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Abstract

In this thesis we improve upon the traditional smart phone remote control system
for smart homes by adding a predictive component to the user interface. Our
goal is to minimize the time it takes for the user to interact with smart home
devices through the remote control. To achieve this goal, we locate and compare
two prediction algorithms with regards to keeping the system fast and battery-
friendly. Additionally, we explore the capabilities of the Android user interface
to utilize prediction in a way that minimizes interaction time. We find that
we can best utilize prediction in the user interface by keeping the most likely
devices on the lock screen, through the use of Android’s expanded notification
functionality. A separate app screen is accessed when the device can not be found
in the expanded notification.

To validate our system, we build a model of our system and a separate com-
mercial system, which we then compare with regard to the time metric. The
results show that our system is faster in most cases.

Our work proves that with little extra effort, it is possible to decrease the user
interaction time by several seconds in a smart phone remote control system for
smart homes.
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Chapter 1

Introduction

The decreasing cost and miniaturization of networked computer chips make it
more feasible to embed them into continuously cheaper objects. This is one of
the key factors behind a growing trend, called the Internet of Things (IoT). The
Smart Home field is closely related to the IoT. It is driven in large part by the
promise of increasing comfort and energy efficiency in homes.

As we add networking capabilities to the objects around us, we gain a more
fine-grained control of our environment. By increasing the contact area inter-
secting the physical and the computational world, we amplify the potential of
software to reason about, and interact with, the physical world.

This control can be harnessed to automate menial tasks, gather useful data,
and make more informed decisions. When our programs can access information
about the objects that surrounds us, we in turn, gain the ability to reason about
our environment to a much greater degree.

Several vendors have already entered the smart home sector. Most of them
use smart phones as a remote control unit for their smart home solution. In
addition, many new smart home devices have open standards for communicating
with other devices, yielding the potential to control all the devices in the house
from a single smart phone app.

Apps are the fundamental way to expand the feature set of a smart phone.
They are programs that can be started in much the same way you would start a
program from the desktop on your computer. The problem with this approach
is that if you only want to perform a small task, having to open an app is a
significant overhead compared to the time it takes to complete the task if the
app is already active on the phone.

The user already knows what he or she wants when they reach for the remote
control. Therefore, the goal of a smart phone remote control must be to minimize
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the time spent by the user trying to find the right thing. In the regular app model,
too many of the required swipes and button presses are incidental to what the
user set out to accomplish.

In the context of a smart home, think of a light bulb in your bedroom. To
turn it off manually, you just have to walk over to wherever the light switch is
situated, and flip the switch. This is usually faster than pulling out your smart
phone, finding the correct app, waiting for the app to load, then finding and
pressing the light bulb icon. As a party trick, turning off your lights from your
phone might still have its merits. If we want it to replace the light switch on the
wall though, it will have to be faster for the user than getting off the couch and
flipping the switch on the wall.

Fortunately, we have not yet exhausted the capabilities of the smart phone
as a remote control. In the next section, we present a small overview of the
motivation for this thesis.

1.1 Motivation

This thesis is motivated by a desire to create a better remote control system for
smart homes.

Most remote control systems that exist on mobile phones exist as just another
app, with little to no regard for what a user wants from a remote control system.
There are some metrics that can and should be optimized for, most important is
minimizing user interaction time. When a user interacts with a remote control,
he or she already has a goal in mind, and the job of the remote control is to
minimize the time required for the user to fulfill his or her goal.

We can optimize for time by simultaneously considering how prediction algo-
rithms can aid the user in finding the right device, and finding a user interface
representation that maximizes the utility of such an algorithm.

To create a system that can run on a smart phone, we need to emphasize the
run-time and computational complexity of our solution. Since the system runs
locally, it has to scale well with the data.

Lastly, we want to create a system that will work primarily on the Android
platform.

1.2 Scenarios

The following scenarios shows how the our system can be used to reduce the
interaction time.

Finn is going to sleep and wants to turn off the lights in his bedroom. He
has already turned off the other lights in his house, which is stored in his recent
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history. His smart remote app uses this history to calculate the most likely actions
based on the model it has built from his previous interactions, and displays a
“Bedroom Light” item along with the other most likely devices on the lock-
screen. Finn then taps the “Bedroom Lights” item, which turn off the lights in
his bedroom. The system stores this action in the history, updates the model,
and displays the most likely devices based on the new information.

Janne wants to turn on the TV as she enters the house after a long day at
work. The last thing she did before she left the house was to turn off all the
lights. Since Janne normally either turns on her TV or goes to make a cup of
tea when she comes home from work, her smart remote app displays “TV” on
the top of the list of likely action, just over “Kitchen Light”. She taps “TV” and
goes to make herself a cup of tea. Since the prediction algorithm updates the
most likely items continuously, the item at the top of the list is now “Kitchen
Light”.

1.3 Goals

Goal To design a fast smart phone remote control system for smart homes by
adding a predictive element.

Our goal is to improve on smart phone remote control systems for smart
homes by combining a sequential prediction algorithm with a new user interface
design to reduce the time it takes the user to interact with smart home devices.

Sub-goal 1 Compare two sequential prediction algorithms with respect to our
mobile architecture.

We compare two algorithms with respect to how well they scale on a plat-
form that is battery-operated and has limited computational resources.

Sub-goal 2 Design and model a user interface that minimizes user interaction
time by using Natural GOMS Language (NGOMSL).

We build a user interface model to minimize the time it takes the user to
interact with our system, focusing on the Android platform.

Sub-goal 3 Compare our design against a commercial smart home remote con-
trol app by using NGOMSL.

Lastly, we compare our model against a commercial smart home remote
control app by using NGOMSL to determine if our design is faster to in-
teract with.
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1.4 Research Method

The goals described in the previous section will be approached in the following
manner. First, we will expand on the desired algorithm characteristics. We then
explore and compare two algorithms that fit our criteria, focusing on keeping the
battery drain as small as possible.

Second, we then explore the user interface possibilities afforded by the Android
platform to find the best user interface representation that respects the time of
the user. We then create a mock-up user interface design and a NGOMSL model
that utilizes the Android user interface.

Lastly, we compare the NGOMSL model of our system to a baseline smart
remote app, with respect to the time it takes to accomplish a task for the user in
each system.

1.5 Thesis Structure

In chapter 2 we explore two different algorithms for sequential prediction that
fit our criteria. Then, in chapter 3, we look at a system for modelling a user
interface for our system and explore the user interface capabilities of the Android
platform.

In chapter 4 we create a model of a system that minimizes the time spent by
the user, through merging user interface design with sequential prediction.

Ultimately, we want to know if prediction can improve on existing smart
home remote controls. We accomplish this by comparing our proposed system
using NGOMSL to a commercial remote control app in chapter 5. Finally, we
summarize our results in chapter 6.

The appendices contain the models and NGOMSL model executions traces
for our prediction app and the commercial app that is used as a baseline.



Chapter 2

Algorithms

Algorithms that have been proposed for smart homes come primarily from the
fields of data compression [Gopalratnam and Cook, 2007], artificial neural net-
works [Mozer, 1998], fuzzy logic [Anagnostopoulos and Hadjiefthymiades, 2009],
Bayesian statistics [Wu and Fu, 2012], Markov logic networks [Wu and Agha-
jan, 2011] and machine learning. However, only a subset of these are fit to run
on a smart phone architecture. We want to use an algorithm that satisfies the
constraints we inherit from a system where energy consumption carries a high
premium. Our algorithm should be accurate, but it is also important that it does
not gut the battery life, which is somewhat of a cardinal sin when it comes to
smart phone processes.

The algorithm needs to be capable of online learning, incrementally building
the model on which it draws its predictive power. As the user interacts with the
devices, we need to update the model to reflect changing patterns of behaviour, if
this model is continuously updated, then we do not have to worry about the model
getting out of date. An offline prediction algorithm would need to recalculate
the model fairly often to stay accurate, which is too costly without tweaking
additional parameters.

So we want an online sequence prediction algorithm, that draws as little power
as possible, and has high prediction accuracy. Additionally, we will focus only
on the binary on and off state of the devices, to simplify the initial model. We
further expand upon the desired characteristics of our model in the next section.

2.1 Desired Algorithm Characteristics

[Sun, 2001] characterizes learning models along several major dimensions. We
expand upon some of these dimensions with the desired characteristics of our

5
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sequence prediction algorithm.

• Learning paradigm

Supervised, unsupervised, reinforcement or knowledge based.

We do not want the user to find the system annoying. The system must
therefore be able to learn without feedback from the user. We assume that
we are able to gather information about the state of the devices in the smart
home without querying the user. As a result, our system only depends on
the sequence of state changes in the environment.

