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Abstract
Twitter sentiment analysis, the process of automatically extracting senti-
ment conveyed by Twitter data, is a field that has seen a dramatic increase
in research in recent times. This Master’s Thesis presents a study of the
effects of linguistic negation on Twitter sentiment analysis.
Current state-of-the-art solutions in Twitter sentiment analysis and neg-

ation scope detection have been explored. Furthermore, a corpus of Eng-
lish Twitter data (tweets) annotated for linguistic negation has been cre-
ated, and an improved system for negation scope detection in Twitter
sentiment analysis has been developed and evaluated.
Our research represents the first work that explores sophisticated neg-

ation scope detection methods on tweets. The system produces better
results than what has been reported in other domains. It has been in-
corporated into a state-of-the-art Twitter sentiment analysis classifier and
the effects have been compared to other solutions commonly used within
this field.
The study shows that the inclusion of the developed negation scope

detection method in a Twitter sentiment analysis system improves the
performance on tweets containing negation. However, the sparse distri-
bution of linguistic negation in tweets results in a marginal performance
gain on general data.

i



Sammendrag
Twitter-sentimentanalyse, fagfeltet som omhandler å utvinne sentiment
uttrykt i Twitterdata, har gjennomgått en dramatisk økning i mengden
forskningsarbeid i de siste årene. Denne masteroppgaven presenterer et
studie av effekten av lingvistisk negasjon på Twitter-sentimentanalyse.
Nåværende state-of-the-art-løsninger innen Twitter-sentimentanalyse og

identifikasjon av negasjonsomfang har blitt utforsket. Videre har en sam-
ling av Twitterdata blitt annotert for lingvistisk negasjon, og et forbedret
system for å identifisere negasjonsomfang i Twitter-sentimentanalyse har
blitt utviklet og evaluert.
Vårt arbeid representerer det første som utforsker sofistikert identifise-

ring av negasjonsomfang på Twitterdata, og produserer bedre resultater
enn noen rapportert i andre domener. Dette systemet har blitt innlemmet
i en state-of-the-art Twitter-sentimentklassifikator, og effektene har blitt
sammenlignet med vanlig brukte løsninger innen feltet.
Studiet viser at innlemmelsen av det utviklede systemet for negasjons-

omfangsidentifikasjon i et Twitter-sentimentanalysesystem forbedrer ytel-
sen på Twitterdata som inneholder negasjon. Den begrensede forekomsten
av lingvistisk negasjon resulterer imidlertid i en beskjeden ytelsesgevinst
på generell data.
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1. Introduction
With the recent growth of mobile information systems and the increased
availability of smart phones, social media has become a large part of
daily life in most societies. This development has entailed the creation
of massive amounts of data: data which when analysed can be used to
extract valuable information about a variety of subjects.
Sentiment analysis (SA), also known as opinion mining is the process of

classifying the emotion conveyed by a text, for example as negative, pos-
itive or neutral. The data made available by social media has contributed
to a burst of research activity within SA in recent times and a shift in
the focus of the field towards this type of data. Information gained from
applying SA to social media data has many potential usages, for instance,
to help marketers evaluate the success of an ad campaign, to identify how
different demographics have received a product release, to predict user
behaviour, or to forecast election results [Tsakalidis et al., 2015].

1.1. Twitter Sentiment Analysis
A popular social medium is Twitter,1 a micro-blogging site that allows
users to write textual entries of up to 140 characters, commonly referred
to as tweets. As of June 2015, Twitter has over 302 million monthly
active users according to their homepage, whereof approximately 88 %
have their tweets freely readable. Additionally, over 84 % of the users also
have their location specified in their profiles [Beevolve, 2012], enabling the
possibility of performing drill-down on geographic locations. Data created
by Twitter is made available through Twitter’s API, and represents a real-
time information stream of opinionated data. Tweets can be filtered both
by location and the time they were published. This has paved the way for
a new sub-field of SA: Twitter sentiment analysis (TSA).
1https://www.twitter.com
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1. Introduction

Performing natural language processing on textual data from Twitter
presents new challenges because of the informal nature of this data. Tweets
often contain misspellings, and the constrictive limit of 140 characters en-
courages slang and abbreviations. Unconventional linguistic means are
also used, such as capitalization or elongation of words to show emphasis.
Additionally, tweets contain special features like emoticons and hashtags
that may have an analytical value. Hashtags are labels used for search and
categorisation, and are included in the text prepended by a “#”. Emoticons
are expressions of emotion, and can either be written as a string of char-
acters e.g., “:-)”, or as a unicode symbol. Finally, if a tweet is a reply or
is directed to another Twitter user, mentions can be used by prepending
a username with “@”.

1.2. Motivation and Research Focus Area

In this project we explore the effect of applying sophisticated negation
scope detection to Twitter sentiment analysis. To our knowledge, no pre-
vious work has been done in this regard.
The linguistic phenomenon of negation, described in Section 2.1.2, has

been shown to play a significant role in SA. Councill et al. [2010] tested
a sentiment classifier and found that including their negation classifier
provided a 29.5 % improvement in F1 score when classifying positive sen-
timent, and an 11.4 % improvement when classifying negative sentiment.
Figure 1.1 graphs the effects on precision and recall of including negation
handling when performing positive sentiment prediction, as recorded by
Councill et al.
Kiritchenko et al. [2014] included a sophisticated solution for handling

negated terms in their SemEval-2014 entry by creating tweet-specific sen-
timent lexica containing individual scores for terms in affirmative and
negated contexts, but the state-of-the-art systems in TSA still employ a
very simple solution for identifying which terms are negated, by marking
as negated all words from a negation cue term to the next punctuation
symbol.
In Section 6.2 we present a baseline experiment we have conducted:

implementing a naïve negation scope detection solution, commonly used
in TSA, in order to compare how it performs on the BioScope Corpus

2



1.2. Motivation and Research Focus Area

which is almost certainly due to the fact that not
only are several of the BioScope negation cues
missing from the cue lexicon, but the CRF model
has not had the opportunity to learn from the lex-
ical features in BioScope. The precision in Bio-
Scope remains fairly high, and the percentage of
perfectly labeled scopes remains almost the same.
For Product Reviews, an opposing trend can be
seen: precision drops significantly but recall re-
mains fairly high. This seems to indicate that the
scope boundaries in the Product Reviews corpus
are generally harder to predict. The percentage
of perfectly labeled scopes actually increases for
Product Reviews, which could also indicate that
scope boundaries are less noisy in BioScope.

5.3 Effect on sentiment classification

In addition to measuring the raw performance of
the negation scope detection system, an experi-
ment was conducted to measure the effect of the
final negation system within the context of a larger
sentiment analysis system.

The negation system was built into a senti-
ment analysis pipeline consisting of the following
stages:

1. Sentence boundary detection.

2. Sentiment detection.

3. Negation scope detection, applying the sys-
tem described in§4.

4. Sentence sentiment scoring.

The sentiment detection system in stage 2 finds
and scores mentions of n-grams found in a large
lexicon of sentiment terms and phrases. The sen-
timent lexicon is based on recent work using label
propagation over a very large distributional simi-
larity graph derived from the web (Velikovich et
al., 2010), and applies positive or negative scores
to terms such as “good”, “bad”, or “just what the
doctor ordered”. The sentence scoring system in
stage 4 then determines whether any scored senti-
ment terms fall within the scope of a negation, and
flips the sign of the sentiment score for all negated
sentiment terms. The scoring system then sums all
sentiment scores within each sentence and com-
putes overall sentence sentiment scores.

A sample of English-language online reviews
was collected, containing a total of 1135 sen-
tences. Human raters were presented with consec-
utive sentences and asked to classify each sentence
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Figure 1: Precision-recall curve showing the effect
of negation detection on positive sentiment predic-
tion.

as expressing one of the following types of sen-
timent: 1) positive, 2) negative, 3) neutral, or 4)
mixed positive and negative. Each sentence was
reviewed independently by five separate raters,
and final sentence classification was determined
by consensus. Of the original 1135 sentences 216,
or 19%, were found to contain negations.

The effect of the negation system on sentiment
classification was evaluated on the smaller subset
of 216 sentences in order to more precisely mea-
sure the impact of negation detection. The smaller
negation subset contained 73 sentences classified
as positive, 114 classified as negative, 12 classified
as neutral, and 17 classified as mixed. The num-
ber of sentences classified as neutral or mixed was
too small for a useful performance measurement,
so only sentences classified as positive or negative
sentences were considered.

Figures 1 and 2 show the precision-recall curves
for sentences predicted by the sentiment analysis
system to be positive and negative, respectively.
The curves indicate relatively low performance,
which is consistent with the fact that sentiment
polarity detection is notoriously difficult on sen-
tences with negations. The solid lines show per-
formance with the negation scope detection sys-
tem in place, and the dashed lines show perfor-
mance with no negation detection at all. From
the figures, a significant improvement is immedi-
ately apparent at all recall levels. It can also be
inferred from the figures that the sentiment analy-
sis system is significantly biased towards positive
predictions: even though there were significantly
more sentences classified by human raters as neg-

57

Figure 1.1.: The impact of negation handling on positive sentiment pre-
diction [Councill et al., 2010]

(see Section 2.3.2) to existing, more sophisticated solutions, and show the
potential for improvement in TSA. This naïve solution is then improved
upon, and several experiments carried out with a more sophisticated ap-
proach to detecting the negation scope, both in isolation and embedded
as part of a complete TSA system. The experiments show that naïve clas-
sification is slightly outperformed by existing alternative solutions and by
our own, improved negation detector.
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1. Introduction

1.3. Project Goals

The goals for this project were four-fold, as follows:

G1: Research the State-of-the-Art in Twitter Sentiment
Analysis

TSA has been the topic of several shared tasks hosted by the Association
for Computational Linguistics.2 We will base our state-of-the-art research
mainly on the results from these tasks, and naturally focus more on sub-
missions that achieved the best results.
The purpose of this goal is to form the knowledge basis required for

developing a state-of-the-art TSA system.

G2: Create a Twitter Corpus Annotated for Negation

To allow for the use of supervised machine learning techniques when devel-
oping a negation classification system, a corpus annotated for the presence
of negation is required. Several negation-annotated corpora have been cre-
ated and are freely available, but none exist for the Twitter domain. As
tweets contain unique characteristics, a classifier trained on out-of-domain
data may struggle to classify Twitter data. Therefore, we aim to create a
negation-annotated Twitter corpus.

G3: Develop a Negation Classifier

We aim to create a sophisticated negation classifier able to accurately
classify the presence of negation in tweets. This classifier will then be
implemented in the pipeline of a TSA system. This project goal also
encompasses researching existing negation scope detection solutions and
evaluating their transferability to TSA.

G4: Develop a Twitter Sentiment Classifier

The final goal is to create a state-of-the-art TSA system, incorporating
the negation classifier developed in G3. The performance of using soph-
2http://www.aclweb.org/
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1.4. Contributions

isticated negation scope detection will then be explored and compared to
the performance of the naïve approach commonly used in TSA.

1.4. Contributions
C1 A web-based linguistic negation annotation system.

C2 A corpus of Twitter data annotated for the presence of negation.

C3 The implementation of a Twitter negation scope detection system.

C4 The implementation of a Twitter sentiment classification system.

C5 A study into the effects of sophisticated negation scope detection in
TSA compared to naïve solutions.

1.5. Thesis Structure
Relevant background theory for the project in addition to the tools and
external data sets used are described in Chapter 2.
Chapter 3 presents the current state-of-the-art in TSA. Additionally, it

contains a description of recent developments within the field of identifying
linguistic negation, and a detailed look at some solutions, as well as an
evaluation of their suitability for application in TSA.
In Chapter 4, we describe how a Twitter corpus annotated for the pres-

ence of linguistic negation was created: the NTNU Twitter Negation Cor-
pus. The resulting corpus and its characteristics are also presented.
Chapter 5 contains the implementational details of two classification

systems that have been created: a Twitter negation classifier and a TSA
system. Experiments conducted on these systems and their results are
presented in Chapter 6.
Finally, Chapter 7 contains an evaluation of the degree to which the

project goals have been achieved, as well as the conclusions drawn and
suggested future work.
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2. Tools and Methods
This chapter contains a presentation of the background theory and tech-
nological tools relevant to this project, as well as the external data used
in the conducted experiments.

2.1. Background Theory
Sentiment analysis (SA) comprises many concepts common to the whole
field of natural language processing in addition to many concepts from
machine learning: the most relevant of these are described in this section.

2.1.1. Machine Learning

Machine learning has become a cornerstone in the field of SA. Most well-
performing systems incorporate some form of supervised machine learning;
this is discussed further in Section 3.4. Here, we give a description of
several machine learning algorithms relevant to the current state-of-the-
art in sentiment analysis.

Support Vector Machines

The Support Vector Machine (SVM) classification algorithm was formally
described by Cortes and Vapnik [1995]. The algorithm considers data
points based on their spatial location, and attempts to split the feature
space into optimal class segments. This division of the feature space is
referred to as training the machine. A trained SVM can then be used for
classification of new examples by assigning them a class based on which
segment of the feature space they are located in.
In its basic form, it is an algorithm for linear classification of binary

problems. When dealing with two linearly separable classes, the feature
space is divided into class segments by creating a hyperplane with the
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Ma
rgi
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Figure 2.1.: An SVM linearly separating two classes.

largest possible margin between the two classes. This margin maximiz-
ation is the essential concept of SVMs. The closest data points of both
classes, parallel to the vector defining the hyperplane, constitute the sup-
port vectors. These give the algorithm its name. Figure 2.1 shows the
hyperplane and support vectors in a two dimensional linear classification
problem.
The algorithm can also be applied to problems where the examples are

not linearly separable by allowing misclassified points. If no hyperplane
exists to split all examples, the soft margin method introduces a slack
variable that gives a penalty for each misclassified example [Cortes and
Vapnik, 1995]. This penalty increases with the distance from the ex-
ample’s support vector. The slack variable governs the trade-off between
classification errors and margin size.
To allow for non-linear classification, one can map the data into a higher

dimensionality space by using the kernel trick. This is done by applying
a kernel function to the data. The process is well explained in Fletcher
[2009]. Popular kernel functions include radial basis function (RBF), Sig-
moidal Kernel, and Polynomial Kernel. Figure 2.2 shows a data remapping
done with an RBF kernel.
Using the RBF kernel function, there are two parameters that require

adjustment for good performance: the regularization parameter C and
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Figure 2.2.: Dichotomous data remapped using an RBF kernel function

the influence radius parameter γ. C is a penalty for misclassification, and
controls the complexity of the decision surface. A low C makes a complex
hyperplane that attempts to correctly classify most of the training samples
(increasing the chance of overfitting), while increasing the C regularizes
the hyperplane, resulting in a more generalized classifier. The γ controls
the radius of influence for each training example, in an inverse manner.
This means that a low γ makes each training example have an influence
over a larger area, and a higher γ will result in the training examples only
influencing themselves. These two parameters are highly dependent on
each other.
Additionally, the SVM algorithm can be applied to classification prob-

lems featuring more than two classes. Commonly used methods include
one-against-one and one-against-the-rest. Hsu and Lin [2002] provide a
thorough comparison of these methods.

