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Abstract

This thesis gives a brief overview to the field of swarm robotics and investigates
how robots are able to flock together using the Boids algorithm. Four robots
will be used in this thesis. Swarm robotics is an emergent field in artificial
intelligence which takes advantage of many smaller cheaper robots instead of
using a traditional complex robot. The advantage of flocking robots is that the
overall system becomes more stable, more robust because each robot contributes
to the overall robustness of the swarm. Boids algorithm is an algorithm meant
for computer animation or computer aided design and has been used in various
movies.

In this thesis, a Boids simulator will be implemented to get a hands-on ex-
perience with the behavior of the Boids. Then the Boids algorithm will be im-
plemented on four differential wheeled robots which have only distance sensors
equipped, and a Bluetooth module which they can use to communicate with a
Bluetooth-enabled phone or PC. The robots are not able to distinguish obsta-
cles from other robots using their distance sensors only, therefore a centralized
computer with an attached camera will be used to provide data to the robots
that they do not have access to. The robots used in this thesis is a differential
wheeled robot called the ChIRP robot, which is an open source robot made by the
CRAB lab at the Artificial Intelligence section of the Department of Computer
and Information Science, Norwegian University of Science and Technology.
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Chapter 1

Introduction

This master thesis researches the flocking behavior of the Boids algorithm by
implementing it on four differential wheeled robot.

This chapter is the introduction of the thesis, section 1.1 contains background
and motivation, section 1.2 contains the research question that this thesis is based
on. The research method is described in section 1.3. An overview of the content
in this thesis can be found in section 1.4.

1.1 Background and Motivation

Swarm robotics is an emergent field in artificial intelligence. Swarms are inspired
by nature, especially animals that work together. There are many reasons for
animals to flock together. Fishes flocks together to increase their survivability
from being eaten by predators. Ants flock together to find food, and birds flock
together to increase survivability and to minimize air resistance.

Usually, flocks do not have a leader, they are able to operate on their own.
Each individual in the flock have simple behaviors, but the collective behavior
can be quite complex. Swarm robots are decentralized units, meaning that they
are not controlled by one centralized unit. Each of them interacts with each
other through local interactions, and exchanging information to achieve their
goal. Losing one or a few of the robot should not affect the swarm as a whole.
In a centralized system, if the centralized unit is lost, damaged or not working
anymore, the whole system would not be able to operate anymore.

Robots are becoming more relevant in our lives, already nowadays there are
robots helping people mow the lawn, robots that are vacuuming houses etc. Tra-
ditional robots are being used for these types of tasks, that is a bigger more
expensive robot. Having smaller cheaper robots might be advantageous in some
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2 CHAPTER 1. INTRODUCTION

situations, they are smaller and cheaper. Due to their size, they might be able
to reach places that the bigger traditional robots might not be able to reach.
Because the swarming robots are usually cheap and interchangeable, they can
easily be replaced when they are malfunctioning. The idea is that the small
swarm robots will be able to do the same task as the bigger traditional robot.
Robot swarm moving in a flock can for example be used to explore new areas.
Moving in a swarm makes the exploration more susceptible to failures. Swarm
robots can work together to move over rough environments like slippery roads,
and they are able to move trough narrow passages by moving through the passage
one at a time.

The CRAB lab at the AI department at NTNU has created a robot called the
ChIRP robot. These robots are open source and can easily be mass produced.
The idea behind these robots was to research swarm robotics. These robots can
easily be expanded with other types of sensors, but only distance sensors and
light detecting sensors are available at the moment. These robots are still in an
early phase of development and has yet to be used to their full potential.

In this project, the Boids algorithm will be implemented on the ChIRP robots
to make them flock together.

1.2 Goals and Research Questions

Research question 1: Can a centralized computer aid a swarm of robots that
do not have enough sensors to do the task it was assigned for?

Swarm robotics is mostly focused on many small cheap robots working to-
gether in a swarm to achieve their goal. The swarm robots usually can be
swapped out while the system is up and running without affecting the flock.
Due to the cheapness of the robots, they might have cheaper equipments and
sensors or they might lack the necessary equipment for the robots to be able to
do its task. The robots used in this thesis only have distance sensors equipped,
but can add more sensors and modules if needed. However there are not other
types of sensors available, therefore the robots will communicate with a central-
ized computer which might be able to aid the robot gain information about its
surrounding that it currently lacks. Communication between the robots are lim-
ited because the communication between them has to go trough the centralized
computer, the robots are not able to communicate directly with each other.

Research question 2: Will the Boids algorithm make the robots flock to-
gether?

The Boids algorithm uses vectors for each behavior to steer the entities
around. The minimal number of behaviors for a typical Boid algorithm are three
behaviors. One of them ensures that the entities flock together, the other one
makes sure that they move together in the same direction after they have flocked
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together. The last behavior ensures that they do not collide with each other,
by leaving an open space between the entities. The robots will gain information
about their whereabouts and the whereabouts of the other robots from the cen-
tralized computer. Using this information the robots will process the information
using the Boids algorithm to flock together.

1.3 Research Method

To be able to address the research questions, a simulator was created to run the
Boids algorithm in software. The purpose of the simulator was to be able to see
how each Boids are supposed to behave, parts of the code from the simulator can
be ported to the real robots afterwards. The simulator also serves as a starting
point for the real robots, for debugging purpose. The Boids algorithm will be
used to make the robots flock and move together. Distance sensors will be used
to avoid obstacles. Three scenarios will be used to test if the Boids behaves the
way they are supposed to do. The scenarios will be designed to test that the
robots are flocking together, and avoiding obstacle by moving around it.

To evaluate the behaviors of the robots, the mean and standard deviation of
the robot’s angle, velocity and distance between the robot will be graphed.

1.4 Thesis Structure

This thesis is divided into five chapters. Chapter 2 contains research and back-
ground information from the field of swarm robotics and the bird flocking algo-
rithm, namely the Boids algorithm. A brief overview of the most common robot
control architecture is explained in the same chapter.

In chapter 3 the architecture and the model of the system is explained. The
chapter goes in detail on how the system is set up and how the computers are
connected. Chapter 4 contains the results, graphs and data gathered from run-
ning the experiments and a discussion about them. The last chapter 5 contains
the evaluation of the results and a further work section where the details on how
to improve the system are explained.
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Chapter 2

Background Theory and
Motivation

This chapter contains the background research and motivation for this thesis.
Section 2.1 contains the background information regarding swarming and more
specifically flocking using the Boids algorithm. How the background research
have influenced this thesis can be found in section 2.2.

2.1 Background Theory

This section will explain swarming and swarm robots. How to implement bird
flocking behavior on particles in a simulation, and the Boids behavior. It will
explain how fish schooling and ant swarm works as well to compliment the bird
flocking. Swarms can be used to optimize a problem or they can be used to solve
complex problems that would cost a lot more using an advanced robot. A brief
overview of different common robotics architecture will be presented in subsection
2.1.9

2.1.1 Swarming

Swarm, swarming, swarm intelligence, swarm optimization or swarm robotics
are terms used for simple (preferably cheap) agents/robots which can only do
simple tasks. However, the power of these robots lies in the numbers [Zhu, 2010;
Bonabeau et al., 1999b]. The robots might not be able to do an advanced task
alone, but together they might be able to complete advanced tasks. For instance,
one robot might not be able to push a heavy box by itself, but with the help
of other robots they might be able to push the box. The robots are allowed to

5



6 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

communicate with each other, but they do not necessarily need to. There is no
centralized controller that controls the robot, each one needs to find out what it
needs to do by itself or by communicating with the other robots. The idea behind
these simple and cheap robots are that they can easily be mass produced, and are
interchangeable, modularized and disposable. If one robot is malfunctioning or
broken, it would not affect the rest of the swarm. It is, therefore, no single point
of failure in a swarm, and the system scales well because new robots can easily
be added to the system. Swarm robotics is often computational efficient because
they each have their own processor. This reduces the computational overhead.

2.1.2 Boids

In [Reynolds, 1999], Craig W. Reynolds created something he called Boids, which
stands for Bird-oid objects. Boids are particles that would behave like birds, they
would try to flock and fly together without colliding. This was done by using
three simple behaviors;

Separation Each individual will steer away from the other individual if they
are too close to each other. This ensure that they do not collide with their
neighbors.

Alignment In a neighborhood (for instance a radius around the individual or
the X nearest individuals) find the average angle of the neighborhood and
align itself so its angle matches the average angle of the neighborhood.

Cohesion Steer towards the average position of the other individuals in your
neighborhood. This makes the Boids stay in the flock.

(a) Cohesion (b) Alignment (c) Separation

Figure 2.1: The three behaviors of the Boids
based on figures from Red3d.com [2015]

The three behavior is per individual Boid, which means that each parti-
cle/Boid has to calculate where they are going to fly by checking all the other
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Boids position and rotation and then act accordingly. Which makes the com-
plexity of the algorithm O(n2) for every frame. Reynolds have tried to make
the algorithm less computational expensive by putting the Boids into grids with
Spatial Hashing. An example of this could be to put all the Boids that has an
x-value between 0 and 1 and a y-value between 0 and 1 on the lower left grid,
and the ones that has an x-value between 1 and 2 in the next position etc. Using
this grid, each Boids in a cell only needed to take the adjacent grids into consid-
eration when checking their neighborhood. That way they do not need to check
the position and rotation of all the other Boids. As illustrated in figure 2.2, the

Figure 2.2: Boids in grids using spatial hash

green Boid only needs to check the gray Boids that surrounds its own cell, it does
not need to check the rotation and position of the orange/brown Boids outside of
the gray highlighted area, because they are too far away to be considered a part
of its neighborhood.

In another paper [Joselli et al., 2009] a different technique were used to opti-
mize 3D swarms, a method using neighborhood grids.

Each Boids to cell ratio would be 1 to 1, that is for every cell, there would
be at max 1 Boid. Each Boid would have their respective cell based on their
position in space, for instance a Boid with low x-value would be on the left of a
Boid with higher x-value. Boids who are closer to each other in geometric space
would be stored closer to each other in the grid. To obtain this, the Boids needs
to be sorted. Odd Even sort and Bitonic sort were used as the sorting algorithm.
See appendix 5.3 for more detail.

Of the two sorting algorithm, Odd Even sort was faster, but not very precise.
More than 10% of the entities were placed in the wrong cell. An Odd Even sort
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algorithm had to be done for each axis, that is one odd even sort for x, y and z.
Each axis were sorted in parallel. Bitonic Sort on the other hand was slower, but
a lot more precise. Less than 1% of the entities were placed in wrong cell. The
reason for placing a Boid in the wrong cell is due to the way the sorting works, it
sorts all the entities in one axis first, then a second axis and then the third last
axis. For instance sorting on x-values first, for the y-values, then the z-values.
When swapping one of the latter axises it might mess up the sorting of one of
the other axises.

After the Boids were placed in their corresponding cell, the work could be
distributed to the GPU which would calculate where each Boids’ new location
and rotation would be based on their adjacent neighbor depending on the Moore
radius. A Moore radius of 2 would cover the current square, the adjacent squares
and their adjacent neighbors as well. The Moore radius is used to determine how
many other Boids to consider in its neighborhood. For instance if the Moore
radius is 2, the Boids will have a neighborhood as illustrated by the gray color
in figure 2.3. Each cell is supposed to contain a Boid.

Figure 2.3: A Moore radius of 2 illustrated by the gray squares
based on the figure from the paper [Joselli et al., 2009]

In 3D space, extra layers would be added. A Moore radius of 1 would cover
all the adjacent grids, which would make the 8 grids that we have in 2D space
plus 9 grids above and 9 grids below. That would equal 26 grids, compared to the
8 squares in 2D space. A Moore radius of 2 would cover 74 grids in 3D space (24
+ 25 above and 25 below). See figure 2.4 for an illustration of the space covered
by a Moore radius of 1 in 3D space, this illustration is only an intersection and
does not show all the covered grids.
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Figure 2.4: An intersection of a Moore radius of 1 in 3D space
based on the figure from the paper [Joselli et al., 2009]

The number of Boids was varied from 1,000 to 1,000,000 and the number of
Boid types was varied from 1 to 4. Boids of the same type would try to flock
with each other while different types of Boids would try to avoid each other.
They were able to see a speedup compared to the spatial hashing method used
by Reynolds, but the Boids were not rendered as a bird or an object, only as a
primitive shape. They didn’t mention if they tried to add non moving obstacles
in their test. Due to the high percentage of Boids being placed in the wrong cell
when using odd even sort, a lot of Boids would crash into their neighbor during
the test run. However using the neighborhood grid method on GPU, real time
simulation of 1 million Boids were possible (6-8 fps).