• Implementation paradigm

Neural networks, lookup tables, or symbolic rules.

Any system that is going to perform on a mobile system must take into
consideration the battery drain resulting from computation. The system
must effectively balance computational complexity against the utility of the
system. Most importantly, the model must update quickly, which rules out
slower models. We want an online prediction system.

• Deterministic or probabilistic

Can the next element be determined.

Whether human behavior is deterministic or not is out of scope for this
thesis. Since we cannot expect to know which device the user will interact
with next, the algorithm needs to be probabilistic.

• Markovian or non-Markovian

Does the Markov property hold for the world.

The Markov property is assumed to hold for our world, since we have to
predict solely based on a sequence of previous events.

• Closed-loop or open-loop

The algorithm can only predict using the previous history of events in the
smart home. This leads to a closed-loop system.

• Action and action policy

If the model takes action, then is the action policy deterministic or stochas-
tic.

The model recalculates the most likely devices every time the user interacts
with a device. These predictions are then used to update the user interface.
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• Applicable domains

Where can this model be applied.

We want a model that can be applied to smart home data first and foremost.
Preferably something that can take into consideration some of the special
characteristics of the data, like time or device state.

2.2 Active LeZi

One algorithm that fits our criteria is the ALZ algorithm. This algorithm was first
presented in [Gopalratnam et al., 2003] as an algorithm based on the LZ78 family
of compression algorithms, which gives it very good run-time characteristics.

Consider a text being run through a compression algorithm. The goal is to
compress the text down to its minimum size while still retaining the information
in that text. In essence, this can be thought of as predicting future sequences
based on the past observed history.

A compression algorithm consists of both an encoder and a decoder. This
means that any sequence encoded by the algorithm has to be able to be decoded
into the same sequence by the decoder. For prediction however, we are not
interested in being able to retrieve the original sequence. This allows us to shed
some constraints on how much of the information contained in the sequence we
can use to build a predictor model.

As an example, let us consider the following sequence:

aabcdeeeaaadabccdaaa

If we encode this sequence using the LZ78 compression algorithm [Ziv and Lem-
pel, 1978], we end up with steps seen in table 2.1 and the tree seen in figure
2.1. This tree is an approximation of a order-k-1 Markov model – where k is the
longest LZ phrase seen – except it is sparser, since it does not utilize information
that crosses phrase boundaries.

Information theory states that optimal predictability occurs if the order of a
predictor model grows at a rate approximate to the entropy rate of the sequence
source. [Feder et al., 1992] shows that Markov predictors based on the LZ78
compression algorithm family attains optimal predictability. This, along with the
fact that LZ78 is an incremental parser, which means it has real-time properties,
are the theoretical underpinnings for the ALZ algorithm.

2.2.1 Learning Procedure

ALZ [Gopalratnam et al., 2003] supplements the LZ78 dictionary approach with
a sliding window, which expands in relation to the length of the longest LZ



8 CHAPTER 2. ALGORITHMS

Step Position Dictionary Output
1 1 a (0,a)
2 2 ab (1,a)
3 4 c (0,c)
4 5 d (0,d)
5 6 e (0,e)
6 7 ee (6,e)
7 9 aa (1,a)
8 11 ad (1,d)
9 13 abc (2,c)
10 16 cd (4,d)
11 18 aaa (9,a)

Table 2.1: LZ78 simulation of the sequence “aabcdeeeaaadabccdaaa”.

Figure 2.1: LZ78 model after parsing “aabcdeeeaaadabccdaaa”.
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sequence. By using a sliding window, we ensure that we capture contexts that
cross the phrase boundaries of the regular LZ78 algorithm, thereby constructing
a more complete order-k-1 Markov model, where k is the longest LZ phrase seen
so far. This window starts out small, and grows with the length of the sequence.
This is to ensure that information can be gathered about the relative frequency
counts at each order, while still attaining a high prediction accuracy.

Algorithm 1 ALZ algorithm

dictionary ← null
phrase w ← null
window ← null
Max LZ length← 0
while v = next symbol do
if (w+v) in dictionary then
w = w + v

else
add (w+v) to dictionary
update Max LZ length if necessary
w = null

end if
window = window + v
if length(window) > Max LZ length then

delete window[0]
end if
Update frequencies of all possible suffixes within window

end while

As seen in algorithm 1, the learning procedure keeps track of a number of
previous symbols in a window, up to max LZ length, the length of the longest
LZ phrase, and the current phrase. For each input symbol, the algorithm checks
if the current phrase plus the new symbol is part of the dictionary. If it is, then it
updates the phrase to be the old phrase plus the new symbol. If the phrase plus
the new symbol does not exist in the dictionary however, then it is added to the
dictionary, the max LZ length is updated if the phrase is longer than the current
max LZ length, and finally, the phrase is reset to contain no symbols. After that
has been done, the symbol is added to the window. Next, the algorithm checks if
the window is greater than the max LZ length. If it is, then it removes the oldest
symbol, before it lastly updates all the frequencies of the contexts contained in
the new window.
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Step Window Phrase Contexts Max LZ length
1 a a a 1
2 a a a 1
3 ab ab ab, b 2
4 bc c bc, c 2
5 cd d cd, d 2
6 de e de, e 2
7 ee e ee, e 2
8 ee ee ee, e 2
9 ea a ea, a 2
10 aa aa aa, a 2
11 aa a aa, a 2
12 ad ad ad, d 2
13 da a da, a 2
14 ab ab ab, b 2
15 abc abc abc, bc, c 3
16 bcc c bcc, cc, c 3
17 ccd cd ccd, cd, d 3
18 cda a cda, da, a 3
19 daa aa daa, aa, a 3
20 aaa aaa aaa, aa, a 3

Table 2.2: ALZ simulation of the sequence “aabcdeeeaaadabccdaaa”.

2.2.2 Example

Using the same example as for LZ78, we step through the ALZ algorithm in 2.2
and visualize the resulting tree in figure 2.2. If we compare the two trees in figures
2.1 and 2.2, we can see that figure 2.2 has a more complete and dense structure.
This enables ALZ to converge to optimal predictability much faster than LZ78.

2.2.3 Complexity

In the worst case, the number of nodes in the ALZ tree is O(n2/3). This situation
occurs when each new sequence is a continuation of the previous sequence and
one additional symbol. For example, ”a ab abc abcd abcde” (without spaces)
would be such a sequence. In reality though, the number of nodes grow at a
slower pace. This is because the worst case example above will be interspersed
with shorter phrases, that merely fill out the tree. For a k-order tree, and a fixed
alphabet size n, the algorithm is completing the n-ary tree of depth k, which
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Figure 2.2: ALZ model after parsing “aabcdeeeaaadabccdaaa”.

brings the space requirements close to a linear O(n). This can be seen in table
2.2 where we see the window size increase at a much slower rate than the worst
case identified above.

The time complexity is the same as for the number of nodes, O(n2/3). This
is the sequence that will generate the most frequency updates and node creation
out of all possible sequences. Just as for the number of nodes though, the authors
observed that the time complexity is closer to O(n).

2.2.4 ALZ-TDAG

Transition Directed Acyclic Graph (TDAG) is another Markov-based approach
to the problem of discrete sequence prediction, first described in [Laird and Saul,
1994]. This algorihm uses user-defined parameters to tweak the run-time and
memory characteristics.

TDAG is suitable for online prediction, since we can simply tweak the user
parameters to control the run-time of the prediction element. However, it is not
sensitive to concept drift, meaning it is not able to register changes in existing
patterns. Its predictions are generated from the highest-order reliable model and
it does not weigh recent events more heavily like ALZ does. In a smart home
setting, this means that the algorithm will perform worse as the inhabitant’s pat-
terns change over time. This is a highly unwanted characteristic for a persistent
smart home system.

In [Gopalratnam and Cook, 2007], the authors found that the TDAG algo-
rithm can be used for implementing ALZ, by tuning the user-defined parameters
to create the same Markov model as ALZ.

The poor concept drift handling of TDAG is alleviated by adopting the tree
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depth conditional of the ALZ algorithm. This way, we create the same Markov
tree as ALZ, but we keep the run-time characteristics of the TDAG algorithm,
which gives us the run-time complexity O(

√
n), down from ALZs O(n2/3). This

improvement is possible because while the ALZ algorithm has to consider every
node at every level in the Markov tree up to order k-1, the TDAG algorithm
stores exactly the nodes that are needed for updating the model and predicting
symbols.

Essentially, this means that we create the same result as in ALZ but we reduce
the run-time complexity, without adding any any drawbacks elsewhere.

2.3 SPEED

Another algorithm that fits the criteria we identified in section 2.1 is the SPEED
algorithm.

