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Abstract

Recent years have seen the emergence of a new class of currencies, called cryp-
tocurrencies. These currencies use cryptography to provide security and peer-to-
peer networking to provide a decentralized system. Bitcoin is the most popular
of these currencies. It uses a two-pass SHA-256 hash at its core. Producing
new bitcoins is done through a process referred to as “mining”, which involves
a brute-force search for a hash with a specific value. This process requires large
amounts of computing power.

Current-generation hardware for bitcoin mining includes highly-optimized
ASIC chips which provide huge amounts of performance. However, designers
of such chips are having problems with delivering enough power and cooling
to the chips. To alleviate this problem, this thesis looks at the possibilities of
using heterogeneous computing to reduce power consumption and produce a
more energy-efficient mining solution.

A SHA-256 accelerator and a DMA module is developed and integrated
into a tile for the Single-ISA Heterogeneous MAny-core Computer, SHMAC,
and a system with multiple cores is used to exploit the thread-level parallelism
provided by the platform. The system is tested using a benchmark to find out
what performance and energy efficiency can be expected when using the system
for bitcoin mining.

The results show a maximum performance of 175,7 kH/s when running the
benchmark application on 14 cores using the SHA-256 accelerator and the DMA
module. The best energy efficiency was obtained when running on 14 cores
without the DMA enabled, at 163,2 kH/J. The results does not compare well
to specialized FPGA-based bitcoin miners, but demonstrates the SHMAC plat-
form’s large degree of thread-level parallelism which can be better exploited in
other applications.
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Sammendrag

De siste årene har en ny type valuta dukket opp, kalt “cryptocurrencies” eller
digitale valutaer. Disse valutaene bruker kryptografi til å tilby sikkerhet og
peer-to-peer-nettverk til å tilby et desentralisert system. Bitcoin er den mest
populære av dem. Bitcoin er bygd rundt en dobbel SHA-256 hash. Å lage nye
bitcoins blir gjort via en prosess som kalles for “mining”, og involverer et brute-
force søk etter en hash med en bestemt verdi. Dette krever store mengder med
datakraft.

Den n̊aværende genersasjonen av hardware for bitcoin mining best̊ar av høyt
optimaliserte ASIC-brikker som gir store mengder ytelse. Likevel opplever de-
signerne av slike brikker problemer med kjøling og strømtilførsel. For å bøte p̊a
dette problemet ser vi p̊a mulighetene for å bruke heterogene arkitekturer for å
redusere strømforbruk og lage en mer energieffektiv løsning.

En SHA-256 akselerator og en DMA-modul blir utviklet og integrert i en
tile for SHMAC, the Single-ISA Heterogeneous MAny-core Computer, og et
system med flere kjerner blir brukt for å utnytte tr̊adniv̊aparallelliteten som
platformen tilbyr. Systemet blir testet med et benchmark-program for å finne
ut hvilken ytelse og energieffektivitet som kan forventes n̊ar man bruker systemet
til bitcoin-mining.

Resultatene viser en maksimal ytelse p̊a 175,5 kH/s n̊ar man kjører benchmark-
programmet p̊a 14 kjerner med SHA-256 akseleratoren og DMA-modulen. Den
beste energieffektiviteten ble observert n̊ar programmet ble kjørt p̊a 14 kjerner
med DMA-modulen avskrudd, p̊a 163,2 kH/J. Resultatene kommer ikke godt
ut n̊ar man sammenlikner med spesialiserte FPGA-baserte bitcoin-minere, men
demonstrerer likevel hvordan SHMAC-platformens høye grad av tr̊adniv̊aparallelitet
kan utnyttes av andre programmer.
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Chapter 1

Introduction

In recent years, digital currencies know as “cryptocurrencies” have become pop-
ular and most popular of these is bitcoin. The term “cryptocurrency” stems
from the fact that a cryptographic hash function is at the core of the algo-
rithms involved. For bitcoin, the SHA-256 hash algorithm is used in a two-pass
configuration producing a double SHA-256 hash [17].

Producing new bitcoins is done through a process called mining, described in
Section 2.1.1. Mining requires large amounts of computing power, and has led to
a quick development in the hardware used in the process, from regular CPUs and
graphics processors, to Field-Programmable Gate Arrays (FPGA) and highly
specialized Application Specific Integrated Circuits (ASIC). This evolution of
mining hardware is described in Section 2.3. Bitcoin mining requires a large de-
gree of thread-level parallelism, because the SHA-256 algorithm does not provide
any opportunities to exploit parallelism when calculating a single hash; instead,
running several separate SHA-256 computations in parallel provides a possibil-
ity for exploiting parallelism to increase the number of SHA-256 computations
that can be run in a specified period of time.

Using bitcoin mining as an application, this project develops a SHA-256 ac-
celerator for the Single-ISA Heterogeneous MAny-core Computer (SHMAC), de-
scribed in section 2.5, which providess a high degree of thread-level parallelism.
To achieve higher throughput for the SHA-256 accelerator and the possibility
of higher energy efficiency overall, a DMA is also developed. The two modules
are integrated into a general-purpose CPU tile, and an estimation of the bitcoin
mining efficiency is made using a benchmark application measuring the perfor-
mance of the system, by measuring how many hashes can be calculated each
second and how much power is used when doing the calculations.

1.1 Original Assignment Text

This project aims to develop a bitcoin mining accelerator that will ultimately be
used in the single-ISA, many-core, heterogeneous computing platform SHMAC.
Bitcoin mining is, at its core, a SHA-256 hashing problem, so part of the assign-
ment will be to keep the interface generic enough such that other cryptographic
algorithms can be readily developed.

This part of the project will focus on building an end-to-end and fully func-
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tional hardware and software system that is able to fully participate as a miner
in the network (that is, mine bitcoins and communicate with peers).

The energy efficiency of the hardware implementation should be evaluated
against that of a general-purpose CPU and should constitute a major aspect of
the report.

1.2 Comments on the Assignment Text

Recent hardware developments within the field of bitcoin mining, most impor-
tant of which is the introduction of dedicated ASIC mining chips described in
Section 2.3.3, have led to bitcoin mining using CPUs, GPUs and many FPGA-
based designs being considered unprofitable and wasteful in terms of the energy
expended.

In such an environment, it is doubtful that an FPGA-based SHMAC im-
plementation can compete with ASIC designs. The assignment then basically
boils down to: is bitcoin mining possible using SHMAC? Does the mining pro-
cess benefit from heterogenity, and what performance and energy efficiency can
be expected when using SHMAC as a bitcoin miner? How does it compare to
existing FPGA-based bitcoin miners.
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Chapter 2

Background

In order to understand how and why heterogeneous systems can be applied to
the problem of bitcoin mining, it is first important to obtain an understanding
of how the bitcoin currency works and what heterogeneous computing is.

2.1 The Bitcoin Currency

Bitcoin, often abbreviated BTC or B , is a digital currency, using a peer-to-peer
network to provide a decentralized currency, not relying on banks or financial
institutions to process transactions or maintain accounts. An account simply
consists of a cryptographic keypair, which is used to sign and verify transactions,
and as such anyone can create as many accounts as they wish. The bitcoin
project provides a variety of software for interacting with the bitcoin network
and managing accounts.

At the core of the bitcoin system is the block chain, a distributed, linked list
consisting of blocks which contains the transactions that have been executed on
the network since the previous block was generated.

A block is only valid if the arithmetic value of the double SHA-256 hash
of its header is below a certain target value. Finding a block that has such a
header is computing intensive because it has to be done through a brute-force
search, and this prevents the network from being flooded with new blocks. The
target value is decided by the network “difficulty” and is set to such a value
that, on average, six new blocks are generated per hour.

To get people to participate in creating new blocks, a reward is offered
to whomever manages to create a block. This reward also ensures that more
money is added into circulation. The size of the reward decreases over time
until a predetermined number of bitcoins have entered circulation. The reward
is currently 25 bitcoins, each currently worth about $224 USD1, and halves
every 210 000 blocks. The total number of bitcoins that is to be generated is
21 000 000 bitcoins. [17]

1According to http://blockchain.info, which tracks various statistics about the bitcoin
system
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Figure 2.1: Merkle tree in the block header [17]

2.1.1 Mining Bitcoins

The process of creating a new block for the bitcoin blockchain is often referred
to as mining, refering to the fact that a lot of energy may need to be expended
in order to find a valid block.