Naïve Bayes Classifier

Naïve Bayes (NB) classifiers, also known as Naïve Bayes Learners, are a re-
latively simple group of probabilistic classifiers based on Bayes’ Theorem.
For classification in certain domains, their performance has been shown to
be comparable to much more complex machine learning algorithms, like

9
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neural networks or decision-tree learners [Mitchell, 1997].
Given a document d, the task of assigning a class c to the document is

done by looking at the probabilities of each class given the document, and
finding the maximum a posteriori (MAP) probability estimate:

cMAP = argmax
c∈C

P (c|d)

The formula for each class can be rewritten using Bayes’ Theorem:

cMAP = argmax
c∈C

P (d|c)× P (c)
P (d)

Because the probability of the document is the same across all classes, the
class that maximises the numerator is the same as the class that maximises
the whole expression. The denominator can then be dropped:

cMAP = argmax
c∈C

P (d|c)× P (c)

The document is represented as a vector of feature attributes:

d = a1, a2, a3, ..., an

This gives the approach used by the NB classifier:

cNB = argmax
c∈C

P (c)
∏
a

P (a|c)

The NB classifier assumes that all attribute values are conditionally in-
dependent. Despite this assumption, the classifier performs well on text
classification tasks in practice.

Logistic Regression

Logistic regression (multinomial logistic regression for more than two pos-
sible output values) is another probabilistic classification method. Based
on the Principle of Maximum Entropy, it seeks the model that best repres-
ents the available data, which is the model with the maximum information
entropy. Because of this, logistic regression is often called maximum en-
tropy classification.
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Compared to the NB classifier, logistic regression does not assume con-
ditional independence among the features. This makes the classifier more
suited to text classification problems, since the features consisting of words
are not conditionally independent.
The logistic regression classifier has been successfully applied to a wide

range of text classification problems, including language detection, topic
classification, and sentiment analysis [Vryniotis, 2013].

Conditional Random Fields

Lafferty et al. [2001] define Conditional Random Fields (CRF) as follows:

Definition. Let G = (V,E) be a graph such that Y = (Yv)v∈V , so that
Y is indexed by the vertices of G. Then (X,Y) is a conditional ran-
dom field in case, when conditioned on X, the random variables Yv obey
the Markov property with respect to the graph: p(Yv|X,Yw, w 6= v) =
p(Yv|X,Yw, w ∼ v), where w ∼ v means that w and v are neighbors in
G.

Yi−1 Yi Yi+1

Xi−1 Xi Xi+1

Figure 2.3.: Structure of a linear-chain CRF

This means that a CRF is an undirected graphical model consisting of
the disjoint sets X and Y, where X is the input variables and Y is the
output variables. The conditional distribution p(Y|X) is then modelled:

pθ(y|x) ∝ exp

 ∑
e∈E,k

λkfk(e,y|e,x) +
∑
v∈V,k

µkgk(v,y|v,x)

 ,
where x is a data sequence, y a label sequence, and fk and gk are features
(such as part-of-speech tags). The parameter θ = (λ1, λ2, . . . ;µ1, µ2, . . .)
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is trained using gradient descent algorithms, or Quasi-Newton methods
such as the L-BFGS algorithm [Nocedal, 1980].
Although the model can have any graphical structure, natural language

processing tasks such as part-of-speech tagging are most concerned with
sequences X = (X1,X2, . . . ,Xn) and Y = (Y1,Y2, . . . ,Yn), where X
may be sequences of tokens and Y may be the corresponding sequences
of part-of-speech tags. This sequence variant is often called a linear-chain
CRF [Sutton and McCallum, 2011], and the structure is illustrated in
Figure 2.3.

2.1.2. Natural Language Processing

Natural language processing (NLP) is a field in the Human-Machine In-
teraction area concerned with the use of human natural languages for
communication with computers. Among the many topics of NLP, the
following are particularly relevant in this project.

Linguistic Negation

Linguistic negation is a grammatical concept that encompasses devices
used to reverse the truth value of propositions in language. Givón [1993]
defines two forms of grammatical negation: morphological negation, where
individual words are negated with an affix, and syntactic negation, where
a set of words is negated by a word or phrase. Negators in syntactical neg-
ation, known as negation cues or negation signals, function as operators,
with an associated affected scope of words [Morante and Sporleder, 2012].
Syntactic negation is what is most relevant within NLP, as well as textual
data mining in general, and is what we mean throughout this report when
referring to negation.
Tottie [1991] provides an extensive study of negation in written Eng-

lish language, and splits syntactic negation — or clausal negation as she
denotes it — into two main categories: rejections of suggestions and
denials of assertions.
Polanyi and Zaenen [2006] describe valence as “positive or negative at-

titude communicated by a lexical item”. When looking at a segment of
text, the segment’s valence can be equated to its sentimental orientation.
In the context of SA, negators often function as valence shifters, because
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flipping the truth value of a proposition often also reverses, or significantly
shifts, the valence it conveys. Valence shifters are terms that change the
sentimental orientation of another set of terms, by changing the polarity
and/or the evaluative intensity.
The most common linguistic negation cue in English is not, along with

contractions created with it, such as couldn’t or isn’t [Tottie, 1991].

Bag-of-Words Model

A common way to represent text documents in a simplified manner is by
using a bag-of-words model. The technique lists term occurrence and op-
tionally the frequency of term occurrence, disregarding grammar and term
order. Machine learning classifiers can use the resulting model directly as
feature vectors.

Term Frequency-Inverse Document Frequency

Term frequency-inverse document frequency (TF-IDF) is a common term
weighting scheme for the bag-of-words model, which lets us identify words
in a collection of documents that can guide in deciding a document’s topic.
A term will have a high TF-IDF score if it rarely appears in the whole
corpus, but appears often in the document at hand. As a result, very com-
mon words such as “the”, “a”, and “is” in English will be weighted lower
and have little impact, instead of shadowing rarer and more interesting
terms [Manning et al., 2008].
TF-IDF is calculated as:

tfidf(t, d,D) = tf(t, d)× idf(t,D)

where tf(t, d) is the term frequency, and idf(t,D) is the inverse document
frequency. There are several variants of both tf and idf, but in their
simplest forms, tf is the number of times a term t occurs in a document
d, and the idf is:

idf(t,D) = log N

|{d ∈ D : t ∈ d}| , |{d ∈ D : t ∈ d}| 6= 0

Here D is the entire corpus of documents, and N is the total number
of documents in the corpus. As the number of documents where a term
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appears increases, the ratio inside the logarithm will decrease towards 1,
making the idf approach 0.

Part-of-Speech Tagging

Part-of-speech (POS) tagging is the process of categorizing the tokens of
a sentence into the different parts of speech (such as nouns, verbs, ad-
jectives and adverbs) based on their definitions as well as the contexts.
This way, POS tagging attempts to solve the problem of word ambiguity.
There are many POS taggers for regular languages trained on treebanks —
particularly for the newswire domain — such as the Penn Treebank [Mar-
cus et al., 1993]. However, the conversational language of Twitter causes
an out-of-domain problem for these traditional POS taggers, degrading
their performance. Gimpel et al. [2011] present a POS tagger tailored to
Twitter.

Syntactic Parsing

Parsing in the sense of human languages is the analysis of a string of text
using a set of grammar rules, ordering terms according to their syntactic
relation to each other. The result is typically illustrated as parse trees, as
seen in Figure 2.4. Only using a grammar, parsing can potentially produce
an unlimited number of parse trees because of the substantial ambiguity
of human languages. Statistical parsing and machine learning methods
can be used in order to solve this ambiguity [Collins, 2003; Ratnaparkhi,
1999]. Figure 2.4 is an example of two possible parses for a problematic
sentence, where each parse is correct, but has a different meaning.

Dependency Parsing

The task of dependency parsing consists of identifying the main verb of a
sentence, and all other syntactic units being either directly or indirectly
dependent on the verb. The dependency relations are based on syntactic
rules, and do not rely on the meaning [Hudson, 2010]. Figure 2.5 is an
example of a dependency parsed sentence where the root of the tree is the
main verb, and the remaining words depend on the root either directly or
indirectly.
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Figure 2.4.: Two syntactic parse trees for the same sentence, demonstrat-
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Figure 2.5.: Two representations of a dependency parsed sentence

2.1.3. Classification Scoring Metrics

Several different metrics exist for evaluating the performance of a classifier.
This section presents the scoring metrics used in this project.

Precision

In a binary classification task, precision is a measure of the rate of posit-
ively predicted samples that are correct. Precision is defined as follows:

precision = tp
tp + fp

tp denotes the number of true positives and fp denotes the number of
false positives.
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Recall

Recall is also a binary classification scoring metric, and measures the ratio
of total positive samples that were correctly identified by a classifier. It is
defined as follows:

recall = tp
tp + fn

tp denotes the number of true positives and fn denotes the number of
false negatives.

F-Measure

F-measure, is a weighted combination of precision and recall [Rijsbergen,
1979]. In its general form, it follows the formula:

Fβ = (1 + β2)× recall × precision
(β2 × precision) + recall

The value of β defines the relationship between precision and recall: The
Fβ score weights recall more than precision by a factor of β. The most
commonly used β value is 1. This weights precision and recall evenly, and
is known as the harmonic mean. The F-measure with this value is known
as the F1 score, and is defined as:

F1 = 2× recall × precision
precision + recall

Averaging Single-Class Scores

When evaluating the performance of a non-binary classifier — a classifier
with more than two possible class labels — it is common to report the
performance as an average of one or several of the aforementioned metrics,
such as F1 score, across a subset of, or all possible labels. This can be done
by taking the macro-average, or the micro-average of the metric, across
the set of labels.
Micro-averaging is calculated by aggregating all of the relevant measures

out of true positives, false positives, true negatives and false negatives and
calculating the metric as if one was calculating the metric for a single label.
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Macro-averaging completely disregards class imbalance. It is calculated
by taking the average of the classification metric outputs for each label,
equally weighing each label, regardless of its number of samples.
More formally: consider a binary evaluation metric B(tp, fp, tn, fn), that

is calculated based on the number of true positives (tp), true negatives (tn),
false positives (fp) and false negatives (fn). Micro and macro-average
scores for a given label γ with tpγ , fpγ , tnγ , fnγ denoting the number of
true positives, false positives, true negatives, and false negatives for the
metric B, follow the formulae [Tsoumakas et al., 2010]:

Bmicro = B

 q∑
γ=1

tpγ ,
q∑

γ=1
fpγ ,

q∑
γ=1

tnγ ,
q∑

γ=1
fnγ



Bmacro = 1
q

q∑
γ=1

B
(
tpγ , fpγ , tnγ , fnγ

)

Percentage of Correctly Classified Scopes

For several classification tasks where the output is a sequence, classifica-
tion metrics that only consider individual units regardless of their order
are insufficient. Percentage of correctly classified scopes (PCS) is a metric
for measuring the performance of a scope classifier, for example a negation
scope detection system.
A scope is considered correctly classified if, for a given negation cue,

every token in its associated scope has been correctly marked as in a
negation scope. The evaluation metric accuracy is defined as the number
of correctly classified samples divided by the total number of samples. The
PCS metric can thus be considered an accuracy measure.

2.2. Tools

Many external tools and libraries were necessary for the realization of this
project. The following lists the most important of these.
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2.2.1. Tweet NLP

Tweet NLP1 is a collection of tools for common NLP tasks tailored to
Twitter’s conversational language. The tools included are a tokenizer,
a part-of-speech (POS) tagger [Owoputi et al., 2013], hierarchical word
clusters, and a dependency parser for tweets [Kong et al., 2014].
The POS tagger is an important tool used in many NLP operations,

including the dependency parser, and for building feature vectors for a
classifier (see Section 3.4.4). The tagger included in Tweet NLP is reported
to have an accuracy above 93 % [Owoputi et al., 2013].
The dependency parser achieved 80 % unlabeled attachment accuracy

[Kong et al., 2014].

2.2.2. Scikit-learn

Scikit-learn [Pedregosa et al., 2011] is a framework for the Python pro-
gramming language that offers machine learning models as well as tools for
performing preprocessing and data analysis. The Scikit-learn project is
focused on providing state-of-the-art implementations for a wide range of
machine learning methods, with particular attention to performance, con-
sistent API and good documentation. The documentation is simplified in
order to present to inexperienced readers the key points of a topic, while
pointing experts to more in-depth information. The following highlights
some key aspects of the framework.

Transformer

Transformer objects are an essential part of performing machine learning
with Scikit-learn, and are objects that may “clean, reduce, expand, or
generate feature representations”. They are among other things used to
create a matrix representation of the feature set for a set of samples.

Pipeline

Scikit-learn provides a framework for pipelining machine learning tools,2
making it easy to chain tasks such as preprocessing and feature extrac-
1http://www.ark.cs.cmu.edu/TweetNLP/
2http://scikit-learn.org/stable/modules/pipeline.html
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tion together with a machine learning algorithm in a tidy manner. The
Pipeline framework is also able to perform grid search for parameters
across all the estimators — the main API of Scikit-learn. An estim-
ator is any object that learns from data, e.g., a classifier, or a Transformer
object that extracts/filters useful features from raw data in the Pipeline.
A pipeline can be trained as a whole, resulting in an object that performs
all the necessary preprocessing, feature extraction and classification when
given raw data.

Feature Union

Also included in the Scikit-learn Pipeline framework is the Feature-
Union, which is useful for feature extraction. Similarly to the Pipeline,
it is used for chaining Transformer objects, but instead of passing the res-
ulting data on to the next Transformer, all the Transformers are passed
the same input. Each Transformer then produces its respective feature
vectors — in parallel if desired. All the resulting vectors are concatenated
into a final feature matrix.

Grid Search

One of the benefits of using the Pipeline framework is that it allows per-
forming a parameter grid search across all the estimators in the Pipeline.
The parameters can be provided for each estimator as ranges or sets of
values to be evaluated. This grid search across preprocessing, feature ex-
traction, and classifier parameters can be useful, for example for choosing
a combination of vectorisation n-grams that works well for some classifier
parameters.