In the paper ”steering behaviors for autonomous character” Reynold discusses
steering for autonomous character in games and animation, which is a type of
autonomous agent that have some ability to improvise their actions. That means
that these agents do not have their actions scripted in advance. It is possible
for the Boids to have more behaviors, called steering behaviors as explained in
[Reynolds, 1999]. The steering behavior decides where the Boids are supposed to
steer after their three simple behavior are satisfied. These steering behavior can
be seek, flee, pursuit, evade etc.

The seek behavior tells the Boid to seek a goal, it will try to reach the goal/ob-
ject as fast as possible, but due to its high speed it might have when arriving
at the goal, it will fly past the goal. It will then turn around to seek its
goal again.

A seek behavior should have an arrival behavior to counteract the fly-by,
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that means that when nearing the goal, the Boid will slow down so it stops
at the goal in the end, instead of flying past it.

Flee behavior is almost the same as the seek, except in the opposite direction.
It will try to turn away from the ”goal” and fly in the opposite direction
and fly as far away from the ”goal” as possible.

Pursuit is the same as seek, except it applies to moving objects. Pursuit re-
quires prediction of the target’s future position. The approach is to predict
the future position of the target, reevaluate and readjust it each step. A
prediction might be wrong at one time step, but this only applies for that
single time step, and a new prediction will be made at the next time step
which will hopefully be correct.

Offset pursuit behavior behaves almost the same way as the normal pursuit
behavior, except that it will not ”crash” into the target, but will have an
offset R. An example of this could be an aircraft flying near the sensors of
a base or something similar.

Wander behavior is a type of random steering, where the particle moves ran-
domly around. An easy way to implement this behavior is to apply a
random steering force each frame. But this leads to twitchy movements,
which does not look very natural. The proposed method is to have a steer-
ing direction which is being displaced each frame with a very small random
force. That way, if the particle is move forward, it will still keep moving
forward the next frame, but it might turn a little bit to the right. Which
makes it seem a lot more natural.

Path following behavior enables, as the name suggest, a character to follow a
predefined path. However it is not as strict as a train following the rail
tracks, as the character is allowed to deviate a little bit from the track.
The implementation involves a spine with a radius, which makes the track.
The path makes a tube in 3D or a thick line in 2D. The goal for the path
following behavior is to first reach the tube, then stay inside this tube, thus
following the path. Variations of path following are wall following, and
containment. Wall following ensures that the character follows the wall,
while containment refers to motion restricted inside a region.

Leader following behavior makes one character follow another character. The
follower wants to stay near the leader, but also stay out of the way. If
there is more than one leader, they also want to avoid bumping into each
other. The implementation of leader following behavior relies on the arrival
behavior where the goal is a point behind the leader. The follower will slow
down when drawing near the point behind the leader and eventually stop
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before it bumps into the leader. If the entity is in front of the leader, it will
fly away and around the leader so it is not in the way.

2.1.3 Collision Avoidance

In the paper [Craig W. Reynolds, 1988], W. Reynolds discusses how to perform
obstacle avoidance. That is, obstacles that are placed in the environment which
is not a Boid. These obstacles are usually static, non moving obstacles. He starts
out with the idea of a force field around the obstacle which he calls the steer
away from surface approach. The idea is to have every obstacle emit a forcefield
around itself which pushed the Boids away. For instance if a Boid is flying toward
an obstacle, the obstacle would push the Boid to one side of itself. However this
force field method would not work if the Boid flew straight into an obstacle,
because the forcefield force would be straight opposite of the direction the Boid
is flying thus making the Boid decelerate until it stopped.

The next obstacle avoidance technique Reynold discussed is the curb feeler
technique or steer along the wall technique. The idea is to have a feeler that
would detect an obstacle before the Boid would crash into it, then turn the Boid
away from the obstacle. This can be compared to walking down a dark alleyway
where you reach your hand out to feel the walls around you, and navigate through
the alleyway just by feeling the wall(s).

The last technique for navigating and avoiding obstacles discussed was image
processing. Images could be processed in real time to a gray scale image, where
white would signify an obstacle. The algorithm would start with the center of
the image, if this was a white pixel it would start to search outwards in a spiral
to find either a gray pixel or a black one and then turn the Boid in this direction.
This could also be combined with a Z-buffer image which gives us a map of the
distances to obstacles that lies in front of the Boid, this z-buffer image can be
obtained by radar, sonar or similar technology. One interesting way of using the
Z-buffer image is to implement a ”steer towards the longest clear path”. However
using this technique without any form of planning or learning might lead the Boid
into a local cavity, which might be a dead end.

2.1.4 Physic based control system

In the paper [Spears et al., 2004], a self emergent system was formed using simple
attractive and repulsion force for each particle. The idea behind their system was
to create an artificial physics framework (AP) that would simulate a physical
system. In their paper they had the particles attract other particles that were
farther away than distance r and a repulsive force is applied if the particles are
closer than distance r. This leads to the particles always being at distance r from
each other, which will form a hexagonal lattice. In the hexagonal lattice, each
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particle will be at a distance r away from each other, but the next neighbor will
be
√

3r away. Therefore each particle only have a vision range of 1.5r so they do
not affect the particles that are too far away from it.

In the simulation they spawned all the particles in a cluster, using the two-
dimensional Gaussian random variable to initialize the position of the particles.
The particles starts with a velocity of 0.0, but their framework does not require
so. Due to local forces, the particles will disperse and form local hexagons. To
evaluate the quality of the lattice they measured the orientation error of the
lattice: they took any particles that were 2r apart and formed a line segment,
then they took any other particles that were 2r apart and formed another line
segment. The angle between these to line segments should be measured to be a
multiple of 60◦. The error would be the absolute value of the difference between
the measured angle and the nearest multiple of 60◦. The error ranges from 0◦ to
30◦.

They also checked the size of the particle cluster. For each particle i they
counted the number of ”close” particles, that is particles that are in the range of
0 < r < 0.2r. The minimum cluster size is 1.0 because they count the particle i
as well as its neighbors. The cluster count was averaged for all the particles. At
the start there was a high cluster count, but it decreased to roughly 2.5 after 6
time steps.

They also tried out making square patterns, but had to introduce a concept
of spin; each particle was either spin ”down” or spin ”up”. Opposite spins would
attract each other if the distance was greater than r, and repel each other if the
distance is less than r. If the particles had opposite spin the distance would be√

2r. This means that all the particles on the vertical space would be alternating
between spin up and spin down, the same goes for the particles in the horizontal
space. The particles on the diagonal will have the same spins as their diagonal
neighbors. Sometimes the formation would have ”holes” in it, so instead of static
spins, the particles were allowed to change their spin. This would fill in the holes
or flaws in the square lattice, according to their theory.

A particle would only change its spin if it had a very close neighbor (r < 1),
and the probability of changing spin was quite small.

2.1.5 V like bird formation

In the paper [Nathan and Barbosa, 2008], bird flocking is discussed, they wanted
to simulate the V shape that can be observed when birds fly together. They ran
a simulation that where each bird individual had three simple rules:

• Coalescing rule:
The birds should try to seek the proximity of the nearest bird.
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• Gap-seeking rule:
If rule 1, the coalescing rule is not applicable anymore the bird should find
a position with unobstructed view - that is, the bird should be able to see
in front of it without anything being in the way.

• Stationing rule:
Try to stay in place.

These rules would make sure that the birds were able to flock and form different
shapes. The only thing that was common between the different runs in this paper
was that the bird behind would be a little bit behind and slightly left or right
of the bird in front (following rule #2). A lot of different shapes was obtained
during the runs, the birds flocked and formed a V-shape, a diagonal line, an
inverted V-shape etc.

2.1.6 Family bird: A heterogeneous simulated flock

The paper [Demsar and Bajec, 2013] by Demsar and Bajec says that bird flocks
and fish schools seems to be very complex, but the mechanics are very simple
as illustrated by Reynold. Only a few simple rules will create flocks that flock
together and splits up to avoid obstacles. These flocks are not spectacular or
mind blowing compared to the flocks found in nature, due to the rigid motion
of each individual. To tackle the artificialness of each individual, Heppner in-
troduced randomness to the motion of the individuals. He defends it by saying
that these randomness simulates wind gust, random obstacles and other factors.
However, the authors of this paper does not agree with this approach because
wind gusts will affect the whole flock, not just a random single individual at
random. Even with these randomness added, the flock still does not seem lifelike
enough compared to their counterpart found in nature. The reason for the lack
of breathtaking in these flocking algorithms are that the individuals all have the
same characteristics. In nature each individual will have different size, age, form
and shape.

Usually in flocking algorithms, each individual takes into account where all
the other entities are and then act accordingly. In nature, each individual might
have limited information about the flock. It might only be able to gain so much
from its vision due to other flock members being occluded or not able to hear
some of the other individuals due to noise or other factors.

This paper runs a simulation with different types of birds, where social rela-
tions are a factor and individuals might be solitary or social. Social individuals
are entities who would like to stay close to members of its own social group, for
instance a social dove will want to stay with other doves. Solitary individuals on
the other hand does not care about staying with its own flock and might drift
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to another flock. For instance a solitary dove might fly amongst hawks or other
types of birds. A flock in this paper are defined as a group where the individuals
affect each other in the same group. The simulation they ran varied between all
solitary birds to 4 types of different social birds.

2.1.7 Particle Swarm Optimization

Swarms has a lot of potential, not necessary only on robotics but swarms can
be used to optimize problem, hence the name particle swarm optimization
(PSO) [Eberhart and Kennedy, 1995]. PSOs is used to solve problems where
optimization are needed. The idea behind PSOs are to have a swarm of particles
spawn at random positions in the search space, and then let them fly around
searching for solutions. Each particle will know the best solution it have found so
far, and the best solution that has been found globally. In some PSO implemen-
tations a local best found solution is also known amongst the individual. This
local best solution is the best solution amongst a subgroup of individuals and can
change for a particle depending on the position of the particle.

If all of the particles were to be attracted to only the global best found solution
so far, they might risk to be stuck in a local maxima without being able to find
the other local maximas. To avoid being stuck in a local maxima, each particle is
also attracted to the best solution it has found, and maybe to the neighborhood’s
best found solution as well. This ensure that the particles ”jiggles” (introduces
enough noise) so that the particle might jump to another local maxima.

2.1.8 Other swarming animals

This section will look at other flocking animals or insects and how they have been
modeled in simulation.

Fish schools

In the paper named ”Artificial Fishes: Autonomous Locomotion, Perception,
Behavior, and Learning in a Simulated Physical World” [Demetri et al., 1994] we
are given the explanation on how fishes form schools and how different intentions
make the fish behave the way they do. He starts out with explaining how a fish
and how the simulator is constructed, the math behind it and how the motor
controllers work. For the simulation there is different types of fishes, some of
them are predators and some of them are preys. Where predators are larger
fishes which tries to eat other smaller preys. Each fish has a 300 degrees, where
it can see in front of it and has a blind spot directly behind it. These fish uses
the containment behavior mentioned earlier, where they swim freely around in
the aquarium, but are not allowed to/not able to leave it.



2.1. BACKGROUND THEORY 15

The range of the vision is also limited and might be occluded by other objects.
Each fish has a intention generator, which basically is a flowchart of what the fish
needs to do. The prey and predator fish have different intention generators. The
predators do not get preyed upon, and thus does not need to look out for other
predators, therefore are the intentions of escaping, mating and schooling with
other fishes of the same species are disabled. The reason for disabling mating is
because there is no need for new predator fishes because they do not die in this
simulation. They also do not need to school with other predators because they
are not in danger, and do not need the extra survivability.

Whenever a predator sees a prey it will chase the prey if the cost of reaching
it is low enough. If it is too high, it will not bother chasing.

Preys on the hand needs the extra survivability, and will try to school with
the other fishes if it detects a predator nearby. Each fish will then try to stay a
certain distance from the others, which is roughly one body length in distance.
Then the fishes will try to adjust its speed and direction so it matches the other
members. When this school of fish encounter an obstacle, each individual fish
will try to avoid this obstacle. This might lead to the school splitting up and
rejoining after they have avoided the obstacle.

A third type of fish introduced here are the pacifists fish. This one differs from
the other two type in that the intention of mating is activated while escaping and
schooling are deactivated. The paper describes that there are male and female
fishes, and the two behavior which can occur when the fishes start to mate.
A behavior named nuzzling where the male fish seeks the female and nudges
her abdomen until she’s ready to spawn, and spawning ascent where the female
swims repeatedly to the surface while releases gametes. The paper also describes
in detail how the fishes select potential partners and how they try to impress
each other for mating purposes.