The process begins with the creation of a transaction that transfers the
reward for generating the block into the account of the miner. This transaction is
often called the coinbase or generation transaction. All transactions transmitted
to the bitcoin network since the last block was generated are gathered and the
hash of each transaction is inserted into a merkle tree, which is a tree where
where every interior node is labelled with the hash value of its children, see
Figure 2.1.

The root of the merkle tree is inserted into the header for the new block
together with the hash of the previous block and various other fields specified
by the standard. If the hash of the header is below the target value, the block
is successfully mined and transmitted to the network. If the hash does not
satisfy the demands of the network, a 32-bit field in the block header, called the
nonce, can be changed to produce a new hash. In addition, transactions can be
excluded in order to produce a different merkle root for the header, effectively
providing a much larger search space.

If more than one new block is pushed to the network at the same time,
the block chain diverges. This situtation is resolved when the next block is
generated; the longest block chain is then accepted as the canonical block chain
by the rest of the network. [17]

2.1.2 Pooled Bitcoin Mining

Because an increasing amount of computing power is being used to mine bit-
coins, the difficulty of finding a block has increased to such a level that no single
bitcoin miner can hope to find a block on his or her own any longer. Figure 2.2
illustrates how the difficulty level have risen on the bitcoin network since the
beginning. The hashrate of systems used in bitcoin mining is measured in dou-
ble SHA-256 hashes per second, abbreviated H/s. The current total hashrate is
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about 396,5 EH/s2 according to the statistics available from blockchain.info.
This means that the amount of work needed to find a single block is, on average,
237,9 ZH3. Using, for instance, a GPU-based bitcoin miner with a hashrate of
1 GH/s, it would take, on average, 237, 9 · 1014 seconds, or 7 543 759 years to
find a block.

Figure 2.2: The bitcoin mining difficulty, from the beginning until today [1].

To overcome this problem, mining pools were invented. A bitcoin mining
pool is a service that distributes work between miners. The work that is dis-
tributed has a lower target value than does the bitcoin network itself, meaning
that each participating miner can find valid blocks faster. Although most of the
blocks submitted to a pool does not fulfill the network requirements, sometimes
a block fulfills both the pool’s difficulty requirements as well as the network
requirements; in that case the new block is submitted to the bitcoin network
and all the miners who submitted work towards finding the block is rewarded
according to their contribution.

As such, pooled mining lets anyone with weaker hardware participate in
bitcoin mining in exchange for a smaller reward. However, using hardware such
as regular CPUs and GPUs is still considered unprofitable because of these
processors’ relative performance compared to specialized bitcoin mining ASICs,
as discussed in Section 2.3.

2.2 The SHA-256 Hash Algorithm

The SHA-256 hash algorithm is defined in FIPS180-4 [19] and is a member of the
SHA-2 family of hash functions. Like all hash functions, it works by accepting
an arbitrary amount of input data and producing a constant-length output. The
function is one-way, that is, given a hash, it is impossible to determine the input

2396, 5 · 1018 H/s
3237, 9 · 1021 hashes
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data used to produce the hash. However, hash functions are deterministic, in
that the same input data always produces the same output data.

The SHA-256 algorithm works on blocks of 512 bits. Each of these blocks
are expanded into a block of 64 32-bit long words using a message expansion
function. Each of these words are used as input to one iteration of the SHA-
256 compression algorithm, which uses simple bitwise functions such as shifts,
rotations, logic functions and unsigned addition to create a 256 bit output value.
Each round of the compression function is dependent on the output data from
the previous round in addition to the current input word from the expanded
message block and a constant. After 64 iterations of the compression function,
the result is added to the intermediate hash values from any previous blocks,
or, if there are no previous blocks, the initial hash value, producing a finished
hash.

A more detailed description of the algorithm can be found in Appendix A.
In the bitcoin system, a double SHA-256 algorithm is used. To obtain a double
hash, the output of a previous SHA-256 calculation is simply used as input data
to the hashing algorithm. [19]

2.3 Evolution of Bitcoin Mining Hardware

Because of the bitcoin currency’s popularity and the competitiveness involved in
mining it, there exists many different accelerators to improve the performance
and energy efficiency of mining systems. During the currency’s history, hardware
for bitcoin mining has evolved from regular, general-purpose CPUs to highly
specialized ASIC-based systems.

The bitcoin blockchain was started on January 3rd, 2009. At this point,
all mining was done using CPU mining. The official bitcoin network client
supports mining and was used for this purpose. The fastest CPU miner, a
high-end, overclocked Core i7 990x eventually reached 33 MH/s using SIMD
extensions in order to improve performance. [5]

2.3.1 GPU Mining

The shift to GPU mining started in July 2010, when the first OpenCL miner
was written and used in a private mining setup. In September that year, the
first open source GPU miner, which was based on Cuda, was released after
the author was paid 10 000 bitcoins, worth about $600 USD at the time, by
Jeff Garzik, one of the core bitcoin developers. An open source OpenCL-based
miner was released shortly after. Using GPUs for bitcoin mining allows miners
to take advantage of the heterogenity offered by common desktop computers to
accelerate bitcoin mining. [5]

OpenCL miners typically compute the double SHA-256 hash using a fully
unrolled implementation of the compression loop. Multiple hash calculations are
run simultaneously exploiting the parallelism offered by GPUs. Many miners
tweaked various parameters of their hardware, such as the voltage and clock
frequencies of both the video RAM and the GPU core in order to get higher
throughput and thus reduce the cost of running each GPU, in order to obtain
greater profits.
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In order to increase profits, miners started to place multiple GPUs on the
same motherboard, providing higher hashrates while still using readily accessi-
ble hardware. However, for each GPU added comes an additional cost in wasted
resources, such as the additional motherboards needed to run the GPUs, which
includes mostly unused hard-drives, RAM and processors. Additional chal-
lenges included providing enough power and cooling to the GPUs. The power
consumption on each GPU was on average more than 200 W, making the use
of rigs comparable with data centers, and the most successful bitcoin mining
operations tended to relocate to warehouse space with larger volumes of air for
cooling, and cheap industrial power prices. [24]

2.3.2 FPGA Mining

FPGA miners appeared in June 2011, providing better energy efficiency com-
pared to GPUs [24]. Early designs were mostly based on the Spartan 6 FP-
GAs from Xilinx, and could provide a performance of between 200 MH/s and
220 MH/s per chip, about the same as contemporary GPUs [6], but consum-
ing as little as a fifth of the power used by their GPU counterparts [24]. A
representative example of such an FPGA design is the BTCMiner, an open-
source bitcoin miner firmware for ZTex’ FPGA boards, which can obtain up to
215 MH/s with a power usage of about 9,8 W, giving 21 MH/J [4].

FPGAs provided great advantages to the speed of bitwise functions, which
are important for the SHA-256 algorithm. Popular open-source designs were
created so that they could be used by different kinds of FPGAs. They consisted
of a SHA-256 module which had a configurable depth pipeline, each consisting
of the necessary hardware for computing a specific number of rounds of the
SHA-256 compression function. Completely unrolling the algorithm created a
pipeline of 64 stages, with a throughput of 1 hash per cycle, but it was also
possible to specify lesser unroll factors which resulted in fewer pipeline stages
and reduced throughput, taking several cycles to perform a hash, but saving
registers and logic resources in the FPGAs. The pipelines were duplicated to
improve performance.

Power consumption became much higher than typical for FPGAs, with the
pipelined design giving an extremely high internal activity factor in the FPGA.
Development boards could not provice enough power and heat dissipation for
sustained usage, and development of custom boards that focused on providing
enough power and cooling with minimal unused resources, became popular. [24]

2.3.3 ASIC Miners

Neither GPUs nor FPGAs can compare to ASICs, specialized chips that started
to appear on the network in the beginning of 2013 [7]. It was the need for
more high-performance and power efficient bitcoin miners caused implementors
of bitcoin miners to turn to ASIC solutions. The first ASIC solutions were
crowdfuded projects, raising money over the internet or through preorders from
future users.

One of the first ASIC designs were Butterfly Labs’ ASIC miners. Having
experience developing FPGA based mining solutions, the company created an
ASIC chip with 16 double SHA256 modules, the equivalent of 16 FPGA-based
miners using a 65 nm process. The end-product ended up being delayed when
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the chips ended up consuming more power than expected and had to be under-
clocked in order to be able to cool the chips properly.

