W Scratchpad Tile 2
Scratchpad Tile 1
Main Memory
Exception Table

Figure 2.8: Memory map of ARM-based SHMAC, as seen in [9].

Datain
4_
REQ/RDY
Data in
<
REQ/RDY
Datain
——
REQ/RDY
Datain
B co—
REQ/RDY
Datain

—
REQ/RDY

Figure 2.9: Architecture of the SHMAC router [9].

21

Data out

—>
REQ/RDY

Data out

REQ/RDY
Data out

>
REQ/RDY

Data out

—>
REQ/RDY

Data out

REQ/RDY

Chapter 3

Architecture

In order to develop a bitcoin mining system, a SHA-256 accelerator was devel-
oped. In addition, it was decided to design and integrate a DMA module in
order to improve the throughput of the system. The new modules were then
added to a CPU tile. Since it is not possible to parallelize a single run of
the SHA-256 algorithm, multiple, independent tiles in a grid are used to run
multiple SHA-256 computations at the same time.

3.1 Accelerated Hashing Tile

In order to test the effects of accelerating SHA-256 hashing, a new tile containing
a hashing accelerator and a DMA was developed for SHMAC. A high-level
overview of the new tile can be seen in Figure 3.1.

TURBO AMBER WB TO SYSTEM
CPU r ARBITER
WB .
MASTER ‘ WBSLAVE || gHA-256 TILE TIMER INTERRUPT
DMA MODULE ||REGISTERS || MODULE ||CONTROLLER

Figure 3.1: SHMAC tile with SHA-256 accelerator and DMA. Added compo-
nents are highlighted in red.

The new tile is derived from the Turbo Amber tile, which contains a Turbo
Amber CPU and peripherals such as an interrupt controller and timer modules,
connected together with a wishbone bus. The SHA-256 accelerator and the
DMA'’s slave interface and master interface is added to this bus.

The tile also needs an arbiter to arbitrate between the DMA master and
the CPU on the wishbone bus. For this purpose, the reference arbiter from the
Wishbone Public Domain Library for VHDL was adapted for use. This is a
round-robin arbiter, with its function illustrated in Figure 3.2.

Round-robin arbiters work well in data acquisition systems where data is
collected and placed into memory, since peripherals must often store data to

22

MASTER #0

0

MASTER #3 O (O MASTER #1

O
MASTER #2

Figure 3.2: Wishbone round-robin arbiter [20].

memory. The choice of this arbiter is because using an already established
wishbone arbiter saves time for this project as opposed to desiging a new one,
which may end up less efficient if done poorly.

3.1.1 SHA-256 Hashing Module

The hashing module made for this project is a simple implementation of the
algorithm described in Appendix A. It uses 65 cycles to compute the hash of its
input data, running one iteration of the SHA-256 compression function every
cycle except cycle 65, which is used to form new intermediate hash values from
the results of the compression function. The algorithm is specified in big-endian
format in [19], including necessary constants, so the module was designed to do
the calculation in big-endian to reduce the possibility of errors. A high-level
overview of the module is available in figure 3.3.

Initial hash value
or Intermediate hash value Input data

64 iterations of the
SHA-256
Compression
Loop

SHA-256 Constants Message Expansion

Finished output hash
or intermediate hash value for the next datablock

Figure 3.3: High-level overview of the SHA-256 accelerator architecture.
In order for the module to remain generic, so that it can also be used in cryp-

tography, an optimization specifically for bitcoin mining has been omitted; this
means that the module does not support doing the two-pass hashing required

23

by the bitcoin protocol, instead relying on software to set up correct input data
for the second pass. It also relies on software to do the neccessary padding of
the input data as required by the SHA-256 algorithm.

Even for generic SHA-256 hashing, several optimizations are possible. The
SHA-256 algorithm includes 64 32-bit constants, one for each round of the com-
pression function. These can be stored in a block RAM memory to save some
logic resources [16]. However, this occupies valuable block ram resources that,
in SHMAC, is used both by CPUs and scratchpad memory tiles. Thus, using
block RAMs for optimization would place limits on how many tiles can be in-
cluded in a SHMAC design; indeed, it was observed when synthesizing large
designs with many cores that the FPGA would run out of block RAM before
any other resources according to the synthesis logs.

Another optimization, that has already been mentioned in Section 2.3.2, is
pipelining. This can increase the throughput to as much as one hash per cycle,
but will require a large amount of additional logic because of the amount of
data required by each iteration of the SHA-256 compression function. The state
required would include 2048 bits of storage for the expanded message block in
addition to the two sets of 8 32-bit words needed for state and the intermediate
hash value respectively.

The module is controlled by the processor using a memory-mapped interface.
This allows the use of a DMA to offload data transfer between memory and the
hashing module. The memory-mapped interface provides registers for 512 bits
of input and 256 bits of output data, in addition to control and status registers.
This interface can also be used for accelerators of other cryptographic hash
functions which processes input data of the same length and returns a hash of
256 bits or less, such as RIPEMD-160 or RIPEMD-256 [8] or the still popular
MD5 algorithm [21]. With some work, the interface could be made even more
generic in order to support algorithms with other input and output sizes; a
possibility would be to eliminate the input and output registers completely in
favour of using a DMA built into the module to move data of arbitrary sizes
into and out of the module.

Another, alternative interface to the module that was considered was using
the co-processor interface of the CPU to communicate with the module. The
ARM instruction set supports up to 16 coprocessors, which can be communi-
cated with using the mrc and mcr instructions. In such a scheme, the DMA
could either transfer data to and from the accelerator directly with the copro-
cessor instructions, or by including a DMA in the hashing accelerator to transfer
data to and from the accelerator. This would, however, preclude the DMA from
being used as a general data transfer module, providing unnecessary overhead
in terms of possibly unused logic.

3.1.2 DMA Module

The DMA module was designed for the purpose of investigating whether sepa-
rate data transfers with DMA could improve throughput and energy efficiency
of the hashing process, and also gain energy savings by freeing up the on-tile
CPU for other work or sleeping. An overview of the module can be seen in
figure 3.4.