Ant swarms/colonies

Ant swarms behaves differently than other types of swarms [Blum, 2005], ants
do not try to form formations for survival in the same way that birds and fishes
do. Ant swarming is mostly about their foraging behavior. That is how they
find food for their colony. Each ant’s goal is the survival of the colony rather
than the survival of each individual. When ants try to find food, they scatter
the area by walking in random manner. While exploring the ants leave behind
a chemical on the ground. A so called pheromone that the other ants will be
able to feel/smell. This pheromone will slowly but surely dissipate. Whenever
the explorer ant find a food source, it will evaluate the quality of the food before
returning to the anthill. During the return trip, pheromones are reapplied to the
path, but the amount is adjusted based on the evaluation of the food. Better
food will yield more pheromone on the path. This method will ensure that the
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rest of the ants will take the shortest path from the anthill to the food. For the
artificial ants, the ant system uses a graph G = (V,E) to model the paths, V are
the nodes and E are the edges between the nodes. In the paper [Blum, 2005],
they use two nodes: vs which is the starting node or anthill. The node vd is the
food source. There is two ways to reach the food source from the anthill, e1 and
e2, which have lengths l1 and l2 where l2 > l1. A value τi denoted the artificial
pheromone, and it indicates the strength of the pheromone.

An ant will choose a path with the probability pi = τi∑k

n=1
τn

where k denotes

the number of paths. In the paper, they only have two paths, so the probability of
choosing a path is pi = τi

τ1+τ2
, i = 1, 2. The ant will probably choose e1 if τ1 > τ2

and vice versa. The ants will return using the same path as the one it took, and
reinforce the path with new pheromones using the formula τi ← τi+

Q
li

where Q is
a positive constant. The pheromones that have already been laid out in the path
will slowly evaporate, the evaporation formula used is τi ← (1 − ρ) · τi, i = 1, 2,
where ρ ∈ (0, 1]. These math formulas will over time make sure that the ants are
converging to the short path.

The biggest difference between these artificial ants and real ones are that
these move synchronously, while real ants are asynchronous. Real ants leaves
pheromones on the ground whenever they move, these artificial ones only leave be-
hind the pheromones on the way back to the anthill. The normal ants’ pheromone
strength are due to evaporation, while the artificial ones regulates the strength
of the pheromones using an evaluation of some quality measure. The ant system
can be used for approximate algorithms for combinatorial optimization problem,
especially for combinatorial problems which are NP-hard.

2.1.9 Robot architectures

Software architecture is the methodology for structuring the code or algorithm.
One software architecture model might work better for one purpose while another
architecture works better for a different purpose.

(a) reactive control
architecture

(b) deliberative control architec-
ture

(c) hybrid control archi-
tecture

Figure 2.5: Robot control architectures

This subsection will briefly explain common architectures found in robotics.
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In robotics, the architectures need to decide how to combine reactive control and
model-based deliberative planning. Reactive robots rely mostly on their sensor
inputs and reacts accordingly. For example, a robot equipped with distance
sensors that usually drive forward might turn if the front distance sensor detects
an obstacle.

Deliberative planning on the other hand also uses the available sensors on
the robot, but they do not react immediately like the reactive robots would do.
Deliberative planning robots uses the information gathered from the sensor(s) to
make a plan of where it should head or what it should do, before executing its
action(s).

A mix of both planning and reactive robot architecture which uses reactive
techniques at the lower level and deliberative planning at the higher levels are
called hybrid architectures.

Brooks subsumption

Brooks subsumption architecture is the most common reactive robot architecture.
As explained earlier, a reactive architecture is based on a direct sensor to actu-
ator mapping. That is, whenever a sensor measures anything over a predefined
threshold or if the sensor is detecting anything, the actuator will react immedi-
ately. The idea behind the subsumption architecture is to split the behavior of
the robot into sub-behaviors into a vertical hierarchy as illustrated in figure 2.6.

Figure 2.6: Subsumption architecture
basen on a figure in [Yongjie et al., 2006]

As seen in the figure, the sensors input the information it has detected, and
each behavior reacts accordingly. A higher level of behavior will have higher
priority than the lower ones. For example, behavior 4 in figure 2.6 would have
priority over behavior 3, and behavior 3 would have priority over behavior 2 etc.
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The advantage of the Brooks subsumption architecture is that the robot using
it can have different goal depending on the specific situation. For example, if you
have a robot that needs to find a specific item in an area. This robot would
first wander around aimlessly, and its sensors would be used to avoid crashing
into obstacles or other robots. When the robot has located the item it wants, it
would use its sensors to move towards that item instead of using it to avoid it, its
sensors could be used to align itself with the item to push it towards a different
location.

2.1.10 Deliberative control architecture

Deliberative control architecture are based on Sense-Plan-Act principle as seen in
figure 2.5b, the robots uses its sensors to get a full overview of the environment.
After it has gained full knowledge of the environment, it will plan solutions then
consider them before choosing an action. Deliberative planning robots are usually
very dependent on precise sensors to be able to map the environment. It is also
assumed that the model of the world the robot will be in, is provided.

Hybrid control architecture

Hybrid architecture is a mix of deliberative control architecture and reactive
architecture. The idea behind the hybrid control architecture is to work around
the limitation and drawbacks of both the reactive and the deliberative control
architecture.

Figure 2.7: Three layer control architecture
based on a figure by Jakimovski [2011]

The hybrid control architecture usually has a deliberative layer to plan and
model the environment, but the deliberative controls might be slow and not able
to act fast enough in certain situations. Each decision might take minutes. The
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environment that the deliberative layer creates or maps out can be learned from
data or gathered through the sensors from the reactive layer.

The slowness of the deliberate layer is the reason the reactive layer is added
to the control architecture as well. The reactive layer usually has faster reaction
time than the deliberate layer, and can help the robot navigate when they need
to do an action fast. The reactive layer’s decision cycle is often on the order of
milliseconds.

To glue together the reactive layer and the deliberative layer, a layer is put
in between the lower reactive layer and higher deliberative layer. Namely the
executive layer or sequencing layer. The executive layer accepts directives from
the deliberative layer and puts them in order for the reactive layer. The executive
layer is slower than the reactive layer, it takes seconds to make a decision.

The hybrid architecture explained here is the most common architecture for
the hybrid control architecture, which is called the three-layer architecture due
to the three layers deliberative, executive and the reactive layer as seen in figure
2.7.

2.1.11 Related systems and projects

This subsection will look at systems and projects where the flocking algorithm
have been implemented on a physical robot.

Flocking on wheeled robots

In 1992, Matarić designed a series of behavior based modules for mobile robots,
that would make them flock if combined and properly weighted. The wheeled
robot were equipped with collision sensors and six distance sensors. By using
these sensors combined, the robots would be able to measure the distance to the
other robots within a small neighborhood. Matarić implementation uses four
behaviors;

collision avoidance makes the robot steer away from objects that are closer
than a predefined

following makes the robots follow the other robots, this behavior is implemented
by using the two sensors on its side. If there is only one perceived object
on either side of the robot, it will turn towards that side. If there are other
robots on both its side, it will keep moving forward along with the other
ones until there is a robot in front of it blocking its path.

Dispersion and aggregation Steers the robot towards the computed center of
mass, this center of mass is computed using the reading from the sensors.
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This system uses five robots with the subsumption architecture. If these robots
were to flock through a cluttered environment, a more sophisticated sensing abil-
ity would be required. The robots had radio transceivers that they could use to
distinguish between robots and other objects.

There were other behaviors implemented on these robots as well, but the four
behaviors mentioned above are the ones that make the robot flock.

Flocking on quadcopters

In the paper [Csaba et al., 2014] a flocking algorithm were implemented on quad-
copters. Ten of these quadcopters were flying around in the air autonomously,
they would communicate with each other and all of these quadcopters had access
to a GPS. The swarm could form shapes, for example forming circles or lines
when instructed to do so. When forming a circle, each quadcopter had to take
its place on the circle by evenly spacing themselves on the perimeter of the circle.
The quadcopters were also able to do leader following behavior. The implementa-
tion uses GPS to determine the position of the quadcopters, but their algorithm
works with all other sensory input where relative position, velocity and altitude
information can be obtained. Their swarm flock were dependent on sensory er-
rors and delays in the system. The researchers were able to fly this swarm flock
autonomously of quadcopters for 20 minutes.

The algorithm were implemented in two and a half dimension, that is the
quadcopters would fly up to the correct altitude, and the flocking and formation
part of the algorithm would only work in two-dimension after the copters had
reached its correct altitude. Each of the quadcopters had to have a 6-10 meters
between them due to inaccuracy from the GPS and other disturbances found in
the air. If they were to flock at closer than the 6-10 meters range, they would
risk crashing into each other.

2.2 Motivation

Most of the flocking systems mentioned in this chapter makes the entities flock
together by using some sort of attracting force, and when they are too close to
each other, a repellent force acts upon the entities to keep them at a fixed distance
from each other.

Swarming is an emergent field in artificial intelligence, nowadays it is becoming
more popular with multiple smaller robot than one expensive traditional robot,
especially when it comes to AI research. There are some few other projects where
flocking behavior has been implemented as mentioned in section 2.1.11.

There are various applications for flocking robots, some of them are mentioned
in [Csaba et al., 2015]. Flocking robots can be used for surveillance if they are
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equipped with cameras, search and rescue operations. A swarm of flocking robots
could fly over a farm to check the health of the soil or the vegetables that are
grown there.

This project will make it easier to me to get a better understanding of how
swarming and flocking works. It will also give me a hands-on experience with
implementing AI algorithms on real life robots.

In this thesis, the Boids algorithm will be used to make the ChIRP robots
move together in a flock. A centralized computer will help aid them, by acting
as a communication bridge between the robots, and by using a camera it will
also act as a GPS by sending coordinate information to the robots. By using
distance sensors, the robots might be able to move close to the other robots
without crashing, and the centralized computer might help make the robots gain
information about its surrounding.
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Chapter 3

Architecture/Model

This chapter contains the architecture and model of the system, which tools and
methods that has been used, how they all connect together to run the experiments
and produce the result. An overview of the system is presented in chapter 3.1.
A description of the robot is presented in section 3.2. How the robots calculate
where to move is explained in section 3.3. The brief explanation of the simulator
is found in section 3.4, and the biggest difference between the physical experiment
and the simulator is shown and compared in section 3.5. The math used to plot
the graph are shown in section 3.6.

Throughout this chapter the word ”Boids” will solely refer to the Boids on
the simulator, while entity or entities refer to both the physical robots and the
Boids.

Figure 3.1: Overview of the components of the system

23
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3.1 System overview

The system used in this experiment consists of three primary components as
illustrated in figure 3.1: the camera which is used by the tracking software, the
”Boid-watcher” which is a centralized computer that acts as a GPS and the
ChIRP robots. The camera tracking software tracks each robot’s position and
its angle, which is sent to the Boid-watcher. The Boid-watcher then forward this
information to the robots via the Bluetooth serial port.

The Boid watcher does not only work as a GPS, but it is also a communication
bridge between the robots, it provides information about the position and velocity
of each robot to all the other robots. The robots are not able to connect to the
other robots directly, that is why the they need to pass information to the other
robots through the watcher software via Bluetooth.

Even if it is possible for one computer to run both the camera tracking and the
watcher software, two separate computers were used in this setup. The camera
tracking software being run on a stationary desktop computer, and the camera is
attached to a pole above a sandbox where the robots roam around. The camera
is connected to the stationary desktop.

In this experiment, the watcher software runs on a laptop with a built-in Blue-
tooth adapter. The watcher software needs to communicate with all the robots
simultaneously and that requires processing powers. The desktop computer was
not able to run both the camera tracking software and the watcher software at the
same time while sending Bluetooth data to all four of the robots. When it tried
to run both, it was not able to read the data from the camera fast enough and
thus the tracking software would crash. The Bluetooth connection between the
computer and the robots might not always be stable, if the connection were to be
unstable at times, a reboot of the robot or/and a reconnection of the Bluetooth
connection would usually fix the problem.