To predict well, we have to have a good grasp of the patterns that give rise
to the data in the first place. The closer we can model the source, the better our
accuracy will be. In a smart home, we will not only have information about the
times when the devices are interacted with, but also the state of those devices at
that time. So far, the algorithms we have looked at considers the on and off states
of a device to be two entirely separate event, with no link between them. This
can be rectified by taking advantage of this link between states in our algorithm,
specializing the algorithm to this particular kind of data.

[Alam et al., 2012] introduces the sequence prediction via enhanced episode
discovery (SPEED) algorithm. As the name suggests, SPEED uses the device
state information to find episodes, which are sequences of events in between the
on and off state of a device.

The basis for this model is that a user typically has some routines that can be
captured by looking at the state of the devices they interact with. For example,
when a user enters the kitchen, the first thing they do will probably be to turn
on the kitchen light. Then, any activity performed in the interval of the kitchen
light turning on and off is part of an episode.

The model created by SPEED consists of these episodes. Say we have a
sequence of events “AbcDEda”, where capitalized letters mean on and lower-
case letters mean off. Then SPEED will detect two episodes from this sequence,
“AbcDEda” and “DEd”, which have boundaries of opposite events.

2.3.1 Learning procedure

SPEED creates a decision tree to keep track of the episodes it finds. The learning
procedure keeps track of a window containing symbols and the maximum length
of the episodes seen so far called max window length. At every iteration, the
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algorithm takes in a new symbol from the input stream, adds it to the window,
and checks to see if the opposite version of that symbol exists in the window. For
example, if the algorithm takes in a “d” and the window consists of “cDe” so far,
then the resulting window will be “cDed”, which gives an episode consisting of
“Ded”. The algorithm then updates max window length if the current episode is
longer than all the previous ones. This is used to prune the window after finding
an episode. Next, the algorithm retrieves all the suffixes from the episode, which
is how ALZ also builds its model. These suffixes are used to create new nodes and
update the frequencies of all possible contexts found in the episode. If the input
symbol does not match an opposite symbol in the window, then the algorithm
returns and waits until it gets a new symbol.

The algorithm builds a k-1th order Markov model, where the k is the longest
possible episode length. The tree that the algorithm creates has a maximum
depth of k levels, and contains the frequencies of all the contexts gathered from
the episodes. From these frequencies, we can build a probability distribution of
all the symbols, which we can use to predict the most likely devices that will be
interacted with by the user.

2.3.2 Example

Let us consider an example sequence to simulate the SPEED algorithm:

AbaCdBADceECdb

To signify the on and off states of the devices, we use uppercase symbols to
signify on, and lowercase symbols to signify off. For example, “A” means on for
a particular device, while “a” means off for that same device.

SPEED constructs a tree with long Markov chains and high density, which
according to [Alam et al., 2012] provides a higher prediction accuracy than a tree
with less density and shorter chains. The model in figure 2.3 has long Markov
chains but has not yet started to grow dense, which will happen when more
episodes have been processed. We can immediately see the difference from the
ALZ tree in figure 2.2, which produces a shorter tree with fewer branches.

2.3.3 Complexity

The worst case for the number of nodes in the tree is O(n2). This will occur when
the entire sequence is one episode, with no sub-episodes in between. For example,
take the sequence “adiehkbcfA”. In this sequence, there is only one episode that
spans the entire sequence. The tree created from this episode has n(n + 1)/2
nodes, which yields the worst case for the number of nodes in the tree.

Time complexity is similar, since the worst case here also occurs when there
is a long sequence that forms an episode with no sub-episodes in between. If the
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Step Window before Episode Contexts Max
episode
length

Window
after

1 A - - 1 -
2 Ab - - 1 -
3 Aba Aba Aba, ba, a 3 Aba
4 AbaC - - 3 -
5 AbaCd - - 3 -
6 AbaCdB baCdB baCdB, aCdB, CdB, dB,

B
5 baCdB

7 baCdBA aCdBA aCdBA, CdBA, dBA, BA,
A

5 aCdBA

8 aCdBAD dBAD dBAD, BAD, AD, D 5 CdBAD
9 CdBADc CdBADc CdBADc, dBADc, BADc,

ADc, Dc, c
6 CdBADc

10 CdBADce - - 6 -
11 CdBADceE eE eE, E 6 BADceE
12 BADceEC ceEC ceEC, eEC, EC, C 6 ADceEC
13 ADceECd DceECd DceECd, ceECd, eECd,

ECd, Cd, d
6 DceECd

14 ADceECdb - - 6 -

Table 2.3: SPEED simulation of the sequence “AbaCdBADceECdb”.
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Figure 2.3: Model after parsing “AbaCdBADceECdb”.
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sequence consists of an episode with n symbols, then the algorithm has to search
all the branches, and update the frequency of every node of each branch. The
time required is then n(n+1)/2. Which is the same time complexity as for the
space complexity, O(n2).

2.4 Prediction by Partial Match

Both ALZ and SPEED construct a Markov tree model, and they both utilize the
same Prediction by Partial Match (PPM) strategy to predict the next event in
the sequence.

We want to take into account as much information as possible when making
predictions. Therefore we want to predict using the longest possible Markov-
chain that matches our current context. But the longest chain is also necessarily
the one with the fewest branches leading out from it, making it hard to give a
good prediction from solely that context.

Say we have a 9-symbol context. Depending on the total number of symbols,
it will take a huge amount of input to adequately flesh out the possible 10-
symbol contexts branching out from our 9-symbol context. This means that any
predictions made from solely the 9-symbol context will have a poor accuracy. We
need a way to ensure that we consider symbols that does not yet branch from
our current 9-symbol context. This is where PPM [Bell et al., 1990] comes in.

PPM is a general blending scheme. It uses different-order Markov models to
build a probability distribution. The main difference between the PPM imple-
mentations has to do with how they determine the escape probability, which is
the probability that a previously unseen symbol at this context will be the next
one in the sequence. ALZ and SPEED both use the PPM strategy of exclusion,
which escapes to the k-1 order context based on the ratio of null outcomes to all
possible outcomes. In general, the PPM equation is as follows:

P (ϕ) = pk(ϕ) + ek(ϕ)Pk−1(ϕ) (2.1)

p(ϕ) =
ck
C

(2.2)

ek =
c0
C

(2.3)

Where Pk(ϕ) is the final probability, pk(ϕ) is the probability of the symbol ϕ in
the current context, ek(ϕ) is the escape probability, and Pk−1(ϕ) the probability
of the symbol at the k-1 phase. C refers to the total number of sequences of
length k-1. ck is the count of event ϕ at sequence length k. and c0 is the number
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of null outcomes, which are all the outcomes that do not end in a symbol for the
given context.

Let us see an example using the graph we created using ALZ in figure 2.2. We
assume the current window is “abc”. The contexts that can be used for prediction
then are “ab”, “a”, and the null context. If we want to find the likelihood that
the next symbol in the sequence is “c”, then we can calculate it using equation
2.1, and the frequencies from the graph in figure 2.2.

1

2
+

1

2
×
(0

9
+

2

9
×
( 3

20

))
= 0.516. (2.4)

We can also predict the chance of seeing “a” from the same window:

0

2
+

1

2
×
(4

9
+

2

9
×
( 9

20

))
= 0.272. (2.5)

We can predict all the possible symbols from the current window context
using equation 2.1. By using the exclusion strategy, we ensure that the lower
order nodes also get taken into account, but with reduced influence equal to the
fraction of null outcomes. This, coupled with a gradual increase in the Markov
order of the ALZ and SPEED models, means that both algorithms are able to
respond to changes in user’s patterns over time.

The difference between ALZ and SPEED with regards to PPM prediction is
that the TDAG base for ALZ already stores pointers to the nodes that are used
for prediction, while SPEED has to search through the tree to find the relevant
nodes. This takes longer, and means that ALZ is faster at predicting the next
event in any given context.

2.5 Comparison

[Alam et al., 2012] has compared the prediction accuracy, space complexity and
time complexity of the ALZ algorithm and the SPEED algorithm on the MavLab
data set1. This data set was gathered over a month in the MavLab at University
of Texas, Arlington. It consists of 750 events, based on the device interactions of
six participants during the month of April 2003.

[Alam et al., 2012] finds that the SPEED algorithm achieves prediction accu-
racy of 88.3 percent, up from the prediction accuracy of ALZ which is 47 percent
[Gopalratnam et al., 2003] on the same data set. For the five most likely devices,
the accuracy of ALZ rises to 89 percent, about the same as the SPEED accuracy
for a single item. We do not have the accuracy of SPEED on the five most likely
devices, but it is safe to assume that it is above 90 percent.