The DMA module consists of the DMA logic itself, in addition to a wishbone
slave interface for configuration and a wishbone master interface for transfer-

24

WISHBONE MASTER

WISHBONE 1‘
SLAVE DMA DATA FIFO
COMPARATOR

i

—>’> CHANNEL 0
Endian
e

Byte

CHANNEL || muiter
ARBITER i
Fonverter 1 CHANNEL 1

Figure 3.4: DMA overview, including wishbone interfaces.

ring data. It transfers words of 32-bit data using single-cycle wishbone transfers.
In addition, the DMA supports swapping the endianness of the data it copies.
This improves performance when used with the SHA-256 accelerator, because
the results from the accelerator are in big-endian and must be converted to
little-endian to give the correct results when used by the software running on
the processor. Converting endianness in software adds several additional in-
structions per hash, which are now avoided. If endian swapping is active, the
data bytes are swapped combinatorcially before being passed on to the wishbone
master.

The wishbone slave consists of three registers for each DMA channel, used
for base source address, base destination address, and details of the transfer.
When request is activated, the selected channel receives data from the slave, and
executes the transfer. An arbiter arbitrates between the channels if both are
active. Every single command, either load or store, are passed from the channels
to the wishbone master, where they are executed. Loaded data is passed on to
the corresponding channel, and a channel informs the wishbone master when
it is finished, so that the slave interface is informed when the final transfer is
done executing. The corresponding request detail register is modified, and an
interrupt request is sent to the interrupt controller.

The current DMA module only supports transfers of single 32-bit words,
while the interconnect used between tiles in SHMAC supports 128-bit blocks.
This means four transfers are done on the network for each 128-bit blocks, when
only one entire block transfer is needed. The reason for not expanding to 128-
bit blocks was due to compatibility issues with the SHA-256 module. We were
concerned that expanding would force blocks to have an alignment of 128-bits,
which would make the DMA harder to use from a software perspective and
add additional difficulties in transferring data to and from the registers of the
hashing accelerator. Otherwise they would have had to be changed so that they
would be correctly aligned.

25

3.2 System architecture

The CPU tile with the integrated SHA-256 accelerator and DMA module was
placed in a grid with other similar CPU tiles in order to exploit the thread-
level parallelism offered by the SHMAC architecture. The test designs were
synthesized using Xilinx’ Vivado software suite, version 2013.4, and uploaded
to the Versatile Express machine.

3.2.1 Initial 5x4 Grid Architecture

Initially, a 20 tile setup was used on SHMAC. The following tiles were included
in the design:

e 16 CPU tiles with on-tile DMA module and SHA-256 accelerator
e 2 scratchpad tiles

e 1 DRAM tile

e 11/0 tile

The layout is illustrated in Figure 3.5. The I/O tile is placed to the left of
the first processor in the system, as only the first processor tile is used for com-
municating with the host system. This gives the first processor a “dedicated”
connection to the I/O tile, preventing data that is sent to the host from inter-
ferring with data transfers needed for the hashing benchmark application. In
addition, the rectangular grid was chosen to ensure that all cores are placed as
close as possible to the memory tiles to reduce the latency of memory transfers.

/O —— CPU |— CPU — CPU — CPU

CPU — CPU ——BRAMI—— CPU |— CPU

DDR-
CPU —— CPU — RAM —BRAM— CPU

CPU — CPU — CPU — CPU |— CPU

Figure 3.5: Test setup, using BRAM tiles as scratchpad and DRAM as main
memory.

3.2.2 Alternative 15x2 Grid Architecture

As testing uncovered a possible hardware bug in the implementation of the
scratchpad tiles, discussed in Section 4.3.1, a second design had to be created
in order to measure the scaling of the performance and energy efficiency when
using accelerators.

26

The second design places all processor tiles in a single row. This causes
all traffic to the memory tiles, placed on the row below, to come from above,
which bypasses the scratchpad bug. The design contains 14 CPU tiles and is
illustrated in Figure 3.6. The current implementation of SHMAC does not allow
more than 15 tiles on each row due to only using 4 bits to represent each grid
coordinate.

vo oy —oru | oru|fom] or Hcpu oru|Jomu —cpu | Joru —oru | Joru o | oru]

Figure 3.6: Alternative test setup.

27

Chapter 4

Evaluation

This chapter presents an evaluation and discussion of the performance and en-
ergy efficiency of the proposed bitcoin mining system.

4.1 Measuring Mining Performance

In order to estimate the bitcoin mining performance of the system, a benchmark
is used to measure the number of double hashes that can be performed each
second. This is done by repeatedly double-hashing a block of data and recording
the number of hashes achieved per second per core. By adding more cores over
time, it is possible to see how the performance scales as more cores are added.
Recording the number of hashes per second per core also makes it possible to
see how the performance of each core is affected by the traffic on the network-
on-chip generated by the other cores in the network. Cores not active are put
into a no-operation loop.

Using the architecture setup described in Section 3.2, tests where run using
the following method:

1. Hashing using software only, not using the SHA-256 hashing module or
DMA module. All work is done by the on-tile processor.

2. Hashing using only the hashing accelerator. The processor controls and
copies data to and from the hashing module, and does the endian conver-
sion in software.

3. Hashing using the hashing accelerator and DMA. The processor controls
each module, but the DMA handles data transfer, as well as endian con-
version.

Interrupts are used by the hashing module to signal when it is finished
working. However, the software does not support interrupt from DMA, and it
has to be polled while copying data to and from the module, which may have a
minor influence on the results.

The benchmark software was compiled using the GCC compiler, version
4.8.2, compiled for the arm-none-eabi target triplet. To generate a binary file
for the SHMAC, utilities from GNU Binutils version 2.24, also compiled for the
arm-none-eabi target triplet, were used.

28

4.2 Estimating Power Usage

Power usage for the application is determined by measuring the wall-power of
the box that SHMAC is running on both when idle and when running the test
applications. The power usage of the application is then determined using the
following formula, where P is the power in watts:

Papplication = Prunniny - -Pidle

Using the result of the power measurement, the energy efficiency can be
obtained as the number of hashes per second per watt, H/s/W. As watt is
defined as joule per second, J/s, the unit can be rewritten to hashes per joule,
H/J.

To obtain the power usage of SHMAC, a Yokogawa WT210 power meter was
used to measure the power drawn by the Versatile Express box from the power
socket in the wall while idle and when running the bitcoin application. This
method provides some uncertainty in the result of the measurements, as the
Versatile Express also runs a Linux host system. It was not possible to obtain
power measurements directly from the FPGA running SHMAC.