The camera tracks the robots using image recognition, it recognizes the robots
by the two circular post-it notes that are placed on top of each robot. To filter out
all the noise from the surrounding area and remove the colors that are irrelevant to
track, the camera tracking software needs to have a threshold for what it considers
to be red and what it considers to be green. This is specified in a configuration file
that the camera tracking software loaded whenever it was launched. An example
of the configuration file can be seen in the appendix on section 5.3. As seen in
the example, each color is defined by six boundaries, a minimum value, and a
maximum value for the hue-saturation-value. If a color seen by the camera is
inside this boundary it will be considered as the color it is looking for.
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(a) Original image (b) Virtual image

Figure 3.2: Images from the camera tracking software

The camera might detect red or green colors that do not belong to the robots,
for example when the sun shines into the room, the green part of the floor around
the sandbox might be detected as ”green” by the camera tracking software. This
is not a problem for the camera tracking software because this green floor is
outside of the predefined box and the tracker only tracks colors that are inside of
this predefined box, which the user has to specify when starting up the software.
This predefined tracking are is the green outline in figure 3.2a. Any robots found
outside of this green boundary box are not tracked, only the robots inside this
predefined area will be tracked and have a legal position value and an angle. That
is why we need a sandbox to contain the robots so they do not wander off outside
the range of the green boundary box where they are not tracked anymore. Only
the position and the angle of the tracked robots will be sent to the Boid watcher
software over UDP.

Detecting red or green color inside the sandbox that does not belong to the
robots imposes a bigger problem than detecting these colors outside the box.
This might happen if there is a green shaded shadow or a reflection of an object
reflects onto the sandboxes’ surface. If the software detects green or red color
that do not belong to the robot, it will simply ignore these colors if the green and
the red color are far apart from each other, because the camera tracking software
does not do anything unless both these colors are paired. If these ”noise” colors
do disrupt the movement or angle of the robots, then a recalibration needs to be
done to filter out the colors and make the tracking more precise.
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3.2 Robots

(a) The robot used in the
experiment

(b) Standard ChIRP
robot

(c) ChIRP seen from the
side

Figure 3.3: ChIRP robot seen from various angles

The robot swarm consists of four ChIRP robots. The ChIRP robot is a circular
shaped robot with differential wheel. A differential wheeled robot is a robot
with two separate driven wheels on each side, which it can use to move itself. If
it wants to change its direction it can vary the relative speed of each wheel or
motor. For instance if the right wheel moves faster than the left one, the robot
will turn to its left. The advantage of differential wheel is that an additional
steering motor is not required for the robot to move around. Usually a caster
or additional wheels are added to balance a differential wheeled robot, but the
ChIRP robot does not have anything of the sort. Whenever it is moving, the
back or the front of the robot is scraping against the floor depending on if it has
a backward or forward momentum. Scraping against the floor does not affect the
movement of the ChIRP robot, it was designed this way. The robots have a max
speed of approximately 13 cm/s, in this experiment the velocity of the robot will
not exceed 7.8 cm/s.

Each robot is equipped with eight infrared LED lights and receivers used for
measuring distance. Infrared light are emitted from the LEDs, reflected on a
surface and received in the infrared receiver. For the robot to know how far from
an obstacle it is, it measures the amount of infrared it receives. The higher the
amount, the closer to the object it is. This method of measuring distances works
very well for bright or colored surfaces, dark surfaces on the other hand do cause
problems because the infrared light is not reflected so well.

The distance sensors are spaced evenly around the robot, where one of the
sensors are pointing directly in front of the robot. This sensor can be used to
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detect whether there is an obstacle directly in front of it. For this experiment,
only the three sensors in front are used. Because the robots only moves forward,
so it only needs to determine whether there is an obstacle directly in front of it.
The two other distance sensors are also needed, because using only the one in
front is not sufficient to determine if the robot is going to crash into an object.
The other sensors on the side or the back of the robot is not used because the
robot does not move in that direction. So it does not matter if there is an obstacle
behind or on the side of the robot.

Each of the ChIRP robots is equipped with a Bluetooth module, which it
uses to communicate with the watcher computer wirelessly. The robots are very
hollow on top as seen in figure 3.3b and the distance sensors have difficulties
sensing other robots due to this hollowness. To counteract the hollowness, a
white paper strip was taped around the robots. This makes it easier for the robot
to detect the other robots nearby because the paper will reflect the infrared light
that the robot uses to determine the distance. To be sure that the robot would
be able to detect the obstacles placed in the sandbox, the obstacle would have a
white paper wrapped around it to reflect the infrared light. The obstacle used for
this experiment consist of a bottle filled with water. The water inside the bottle
is used to make it heavier, so it does not fall over if a robot were to crash into
it. And the paper around the bottle is there to reflect the infrared light that the
robot uses for measuring distances.

The camera tracking software uses image recognition to track the robots.
That is why each robot needs to have a red and a green post-it note on top of it.
The red one determines where in the sandbox the robot is located, and the green
one is used to decide which way it is pointing and to determine the angle of the
robots.

3.3 Robot controller

This section will go through the controller of the robot, how they work and what
steps the robot takes to execute its action.

The robots are implemented using the idea of a hybrid robot control architec-
ture as explained in section 2.1.10. The distances sensors are the reactive layers
which will be used to guide the robots away from crashing into obstacles, walls
or other robots. The deliberative layer will be the code that processes the data
sent from the watcher software on the computer, it calculates where the robot
should be heading. The deliberative layer are usually slow, but the robots in this
experiment are aided by the centralized computer, it does not need to use a lot of
its processing power to map the environment. The robot already knows that they
are roaming inside a sandbox, and they already knows the size of this sandbox.
The executive layer would be the code running on the robot that decides what
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the robot is doing, whether that is reading the sensors and avoiding obstacles or
moving towards the planned destination for flocking.

When the robot is turned on and a Bluetooth device is paired with its Blue-
tooth module, the robot will stand still and wait. The robot is waiting for a
command or data from the watcher software. A human can send commands to
manually control the robot if needed, this can for example be used for leader
following as explained in section 2.1.2.

If the watcher sends data to the robot, it will start to calculate where it
should move based on the data it received. The robot takes into consideration
the position and the velocity of all the other robots. The positions of the other
robots are used to determine the sum of the cohesion vector and the separation
vector. The velocity of the other robots are used to determine which way they
are pointing, and this is used to find the alignment vector.

A fourth behavior was added for this experiment, which is called the ”away
from wall” behavior. As the name implies, this is a vector that will lead the
robot away from the wall of the sandbox if the robot is too near the wall. After
calculating each of these vectors, they are multiplied with a weight depending on
how much that specific behavior should impact the movement of the robot. For
example, the separation vector should have a higher impact on the movement of
the robot because it needs to avoid the other robots when it is too close to one.

Cohesion vector, on the other hand, does not need to affect the robot as much,
it is mostly there to guide the robot into the flock. Therefore, the separation
vector is multiplied with a higher number than the other ones.

The equation for how the final acceleration vector which decides the direction
the robot is going to move is expressed as:

~A = ΣNb
i=1(Wi

~Bi) (3.1)

where:
~A = the acceleration vector
Bi = the behavior i, for example B1 could be cohesion behavior, B2 alignment
behavior etc.
Wi = the weight for the behavior Bi
Nb = the number of behaviors

The neighborhood distances used on the physical robots are the following
ones:

cohesion distance = 800 px

alignment distance = 200 px

separation distance = 150 px



3.3. ROBOT CONTROLLER 29

away from wall distance = same as alignment

obstacle distance = same as separation

Each of these behaviors, which is denoted by Bi in equation 3.1, and the
following weights Wi have been used:

cohesion vector is multiplied by 2

alignment vector is multiplied by 2

away from wall vector is multiplied by 1

avoid obstacles does not exist

separation vector is multiplied by 4

After calculating the acceleration vector, it will add it to its velocity vector,
then use the arctangent function to calculate which direction the robot will turn
to. The robot calculates the new direction it needs to face by using the following
equations:

~Vnew = ~Vold + ~A (3.2)

Rgoal = atan2(~Vy, ~Vx) (3.3)

Dturn = (Rgoal −Rcurrent) ∗
180

π
(3.4)

~A = [0, 0]T (3.5)

where:
~Vold = previous velocity of the robot
~Vnew = new velocity of the robot, the length of ~Vnew is capped between -40 and
40 or using mathematic notation: |~Vnew|ε[−40, 40].
Rgoal = the angle the robot will be facing after it has turned around, measured
in radians, Rgoalε[−π, π]
Rcurrent = the angle the robot is currently facing, measured in radians, Rcurrentε[−π, π]
Dturn = the angle the robot needs to turn to face the correct direction, measured
in degrees. Dturnε[−180, 180]

The robot needs to know how much it is going to move in the x-direction
and how much it will move in the y-direction as shown in equation 3.2. Then by
calculating the arctangent of Vx and Vy, it finds out which angle it needs to face

to be able to move in the direction of ~Vnew. When the robot has calculated which
direction it wants to go, it calculates Dturn by using the formula in equation 3.4.
Dturn is the amount of degrees the robot needs to turn to face the right direction.
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The velocity ~Vnew is only used to determine which direction the robot should be
facing, it is not used for determine the velocity of the robot. The velocity of a
robot is calculated by calculating how much the robot has been moving since the
last time step, or by finding out how much the position of the robot has changed
since the last time step:

Vrobot = ∆P = Pnew − Pold (3.6)

When the robot has received the data from the watcher, it will first check
measure the distance in front of it, to check if there is an obstacle in front of it.
If there is on, it will turn away from the obstacle, and wait for new data from
the watcher. If the path is clear, it will do the calculation shown in equation 3.1
trough 3.5. Then the robot will turn Dturn degrees so it will face the correct
direction.

The robot will then measure the distances once again, in case it has turned
towards an obstacle. If there is no obstacle in front of it, it will move forward
while waiting for new data from the watcher software. If the robot did find an
obstacle in front of it, it will turn 90◦to either the right or the left randomly. The
robot will stop after turning and wait for new data from the watcher software.



3.3. ROBOT CONTROLLER 31

Figure 3.4: Flowchart of the robot’s behavior
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3.4 Simulator

A simulator was created where the Boids was implemented solely in software,
and rendered on screen, that is no physical robots were used in the simulator.
The reason to use a simulator was to see how the Boids were supposed to behave
and have a working example to compare with. A screenshot of the simulator is
shown in figure 3.5.

A typical Boids simulator usually have a wraparound space. If one of the
Boids goes outside the window, it will ”teleport” to the other side of the window.
For example if one of the Boids flies too far to the right and hits the right border
of the window, it will loop around and end up on the left side of the window. This
is how the typical Boids algorithm usually works on a simulator. But physical
robots can not loop around the stage like the Boids on the simulator can. That
is why the simulator used in this project stops the Boids from moving beyond
the walls of the window.

The same ”away from wall” behavior is also implemented in the simulator, so
the Boids do not move into the wall aimlessly.

For each frame, the Boids will update it velocity by calculating a vector for
each behavior, and then these vectors are added to the acceleration vector by
using the formula found in equation 3.1. The acceleration vector is then added
to the velocity vector, and the velocity is capped off if the length of the vector
exceeds the maximum allowed speed. If there is no velocity cap, the Boids’
velocity would increase towards infinity. The velocity then decides where the
Boids are going to move. The procedure to calculate the velocity vector of the
simulated Boids are the same as the one the robots are using; in equation 3.2.

After calculating the ~Vnew, it needs to cap the max velocity. If the velocity is
not capped, the speed of Boids would increase and they would move outside the
window. As for the robots, the Boids velocity vector is kept between -40 and 40:
|~Vnew|ε[−40, 40]. The Boids do not need to calculate which way it needs to turn
to move in the direction, because it is able to move in all 360◦ directions without
the need to turn. The robot had to turn because it could not move sideways, it
could only move either forward or backward.

The Boids simply moves by adding the velocity vector to their position:

Pnew = Pold + ~V (3.7)

where:
Pold = old position of the Boid
Pnew = new position of the Boid

Before the next time step, the acceleration has to be reset to a null vector for
it to work as shown in equation 3.5.
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The Boids in the simulator do not have any form of rotation, the angle seen
on screen are calculated by taking the arctangent of the velocity vector. That is
why the Boids in the simulator do not need to rotate; they change their direction
instantly by changing their velocity.

In the simulator, there is no need for any type of sensors. Each Boid has
access to the location of all the obstacles and all the other entities.

In the simulator, the following parameters have been used:

cohesion distance = 250 px

alignment distance = 175 px

separation distance = 120 px

away from wall distance = same as alignment

obstacle distance = same as separation

These distances are used by the Boids to determine how near it has to be before
it should calculate the vector. For example if the Boid is in the middle of the
screen, that means that it is not near a wall, then the ”away from wall” function
will return the null vector because it does not need the Boid to steer away from
the wall.

