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Abstract

When a critical event occurs, it is often challenging to get a clear overview
of the event. Many sources of information such as newspapers and Twitter
often contains a lot of information that is not relevant and requires a lot of
reading to gain an overview of the situation.

Real time temporal summarization systems is an effort to address this prob-
lem, by analysing available information in real time and producing a contin-
uous summary as new information becomes available.

The result of this thesis is a real time temporal summarization system. The
system has been tested according to the requirements of the TREC 2014 Tem-
poral Summarization track. The results have been evaluated using standard
evaluation criteria and compared to the results of the 2014 participants.

The system performed comparable to the best teams from 2014 and it is
likely that the techniques used could be improved further by considering
more aspects of the available information when summarizing an event.
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Sammendrag

N̊ar en katastrofe infreffer er det ofte vanskelig å skaffe seg et godt overblik.
Mange vanlige informasjonskilder slik som aviser og Twitter inneholder mye
informasjon som ikke er relevant for hendelsen, og man m̊a ofte lese mye for
å f̊a et riktig bilde av hva som skjer.

Sanntids, temporal summarization systemer sikter p̊a å kunne løse dette
problemet ved å kontinuerlig generere oppdateringer om en gitt hendelse
ettersom ny informasjon blir tilgjengelig.

arbeidet med denne oppgaven har resultert i et slikt system. Systemet er
testet etter kravene som er stillt for deltagelse i TREC 2014 Temporal Sum-
marization. Resultatene som er oppn̊add av systemet har blitt evaluert etter
kriterier definert av TREC, og resultatene har blitt sammenlignet med resul-
tatene oppn̊add av deltakerne i 2014.

Systemet har oppn̊add resultater som er sammenlignbare med de beste la-
gene fra 2014.Det er sannsynlig at systemet kan forbedres ytterligere ved
å vurdere flere aspekter ved informasjonen som analyseres etter hvert som
oppdateringer genereres.
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Chapter 1

Introduction

Temporal summarization is the problem of summarizing information over
time. The problem have sprung from work on topic detection and tracking
which is the problem of identifying information topics and tracking them
over time [21][2]. A problem with topic detection and tracking is that topics
often grow large with time, making then unwieldy for practical purposes. In
many cases it would be more practical to receive a summary of a certain
topic rather than everything that have ever been said about it.

A sub-problem of temporal summarization is real time temporal summariza-
tion. This involves monitoring topics as they unfold and continually produc-
ing a summary. This problem that will be addressed in this thesis.

1.1 Motivation

During time critical events such as earthquakes or airplane crashes, it is often
hard to get an updated overview of the event in a short amount of time. A
good way to get up to date information would be to get a stream of sentence-
length updates about the situation as it develops. If an earthquake occurred
in Trondheim, an update feed could look something like the list below.

• Earthquake registered in Trondheim.

• The quake had a strength of 5.0 on the Richter scale.
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2 CHAPTER 1. INTRODUCTION

• There have been reports of Power outage in the city centre.

• There is no reports of casualties people.

• According to sources in the Norwegian Seismic Array, there are no
danger of subsequent quakes.

Most people would probably read their favorite online newspaper in search
for news of the event but newspapers will most likely also contain articles that
are not relevant to the event in question. To find the information the user is
looking for she or he will have to find relevant articles and read substantial
portions of this article to extract desired information. A relatively good
approach would be to read just the headlines, as these often contain the most
important information but this could cause you to miss important details.
Many news papers also have a tendency to make vague titles to make as many
users as possible click the actual article to increase ad revenue. Another
important reason that newspapers and similar is not an optimal source of up
to date relevant information is that the content will have to be produced by
humans.Not all newspapers have access to direct sources or correspondents,
meaning that they will have to wait for other newspapers to write about it
first. This might introduce significant delays depending on the resources and
sources of the newspaper.

Another approach to getting updates about an event is to follow relevant twit-
ter hashtags or profiles. The problem with twitter hashtags in this context is
that everyone can post about a topic, which generates noise and potentially
ruins the value of the stream.

One way of solving this problem is a system that automatically process doc-
uments that are published and use them to generate a feed of information
about an unfolding event. This system would be a real time temporal sum-
marization system.