2.2.3. Pandas

Pandas [McKinney, 2012] is an open-source library providing high-perfor-
mance data structures and data analysis tools for the Python programming
language. It also includes tools for efficiently reading and writing data
between in-memory data structures and different textual file formats, such
as comma-separated value files.
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2.2.4. CRFSuite

CRFSuite [Okazaki, 2007] is an implementation of the Conditional Ran-
dom Fields (CRF) sequence classifier, described in Section 2.1.1. It is
written in the C++ programming language. Each CRF classifier object
takes as input the parameters C1 and C2 for setting the coefficients for
L1 and L2 level normalization, respectively. The implementation includes
a SWIG3 API interface for other high-level programming languages, such
as Python.

2.2.5. Mechanical Turk

Amazon Mechanical Turk4 is a marketplace for work that requires human
intelligence. It allows for performing a large amount of Human Intelligence
Tasks by providing a large workforce consisting of real people. Within the
context of this project, it is a useful tool for manually annotating a large
number of tweets, for example as positive or negative.

2.3. External Data Sets

Three external data sets were used in the experiments conducted in this
project: a sentiment-annotated data set collection, the SemEval-2014
Twitter Sentiment Data Sets, and two negation-annotated corpora, the
BioScope and SFU Review corpora.

2.3.1. SemEval-2014 Twitter Sentiment Data Sets

Several data sets were created for subtask B of the Twitter sentiment
analysis (TSA) task of SemEval-2014 (described in Section 3.3), created
using Mechanical Turk. The data sets include a Twitter training set,
a Twitter development set, two Twitter testing sets in addition to two
out-of-domain testing sets: one consisting of SMS text messages and one
comprising entries from LiveJournal,5 a social networking service where
users can keep a blog, journal or diary. Each sample is labeled either
3http://www.swig.org/
4https://www.mturk.com/
5http://www.livejournal.com/
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positive, negative or objective/neutral. The size of each data set, along
with its label distribution, is shown in Table 2.1.

Corpus Positive Negative Objective/
Neutral Total

Twitter2013-train 3,662 1,466 4,600 9,728
Twitter2013-dev 575 340 739 1,654
Twitter2013-test 1,575 601 1,640 3,816
SMS2013-test 492 394 1,207 2,093

Twitter2014-test 982 202 669 1,853
Twitter2014-sarcasm 33 40 13 86
LiveJournal2014-test 427 304 411 1,142

Table 2.1.: Data sets provided for SemEval-2014 Subtask B

Due to Twitter’s privacy policy, the Twitter data sets cannot be distrib-
uted directly, but are downloaded with a script that combines tweets with
their sentiment label using tweet IDs. Because of this, tweets that have
been deleted since the data sets’ creation are unavailable for download,
and the available data sets are currently smaller than they were originally.
Table 2.2 shows the number of available tweets in the data sets as of when
they were downloaded by us, November 2014.

Data set Number of Tweets

Twitter2013-train 8,026
Twitter2013-test 3,109
Twitter2014-test 1,533
Twitter2014-sarcasm 86

Table 2.2.: Number of available tweets in SemEval-2014 Twitter Sentiment
Data Sets as of November 2014

2.3.2. BioScope Corpus

The BioScope Corpus [Vincze et al., 2008] is a collection of bio-medical
textual data annotated for speculation and linguistic negation. The data

21



2. Tools and Methods

set is intended as a research resource to aid in the field of biomedical
textual data mining, and was created because the detection of speculative
and negative assertions is an essential part of that field. It was the first
extensive, freely available negation-annotated corpus and allowed for the
use of supervised learning in negation scope detection. It consists of three
sub-corpora:

• Medical free texts

• Biological full papers

• Biological scientific abstracts

The respective number of sentences in the free text, full paper and
abstracts sub-corpora are 6,383, 2,670 and 11,871.
The characteristics of the medical free text sub-corpus differs signific-

antly from the other two sub-corpora. The free texts are radiology reports
containing mainly short and concise sentences, with an average sentence
length of 7.73 tokens, while the average sentence lengths in the full paper
and abstracts sup-corpora are 26.24 and 26.43 tokens, respectively. The
rate of negation, though, is similar across the entire corpus: 13.6 % of sen-
tences in the free texts, 12.7 % of sentences in the full papers, and 13.5 %
of sentences in the abstracts contain negation.
Figure 2.6 shows an example sentence from the data set.

2.3.3. SFU Review Corpus

The Simon Fraser University (SFU) Review Corpus [Konstantinova et al.,
2012] is a collection of over 400 documents of movie, book and consumer
product reviews annotated at the token level for the presence of linguistic
negation and speculation. In total, it contains over 17,000 annotated sen-
tences, and was the first publicly available negation-annotated corpus re-
leased from the review domain. Figure 2.7 shows an example sentence
from the corpus.
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<sentence id="S26.8">
These findings
<xcope id="X26.8.2">

<cue type="speculation" ref="X26.8.2">indicate that</cue>
<xcope id="X26.8.1">

corticosteroid resistance in bronchial asthma
<cue type="negation" ref="X26.8.1">can not</cue>
be explained by abnormalities in corticosteroid
receptor characteristics

</xcope>
</xcope>.

</sentence>

Figure 2.6.: Example sentence from the BioScope Corpus

<SENTENCE>
<W>I</W>
<cue ID="15" type="speculation">

<W>would</W>
</cue>
<xcope ID="16">

<ref COMMENTS="" ID="17" SRC="15"/>
<W>definitely</W>
<cue COMMENTS="" ID="11" type="negation">

<W>not</W>
</cue>
<xcope ID="12">

<ref ID="13" SRC="11"/>
<W>recommend</W>
<W>it</W>
<W>to</W>
<W>anybody</W>

</xcope>
</xcope>

</SENTENCE>

Figure 2.7.: Example sentence from the SFU Review Corpus
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3. Related Work
This chapter first looks at the recent development within the field of sen-
timent analysis (SA) and discusses a shift of the field towards Twitter
data. The state-of-the-art in Twitter sentiment analysis (TSA) is presen-
ted based on the International Workshop on Semantic Evaluation (Sem-
Eval). Related work within negation scope detection is also presented.

3.1. Literature Review Method

Our method of literature search has been centred around the SemEval
shared tasks on TSA. As a starting point, we considered the systems that
performed best in the shared tasks. In addition, we received a number of
introductory papers from our supervisors. This approach has given us con-
siderable freedom to continuously pursue the topics we deem interesting,
as we discover them.
An alternative approach to searching and reviewing literature that we

initially considered is the Structured Literature Review (SLR) procedure
as explained by Kofod-Petersen [2012]. The method consists of defining
research questions, quality criteria and a search protocol, and then ex-
ecuting said protocol step-by-step, assessing each paper according to the
criteria. Among the advantages of this method is the wide area of re-
search covered, which can reveal existing solutions that could otherwise
have been overlooked. The wide coverage may also avoid research bias,
and the results of the review may be useful for the research community as
an overview of the area in question.
We did not see the need for performing an SLR for the sake of making a

contribution to the research community, because Selmer & Brevik [2013]
already did extensive work in that regard. Additionally, SLR requires
spending time on tasks that neither contribute to our project nor our
understanding of the field of research, such as performing and documenting
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quality assessment of the research material.
There are some possible weaknesses to our chosen approach. Because

several SemEval papers refer to similar sets of literature, as well as each
other’s systems, there is a possibility of ending up with a limited literature
space resulting in a biased perception of the field. We have kept this in
mind throughout the process, however, and have been careful to perform
our own literature searches when researching important topics.

3.2. Recent Developments Within Sentiment
Analysis

Exploring popular opinion on various subjects has always been an im-
portant part of humans’ information gathering behaviour. Where one in
the past needed to conduct surveys to learn about opinion trends, for
instance to conduct political polls, the availability of online data express-
ing sentiment has allowed for non-intrusive data mining to extract this
information.
Over the last decade, there has been a substantial increase in the amount

of work done in the field of SA. Surveys conducted by Pang and Lee [2008]
and Liu and L. Zhang [2012] give a good overview of the state-of-the-art
at the respective points in time. The work in the field of SA has largely
followed the available data, both in terms of the amount of work done and
the focus area. Figure 3.1 shows the amount of hits for queries (3.1) and
(3.2) on Google Scholar,1 displaying a shift of the field towards Twitter
data in recent years.

"opinion mining" OR "sentiment analysis"

OR "opinion classification" (3.1)

"opinion mining" OR "sentiment analysis"

OR "opinion classification"

AND "micro-blogging" OR "microblogging" OR "twitter" (3.2)

1http://scholar.google.com
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Figure 3.1.: Google Scholar hits for queries SA: (3.1) and Twitter ∧ SA:
(3.2), for articles published from 2007 up to and including
2014

3.3. International Workshop on Semantic
Evaluation

The International Workshop on Semantic Evaluation (SemEval)2 is a series
of evaluations of computational semantic language analysis systems. In
recent years, it has been hosted annually. Each iteration of SemEval has
a set of tasks. Tasks are hosted by experts within the field of study,
who assist participants by providing resources such as training data and
facilitating communication between teams. SemEval-2013 and SemEval-
2014 both included tasks for TSA, see Nakov et al. [2013] and Rosenthal
et al. [2014]. Additionally, SemEval-2015 has two TSA shared tasks, and
two TSA-related shared tasks will be included in SemEval-2016. Recent
SemEvals have yielded significant improvements to the state-of-the-art of
TSA. This will be discussed in Section 3.4.
The TSA tasks in SemEval-2013 and SemEval-2014 included two sub-

2http://aclweb.org/aclwiki/index.php?title=SemEval_Portal
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# Team Name Twitter-
2014

Twitter-
2013 SMS Sarcasm Live-

Journal

1 TeamXa 70.96 72.12 57.36 56.50 69.44
2 Cooolllb 70.14 70.40 67.68 46.66 72.90
3 RTRGOc 69.95 69.10 67.51 47.09 72.20
4 NRC-Canadad 69.85 70.75 70.28 58.16 74.84
5 TUGASe 69.00 65.64 62.77 52.87 69.79
6 CISUC_KISf 67.95 67.56 65.90 55.49 74.46
7 SAILg 67.66 66.80 56.98 57.26 69.34
8 Swiss Chocolateh 67.54 64.81 66.43 49.46 73.25
9 Synalp-Empathici 67.43 63.65 62.54 51.06 71.75
10 Think_Positivej 67.04 68.15 63.20 47.85 66.96
a Fuji Xerox f U. Coimbra
b Harbin Technical Institute g U. Southern California
c Retres Co and Gothenburg U. h ETH Zürich
d National Research Council Canada i U. Lorraine
e INESC-ID em Lisboa j IBM Research Brazil

Table 3.1.: The top 10 ranking submissions for SemEval-2014 Subtask B

tasks: a term-level subtask (Subtask A) where the aim was to classify the
contextual polarity of a term in a tweet and an expression-level subtask
(Subtask B) where the aim was to correctly classify the overall polarity of
whole tweets. Subtask B is the one relevant to our project, and is the one
we will focus on. Throughout the remainder of this report, when we refer
to SemEval-2014, we are referring to Subtask B, unless explicitly stated
otherwise.
In addition to providing training, development, and test data sets of

annotated tweets, the task hosts also provide out-of-domain data sets to
test the versatility and generalisability of the created submissions. The
data sets provided for SemEval-2013 and SemEval-2014 are described in
greater detail in Section 2.3.1. The top ranking submissions for SemEval-
2014 are displayed in Table 3.1.
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3.4. State-of-the-Art in Twitter Sentiment
Analysis

In this section we present the current state-of-the-art in TSA by breaking
the field down into several areas.
The typical approach to TSA uses a supervised machine learning system

including three main steps: preprocessing, feature extraction, and train-
ing the classifier. To reduce noise and remove unnecessary information,
the preprocessing step consists of a variety of filters for, e.g., normaliz-
ing URLs and elongated words. Features for the classifier are extracted
using sentiment scores from polarity lexica, statistics from metacommu-
nicative expressions specific to conversational language such as emoticons
and hashtags, as well as natural language processing information including
bag-of-words, part-of-speech tags and word clusters. Finally, training the
classifier is usually a matter of performing a grid search over the parameter
space for selecting the most suitable parameters for a supervised machine
learning model.

3.4.1. Tweet Preprocessing

Common preprocessing tasks in TSA include filtering out or normalizing
URLs and user mentions, because these items have minimal information
value in the context of sentiment classification. Agarwal et al. [2011]
perform this normalization by substituting user mentions with the tag
||T|| and URLs with the tag ||U||.
Another Twitter-specific syntactic feature is prefixing tweets with “RT”

to indicate that the following part of the tweet is a retweet — a repost of
previous content. A simple way of handling this is to remove the “RT”
string from the tweet.
It is also common to normalize elongated words, e.g., cooooooll, sooooooo,

or happyyyyyy by substituting letters that occur many times sequentially
with one or two occurrences of the letter.
It was previously quite common to filter out hashtags [Selmer & Brevik

2013]. The assumption behind this is that hashtags when used as in-
tended — i.e., to categorize posts by topic — offer little information of
value. Mohammad [2012] show through experiments that hashtags add
sentiment-semantic information to tweets by indicating the tone of the
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message or the writer’s emotions. The following tweet in relation to the
Occupy Wall Street (OWS) movement is an example of this:

We are fighting for the 99 % that have been left behind.
#OWS #anger

Go et al. [2009] perform the typical preprocessing steps: URL, user
mention and word-elongation normalization, and achieve a reduction of
the feature space dimensionality by 45.85 % after constructing their feature
vector further down the classification pipeline.

3.4.2. Prior Polarity Lexica

Prior polarity lexica consist of words with their corresponding prior po-
larity values. These prior polarity values are each word’s out-of-context
semantic polarity associations — a score representing its sentimental ori-
entation. A feature set similar to the feature set in Table 3.2 is typically
generated for each polarity lexicon. These prior polarity based features
are among the most important in TSA along with the vectorized tweet
tokens, as shown in several ablation studies [Leal et al., 2014; Kiritchenko
et al., 2014; Kouloumpis et al., 2011].