These behavior distances is the furthest distance that is needed before acti-
vating this behavior, for instance, a Boid that have three neighbors, where one
of them is 100 px away, the second one is 150 px away while the third one is 300
px away. The first Boid will be taken into consideration when calculating all of
the three behaviors; cohesion, alignment and separation because it is very close.
The second Boids will not have any influence on the separation behavior, but it
will influence the alignment and cohesion vector. The third one is too far away,
and will be ignored when calculating the three behaviors. These distances are
illustrated in figure 3.5. The Boids in the simulator has a velocity cap of 40 px
per frame, moving faster than 40 px would make the Boids move too fast, and it
would be hard to clearly see the details of the movements.

Each vector from each behavior is multiplied with a factor that determines
how much impact that vector will have on the final acceleration vector. The list
provided below is the weight multiplied by the behavior vector. Or the Wi found
in equation 3.1.

cohesion vector is multiplied by 2

alignment vector is multiplied by 2

away from wall vector is multiplied by 2
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avoid obstacles vector is multiplied by 3

separation vector is multiplied by 3

3.5 Differences between the physical experiment
and simulator

Although the robot’s behavior are trying to mimic the behaviors found on the
simulated Boids, some major differences will still be imminent. This section will
explain the biggest differences between the physical experiment and the simulator.

The physical robots are trying to mimic the behavior of the Boids created
in the simulator. However, a physical robot is different than the Boids created
in the simulator by nature. As discussed in section 3.2, the robots are a type
of differential wheeled robots, which means that it can only move forward or
backwards, turn on the spot or move and turn at the same time. It can not move
sideways.

The Boids in simulator software did not have any direction, they were able
to move freely in all 360◦direction. Which means that if a Boid in the simulator
were to move in one direction, it could change its momentum and move the other
direction without having to stop and turn to that direction. The robot, on the
other hand, would need to turn 180◦before moving forward. The robot is able
to reverse its motor to drive backward, but these robot are not allowed to move
backward, and thus have to turn around to move in another direction.

In the simulator, each Boid will know exactly where everything is placed. That
is, each Boid knows where all the other Boids are, including itself. It also knows
where all the obstacles are. The Boids will have real time access to everything
that can be seen on screen. Every Boid will update its perception every frame,
that is approximately 60 times every second.

The robots, on the other hand, will receive data from the watcher about all the
other robots. But due to inaccuracies from the camera and the image processed,
the robots only knows vaguely where in the sandbox it is located, and where
the others are. The time it takes for a robot to receive new information from
the watcher takes roughly one second from the last time it received data from
the watcher. If the robots are moving between the time it receives data, it will
not know where it is before it receives new data from the watcher software. The
camera tracking software is able to see all the robots due to the two post-it notes
on top, but obstacles found in the sandbox do not contain any color or anything
that the camera can track. Obstacles are therefore ignored by the camera tracker
software because it does not support tracking of anything other than the robots.
That is why the robots need to use their distance sensors in the front to detect
the obstacles.
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The biggest most visual difference between the physical experiment in the
sandbox and the simulated Boids is the size and speed of the entities. The size
of the simulator is 1024 px times 1024 px. While the sandbox is 151.6 cm wide
and 123.9 cm long, which corresponds to 800x652 px in the watcher software.
The Boids on the simulator moves quite fast and can use the extra space to move
around, while the robots are confined inside the sandbox. The biggest reason to
use 800x652 px for the watcher software is because the behavior neighborhood
distances works well for this size.

Figure 3.5: Simulated Boids with neighborhood distances visualized

As it will be explained later in section 4.2, the parameters for the simulated
Boids and the physical robots are a bit different. The figure 3.5 shows the ap-
proximate distances for each behavior, the inner thick colored ring is the outline
of the Boids. The inner thin white ring, illustrates the separation distance, the
robot do not try to separate itself from the other robots if they are outside this
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ring.
The red lines in the figure, are the vectors from each behavior before it is

multiplied with the weight. The thickest green line indicates which way the
Boids are moving, the longer the line, the faster the Boids are moving.

The second most outer ring indicates the alignment neighborhood, if there is
another Boid inside this ring, then both of them will try to align and move in
the same direction.

The outer circle is the cohesion distance, the Boids outside of this box will
not attract each other.

In the figure 3.5, three types of Boids ”family” exist, each one has their own
color. Boids will flock together and align themselves only if they have the same
color, that is the light gray Boids will flock together with the other light gray
Boids. The magenta Boids will only flock together with the other magenta Boids.

When running the simulation for the experiment, all four of the Boids were
the same color, therefore just one flock of Boids would emerge instead of forming
multiple flocks. The current implementation of the Boids algorithm on the robots
does not support multiple groups of Boids. There is no point in implementing this
functionality when there are only four robots running at the same time, because
it will be very hard to distinguish the difference between a family group flock or
if there is just a robot astray from the flock.

Figure 3.6: Watcher software with neighborhood distances visualized
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Figure 3.6 illustrates the distances that the robots use. The exact numbers can
be found in section 4.2. The distances have been colored for convenience because
it is hard to see which ring represents which behavior. As in the simulator, the
most inner ring, which is green in this figure represents the outline of the robot.
The figure shown is not the same size as the watcher software that is used to
run the experiments, the resolution of the watcher software on the figure has
a resolution of 1024x1920 px which is a lot bigger than the resolution on the
watcher software used in the experiment. This is to make it easier to see and
distinguish the distances.

The next ring, which is illustrated with a blue color, represents the separation
distance. And the gray ring shows the alignment neighborhood distance. These
two distances are the same in the simulator and on the robot.

The biggest red ring is the one that is the most different from the simulator’s.
The reason the cohesion distance is so large is mainly to force the robots to
flock together even when they are far apart. The distance almost covers the
whole sandbox, that way the robots will try to flock from almost anywhere in the
sandbox.

Information about each robot is also provided by the numbers next to each
robot. The first row shows us the ID of the robot, and the serial port that belongs
to that robot if there is a Bluetooth connection and it is assigned. The second
row shows us the position of the robot, while the third one shows velocity and
the angle of the robot.

The upper right red squares indicate whether the Bluetooth connection is still
functional or if the Bluetooth have timed out. The squares in the figure are all
red because this is just a debug run where there is no Bluetooth connection.

Robots will be pushed away if a different robot moves onto it. Two robots
can not occupy the same space at the same time. Simulated Boids can overlap
without affecting each other. To summarize the difference between the robots
and the simulated Boids, a list of the parameters will be shown here:

Neighborhood distances
Behavior Simulator Robots
Cohesion 250 px 800 px
Alignment 175 px 200 px
Separation 120 px 150 px
Away from wall 175 px 200 px
Obstacle 120 px 150 px

Table 3.1: Table comparing neighborhood distances between robots and simu-
lated Boids
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Vector weights
Behavior Simulator Robots
Cohesion 2x 2x
Alignment 2x 2x
Separation 3x 4x
Away from wall 2x 1x
Obstacle 3x Does not exist

Table 3.2: Table comparing weights applied to behaviors between robots and
simulated Boids

The reason the cohesion distance for the physical robot are so different than
the one in the simulator is because the robots are slow to flock together and they
might get stuck at a corner when the sensors, so a big cohesion distance makes
the robots flock together faster. If the robots’ cohesion distance were to be the
same as the cohesion distance for the simulated Boids, they might stay too long
in one place, and the robots might not flock. As shown in later sections, the
robots flocks with an average distance of 200 px, therefore the cohesion distance
has to be sufficient larger than 200 px for it to be effective.

The Boids in the simulator do not need a cohesion distance of 800, because
they wander a lot around even if there are no neighboring Boids around them.
When they have wandered around for a while, they will eventually find another
Boid that is near enough and they will start to flock together.

The weights on the behavior vectors for the robots are a little bit different
than the one found in the simulator. The robot’s behavior weight are kept as close
to the Boids as possible, but some weights had to be tweaked for the experiments.

As seen from the table 3.2, the avoid obstacle vector does not exist for the
robots because the watcher and the camera tracking software can not find nor
distinguish obstacles from the surroundings. This feature is not implemented in
the camera tracking software. The robot needs to know the size of the sandbox
beforehand because the camera or the watcher software do not provide this in-
formation to the robot. To compensate for the lack of obstacle information, the
robot uses their distance sensors to find out where the obstacle are located and
avoids them.

As seen in the list above, the two vectors that have the highest influence on the
robot is the separation and the obstacle avoidance behavior. These two behaviors
needs to influence the robot a lot more than the other behaviors because they
are only activated when the robot is very close to another robot or an obstacle.
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3.6 How results are made

This section will go through the process of how the results found in section 4.3
are made.

The results are created by writing to a text file in the form of a .csv file, which
can be open directly by spreadsheet software. A csv file is simply a text file with
comma separated values, a row in the csv file would correspond to a row in the
spreadsheet, and a column in the spreadsheet software is separated by a comma
in the csv file. The distances between the entities, the difference between their
angle and the velocity are the features that the watcher software will be graphing.

The watcher software has no way to find the actual velocity of the robots
because the wheels still move when the robot is turning on the same spot. We
want to find out if the position of each robot has changed over a given time
interval. The way the watcher software calculates the velocity of each robot is
to save the old position of the robot, then compare it with the new position and
see how far off it is. The formula used to find the mean velocity value of all the
robots at a time step is defined as:

µvelocity =
1

N
ΣNi=1|Pinew − Piold | (3.8)

where:
pinew

= the new updated position of robot i
piold = the old position of robot i from last time step
N = number of robots used, in this experiment N = 4
µvelocity = the mean of the velocities in that time step

The average distance seen in section 4.3 are calculated the same way for both
the physical experiment and in the simulator. Each entity’s position is found and
compared with the position of all the other entities. The length of the distance
between each of them are used to find the average and the standard deviation.
The formula to find

µdistances =
1(
N
R

)Σ
(N
R)

1 |Pi − Pj | (3.9)

where:
Pi = the position of robot i, and i 6= j
Pj = the position of robot j, and i 6= j
N = the number of robots or Boids used
R = the amount of entities that are being compared each time, in this experiment
we only measures the distance between two entities at the same time, therefore
R = 2.(
N
R

)
= the combination operator, this corresponds to N !

R!(N−K)!
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µdistances = the mean of the compared distances in that time step

The same procedure was applied for the angle of each entity:

µangles =
1(
N
R

)Σ
(N
R)

1 |Ai −Aj | (3.10)

where:
Ai = the angle of robot x, and i 6= j
Aj = the angle of robot y, and i 6= j
µangles = the mean of the compared angles in that time step.

To find the standard deviation of the velocity, the formula in equation 3.11
was used, but a modification was done for the standard deviation of the distances
and angles as seen in equation 3.12 because we had

(
N
R

)
number of distances and

angles. The reason for
(
N
R

)
number of distances is because this is the number

of comparisons between each robot. For these experiments, N = 4, and R = 2
because we use 4 robots and there is a comparison between two robots at the
same time.

σ =

√
1

N
Σ(X − µ)2 (3.11)

σ =

√
1(
N
R

)Σ(X − µ)2 (3.12)



Chapter 4

Experiments and Results

In this chapter, the results from the experiments will be presented and discussed.
Section 4.1 explains how the experiments will be executed. The setup of the

experiment is explained in section 4.2, it explains the setup of each scenario. Sec-
tion 4.3 contains the actual results created by running each scenario. Section 4.4
will discuss the results and will compare the results from the physical experiment
with the results from the simulator.

4.1 Experimental Plan

To be able to test whether the robots are behaving like the Boids, results from
both the physical and the simulated experiments will be plotted to compare the
difference between the Boids and the robots. Three scenarios or three different
starting position will be used as explained in section 4.2.

For the physical experiment with the robots, each scenario will be ran ten
times to generate the graphs for the results, while only five runs will be used for
plotting the behaviors of the simulated Boids. If the simulator runs a scenario
twice, that is two different simulations with the same parameters and starting
position of the Boids are ran, the Boids in the two simulations would start by
moving in the exact same way. All the runs on the simulator are very similar to
one another. That is why only five runs were used to generate the results.

The robots did not behave as deterministic as the Boids, there are many
factors that can affect the movement of the robots. For example if there are other
people moving around in the room where the experiment took place, the light
setting could be affected enough so the camera would not be able to recognize the
two post-it notes on top of the robot, thus the camera tracking software would
not be able to recognize the robots. To be able to remove all this noise and

41
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randomness from the results, ten runs were used to generate the results when
running the experiment on the physical robots instead of five runs.

All of the results for each scenario was then added together and divided by
the number of runs used on that experiment (five runs on simulator and ten
runs on the physical experiment) to make the plot show the average of all the
runs. Namely the distance between the entities, the angle difference between the
entities and the velocity are the features the software will use when creating the
results. The distance between the entities is used to determine if the entities are
flocked or not, the lower the distance, the closer they are to one another. The
angle difference are used to check if they are facing in the same direction, if all
of the entities are looking in the same direction, the angle difference would be 0.
Only looking at the plot for the angle difference and the distance between each
entity is not sufficient to determine whether the Boids behavior is working or not,
because the robots might flock together, face the same direction then stand still
there. That is why the average velocity of the entities are plotted as well.