1http://ailab.wsu.edu/mavhome/datasets/mavlab.zip
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Figure 2.4: Space comparison of ALZ and SPEED (adapted from [Alam et al.,
2012]).

If all we are concerned with is the accuracy of our predictions, we can conclude
that SPEED is a better algorithm. However, as mentioned in the introduction of
chapter 2, we place a high premium on computational power for mobile devices.
We can see in figure 2.4 that the space requirements for SPEED is approximately
2.5 times greater than for ALZ when it has been trained on the MavLab data set.
As we saw in section 2.3.3 and 2.2.3, the run-time complexity of both algorithms
scale in the same manner as their respective space complexity, amounting to the
worst case O(n2) for SPEED, and O(n2/3) for ALZ.

However, as explored in section 2.2.4, by using the TDAG base algorithm for
ALZ, we keep references to the exact nodes that are needed to build the model
and predict the next symbol in the sequence. This allows the algorithm to predict
a symbol in O(

√
n) time.

SPEED bests ALZ in prediction accuracy, but if we compare the computa-
tional footprints of our two algorithms, ALZ scales better than SPEED. The
SPEED algorithm has a maximum of 11 percentage points better prediction ac-
curacy on the five most likely devices. This small gain in prediction accuracy
does not justify the greater time and space complexity of SPEED over ALZ for
our usage. We have to value battery life more than the small increase in predic-
tion accuracy. We will see in section 5.2 that even with 100 percent prediction
accuracy, we only get a slight improvement over ALZ with regards to minimizing
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the interaction time.

2.6 Related Work

In this section we will look at similar solutions for predictive remote control
system. We will look closer at one paper in particular, that explores several
algorithms and compares their performance.

2.6.1 Automated Selection of Remote Control Interfaces

[Desai et al., 2002] addresses the “active device resolution” problem. From any
number of devices, which one does the user want to interact with next? The
authors aims to solve this problem by taking into account the previous remote
control access history of the user and the current user context, which is exactly
what we are trying to do with our system. Four different prediction algorithms
are compared with respect to their accuracy and their run-time performance.

The authors tests Markov processes of the 1st to the 3rd order. Using only
the previous event, the algorithm achieves a result of 68 percent. The 2nd order
gives an accuracy of 76 percent. The 3rd order decreases to 65 percent however,
which according to the authors might be due to the noise in the third previous
action of the user, which makes sense given that there are only 4 devices.

Naive Bayes performs with similar accuracy to the Markov processes when
using the previous two events. It handles noise in the data better as well, since
using the three previous events outperforms the 3rd order Markov process. The
run-time of Naive Bayes is fast as well, making it a good choice for a real-time
system algorithm.

The nearest neighbour algorithm produces very good results on the test set,
achieving an accuracy of 94 percent. Unfortunately, it is also the slowest of
the algorithms tested. It is too slow to perform in real-time, which makes it
unsuitable for our purposes.

The decision tree accuracy is approximately 20 percent worse than the nearest
neighbour algorithm. Although the run-time is better than nearest neighbour, it
is still too slow for any real-time use according to the paper.

This paper highlights the importance of choosing the right algorithm. We
want high prediction accuracy, since that will decrease the time spent searching
for the right device. But we also have to consider the landscape where our solution
is embedded. A nearest neighbour algorithm might have the highest prediction
accuracy, but if it takes too long to build its model, it will slow down the user
interface or use too much power. The difference to our approach is that the
authors do not address the user interface, and are not concerned with optimizing
for the time of the user.
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2.6.2 MavHome

MavHome [Cook et al., 2003] is a smart home project from the University of
Texas, Arlington. The goal of the MavHome project is to create a home that
acts as a rational agent, maximizing inhabitants comfort and minimizing the
operation cost. It does this by predicting and reasoning about its inhabitants.
The prediction layer utilizes three algorithms, ALZ among others, to create a
meta-predictor that predicts the next action of the inhabitant. This is then used
to automate repetitive and routine tasks.

This approach is a little more involved than our own. Where MavHome seeks
to create a rational agent that can automate and reason about the inhabitants
actions, our system is focused on providing the user with the most direct access
to the devices in his home, disregarding automation capabilities and reasoning
beyond predicting the next device that the user wants to interact with.



Chapter 3

User Interface

We want to know how our user interface design stacks up against one of the
current smart phone remote control systems on the market, therefore we need
a technique that allows us to compare two user interfaces with respect to how
much time it takes to complete specific tasks with each of them. The best way
to do this would be an empirical user test. Unfortunately, this is an expensive
technique, and slightly unnecessary since we have an alternative that is good
enough for our purposes.

3.1 NGOMSL

In 1983, the Goals, Operators, Methods, Selection rules. (GOMS) model [Card
et al., 1983] was proposed. The GOMS model aims to remedy the cost of running
an empirical user test, by constructing an engineering model for usability. This
allows us to design and test a user interface model without involving several users
over multiple design iterations, which takes up a lot of time and resources.

The GOMS model reduces a users actions with a system down to its basic
elements. These basic elements – physical, perceptual and cognitive – are then
used as the framework in which to study the system.

A GOMS model consists of Goals, which is what the user wants to accomplish.
Operators, which are the actions the user performs to reach the goal. Methods,
which are the procedures containing operators, and lastly, Selection rules, which
can be used to distinguish which method to use when there are several different
methods for completing the same goal. The model we create is not only descrip-
tive, but also executable. This means that we can model our system and compare
the execution times with another model without running an expensive user test.

Several different GOMS models exist within the GOMS family. The simplest

21
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one is KLM, which describes a user’s interaction with the user interface at the
“keystroke” level. On the other side of the complexity scale is CPM-GOMS,
which is the only GOMS technique that can model multitasking behaviour in
experienced users.

A third method that lies in between these two is the NGOMSL [Kieras, 1996]
method. NGOMSL is a structured natural language for explicitly representing
the methods and selection rules of the user. It adds a natural language syntax
on top of GOMS to make it simpler to use. This is the method we will use to
model and compare the user interfaces in chapter 4 and 5.

3.1.1 Example

To perform a NGOMSL analysis, we need to identify and describe the model’s
various goals, operators, methods and selection rules. A critical process involves
deciding what to describe and what not to describe. If we go too far down, we
will be stuck creating methods that might be too granular for our purpose. For
example, a mental process like reading would be very hard to describe properly.
Therefore, we can replace it with a simpler operator that approximates the pro-
cess, instead of trying to create a realistic model with basis in ocular mechanics.
As long as we are only trying to model a user interface, the effort is better spent
elsewhere.

Let us consider an example NGOMSL model made using the guide [Kieras,
1996]. The user’s goals are to delete one file, and duplicate one file in the OS X
operating system. First we decompose the goals into methods:

Method for goal: delete file.

1. Accomplish goal: delete file using context menu.

2. Return with goal accomplished.

Method for goal: duplicate file.

1. Accomplish goal: duplicate file using context menu.

2. Return with goal accomplished.

Both of these methods use the context menu to accomplish their goals. These
methods only differ in the icon that is selected from the context menu, which
makes it possible to replace both the sub-methods with a generalized method:

Method for goal: delete file using context menu.

1. Accomplish goal: perform action on item using context menu.

2. Return with goal accomplished.

Method for goal: duplicate file using context menu.

1. Accomplish goal: perform action on item using context menu.

2. Return with goal accomplished.
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Figure 3.1: A context menu in OS X.
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Method for goal: perform action on item using context menu.

1. Locate item on screen.

2. Move cursor to item location.

3. Right click item.

4. Locate action item in drop down menu.

5. Move cursor to action item location.

6. Click mouse button.

7. Verify that action was performed on item.

8. Return with goal accomplished.

Some times there are several ways to accomplish a given goal. Selection rules
can then be used to describe a choice between two or more alternatives. In the
example above, we delete the item using the context menu. However, this is
also an action that can be done by dragging the item to the trash icon. As an
example, let us say that the user is more likely to drag the item to the trash if
the trash icon is visible on the screen. Then we can create a selection rule out of
the delete file method.

Selection rule set for goal: delete file.

If trash icon is visible on screen Then

accomplish goal: drag item to trash.

If trash icon is not visible on screen Then

accomplish goal: delete file using context menu.

If we want to estimate the time it takes to complete a task using this model, we
can simply walk through it. Typically there is a main method that is responsible
for retrieving tasks, and a selection rule set that is responsible for delegating the
tasks to the proper methods.

Method for goal: OS X file operations

1. Get next unit task from task list.

2. Decide: If no more tasks, then return with goal accomplished.

3. Accomplish goal: perform unit task.

4. Goto 1.

Selection rule set for goal: perform unit task.

If the task is deleting an file Then

accomplish goal: delete file.

If the task is duplicating a file Then

accomplish goal: duplicate file.