Feature Description

Total Score
∑

token∈tweet score(token)
Maximum Score maxtoken∈tweet score(token)
Last Subjective Term Score Score of the last term with score > 0

Table 3.2.: The associated set of features for each prior polarity lexicon in
a state-of-the-art feature set

Many different prior polarity lexica exist. Miura et al. [2014] describe
a solution for SemEval-2014 based heavily on the use of polarity lexica,
and divide them into two categories: formal and informal. Formal lex-
ica contain only correctly spelled terms that are formal words in written
English (e.g., present in the dictionary), while informal lexica also include
erroneously spelled words and slang. Prior polarity lexica used in TSA in-
clude The MPQA Subjectivity Lexicon [Wilson et al., 2005], SentiWordNet
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[Baccianella et al., 2010], AFINN-111 [Nielsen, 2011], Bing Liu’s Opin-
ion Lexicon [Ding et al., 2008], NRC Emotion Lexicon [Mohammad and
Turney, 2010], NRC Hashtag Sentiment Lexicon, and Sentiment140 Lex-
icon [Kiritchenko et al., 2014]. The first three are formal lexica, while the
rest are informal.
The Sentiment140 and NRC Hashtag Sentiment lexica were created by

Kiritchenko et al. [2014] for their solution to SemEval-2014. They are
particularly interesting because they include two entries for each term:
a negated and an affirmative context entry, each with a corresponding
sentiment score. They were automatically created using a large corpus
of tweets collected by the NRC Canada group, labelled as positive or
negative by the presence of a set of polarity-indicating emoticons and
hashtags for Sentiment140 and Hashtag Sentiment, respectively. Then,
the tweets in the lexica were annotated with negative contexts following
the work of Pang et al. [2002]: a negated context is created from a negation
word (e.g., no, shouldn’t), to the first punctuation mark encountered. The
two lexica were created by calculating the point-wise mutual information
[Bouma, 2009] of each of the positive and negative tweets, where values
from tokens in a negated context were added to the negative context lexica
while the rest were added to the affirmative context lexica.

3.4.3. Negation Handling

The ability to handle linguistic negation of terms — described in Sec-
tion 2.1.2 — is an important aspect of sentiment classification. When
using supervised learning, negated terms are typically represented as a
feature in the feature vector. Thus, the problem of handling negators is
limited to identifying the amount of other terms the negator affects, also
known as the scope of the negator. A simple approach, when for instance
using a bag-of-words word n-gram feature, is to prefix the negated terms
with _not_. A naïve, and still quite widely used approach in TSA, is to
set the scope of negation as all terms from the negator until the first punc-
tuation encountered: Section 6.2 contains a more detailed description of
this solution.
If the model includes a prior polarity lexicon of terms and their senti-

ment values, the process of handling negation becomes more complex. An
intuitive approach is to invert the polarity of the sentiment score of the
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negated terms. For instance, if a word with a sentiment score of 0.5 was
located in a negated context, the polarity would then be shifted to −0.5.
This assumption has been shown to be incorrect [Kiritchenko et al., 2014].
Positive terms, e.g., fantastic, when negated tend to shift their polarity
and decrease their intensity (not fantastic), while negative terms tend to
stay negative with a reduced intensity (e.g., terrible ⇒ not terrible).
Arguably the biggest development of the state-of-the-art of TSA follow-

ing SemEval-2014 was the negation handling technique using the lexical
approach introduced by Kiritchenko et al. [2014], described in the previous
section. The lexica provided a significant performance increase, shown by
their ablation study: the two lexica contributed an average of 5.83 % to
the F1 score of their system across the five datasets (including the sarcasm
data set).

3.4.4. Feature Extraction

Many submissions for SemEval-2014 based their feature matrix on the
top submission from SemEval-2013 [Mohammad et al., 2013]. Tang et al.
[2014] define this feature set as the state-of-the-art feature set, labelling it
STATE. We will adopt this definition in our project. The STATE feature
set includes most typically used features, and is built up as follows for
each tweet:

• N-grams: The presence of word n-grams (where 1 ≤ n ≤ 4) and
character n-grams (where 3 ≤ n ≤ 5).

• Sentiment Lexica: A set of sentiment lexica, each with a group of
features as shown in Table 3.2

• Clusters: The presence of words from each of the 1000 clusters from
the Twitter NLP tool (see Section 2.2.1).

• All-Caps: The number of words with all letters capitalized.

• Elongated Words: The number of elongated words.

• Emoticons: The presence of positive and negative emoticons.

• Punctuation: The number of contiguous sequences of periods, ques-
tion marks or exclamation points.
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• Negation: The number of individual negated terms within the tweet.
Negated terms are also marked as being in a negated context for
sentiment lexicon look-ups.

3.4.5. Machine Learning Algorithms

Most well-performing systems for TSA use a supervised machine learning-
based classifier. The submissions to SemEval-2014 follow this trend; al-
most every submitted system uses a machine learner, and all of the top
performing systems use machine learning [Rosenthal et al., 2014].

Rank Team Name Algorithm

1 TeamX Logistic Regression
2 Cooolll Support Vector Machine — Linear
3 RTRGO Stochastic Gradient Descent
4 NRC-Canada Support Vector Machine — Linear
5 TUGAS Logistic Regression
6 CISUC Support Vector Machine — RBF
7 SAIL Naïve Bayes
8 Swiss-chocolate Support Vector Machine — Linear
9 Synalp-Empathic Support Vector Machine (SMO)
10 Think_Positive Neural Networks

Table 3.3.: The classification algorithms used by the top ranking systems
for SemEval-2014 Subtask B

Table 3.3 shows the classification algorithms used by the ten top ranking
submissions to SemEval-2014. Sequential Minimal Optimization (SMO)
[Platt, 1998] is an optimizing variation for training the Support Vector
Machine (SVM) classifier (the Synalp-Empathic group does not specify
which SVM kernel they use), and as made apparent by Table 3.3, SVM
and Logistic Regression classifiers were popular choices in SemEval-2014.
These are both fast machine learning models, and SVM is considered the
state-of-the-art for text classification and high-dimensional sparse feature
spaces [Kiritchenko et al., 2014].
The Naïve Bayes classifier is considered one of the traditional text clas-

sification models, and has been proven strong for sentiment classification
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of micro-blogs [Bermingham and Smeaton, 2010]. It has, however, only
been used by one of the top-10 ranking teams, SAIL, and they use a spe-
cial algorithm: a decision tree with Naïve Bayes classifiers on each leaf.
The fall in popularity of Naïve Bayes may be caused by the increasingly
complex and conglomerated feature matrix.

3.4.6. SemEval-2015

The papers from the SemEval-2015 shared task on TSA appeared as we
were writing the last sentences of this thesis, and so could not be included
in any of the comparisons or studied in detail, although the task overview
paper [Rosenthal et al., 2015] actually mentions negation as one of the
areas that this year’s systems focused on. It is interesting to note, however,
that almost all of the participating systems that included some treatment
of negation in fact used the naïve approach described in Section 6.2, that
is, to mark as negated all terms from a detected negation cue to the next
punctuation. One system [Z. Zhang et al., 2015] included an even simpler
treatment, just using a binary feature to flag the presence or absence of a
negation cue in a tweet.
One of the top-ranked systems, KLUEless [Plotnikova et al., 2015], used

a heuristic of assigning a negation cue a scope over the 4 following tokens.
A number that compares well with the 3.8 average tokens in the negation
scope for the NTNU Twitter Negation Corpus (see Table 4.3). Only one of
the TSA systems in SemEval-2015 utilized a more sophisticated treatment
of valence shifters (Section 2.1.2): Cerezo-Costas and Celix-Salgado [2015]
trained a CRF-based classifier to detect the scope of what they call “denier
particles” (i.e., negation) and “reversal verbs” (e.g., avoid, prevent, solve),
that reverse the polarity of the terms in their scope. Their system did not
perform that well over all on the shared task, but was the best-performing
one on the 2014 tweet sarcasm data set.

3.5. Negation Scope Detection

The natural language processing sub-field of identifying the scope of lin-
guistic negation, or negation scope detection (NSD), presented in Sec-
tion 2.1.2, is relatively young. Originally, the main area of application
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was biomedical texts, such as clinical reports and discharge summaries,
as correctly identifying negation plays a critical role when automatically
extracting information from this data. Early solutions were typically rule-
based, such as the NegFinder and NegEx systems developed by Mutalik
et al. [2001] and Chapman et al. [2001], respectively, which both heavily
incorporate the use of regular expressions.
The BioScope corpus [Vincze et al., 2008] is a corpus of biomedical

texts annotated for the presence of negation and speculation (see Sec-
tion 2.3.2). It was the first extensive negation-annotated corpus and sig-
nificantly boosted research on NSD, in large part due to facilitating for
the use of supervised machine learning. Morante and Daelemans [2009]
developed a meta-classifying NSD system on this corpus that as of 2010
was considered the state-of-the-art.
The Conference on Computational Natural Language Learning (CoNLL)

hosted a shared task in 2010 with a sub-task aimed at detecting specu-
lation cues and their affected scope [Farkas et al., 2010], a very similar
task to NSD. The BioScope corpus was among the corpora used for train-
ing and evaluation of this sub-task. Morante and Daelemans submitted a
new system to this task and achieved the best F1-score of all participat-
ing teams, but it is difficult to compare the performance to their system
released in 2009, as it was as far we could find not evaluated for NSD.
Additionally, NSD has been the focus of a shared task hosted by The

Joint Conference on Lexical and Computational Semantics, *SEM 2012
[Morante and Blanco, 2012]. The hosts of this shared task created a new
negation-annotated data set based on the literary works of Sir Arthur
Conan Doyle, named the CD-SCO data set. Most well-performing sub-
missions to both tasks used a supervised machine learning-based approach.
The area of application for research on NSD has in recent times shifted

focus towards SA. Wiegand et al. [2010] performed a survey exploring the
effects of negation on SA, concluding that it is “highly relevant”. Moil-
anen and Pulman [2007] were among the first to implement an SA system
with a sophisticated NSD mechanism, labeling the phenomenon polarity
reversal. Their approach was focused on linguistic syntactic composition.
Councill et al. [2010] created a small negation-annotated corpus consist-
ing of customer reviews from Google Products and used it to develop a
Conditional Random Fields (CRF)-based negation classification system.

35



3. Related Work

The effect of this system on a sentiment classifier was explored, and it was
reported to provide a “dramatic” increase in performance. Konstantinova
et al. [2012] also created a customer review corpus annotated for nega-
tion, the SFU Review Corpus, described in Section 2.3. As opposed to
the corpus created by Councill et al., containing only 2,111 sentences in
total, this corpus contains over 17,000 annotated sentences and poses no
size concerns for most purposes.
The remainder of this chapter explores in detail three solutions to hand-

ling linguistic negation: Morante and Daelemans’ solution using meta-
learning, Councill et al.’s CRF-based solution, and a shallow semantic
parsing-based solution created by Zhu et al. We also evaluate the solu-
tions’ suitability for TSA.

3.5.1. Using Meta-Learning

Morante and Daelemans [2009] describe a negation scope detection system
that uses meta-learning for classification. Their algorithm consists of two
steps:

1. Signal identification

2. Scope identification

Feature Description

Lemma The canonical base form
POS The part-of-speech tag
Chunk tags The chunk tag of token to the left and right

Table 3.4.: The Base feature set for each token in the meta-learning neg-
ation scope detection system

The first phase of the algorithm uses a decision tree to classify if a token
is the first token of a negation signal, inside a negation signal, or outside
it, as a negation signal may consist of several words. The tokens are
first preprocessed with the GENIA tagger,3 a biomedical text processing
3http://www.nactem.ac.uk/tsujii/GENIA/tagger/
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tool that splits the text into chunks and labels tokens with part-of-speech
(POS) and Named-Entity tags. The chunking process segments a sentence
into a set of constituents, such as noun phrase or verb phrase. These
chunks are an important feature, and a reason some describe the algorithm
as a chunking-based approach. The feature set used for the classifier is
shown in Table 3.4. We label this feature set the Base feature set for each
token in this system.
The second phase of the algorithm is performed by a meta-learner that

uses predictions made by three classifiers to predict scope classes. The
three classifiers providing input to the meta-learner are an SVM, a k-
nearest neighbour classifier and a CRF classifier.
An instance represents a pair of a negation signal and a token. The

meta-learning classifier is run on all instances. All tokens in a sentence
are paired with all negation signals in the same sentence, identified in
phase one. The feature set used by the three classifiers for each instance
(signal s, token t) consists of:
• Base features of t

• Base features of one token to the left, and three tokens to the right

• s as a chain of words

• Chain of POS, chain of chunk tags and distance in number of tokens
for all tokens between t and s

The meta-learner is also a CRF. For each instance it has a feature
set similar to the first three classifiers that also contains their prediction
results for the current token and the neighbouring tokens. After some
post-processing, the scopes are identified using the labels assigned to each
token.
The system was trained on the abstracts BioScope sub-corpus, and eval-

uated by Morante and Daelemans on the free text and full paper BioScope
sub-corpora. The results are shown in Table 3.5. PCS stands for percent-
age of correctly classified scopes.

3.5.2. Using Shallow Semantic Parsing

Zhu et al. [2010] propose a rule-based approach to negation scope iden-
tification using shallow semantic parsing (SSP), also known as semantic
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Corpus Precision Recall F1 PCS

Biological full papers 0.722 0.697 0.709 0.410
Medical free texts 0.864 0.821 0.842 0.708

Table 3.5.: System scores when running the meta-learning classifier on
the medical free text and biological full paper BioScope sub-
corpora

role labelling.
shallow semantic parsing (SSP) is based around a predicate word. Given

a parse tree and a predicate, SSP recognizes and maps all of the constitu-
ents in the sentence into their corresponding semantic arguments. Zhu
et al. changed the algorithm slightly: they set the negation signal as the
predicate, and then they find the negated scope by identifying the correct
argument(s). An example parse tree is shown in Table 3.2.

S0,11

VP2,11

SBAR3,11

S4,11

VP6,11

VP8,11

VP9,11

explained by abnormalities

VB8,8

be

RB7,7

not

MD6,6

can

NP4,5

corticosteroid resistance

IN4,5

that

VBP2,2

indicates

NP0,1

These findings

arguments

predicate

Figure 3.2.: A parse tree showing the arguments identified by the SSP
algorithm applied to an example sentence.

They formulated two heuristic rules. Given a negation signal and its
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negation scope which covers wordm, . . . ,wordn:

1. The negation signal itself and all of its ancestral constituents are
non-arguments.

2. If constituent X is an argument of the given negation signal, then
X should be the highest constituent dominated by the scope of
wordm, . . . ,wordn.