ASICMINER was another of the earliest designs, including only one SHA256
hash unit on a chip, replicating a single FPGA-based design at a much higher
frequency, with better energy efficiency and a cheaper price. [24]

The Goldstrike 1

Another ASIC design is the Goldstrike 1 architecture, noteworthy because its
architecture is described in an article in IEEE Micro by Javed Barkatullah and
Timo Hanke [3]. Because of the competitive nature of bitcoin mining, it is not
common for designers of ASIC solutions to reveal too many details about the
architecture of their chips and few scientific papers exist on the topic.

The Goldstrike is an ASIC-based bitcoin mining solution capable of reaching
2 TH/s. To reach the performance requirements, a bitcoin mining core was
created that was able to perform at 125 GH/s. Four of these were combined in
one package, with four of these packages then combined on a circuit board to
produce the target performance.

The Goldstrike cores consist of an architecture with 120 hash engines running
in parallel. A hash engine searches through all possible values of the 32-bit nonce
field in the bitcoin header (see Section 2.1.1) in order to find a valid hash. The
hash engines use a pipelined double-SHA-256 implementation, with each round
of the hash calculation unrolled into a pipeline.

The finished ASIC chips, each with four bitcoin mining cores, were measured
to provide 504 GH/s while using 500 W of power. This gives an energy efficiency
of about 1 GH/J. Interestingly, the architecture provided challenges with regards
to to powering and cooling the chips. Because the architecture uses all available
computing power for bitcoin mining all the time while the chips are in use, no
parts of the chips can be turned off to save power. [3]

2.4 The Problem of Dark Silicon

Moore’s law states that transistor density on integrated chips will continue to
double every two years. This has turned out to match reality pretty well, and in
addition, native transistor speeds are increasing with a factor of 1.4. According
to the principle of Dennard scaling, which predicts that the power density of
transistors, that is the voltage and current used to operate the transistor, would
scale down with the size of the transistors, this would not be a problem; however,
the energy efficiency of transistors is only improving by a factor of 1.4.

Under a constant power-budget, there is a shortfall of a factor of 2 in the
energy budget, and this utilization potential of a chip is falling exponentially
by 2 times for each generation. If the power limitation were to be based on the
current generation, then designs would be 93.75 % dark in eight years. This
gives rise to the term “dark silicon”, where a chip must either be underclocked
or parts of it turned off in order to stay within a defined power budget, giving
rise to “dark” areas of the chip. This is especially true for chips where the
cooling solutions are no longer efficient enough to remove the generated heat
from a fully powered chip.
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In an attempt to work around this problem, the CPU industry moved to
using multicore processors around 2005. Since the gains from improving in-
struction level parallelism were diminishing, the industry focused more on thread
level parallelism and throughput through multiprocessing [10]. However, adding
multiple cores does not circumvent the problem in the long run. Multicore chips
will not scale as transistors shrink, and the fraction of a chip that can be filled
with cores running at full frequency is dropping exponentially with each proces-
sor generation. Large fractions of the chip will be left dark — either switched
off for a long time, or significantly underclocked. [25]

The case of bitcoin mining may be close to the worst case for dark silicon
optimizations, far beyond multicore CPUs or GPUs. Due to bitcoin mining’s
high processing requirements, the logic needed to run the algorithm cannot be
turned off without losing performance. Butterfly Labs ran into this problem
with their 65 nm chip, and had to scale back the performance to reduce power
consumtion and manage to cool the chip properly. While bitcoin mining began
as a “race to ASIC”, energy costs now determine which ASICs are the most
profitable and therefore energy efficiency is a problem that must be addressed.
[24]

2.4.1 Approaches to the Problem of Dark Silicon

To work around the problem of dark silicon, several approaches have been sug-
gested. In [25], Taylor have listed up three particular approaches: shrinking
the chips, dimming the chips, and specializing the chips. In addition, there is
always the possibility that future technology will be a “deus ex machina” and
solve the problem in an unexpected fashion.

Shrinking the Chips

Instead of having dark silicon on the chip, one can simply shrink the chip it-
self. All chips may be shrunk to a certain small extent, but the only chips that
truly can gain from shrinking only, will be those on which dark silicon is only
a waste, and cannot be used to further enhance the product. Specalizing into
these types of shrunk chips may, however, turn out to be less profitable business,
as further generations of Moore’s law adds little benefit. They are not exponen-
tially cheaper either, given that mask cost, design cost and I/O pad areas does
not scale equally, and power density will rise exponentially, increasing the chip
temperature.

Dimming the Chips

The term “dim silicon” refers to the use of general purpose logic that typically
employs heavy underclocking or infrequent use. As such, large amounts of
otherwise dark silicon area is put to productive use while meeting the power
budget. While the fraction of dark transistors on chips increases exponentially,
the silicon area becomes exponentially cheaper as a resource, relative to the
power and energy consumption. This gives the opportunity to spend area to
buy energy efficiency. Dark silicon areas can be populated with logic that is
used only part of the time.
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Lately, more elegant methods are emerging. Among the dim silicon tech-
niques are dynamically varying the frequency with the number of cores being
used, scaling up the amount of cache logic, employing near threshold voltage
(NTV) designs, and redesigning architectures to accommodate bursts that tem-
porarily allow the power budget to be exceeded, such as Intel’s Turbo Boost
technology. [25]

Specialization

Instead of using general purpose logic, this approach focuses on specialized use
of logic for selected tasks. Within a set of processors, each are specialized
for a subset of tasks, increasing energy efficiency or performance compared to a
general purpose processor, for those particular tasks. An application is executed
on the processor which is deemed the most efficient for the task. Cores not in
use are power and clock gated so as to not waste energy unnecessarily.

Challenges with these systems are expected as well, one of them being the so-
called “Tower of Babel” crisis, where the notion of general-purpose computation
becomes fragmented, and the clear lines of communication between program-
mers and software and the underlying hardware is no more. There are several
cases of overspecialization problems between accelerators, where many of them
cannot be used for closely related classes of computation. For instance, CUDA
for NVidia GPUs cannot be used for similar architectures, such as AMD GPUs.
Specialized hardware also risk becomming obsolete when standards are revised.
[25]

Deus Ex Machina

The term “deus ex machina” comes from literature and theater, in which the
protagonists seem increasingly doomed until the very last moment, when some-
thing completely unexpected comes out of nowhere to save the day. In the
case of dark silicon, a deus ex machina would be a major breakthrough in
semiconductor device technology. The required breakthrough would have to be
very fundamental, making it possible to build circuits out of devices other than
MOSFETs4. There are physical limits to what can be done with, for instance,
the leakage from MOFSET transistors, and transistors made of other materials
may go beyond these limits. New transistors must also be able to compete with
MOFSETs in performance. Tunnel field-effect transistors (TFET) and nano-
electromechanical system switches (NEMS) are examples of inventions that may
hint to order-of-magnitude improvements to the leakage problem, although they
still fall short in performance. [25]

2.4.2 Benefits of Heterogeneous Architectures

Specialized heterogenenous architectures offers various possibilities for improved
performance and energy efficiency; this could be in the system’s ability to adapt
to various applications or even external conditions such as power or temperature
conditions [11, 13, 12]. This has been explored in [11], [13] and [12]. By com-
bining different processors from the Alpha Family, Kumar et al has proven that

4Metal–Oxide–Semiconductor Field-Effect Transistor
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heterogenous architecture does excel in energy efficiency and performance, com-
pared to a homogeneous system. In a simluation the EV4 (Alpha 21064), EV5
(Alpha 21164), EV6 (Alpha 21264) and a single-threaded version of EV8 (Al-
pha 21464) were combined into a heterogeneous multiprocessor. The SPEC2000
benchmark were run with one application on one core at a time, with the others
powered down. The simulation showed that 32 % of the energy were saved with
performance loss of only 2.6 % relative to the EV8 core, when using best static
scheduling, and using dynamic core switching with simple heuristics further
improved the results. [11]