1.2 Goals and Problem Definition

This thesis has three goals.

1. Create a real time temporal summarization system based on research
of other system and related technologies.
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2. To test different approaches to the problem and evaluate and evaluate
how the different approaches perform.

3. To compare the results of the system with the results of comparable
systems to evaluate the methods used.

To compare a system with other system, a standardised problem, data set and
evaluation criteria are needed. This part of the thesis is based on the TREC
2014 Temporal Summarization track. TREC stands for Text REtrieval Con-
ference and is a yearly conference that publish a number of different tasks
that participants try to solve in preparation for the conference. Each track
define a problem and metrics for evaluating the systems submitted for eval-
uation. The Temporal summarization track is based on the problem defined
in the paper Updating Users About Time Critical Events [11] by Qi Guo et
al.

The temporal summarization track aims create and evaluate temporal sum-
marization systems. The track provides guidelines, metrics, example events
and a data set that can be used to create and evaluate these systems. 2013
was the first year for this track and it was run again in 2014. Because the
submission deadline falls between academic years the results of this thesis
will not be submitted for official evaluation. This should not be much of a
problem however, because the evaluation criteria is based on standard TREC
evaluation and publicly available, this way any system that follows the speci-
fied formats and uses the proper data sets can be compared to other systems
following the same guidelines. The approaches used by the participants of
the track and the results they achieved will be used as a foundation for this
thesis. Because the results are published, it is possible to analyse the per-
formance of the different approaches and use this as a guide when creating a
system.

Some central questions that will be have to be considered through working
with this thesis are:

1. What are important considerations when designing a real time temporal
summarization system?

2. What are the advantages and disadvantages of different approaches?
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1.3 Contribution

The results of the work and research done during this thesis is a real time
temporal summarization system conforming to the requirements of the TREC
temporal summarization track. The techniques used to create the system was
evaluated and compared with the results of the participants of the 2014 run
of the track.

1.4 Outline

The thesis is divided into 9 chapters. The first 5 chapters introduce the
problem of real time temporal summarization and the practical aspects of
the TREC Temporal Summarization track. Chapter 5 and 6 presents the
solutions created for the TREC temporal summarization track and the results
achieved with the different approaches. Chapter 8 and 9 seek to evaluate the
results achieved in this thesis and to provide a summary of the answers to
the central questions posed in the introduction.

Below is a list of the chapters in this thesis and a short explanation of what
they will contain.

1. Introduction - Introduction to temporal summarization and presen-
tation of the questions that will be answered in the thesis.

2. Theoretical background - Overview of techniques that are related
to temporal summarization or techniques that can be used when con-
structing a temporal summarization system.

3. Introduction to temporal summarization -

4. TREC temporal summarization 2014 - Detailed description of the
TREC temporal summarization 2014 track and description of the data
set and evaluation metrics used for the track.

5. TREC temporal summarization past results - Overview of the
results achieved by participants of the 2013 and 2014 TREC temporal
summarization tracks and discussion of the methods used.
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6. Temporal summarization framework - A description of the over-
all framework and the different parts of the temporal summarization
system created for the 2014 track.

7. Temporal summarization algorithms and results - A description
of each of the approaches used to

8. Evaluation of results - Evaluation of the results achieved by the
system that was created compared with the participants of the 2014
track.

9. Conclusion - Conclusion and summarised answers to the questions
posed in the introduction.
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Chapter 2

Introduction to Summarization
and Temporal
Summarization

Temporal summarization can be described as the problem of automatically
summarizing information over time. An example can be to generate a sum-
mary of a debate that spanned some amount of time. This chapter gives a
general description of temporal summarization with a real time example and
discuss some work on temporal summarization outside the TREC track.

2.1 Automatic Summarization

Automatic summarization is the problem of automatically summarizing in-
formation, usually in the form of a document. One of the earliest works of
temporal summarization attempted to create a system that could automati-
cally generate abstracts based on a research paper [14].