The first rule is intended to prevent an argument covering the negation
signal, while the second rule is meant to prevent overlapping arguments.
The negation scope algorithm consists of two main steps followed by a

postprocessing step:
The first step is argument pruning. This step is done to filter out con-

stituents that are very unlikely to be arguments of the negation signal
by employing a heuristic. The algorithm is similar to the heuristic al-
gorithm proposed by Xue and Palmer [2004]. It designates the negation
signal as the current node and iteratively moves up one level in the tree
and collects the current node’s siblings. The algorithm terminates when it
reaches the root. All the collected constituents are passed to the argument
identification phase.
Argument identification is the second step, and is done by using a bin-

ary classifier — an implementation of the SVMLight algorithm.4 Each
argument is represented by a feature vector, and the classifier is given
two possible labels: positive (an identified argument) or negative (not an
identified argument). Many different features sets are tested, for a more
detailed description see Zhu et al. [2010].
The system is also able to automatically identify negation signals. This

is done using supervised learning; they do not state more precisely how
they perform this. Like Morante and Daelemans, Zhu et al. train their
classifier on the abstracts sub-corpus of the BioScope corpus, and evaluate
the classifier on the full paper and free text sub-corpora, achieving the
results shown in Table 3.6. Percentage of correctly classified scopes (PCS)
denotes percentage of correctly classified scopes.
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Corpus Precision Recall F1 PCS

Biological full papers 0.582 0.563 0.572 0.640
Medical free texts 0.806 0.822 0.814 0.898

Table 3.6.: System scores when running the SSP-based classifier on the
medical free text and biological full paper BioScope sub-
corpora

Feature Description

Word The lower case token string.
POS The part-of-speech of the token.
Right Dist. The linear token-wise distance to the nearest explicit negation

cue to the right of the token.
Left Dist. The linear token-wise distance to the nearest explicit negation

cue to the left of the token.
Dep1 POS The part-of-speech of the first order dependency of the token.
Dep1 Dist. The minimum number of dependency relations that must be

traversed to from the first order dependency head of the token
to an explicit negation cue.

Dep2 POS The part-of-speech of the second order dependency of the token.
Dep2 Dist. The minimum number of dependency relations that must be

traversed to from the second order dependency head of the token
to an explicit negation cue.

Table 3.7.: Features for each token used by the CRF classifier
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3.5.3. Using Conditional Random Fields

Councill et al. [2010] created a machine learning-based solution for identi-
fying the scope of negation for improved SA. The system used an up-
stream dependency parser: an implementation of the MaltParser [Nivre
et al., 2007]. The parser handles tokenization, performs POS-tagging,
and creates a dependency parse tree. This is used to generate the fea-
ture vector shown in Table 3.7. Note that Right/Left Dist. means the
distance between tokens in a sentence, while Dep1/Dep2 Dist. means dis-
tance between tokens in the dependency parse tree i.e., the amount of
edges that must be traversed. The feature set was used to train a CRF
classifier.
Because the intended usage area was predicting sentiment in online cus-

tomer reviews, and it was assumed that the intended domain would likely
contain language patterns that were uncommon in the text of professional
biomedical bindings, a new data set was created by annotating a sample
of 268 product reviews, containing 2,111 sentences whereof 679 contained
negation.
Councill et al. only evaluate the system on the full paper sub-corpus

of the BioScope Corpus, because this was deemed most similar to the
text from the intended usage domain, customer reviews, using 5-fold cross
validation. Additionally, they evaluate the system on the created customer
review corpus using 7-fold cross validation. Results are shown in Table 3.8.
PCS denotes percentage of correctly classified scopes.

Corpus Precision Recall F1 PCS

Reviews 0.819 0.782 0.800 0.398
BioScope 0.808 0.708 0.755 0.537

Table 3.8.: Cross validation scores for the CRF classifier on the BioScope
full paper sub-corpus and the created customer review corpus

4http://svmlight.joachims.org/
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3.5.4. Evaluation of Systems for TSA

When working with Twitter texts, a problem that arises is that the data
can be very unstructured, containing slang, misspellings and various un-
conventional linguistic means, as described in Section 1.1. This requires
a robust sentiment classifier that does not rely on features that are not
reliably present in tweets, such as correct grammatical structure and use
of punctuation.
The two phases of the negation scope detection algorithms can be split

up and considered independently. That is to say, given that the features
used in both phases of the algorithms can be recreated, it would for in-
stance be possible to use the signal finding algorithm proposed by Morante
and Daelemans with the scope finding algorithm of Councill et al.

Cue Detection

We could not find any previous work related to negation cue detection on
Twitter data; most work has been done on biomedical texts. Two general
approaches are used in linguistic negation cue detection: classification
using machine learning, or a lexicon of explicit negation cues.
A simplification to consider is only looking at cues comprised of one

word, as it is reasonable to assume that most cues take this form. Zhu
et al. found that 96.57 % of the cues in the BioScope corpus consist of one
word. This turns the classification problem into a binary one, as opposed
to the three-class system used by Morante and Daelemans.
An intuitive approach is using a lexicon. Twitter data may make this

difficult because the system must be able to identify cues written with
misspellings and/or using slang. An approach to solving this problem is
using the clusters created by Owoputi et al. [2013] (see Section 2.2.1) and
consider the whole cluster for each token in the negation cue lexicon, e.g.,
the lexicon shown in Table 5.1. The cluster for the token can’t is shown
in Figure 3.3.

Scope Identification

The solution proposed by Zhu et al. may be difficult to transfer to TSA be-
cause performing a semantic parse on the data is difficult to do accurately,
and errors in the early stages of the classification pipeline are amplified by
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can’t cant couldn’t cannot cnt couldnt can’t kant icant cudnt
can’t can’t couldn’t caint canny knt cantt cldnt culdnt carnt
ican’t cannt icnt cn’t cannae can’t could’nt caant cudn’t
cany -can’t couldent #cant canna kan’t coudn’t canot cann’t
could’t cain’t canttt cldn’t couldn’t cyah cannnot coudnt
ckant cant’t couldn’t caaant

Figure 3.3.: Tweet NLP cluster for the token can’t

the following steps. The fact that it performs poorly in terms of F1 score
also makes it an unattractive solution to explore further, despite perform-
ing well on percentage of perfectly classified scopes. PCS is not overly
important, as TSA makes extensive use of bag-of-words representations.
The concept of meta-learning should be well suited for handling noisy

and unstructured data, as the classifiers working in cooperation provide
robustness through redundancy. Despite this, Morante and Daelemans’s
system presents a similar problem to Zhu et al.’s: the phrase-chunk fea-
tures generated by the GENIA tagger create requirements for the gram-
matical structure of sentences.
As Councill et al. put it: “[...] our work represents a simplified approach

[to Morante and Daelemans] that replaces machine-learned cue prediction
with a lexicon of explicit negation cues, and uses only a single CRF to
predict negation scopes, with a more comprehensive model that includes
features from a dependency parser.” The simplicity of their system also
makes it adaptable: when trained on user reviews and tested on the Bio-
Scope Corpus, the system was able to learn some negation signals that
were not in its signal lexicon indirectly through their feature set.
The system scores on the biological full paper BioScope sub-corpus are

shown in Table 3.9. CRF denotes the Conditional Random Fields-based
scope detection identifier created by Councill et al. [2010], MetaLearn
denotes the meta-learning solution created by Morante and Daelemans
[2009], while SSP denotes the shallow semantic parsing-based solution
created by Zhu et al. [2010]. The results are difficult to directly compare,
because Councill et al. evaluated their system using cross-validation, un-
like Zhu et al. and Morante and Daelemans who trained their systems
on the abstracts sub-corpus. Nonetheless, the CRF classifier achieves an
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Classifier Precision Recall F1 PCS

MetaLearn 0.722 0.697 0.709 0.410
SSP 0.582 0.563 0.572 0.640
CRF* 0.808 0.708 0.755 0.537

Table 3.9.: A comparison of system scores on the biological full paper Bio-
Scope sub-corpus. The asterisk (*) denotes that the system was
evaluated using cross-validation.

impressive score.
The intended usage area of Councill et al.’s system is customer reviews,

and the ability to handle the language of web users was a central require-
ment throughout the development of the system. This language, albeit
typically more structured than Twitter language, is very different to that
found in biomedical texts. The existence of a well-performing dependency
parser for Twitter (see Section 2.2.1), allows for the implementation of the
simplified CRF-based scope detection system created by Councill et al.
These factors lead us to believe that this solution is the most well-suited
to applying to TSA.
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Performing negation scope detection (NSD) using supervised machine
learning requires a corpus of tweets annotated for negation cues and scopes.
There are negation scope corpora available for other domains such as the
BioScope corpus [Vincze et al., 2008] for the biomedical domain, and the
SFU Review Corpus [Konstantinova et al., 2012] for customer product re-
views written by web users. Although the BioScope corpus is of high an-
notation quality, the language differs from the typical Twitter language, as
it is quite technical and contains very few spelling mistakes. The product
review corpus is closer to our domain, since the authors are web users that
write in an informal language containing misspellings.
Tweets contain additional linguistic means (as explained in Section 1.1)

that distinguish them from the available corpora to the extent that we
decided to develop a corpus consisting of annotated Twitter data.
One way to perform the annotation work is using crowdsourcing services

such as Amazon Mechanical Turk (see Section 2.2.5), an effective way to
achieve sufficient redundancy for measuring inter-annotator agreement,
allowing for evaluation of annotations. Crowdsourcing services are hired
to publish tasks for their workers to solve, in return for a compensation.
This crowdsourcing technique was used in Mohammad and Turney [2010]
to annotate emotions in tweets. Our initial plan was to use Mechanical
Turk or Crowdflower1 to annotate tweets for negation. As we developed
the annotation guidelines (see Appendix A) for the crowdsource workers,
however, we realized that the task would become too complicated and
specific for the crowdsource services’ general set of survey tools. In order
to easily annotate tweets for negation, we developed a web application for
this specific purpose.
Initially, we intended the application to be used by several people, in a

crowdsourcing manner. This way, we hoped to avoid doing the annotations
1http://www.crowdflower.com/
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ourselves — making them independent from the authors — and to get a
higher level of redundancy with the help of more people. After having
problems contacting Crowdflower, and discovering Mechanical Turk’s US-
only payment solution, we tried getting in contact with linguists through
our university, but none were available. Because of time constraints, we
finally decided to perform the annotation work ourselves.

4.1. Annotation System

Figure 4.1.: Annotation system user interface.

Figure 4.1 shows the user interface created for annotating tweets. When
the page is loaded, the application queries a tokenized tweet from the
database and the tweet is displayed using a container of HTML buttons,
where each button represents a token. The user can then click a token
to mark it as a negation cue, and click the corresponding tokens to mark
the cue’s scope. When the user has selected all tokens in the scope, (s)he
can press “save scope”, to save the marked cue and scope. Saved scopes
are displayed below the tweet, and can be removed if erroneous. The
user repeats this until all instances of negation have been identified, and
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presses “submit annotation” to save the annotation and query a new tweet.
The system has a label displaying the current user’s number of annotated
tweets, and a high score list to create a satisfying user experience.

4.2. Annotation Database

When the server receives a request for a new tweet to annotate, the query
shown in Figure 4.2 is executed. The query excludes any tweets the current
user has already annotated (lines 6–9), counts the number of annotations
per tweet (line 3), and excludes tweets with two or more annotations.
Finally, the server selects a tweet with the greatest number of annotations.
This ensures that tweets with one annotation are selected first, completing
the required number of redundant annotations per tweet.

1 SELECT
2 tweet.id,
3 COUNT(annotation.id) AS num_annotations
4 FROM tweet
5 LEFT OUTER JOIN annotation ON (tweet.id = annotation.tweet_id)
6 WHERE NOT (tweet.id IN (
7 SELECT annotation_user.tweet_id AS tweet_id
8 FROM annotation annotation_user
9 WHERE annotation_user.user_id = <user_id>))

10 GROUP BY tweet.id
11 HAVING COUNT(annotation.id) < 2

Figure 4.2.: SQL query for a tweet to annotate

Tweets are tokenized and stored as individual tokens in the database
as illustrated by the Entity-Relationship diagram shown in Figure 4.3.
When a user submits an annotation using the user interface, any selected
scopes are stored as comma-separated lists of integers. Initially, the system
was intended for multiple users to contribute to the annotation effort,
requiring an email address, first and last names, and a password. However,
as explained in the introduction to this chapter, we decided to perform
the annotations ourselves, thus the user system is more extensive than
necessary.
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Figure 4.3.: ER diagram for the annotation database

The data set was exported from the database to XML format using the
lxml2 Python library. Figure 4.4 displays the structure of an example
exported tweet. Scopes are linked with their corresponding cues using the
“src” attribute.

2http://lxml.de/
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<tweet id="17109">
<cue id="436">

<token>Don’t</token>
</cue>
<scope id="44" src="436">

<token>ask</token>
<token>me</token>
<token>about</token>
<token>someone</token>
<token>I</token>
<cue id="437">

<token>don’t</token>
</cue>
<scope id="43" src="437">

<token>care</token>
<token>about</token>

</scope>
</scope>

</tweet>

Figure 4.4.: Annotated tweet in XML format

4.3. Inter-Annotator Agreement

To measure the agreement between the annotators, we calculated the
token-wise and full scope agreements. The token-wise agreement score
is the number of tokens both annotators agree upon divided by the total
number of tokens in the dataset. This measure is quite unbalanced as the
number of tokens in an affirmative context greatly outnumbers the number
of tokens in a negated context as shown in Table 4.3. In order to calculate
a full scope agreement score, we match every cue each of the annotators
have marked. If a cue is marked by one annotator, but not by the other,
a conflict is recorded. Otherwise, if the cues match, the corresponding
scopes are matched using token indices. An agreement is recorded if both
scopes match completely, while any difference results in a conflict. After
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matching all tokens, the final score is calculated as follows:

full_scope_agreement = num_agreed
num_agreed + num_conflicts

The resulting scores are presented in Table 4.1.

Token-wise agreement 98.9 %
Full scope agreement 73.8 %

Table 4.1.: Inter-annotator agreement

4.4. Conflict Resolution
Using the same scope matching method as in Section 4.3, we reviewed all
conflicting scopes, discussing what should appear in the final corpus. In
most cases, one of the annotators had made a mistake, and the conflict was
easily resolved. Some sentence constructions were consistently in conflict,
but were clarified after discussing with our supervisors. The most notable
conflicts in doubt were sentences containing:
• Verb phrases with specification or condition. In the example “dont

care what people say when we’re together”, the emphasized part was
a case of doubt. It was decided to include this part in the negation
scope because it is a part of the verb phrase (see the guidelines in
Appendix A.2.5).

• Idioms such as in the example “no matter how good or bad you
think your life is”, or suggestions like “Why not make the best of
your day!”. The question was whether to include such constructs
in the corpus. We decided to include them, concentrating on the
syntax, and not letting the semantics raise doubt.