In another simulation where system performance were the main goal, a com-
bination of EV5 and EV6 onto a 100 mm2 chip were simulated, where the size of
one EV6 equals the size of four EV5. The tradeoff was between greater single-
threaded performance of the more complex EV6 versus greater thread-level par-
allelism of adding more EV5 cores. The best homogeneous designs could fit
either four EV6 cores or 20 EV5 cores on the chip, and for the simulation, three
EV6 and five EV5 were chosen to form a heterogeneous multi-core processor.
Instead of one single application, the simulation tested the best global assign-
ments when running multiple threads, from a small number of the SPEC2000
benchmarks. Threads that exploited the EV6 better would be assigned to the
more complex cores. Compared to a homogeneous multi-prosessor system with
four EV6, the simulation showed that the heterogeneous system performed up
to 37 % better with an average 26 % improvement over the configuration, con-
sidering 1-20 threads. Compared to 20 EV5 cores, the performance was up to
2.3 times better, and averaged 23 % better over that same range. Using dynamic
heuristics for core assignment further increased the performance. Additionally,
the heterogeneous system was tested for its tolerance against increasing job
queues, and simulation showed that a homogeneous system with four EV6 be-
came saturated at a significantly earlier point than the heterogeneous system,
showing that the latter has higher tolerance to larger amounts of wor, because
of the increased parallelism. [13]

[12] takes a closer look at what can be considered a good heterogeneous
design, in making the heterogeneous multiprocessor from scratch instead of us-
ing pre-existing core designs. Using pre-existing cores presents lower flexibility
in choices, while best heterogeneous designs are composed of specialized core
architectures. The study in [12] came to the following conclusions:

• The most efficient heterogeneous multiprocessors were not constructed
from cores that make good general-purpose uniprocessor cores, nor cores
that would appear in good homogeneous multicure architectures.

• Each core should be individually tuned for a class of applications with
common characteristics.

• And performance advantages of heterogeneous multiprocessors also hold
for completely homogeneous workloads (where the task has no differences).
In those cases, the diversity across different workloads are exploited.

The more constrained the area or power budget, the more benefit the hetero-
geneous designs provide, as homogeneous systems were able to run to the fullest
on generous budgets only. As future designs become more aggressive, with more
cores added to the chip, the results underline the impact heterogeneous design
will have for the future.
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2.5 The Single-ISA Heterogeneous MAny-core
Computer

The Single-ISA Heterogeneous MAny-core Computer (SHMAC) is an architec-
ture designed for investigating heterogeneous systems at all abstraction levels,
as illustrated in Figure 2.3. It implements a tile-based architecture with a mesh
interconnect. All processor tiles implement the same ARM ISA and the same
memory model, in order to achieve a common programming model [9]. A high-
level illustration of SHMAC can be seen in Figure 2.4.

Because the programming model is kept constant, the underlying implemen-
tation of the system can change. This means that the same application can be
run on SHMAC instances with different tile layouts or on SHMAC instances im-
plemented on different physical media, such as in FPGAs or ASICs. Currently,
SHMAC is only run on FPGAs.

Figure 2.3: Levels of abstraction in computing systems [9].

2.5.1 Versatile Express

The platform used to run SHMAC is a Versatile Express from ARM. Versa-
tile Express is a family of development platforms, made for providing an en-
vironment for prototyping future System-on-Chip (SoC) designs. A Versatile
Express system typically consists of a µATX motherboard, to which various
daughterboards can be added. In some cases, a daughterboard can also al-
low for additional daughterboards to be inserted to it, as illustrated in Figure
2.5. Commonly used are the CoreTile Express and LogicTile Express boards.
CoreTile Express contains the CPU cores that runs the system. The version
used in this project contains four Cortex A9-processors, running Linary Linux
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Figure 2.4: High-Level architecture of SHMAC [9].

13.12, with Linux kernel version 3.14.25. Only one core is used by the Linux
host system.

The LogicTile Express contains one or more FPGAs, the number depending
on the version, suitable for prototyping SoC designs. Our project uses the
LogicTile Express 20MG, containing a Virtex-7 XC7V2000T FPGA by Xilinx,
and a 4 GB DDR3 memory chip. The architectural relationship between the
CoreTile Express and the LogicTile Express used in our system can be seen in
Figure 2.6, where both tiles are plugged into the same motherboard. [14, 15]

Figure 2.5: Illustration of Versatile Express build [14].

2.5.2 SHMAC Architecture

SHMAC is a tile-based architecture, with the processing elements laid out in a
rectangular grid with neighbour-to-neighbour connections, using a mesh inter-
connect with XY-routing.

Several tile types are supported. The main ones are:

Processor Tile Currently two versions are supported: the open source ARM
Amber CPU, and an improved version called Turbo Amber. The original
Amber core provides support for the ARMv2a instruction set [22], while
the Turbo Amber provides support for the ARMv4t instruction set, giving
the core the ability to also execute instructions from the 16-bit Thumb
instruction set. Several performance optimizations are also added to the
core [2]. An overview of the processor tile can be seen in Figure 2.7.
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Figure 2.6: Architectural relationship between CoreTile Express and LogicTile
Express [15].

Scratchpad Tile — A memory tile providing a small amount of memory for
use by software. This memory is provided by the on-chip block RAM
resources of the FPGA [9].

DDR Memory Tile — Memory controller tile that gives SHMAC access to
off-chip DDR memory.

APB Interface (I/O tile) — This tile implements the Advanced Peripherals
Bus (APB) slave which gives the host processor on the Versatile Express
board access to SHMAC’s memory space for use when programming the
memories. [9]

Dummy Tile — Empty tile which only contains router functionality. Can be
used, for instance, as a filler tile. [9]

2.5.3 SHMAC Memory Map

Figure 2.8 shows how the memory is mapped in the ARM-based SHMAC. All
processor tiles share the same address space with only the tile register space
being private for each tile. This memory area contains information about the
tile itself, such as its coordinates, the CPU ID number and other useful data.
In addition the tile register space contains the memory-mapped peripherals for
each tile, such as timers and the interrupt controller. Any custom peripheral,
such as the DMA and the hashing accelerator developed in the project is mapped
into this address space. The system registers are used for communication with
the host system.

2.5.4 SHMAC Interconnection Network

SHMAC utilizes a 2D mesh-based interconnection network to connect all the
tiles, which is used to transport data packets of 128 bits length. Store-and-
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Figure 2.7: SHMAC processor tile [9].

forward switching with on/off flow control is used, and the XY-algorithm is
used for deciding the route of each data packet. Each tile consists of a router
with five ports, one for each of its neighbours and the local connection. When
multiple packets are inbound from different directions, a round-robin scheme is
used to arbitrate between which packet to route through, and packets from the
local tile has equal priority to those arriving from the other directions. [9]

In the current implementation, it takes 3 cycles for a data packet to transfer
from one tile to the next. The architecture of the router can be seen in Figure
2.9.

2.5.5 Wishbone Bus

Wishbone is a bus architecture developed by OpenCores to create a common
interface for use between IP cores, especially in open source designs. It supports
single-word transfers as well as burst transfers. A pipelined transfer mode is also
provided which allows multiple requests to be sent from a module without the
module having to wait for an acknowledge.

Wishbone is used as internal bus on the CPU tiles of SHMAC. Burst or
pipelined transfers are not currently supported, neither internally on the tiles,
or by the interconnect network, which can limit performance.
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Figure 2.8: Memory map of ARM-based SHMAC, as seen in [9].

Figure 2.9: Architecture of the SHMAC router [9].
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Chapter 3

Architecture

In order to develop a bitcoin mining system, a SHA-256 accelerator was devel-
oped. In addition, it was decided to design and integrate a DMA module in
order to improve the throughput of the system. The new modules were then
added to a CPU tile. Since it is not possible to parallelize a single run of
the SHA-256 algorithm, multiple, independent tiles in a grid are used to run
multiple SHA-256 computations at the same time.

3.1 Accelerated Hashing Tile

In order to test the effects of accelerating SHA-256 hashing, a new tile containing
a hashing accelerator and a DMA was developed for SHMAC. A high-level
overview of the new tile can be seen in Figure 3.1.

Figure 3.1: SHMAC tile with SHA-256 accelerator and DMA. Added compo-
nents are highlighted in red.

The new tile is derived from the Turbo Amber tile, which contains a Turbo
Amber CPU and peripherals such as an interrupt controller and timer modules,
connected together with a wishbone bus. The SHA-256 accelerator and the
DMA’s slave interface and master interface is added to this bus.