4.3 Performance Results

To establish a baseline for the performance gains obtained when using the ac-
celerators, a measurement of the performance when using software hashing was
first obtained. The performance is measured in the number of double hashes per
second and abbreviated H/s, as is the convention for bitcoin mining systems.

4.3.1 Initial Results

Using software-only hashing produced a best result of 21 261 H/s when running
with only 4 active processors. As can be seen in the plot in Figure 4.1, it can be
observed that adding more processors after the fourth produces no noticeable
additional performance gain. The reason for this is that all cores makes frequent
accesses to DRAM, when running the software algorithm, which causes the
DRAM tile to quickly become congested. The reason for these frequent accesses
is probably due to the use of many variables in the code as well as the effect
of stack usage. Since the Turbo Amber core uses a write-through cache, all
memory writes ends up going to DRAM immediately which causes additional
congestion.

Another interesting effect to note in the results is how the XY routing affects
the performance of each tile. The more tiles that tries to access main memory
through a tile’s router, the less performance that particular tile has; network
congestion does, in other words, have a great impact on individual tile perfor-
mance. This was especially obvious for processor tile 10, which is located on
the end of row 3 with no processors on either its left or right sides. This tile
showed notably better performance than any other processor tiles in the grid.
This is because its location means that no data to or from other tiles have to
pass through its router, which gives it more time to process its own requests. In
addition, this tile can access all memory tiles without having to send or receive

29

20,000 | |

15,000 |- R

H/s

10,000

0 5 10 15
Active processor tiles

5,000

Figure 4.1: Software hashing performance

data through any other processor tiles. The individual performance of each
processor is noted in Appendix B, Table B.1.

Figure 4.2 shows the results when using the SHA-256 accelerator, without
and with the DMA module enabled, respectively. Looking at the case where
only one core is running, one can see that the performance when using the
accelerator and DMA is about 2,8 times faster than using the software version,
at 18 230 H/s in hardware and 6 450 H/s in software. Adding more processors
gives an even higher gain due to the near linear scaling of the performance when
using the hardware accelerators.

Only up to four processors where used for this test, as adding in processors
from the second row of processors when scaling up caused the application to
crash. An attempt at starting processors from the top and bottom row at the
same time also led to a crash. It was discovered that this was likely because of an
bug in the implementation of the scratchpad memory tile used. An attempt was
made at integrating fixes to the scratchpad bug from an experimental SHMAC
branch, but failed due to differences in the code. Because of this bug, it is not
possible to predict how many cores can be active and hashing using hardware
acceleration at the same time before reaching the memory congestion limit, nor
is it possible to see if the DMA has any significant effect on the performance. It
was decided to attempt to work around the scratchpad bug with a new design, in
order to better measure how the performance and energy efficiency of hardware
hashing scales and what effect using a DMA will have when more tiles are active.

4.3.2 Results from the Alternative Design

In order to obtain better results with regards to scaling, a new test design was
created which works around the scratchpad tile bug and places 14 CPU cores
on the same row in the grid. The design is described in Section 3.2. The perfor-
mance obtained using software-only hashing is plotted in Figure 4.3 and mirrors
the results obtained from the original design, in that adding more cores after the

30

I I I
—o— With DMA
—— Without DMA
60,000 |- Software N
<L 40,000 | =
)
20,000 e
O | | | | | |

|
1 1.5 2 2.5 3 3.5 4
Active processor tiles

Figure 4.2: Hardware hashing performance, with software performance included
for comparison

fourth does not provide any additional performance. The greatest performance
obtained using software hashing in the alternative design was 21 364 H/s with
4 cores active.

The performance results obtained using the hardware modules are plotted
in Figure 4.4. From these results, it can be observed that the performance
continues to scale almost linearly up until around the tenth core is added. At this
point, memory congestion is starting to affect the scaling, causing it to flatten
out. The best performance was obtained when running with all cores active, at
175 711 H/s with DMA enabled or 179 526 H/s with the DMA disabled. Even
though this case did not show any advantage of using the DMA, using the DMA
for data transfer does provide a small and consistent performance increase when
using less than 12 cores.

The reason for so little improvement is likely due to difference in traffic
on the interconnect network. When the CPU is loading data into the hashing
accelerator, it first loads data from main memory into its data cache. This is
done using 128-bit block transfers, transferring an entire cache line at a time
from the memory. The DMA only use 32-bit transfers, causing four times more
traffic in the tile network when loading data, as every 128-bit block is accessed
four times. When it comes to storing, the caches use write-through as strategy,
and for every 32-bit word updated in a 128-bit block, the cache will write back
to the memory. In this case, both the CPU and the DMA will cause the same
traffic for each store operation. With the CPU’s load traffic being 25% compared
to using the DMA, and the store traffic 100%, using the CPU for data transfers
should cause an average of 67.5% data traffic, compared to using the DMA
module.

Still, a slight performance increase is observed while using the DMA module,
before reaching 12 tiles. It is likely due to the DMA module relieving the
CPU of the endian conversion, as this is done instantly during DMA transfer, if
enabled. Without the DMA, the CPU must do this over several cycles. The CPU

31

20,000

15,000 |- |

H/s

10,000

2 4 6 8 10 12 14
Active processor tiles

5,000

o

Figure 4.3: Software hashing performance for the alternative architecture design

likely also has more overhead when copying the data to or from the accelerator
compared to the DMA, although it is hard to predict how much the DMA
improves on this when the CPU is supported by its cache, that loads a full
128-bit cache line per load from memory.

4.4 Power and energy efficiency

The energy efficiency was calculated by measuring the power usage of the ap-
plication, as described in Section 4.2, and looking at how many double hashes
the system does. This provides a number of double hashes per second per watt.

Obtaining the power measurements provided a difficult task, as the idle
power of the Versatile Express box seemed to be steadily rising over time. This
can be caused by multiple factors, such as the host system working, changes
in temperature due to the benchmark application running or environmental
factors. Because of this, the idle power was measured between each individual
test run to make sure the power usage of the application was measured as
correctly as possible. Because of the problems encountered with the initial test
design, only the power results from the alternative design is discussed here.
However, both designs show the same trends, and the results from the initial
design can be seen in the appendix, Section B.2.1.