Now we have all the methods we need for finding the time it takes to delete
a file in our model.
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Task: Delete item

Assumptions:

The finder application is open on screen.

The Trash icon is not visible on screen.

Trace:

1. Accomplish goal: delete file.

2. Accomplish goal: delete file using context menu.

3. Locate item on screen. (M)

4. Move cursor to item location. (P)

5. Right click item. (BB)

6. Locate action item in drop down menu. (M)

7. Move cursor to action item location. (P)

8. Click mouse button. (BB)

9. Verify that action was performed on item. (M)

2 M + 2 P + 4 B + 9 statements

= 2 * 1200 ms + 2 * 1100 ms + 4 * 100 ms + 9 * 100 ms

= 5900 ms

Six seconds is an abnormally long time for deleting a file. When this same
procedure was tested on a real computer, it took approximately four seconds to
complete. The discrepancy mostly comes from the time it takes to find and select
the correct item in the context menu. The 1100 ms P operator is from KLM and
is estimated based on large moves across the screen to small targets.

When we open a context menu, there is only a small area close to the cursor
that is of interest to us, which makes the distance we have to move the cursor
much shorter. In addition, for an experienced user, some operations do not really
take any time at all, as the user overlaps these operators with other activities.
For example, an experienced user knows that the context menu pops up on the
right-hand side of the cursor, and that the ”Move to Trash” item is located as
the second item in the list. Therefore, they do not need to spend time mentally
processing where to move the cursor next. By the time the user has opened the
context menu, they are already moving the cursor to the correct item.

If we replace the corresponding actions at step 6 and 7 with a simple move
of 0.5s, then the resulting time becomes 4000 ms, which is the time it took when
testing the same procedure on the author’s Macbook Pro.

As we can see from the example above, modeling with NGOMSL can be ac-
curate as long as we take into account how experienced our user is, and choose
the best operators for our system. In many cases, a P action will take signifi-
cantly lower time than the KLM estimate of 1100 ms. If our buttons are closely
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Short untargetted swipe 70 ms
Icon pointing from the home screen 80 ms
Half-screen sized zoom 200 ms

Table 3.1: Touch-screen specific KLM operators.

grouped, it may take anything from 200 - 500 ms instead. For a touch screen, the
discrepancy between the KLM estimated execution times and actual execution
times is even more pronounced.

3.1.2 Touch Interface Operators

GOMS was originally created as a model for desktop computers with a keyboard
and a mouse. The challenge when moving to touch-based interfaces is that some
of the execution times estimated for a desktop computing model do not translate
well to a touch-display.

The discrepancy is more pronounced when pointing to an object on screen.
For example, modeling an untargetted swipe using the regular KLM operators
designed for mouse and keyboard would require 3 operators: Touch down, Point
to a target on screen, and Touch up. Together, this gives an estimated time of
0.1s + 1.1s + 0.1s = 1.3 seconds. This is inaccurate by at least one order of
magnitude. Fortunately, [Batran and Dunlop, 2014] explores the KLM model on
mobile touchscreen devices, and has come up with 3 new movement operators,
seen in table 3.1, to remedy some of the flaws when translating from a mouse-
based interface to a touch-based interface.

When using a mouse, we place a level of indirection between us and the
interface, which makes it slower than if we were to point directly to the object
on the screen using our finger. In addition, a smart phone screen is much smaller
than a computer screen, with larger buttons relative to the screen. Therefore the
time it takes to perform action related to pointing and swiping are significantly
reduced on a touch-based user interface.

3.1.3 Related Work

The GOMS method has been in a wide variety of fields. For instance, it was
used to create a training program for a cockpit Control and Display Unit (CDU)
in [Polson et al., 1994]. By using cognitive complexity theory and GOMS, the
authors identified and modelled specific tasks as a collection of highly detailed
rules, containing both the mental operations performed by the user, as well as the
key presses needed to complete specific tasks. The resulting model was then able
to make accurate predictions about training time, and the time it took to transfer
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knowledge from an old cockpit system, to the new CDU system. Additionally,
it was also used as the basis for a training program, allowing a pilot to practice
various tasks in isolation from the rest of the CDU system.

A different field that the GOMS method has been used for is human-robot
interaction [Drury et al., 2005]. The authors created GOMS models for two
different interfaces for search-and-rescue robots and compared their performance.

The GOMS method was also used in [Gray et al., 1993] to compare a new
work station to an old one. The GOMS model predicted that the new workstation
decreased productivity by 3 percent. After gathering empirical data over the
period of four months, the conclusion was that the new workstations decreased
productivity by 4 percent. The GOMS model not only accurately predicted the
decrease in productivity, but also identified the cause, which was that the new
workstations did not utilize the workers downtime.

3.2 Android User Interface

To utilize the advantages of that we get from prediction, we need to familiarize
ourselves with the possibilities afforded by Android’s user interface.1 We will
only consider the stock Android user interface, since that is what most Android
phones use.

3.2.1 Apps

In chapter 1 we broached the problem associated with the smart phone app
paradigm. Android smart phones build their extension capabilities around the
concept of apps. For most tasks you perform on your smart phone, this works
just fine. But for short tasks, such as turning on and off a light, you want it to
be as fast as possible. An example of an app can be seen in figure 5.1.

A phone can be in three different states when it unlocks. It can open straight
to the desired app, a different app, or the home screen. However, we can guarantee
that the smart phone opens to a certain app if that app has a notification on
the lock screen providing direct access to that app. This is a useful feature if we
want to minimize the time it takes to interact with our phone.

3.2.2 Widgets

Widgets are small embeddable application views.2 They circumvent some of the
restrictions placed on apps since they do not need a separate screen, but can
instead be embedded in other applications, such as the home screen. This is

1https://developer.android.com/guide/topics/ui/index.html
2https://developer.android.com/guide/topics/appwidgets/index.html
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Figure 3.2: A widget situated on the home screen.

much faster than opening an app to get to some specific content. Additionally,
the size of a widget can be adjusted to take up more or less space on the home
screen.

However, it still has the drawback that the phone does not necessarily open
from the lock screen to where the widget is located. If the phone was last locked
with an app open, and the widget is situated on the home screen, then we first
need to unlock the phone and exit the app before we can interact with the widget.

3.2.3 Notification System

Androids notification system allows apps and background services to push noti-
fications to the notification bar and the lock screen.3 This means that the first
thing the user sees when the screen is turned on is a list of all their notifications.

The notification system is not limited to only displaying messages. Some
functionality can be exposed through buttons on the notification itself, as shown
in figure 3.3.

In the Android 4.1 update, a new notification system was released, granting
notifications the ability to implement an expanded view in addition to the normal
notification view. This expanded view can be toggled by swiping down a notifi-
cation, seen in figure 3.3, which then transforms into an expanded notification,

3https://developer.android.com/guide/topics/ui/notifiers/notifications.html
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Figure 3.3: Normal view notification

Figure 3.4: Big view notification

seen in figure 3.4. This allows a notification to display additional information,
and expose options that do not fit in a regular notification.

The Android API specifies that a maximum of three actions can be exposed
through an expanded notification.4 However, this is a soft limit rather than a
built-in restriction, as we can see in figure 3.4, where there are four different
actions available. What has a hard limit however, is the size of the expanded
notification. The vertical height of the expanded notification can not exceed four
times the height of a regular notification, which, if we additionally want to display
some text for each action, limits us to five actions stacked vertically.

4https://developer.android.com/design/patterns/notifications.html#ExpandedLayouts
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Chapter 4

UI Model

In section 3.2, we explored the different user interface aspects of the Android
platform, the most interesting of which is the notification system. The main
limitation of notifications is the fact that they are small. However, the notification
system alleviates this problem to some degree by allowing us to implement an
expanded notification right on the lock screen. We will not be able to display
all the items that a regular app screen would be able to with the expanded
notification, but if we use a prediction algorithm, we can display the devices that
the user is most likely to interact with.

In this chapter we present the prototype of our system, which we have nick-
named Prediction app. We have created a mock-up and an interaction model of
our system using NGOMSL. This allows us to compare the quality of our system,
with regards to the time metric, to a commercial smart remote app.

4.1 Mock-up

A mock-up of the normal sized notification can be seen in figure 4.1. When it
is expanded, it transforms into the expanded notification shown in figure 4.2,
which reveals the most likely devices according to our prediction algorithm. This
list updates continuously as the algorithm receives events from the devices in
the smart home. When the user then turns off the bedroom light seen in figure
4.2, the list will update to display the devices that are most likely given the new
context. For instance, if turning off all the lights in the user’s home is a regular
part of their routine before going to bed, the notification list may start filling up
with other lights in the house.