The tile also needs an arbiter to arbitrate between the DMA master and
the CPU on the wishbone bus. For this purpose, the reference arbiter from the
Wishbone Public Domain Library for VHDL was adapted for use. This is a
round-robin arbiter, with its function illustrated in Figure 3.2.

Round-robin arbiters work well in data acquisition systems where data is
collected and placed into memory, since peripherals must often store data to
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Figure 3.2: Wishbone round-robin arbiter [20].

memory. The choice of this arbiter is because using an already established
wishbone arbiter saves time for this project as opposed to desiging a new one,
which may end up less efficient if done poorly.

3.1.1 SHA-256 Hashing Module

The hashing module made for this project is a simple implementation of the
algorithm described in Appendix A. It uses 65 cycles to compute the hash of its
input data, running one iteration of the SHA-256 compression function every
cycle except cycle 65, which is used to form new intermediate hash values from
the results of the compression function. The algorithm is specified in big-endian
format in [19], including necessary constants, so the module was designed to do
the calculation in big-endian to reduce the possibility of errors. A high-level
overview of the module is available in figure 3.3.

Figure 3.3: High-level overview of the SHA-256 accelerator architecture.

In order for the module to remain generic, so that it can also be used in cryp-
tography, an optimization specifically for bitcoin mining has been omitted; this
means that the module does not support doing the two-pass hashing required
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by the bitcoin protocol, instead relying on software to set up correct input data
for the second pass. It also relies on software to do the neccessary padding of
the input data as required by the SHA-256 algorithm.

Even for generic SHA-256 hashing, several optimizations are possible. The
SHA-256 algorithm includes 64 32-bit constants, one for each round of the com-
pression function. These can be stored in a block RAM memory to save some
logic resources [16]. However, this occupies valuable block ram resources that,
in SHMAC, is used both by CPUs and scratchpad memory tiles. Thus, using
block RAMs for optimization would place limits on how many tiles can be in-
cluded in a SHMAC design; indeed, it was observed when synthesizing large
designs with many cores that the FPGA would run out of block RAM before
any other resources according to the synthesis logs.

Another optimization, that has already been mentioned in Section 2.3.2, is
pipelining. This can increase the throughput to as much as one hash per cycle,
but will require a large amount of additional logic because of the amount of
data required by each iteration of the SHA-256 compression function. The state
required would include 2048 bits of storage for the expanded message block in
addition to the two sets of 8 32-bit words needed for state and the intermediate
hash value respectively.

The module is controlled by the processor using a memory-mapped interface.
This allows the use of a DMA to offload data transfer between memory and the
hashing module. The memory-mapped interface provides registers for 512 bits
of input and 256 bits of output data, in addition to control and status registers.
This interface can also be used for accelerators of other cryptographic hash
functions which processes input data of the same length and returns a hash of
256 bits or less, such as RIPEMD-160 or RIPEMD-256 [8] or the still popular
MD5 algorithm [21]. With some work, the interface could be made even more
generic in order to support algorithms with other input and output sizes; a
possibility would be to eliminate the input and output registers completely in
favour of using a DMA built into the module to move data of arbitrary sizes
into and out of the module.

Another, alternative interface to the module that was considered was using
the co-processor interface of the CPU to communicate with the module. The
ARM instruction set supports up to 16 coprocessors, which can be communi-
cated with using the mrc and mcr instructions. In such a scheme, the DMA
could either transfer data to and from the accelerator directly with the copro-
cessor instructions, or by including a DMA in the hashing accelerator to transfer
data to and from the accelerator. This would, however, preclude the DMA from
being used as a general data transfer module, providing unnecessary overhead
in terms of possibly unused logic.

3.1.2 DMA Module

The DMA module was designed for the purpose of investigating whether sepa-
rate data transfers with DMA could improve throughput and energy efficiency
of the hashing process, and also gain energy savings by freeing up the on-tile
CPU for other work or sleeping. An overview of the module can be seen in
figure 3.4.

The DMA module consists of the DMA logic itself, in addition to a wishbone
slave interface for configuration and a wishbone master interface for transfer-
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Figure 3.4: DMA overview, including wishbone interfaces.

ring data. It transfers words of 32-bit data using single-cycle wishbone transfers.
In addition, the DMA supports swapping the endianness of the data it copies.
This improves performance when used with the SHA-256 accelerator, because
the results from the accelerator are in big-endian and must be converted to
little-endian to give the correct results when used by the software running on
the processor. Converting endianness in software adds several additional in-
structions per hash, which are now avoided. If endian swapping is active, the
data bytes are swapped combinatorcially before being passed on to the wishbone
master.

The wishbone slave consists of three registers for each DMA channel, used
for base source address, base destination address, and details of the transfer.
When request is activated, the selected channel receives data from the slave, and
executes the transfer. An arbiter arbitrates between the channels if both are
active. Every single command, either load or store, are passed from the channels
to the wishbone master, where they are executed. Loaded data is passed on to
the corresponding channel, and a channel informs the wishbone master when
it is finished, so that the slave interface is informed when the final transfer is
done executing. The corresponding request detail register is modified, and an
interrupt request is sent to the interrupt controller.

The current DMA module only supports transfers of single 32-bit words,
while the interconnect used between tiles in SHMAC supports 128-bit blocks.
This means four transfers are done on the network for each 128-bit blocks, when
only one entire block transfer is needed. The reason for not expanding to 128-
bit blocks was due to compatibility issues with the SHA-256 module. We were
concerned that expanding would force blocks to have an alignment of 128-bits,
which would make the DMA harder to use from a software perspective and
add additional difficulties in transferring data to and from the registers of the
hashing accelerator. Otherwise they would have had to be changed so that they
would be correctly aligned.
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3.2 System architecture

The CPU tile with the integrated SHA-256 accelerator and DMA module was
placed in a grid with other similar CPU tiles in order to exploit the thread-
level parallelism offered by the SHMAC architecture. The test designs were
synthesized using Xilinx’ Vivado software suite, version 2013.4, and uploaded
to the Versatile Express machine.

3.2.1 Initial 5x4 Grid Architecture

Initially, a 20 tile setup was used on SHMAC. The following tiles were included
in the design:

• 16 CPU tiles with on-tile DMA module and SHA-256 accelerator

• 2 scratchpad tiles

• 1 DRAM tile

• 1 I/O tile

The layout is illustrated in Figure 3.5. The I/O tile is placed to the left of
the first processor in the system, as only the first processor tile is used for com-
municating with the host system. This gives the first processor a “dedicated”
connection to the I/O tile, preventing data that is sent to the host from inter-
ferring with data transfers needed for the hashing benchmark application. In
addition, the rectangular grid was chosen to ensure that all cores are placed as
close as possible to the memory tiles to reduce the latency of memory transfers.

Figure 3.5: Test setup, using BRAM tiles as scratchpad and DRAM as main
memory.

3.2.2 Alternative 15x2 Grid Architecture

As testing uncovered a possible hardware bug in the implementation of the
scratchpad tiles, discussed in Section 4.3.1, a second design had to be created
in order to measure the scaling of the performance and energy efficiency when
using accelerators.
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The second design places all processor tiles in a single row. This causes
all traffic to the memory tiles, placed on the row below, to come from above,
which bypasses the scratchpad bug. The design contains 14 CPU tiles and is
illustrated in Figure 3.6. The current implementation of SHMAC does not allow
more than 15 tiles on each row due to only using 4 bits to represent each grid
coordinate.

Figure 3.6: Alternative test setup.
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Chapter 4

Evaluation

This chapter presents an evaluation and discussion of the performance and en-
ergy efficiency of the proposed bitcoin mining system.

4.1 Measuring Mining Performance

In order to estimate the bitcoin mining performance of the system, a benchmark
is used to measure the number of double hashes that can be performed each
second. This is done by repeatedly double-hashing a block of data and recording
the number of hashes achieved per second per core. By adding more cores over
time, it is possible to see how the performance scales as more cores are added.
Recording the number of hashes per second per core also makes it possible to
see how the performance of each core is affected by the traffic on the network-
on-chip generated by the other cores in the network. Cores not active are put
into a no-operation loop.

Using the architecture setup described in Section 3.2, tests where run using
the following method:

1. Hashing using software only, not using the SHA-256 hashing module or
DMA module. All work is done by the on-tile processor.