Another form of automatic summarization is multi document summarization.
Multi document summarization aims to create summaries of a large amount
of documents covering some topic. A study by Kathleen McKeown et al.
[17] showed that both automated summaries and handwritten summaries
helped when people were asked to gather facts from several different news

7



8CHAPTER 2. INTRODUCTION TO SUMMARIZATION AND TEMPORAL SUMMARIZATION

documents concerning a specific topic. Multi document summarization is
more challenging than single document summarization because systems also
have to consider what documents to use for the summary.

There are two ways of creating summaries, abstraction based and extraction
based summarization. Abstraction based summarization is to create text that
summarize other text. This is generally they way summaries are produced
by humans, we read some information and write a shorter piece covering the
essential points of the original information. Extraction based summarization
is to extract information from a document or a set of documents that cover
the most important points of information. Because text generation is a very
difficult problem by itself, most summarization research is focused on gener-
ative summaries. Systems that use extraction based summaries must decide
what information to extract in some way. To decide what to extract, systems
use different heuristics to decide what information is important to include in
a summary. A summary could consist of a subset of documents that have
been deemed to be influential and have a lot of citations, or it could be a set
of sentences extracted from a single or multiple documents.

Possible applications of automatic summarization technology include sum-
marizing news stories, compiling information from a large set of documents
into a single document or generate a summary of a topic.

2.2 Topic Detection and Tracking

Topic detection and tracking is the problem of detecting events in a contin-
uous stream of documents and tracking them over time [1]. Topic detection
and tracking is useful for following stories over time or to automatically
categorize documents. It can also be used to detect the first story of an
event.

2.3 Introduction to Temporal Summarization

Temporal summarization can be seen as a combination of the problem of
multi document summarization and topic detection and tracking. A temporal



2.4. REAL TIME TEMPORAL SUMMARIZATION EXAMPLE 9

summarization system needs to be able to track events as well as summarize
the documents that belong to this event.

A system made for summarizing topics can be real time or retroactive. Real
time temporal summarization systems produce a summary gradually as time
goes on and more documents become available. Retroactive summarization
systems produce a summary once at a given time and considers all previous
documents at the same time. The later have the advantage of having full
knowledge of the topic or event at the point of summarization. This lets your
system take advantage of features like citation data or hotlinking from other
documents.

This problem was first defined in a paper by James Allan et al. [2]. The au-
thors define the problem of temporal summarization and metrics that should
be used to evaluate such systems. This paper lays the foundation for the
later TREC Temporal Summarization Track.

Outside of the TREC track there have been some experiments with different
takes on the temporal summarization problem. In a paper by Ruben Sipos
et al. [20] the authors experiment with solutions that does not produce a
summary in the traditional sense. Instead, they attempt to identify landmark
documents and the spread of novel ideas and author influence throughout a
corpus.

2.4 Real Time Temporal Summarization Ex-

ample

Below is an example of how a real time temporal summarization system could
work. Our example system receives a query from a user that describes an
ongoing event. The system then processes an incoming stream of documents
and outputs updates that are relevant to the event as it unfolds.

In this example, we will use a simple notion of document relevance. If the
title of the document contains all the words in an event query, we consider
that document to be relevant to the event. The same criteria is used for iden-
tifying and extracting interesting updates from the documents. Sentences are
scanned and sentences containing all words in the query are assumed to be



10CHAPTER 2. INTRODUCTION TO SUMMARIZATION AND TEMPORAL SUMMARIZATION

Figure 2.1: Flowchart of a basic real time temporal summarization system

interesting updates by themselves.

Below is a run-through of the system where the system is set to produce
updates about a tsunami that has occurred in Trondheim. The user submits a
query to the system and it processes a stream of documents from one or more
external sources. As it identifies relevant documents and processes them, it
outputs updates that are deemed to contain interesting information.
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Query
query = {trondheim tsunami}

Document 1
title = {Trondheim tsunami insurance}
body = {Buy your tsunami insurance now. Give our office in Trondheim a
call at 93776583.}
updates = {}

Document 2
title = {Trondheim area hit by tsunami}
body = {The city centre of Trondheim was hit by a tsunami this morning.
Eye witnesses reports that the wave was at least 4 meters high.}
updates = {{The city centre of Trondheim was hit by a tsunami earlier
today}}