4.2 Experimental Setup

This section explains the setup of each scenario, where each robot is placed in the
sandbox, which way it is rotated and where the obstacle is placed. Each scenario
has a purpose to demonstrate, which will be explained more in detail. In this
experiment, four robots and one obstacle are used inside a sandbox. Each robot
needs to have an extra layer on top of them so the red and green post-it note
does not fall off, as seen in figure 3.3a. The robots are moving inside a sandbox,
which is watched by a web camera from above.

For this project experiment, three scenarios have been used to create the
results seen in section 4.3.

4.2.1 Scenario 1

The first scenario is shown in figure 4.1, consists of four robots placed on each
corner of the sandbox. The reason for placing each of the robots in each corner
of the sandbox is that each robot will be as far from each other as possible. This
scenario should demonstrate that the entities are able to flock together, and then
stay together as a flock. There is one obstacle placed nearby the middle of the
sandbox, the obstacle is placed near the middle to ensure that the robots would
encounter it at least once. This scenario would be able to see if the robots actually
flocked together like they are supposed to do, and at the same time would be able
to avoid the obstacle without bumping or crashing into it. The robots should
also move together after they have flocked together.
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Figure 4.1: Scenario 1, all the robots are placed in each corner with one obstacle

4.2.2 Scenario 2

Figure 4.2: Scenario 2, three robots in one corner, and the last one on the opposite
corner

The second scenario puts three of entities in one corner, and the last entity is
placed on the opposing corner as seen in figure 4.2. However the last entity that
is placed on the lower right corner by itself will not move, in the case of the
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physical robot, it will not be turned on. The reason that this entity is a sitting
duck placed on the opposite corner of all the other entities is that this robot will
act as a goal for the other entities. The obstacle is placed between the lonesome
robot and the three robots that are clumped up together. The idea behind this
setup is that the three robots that start together would try to move to the one
that are stationary because they need to flock together. The robot that start by
itself does not move because it is not turned on.

The obstacle in the middle will hinder the robots from moving in a straight
line to their goal, which forces them to choose a way around it. The robots move
around the obstacle when they approach it. As explained in section 2.1.9, the
robots will turn either right or left randomly when moving directly towards an
obstacle. The robots will probably move around the obstacle on each side of the
obstacle, and flock together again on the other side when they have moved past
the obstacle.

4.2.3 Scenario 3

The third scenario is a scenario where the robots are placed randomly around in
the sandbox. The two first scenarios were designed for a specific purpose. The
purpose of the third scenario is created to demonstrate that the Boids behaviors
are still intact, even when the robots are placed randomly in the sandbox. The
position of the robots, where it should be placed and which way it is pointing
was generated randomly by a random number generator. The starting point for
this scenario is illustrated in figure 4.3.

This scenario looks a little bit like the first scenario, the robots are laid out
in the shape of a square. They are closer to each other than the robots in the
first scenario. One of the robots are separated from the other by starting behind
the obstacle, the robot can not move directly to the other three robots without
first moving around the obstacle.

All the scenarios explained in this thesis uses the same sandbox, which is a
sandbox with the size of 151.6 cm wide and 123.9 cm long. The only difference
between the scenarios is the placement of the obstacle, the direction the robots are
facing and its placement. Each scenario was ran ten times to generate the data
seen in section 4.3. In between each run, the robots had to be placed manually
back into their starting position before a new run could take place. To keep the
data as consistent as possible, everything else would stay exactly the same. For
the experiments on the simulator, only five runs will be used. Boids have the
same starting position and the same direction each time, each run is therefore
not very different from the other ones.

The camera used in this experiment is a web camera. To be able to get clear
stable video feed images from the web camera, the settings for the camera had to
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Figure 4.3: Scenario 3, robots and obstacle randomly placed in the sandbox

be manually set up. The most important setting is to disable auto focus. Auto
focus makes the images blurry, and the camera tracking software will not be able
to detect red and green colors which define the robots. 50 Hz power line frequency
was used instead of 60 Hz to eliminate flickering on the camera feed. The other
settings are not that important, as long as the web camera is able to provide a
decent looking image so the camera tracker software is able to recognize the two
colors on top of each robot and thus identify the robots.

4.3 Results

The Boids algorithm are supposed to keep the robots flocked together and prefer-
ably they should face the same direction as well. The watcher knows where each
robot is, and it knows which direction each robot is facing. The watcher measures
the distance between each robot and the angle difference between the robots every
five frame or twelve times each second, it then calculates the mean and standard
deviation of the distances and angles and saves it to a file. The mean and stan-
dard deviation of the velocity is recorded as well, in the simulator the velocity is
measured directly by getting the velocity vector on each object, for the physical
robot, the change in position is measured instead.

To keep the data as consistent between each run the watcher stops all the
robots and saves the data file exactly three minutes or 180,000 milliseconds after
the robots have started to move. The distance measured are in pixels. The
measurement of the sandbox is 151.6 cm wide and 123.9 cm long. The watcher
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software creates a window that has a resolution 800x652 pixels, which means that
1 cm is approximately 5.3 pixels on the screen. The measured angles are shown
in radians.

In the upcoming figures, the results from the various runs will be shown. On
the x-axis, the time will be shown, and the y-axis displays various types of data
depending on the figure. The time shown on the x-axis displays the time iteration,
not seconds. One iteration takes five frames, the software runs with a 60 frames
per second. Which means that twelve iterations on the x-axis corresponds to one
second. The velocity is measured every iteration, the velocity graph is mostly
used as an indication to whether the robots are moving or not. The velocity
graphs can be used as an indication whether the robots are moving fast or slow,
but it can not be used to reliably tell the exact velocity of the robots. The velocity
graph for the simulated Boids is more precise because it is displaying the exact
velocity of the Boids.

The upcoming figures will show graphs of various types, two similar ones will
be displayed for each scenario. One is the results from ten runs on the physical
experiment with the robots, and the other one is the results from the experiments
ran in simulation. In section 4.4 a discussion of the results will be presented, it
will contain an explanation as to why some of the graphs might be different.

4.3.1 Results from scenario 1

Figure 4.4: Results from 10 runs averaged on scenario 1, robots

The first scenario was designed to check if the robots were able to flock to-
gether, the robots were placed on each of the sandbox’s corner, as far from each
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Figure 4.5: Results from 5 runs averaged on scenario 1, simulator

other as possible. From the figure 4.4 we can see that the robots are flocking to-
gether quite fast, they start out on each corner of the sandbox then move towards
the center of the sandbox, this is shown in the graph by the first drop from 700
px to around 200 px. This corresponds to roughly 132 cm to 37 cm. The time it
takes for the graph to drop from 700 px to 200 px is around 300 iterations, which
equals 25 seconds. The simulated Boids behave differently in the same scenario,
as seen from figure 4.5, between time step 40 and 305, the graph shows a local
maxima. Because all of the Boids are moving towards the middle due to the
velocity they have at the start, the distance between them will decrease. But one
of the Boids is moving directly toward the obstacle and facing it directly, when it
comes too close, it will be ”pushed” directly in the opposite direction. The Boid
that is being ”pushed” in the opposite direction by the obstacle is too far away
from the other Boids for the cohesion behavior to be active, and therefore moves
away from the rest of the flock. This is the reason there is a peak in the graph.

In this scenario, the difference between the angles of the robots starts at 2
radians. This is when all of the robots are facing towards the center of the
sandbox. After the robots have moved towards the center, they will start to turn
around and the difference between the robots decreases. However, the robots are
not able to face the same direction entirely, the lowest difference is still above 1.2
radians, which is approximately 68 degrees. The robots do rotate a lot on the
spot, which affects the results seen in the graph. The simulated Boids’ angle also
starts at approximately 2 radians, then slowly decreasing to 0.3 radians. When
the graph has flattened out at 0.3 radians, it seems like all the Boids are facing
in the same direction.
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Figure 4.6: Results from 10 runs averaged on scenario 1, robots

Both the robots and the Boids have high velocity at the start when they are
moving towards the center. When the Boids reaches the center of the simulated
space, they will need to adjust their velocity to change direction, and when all
four Boids move together as a flock unit, they need to adjust their flight direction
all the time. The velocity graph for the robot in this scenario has the same general
outline as the simulated Boids; the graph shows a high velocity at the start, then
drops down before stabilizing at a given range. The robots’ velocity jiggles a lot,
ranging 0.1 to 3.6, there might be various reasons for this result will be discussed
more in depth in section 4.4.
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Figure 4.7: Results from 5 runs averaged on scenario 1, simulator

Figure 4.8: Results from 10 runs averaged on scenario 1, robots
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Figure 4.9: Results from 5 runs averaged on scenario 1, simulator
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4.3.2 Results from scenario 2

Figure 4.10: Results from 10 runs averaged on scenario 2, robots

Earlier demonstrations of Boids have shown us that when a flock of Boids is
moving towards an obstacle, the Boids would split up to sub-groups, fly around
the obstacle on both sides before merging together when they have passed the
obstacles. This scenario is designed to check if this behavior is still intact on the
robots.

In the second scenario, it takes a bit longer for the distance to drop to 200 px,
around 1310 time steps, which is approximately 110 seconds. Three of the robots
are already in a flock while the fourth one is astray from the flock on the opposite
side of the sandbox. The three robots that have already flocked together will try
to stay together, they do not want to move all the way to the other side to flock
with one single robot. If all of the robots were moving, the single robot would
move towards the three robots and they all would flock together faster.

When running scenario 2 on the simulator, the Boids move towards the ob-
stacle and around it. When they are near enough to the non-moving Boids, the
cohesion behavior will activate and the Boids will try to flock, but all the other
behaviors are trying to push the three moving Boids away from the non-moving
Boid. After being pushed away, they will keep moving in the same direction and
move all the way around the screen. This movement around the screen creates
the oscillated graph plot seen in figure 4.11.

In the second scenario, one of the entity is stationary, and thus its angle does
not change, but its angle is still accounted for when plotting the graph. The
angles shown in the graphs for the second scenario starts in the lower end, then
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Figure 4.11: Results from 5 runs averaged on scenario 2, simulator

increases. Three of the entities starts by facing the same direction while the last
stationary one faces in the opposite direction. That is, all off them faces toward
the center as seen in figure 4.2. When starting the runs for the second scenario,
the robots started to turn around immediately, thus increasing the difference-
angle shown in the graph. One of the robot starts in the upper left corner, it
is covered by the two other robots, having no way to move out of this corner
without colliding into the other robots, its only option is to turn around on the
spot.

The three moving Boids starts off by moving towards the center of the screen,
they then move around the obstacle. After reaching the stationary Boid, they
are pushed away, which forces them to turn away from the stationary Boid. The
Boids angles follow a wave pattern, much like the pattern found in the distance
graph for this scenario.

Both of the velocity graphs in the second scenario are considerably lower than
the ones found in the other two scenarios. This is expected because one of the
four entity is stationary, i.e. non-moving.
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Figure 4.12: Results from 10 runs averaged on scenario 2, robots

Figure 4.13: Results from 5 runs averaged on scenario 2, simulator
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Figure 4.14: Results from 10 runs averaged on scenario 2, robots

Figure 4.15: Results from 5 runs averaged on scenario 2, simulator
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4.3.3 Results from scenario 3

Figure 4.16: Results from 10 runs averaged on scenario 3, robots

The third scenario consists of entities that are placed randomly, the purpose
behind this is to check that flocking and collision avoidance are still intact. Both
the first and the second scenario were designed to check a specific behavior, this
third scenario is not testing any specific behavior, but it will check that the robots
are still behaving the way they should be. The robots should still flock and avoid
obstacles in this scenario like they have done in the other scenarios.

The results for the distances between the robots in the third scenario is similar
to the one in the first. They move closer to each other and then stay as a flock for
the rest of the time. In the simulator, the Boids starts by moving further away
from each other, before converging together. The Boids that starts on the lower
right are behind an obstacle, which pushes it away from the other ones. The
lower left Boid has a start velocity away from the robots, and due to the short
cohesion distance radius, it will not move towards the other Boids but move away
from them instead. The other Boids are not in range for the cohesion behavior
to activate. However, it does not take too long before the Boids are able to flock
together, as seen from figure 4.17 the Boids are starting to move towards each
other after 40 time steps, and are fully flocked together at time step 150.