Figure 4.5 shows the measured power usage when running with software
hashing, accelerated hashing without DMA and accelerated hashing with DMA.
For software-only hashing, it is interesting to note that less power is used when
adding more cores. With 1-3 cores active, the power usage for the application
was measured to be between 2,3 W and 2,5 W, while running at 5 cores and
more only used between 0,7 W and 0,8 W. One reason for this may be that as
more tiles are added, longer periods of stalling is needed for each core to wait
for data from the main memory. When cores are inactive, they are waiting in
a nop-operation loop, a software loop consisting of a NOP operation. Executing

32

I I I I
—e— With DMA
—— Without DMA
150,000 - Software N
100,000 |- .
jusi
50,000 |- .
0 [|
| | | | | | | |

0 2 4 6 8 10 12 14
Active processor tiles

Figure 4.4: Hardware hashing performance for the alternative architecture with
software performance included for comparison.

this loop causes the processor to decode and execute two instructions, the no-
operation instruction and the branch instruction. However, when stalling, the
processor does not decode or execute new instructions, which may cause less
transistor switching to happen internally in the processor, thus reducing power
wasted from the switching. This could be a good indicator that the Turbo Am-
ber processor could benefit from a form of sleep or wait-for-interrupt instruction,
which is not currently supported by the processor [22], which will allow it to
stall as long as it has no work to do.

The same trend can be seen when using hardware, although the drop in
power usage is not as pronounced as in the software-only case. This is likely
because it takes longer for the traffic to the memories to be large enough to
cause longer periods of stalling in the processor and DMA module.

The energy efficiency is shown in Figure 4.6. It is evident that using a
hardware accelerated hashing module provides large gains in energy efficiency,
which becomes especially clear when adding more than 4 cores, because of the
much higher performance the accelerators can provide with little overhead in
energy use. At 14 active tiles, hardware acceleration without DMA provides
over 6 times better energy efficiency than software hashing, at 163 205,5 H/J
versus 25 985,5 H/J. Tt is interesting to note that the energy efficiency when
using the DMA module becomes notably worse compared to when it is disabled,
when the interconnect network starts to become congested, around the point
where 10 cores or more are active.

The numbers obtained here shows that our accelerated hashing tile cannot
compete with other FPGA-based bitcoin hashing systems, such as BTCMiner,
mentioned in Section 2.3.2, which gets a result of 21 MH/J, 128 times better than
our 163,3 kH/J. There are several reasons for this, mainly the lack of pipelining
in the SHA-256 accelerator, which slows throughput by 65 times compared to
a fully unrolled SHA-256 pipeline, and a memory system that is not optimized
for the high throughput required for bitcoin mining.

33

T T I I I
25 [—o— With DMA
—»— Without DMA

g Software
o 2 I
.8
=
z
2 15| N
S
[\5)
3]

| | | | | | | |

0 2 4 6 8 10 12 14

htb Active processor tiles

Figure 4.5: Measured power consumption using software and hardware acceler-
ators.

I I I I I
—«— Without DMA
150,000 || —e— With DMA A
<} Software
Z
£ 100,000 | R
g
O
=
Q
% 50,000 | .
5
=)
=
O - |
| | | | | | | |

0 2 4 6 8 10 12 14
Active processor tiles

Figure 4.6: Energy efficiency

34

Chapter 5

Conclusion

The results obtained with the benchmark shows that using the SHA-256 accel-
erator and DMA module described in this report, it is possible to get a bitcoin
mining performance of 175,7 kH/s when running the hashing benchmark on 14
cores simultaneously while using the DMA and a performance of 179,5 kH/s
when not using the DMA. The best energy efficiency is obtained when running
the benchmark on 14 cores without the DMA enabled, at 163,2 kH/J.

Although the performance and energy efficiency obtained in this study can-
not compete with other bitcoin mining solutions implemented on FPGAs, pro-
viding 128 times lower energy efficiency than a dedicated bitcoin mining system,
it still shows that SHMAC is an excellent platform for exploiting thread-level
parallelism, and using our hardware accelerators provided a near-linear perfor-
mance scaling over 14 CPU cores while retaining good energy efficiency.

With respect to bitcoin mining, the days of FPGAs are gone, and bitcoin
mining is now the domain of highly optimized ASICs. However, although
SHMAC cannot be used for bitcoin mining, the high degree of thread-level
parallelism provided by the platform can be well exploited in other application
areas benefitting from high levels of parallelism.

5.1 Future Work

It is possible to improve the results obtained in this thesis further by adding
additional optimizations to the accelerators.

5.1.1 Enhancing the SHA-256 Module

The SHA-256 module can obtain performance increases from pipelining. Al-
though this uses more resources on the FPGA chip as well as requiring addi-
tional memory transfers from a CPU or a DMA to keep it fed with data, it can
increase performance and energy efficiency depending on the application.

5.1.2 Enhancing the DMA Module

The current DMA Module only supports transfers of single 32-bit words, while
the interconnect used in SHMAC supports 128-bit words. This means four
transfers are done on the network when only one is needed. Exploiting the

35

unused bandwidth could provide a speedup of as much as 75 % and reduce the
workload on the DMA significantly. While expanding the DMA transfer width,
it must still be made compatible with the other modules on the tile, including
the SHA-256 accelerator. This likely requires a solution where individual 32-bit
words may be selected and written individually.

The DMA could also be expanded to include support for wishbone burst
transfers. This can allow quicker data transfer, as overhead is reduced, and
potentially improving throughput.

36

Bibliography

[1] Bitcoin charts. https://blockchain.info/charts. Accessed May T7th,
2015.

[2] Anders Tvetmarken Akre and Sebastian Bge. Turbo amber - a high-
performance processor core for SHMAC. June 2014.

[3] J. Barkatullah and T. Hanke. Goldstrike 1: Cointerra’s first-generation
cryptocurrency mining processor for bitcoin. Micro, IEEE, 35(2):68-76,
Mar 2015.

[4] The Bitcoin Community. Btcminer. https://en.bitcoin.it/wiki/BTCMiner.
Accessed June 6th, 2015.

[5] The Bitcoin Community. History. https://en.bitcoin.it/wiki/History.
Accessed May 20th, 2015.

[6) The Bitcoin Community. Non-specialized hardware comparison.
https://en.bitcoin.it/wiki/Non-specialized hardware_comparison.

Accessed May Tth, 2015.