Document 3
title = {Millions of euros of damage caused by today’s tsunami in Norway}
body = {The Norwegian authorities estimate that the tsunami has caused
damage for 3 million Euro. This includes significant damage to the Train
station of Trondheim as well as the harbor area that too the impact of the
tsunami.}
updates = {{The city centre of Trondheim was hit by a tsunami earlier
today}}

Document 4
title = {Trondheim in chaos after tsunami}
body = {The Norwegian prime minister promises that all available resources
will be used to help the citicens after tsunami. The tsunami hit Trondheim
earlier today and the damages so far has been estimated to more than 3
million euro.}
updates = {{The city centre of Trondheim was hit by a tsunami this morn-
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ing}, {The tsunami hit Trondheim earlier today and the damages so far has
been estimated to more than 3 million euro.}}

The title of the first document contains both “trondheim” and “tsunami”,
but no sentences contain both of these words, so none of them are added to
the updates.

The title of the second document contains both the words in the query, this
is also the case for the first sentence, so we add this to the update feed. The
second sentence would probably also be a good update but because of the
simplistic way the system detects interesting sentences, it is discarded by the
system.

The third document’s title contains the word “tsunami” but not the word
“trondheim”, it is therefore discarded and no updates are produced. This
is another case where the system ignores information that could have been
interesting to a user. In this case, it happens because the system does not
deem the document relevant, even though it clearly provides information
about the event in question.

The fourth document is similar to document 3, but because of the different
title, it is identified as relevant. Sentence 2 also contains both words in the
query and it is extracted from the document. If document 3 looked a little
different, the system could very well have selected sentences that are very
similar from document 3 and 4. This is something that should be avoided
because a user is not interested in receiving multiple updates with the same
information.

This example illustrates many of the challenges that are present when con-
structing a real time temporal summarization system. Making a good system
requires careful consideration of the different parts of the system to ensure
that they work well together and that the end results is of good quality.

Some of the things that has to bee considered when creating such a system
is, selecting the right documents, extracting the interesting information, sub-
mitting updates at the right time, avoiding redundant updates and making
sure to cover the whole event without including irrelevant information.



Chapter 3

Related Technologies

Temporal summarization is closely related to a number of sub-fields within
information retrieval and other topics. Some of these methods are highly
relevant to temporal summarization and can be used for solving different
sub-problems. This chapter will give a short introduction to some techniques
that are related to temporal summarization.

3.1 Information Retrieval and the Vector Space

Model

Information Retrieval is the problem of finding information that is relevant
to some information need. Information retrieval is a large field with many
different techniques that are used to search a set of documents for documents
that are relevant to a query or improve the results of a search.

One of the most used techniques from information retrieval is the vector
space model. The vector space model is a way of representing documents
and calculating the similarity between them. In this model, documents are
represented as vectors where each element if a feature of the document. Usu-
ally this means that each element in the document vector corresponds to a
term in the document and the number represents the importance of the term
in the document. The similarity between two documents are calculated by
computing the angle between the two vectors and taking the cosine of the

13
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angle. For more in-depth description of different ways of implementing the
vector space model and the TF-IDF weighting scheme, see [8].

Given two vectors A and B, the similarity between the vectors are given by
dividing the dot product of the two vectors by the length of the two vectors
multiplied.

similarity(A,B) =
A •B

||A|| × ||B||
(3.1)

To distinguish between important and unimportant terms in a document we
use a measure called TF-IDF. TF-IDF stands for term frequency - inverse
document frequency and is a common way to score terms in a document. The
idea is that terms that occur many times in a document is important for this
document and that rare terms are better suited to differentiate documents
than common terms. When using TF-IDF weighting of terms, each document
vector consists of the TF-IDF scores of each term in the document.

vector(d,D) = {t 7→ (tf(t, d)× idf(t,D)) ∀ t ∈ d} (3.2)

The term frequency tf is defined as the frequency of a term t in a document
d. The frequency can be implemented as a simple boolean measure of term
presence given a document or in some other way. A common definition
of term frequency is dividing the number of occurrences of the term in a
document by the number of occurrences of the most frequent term in the
document. This is a way of preventing bias towards long documents and
is referred to as double normalization. The most distinguishing term for a
documents is the term in the document with the highest TF-IDF score

tf(t, d) = 0.5 +
0.5× f(t, d)

max{f(w, d) : w ∈ d}
(3.3)