4.5. Resulting Corpus
4000 tweets downloaded using Twitter’s API were annotated by the au-
thors of this thesis, giving an annotation redundancy of two. Tweets were
annotated in accordance to the guidelines in Appendix A.
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General statistics about the tweets in the final corpus can be seen in
Table 4.2, while statistics relating to negation are shown in Table 4.3.
Tottie [1991] states that the frequency of negation in written English is
12.8 %. It is interesting to note that the frequency of tweets containing
negation, 13.5 %, is quite close to this number.
It is uncommon to negate several separate scopes in the same tweet,

as the average number of cues per negated tweet is quite close to 1. The
average scope size is less than 4, suggesting that simple expressions are
negated more often than long ones, and is possibly an indicator that simple
language is used. For comparison, the scope length of the biological full pa-
per sub-corpus of the BioScope corpus, which is known to contain complex
language, is 8.8 on average [Morante and Daelemans, 2009]. Additionally,
the average number of tokens per sentence in the full paper BioScope
sub-corpus is 26.2, while the same statistic for our Twitter corpus is 10.2,
something that may also serve to indicate simpler language. This indica-
tion is strengthened by the distribution of negation cues, which contains
relatively few unique terms.

Number of tweets 4,000
Total number of tokens 61,172
Average number of tokens in tweet 15.3
Average number of tokens in sentence 10.2

Table 4.2.: General statistics of the NTNU Twitter Negation Corpus

Total number of scopes 615
Number of tweets containing negation 539 (≈13.5%)
Average number of cues per negated tweet 1.14
Average number of tokens in scope 3.8

Table 4.3.: Negation statistics of the NTNU Twitter Negation Corpus
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Cue Occurrences Cue Occurrences

not 157 (9) couldn’t 4
don’t 100 (6) wasn’t 4
no 90 (35) cannot 3 (1)
never 48 (1) dnt 3
can’t 48 (1) none 2 (1)
didn’t 24 shouldn’t 2
doesn’t 19 aint 2
won’t 15 (1) ain 2
cant 14 hasn’t 2
dont 14 (1) isnt 1 (1)
haven’t 9 would’nt 1
nothing 7 (15) neeeever 1
isn’t 7 cudnt 1
without 6 (6) wont 1
wouldn’t 5 neva 1
ain’t 5 (1) weren’t 1
didnt 5 neither 1
aren’t 4 (1) eint 1
idk 4 (3)

Table 4.4.: Number of cue occurrences in the NTNU Twitter Negation
Corpus. The number of times a token appears a non-cue (if
any) is shown in parentheses.
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Two classifiers have been created: a classifier to detect the scope of nega-
tion by binarily classifying each token, and a sentiment classifier. The neg-
ation classifier is used in the feature extraction process for the sentiment
classifier. Both have been implemented using the Python programming
language.

5.1. Negation Classifier

The binary negation classifier created is a Twitter-tailored implementa-
tion of the Conditional Random Fields (CRF)-based system described by
Councill et al. [2010] with one change: the dependency distance from the
current token to the closest negation cue for each token has been added
to the feature set.
The classification algorithm consists of two steps: negation cue detection

and scope identification. Cue detection is performed using a pattern-
matching approach with a lexicon of explicit cues. Additionally, all strings
ending with n’t are matched. These cues are adopted from Councill et al.
[2010], and are displayed in Table 5.1. A dependency-based CRF classifier
is then used to binarily classify each token as either being in a negated
or affirmative context. When training the classifier, no automatic cue
identification is performed, as actual cues from the annotated data are
used.

5.1.1. Tweet Preprocessing

Tweets to be classified are first preprocessed with the TweeboParser de-
pendency parser [Kong et al., 2014]. This parser first tokenizes each tweet,
then produces part-of-speech (POS) tags for each token, and finally de-
pendency parses each tweet, labeling each token with its dependency head.
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hardly lack lacking lacks neither
nor never no nobody none
nothing nowhere not without aint
cant cannot darent dont doesnt
didnt hadnt hasnt havent havnt
isnt mightnt mustnt neednt oughtnt
shant shouldnt wasnt wouldnt *n’t

Table 5.1.: Lexicon of negation cues. *n’t denotes all words with the suffix
n’t.

5.1.2. Feature Set

The feature set for each token is shown in Table 5.2. Linear token-wise
distance is the number of tokens from one token to another, in the or-
der they appear in a sentence. Dependency distance is calculated as the
minimum number of edges that must be traversed in a dependency tree
to move from one token, represented as a node, to another. The depend-
ency tree is treated as a bi-directional graph, meaning that the traversals
between nodes in the tree to measure dependency distance can be done
both ways. A distance of 0 signifies that a token is a negation cue.
The classifier takes a parameter, max distance, that specifies the max-

imum distance to be considered. This applies to both linear distance and
dependency distance. All distances above the max distance parameter are
equivalent, and considered “far away”.

5.1.3. System Implementation

We use the implementation of CRF created by Okazaki [2007], CRFSuite
(see Section 2.2.4) with a Python binding created by Peng and Korobov
[2014]. The classifier has been wrapped in classes to comply with the
conventions of the Scikit-learn framework, allowing for easy interac-
tion with the sentiment classifier, in addition to allowing for the use of
Scikit-learn’s grid search and classifier scoring functions.
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Feature Description

Word The lower-case token string
POS The token’s part-of-speech tag
Right Distance The linear token-wise distance to the nearest negation

cue to the right of the token
Left Distance The linear token-wise distance to the nearest negation

cue to the left of the token
Dep Distance The minimum number of edges that must be traversed

to reach the nearest negation cue from the token
Dep1 POS The part-of-speech tag of the token’s first order de-

pendency head
Dep1 Distance The minimum number of edges that must be traversed

to reach the nearest negation cue from the token’s first
order dependency head

Dep2 POS The part-of-speech tag of the token’s second order
dependency head

Dep2 Distance The minimum number of edges that must be traversed
to reach the nearest negation cue from the token’s
second order dependency head

Table 5.2.: Negation classifier feature set for each token

5.2. Sentiment Classifier

A Twitter sentiment analysis (TSA) system has been developed, using
the Scikit-learn framework, described in Section 2.2.2. The machine
learning pipeline includes three steps: preprocessing, feature extraction,
and either training the classifier or classifying samples, as illustrated in
Figure 5.1.
The Twitter2013-train data set (presented in Section 2.3) includes an-

notations with the labels objective and objective-OR-neutral. We
simplify the classification task by treating both of these classes as neutral.
Our system thus treats sentiment classification as a three-class problem
(positive/negative/neutral).
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Figure 5.1.: The sentiment classification machine learning pipeline

5.2.1. Tweet Preprocessing

The preprocessing step performs some of the text-associated tasks de-
scribed in Section 3.4.1 using regular expressions, and produces as output
a cleaned corpus of tweets ready for feature extraction.

Tweet Text Filtering

Newline and tab characters are substituted with spaces in order to avoid
parsing problems in other parts of the pipeline. In order to standardize
URLs, we substitute URLs with the string “http://someurl” using a
slightly modified regular expression by @stephenhay,1 also matching URLs
starting with “www” instead of a protocol specifier:

(?:www\.|(?:https?|ftp)://)[^\s/$.?#].[^\s]*

1https://mathiasbynens.be/demo/url-regex
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Similarly, user mentions (user names starting with an “@” character) are
substituted with the string “@someuser”.

Negation Scope Detection

A selection of features in the feature set requires data where linguistic
negation has been identified. These features are labelled context-sensitive
features. Negation scope detection (NSD) of the filtered tweets is therefore
performed as a tweet preprocessing step, and the output of this is sent to
the context-sensitive features.
The system includes two mechanisms for performing NSD: a naïve me-

thod, marking every token between an identified negation cue and the first
punctuation encountered as negated, and a sophisticated method, using
the NSD system described in Section 5.1. Cues for the naïve method are
identified with the same lexical approach that is used in the NSD classifier,
using the cues shown in Table 5.1.

5.2.2. Feature Set

The feature set is represented as a Scikit-learn FeatureUnion that
builds the feature matrix for the classifier. It contains a Transformer
for each part of the STATE feature set, presented in Section 3.4.4.
We group the feature set into two categories, distinguishing between

features that are affected by linguistic negation, context-sensitive features,
and features that are unaffected, context-insensitive features. The com-
plete feature set is shown in Table 5.3; the top four features displayed are
context-sensitive, while the rest are context-insensitive.

Context-Sensitive Features

The context-sensitive features consist of several sentiment lexica, two term
frequency-inverse document frequency (TF-IDF) vectorizers, and the num-
ber of negated tokens.
There are two TF-IDF vectorizers: one for word n-grams and one for

character n-grams. Both ignore common English stop words, convert all
characters to lower case, and select the 1, 000 features with the highest
TF-IDF scores. In order to account for negation in the vectorized text,
tokens in a negation scope are appended the string _NEG.

57



5. Architecture

Feature Description

Word n-grams Presence or absence of contiguous token se-
quences

Character n-grams Presence or absence of contiguous character se-
quences

Sentiment lexica The feature set for each sentiment lexicon
Negated tokens Number of negated tokens
Clusters The presence or absence of tokens from each of

the 1000 clusters from the CMU Twitter-NLP
word clusters

POS Number of each part-of-speech tag
All caps Number of tokens with all characters capitalized
Elongated words The number of words with a character repeated

more than two times
Emoticons The number of positive and number of negative

emoticons
Punctuation Number of contiguous sequences of exclamation

or question marks
Hashtags Number of hashtags

Table 5.3.: Sentiment classifier feature set for each tweet

The feature set includes a transformer for sentiment lexicon score cal-
culation. All prior polarity lexica are handled by this Transformer. The
NRC Hashtag Sentiment Lexicon and Sentiment140 Lexicon [Kiritchenko
et al., 2014] contain sentiment scores for words in negated contexts. For
lookups, the first negated word in a negation scope is appended with the
string _NEGFIRST, and the rest with _NEG. The actual sentiment lexica
feature vectors are adopted from Kiritchenko et al. [2014], and contain:

• the number of tokens with score(w) 6= 0

• the total score =
∑
w∈tweet score(w)

• the maximal score = maxw∈tweet score(w)

• the score of the last token in the tweet
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We also use the MPQA Subjectivity Lexicon, Bing Liu’s Opinion Lex-
icon, and NRC Emotion Lexicon. These classify the words instead of
assigning a numerical sentiment value, so we use a value of +1 for positive
words, and a value of −1 for negative words. Since the MPQA Subjectivity
Lexicon assigns the words a strong or weak degree of sentiment, we use
scores of +/ − 2 and +/ − 1 for strong and weak degrees of sentiment
respectively. Also adopted from Kiritchenko et al. [2014], the resulting
feature vectors are as follows:

• the sum of positive scores for tweet tokens in affirmative contexts

• the sum of negative scores for tweet tokens in affirmative contexts

• the sum of positive scores for tweet tokens in negated contexts

• the sum of negative scores for tweet tokens in negated contexts

The negated tokens feature is simply the number of tokens in a negated
context.

Context-Insensitive Features

Instead of adding only the presence of clusters in the cluster feature, like
Kiritchenko et al., we count the number of occurrences for each cluster,
and represent them with a feature. Using the POS tagger from the Tweet
NLP collection (see Section 2.2.1), the number of each POS-tag is also in
the feature set. The emoticons feature is the number of happy and sad
emoticons, and whether the last token in a tweet is a happy or a sad one.
The all-caps, elongated words, punctuation and are created according

to the STATE feature set. All the matrices from the different parts of
the feature extraction are concatenated column-wise into the final feature
matrix, and scaled in order to be suitable as input to a classifier.

5.2.3. Classifier

The classifier step declares which classifier to use, along with its default
parameters. We use a Support Vector Machine (SVM) classifier because
it is a state-of-the-art learning algorithm proven effective on text categor-
ization tasks, and robust on large feature spaces (see Section 3.4.5). We
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use SVC, an SVM implementation from Scikit-learn, based on libsvm
[Chang and Lin, 2011]. It is passed the resulting feature matrix from the
feature extraction step, with which it creates the decision space if training,
or classifies samples if predicting. The process of grid searching for the
optimal SVM parameters is described in Section 6.4.1.

5.2.4. Live Tweet Classification

In order to apply our classifier to live Twitter data, we wrap the classifier in
a web application, depicted in Figure 5.2. The application uses the Django
web framework2 to allow a user to query Twitter for a search phrase. The
resulting tweet hits are classified using a pre-trained classifier, and presen-
ted to the user indicating their sentiment polarities. The total distribution
of polarity is displayed as a graph to give the user an impression of the
overall opinion of the tweets matching the specified query.

2https://djangoproject.com
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 Log inTwitter Sentiment Analysis

Sentisearch



Index Sentisearch Annotation

 Search!

You searched for: #fml.

Today on #FML 640 #SAS #MatthewMcConaughey #doyouevenlift 720 Qualify for #flyaway to @Bonnaroo 820
#EarthDay Audio! 920 Win @Yelawolf tix!

RT @tyramazz: Are you p>.05 ? Cause I fail to reject you . #quantitativeresearch #statistics #105 #fml
#PickUpLines 

was 100% sure it was tuesday until i checked the calendar.. I have a speaking seminar tomorrow, and I'm not
prepared.. #FML

This pre-workout is to strong I can't focus #fml

Please don't leave me i love you but i have to do it I'm sorry *eats the last chip* *cries* #FML
#follobackinstantly

My dog ate her puppy  this is not a joke. #FML

Breh I can't be on call outs at prom... #FML

Also, I may run out of gas before this is over with... #FML

I was just so close to get stung by a huge f%*^ing scorpian..I hit that mf off my hand so fast, now it's
somewhere in the house.. #FML

8am M-F #fml

Positive Neutral Negative

14%

50%

36%

#fml 100

Figure 5.2.: Screenshot of the search sandbox
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Three sets of experiments have been conducted. A baseline negation ex-
periment was executed at the beginning of the project, exploring the per-
formance of a naïve negation scope detection (NSD) solution, commonly
used in state-of-the-art Twitter sentiment analysis (TSA) systems. Addi-
tionally, experiments were conducted on each of the two classifiers that
have been created. The classifiers are described in Chapter 5.

6.1. Evaluation Measures

For evaluating classifier performance, both when performing negation and
sentiment classification, we adopt the standard metrics common in the
respective fields. All of the evaluation metrics described in this section
are presented in Section 2.1.3.

6.1.1. Negation Classification Scoring

In NSD each token is classified as being either in an affirmative or a
negated context. NSD is thus a binary classification problem, where the
positive label is that a token is negated. It is normal to report the precision,
recall, and F1 scores for this label. Additionally, it is common to report the
percentage of correctly classified scopes (PCS). We report these metrics
in all of our NSD experiments.

6.1.2. Sentiment Classification Scoring

We treat sentiment classification as a three-class task, with the labels
positive, negative, and objective/neutral. For classification scoring
in sentiment analysis, it is common to report the precision, recall, and F1
for each class, in addition to the macro-average of each aforementioned
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metric across all classes. Because the F1 score is a harmonic mean of pre-
cision and recall, it is sometimes sufficient to report this metric. We follow
this convention in our experiments, reporting all of the mentioned metrics
across all labels in the most important experiments, and a macro-averaged
F1 score elsewhere. Additionally, we report the support, for several exper-
iments on the sentiment classifier: the number of samples for each label
in the test set.