2. Hashing using only the hashing accelerator. The processor controls and
copies data to and from the hashing module, and does the endian conver-
sion in software.

3. Hashing using the hashing accelerator and DMA. The processor controls
each module, but the DMA handles data transfer, as well as endian con-
version.

Interrupts are used by the hashing module to signal when it is finished
working. However, the software does not support interrupt from DMA, and it
has to be polled while copying data to and from the module, which may have a
minor influence on the results.

The benchmark software was compiled using the GCC compiler, version
4.8.2, compiled for the arm-none-eabi target triplet. To generate a binary file
for the SHMAC, utilities from GNU Binutils version 2.24, also compiled for the
arm-none-eabi target triplet, were used.
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4.2 Estimating Power Usage

Power usage for the application is determined by measuring the wall-power of
the box that SHMAC is running on both when idle and when running the test
applications. The power usage of the application is then determined using the
following formula, where P is the power in watts:

Papplication = Prunning − Pidle

Using the result of the power measurement, the energy efficiency can be
obtained as the number of hashes per second per watt, H/s/W. As watt is
defined as joule per second, J/s, the unit can be rewritten to hashes per joule,
H/J.

To obtain the power usage of SHMAC, a Yokogawa WT210 power meter was
used to measure the power drawn by the Versatile Express box from the power
socket in the wall while idle and when running the bitcoin application. This
method provides some uncertainty in the result of the measurements, as the
Versatile Express also runs a Linux host system. It was not possible to obtain
power measurements directly from the FPGA running SHMAC.

4.3 Performance Results

To establish a baseline for the performance gains obtained when using the ac-
celerators, a measurement of the performance when using software hashing was
first obtained. The performance is measured in the number of double hashes per
second and abbreviated H/s, as is the convention for bitcoin mining systems.

4.3.1 Initial Results

Using software-only hashing produced a best result of 21 261 H/s when running
with only 4 active processors. As can be seen in the plot in Figure 4.1, it can be
observed that adding more processors after the fourth produces no noticeable
additional performance gain. The reason for this is that all cores makes frequent
accesses to DRAM, when running the software algorithm, which causes the
DRAM tile to quickly become congested. The reason for these frequent accesses
is probably due to the use of many variables in the code as well as the effect
of stack usage. Since the Turbo Amber core uses a write-through cache, all
memory writes ends up going to DRAM immediately which causes additional
congestion.

Another interesting effect to note in the results is how the XY routing affects
the performance of each tile. The more tiles that tries to access main memory
through a tile’s router, the less performance that particular tile has; network
congestion does, in other words, have a great impact on individual tile perfor-
mance. This was especially obvious for processor tile 10, which is located on
the end of row 3 with no processors on either its left or right sides. This tile
showed notably better performance than any other processor tiles in the grid.
This is because its location means that no data to or from other tiles have to
pass through its router, which gives it more time to process its own requests. In
addition, this tile can access all memory tiles without having to send or receive
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Figure 4.1: Software hashing performance

data through any other processor tiles. The individual performance of each
processor is noted in Appendix B, Table B.1.

Figure 4.2 shows the results when using the SHA-256 accelerator, without
and with the DMA module enabled, respectively. Looking at the case where
only one core is running, one can see that the performance when using the
accelerator and DMA is about 2,8 times faster than using the software version,
at 18 230 H/s in hardware and 6 450 H/s in software. Adding more processors
gives an even higher gain due to the near linear scaling of the performance when
using the hardware accelerators.

Only up to four processors where used for this test, as adding in processors
from the second row of processors when scaling up caused the application to
crash. An attempt at starting processors from the top and bottom row at the
same time also led to a crash. It was discovered that this was likely because of an
bug in the implementation of the scratchpad memory tile used. An attempt was
made at integrating fixes to the scratchpad bug from an experimental SHMAC
branch, but failed due to differences in the code. Because of this bug, it is not
possible to predict how many cores can be active and hashing using hardware
acceleration at the same time before reaching the memory congestion limit, nor
is it possible to see if the DMA has any significant effect on the performance. It
was decided to attempt to work around the scratchpad bug with a new design, in
order to better measure how the performance and energy efficiency of hardware
hashing scales and what effect using a DMA will have when more tiles are active.

4.3.2 Results from the Alternative Design

In order to obtain better results with regards to scaling, a new test design was
created which works around the scratchpad tile bug and places 14 CPU cores
on the same row in the grid. The design is described in Section 3.2. The perfor-
mance obtained using software-only hashing is plotted in Figure 4.3 and mirrors
the results obtained from the original design, in that adding more cores after the
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Figure 4.2: Hardware hashing performance, with software performance included
for comparison

fourth does not provide any additional performance. The greatest performance
obtained using software hashing in the alternative design was 21 364 H/s with
4 cores active.

The performance results obtained using the hardware modules are plotted
in Figure 4.4. From these results, it can be observed that the performance
continues to scale almost linearly up until around the tenth core is added. At this
point, memory congestion is starting to affect the scaling, causing it to flatten
out. The best performance was obtained when running with all cores active, at
175 711 H/s with DMA enabled or 179 526 H/s with the DMA disabled. Even
though this case did not show any advantage of using the DMA, using the DMA
for data transfer does provide a small and consistent performance increase when
using less than 12 cores.

The reason for so little improvement is likely due to difference in traffic
on the interconnect network. When the CPU is loading data into the hashing
accelerator, it first loads data from main memory into its data cache. This is
done using 128-bit block transfers, transferring an entire cache line at a time
from the memory. The DMA only use 32-bit transfers, causing four times more
traffic in the tile network when loading data, as every 128-bit block is accessed
four times. When it comes to storing, the caches use write-through as strategy,
and for every 32-bit word updated in a 128-bit block, the cache will write back
to the memory. In this case, both the CPU and the DMA will cause the same
traffic for each store operation. With the CPU’s load traffic being 25% compared
to using the DMA, and the store traffic 100%, using the CPU for data transfers
should cause an average of 67.5% data traffic, compared to using the DMA
module.

Still, a slight performance increase is observed while using the DMA module,
before reaching 12 tiles. It is likely due to the DMA module relieving the
CPU of the endian conversion, as this is done instantly during DMA transfer, if
enabled. Without the DMA, the CPU must do this over several cycles. The CPU
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Figure 4.3: Software hashing performance for the alternative architecture design

likely also has more overhead when copying the data to or from the accelerator
compared to the DMA, although it is hard to predict how much the DMA
improves on this when the CPU is supported by its cache, that loads a full
128-bit cache line per load from memory.

4.4 Power and energy efficiency

The energy efficiency was calculated by measuring the power usage of the ap-
plication, as described in Section 4.2, and looking at how many double hashes
the system does. This provides a number of double hashes per second per watt.

Obtaining the power measurements provided a difficult task, as the idle
power of the Versatile Express box seemed to be steadily rising over time. This
can be caused by multiple factors, such as the host system working, changes
in temperature due to the benchmark application running or environmental
factors. Because of this, the idle power was measured between each individual
test run to make sure the power usage of the application was measured as
correctly as possible. Because of the problems encountered with the initial test
design, only the power results from the alternative design is discussed here.
However, both designs show the same trends, and the results from the initial
design can be seen in the appendix, Section B.2.1.

Figure 4.5 shows the measured power usage when running with software
hashing, accelerated hashing without DMA and accelerated hashing with DMA.
For software-only hashing, it is interesting to note that less power is used when
adding more cores. With 1–3 cores active, the power usage for the application
was measured to be between 2,3 W and 2,5 W, while running at 5 cores and
more only used between 0,7 W and 0,8 W. One reason for this may be that as
more tiles are added, longer periods of stalling is needed for each core to wait
for data from the main memory. When cores are inactive, they are waiting in
a nop-operation loop, a software loop consisting of a nop operation. Executing
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Figure 4.4: Hardware hashing performance for the alternative architecture with
software performance included for comparison.

this loop causes the processor to decode and execute two instructions, the no-
operation instruction and the branch instruction. However, when stalling, the
processor does not decode or execute new instructions, which may cause less
transistor switching to happen internally in the processor, thus reducing power
wasted from the switching. This could be a good indicator that the Turbo Am-
ber processor could benefit from a form of sleep or wait-for-interrupt instruction,
which is not currently supported by the processor [22], which will allow it to
stall as long as it has no work to do.