In case that the device we want is not in the expanded notification list, we
can open the normal app view from the lock screen by tapping the notification
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Figure 4.1: Prediction app notification on lockscreen.

header, which is the “Remote Control” label seen in figure 4.1 and 4.2. This
opens the app screen seen in figure 4.3. This screen is static and can be arranged
to the user’s preference.

4.2 Prediction App NGOMSL Model

We created the prediction app model using NGOMSL [Kieras, 1996]. In this
section we will walk through our prediction app model, highlighting some methods
of interest. We also created a model of a commercial smart phone app that we
will use as a baseline for the comparison in chapter 5. This model can be found
in appendix 6.3.

Method for goal: smart remote prediction app

1. Get next unit task from task list.

2. Decide: If no more tasks then return with goal accomplished.

3. Accomplish goal: perform unit task.

4. Goto 1.

Selection rule set for goal: perform unit task

if the task is expanding the notification then

accomplish task: expand notification

if the task is finding the device then
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Figure 4.2: Expanded prediction app notification.

Figure 4.3: Prediction app screen.
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accomplish goal: find device.

if the task is toggling the device then

accomplish goal: toggle device.

The two methods above are the entry-point to our model. The selection rule
set exposes the high-level methods in our model. The task list refers to the list
of tasks needed to accomplish the user’s goals.

Method for goal: expand notification

1. Point to notification.

2. Swipe down.

3. Return with goal accomplished.

The expand notification method assumes that the phone is on the lock screen,
and that the notification is visible. It transforms the notification into the ex-
panded version, where we can control the most likely devices, as seen in figure
4.2.

Selection rule for goal: find device

if we are in the expanded notification then

accomplish goal: find device in notification.

if we are in the app then

accomplish goal: find device in app.

This is a selection rule that executes different methods depending on the
state of the smart phone. It assumes that we are either on the lockscreen with
the notification expanded, or in the prediction app.

Method for goal: find device in notification

1. Locate device.

2. Decide: If device-found then return with goal accomplished.

3. Accomplish goal: go to app from notification list.

4. Accomplish goal: find device in app.

This method either finds the correct device in the notification list, or it opens
the app and finds it there. This is where the execution path diverges based on
whether the prediction algorithm has predicted the device we are looking for.

Method for goal: go to app from notification list

1. Tap notification

2. Wait for system to complete transition.

2. Return with goal accomplished.
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Method for goal: find device in app

1. Locate device.

2. Decide: If device-found then return with goal accomplished.

3. Accomplish goal: scroll list.

4. Goto 1.

If the device is not found in the expanded notification, then we have a sec-
ondary app screen that functions in much the same way as a regular app, seen in
figure 4.3. We do not make use of prediction to rearrange devices on this screen.
The reason is because having the user arrange this screen to their personal prefer-
ence is a more potent time saver than rearranging the tiles on every state change,
especially since when the user first opens the app, that means they did not find
what they were looking for in the notification list.

Method for goal: toggle device

1. Point to device.

2. Tap device.

3. Verify that device was toggled.

4. Return with goal accomplished.

When we find our device, we toggle it by tapping the icon representing the
device on our smart phone. Making sure that the UI responds before we proceed.

Method for goal: scroll list

1. Swipe up.

2. Return with goal accomplished.

It is difficult to accurately model scrolling and searching properly, as we both
scroll and search at the same time. Therefore we have simplified it to consist of
a separate search and scroll method.
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Chapter 5

UI Comparison and Results

In chapter 1, we identified the time of the user as the metric we want to optimize
for. The goal of our system is to present the devices that the user is most likely
to interact with in a way that minimizes this metric. In this chapter, we compare
the performance of our Prediction app model, with a commercial smart home
remote control app, by using the GOMS models in appendix 6.4 and 6.3

5.1 Comparison Plan

To compare our two models, we choose a task that represents regular use of a
smart remote, which we then test on the different models. We trace the task
through our two models and compare the resulting times. We can identify the
best and worst case times by running the models with different assumptions.
The task we will use to compare the two models is the time it takes to toggle
the state of a smart home device from the lock screen. We choose this particular
task because it embodies the use case we want to optimize for, namely the time
it takes to interact with a device when the phone is locked.

5.1.1 Mobile Execution Times

We utilize the touch screen gestures presented in [Batran and Dunlop, 2014] to
get more accurate execution times for our models. The remaining execution times
are taken from the KLM task execution times in [Card et al., 1983]. The total list
of actions that influence time can be seen in table 5.1. We have also determined
some execution time averages for the Nexus 5 smart phone in table 5.2 that we
use as the transition times between different screens in the model. Note that in
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Action Description Time
S Swipe (left/right/up/down) 70 ms
P Point to icon 80 ms
B Tapping screen 100 ms
M Mental act of routine thinking or perception 1200 ms
W(t) Waiting for system to respond t ms

Table 5.1: Execution times.

Average app transition time 800 ms
Unlocking phone with 4 digit pin 2300 ms
Unlocking phone without pin 800 ms

Table 5.2: Android specific execution times.

the comparison we assume that the user does not have to enter his pin code to
unlock the phone, because this has no significant effect on the model comparison.

5.1.2 Baseline App

As our baseline comparison app we have chosen the Revolv app, seen in figure
5.1. The reason we chose this app is because it has a clean user interface, with
all devices clearly visible on the main page of the app. The NGOMSL model for
this app can be found in appendix 6.3.

5.1.3 Model Assumptions

For our prediction app model, the assumption that most heavily influences the
time is whether or not the intended device is among the ones predicted by the
algorithm. If it is, then it will show up on the expanded notification list. If not,
the user will have to open the app and find the device manually. Since the app
can be opened directly from the lock screen, the app that is currently active on
the phone will not influence the time it takes to open the app.

For the Revolv app model, the assumption that most influences the time is
which app is active on the phone. There are three different cases when the user
unlocks the screen. The first case occurs when the app is already active, so when
the user unlocks the phone, the user does not have to waste any time opening the
app. The second case is when no app is active, and the phone unlocks straight
to the home screen. From here the user must find the app and launch it. The
third case is when another app is active. This means the user has to go to the
home screen first and then launch the app.
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Figure 5.1: Revolv app.
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Figure 5.2: Time comparison.

Case Time
Best case 3530 ms
Worst case 6030 ms

Table 5.3: Prediction app model task trace.

5.2 Comparison

For the Prediction app model, if the algorithm predicts the correct device as one
of the top five items, then we get the best case, which means it will take 3530
ms to complete the task, as seen in figure 5.2. If it does not predict the correct
device, then we get the worst case, which means it will take 6030 ms instead. If
we utilize the results obtained from the algorithm accuracy tests in [Alam et al.,
2012], then the best case occurs 89 percent of the time for the ALZ algorithm.
The traces of the Prediction app model can be found in appendix 6.6.

We can not say whether the best case is more likely than the average case
or the worst case for the Revolv app model. This is because the assumptions
that yield the different cases depend on how the user interacts with their phone.
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Case Time
Best case 4350 ms
Average case 7130 ms
Worst case 8510 ms

Table 5.4: Revolv model task trace.

If they use the Revolv app frequently relative to other apps, then the best case
happens fairly often. However, most users use their smart phone for chatting and
browsing more often than they control the devices in their home. Since how a
person uses their smart phone varies greatly, there is little to gain by finding out
the percentage split between the different cases. The traces of the Revolv app
model can be found in 6.5.

In table 5.4 and 5.3 we see that in general, the Prediction app model is
faster. Most of the difference between the Prediction app model and the Revolv
app model stems from the way that Android apps work in general. There is a
significant overhead to opening apps by going through the home screen, if all you
want to do is to toggle a single button in the app. The longer the task is, the
less of a problem this becomes.

Prediction app model, worst case.

Task: Toggle device.

Expanded for Prediction app:

1. Expand notification.

2. Find device.

3. Toggle device.

Assumptions:

The phone is in the users right hand.

The app is currently on the lock screen.

The phone has no currently active app.

The phone has no lock-screen security.

The device is not on the notification list.

The device is on the first screen of the app list.

Prediction app trace:

1. Accomplish goal: expand notification.

2. Point to notification. (P)

3. Swipe down. (S)

4. Accomplish goal: find device in notification.

5. Locate device. (M)
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6. Accomplish goal: Go to app from notification list.