6.2. Baseline Negation Experiment

To explore the potential for improvement within NSD in the current
state-of-the-art in TSA we implemented a naïve NSD solution on the
BioScope Corpus and compared the results to the systems described in
Section 3.5 [Councill et al., 2010; Zhu et al., 2010; Morante and Daele-
mans, 2009]. The NSD algorithm implemented in our experiment, shown
in Algorithm 6.1, is a common solution in the current state of TSA, and
is used by, among others, the three top ranking solutions in SemEval-2014
Subtask B [Miura et al., 2014; Tang et al., 2014; Günther et al., 2014]:
When a negation signal is detected, all terms from the signal to the first
punctuation are considered negated. We have chosen to work with the
medical full paper sub-corpus of the BioScope Corpus, because it is the
one most similar to text found in social media, and because all of the
existing systems we compare performance to have been evaluated on this
corpus.

6.2.1. Experiment Description

To implement the naïve scope detection, a Python script that parses the
XML data, and searches through the sentences for the tokens shown in
Table 5.1, marking them as a cue, was created. All tokens between a
marked cue and punctuation are considered negated.
Results from evaluating the naïve scope identifier with 5-fold cross-

validation, along with the results from the solutions described in Sec-
tion 3.5 when tested on the same data, are shown in Table 6.1. CRF
denotes the Conditional Random Fields-based scope detection identifier
created by Councill et al. [2010], MetaLearn denotes the meta-learning
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Algorithm 6.1 Naïve negation scope detection algorithm
negated← false
tokens← all tokens in the corpus
for all t in tokens do
if negated then
t← t+ ”_NOT”

end if
if t in negation_signals then
negated← true

end if
if t in punctuation then
negated← false

end if
end for

Classifier Precision Recall F1 PCS

MetaLearn 0.722 0.697 0.709 0.410
SSP 0.582 0.563 0.572 0.640
CRF 0.808 0.708 0.755 0.537
Naïve 0.583 0.688 0.631 0.437

Table 6.1.: System scores when tested on the BioScope biological full pa-
pers sub-corpus

solution created by Morante and Daelemans [2009], while SSP denotes
the shallow semantic parsing-based solution created by Zhu et al. [2010].
Notably, the naïve negation scope detection algorithm is a strong baseline,
which actually outperforms the shallow parsing approach on F1 score and
the meta-learning approach on correctly classified scopes.

6.3. Experiments on Negation Classifier

The created Conditional Random Fields (CRF) negation classifier, de-
scribed in Section 5.1, was developed and evaluated on the NTNU Twit-
ter Negation Corpus. More information about this corpus is available in
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Chapter 4. The data set was split into two subsets: a development sub-
set and an evaluation subset. The development subset consists of 3000
tweets, while the evaluation subset consists of 1000 tweets. The split
was stratified, meaning that the ratio of tweets containing negation is the
same in both subsets. This was done to ensure more reliable training and
testing, considering the heavy label imbalance of the NTNU Twitter Neg-
ation Corpus. As noted in Section 4.5, only 13.5 % of the tweets contain
negation.

6.3.1. Naïve Performance

Similarly to the experiment conducted in Section 6.2, we also implemented
naïve NSD on the NTNU Twitter Negation Corpus, to establish a baseline
for NSD on the corpus.
Two variants were implemented: marking only words between the cue

not and punctuation as negated, and marking words between any cue in
the cue dictionary, shown in Table 5.1 on page 54, and punctuation as
negated. The former was implemented as this is a method still used by
some TSA systems. Results when applying the two methods to the entire
NTNU Twitter Negation Corpus are shown in Table 6.2. The two cue
detection mechanisms, identifying only not or identifying any word in the
cue dictionary, are denoted by not and dictionary, respectively.

Cue Detection Precision Recall F1 PCS

Not 0.654 0.277 0.389 0.123
Dictionary 0.591 0.962 0.733 0.431

Table 6.2.: Naïve negation scope detection performance on the NTNU
Twitter Negation Corpus

We hereafter consider the performance of the naïve NSD solution using
the complete cue dictionary as the baseline score for NSD on the NTNU
Twitter Negation Corpus.
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6.3.2. Cue Detection

The developed negation classifier performs cue detection using a lexicon-
based approach, as described in Section 5.1. The performance scores for
this cue detection method on the NTNU Twitter Negation Corpus are
shown in Table 6.3.

Precision Recall F1

0.873 0.976 0.922

Table 6.3.: Standard lexicon-based cue detection performance

In Section 3.5.4 we speculate that negation cue detection, or signal find-
ing, may prove challenging on Twitter data due to a significant number
of cues possibly being slang or misspelled words. The table of cue oc-
currences, Table 4.4 on page 52 shows that this assumption proved false
for the NTNU Twitter Negation Corpus. All of the most frequent cues
are correctly spelled and present in the dictionary, with the exception of
missing apostrophes in contractions, something accounted for by the neg-
ation cue lexicon. This result is in line with that of Hu et al. [2013], who
noted that tweets tend to be surprisingly formal in that they often follow
grammatical norms and use standard lexical items.
Inspection of cue detection output shows that one of the main areas the

classifier struggles with is the separation of words that are used both as
a negator and an exclamation. This is illustrated by the relatively high
recall in comparison to the precision. Table 4.4 also shows this, displaying
the number of times a word that occurs as a cue occurs as a non-cue.
Transitively, the table also displays which cues have been misclassified
most frequently, as a pure pattern-matching approach is used. By far the
most significant of these is the word no, occuring 35 times as a non-cue;
often it occurs as a determiner and functions as a negator, such as in
the phrase “there were no letters this morning”, but it may occur as an
exclamation, e.g., in the phrases “No, I’m not ready yet” and “No! Don’t
touch it”.
Despite the high recall, it is reasonable to believe that cue outliers such

as dnt neva, or cudnt could be detected by using word-clusters. We ex-
panded the lexicon of negation cues to contain the whole set of Tweet NLP
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Precision Recall F1

0.535 0.992 0.695

Table 6.4.: Lexicon-based cue detection performance using Tweet NLP
Clusters

word clusters created by Owoputi et al. [2013] (see Section 2.2.1) for each
word in the lexicon. Results from this are shown in Table 6.4. Recall is
increased by 0.016, while precision suffers a dramatic decrease of 0.338,
resulting in an overall decreased F1 of 0.227. This shows that expanding
the cue lexicon to include Tweet NLP word clusters is unsuitable. This is
due to the clusters being too inclusive; it may be that more finely-grained
word clusters could achieve an increased recall without considerably de-
creasing precision.

6.3.3. Parameter Grid Search

To identify the best-performing parameters, a grid search was performed
on the development data subset on the L1 and L2 CRF penalty coefficient
parameters, C1 and C2, in addition to the max distance parameter (de-
scribed in Section 5.1.2). Grid search was performed using 7-fold stratified
cross validation, and the identified parameter-set was a C1, C2 and max
distance of 0.1, 1, and 7, respectively. The parameter space used for the
grid search is shown in Table 6.5, and the best-performing parameters are
highlighted.

Max distance 5 6 7 8 9 10
C1 10−4 10−3 10−2 0.1 1 10
C2 10−4 10−3 10−2 0.1 1 10

Table 6.5.: Negation classifier grid search parameter space
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6.3.4. Classifier Performance

The classifier performance with the parameter set selected through grid
search was evaluated on the held-out evaluation data set. Results from
the 7-fold cross validation on the development data set, and the test run
on the evaluation data set are shown in Table 6.6.

Data Set Precision Recall F1 PCS

Evaluation 0.972 0.923 0.853 0.645
Development 0.849 0.891 0.868 0.663

Table 6.6.: Negation classifier performance

The classifier achieves very good results. The run on the evaluation
data set produces an F1 score of 0.853, considerably outperforming the
baseline system’s F1 score of 0.733. It also outperforms Councill et al.’s
scores when they apply a very similar system to their created customer
review corpus and achieve an F1 score of 0.800.
The trained negation classifier was also tested on the evaluation data

subset with gold standard cue detection, meaning that the classifier was
tested with perfect negation cue identified. The resulting performance
scores are shown in Table 6.7.

Precision Recall F1 PCS

0.841 0.956 0.895 0.663

Table 6.7.: Negation classifier performance with gold standard cues

6.3.5. Out-of-Domain Performance

Although the negation classifier created is a Twitter-tailored implementa-
tion of the system described by Councill et al. [2010] with minor modific-
ations — the addition of the current token’s dependency distance to the
closest negation cue to the feature set for each token — the fact that a dif-
ferent CRF implementation is used in addition to a different part-of-speech
(POS)-tagger and dependency parser may lead to considerable differences
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in performance. To give an indication of the generalizability of the clas-
sifier, the classifier has been evaluated on the BioScope and SFU Review
corpora. Like Councill et al., we only evaluate on the biological full pa-
per sub-corpus of the BioScope corpus, as negation systems have typically
encountered the most difficulty when processing this sub-corpus. An im-
portant thing to note is that a POS-tagger and dependency parser tailored
towards Twitter language has been used in all cases. The performance of
the classifier relative to existing systems, compared to the performance of
the classifier on the NTNU Twitter Negation corpus, also gives a measure
of the general difficulty of negation classification on Twitter data. These
corpora are all described in Section 2.3.
The results are shown in Table 6.8. As expected, the classifier struggles

the most when applied to the BioScope corpus, as this corpus has gener-
ally proven difficult to classify for negation (see Section 3.5), and is quite
dissimilar to the data the classifier was trained on. The classifier is outper-
formed in terms of F1 by the systems created by Morante and Daelemans
[2009] and Councill et al. [2010] who achieve F1 scores of 0.709 and 0.755
respectively, but performs slightly better than the system created by Mor-
ante and Daelemans in terms of PCS, shown in Table 3.5 on page 38, and
Table 3.8 on page 41. The modest F1 score can likely be explained by the
use of upstream preprocessing tools tailored towards Twitter language, a
language that differs significantly from that found in biomedical texts.

Corpus Precision Recall F1 PCS

BioScope 0.660 0.610 0.634 0.426
SFU Review 0.668 0.874 0.757 0.435

Table 6.8.: Negation classifier performance on alternative data sets

6.4. Experiments on Sentiment Classifier
A Support Vector Machine (SVM) was created, as described in Section 5.2,
and trained on the Twitter2013-train data set. The test results were gen-
erated using the Twitter2013-test and Twitter2014-test data sets. All the
data sets are described in Section 2.3.1.
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6.4.1. Parameter Grid Search

The entire Twitter2013-train data set was used to find the C and γ para-
meters from a grid search using K-fold cross validation with K = 10. A
K of 10 is a popular choice when the classifier has a steep learning curve,
as is the case with ours. As the dataset is quite imbalanced, the data for
each fold is split using stratification.
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Figure 6.1.: SVM grid search F1 scores for C and γ

Using the negation scope classifier with the parameters identified in
Section 6.3, a grid search was performed to determine the parameters for
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the SVM classifier used for sentiment classification. A preliminary coarse
search proved that the radial basis function (RBF) kernel yielded the best
results, although most state-of-the-art sentiment classification systems use
a linear kernel, as seen in Table 3.3 on page 33.
After an initial broad search, a finer parameter space was examined,

displayed in Figure 6.1. The surface plots display the effect of the C and
γ parameters on the classifier’s F1 score for the different parameter com-
binations explored. Figure 6.1a and Figure 6.1b show the same plot from
different angles to more clearly see the impact of the γ and C parameters,
respectively. Circles mark the maximum score in each plot.
The combination of parameters that scored best from the grid search

was C = 10 and γ ≈ 5.6 ∗ 10−6. As C increases beyond 10, there are no
notable changes in terms of F1 score. The combination of a small γ and
higher values of C means that the classifier is quite generalized, and that
increasing the C — thus regularizing further — makes no difference. It
also suggests that the data is noisy, requiring a great deal of generalization.

Label Precision Recall F1 Support

positive 0.863 0.589 0.700 805
neutral 0.568 0.872 0.688 572
negative 0.717 0.487 0.580 156

avg / total 0.738 0.684 0.684 1533

(a) Twitter2014-test

Label Precision Recall F1 Support

positive 0.851 0.581 0.691 1273
neutral 0.627 0.898 0.739 1369
negative 0.711 0.426 0.533 467

avg / total 0.731 0.697 0.688 3109

(b) Twitter2013-test

Table 6.9.: Sentiment classifier performance
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6.4.2. Classifier Performance

An SVM was trained on the Twitter2013-train data set using the paramet-
ers identified through grid searching, and tested on the Twitter2014-test
and Twitter2013-test data sets (presented in Section 2.3), scoring as shown
in Table 6.9a and Table 6.9b.
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(b) Twitter2013-test data set

Figure 6.2.: Confusion matrices for the sentiment classifier

Figure 6.2a and Figure 6.2b show confusion matrices for the Twitter2014-
test and Twitter2013-test data sets, respectively. If all samples of the test
sets were classified correctly, there would be perfect correlation between
the true and predicted labels for each class, and the diagonal would be
completely red. What can be seen from the confusion matrices, however
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(the normalized versions make this more apparent), is that the classifier
is quite biased towards the neutral label (illustrated with ). This can
be seen from the warm colours in the positive and negative true label
cells of the neutral column of predicted label.
From Table 6.9a and Table 6.9b, we can see that the classifier is least

accurate classifying negative samples. In fact, Figure 6.2b shows that on
the Twitter2013-test data set, negative samples are classified as neutral
in most cases.
Both of these weaknesses are likely an effect of the imbalanced training

set, where neutral samples greatly outnumber negative ones.