The robots do not have the same problem as the Boids in this scenario, they
have a much wider cohesion distance. Obstacles do not push the robots in the
opposite direction either. When a robot tries to figure out which direction it is
going to move in, it will ignore the walls and the obstacles. If there is an obstacle
in front of a robot, it will turn away from the obstacle. But the next time it



56 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.17: Results from 5 runs averaged on scenario 3, simulator

calculates where it wants to go, it might calculate the direction it wants to go is
through the obstacle, thus the robot will turn toward the obstacle then realize
that there is, in fact, an obstacle in front of it and it has to turn away again.
The robot might get stuck on the same spot because of this turning behavior,
but it will eventually force itself to move around the obstacle. After turning on
the same spot back and forth for a while, the robot is forced to move forward,
even if it is currently facing away from the direction it intended to move to. In
the meantime, the other robots will move towards the robot that has been stuck
behind the obstacle.

The angle and velocity graph of the third scenario is relatively similar to the
graphs in the first scenario.
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Figure 4.18: Results from 10 runs averaged on scenario 3, robots

Figure 4.19: Results from 5 runs averaged on scenario 3, simulator
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Figure 4.20: Results from 10 runs averaged on scenario 3, robots

Figure 4.21: Results from 5 runs averaged on scenario 3, simulator
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4.4 Discussion

This section will mainly focus on explaining the overall data from the results,
why there is a difference between the physical experiment and the experiments
done in a simulator.

The robots are able to flock faster in the first and third scenario than the
robots in the second scenario. This might be because each of the robot start out
by themselves and will therefore seek the other ones. The equilibrium distance
which the Boids are flocking at, seems to be around 120 px to 150 px. As
mentioned earlier, the separation distance of the Boids is 120 px. The separation
distance for the robot is slightly increased compared to the Boids’, the distance
is 150 px instead of 120 px. The robots are not only influenced by the separation
vector for collision avoidance, but they also use their distance sensors as well. So
it is expected that the equilibrium distance between the robot is not exactly at
150 px, according to the graphs, the robots’ flocking distance stays around 200
px.

The angles measured seems to vary a lot, even if the alignment behavior tries
to make all the robots face the same way. But the overall trend of the robots
seems to be that the angles lingers around 1.5 radians on average for all three
scenarios, which is pretty high.

The simulated Boids are able to face in the same direction as the other Boids,
starting with an angle difference of 2 radians and slowly dropping down to 0.5
radians. This holds true on the graphs shown for the first and third scenario.
The angles in second scenario are varying a lot, ranging from 0.4 radians to 1.6.
This happens because one of the Boid is not moving, its angle is always 0. While
the other three is moving around and their will range from −π to π depending
on the direction they are moving.

If the allowed space to travel were bigger, and there were no obstacles. The
Boids would be able to move without needing to turn, and the angle between
them would stay consistently low. However the allowed space for the robots to
travel is limited and there is an obstacle there as well. Whenever the robots
detects an obstacle or move towards the walls, the distance sensors will make the
robot turn around so the robot will not crash. Sometimes the robots will think
that the other robots around itself are obstacles as well because it has no way to
tell the difference between the robots from an actual obstacle. This is because
the distance sensors can not distinguish anything, it only measures a distance
and the robots will try to avoid anything that is too near it, thinking that the
object it detects is an obstacle.

The velocity for the robot varies a lot, we can see from the graph that the
velocity varies from 0 to 6.3. The watcher software logs the velocity data by
finding the change in position between two time steps, that is it finds ∆P as
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shown in equation 3.6 of each robot every iteration. When a robot is turning
to change direction or to avoid an obstacle, it is not moving because it is just
spinning in place.

The method used to measure the velocity of the robot is very imprecise, when
logging the velocity of a robot with constant max velocity, the results did not
stay consistently at a given number.

The result from this test is shown in figure 4.22, the robot is moving at max
speed the whole time, but there is no consistent line in the graph. The graph
consists of ”pillars”, meaning that the graph goes from 12 to 0 and back up to 12
again. The big gaps in the graph are when the robot has encountered the wall
and stops to turn away.

Figure 4.22: One robot moving at max velocity, only turning when facing a wall

The Boids in the simulator never stops, that is why the velocity never drops
down to 0, they keep moving in different direction all the time. Being able to
move freely in all 360◦ and they do not need to stop to change direction. The
physical ChIRP robot needs to turn around before moving in a new direction. As
long as the new direction is off by an angle larger than 1◦ from the angle the robot
is currently facing, then it will stop and turn. All turning takes approximately
one second, before the robot is moving again. If the robot will turn a lot, it will
only have one second to do so, before it has to move. If it only needs to turn 2◦,
it will turn first and wait until one second has passed before moving on. The one
second delay is introduced to keep the timing somewhat synchronous between
the robots, one second delay is long enough for the robot to be able to almost
turn all the way around (180◦).

The graphs only shows the average distance between the robots, the velocity of
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the robots and the difference between their angle. The graphs do not show where
the robots are moving or whether they have crashed into anything. Sometimes
the robots do bump into the obstacles, or the other robots. The reason is that
the robots measures the distances before moving, and not continuously while
moving. So if a robot measures the distance in front of it and it does not detect
an obstacle in front of it, it will start to move forward. When the robot moves
forward it might hit an obstacle or another robot if the distance sensor readings
were imprecise. Sometimes robots moves onto the path of another robot while
the other robot is moving, the other robot will probably bump into the one
blocking its path. The robots do crash into each other sometimes, they do push
each other around when they are trying to occupy the same space as the other
robots. This might happen if both robots are measuring the distances around
them, and either some disturbances make the distance measured inaccurate or
the other robots move into the other ones’ path between the time they are doing
the distance measuring.

When the robots bump into each other, they nudge each other and might
scrape the surface of each other. However, none of the paper taped on the robot
has been torn apart when the robots were scraping against each other while
running the experiment.

The robots only move forward, and they only turn when they need to change
direction or if there is an object in front of it that it needs to avoid. Sometimes
the robots suddenly stop and rotates on the spot as if there is some sort of object
in front of it, even if there is none. Whenever the robot turns, the watcher will
not see any change in position, which is the method it uses to log the velocity of
the robots. The watcher will therefore log that the velocity of the robot is 0 when
the robots turn around on the same spot. The distance measured by the robot’s
sensors might be imprecise, due to disturbances around in the room that makes
the measured distances imprecise. The disturbances can come from the infrared
light the other robots sends out when they are measuring distances themselves,
which might bounce around in the sandbox and disturb the other robots.

For the camera to see the two colored post-it notes on the robots, the room
needs to be well lit. Extra lights were placed around the sandbox to provide
enough light. The room where the experiment took place had two large windows,
by daytime the sun would shine into the room. The sunlight contains infrared
light, if the sun shines into the room and hits the area where the robots roam,
the robot will sense the infrared lights from the sunshine and think that there
is an object in front of it. The blinds in the room were closed, but some of the
sunshine would always shine into the room.
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Chapter 5

Evaluation and Conclusion

This chapter will evaluate the results and graphs from the previous chapter. It
will mainly focus on the behaviors of the physical robots. Section 5.1 contains
evaluation of the results and answers the research questions. How this thesis has
contributed to the field of swarming is explained in section 5.2. A suggestion of
what needs to be done for future work is presented in 5.3.

5.1 Evaluation

All of the graphs shown in section 4.3 shows that the robots are able to flock
together if given enough time. A cohesion distance of 800 px makes the robots
move towards one another from almost anywhere on the sandbox, making them
flock together. There is a similarity between some of the result data generated
from the physical experiment with the robots and the experiments ran on the
simulator.

Research question 1: Can a centralized computer aid a swarm of robots
that do not have enough sensors to do the task it was assigned for?

Each robot was equipped with eight distance sensors and a Bluetooth module
for communication. Other types of sensors can be equipped on the robots, but the
only other sensor available was light detecting sensors. Using only the distance
sensors, the robots will only be able to detect other objects around themselves,
but they can not use the distance sensors to distinguish what kind of object it
has detected. The structure of the robots makes it hard for the other robots to
detect it due to the hollowness of the robot. By using a camera and a centralized
computer which the robots can communicate with, the robots gains information
about its whereabouts along with its angle and all the other robot’s positions.

63
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Research question 2: Will the Boids algorithm make the robots flock to-
gether?

The robots get the information about its location from the centralized com-
puter and the whereabouts of the other robots. Using this information, the robot
will calculate the Boids behavior vectors and move in the direction of the final
vector.

Looking at the graphs from section 4.3, we can see that the robots are moving
closer to each other, and they stay together with approximately 200 px or 35 cm
between each other. In scenario 2, the robots do move on each side of the obstacle
due to their placement at the start. If a robot faces an obstacle directly in front
of it, they will ”flip a coin” to decide whether they are turning left or right, thus
a random direction will be chosen around the obstacle if the robot is moving
directly toward an obstacle. However, the robots do not move together as one
unit towards the obstacle, like the Boids in the simulator do. The most upper left
robot seen in figure 4.2 is trapped between the corner and the two robots around
it. Having no way to move out at the start, makes it turn around facing the
corner of the sandbox. This behavior delays it from moving towards the center
and the real obstacle because it has to turn all the way back again. The robots
avoids crashing into other objects at almost all cost, it is its highest priority. So
when the robots are clumped together, they might spin a lot on the same spot.

5.2 Contributions

This project’s main field is artificial intelligence, or more specific the swarm
robotics. This thesis contributes to the field by implementing the Boids flocking
behavior algorithm on the ChIRP robot, using a few simple behavior makes
the robots flock together. By combining the distance sensor readings and the
data from a centralized computer, it is able to locate the other robots and move
towards them if given enough time. Similar projects had already been done, even
without a centralized computer, which is quite interesting. The ChIRP robots
can, however, not distinguish between a robot and other objects using only their
sensors.

By experimenting on different scenarios, it was possible to see and recognize
the typical Boids behavior on the robots. The robots were flocking together, they
would spread out and move around obstacles and then flock together again on
the other side. Leader following was also possible by manually controlling one of
the robots.

This project also helps further explore the limitation of the ChIRP robots,
by connecting together the camera tracking software, Bluetooth, and the ChIRP
robot. Most of the project involving the ChIRP and the Bluetooth module, only
uses the Bluetooth to send direct commands to the robot, telling them exactly
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how much each motor should move. By using the camera and sending this data
to the robot, it shows that the robots are able to process the data themselves to
figure out where they should move.

This experiment also shows that a flock of robots and the whole system in-
volving the camera and the watcher software is able to run autonomously after
the setup. It does not need human involvement to work.

5.3 Future Work

This section will look further upon what research question is still unanswered,
what can be improved, and what tweaks and improvements needs to be done on
this project for the robots to be able to fully mimic the behavior of the Boids.

More robots

The current implementation of the system only supports four simultaneous
robots at the same time. A new robot can not be added to the system without
uploading new code to each robot, nor can a robot disappear from the system.
The camera tracking software loads a configuration file at startup that specifies
how many robots will be tracked, this value has to be manually changed by
the user and reloaded. The watcher software needs to know which robot ID
belongs to which Bluetooth serial port. If one of the robots’ Bluetooth connection
disconnects or times out, everything has to stop and reconnected again for the
system to work.

The main idea behind swarm robots is that it should be able to run continu-
ously without having to reboot or stop the swarm to add a new robot or remove
one. If one of the entities in a swarm is defected, injured or not working, the
other ones should still be operable.

The current implementation of this project relies on the robot needing to
know how many other robots there will be in the sandbox at the same time,
because it will need to know how much data it is going to store before processing
it. This has to be changed manually in the code and then uploaded to the robot
again. A functional robot swarm flock should have more than four robots running
simultaneously, and we should be able to add a new robot without re-uploading
the code to the robots.

In simulation, it is easy to add new Boids of different type or family as seen
in figure 3.5 by the different colors on the Boids. With only four robots run-
ning at the same time, there is no point in trying to implement different types
of Boids families so subgroups of Boids flocks would emerge. The reason is that
it will be hard to see if there is any family groups with only four robots. With
more robots, it would be easier and more obvious to see groups of families emerge.
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More fluid movement
The current implementation does not punish the robot for standing still nor

for only rotating on the same spot. The only escape from continuously spinning
on the same spot is a spin counter, which forces the robot to move forward if the
robot has been stuck on a spot for five iterations and if there is nothing in front
of it.

Each robot also stops when it turns around and whenever they need to change
direction. When birds fly together as a flock they do not stop when they need to
turn. The robots should be able to move and rotate without stopping.