7. Tap notification. (B)

8. Wait for system to complete transition. (W(0.7s))

8. Accomplish goal: find device in app.

9. Locate device. (M)

10. Accomplish goal: toggle device.

11. Point to device (P)

12. Tap Device (B)

13. Verify that device was toggled. (M)

2P + 1S + 3M + 2B + 1W(0.7s) + 13 statements

= 2 * 80 ms + 70 ms + 3 * 1200 ms + 2 * 100 ms + 700 ms + 13 * 100 ms

= 160 ms + 70 ms + 3600 ms + 200 ms + 700 ms + 1300 ms

= 6030 ms

The biggest difference between the two models is illuminated by removing line
three through six in the Prediction app model worst case trace seen above, effec-
tively removing the prediction aspect from the Prediction app model. This gives
us a trace of the time it takes to go directly to the app screen from the lock screen
by tapping the notification, yielding a time of 4360 ms. This is almost identical
to the best case trace for the Revolv app model, which is 4350 ms. The results
are similar because the best case trace for the Revolv app model happens when
the phone unlocks straight to the app screen, while for the Prediction app model,
we can go directly to the app screen by tapping the notification. This means that
both open directly into the correct app. For the Prediction app however, this
will happen every time, while for the Revolv app, it depends on which app was
last active on the phone.

This means that even without the prediction functionality in our app, we
can save significant time simply by providing direct access to the app from the
lock screen, by means of a notification shortcut. If we add this shortcut to the
Revolv app, then we can always go directly to the app from the lock screen,
effectively removing the average and worst case from the equation. In that case,
the Prediction app is 830 ms faster than the Revolv app if the device is in the
expanded notification, but 1670 ms slower if it is not. If we take into account the
ALZ prediction accuracy for five devices, then the best case for the Prediction app
will happen 89 percent of the time, meaning that on average, the time it takes to
toggle a device is 0.89×3530 + 0.11×6030 = 3805 ms. This is 4360−3805 = 555
ms faster than if we only use the notification shortcut. If we have 100 percent
prediction accuracy, the average case would be equal to the best case for the
Prediction app, which is 3530 ms. This is only 275 ms better than the case for
ALZ.
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Predictive systems make it hard to memorize where devices are located in the
user interface. One has to scan through the entire list to find the item one is
looking for. Depending on how accurate the prediction algorithm is, this could
make it take longer than it would have if the devices were stationary. There is a
balance between how predictable the behavior of the user is, and how much time
is saved by the user memorizing the location of a particular device.

Our system takes advantage of the notification screen to display the most
likely items, saving both space and time. For any smart home remote control app
with a limited number of devices however, a predictive list can be detrimental to
the performance when the user remembers the location of the devices in the list,
since they will have to scan the whole list whenever the algorithm rearranges the
most likely devices.

Furthermore, we do not need to use the prediction algorithm when there are
five or less devices connected to the smart home, since five is the maximum
number of devices that can be shown in the expanded notification list. In that
case, the algorithm would only rearrange the placement of the devices in the list,
which would nullify the benefits gained from the user memorizing the location of
the devices. We can therefore save some time and battery by not running the
prediction algorithm until the system has more than five devices connected to it.

On average, the Prediction app model is faster than the Revolv app model
for the user. We can shave off 4150 ms from the worst case, and 2790 ms from
the average case of the Revolv app model if we simply add a notification shortcut
that opens the app directly from the lock screen. This is the main advantage
that the Prediction app model has over the Revolv app model in our comparison.
This means that the greatest impact on the user’s interaction time comes from
circumventing the app navigation and going straight to the app screen. This
functionality is easy to implement, making it a low-cost step that can save a lot
of time for the user.

The prediction functionality is not as impactful, we have estimated that it
saves an additional 0.5 seconds on average for the Prediction app.
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Chapter 6

Summary

In this chapter we summarize the the results with respect to the goals established
in section 1.3.

Our first sub-goal concerns comparing two sequential prediction algo-
rithms with respect to our mobile architecture. This goal is achieved by
first defining the desired algorithm characteristics of our solution in section 2.1,
and then comparing two algorithms that fit the criteria, ALZ and SPEED, in
section 2.5. We find that SPEED has better prediction accuracy overall, but
worse run-time and space characteristics than ALZ. The difference between the
algorithms when considering the most likely five devices is less than 11 percent-
age points. Since our expanded notification list can show five devices, the greater
prediction accuracy of the SPEED algorithm is less of an advantage given its
greater run-time complexity, especially considering that our system must run on
a battery-powered device.

The second sub-goal, design and model a user interface that minimizes
user interaction time by using NGOMSL, is achieved by exploring the
user interface capabilities of Android in section 3.2, and utilizing this knowledge
to create a Prediction app in chapter 4. We have designed a mock-up and a
NGOMSL model of our system using KLM operators designed for the smart
phone, with transition times tested on a Nexus 5 smart phone. Our model takes
advantage of Android’s notification system to project the devices that the user
is most likely to interact with in an expanded notification on the lock screen.
Furthermore, if the device is not found in the expanded notification, the user can
open into the app screen directly from the lock screen, circumventing the home
screen. The resulting NGOMSL model minimizes the time it takes the user to
interact with a device on the phone.

The third sub-goal is compare our design against a commercial smart
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home remote control app by using NGOMSL. In chapter 5, we compare
the NGOMSL model of our Prediction app against the Revolv smart home remote
control app in relation to how fast a user can toggle a device in each model. The
results show that the Prediction app is faster than the Revolv app in most cases.
We also found that the greatest increase in time comes from providing a shortcut
to the main app screen on the lock screen. By adding the expanded notification
functionality, we shave off an additional 0.5 seconds on average.

Our overarching goal is to create a fast smart phone remote control
system for smart homes by adding a predictive element. In this thesis, we
have designed a Prediction app model that utilizes Android’s notification system,
together with a prediction algorithm, to reduce the time it takes for the user to
interact remotely with smart home devices. We have validated the design by
comparing it against the Revolv smart home remote control app. The results
show that the Prediction app is faster than the commercial alternative in most
cases. Furthermore, we have shown that we can easily improve existing remote
control apps by adding a notification shortcut to the lock screen.

6.1 Contributions

In this thesis we have made the case that we can improve upon the commercial
smart home remote controls by adding a predictive user interface element to the
lock screen. We built a model of our system using NGOMSL, and compared it to
the Revolv smart home remote control app. We have shown that by designing a
user interface to take advantage of prediction, we can decrease the time it takes
the user to interact with smart home devices.

Additionally, we compared the two algorithms, SPEED and ALZ, with respect
to our mobile architecture. The results of this comparison showed that while
SPEED has a higher prediction accuracy, ALZ is more suited for our mobile
architecture given that it has better run-time and space characteristics.

6.2 Future Work

The obvious next step is to implement our system on a Android phone, and do
an empirical user test to see how accurate our NGOMSL model is. Additionally,
this would allow us to compare our two algorithms on smart phone hardware,
which would let us determine the battery impact of the differences in run-time
and space characteristics between SPEED and ALZ.

We can also improve the algorithm itself by taking into consideration addi-
tional aspects of the data source. For instance, SPEED identifies episodes in the
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data stream. An additional aspect that none of the algorithms take into account
is the time aspect, meaning that two sequential events happening seconds apart
or days apart are considered the same sequence.

Another improvement is to add more nuanced interactions with the devices.
For now, our system only exposes the ability to toggle devices on and off. We
could for example add intensity sliders for light sources, or channel switching for
TVs. This requires that we take into account the qualitative changes that this
causes in the data source. For instance, if the ALZ algorithm suddenly registers
100 events generated in the span of a few seconds by light dimmer, it would
thereon heavily favour the light dimmer regardless of which events are more
likely. The challenge then becomes to align the events detected by the algorithm
with the actions of the user. If he dims the light, it should register as a single
event by the algorithm, even though it may generate hundreds of events.

A further improvement on this idea is to group the actions exposed through
the user interface based on tasks, instead of devices. For example, instead of
turning on the TV, dimming the lights, and playing a movie, the user could
toggle the “Movie Night” action, which does all these things.
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Appendices

6.3 Revolv model

Method for goal: Revolv app

1. Get next unit task from task list.

2. Decide: If no more tasks, then return with goal accomplished.

3. Accomplish goal: perform unit task.

4. Goto 1.

Selection rule set for goal: perform unit task

if the task is finding the device then

accomplish goal: find device.

if the task is opening the app then

accomplish goal: go to app.

if the task is toggling the device then

accomplish goal: toggle device.

Method for goal: toggle device

1. Point to device.

2. Tap device.

3. Verify that device was toggled.

4. Return with goal accomplished.

Method for goal: find device

1. Locate device.

2. Decide: If device-found then return with goal accomplished.

3. Accomplish goal: scroll list.

4. Goto 1.

Method for goal: scroll list

1. Swipe up.

2. Return with goal accomplished.
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Method for goal: go to app

1. Accomplish goal: unlock phone.

2. Accomplish goal: open app task.

4. Return with goal accomplished.

Method for goal: unlock phone

1. Swipe up.

2. Wait for system to complete transition.

3. Return with goal accomplished.

Selection rule for goal: open app task

if another app is in focus then

Accomplish goal: go to homescreen and open app.

if homescreen is in focus then

Accomplish goal: open app from homescreen.

if desired app is in focus then

Return with goal accomplished.