[7] The Bitcoin Community. When was the first ASIC miner released?
https://bitcointalk.org/index.php?topic=382895.0. Accessed May
20th, 2015.

[8] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. RIPEMD-160: A
strengthened version of RIPEMD. In Dieter Gollmann, editor, Fast Soft-
ware Encryption, volume 1039 of Lecture Notes in Computer Science, pages

71-82. Springer Berlin Heidelberg, 1996.

[9] EECS. Single-ISA heterogeneous many-core computer (SHMAC) project
plan, March 2014.

[10] John L. Hennesy and David A. Patterson. Computer Architecture, A Quan-
titative Approach. Elsevier, Inc, 5th edition edition, 2012.

[11] R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan, and D.M. Tullsen.
Single-ISA heterogeneous multi-core architectures: the potential for proces-
sor power reduction. In Microarchitecture, 2003. MICRO-36. Proceedings.
36th Annual IEEE/ACM International Symposium on, pages 81-92, Dec
2003.

[12] R. Kumar, D.M. Tullsen, and N.P Jouppi. Core architecture optimization
for heterogenous chip multiprocessors, September 2006.

37

[13]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

R. Kumar, D.M. Tullsen, P. Ranganathan, N.P. Jouppi, and K.I. Farkas.
Single-ISA heterogeneous multi-core architectures for multithreaded work-
load performance. In Computer Architecture, 2004. Proceedings. 31st An-
nual International Symposium on, pages 64-75, June 2004.

ARM Limited. ARM versatile express product family.
ARM Limited. LogicTile express 20MG datasheet.

R.P. McEvoy, F.M. Crowe, C.C. Murphy, and W.P. Marnane. Optimi-
sation of the SHA-2 family of hash functions on FPGAs. In Emerging
VLSI Technologies and Architectures, 2006. IEEE Computer Society An-
nual Symposium on, March 2006.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf, October 2008. Accessed December
Tth, 2014.

National Institute of Standards and Technology. Descriptions of SHA-256,
SHA-384, and SHA-512.

National Institute of Standards and Technology. Secure hash standard
(SHS). Federal Information Processing Standards Publication, March 2012.

Wade D. Peterson. Technical Manual: WISHBONE Public Domain Library

for VHDL. OpenCores, October 2001.

Ronald Rivest. The MD5 message-digest algorithm. RFC 1321, RFC Edi-
tor, April 1992.

Conor Santifort. "amber open source project”. March 2015.

Kristian Klomsten Skordal and Torbjgrn Langland. Evaluating possibilities
for bitcoin mining with SHMAC. December 2014.

Michael Bedford Taylor. Bitcoin and the age of bespoke silicon. In Proceed-
ings of the 2018 International Conference on Compilers, Architectures and
Synthesis for Embedded Systems, CASES ’13, pages 16:1-16:10, Piscataway,
NJ, USA, 2013. IEEE Press.

Michael Bedford Taylor. A landscape of the new dark silicon design regime.
IEEE MICRO, September 2013.

38

Appendix A

The SHA-256 Algorithm

The SHA-256 algorithm is a member of a set of algorithms referred to as the
SHA-2 standard. These are described in [19] and consists of algorithms for
producing hashes with lengths of 224, 256, 384 and 512 bits. The algorithms
use simple operations, limited to shifts, rotates, xor, and unsigned additions,
common single-cycle operations for general purpose CPUs, in addition to a
lookup-table of constants. This allows for high-speed implementations in both
software and hardware. The different SHA-2 algorithms differ in how and with
what parameters the various operations are invoked.

SHA-256 is the algorithm used in cryptocoin mining. It operates on blocks
of 512 bits and keeps a 256 bits long intermediate hash value as state. Bitcoin
uses a double pass SHA-256 hash, which first calculates the hash of a block of
the data to be hashed and then hashes the hash of the first pass.

Before the first block is processed, the initial hash value is set to a predefined
value. The entire message that is to be hashed is then padded by adding a 1 bit
to the end of the message and then appending zeroes until the length of the
final block is 448 bits. Then the length of the entire message, without padding,
is added as a 64-bit big-endian integer to the end of the block.

Then, each input block is split into a 64 times 32-bit long expanded message
block, where each 32-bit word W; is defined according to the formula

w. =4 M j €1[0,15]
7 Ul(Wj_Q) + Wj_7 + Oo(W -7 - 15) + Wj_15 je€ [16,63]

where M; is the jth word of the input message block and the functions o and
o1 are defined as

oo = R'(z) ® R®(z) @ S3(x)

o1 = R (z) @ RY(z) © S*%(x)

where the operator R™ means right rotation by n bits and S™ means right shift
by n bits .

LCuriously, [18] defines the operator R as shift and S as rotate. We use the more intuitive
definitions.

39

The Compression Function

The compression function is the core of the SHA-256 algorithm. It uses a look-
up table of 64 constants, K, and the following functions when calculating the
new intermediate hash values:

Ch(z,y,z) = (x Ay) ® (—x A 2)
Maj(z,y,z) = (x Ay) ® (2 A2) & (yAz)
Yo(z) = R*(z) ® R (z) & R* ()
¥ (x) = R%(z) @ R* (z) @ R*®(x)

Before starting the iterations with the compression function, the intermedi-
ate hash values from the previous message block are assigned to the variables
a—h.

At the beginning of each iteration of the compression function, two tempo-
rary values are calculated:

Ty =h+Yq(e)+ Chle, f,9) + K; + W,
Ty = %o(a) + Maj(a,b,c)

The new hash values are then assigned as follows:

h<+<g
g« f
f+e
6(—d+T1
d<+c
c+b
b+a
a+Ty+T5

The compression function is run 64 times, once for each word in the ex-
tended message block, W;. Afterwards, the intermediate hash for the message
is updated by adding the variables a—h to the corresponding values of the inter-
mediate hash values from the previous message block.

When the final input block has been processed, the final hash is composed
by concatenating the intermediate hash values. [18, 19, 23]

40

Appendix B

Additional Results

This chapter lists up all the details regarding the various measurements done
during this thesis. For each selected SHMAC architecture, the performance and
power usage is measured for varying numbers of active cores. Every architecture
has been measured when running software-only hashing, when running the SHA-
256 accelerator without using the DMA module, and then with using the DMA
module.