The Inverse document frequency is defined as the number of documents in the
collection divided by the number of documents that contain a specific term.
This ensures that rare terms are weighted higher than common terms. If no
documents contain the term, the inverse document frequency is zero.
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idf(t,D) =

{
0 if |{d ∈ D : t ∈ d}| = 0
log N

|{d∈D:t∈d}| otherwise
(3.4)

To find the documents in a collection that is most similar to a query, we
simply have to calculate the cosine similarity between the query and all
documents, and rank them by this score.

3.2 Novelty and Redundancy Detection

Novelty or redundancy detection is the problem of detecting whether or not
a piece of information is novel or redundant compared with some already
known information.

Novelty and redundancy detection is commonly used by clustering systems
to decide if a new sample is worth storing as a data point or if the data is
already covered by other examples.

An example of novelty detection is refining the results of a documents search.
If we have a set of results ranked by relevance, we might want to omit lower
ranked results if they do not contain any new information compared to the
highly ranked ones. This can make the overall results easier to process for
the users but it might also exclude documents that the would be interesting
to the user.

Most forms of novelty detection are based on comparing unseen documents to
previously seen documents. If the new document is sufficiently different from
the old documents they are assumed to contain new information. In many
cases the comparison is done by comparing the terms in the documents with
the terms in each previously seen document or the combined terms of selected
documents. Comparing documents can be done pairwise or by means of some
form of clustering, where documents are grouped together based on likeness
to each other or some calculated or chosen exemplar for each cluster.

In a paper by Yi Zhang et al. [26]. The authors combine information filter-
ing with novelty detection to eliminate redundant results from the filtered
stream of documents. They use a variety of measures for detecting novelty
and redundancy such as language models and cosine similarity. One of the
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conclusions is that simple similarity measures such as cosine similarity can
perform very well for this kind of problems but that other methods might
perform better if developed further.

3.3 Query Expansion and Modelling

Query expansion and query modelling are techniques used to modify a user’s
query with the goal of making it more suited to the information need of the
user. Query expansion is some times referred to as relevance feedback. This
comes from a way of performing query expansion where some results of a
query is fed back into a query expansion module to expand the query. The
feedback can be explicit or implicit. An example of explicit feedback is a
user that selects a document that he or she believes to be relevant and the
query is modified with terms from this document to produce more results
like it. Implicit feedback can be automated without user feedback. A simple
example of implicit feedback is to perform a query and select the top terms
from the top results for this query and perform the search again. For more
detailed discussion of query expansion and relevance feedback see [8].

An interesting approach to query modelling is presented in [18]. The work is
based on the observation that documents are published in bursts as different
events unfold. An example used by the authors is the query “grammys”,
the amount of documents published that are relevant to this query is highly
concentrated around the time of the Grammy Awards each year. Based on
the assumption that documents published during burst as are more likely
to be relevant to a given query, we can use terms from the best documents
during bursts to make a better query. The authors have reported significant
improvements over various baselines.

The limitation of this approach is that it depends on our ability to reliably
detect bursts in a stream. This is a simple task when we are free to examine
the corpus retroactively, but detecting bursts in real time is naturally difficult.
One of the reasons this is difficult for real time systems is the fact that bursts
will naturally occur because of human sleeping patterns. Because of latency
weighting of scores in the temporal summarization task, it is not acceptable
to wait a day or even many hours to wait for bursts to become clear. It
is possible to generate expansion terms as time progresses and more data
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becomes available, but there is a risk that these terms loose their relevance
or introduce more noise.

3.4 Sentence Information Retrieval and Nov-

elty Detection

There has been done some research on the topic of sentence IR and novelty
detection on the sentence level. This problem of finding sentences that are
relevant to some query is more challenging than finding documents because
each sentence consists of much fewer terms and hence much less informa-
tion.