Method for goal: go to homescreen and open app

1. Accomplish goal: go to homescreen.

2. Accomplish goal: open app from homescreen.

3. Return with goal accomplished.

Method for goal: go to homescreen

1. Point to home icon

2. Tap icon

3. Wait for system to complete transition.

4. Return with goal accomplished.

Method for goal: open app from homescreen

1. Accomplish goal: locate app.

2. Accomplish goal: open app.

3. Return with goal accomplished.

Method for goal: open app

1. Point to app icon.

2. Tap app icon.

3. Wait for system to complete transition.

4. Return with goal accomplished.

Method for goal: locate app

1. Locate app.

2. Decide: if app-found then return with goal accomplished.

3. Accomplish goal: go to next screen.

4. Goto 1.
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Method for goal: go to next screen

1. Swipe left.

2. Return with goal accomplished.

6.4 Prediction app model

Method for goal: smart remote prediction app

1. Get next unit task from task list.

2. Decide: If no more tasks then return with goal accomplished.

3. Accomplish goal: perform unit task.

4. Goto 1.

Selection rule set for goal: perform unit task

if the task is expanding the notification then

accomplish task: expand notification

if the task is finding the device then

accomplish goal: find device.

if the task is toggling the device then

accomplish goal: toggle device.

Method for goal: expand notification

1. Point to notification.

2. Swipe down.

3. Return with goal accomplished.

Selection rule for goal: find device

if we are in the expanded notification then

accomplish goal: find device in notification.

if we are in the app then

accomplish goal: find device in app.

Method for goal: find device in notification

1. Locate device.

2. Decide: If device-found then return with goal accomplished.

3. Accomplish goal: go to app from notification list.

4. Accomplish goal: find device in app.

Method for goal: go to app from notification list

1. Tap notification

2. Wait for system to complete transition.

2. Return with goal accomplished.
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Method for goal: find device in app

1. Locate device.

2. Decide: If device-found then return with goal accomplished.

3. Accomplish goal: scroll list.

4. Goto 1.

Method for goal: toggle device

1. Point to device.

2. Tap device.

3. Verify that device was toggled.

4. Return with goal accomplished.

Method for goal: scroll list

1. Swipe up.

2. Return with goal accomplished.

6.5 Revolv Model Executions

6.5.1 Best case model execution

Task: Toggle device (Best case)

Expanded for Revolv:

1. Go to app

2. Find device

3. Toggle device

Assumptions:

The phone is in the users right hand.

The phone is currently on the lock screen.

The Revolv app is the active app.

The phone has no lock-screen security.

The device icon is on the first screen of the Revolv app device list.

Revolv trace:

1. Accomplish goal: go to app.

2. Accomplish goal: unlock phone.

3. Swipe up (S)

4. Wait for system to complete transition (W(0.7s))

5. Accomplish goal: find device.

6. Locate device. (M)

7. Accomplish goal: toggle device.
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8. Point to device. (P)

9. Tap device. (B)

10. Verify that device was toggled. (M)

1 S + 2 M + 1 P + 1 B + 1 W(0.7s) + 10 statements

= 70 ms + 2 * 1200 ms + 1 * 80 ms + 1 * 100 ms + 1 * 700 ms + 10 * 100 ms

= 70 ms + 2400 ms + 80 ms + 100 ms + 700 ms + 1000 ms

= 4350 ms

6.5.2 Average case model execution

Task: Toggle device (Average case)

Expanded for Revolv:

1. Go to app

2. Find device

3. Toggle device

Assumptions:

The phone is in the users right hand.

The phone is currently on the lock screen.

The phone has no currently active app.

The Revolv app is running in the background.

The phone has no lock-screen security.

The Revolv icon is on the first homescreen.

The device icon is on the first screen of the Revolv app device list.

Revolv trace:

1. Accomplish goal: go to app.

2. Accomplish goal: unlock phone.

3. Swipe up (S)

4. Wait for system to complete transition (W(0.7s))

5. Accomplish goal: open app from homescreen.

6. Accomplish goal: locate app.

7. Locate app. (M)

8. Accomplish goal: open app.

9. Point to app icon. (P)

10. Tap app icon. (B)

11. Wait for system to complete transition. (W(0.7s))

12. Accomplish goal: find device.

13. Locate device. (M)
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14. Accomplish goal: toggle device.

15. Point to device. (P)

16. Tap device. (B)

17. Verify that device was toggled. (M)

1 S + 3 M + 2 P + 2 B + 2 W(0.7s) + 17 statements

= 70 ms + 3 * 1200 ms + 2 * 80 ms + 2 * 100 ms + 2 * 700 ms + 17 * 100 ms

= 70 ms + 3600 ms + 160 ms + 200 ms + 1400 ms + 1700 ms

= 7130 ms

6.5.3 Worst case model execution

Task: Toggle device (Worst case)

Expanded for Revolv:

1. Go to app

2. Find device

3. Toggle device

Assumptions:

The phone is in the users right hand.

The phone is currently on the lock screen.

The phone has no currently active app.

The Revolv app is running in the background.

The phone has no lock-screen security.

The Revolv icon is on the first homescreen.

The device icon is on the first screen of the Revolv app device list.

Revolv trace:

1. Accomplish goal: go to app.

2. Accomplish goal: unlock phone.

3. Swipe up (S)

4. Wait for system to complete transition (W(0.7s))

5. Accomplish goal: go to homescreen and open app.

6. Accomplish goal: go to homescreen.

7. Point to home icon. (P)

8. Tap icon. (B)

9. Wait for system to complete transition (W(0.7s))

10. Accomplish goal: open app from homescreen.

11. Accomplish goal: locate app.

12. Locate app. (M)
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13. Accomplish goal: open app.

14. Point to app icon. (P)

15. Tap app icon. (B)

16. Wait for system to complete transition. (W(0.7s))

17. Accomplish goal: find device.

18. Locate device. (M)

19. Accomplish goal: toggle device.

20. Point to device. (P)

21. Tap device. (B)

22. Verify that device was toggled. (M)

1 S + 3 M + 3 P + 3 B + 3 W(0.7s) + 22 statements

= 70 ms + 3 * 1200 ms + 3 * 80 ms + 3 * 100 ms + 3 * 700 ms + 22 * 100 ms

= 70 ms + 3600 ms + 240 ms + 300 ms + 2100 ms + 2200 ms

= 8510 ms

6.6 Prediction App Model Executions

6.6.1 Best case model execution

Task: Toggle device (Best case)

Expanded for Prediction app:

1. Expand notification.

2. Find device.

3. Toggle device.

Assumptions:

The phone is in the users right hand.

The app is currently on the lock screen.

The phone has no currently active app.

The phone has no lock-screen security.

The device is on the notification list.

Prediction app trace:

1. Accomplish goal: expand notification.

2. Point to notification. (P)

3. Swipe down. (S)

4. Accomplish goal: find device in notification.

5. Locate device. (M)

6. Accomplish goal: toggle device.
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7. Point to device (P)

8. Tap Device (B)

9. Verify that device was toggled. (M)

2P + 1S + 2M + 1B + 9 statements

= 2 * 80 ms + 70 ms + 2 * 1200 ms + 100 ms + 9 * 100 ms

= 160 ms + 70 ms + 2400 ms + 900 ms

= 3530 ms

6.6.2 Worst case model execution

Task: Toggle device (Worst case)

Expanded for Prediction app:

1. Expand notification.

2. Find device.

3. Toggle device.

Assumptions:

The phone is in the users right hand.

The app is currently on the lock screen.

The phone has no currently active app.

The phone has no lock-screen security.

The device is not on the notification list.

The device is on the first screen of the app list.

Prediction app trace:

1. Accomplish goal: expand notification.

2. Point to notification. (P)

3. Swipe down. (S)

4. Accomplish goal: find device in notification.

5. Locate device. (M)

6. Accomplish goal: Go to app from notification list.

7. Tap notification. (B)

8. Wait for system to complete transition. (W(0.7s))

8. Accomplish goal: find device in app.

9. Locate device. (M)

10. Accomplish goal: toggle device.

11. Point to device (P)

12. Tap Device (B)

13. Verify that device was toggled. (M)
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2P + 1S + 3M + 2B + 1W(0.7s) 13 statements

= 2 * 80 ms + 70 ms + 3 * 1200 ms + 2 * 100 ms + 700 ms + 13 * 100 ms

= 160 ms + 70 ms + 3600 ms + 200 ms + 700 ms + 1300 ms

= 6030 ms
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