The same trend can be seen when using hardware, although the drop in
power usage is not as pronounced as in the software-only case. This is likely
because it takes longer for the traffic to the memories to be large enough to
cause longer periods of stalling in the processor and DMA module.

The energy efficiency is shown in Figure 4.6. It is evident that using a
hardware accelerated hashing module provides large gains in energy efficiency,
which becomes especially clear when adding more than 4 cores, because of the
much higher performance the accelerators can provide with little overhead in
energy use. At 14 active tiles, hardware acceleration without DMA provides
over 6 times better energy efficiency than software hashing, at 163 205,5 H/J
versus 25 985,5 H/J. It is interesting to note that the energy efficiency when
using the DMA module becomes notably worse compared to when it is disabled,
when the interconnect network starts to become congested, around the point
where 10 cores or more are active.

The numbers obtained here shows that our accelerated hashing tile cannot
compete with other FPGA-based bitcoin hashing systems, such as BTCMiner,
mentioned in Section 2.3.2, which gets a result of 21 MH/J, 128 times better than
our 163,3 kH/J. There are several reasons for this, mainly the lack of pipelining
in the SHA-256 accelerator, which slows throughput by 65 times compared to
a fully unrolled SHA-256 pipeline, and a memory system that is not optimized
for the high throughput required for bitcoin mining.
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Chapter 5

Conclusion

The results obtained with the benchmark shows that using the SHA-256 accel-
erator and DMA module described in this report, it is possible to get a bitcoin
mining performance of 175,7 kH/s when running the hashing benchmark on 14
cores simultaneously while using the DMA and a performance of 179,5 kH/s
when not using the DMA. The best energy efficiency is obtained when running
the benchmark on 14 cores without the DMA enabled, at 163,2 kH/J.

Although the performance and energy efficiency obtained in this study can-
not compete with other bitcoin mining solutions implemented on FPGAs, pro-
viding 128 times lower energy efficiency than a dedicated bitcoin mining system,
it still shows that SHMAC is an excellent platform for exploiting thread-level
parallelism, and using our hardware accelerators provided a near-linear perfor-
mance scaling over 14 CPU cores while retaining good energy efficiency.

With respect to bitcoin mining, the days of FPGAs are gone, and bitcoin
mining is now the domain of highly optimized ASICs. However, although
SHMAC cannot be used for bitcoin mining, the high degree of thread-level
parallelism provided by the platform can be well exploited in other application
areas benefitting from high levels of parallelism.

5.1 Future Work

It is possible to improve the results obtained in this thesis further by adding
additional optimizations to the accelerators.

5.1.1 Enhancing the SHA-256 Module

The SHA-256 module can obtain performance increases from pipelining. Al-
though this uses more resources on the FPGA chip as well as requiring addi-
tional memory transfers from a CPU or a DMA to keep it fed with data, it can
increase performance and energy efficiency depending on the application.

5.1.2 Enhancing the DMA Module

The current DMA Module only supports transfers of single 32-bit words, while
the interconnect used in SHMAC supports 128-bit words. This means four
transfers are done on the network when only one is needed. Exploiting the
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unused bandwidth could provide a speedup of as much as 75 % and reduce the
workload on the DMA significantly. While expanding the DMA transfer width,
it must still be made compatible with the other modules on the tile, including
the SHA-256 accelerator. This likely requires a solution where individual 32-bit
words may be selected and written individually.

The DMA could also be expanded to include support for wishbone burst
transfers. This can allow quicker data transfer, as overhead is reduced, and
potentially improving throughput.
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Appendix A

The SHA-256 Algorithm

The SHA-256 algorithm is a member of a set of algorithms referred to as the
SHA-2 standard. These are described in [19] and consists of algorithms for
producing hashes with lengths of 224, 256, 384 and 512 bits. The algorithms
use simple operations, limited to shifts, rotates, xor, and unsigned additions,
common single-cycle operations for general purpose CPUs, in addition to a
lookup-table of constants. This allows for high-speed implementations in both
software and hardware. The different SHA-2 algorithms differ in how and with
what parameters the various operations are invoked.

SHA-256 is the algorithm used in cryptocoin mining. It operates on blocks
of 512 bits and keeps a 256 bits long intermediate hash value as state. Bitcoin
uses a double pass SHA-256 hash, which first calculates the hash of a block of
the data to be hashed and then hashes the hash of the first pass.

Before the first block is processed, the initial hash value is set to a predefined
value. The entire message that is to be hashed is then padded by adding a 1 bit
to the end of the message and then appending zeroes until the length of the
final block is 448 bits. Then the length of the entire message, without padding,
is added as a 64-bit big-endian integer to the end of the block.

Then, each input block is split into a 64 times 32-bit long expanded message
block, where each 32-bit word Wj is defined according to the formula

Wj =

{
Mj j ∈ [0, 15]
σ1(Wj−2) +Wj−7 + σ0(W − j − 15) +Wj−15 j ∈ [16, 63]

where Mj is the jth word of the input message block and the functions σ0 and
σ1 are defined as

σ0 = R7(x)⊕R18(x)⊕ S3(x)

σ1 = R17(x)⊕R19(x)⊕ S10(x)

where the operator Rn means right rotation by n bits and Sn means right shift
by n bits 1.

1Curiously, [18] defines the operator R as shift and S as rotate. We use the more intuitive
definitions.
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The Compression Function

The compression function is the core of the SHA-256 algorithm. It uses a look-
up table of 64 constants, Kj , and the following functions when calculating the
new intermediate hash values:

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

Σ0(x) = R2(x)⊕R13(x)⊕R22(x)

Σ1(x) = R6(x)⊕R11(x)⊕R25(x)

Before starting the iterations with the compression function, the intermedi-
ate hash values from the previous message block are assigned to the variables
a–h.

At the beginning of each iteration of the compression function, two tempo-
rary values are calculated:

T1 = h+ Σ1(e) + Ch(e, f, g) +Kj +Wj

T2 = Σ0(a) +Maj(a, b, c)

The new hash values are then assigned as follows:

h← g
g ← f
f ← e
e← d+ T1
d← c
c← b
b← a
a← T1 + T2

The compression function is run 64 times, once for each word in the ex-
tended message block, Wj . Afterwards, the intermediate hash for the message
is updated by adding the variables a–h to the corresponding values of the inter-
mediate hash values from the previous message block.

When the final input block has been processed, the final hash is composed
by concatenating the intermediate hash values. [18, 19, 23]
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Appendix B

Additional Results

This chapter lists up all the details regarding the various measurements done
during this thesis. For each selected SHMAC architecture, the performance and
power usage is measured for varying numbers of active cores. Every architecture
has been measured when running software-only hashing, when running the SHA-
256 accelerator without using the DMA module, and then with using the DMA
module.

B.1 Performance Measurements

B.1.1 Initial Architecture

The first architecture used for measuring, was the 5 by 4 grid architecture
described in section 3.2. Unfortunately, while software hashing worked on all
tiles, the application crashed when using the SHA-256 accelerator on more than
one row of processors and the design was therefore discarded. The reasons are
discussed in section 4.3.1.

The performance obtained when doing software hashing is listed in table
B.1.

Tables B.2 and B.3 show the results when using the SHA-256 hashing accel-
erator, without and with DMA module, respectively. Only four cores were used
because of the scratchpad bug mentioned in section 4.3.1.

B.1.2 Alternative Architecture

The results from doing the software hashing for this architecture is listed in table
B.4. The CPU tiles nearest the DRAM tile have highest individual performance
compared to others present.

Tables B.5 and B.6 show the results when using the SHA-256 accelerator
in the alternative architecture, without and with DMA module, respectively.
This time, using an architecture that circumvents the cache-bug problem, all
available CPUs are used in the tests.
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Sum [H/s] 0 1 2 3
17557 17557 - - -
37539 17528 20011 - -
54912 17481 19941 17490 -
70179 17400 19891 17411 15477

Table B.2: Performance when using the SHA-256 accelerator only in the initial
architecture.

Sum [H/s] 0 1 2 3
18230 18230 - - -
38267 18189 20078 - -
56150 18129 19880 18141 -
71840 17973 19577 17984 16306

Table B.3: Performance when using the SHA-256 accelerator and DMA in the
initial architecture.