B.1 Performance Measurements

B.1.1 Initial Architecture

The first architecture used for measuring, was the 5 by 4 grid architecture
described in section 3.2. Unfortunately, while software hashing worked on all
tiles, the application crashed when using the SHA-256 accelerator on more than
one row of processors and the design was therefore discarded. The reasons are
discussed in section 4.3.1.

The performance obtained when doing software hashing is listed in table
B.1.

Tables B.2 and B.3 show the results when using the SHA-256 hashing accel-
erator, without and with DMA module, respectively. Only four cores were used
because of the scratchpad bug mentioned in section 4.3.1.

B.1.2 Alternative Architecture

The results from doing the software hashing for this architecture is listed in table
B.4. The CPU tiles nearest the DRAM tile have highest individual performance
compared to others present.

Tables B.5 and B.6 show the results when using the SHA-256 accelerator
in the alternative architecture, without and with DMA module, respectively.
This time, using an architecture that circumvents the cache-bug problem, all
available CPUs are used in the tests.

41

"9AT1O® S9I0D JO I9qUINU SUISLaIdUl Uk I0] ‘9dueuliojiod arem)jog :1-¢ 9[qel,

€¥8 TP 06V 8T8 LT | €¢LE TOVT COVT | G08 908 G08 908 | 9.C 9.T 0€S 8TS 16181
- 61GT TPST GL8 GL8 | 0EL& 90FPC 90¥T | 908 L08 L08 LO8 | L. 9.8 1€S 8TS 16181
- - eeTC FCET FeET | LeL& TIPC TIPC | 608 808 608 608 | 6. 8.C 1€G 8¢ 16181
- - - €L6T TLET | G¥LE LIVC LIFC | ¢I8 TI8 118 TI8 | 8.% 8LT V€S T1€S Z618T
- - - - 678€ | LS8 TLGT TLGT | 688 688 888 888 | 80 60€ T8G 6LG Z618T
- - - - - 90FF 61T€ 0ZIE | 9961 LGgT LSTT LGS3T | 66 OFF €68 088 V68T
- - - - - - 86L& 66L¢ | TOLT TOLT TOLT TOLT | 629 089 OVIT gHIl Z618T
- - - - - - - TTLy | OVST OVZC 6ETC 62T | T08 TOS SSGPT GG¥T G618T
- - - - - - - - €667 €66C €667 €66C | TVIT E€PIT OL6T V961 16181
- - - - - - - - - GLEV 0TIE€ G61TE | WLV FTLFPT 6%EC FGET G9Z8T
- - - - - - - - - - 626¢ 196€ | 060 €80¢ FGIE TLIE 88E8T
- - - - - - - - - - - 86.% | L0TE T61€ 620V G80F 0TE6T
- - - - - - - - - - - - LTEG 9TES 9TES TIES 19212
- - - - - - - - - - - - - 86£9 86£9 T6£9 06161
- - - - - - - - - - - - - - 6779 9¥F9 e68Z1
- - - - - - - - - - - - - - - 0579 0S¥9
ST ¥T €1 ¢TI IT |0T 6 8 L 9 G 12 € 4 I 0 [s/H] wng

42

Sum [H/s] 0 1 2 3
17557 17557 - - -
37539 17528 20011 - -
54912 17481 19941 17490 -
70179 17400 19891 17411 15477

Table B.2: Performance when using the SHA-256 accelerator only in the initial
architecture.

Sum [H/s] 0 1 2 3
18230 18230 - - -
38267 18189 20078 - -
56150 18129 19880 18141 -
71840 17973 19577 17984 16306

Table B.3: Performance when using the SHA-256 accelerator and DMA in the
initial architecture.

B.2 Power measurements

B.2.1 Energy Efficiency for the Initial Test Setup

Table B.7 shows the measured power usage, along with uncertainty and calcu-
lated application power of the initial test architecture. The data is plotted in
figure B.1.

Tables B.8 and B.9 shows the individual power usage measured when using
the SHA-256 accelerator without and with DMA module, respectively. Uncer-
tainty and calculated application power is included as well. The data are plotted
in figures B.2. As can be seen from the tables and figure, there is no significant
difference in power usage when running with and without the DMA.

B.2.2 Alternative Architecture

Table B.10 shows the power measurements for the alternative architecture.

Tables B.11 and B.12 shows the individual power usage when using the SHA-
256 accelerator without and with DMA module, respectively. Uncertainty and
calculated application power are included as well.

B.3 Energy Efficiency

In this chapter, the energy efficiency is presented, calculated from the measured
performance and energy usage.

B.3.1 Initial Architecture

The energy efficiency of software hashing in the initial architecture can be seen
in table B.13, and the corresponding plot in figure B.3.

Tables B.14 and B.15 shows the energy efficiency of the SHA-256 accelerator,
without and with using the DMA module, respectively. The plot for both can
be seen in figure B.4, where they are compared to each other.

43

"9IMJO9TDIR SATJRUISY[R O1[} I0] S)[NSal odueuLIofIod o1eM)JOg ¢ 9[qR],

LGT 8SGT 86C ¥9S FEOT 608T TL6C TIGF <€96C 60ST 0S0T 0LG 0IE LO€ 06TST
- 16¢ G0E€ G9G CEOT OTIST ¥L6C 9T¢F G96¢ TTIST GEOT T.G 60§ LOE 16TST
- - GFG L8G 9¢0T 6TST 086 LIZF 0L6C SIST CEOT 0L OT€ 80€ Z618T
- - - 1201 9601 €TST 686¢ 1¢ch 6.6¢ 1T8T OFOT €. ¢gIe TIE Z61ST
- - - - LI8T 6961 LI0E TETP L66C FEST LSOT @8G CIE €I€ T618T
- - - - - TLIE OFCE L9CF TOTE S8S6T 6EIT €89 S¥e GFE €618T
- - - - - - TEVY SGEY G0SE CFPT TEST 206 61 9TG 90281
- - - - - - - 629% TOEF TLVE 0TV 6FST ¥#6 GF6 €5T8T
- - - - - - - - TTOF €18V 90GE 8€GT STLT €TLI 0ZPST
- - - - - - - - - 90L7 TLVF €88¢ 8GTIE 98IE YOV6T
- - - - - - - - - - TVES TFES TPES 8EES $9€1T
- - - - - - - - - - - 8LE9 8LE9 TLEY 0€T6T
- - - - - - - - - - - - 2Tr9 6179 17821
- - - - - - - - - - - - - T¥9 81¥9
¢l ¢I IT Ol 6 8 L 9 G ¥ e 4 I 0 [s/H] wng