In the simulator, the Boids held its formation whenever they flocked until
they had to change their direction because they were too near an obstacle. The
robots do stay near each other to a certain degree. Whenever the robots flock,
the distances between each robot varies, they do not have a consistent spacing
which the Boids on the simulator do have. The reason this happen might be
because the robots are not fully synchronous like the simulator Boids are, that
is, each Boids calculates their new acceleration vector direction every frame at
the same time, while the robots do not calculate their new direction at the same
time as the other robots.

The robots still bump into the obstacle and they still bump into each other.
A rewrite of the executive layer should be able to fix this problem. Instead
of checking the distances to objects in front of it before it is about to move
in a direction, the robots should check and measure the distances continuously.
Checking the distance all the time might affect movement of the robot. But if
the sensors could be more precise, then the disturbances and noises would not be
a problem for the movement of the robot. However, the Boids on the simulator
do move through each other if the velocity is high enough.

In scenario 2, the robots do move around the obstacle, but this does not
happen at the same time. The three robots stays a while in the upper left corner
before moving, and they do not move as a unit to the other side of the sandbox.
Some of the runs, they were moving one robot at a time. Preferably these three
robots should move as one unit.

After the robots have been flocked together, they would most of the time just
move back and forth. The overall movement of the whole swarm did not move a
lot, the graphs only show that the robots still move individually back and forth.
Sometimes, one of the robots would move out of the swarm, away from the rest.
This is most likely a bug because the robot’s intended direction is toward the rest
of the robots, but it is still moving away from them. This bug, do help the swarm
move around in the sandbox as a whole swarm because the robot is forcing the
other robots to follow it.
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(2015). Collective Motion of Flying Robots (Drones). https://hal.elte.hu/
flocking/wiki/public/en/projects/CollectiveMotionOfFlyingRobots.

Demetri, T., Xiaoyuan, T., and Radek, Grzeszczuk (Department of Computer
Science, U. o. T. (1994). Artificial Fshes: Autonomous Locomotion, Perception,
Behavior, and Learning in a Simulated Physical World.

Demsar, J. and Bajec, I. (2013). Family Bird: A Heterogeneous Sim-
ulated Flock. Advances in Artificial Life, ECAL 2013, pages 1114–
1115. http://mitpress.mit.edu/sites/default/files/titles/content/

ecal13/978-0-262-31709-2-ch167.pdf.

Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm
theory. MHS’95. Proceedings of the Sixth International Symposium on Micro
Machine and Human Science, pages 39–43. http://ieeexplore.ieee.org/

lpdocs/epic03/wrapper.htm?arnumber=494215.

Edwards, C. H. and Penney, D. E. (1988). Elementary linear algebra. Prentice
Hall International.

Floreano, D. and Mattiussi, C. (2008). Bio-inspired artificial intelligence. MIT
Press.

Hashimoto, H., Yokota, S., Sasaki, A., Ohyama, Y., and Kobayashi, H. (2008).
Cooperative movement of human and swarm robot maintaining stability of
swarm. RO-MAN 2008 - The 17th IEEE International Symposium on Robot
and Human Interactive Communication, pages 249–254. http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4600674.

Jakimovski, B. (2011). Biologically Inspired Approaches for Locomotion, Anomaly
Detection and Reconfiguration for Walking Robots, volume 14 of Cognitive
Systems Monographs. Springer Berlin Heidelberg, Berlin, Heidelberg. http:

//link.springer.com/10.1007/978-3-642-22505-5.

Joselli, M., Passos, E. B., Zamith, M., Clua, E., Montenegro, A., and Feijó, B.
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Camera tracking
configuration file

This file is named chirpObserverConfig.cfg and needs to be loaded by the camera
tracking software at startup.

# [ comPort ]
# the id o f the comm port to use .
# 0 corresponds to /dev/ ttyS0
# 1 corresponds to /dev/ ttyS1
# 2 corresponds to /dev/ ttyS2
# 3 corresponds to /dev/ ttyS3
# 4 corresponds to /dev/ ttyS4
# 5 corresponds to /dev/ ttyS5
# 6 corresponds to /dev/ ttyS6
# 7 corresponds to /dev/ ttyS7
# 8 corresponds to /dev/ ttyS8
# 9 corresponds to /dev/ ttyS9
# 10 corresponds to /dev/ ttyS10
# 11 corresponds to /dev/ ttyS11
# 12 corresponds to /dev/ ttyS12
# 13 corresponds to /dev/ ttyS13
# 14 corresponds to /dev/ ttyS14
# 15 corresponds to /dev/ ttyS15
# 16 corresponds to /dev/ttyUSB0
# 17 corresponds to /dev/ttyUSB1
# 18 corresponds to /dev/ttyUSB2
# 19 corresponds to /dev/ttyUSB3
# 20 corresponds to /dev/ttyUSB4
# 21 corresponds to /dev/ttyUSB5
# 22 corresponds to /dev/ttyAMA0
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# 23 corresponds to /dev/ttyAMA1
# 24 corresponds to /dev/ttyACM0
# 25 corresponds to /dev/ttyACM1
# 26 corresponds to /dev/rfcomm0
# 27 corresponds to /dev/rfcomm1
# 28 corresponds to /dev/ircomm0
# 29 corresponds to /dev/ircomm1
# id = 27

[ camera ]
# the id o f the camera dev i ce to use , numbered from 0 and upwards
# dev i c e Id = 1
dev i c e Id = 0
# the width and he ight o f the captured image , denoted in p i x e l s
width = 720
he ight = 500
# the maximum number o f o b j e c t s to t rack .
#Al l o b j e c t s are ignored i f the number o f o b j e c t s
# d i s cove r ed exceeds t h i s number
maxNumObjects = 1000
#the minimum ob j e c t area to r e c o g n i z e ( in p i x e l s ) .
#Any ob j e c t sma l l e r than t h i s i s ignored .
minObjectArea = 10
# upper l i m i t o f the s i z e o f l e d s compared to
# min ( frame width , frame he ight )
l e d S i z e = 0.01

# s e t t i n g s governing the c o l o r s in the captured frame
# the s e t t i n g s are p o t e n t i a l l y s p e c i f i c to each camera
# l inux a p p l i c a t i o n ” guvcview ” prov ides d e t a i l s
# the s e t t i n g s appear to be s t i cky , so an a p p l i c a t i o n l i k e
#”guvcview ” may be nece s sa ry to r e v e r t to d e f a u l t s t a t e
#
# i f the value i s l e s s than 0 , the a p p l i c a t i o n won ’ t change
# the camera ’ s s e t t i n g f o r that property
# the b r i g t n e s s o f the image
b r i g h t n e s s = 0 .1
# the con t ra s t o f the image (0 − 10 with d e f a u l t o f 5)
con t ra s t = 5
# the s a t u r a t i o n o f the image (0 − 200 with d e f a u l t o f 83)
s a t u r a t i o n = 30



73

# each c o l o r i s de f in ed by s i x boundries ,
#and i s only r ecogn i z ed i f the HSV value i s with in the bounds
[ red ]
hmin = 120
hmax = 220
smin = 100
smax = 256
vmin = 130
vmax = 256

#hmin = 0
#hmax = 45
#smin= 90
#smax = 256
#vmin = 170
#vmax = 256

[ b lue ]
hmin = 100
hmax = 120
smin = 250
smax = 256
vmin = 250
vmax = 256

[ green ]
hmin = 31
hmax = 90
smin = 100
smax = 256
vmin = 135
vmax = 256

#hmin = 21
#hmax = 86
#smin= 50
#smax = 256
#vmin = 205
#vmax = 256
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# the s i z e o f the v i r t u a l f e ed d e p i c t i n g the
#scene as i n t e r p r e t e d by the t r a c k e r
[ v i r tua lFeed ]
width = 500
he ight = 500

# s e t t i n g s f o r the UDP network sending
#in format ion about tracked robots
[ network ]
enabled = true
address = l o c a l h o s t
port = 52346

[ g ene ra l ]
# whether to c a l i b r a t e co l o r s , t h i s a l l ows one to
#f i n d va lues f o r the c o l o r d e f i n i t i o n s
ca l i b ra t i onEnab l ed = f a l s e
# the time the system waits a f t e r a frame
#has been proce s sed be f o r e i t f e t c h e s a new one
# i f t h i s number i s s e t too low ,
#the camera won ’ t be ab le to f i n i s h captur ing a frame
frameDelay = 10

[ t r a ck ing ]
# number o f robots to t rack
numRobots = 4
# robots are removed i f t h i s number o f s t ep s pass
#without a p inpo in t ing o f the robot ’ s p o s i t i o n
e v i c t i o n L i m i t = 6
# the maximum speed ( d i s t anc e / frame ) o f robots in any
#d i r e c t i o n compared to the width and he ight o f the bounding box

robotSpeed = 0.01
# robotSpeed = 0.065
# the maximum r o t a t i o n a l speed ( rad ians / frame ) o f
# the robot compared to a f u l l c i r c l e
robotRotat iona lSpeed = 0.05
# the diameter o f the robots compared to the bounding box
robotDiameter = 0.06
#0.059
# the number o f r e c en t va lue s to use when smoothing
# the p o s i t i o n and r o t a t i o n o f the robot
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h i s toryLength = 3

[ c o n t r o l s ]
# key to r e l oad the c o n f i g u r a t i o n at run time .
#Not a l l changes w i l l take e f f e c t
loadConf ig = l
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Sorting algorithms

This section will explain some of the sorting algorithms that are used in some of
the papers mentioned in chapter 2.1.

.1 Odd even sort

Odd even sort is a sorting algorithm which resembles bubble sort. The algorithm
takes a list of elements, then compares all the odd placed element with the element
next to it. That is; compare list[i] with list[i+1] where i is an odd number. Then
the algorithm does the same for all i even number. This is done repeatedly until
we get a sorted list.

.2 Bitonic sort

Bitonic sort is a highly parallel sorting algorithm, the idea is to have the elements
in the list in a bitonic sequence. A bitonic sequence is a sequence where the list
is increasing, then decreasing and then eventually increasing again. However the
last increasing part are not allowed to increase past the first element in the list.

Figure 1: Left figure is a bitonic sequence, right figure is not a bitonic sequence
because the last increasing part is higher than the start
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After the algorithm have obtained a bitonic sequence, it will start to compare
the elements with certain distance from each other and swap these elements if
they are in the wrong order.

Figure 2: Example of a bitonic sort run

In the example we have the numbers 11,13,14,37,16,7,4,1. Which is initially in
a bitonic sequence because the first half is increasing and the last half is decreas-
ing. The algorithm now compares the first and the fifth element, as indicated
by the arrows. All of these comparisons can be done in parallel. The algorithm
compares the elements at different position, in the example it start with a com-
parison of elements that are distance 4 away from each other, that is element at
position 1 and 5, 2 and 6 and so on. Then elements with distance 2 is compared,
and then elements with distance 1 are compared. The runtime of the bitonic sort
algorithm is O(nlog(n)2) but the idea is to run it on n Cuda threads, reducing
the runtime to O(log(n)2) for each thread.



System dependencies

The system requires OpenCV and Boost to run the camera tracking software.
An internet connection is also required for the camera tracking software to run
because the information of each robot is sent via UDP to the IP address specified
in the configuration file. The internet connection is required even if the UDP
packets are sent to itself via loopback IP, without a valid internet connection,
the camera tracking software will crash. Slick2D java game library is used to run
the simulator and to run the watcher software. The watcher software also needs
RXTXComm to be able to communicate with the robot using the serial port.

The robots’ code runs on an Arduino micro and are therefore programmed
using the Arduino language and C++. The ChIRP library files are required to
communicate with the sensors and the motors. An Arduino Uno can be used to
program the microcontrollers on the robot.
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Video results

It is hard to tell if the robots are behaving like they are supposed to by only
looking at graphs and interpreting them. Videos of a random run per scenario
was created because of this. All the videos were filmed using a mobile phone.
The QR-code can be used to get access to the links without the need to type
them out. All of the QR-code were generated using http://goqr.me/. All of the
videos were filmed from the other side of the room, and will therefore be mirrored
and upside down compared to the images shown in 4.2.
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.3 Scenario 1

https://www.youtube.com/watch?v=bM8l8bkL49I

https://www.youtube.com/watch?v=bM8l8bkL49I
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.4 Scenario 2

https://www.youtube.com/watch?v=yAYImaH spA

https://www.youtube.com/watch?v=yAYImaH_spA
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.5 Scenario 3

https://www.youtube.com/watch?v=AgzKlR0NMgI

This video is not three minutes long, because someone was calling the phone,
therefore the video got cut short.

https://www.youtube.com/watch?v=AgzKlR0NMgI
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