B.2 Power measurements

B.2.1 Energy Efficiency for the Initial Test Setup

Table B.7 shows the measured power usage, along with uncertainty and calcu-
lated application power of the initial test architecture. The data is plotted in
figure B.1.

Tables B.8 and B.9 shows the individual power usage measured when using
the SHA-256 accelerator without and with DMA module, respectively. Uncer-
tainty and calculated application power is included as well. The data are plotted
in figures B.2. As can be seen from the tables and figure, there is no significant
difference in power usage when running with and without the DMA.

B.2.2 Alternative Architecture

Table B.10 shows the power measurements for the alternative architecture.
Tables B.11 and B.12 shows the individual power usage when using the SHA-

256 accelerator without and with DMA module, respectively. Uncertainty and
calculated application power are included as well.

B.3 Energy Efficiency

In this chapter, the energy efficiency is presented, calculated from the measured
performance and energy usage.

B.3.1 Initial Architecture

The energy efficiency of software hashing in the initial architecture can be seen
in table B.13, and the corresponding plot in figure B.3.

Tables B.14 and B.15 shows the energy efficiency of the SHA-256 accelerator,
without and with using the DMA module, respectively. The plot for both can
be seen in figure B.4, where they are compared to each other.
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Cores Average System Power [W] Uncertainty Application Power [W]
Idle 34.3 0.4 0.0
1 36.6 0.4 2.3
2 36.7 0.3 2.4
3 36.7 0.4 2.4
4 35.3 0.4 1.0
5 35.0 0.2 0.7
6 35.1 0.3 0.8
7 35.0 0.2 0.7
8 34.9 0.3 0.6
9 34.9 0.2 0.6
10 34.9 0.3 0.6
11 34.9 0.3 0.6
12 34.8 0.2 0.5
13 34.9 0.3 0.6
14 34.9 0.4 0.6
15 35.0 0.4 0.7
16 34.8 0.2 0.5

Table B.7: Measured power usage for software hashing using the initial test
architecture.
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Figure B.1: Measured power consumption for software hashing using the initial
test architecture.

Cores Average System Power [W] Uncertainty Application Power [W]
Idle 34.3 0.4 0.0
1 36.5 0.5 2.2
2 36.5 0.5 2.2
3 36.3 0.4 2.0
4 36.4 0.4 2.1

Table B.8: Power usage using the SHA-256 accelerator using the initial test
architecture.
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Cores Average System Power [W] Uncertainty Application Power [W]
Idle 34.3 0.4 0.0
1 36.4 0.4 2.1
2 36.7 0.3 2.3
3 36.6 0.4 2.2
4 36.6 0.4 2.2

Table B.9: Power usage using the SHA-256 accelerator and DMA using the
initial test architecture.
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Figure B.2: Calculated power consumption using hardware accelerators

Cores Average System Power [W] Uncertainty Application Power [W]
Idle 33.9 0.3 0.0
1 36.2 0.3 2.3
2 36.4 0.4 2.5
3 36.2 0.4 2.3
4 34.9 0.3 1.0
5 34.8 0.2 0.9
6 34.7 0.3 0.8
7 34.7 0.3 0.8
8 34.7 0.3 0.8
9 34.6 0.4 0.7
10 34.6 0.4 0.7
11 34.7 0.3 0.8
12 34.7 0.3 0.8
13 34.6 0.4 0.7
14 34.6 0.4 0.7

Table B.10: Measured power usage when doing software hashing in the alterna-
tive architecture.
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Cores Average System Power [W] Uncertainty Application Power [W]
Idle 33.8 0.3 0.0
1 35.9 0.3 2.1
2 35.9 0.3 2.1
3 35.9 0.3 2.1
4 35.9 0.3 2.1
5 35.9 0.3 2.1
6 35.9 0.3 2.1
7 35.8 0.3 2.0
8 35.7 0.4 1.9
9 35.6 0.4 1.8
10 35.4 0.4 1.6
11 35.4 0.3 1.6
12 35.3 0.4 1.5
13 35.1 0.3 1.3
14 34.9 0.3 1.1

Table B.11: Measured power usage when using the SHA-256 accelerator without
the DMA in the alternative architecture.

Cores Average System Power [W] Uncertainty Application Power [W]
Idle 33.8 0.3 0.0
1 36.0 0.3 2.2
2 36.2 0.3 2.4
3 36.1 0.4 2.3
4 36.2 0.3 2.4
5 36.2 0.3 2.4
6 36.2 0.3 2.4
7 36.1 0.3 2.3
8 36.0 0.3 2.2
9 35.7 0.3 1.9
10 35.8 0.3 2.0
11 35.7 0.3 1.9
12 35.8 0.2 2.0
13 35.7 0.4 1.9
14 35.5 0.4 1.7

Table B.12: Measured power usage when using the SHA-256 accelerator with
DMA in the alternative architecture.
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Cores H/s W H/s/W
1 6450 2.3 2804.3
2 12895 2.4 5372.9
3 19190 2.4 7995.8
4 21261 1.0 21261
5 19310 0.7 27585.7
6 18388 0.8 22985
7 18265 0.7 26092.9
8 18191 0.6 30318.3
9 18195 0.6 30325
10 18192 0.6 30320
11 18194 0.6 30323.3
12 18192 0.5 36384
13 18192 0.6 30320
14 18191 0.6 30318.3
15 18191 0.7 25987,1
16 18191 0.5 36382

Table B.13: Energy efficiency of software hashing in the initial architecture.
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Figure B.3: Energy efficiency of software hashing in the initial architecture.

Cores H/s W H/s/W
1 17557 2.2 7980.4
2 37539 2.2 17063.2
3 54912 2.0 27456
4 70179 2.1 33418.6

Table B.14: Energy efficiency when using the SHA-256 accelerator without
DMA in the initial architecture.
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Cores H/s W H/s/W
1 18230 2.1 8681
2 38267 2.3 16637.8
3 56150 2.2 25522.7
4 71840 2.2 32654.5

Table B.15: Energy efficiency when using the SHA-256 accelerator with DMA
in the initial architecture.
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Figure B.4: Energy efficiency when using hardware accelerators in the initial
architecture.
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Cores H/s W H/s/W
1 6418 2,3 2790.4
2 12841 2,5 5136.4
3 19130 2,3 8317.4
4 21364 1.0 21364
5 19404 0.9 21560
6 18420 0.8 23025
7 18253 0.8 22816.3
8 18206 0.8 22757.5
9 18193 0.7 25990
10 18192 0.7 25988.6
11 18192 0.8 22740
12 18192 0.8 22740
13 18191 0.7 25987.1
14 18190 0.7 25985.7

Table B.16: Energy efficiency when using software hasing only for the alternative
architecture.

B.3.2 Alternative Architecture

Table B.16 shows the energy efficiency of doing software hasing in the alternative
architecture. The numbers are plotted in figure B.5. While performance is
greates with only 4 tiles, the reduction in power usage makes using of more tiles
more efficient.

Tables B.17 and B.18 shows the energy efficiency for the SHA-256 accelera-
tor, without and with DMA module respectively.
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Figure B.5: Energy efficiency when using software hashing only in the alterna-
tive architecture.

Cores DH/s W DH/s/W
1 11676 2.1 5560
2 24394 2.1 11616.2
3 38329 2.1 18251.9
4 53760 2.1 25600
5 70983 2.1 33801.4
6 90590 2.1 43138.1
7 107510 2 53755
8 122186 1.9 64308.4
9 135009 1.8 75005
10 146221 1.6 91388.1
11 156133 1.6 97583.1
12 164860 1.5 109906.7
13 172381 1.3 132600.8
14 179526 1.1 163205.5

Table B.17: Energy efficiency using the SHA-256 accelerator for the alternative
architecture.
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Cores DH/s W DH/s/W
1 13227 2.2 6012.3
2 27410 2.4 11420.8
3 42627 2.3 18533.5
4 58989 2.4 24578.8
5 76556 2,4 31898.3
6 95259 2.4 39691.3
7 112599 2.3 48956.1
8 127515 2.2 57961.4
9 139937 1.9 73651.1
10 150069 2 75034.5
11 158421 1.9 83379.5
12 165271 2 82635.5
13 171143 1.9 90075.3
14 175711 1.7 103359.4

Table B.18: Energy efficiency using the SHA-256 accelerator with DMA for the
alternative architecture.
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