44

"9INJO9YTDIR SAT}RUID}R 977} Ul J0JRIS[0IOR 9G7-VHS 92Ul wgﬁmﬂ UoyM SHNSAI 90UBULIONID Gy 9[]qR],

€198 €626 GT66 TTLOT 699TIT 6€8¢T LPEPT 90€9T €TI6T 62891 T9FFT GPOST 16811 FF60T 9ZG6LT
- 98¢6 0L00T TSSOT FFSIT 8Z0OST SESHT gF9T 80T6T TZb9T TFSFT 60TET €F6IT 88601 T8€TLT
- - GZgOT 9G0TT TF0TT ¥ETET TPLPT €G99T 6TE61 GRSOT GLOPT GTTET 8€0ZT 890TT 098¥9T1
- - - ZOZIT 00Tl SIFET TE6FT TS89T TEP6T TTl9T ¥6LFT 0TEET €2Iel OFITL €eT9GT
- - - - 8eETT TLGET FOIST 6T0LT 9OPS6T CGGS9T SIGHT €Thel ¢lgel Tgell 1229¥%T
- - - - - TTLET T9TGT S6TILT €996T TOOLT 9F0ST LTSET 66Tl S6TTT 600SET
- - - - - - 0TFST 6EELT 6LL6T OSTLT €9TIST 1T9ET TLEGT 99€TT 9812CT
- - - - - - - GLFVLT L6861 GOTLT 0LZST TTLET ¥SHCT SEPIL 0TSL0T
- - - - - - - - 66661 FSELT TLEST 008CT €€SCT €0STT 06506
- - - - - - - - - GRFLT €OPST TLSET 00921 €9GTT £€860L
- - - - - - - - - - TE€CST TG6ET 09971 SI9TT 09.€S
- - - - - - - - - - - 886ET 66921 TFIIT 62€8¢
- - - - - - - - - - - - 0€.2T #9911 Y6ETC
- - - - - - - - - - - - - 9,911 92911
! 4! 1T 0T 6 8) 9 g i g 4 T 0 [s/H] wng

45

"9INJODNYDIR DAIJRILIDNR oY) Ul YIN(] UHM I0JRISEIR 9GE-YVHS o) SUlsn Uslm SI[NSaI 9dURULIOJI] :9'q 9[qe],

1216 9TL6 6GG0T GLETT TLECT 9L9ST CW6FT ¥LZGT @STST OFOST €0SET T9FET LPPIT S290T TTLGLT
- GG00T 0060T 6L9TT 6192 6ZSET 06TST G96GT TL6GT GFPST GE6ET 0TLTT S9LTT L960T SPITLT
- - 02ZIT L002T LT6CT GSOPT T6VST L2991 F99T G89ST €6TFT 6L0ST ¥60ZT T6CTT 1L2991
- - - 18€TT €TEET TIFPPT T8LGT 9€TLT SLTLT T1L6ST 09SPT COPET 9GFCT GSSTT 1ZH8CST
- - - - 089€T L9SPT OLTOT 6VLLT T9SLT €E€9T 6G6FT €8LET 6%LTT TI6TT 6900ST
- - - - - GRTGT L6G9T GZT8T TIPST C9L9T 9TEST GITFT GS0ET T€TTT LE66ET
- - - - - - GO69T 89GST GSS8T GPTLT 689GT EPFFT €6EET LS¥ET STGLTT
- - - - - - - 62881 LOS6T G6VLT T96GT T69FT TC9ET G69TT 66STTT
- - - - - - - - 09961 69LLT €I29T 0T6VT 8T8ET 698CT 65226
- - - - - - - - - GOOST TEF9T TOTST T166ET LTOET 9559
- - - - - - - - - - 96G9T STZST T60VT FETIET 6868S
- - - - - - - - - - - 18TGT LGTPT €STET L29T¥
- - - - - - - - - - - - 06TFT 0ZTET 0T¥LT
- - - - - - - - - - - - - LT2ET L2TeT
eT 2TI 1T 0T 6 8 L 9 G 12 e 4 ! 0 [s/H] wng

46

Cores | Average System Power [W] | Uncertainty || Application Power [W]
Idle 34.3 0.4 0.0
1 36.6 0.4 2.3
2 36.7 0.3 2.4
3 36.7 0.4 2.4
4 35.3 0.4 1.0
5 35.0 0.2 0.7
6 35.1 0.3 0.8
7 35.0 0.2 0.7
8 34.9 0.3 0.6
9 34.9 0.2 0.6
10 34.9 0.3 0.6
11 34.9 0.3 0.6
12 34.8 0.2 0.5
13 34.9 0.3 0.6
14 34.9 0.4 0.6
15 35.0 04 0.7
16 34.8 0.2 0.5

Table B.7: Measured power usage for software hashing using the initial test
architecture.

2.5 N

1.5 N

Power consumption (W)

0 5 10 15
Active processor tiles

Figure B.1: Measured power consumption for software hashing using the initial
test architecture.

Cores | Average System Power [W] | Uncertainty || Application Power [W]
Idle 34.3 0.4 0.0
1 36.5 0.5 2.2
2 36.5 0.5 2.2
3 36.3 0.4 2.0
4 36.4 0.4 2.1

Table B.8: Power usage using the SHA-256 accelerator using the initial test
architecture.

47

Cores | Average System Power [W] | Uncertainty || Application Power [W]
Idle 34.3 0.4 0.0
1 36.4 0.4 2.1
2 36.7 0.3 2.3
3 36.6 0.4 2.2
4 36.6 0.4 2.2

Table B.9: Power usage using the SHA-256 accelerator and DMA using the
initial test architecture.

25 B

Power consumption (W)

—— Without DMA
0 —o— With DMA n

0 1 2 3 4
Active processor tiles

Figure B.2: Calculated power consumption using hardware accelerators

Cores | Average System Power [W] | Uncertainty || Application Power [W]
Idle 33.9 0.3 0.0
1 36.2 0.3 2.3
2 36.4 0.4 2.5
3 36.2 0.4 2.3
4 34.9 0.3 1.0
5 34.8 0.2 0.9
6 34.7 0.3 0.8
7 34.7 0.3 0.8
8 34.7 0.3 0.8
9 34.6 0.4 0.7
10 34.6 0.4 0.7
11 34.7 0.3 0.8
12 34.7 0.3 0.8
13 34.6 0.4 0.7
14 34.6 0.4 0.7

Table B.10: Measured power usage when doing software hashing in the alterna-
tive architecture.