6.4.3. Ablation Study

The results of an ablation study of the developed TSA classifier are shown
in Table 6.10. In order to investigate differences in feature impact, we
include scores on the Twitter2013-test data set. This data set is also more
than twice the size of the Twitter2014-test data set (see Table 2.1), which
may help reduce the effect of unfortunate random factors.
Most apparently, removal of the sentiment lexica feature is the single

ablation that has the greatest impact on classifier performance. This is
especially the case on the Twitter2013-test data set. The cause for this
may be the fact that the most important lexica (Sentiment140 and NRC
Hashtag Sentiment, described in Section 3.4.2), were created at the same
time as the Twitter2013-test data set, and could be more accurate on the
particular language used in that period of time.
Interestingly, the feature for character n-grams seems to damage the

performance on the Twitter2014-test data set slightly, although on the
Twitter2013-test data set, it makes a positive contribution. This may
suggest that the feature is sensitive to certain details that appeared after
the development of the Twitter2013-train data set, but it is more likely
that the decrease in performance is merely caused by noise in the data.
The majority of the count features do not impose considerable changes

in performance individually. In fact, the all-caps count feature actually
decreases the classification performance on both test data sets, most likely
only introducing noise. An interesting observation on the count features is
that the Tweet NLP cluster count feature has a very large impact on clas-
sification performance, as anticipated. Tweets contain many misspellings
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Features Twitter2014-
test

Twitter2013-
test

All 0.684 0.688

All \ word n-grams 0.672 0.674
All \ character n-grams 0.688 0.676
All \ both n-grams 0.664 0.667

All \ sentiment lexica 0.665 0.657

All \ Tweet NLP cluster counts 0.666 0.677
All \ part-of-speech tag counts 0.684 0.685
All \ all caps counts 0.685 0.689
All \ elongated word counts 0.682 0.687
All \ emoticon counts 0.681 0.688
All \ punctuation counts 0.682 0.688
All \ hashtag counts 0.684 0.688
All \ negation counts 0.684 0.688
All \ all counts features 0.665 0.671

Table 6.10.: Sentiment classifier ablation study. B \A denotes all items in
B except all items in A, and all scores are in F1.

and unusual abbreviations and expressions, and the purpose of this fea-
ture is to make generalizations by counting the occurrences of clusters that
include similar words.

6.4.4. Effect of Negation Scope Detection

In Table 6.12, we present an experiment on the effects of performing NSD
on several variations of the sentiment classification system and Twitter
sentiment data sets.
The first six rows contain results from evaluation using the full Twitter-

2013-train and Twitter2014-test data sets, whereas the remaining rows
contain results from evaluation using only a subset of both data sets:
tweets that contain negation, as predetermined by our NSD system. When
evaluating the system on these subsets, the differences between the NSD
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methods used by the system are more prominent.
A higher ratio of sentiment-bearing tweets (with positive or negative

labels) was expected to appear in these filtered data sets, because negators
often function as valence shifters, as discussed in Section 2.1.2, and the
presence of valence shifters indicates the presence of valence. Table 6.11
shows that this is indeed the case.
The rows of Table 6.12 are grouped into four segments, where each seg-

ment shows scores for a classifier using no, naïve and sophisticated NSD.
The segments represent different combinations of features and data sets
tested. We evaluate the system using all features, as well as using only
context-sensitive features; features that are affected by linguistic negation:
word n-grams, character n-grams, sentiment lexica and negation counts.
These are described in more detail in Section 3.4.4. Additionally, we eval-
uate the system on the entire train and test sets as well as only the subsets
containing negation.
Using all features, our sophisticated solution scores marginally better

than the naïve one by an F1 measure of 0.009. In every case, taking
negation into account using either the naïve or the sophisticated method
improves the F1 score considerably. The sophisticated method improves
more clearly upon the naïve method on the negated part of the data, with
F1 improvements ranging between 0.03 and 0.04.

Data Set positive neutral negative Total

Twitter2013-train 467 335 446 1248
Twitter2014-test 103 49 65 217

Table 6.11.: Sentiment data sets with only tweets containing negation
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Tweets Features Negation Precision Recall F1

All All No 0.730 0.659 0.653
All All Naïve 0.738 0.676 0.675
All All Sophisticated 0.738 0.684 0.684

All CS No 0.705 0.618 0.601
All CS Naïve 0.728 0.663 0.662
All CS Sophisticated 0.729 0.667 0.665

Neg All No 0.598 0.599 0.585
Neg All Naïve 0.653 0.654 0.644
Neg All Sophisticated 0.675 0.682 0.673

Neg CS No 0.609 0.604 0.586
Neg CS Naïve 0.648 0.654 0.633
Neg CS Sophisticated 0.681 0.696 0.672

Table 6.12.: Comparison of sentiment classification results using different
methods, data and feature sets. CS denotes context-sensitive
features, and Neg denotes only tweets containing negation.
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7. Discussion
This chapter contains an evaluation of the project and the conclusions we
draw from the results, in addition to suggested future work.

7.1. Evaluation
At the beginning of this project, we formulated four goals, described in
Section 1.3. They form a natural chain of dependency, as each goal builds
on all the previous. In this section we evaluate the degree to which each
goal has been accomplished.

G1: Research the State-of-the-Art in Twitter Sentiment
Analysis

The area of Twitter sentiment analysis (TSA) was explored, with spe-
cial attention to the several shared tasks that have been hosted for this
field. The related works discovered formed the basis for most of the work
performed throughout the project.

G2: Create a Twitter Corpus Annotated for Negation

A Twitter corpus annotated for the presence of linguistic negation, the
NTNU Twitter Negation Corpus, was successfully created, although the
annotation process was not performed exactly as planned. As discussed
in Chapter 4, the original plan was to benefit from the power of crowd-
sourcing in order to produce a large corpus, as well as achieving a high
level of redundancy while performing the annotation independently of the
thesis authors. However, for reasons explained in Chapter 4, the annota-
tion work was ultimately performed by the authors. As a consequence,
the resulting corpus has an annotation redundancy of 2 and the moderate
number of 4000 samples.
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G3: Develop a Negation Classifier

A negation scope detection (NSD) system was developed consisting of two
parts: a negation cue detector and a negation scope classifier. The nega-
tion cue detector uses a relatively simple lexicon lookup that yields a high
recall, but a precision that could benefit from a more sophisticated detec-
tion method. This is discussed further in Section 7.3. Despite that the
cue detector has potential for improvement, the negation scope classifier
performs very well.

G4: Develop a Twitter Sentiment Classifier

A sentiment classifier for Twitter data was developed, incorporating sev-
eral features that benefit from the NSD system. The results confirm that
taking negation into account in general improves the sentiment classifica-
tion performance significantly, and that using a sophisticated NSD system
slightly improves the performance further.

7.2. Conclusions

When testing the cue detection mechanism of the Conditional Random
Fields (CRF)-based NSD system that we developed, we observed that cue
identification on Twitter’s conversational language presented challenges
not present in other domains we studied. As discussed in Section 6.3.2,
we observed that the variation in cues used was quite low, but that a
selection of tokens occurring as a cue had significant ambiguity as to what
part-of-speech they occurred as, and thus whether they functioned as a
cue. This was mainly the case for the term no, exemplified by tweets such
as “no dude, i’m stuck in the house...” and “no!!! cant believe I lost to
justin again!”. This use of no as an exclamation proved to be quite frequent
in the annotated corpus created. Other problematic terms include nothing
and not, both occurring several times in idioms that neither contain nor
constitute negations.
This resulted in a modest cue detection precision of 0.873. Conversely,

Morante and Daelemans [2009] achieve a cue detection precision of 100 %
on all sub-corpora of the BioScope corpus. Nevertheless, our system
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achieved a high cue detection recall score of 0.976, resulting in an overall
NSD F1 score of 0.922.
The complete NSD system produces better results than any we have

observed in other domains: an F1 score of 0.853 and a PCS score of 0.645.
This suggests that the CRF machine learner was able to identify the trend
of certain dictionary cues being misclassified.
The characteristics of the negation-annotated corpus created in this pro-

ject are discussed in Section 4.5. Several statistics for this corpus, such
as the average number of tokens per sentence and the average number
of tokens per negation scope, indicate that the corpus contains relatively
simple language. This, along with the fact that our developed NSD system
produces better results than we have seen in other domains, leads us to
believe that performing NSD in the Twitter domain may be less challen-
ging than in other domains it has been applied to. The high score of the
naïve NSD solution on tweets strengthens this belief.
A comparison of the effects of the naïve and sophisticated NSD solu-

tions on the TSA classifier treating only tweets containing negation was
performed. The negation classifier was first run on the Twitter2013-train
and the Twitter2014-test data sets, and the tweets classified to contain
negation were held out. The performance of both solutions was then recor-
ded, trained on the Twitter2013-train and tested on the Twitter2014-test
held out data sets. The sophisticated NSD-system achieved an F1 score of
0.673, a performance increase of 0.029 in comparison to the naïve system,
which achieved an F1 score of 0.644.
Although this result shows that incorporating sophisticated NSD is ef-

fective when classifying tweets that contain linguistic negation, the low
frequency of these tweets — roughly 13 % — causes this performance
increase to be slightly overshadowed by other features when classifying
random samples. Through experiments conducted on the complete TSA
classifier, we observed that including a NSD-handling mechanism in gen-
eral had significant positive impact compared to the performance when
including none, and that the performance difference between the naïve
and the sophisticated variants was noticeable, but not very significant:
an increase in F1 measure from 0.675 to 0.684. The limited performance
difference can also be attributed to the strength of the naïve NSD system
— achieving an F1 score of 0.733 — relative to the sophisticated system,
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which achieves an F1 measure of 0.853.

7.3. Future Work
As discussed in the previous section, a number of potential negation cues
proved problematic for cue detection in the developed NSD classifier. This
problem was limited to a select few; an overview of the number of times
a term that occurred as a cue also occurred as a non-cue is shown in
Table 4.4, on page 52. As we used a pure pattern-matching approach,
this table also illustrates the occurrences of misclassified cues. A more
sophisticated cue detection mechanism should be able to counteract this
problem, perhaps incorporating part-of-speech tags as a feature. As the
problem is limited to a subset of cues, developing a cue detector with a
special mechanism for these cases may be worth considering.
A Twitter corpus annotated for both sentiment and negation would be

a valuable resource to measure the effects of linguistic negation in TSA.
This would allow for evaluating the performance of a sentiment classifier,
and the impact of different features, with gold standard negation scope
detection, thus displaying the maximum possible performance gain with
perfect negation handling. This could, for instance, be done by applying
the negation annotation system developed in this project on a SemEval
Twitter sentiment data set.
An important thing to note is that this study is based on the current

state-of-the-art features used in TSA, as opposed to taking a bottom-up
approach. The impact of a more sophisticated NSD system on this feature
set has been studied, but it may be that other features could be hand-
crafted to better take advantage of a well-performing NSD system. An
example of this is the context-sensitive prior polarity lexica used in this
project, lexica that contain two entries for each term: the term’s prior
polarity score in both an affirmative and a negated context. These are
created using a naïve NSD solution, and could possibly be made more
accurate by employing a more sophisticated NSD solution when they are
created.
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A. Annotation Guidelines
This document contains instructions for annotating the presence of lin-
guistic negation in tweets.

A.1. Task Description
The task is to identify linguistic negation in tweets. Linguistic negation
consists of a negation cue, a word that creates the negated context; and a
negated scope, the words inside the negated context. An example sentence
is “The weather is not very nice today”. In this sentence, not is the
negation cue, and very nice is the negated scope. See Appendix A.3 for
example annotated sentences.
An important point to note is that we are not interested in identify-

ing cases where an individual word is negated by a prefix (morphological
negation), such as unfortunate or abnormal.
The task is two-fold:

1. Identify negation cues. This is to be done based on a list of words
that we have created, shown in Table A.1.

2. Identify the negated scope, meaning the affected words, for each
negation cue.

Guidelines for performing these steps are described in Section A.2.
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A. Annotation Guidelines

hardly lack lacking lacks neither
nor never no nobody none
nothing nowhere not without aint
cant cannot darent dont doesnt
didnt hadnt hasnt havent havnt
isnt mightnt mustnt neednt oughtnt
shant shouldnt wasnt wouldnt *n’t

Table A.1.: Lexicon of negation cues. *n’t denotes all words with the suffix
n’t.

A.2. Guidelines

A.2.1. General Principles

1. Negation cues (e.g., the words never, no, or not in its various forms)
should not be included in the negated scope. For example, in the
sentence, “It was not good”, good is annotated as the negated scope.

2. Annotate the minimum scope of negation, including only the por-
tion of the text being negated semantically. When in doubt, prefer
simplicity.

3. Many tweets do not contain any form of linguistic negation, and no
annotation is to be done in these cases.

A.2.2. Slang and Misspellings

As the data to be annotated comes from Twitter, the language used is
likely to contain many cases of misspelled words, slang and unconventional
linguistic means. If a slang, misspelled or otherwise out-of-dictionary word
occurs, try to interpret the word to the best of your ability taking into
account the context. If the word is still incomprehensible, it is to be
ignored. This is especially important for negation cues, e.g., if the term
cnt appears in a context where it is obvious that the author means can’t,
it is to be annotated as a negation cue. For example the sentence “i cnt
believe its not butter”.
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A.2.3. Adjectives/Adverbs

When considering adjectives in noun phrases, do not annotate the entire
noun phrase if only the adjective is being negated. For instance, “Not
top-drawer cinema, but still good...”: top drawer is negated, but cinema
is not, since it is still cinema, just not top-drawer.
The same is true for adverbs in verb phrases. If only the adverb is

directly negated, only annotate the adverb itself. E.g., “Not only was it
great”, or “Not quite as great”: in both cases the subject still is great, so
just only and quite should be annotated, respectively. However, there are
cases where the intended scope of adverbial negation is greater, e.g., the
adverb phrase just a small part in “Tony was on stage for the entire play.
It was not just a small part”.

A.2.4. Noun Phrases

Typically entire noun phrases are annotated as within the scope of nega-
tion if a noun within the phrase is negated. For example, in the sentence,
“This was not a review” the string a review is annotated. This is also true
for more complex noun phrases, e.g., “This was not a review of a movie
that I watched” should be annotated with the scope a review of a movie
that I watched.

A.2.5. Verb Phrases

If a verb is directly negated, annotate the entire verb phrase as negated,
e.g., appear to be red would be marked in “It did not appear to be red”.

A.3. Examples

This section contains examples of tweets annotated to show linguistic neg-
ation. Negation cues are shown in bold font and negated scopes are
underlined.

1. They may have a SuperBowl in Dallas, but Dallas ain’t winning
a SuperBowl. Not with that quarterback and owner. @S4NYC
@RasmussenPoll
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2. victor cruz aint do the salsa ALL game...he’s overdue....its the 4th
quarter...its TIME

3. Bad times when u missed Waterloo road last thursday when in Ten-
erife and dont realise it was the last episode :( #notfair

4. Should’nt have watched The Grey last night because walking down
a dark driveway when the sun decides to play hookie is not a good
time.

5. So far I have drafted Aaron Rodgers at #9 overall, and then at #16
in the 2nd round, Matt Forte. Not bad.

6. @Darien_Smalling the Pro Bowl definitely isn’t better and NBA
All-Star game is trash until 4th qtr

7. Dishonoured is awesome! Not quite sure where to rank it. Journey
and Walking dead are one and two. I think it’s 4th behind Mass
Effect 3.

8. @Raiders_Spurs Reggie isn’t interested in dealing picks like the old
regime. Can’t see him parting with anything other than a 6th or
7th
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