48

Cores | Average System Power [W] | Uncertainty || Application Power [W]
Idle 33.8 0.3 0.0
1 35.9 0.3 2.1
2 35.9 0.3 2.1
3 35.9 0.3 2.1
4 35.9 0.3 2.1
5 35.9 0.3 2.1
6 35.9 0.3 2.1
7 35.8 0.3 2.0
8 35.7 0.4 1.9
9 35.6 0.4 1.8
10 35.4 0.4 1.6
11 35.4 0.3 1.6
12 35.3 0.4 1.5
13 35.1 0.3 1.3
14 34.9 0.3 1.1

Table B.11: Measured power usage when using the SHA-256 accelerator without
the DMA in the alternative architecture.

Cores | Average System Power [W] | Uncertainty || Application Power [W]
Idle 33.8 0.3 0.0
1 36.0 0.3 2.2
2 36.2 0.3 2.4
3 36.1 0.4 2.3
4 36.2 0.3 2.4
5 36.2 0.3 2.4
6 36.2 0.3 2.4
7 36.1 0.3 2.3
8 36.0 0.3 2.2
9 35.7 0.3 1.9
10 35.8 0.3 2.0
11 35.7 0.3 1.9
12 35.8 0.2 2.0
13 35.7 0.4 1.9
14 35.5 0.4 1.7

Table B.12: Measured power usage when using the SHA-256 accelerator with
DMA in the alternative architecture.

49

Cores | H/s | W || H/s/W
1 6450 | 2.3 2804.3
2 12895 | 2.4 5372.9
3 19190 | 2.4 7995.8
4 21261 | 1.0 21261
5 19310 | 0.7 27585.7
6 18388 | 0.8 22985
7 18265 | 0.7 || 26092.9
8 18191 | 0.6 || 30318.3
9 18195 | 0.6 30325
10 18192 | 0.6 30320
11 18194 | 0.6 30323.3
12 18192 | 0.5 36384
13 18192 | 0.6 30320
14 18191 | 0.6 || 30318.3
15 18191 | 0.7 25987,1
16 18191 | 0.5 36382

Table B.13: Energy efficiency of software hashing in the initial architecture.

30,000

20,000 | R

Efficiency (H/s/W

10,000

0 b ! ! ! =
0 5 10 15

Active processor tiles

Figure B.3: Energy efficiency of software hashing in the initial architecture.

Cores | H/s | W || H/s/W
1 17557 | 2.2 7980.4
2 37539 | 2.2 || 17063.2
3 54912 | 2.0 27456
4 70179 | 2.1 || 33418.6

Table B.14: Energy efficiency when using the SHA-256 accelerator without
DMA in the initial architecture.

50

Cores | H/s | W | H/s/W
1 18230 | 2.1 8681
2 38267 | 2.3 16637.8
3 56150 | 2.2 25522.7
4 71840 | 2.2 32654.5

Table B.15: Energy efficiency when using the SHA-256 accelerator with DMA
in the initial architecture.

Efficiency (DH/s/W)

Figure B.4: Energy efficiency when using hardware accelerators

architecture.

30,000

20,000 |

10,000

—— With DMA
—— Without DMA

—_

1.5

2

2.5 3 3.5 4

Active processor tiles

o1

in

the initial

Cores | H/s | W || H/s/W
1 6418 | 2,3 2790.4
2 12841 | 2,5 5136.4
3 19130 | 2,3 83174
4 21364 | 1.0 21364
5 19404 | 0.9 21560
6 18420 | 0.8 23025
7 18253 | 0.8 || 22816.3
8 18206 | 0.8 || 22757.5
9 18193 | 0.7 25990
10 18192 | 0.7 25988.6
11 18192 | 0.8 22740
12 18192 | 0.8 22740
13 18191 | 0.7 25987.1
14 18190 | 0.7 || 25985.7

Table B.16: Energy efficiency when using software hasing only for the alternative

architecture.

B.3.2 Alternative Architecture

Table B.16 shows the energy efficiency of doing software hasing in the alternative
architecture. The numbers are plotted in figure B.5. While performance is
greates with only 4 tiles, the reduction in power usage makes using of more tiles

more efficient.

Tables B.17 and B.18 shows the energy efficiency for the SHA-256 accelera-

tor, without and with DMA module respectively.

52

= 20,000 | i
3
wn
~
=
>
O
£ 10,000 | iy
g
H
€3
O | |

0 2 4 6 8§ 10 12 14
Active processor tiles

Figure B.5: Energy efficiency when using software hashing only in the alterna-
tive architecture.

Cores | DH/s | W || DH/s/W
1 11676 | 2.1 5560
2 24394 | 2.1 11616.2
3 38329 | 2.1 18251.9
4 53760 | 2.1 25600
5 70983 | 2.1 33801.4
6 90590 | 2.1 43138.1
7 107510 2 53755
8 122186 | 1.9 64308.4
9 135009 | 1.8 75005
10 146221 | 1.6 91388.1
11 156133 | 1.6 97583.1
12 164860 | 1.5 109906.7
13 172381 | 1.3 132600.8
14 179526 | 1.1 163205.5

Table B.17: Energy efficiency using the SHA-256 accelerator for the alternative
architecture.

53

Cores | DH/s | W || DH/s/W
1 13227 | 2.2 6012.3
2 27410 | 2.4 11420.8
3 42627 | 2.3 18533.5
4 58989 | 2.4 24578.8
5 76556 | 2,4 31898.3
6 95259 | 2.4 39691.3
7 112599 | 2.3 48956.1
8 127515 | 2.2 57961.4
9 139937 | 1.9 73651.1
10 150069 2 75034.5
11 158421 | 1.9 83379.5
12 165271 2 82635.5
13 171143 | 1.9 90075.3
14 175711 | 1.7 103359.4

Table B.18: Energy efficiency using the SHA-256 accelerator with DMA for the
alternative architecture.

54