In a paper [3] from 2003, the authors attempt to identify relevant and novel
sentences from a ranked list of documents. This task is very similar to the
temporal summarization task. The only difference is that the temporal sum-
marization task requires temporal processing of the documents and places
time constraints on selecting sentences.

The authors experimented with several different methods for sentence selec-
tion based on language models, TF-IDF and word counting. One of primary
issues the authors wanted to address was the fact that most earlier meth-
ods were based on the assumption that all the evaluated documents was
relevant.

The conclusion of the work is that working without the assumption of rele-
vant documents makes sentence retrieval and novelty detection much harder.
Many of the tested methods perform much worse when the assumption is
lifted and this is especially true for the statistical and language models. The
word counting methods also performed worse but the performance dropped
more smoothly.

The problems covered by this paper is very similar to the temporal sum-
marization task and it shows that great care must be taken when selecting
documents to ensure that the results are good.
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Chapter 4

TREC Temporal
Summarization

To experiment with different techniques and to see how a real time temporal
summarization system can be implemented, a defined task with set evaluation
criteria that can be used to evaluate different techniques are needed. TREC
has organized a track that focus on the problem of summarizing events in 2013
and 2014. This track provides the participants with a data set, rules, test
events and evaluation criteria that are created with the goal of researching
temporal summarization.

Participation ion the track is not a part of this thesis, but because the infor-
mation is publicly available, It is possible to implement systems conforming
to the requirements of the track and compare the results with teams that
have participated officially.

This chapter is about organization of the TREC Temporal Summarization
track and describes the premise, rules and requirements of the track. The
content of this chapter is based on the information made available by the
track organizers in [4].
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4.1 TREC Temporal Summarization

The definition of a temporal summarization system used in this context is
a system that processes a stream of documents to automatically produce
updates related to a given set of events.

To make evaluation of the different systems easier, the track dictates that
updates produced by a system can only be sentences that are present in doc-
uments found in the corpus. This means that all systems that are evaluated
using the corpus and tools provided by the track are extractive summariz-
ers.

This makes the task more simple and easier to evaluate for the organizers. It
also restricts the participants from using techniques that generate their own
updates. Sentences selected directly from documents have the advantage that
they are sentences created by a human and that they most likely are complete
and are easy to understand. Generating text is still a difficult problem and
is not the focus of the track.

The 2013 run of the track featured an additional task compared to the 2014
run. This task was called value tracking and had the goal of tracking impor-
tant numbers as an event unfolded, such as number of dead people or the
financial impact of an event. Because most participants focused on the se-
quential update summarization task, this task was abandoned in 2014.

4.2 Temporal Summarization General Proce-

dure

The track organizers have outlined a general high level procedure for a tem-
poral summarization system. This outline contain no technical details and
is of little use other than to illustrate how such a system might look like on
a high level. The procedure is replicated in algorithm 1.

The key parts of this procedure is the part where documents are processed
and the part where updates are extracted. There are no restrictions on how
these parts can be implemented and it is possible to implement these parts
of the system in many different ways.
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Algorithm 1 Temporal summarization general procedure

1: procedure Summarize
2: C ← time ordered corpus
3: e← event
4: ts← e.start
5: te← e.end
6: R← result
7: for all documents d in C do
8: time← d.time
9: process(d)
10: if ts ≤ time and time ≤ te then
11: Ut← extractUpdates()
12: for all updates u in Ut do
13: R.append(u)

14: return R

Previous track runs have mostly used text indexing techniques to store infor-
mation and separate relevant documents from irrelevant documents. For de-
termining which sentences to use as event updates many different techniques
have been used. Some examples include bag-of-words novelty detection ap-
proaches and cluster based query expansion approaches.

To make it easy to experiment with multiple approaches, the system should
be separated into modules that handle sub-problems. Especially the modules
responsible for choosing updates needs to be clearly defined and independent
of other parts of the system so that it is easy to test widely different ap-
proaches.

4.3 Corpus

The track use a filtered version of the 2014 KBA Stream Corpus 1 from
the TREC Knowledge Base Acceleration track. To make the size of the

1KBA Stream Corpus 2014, http://trec-kba.org/kba-stream-corpus-2014.shtml
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corpus more manageable for the participants, the organizers provide a filtered
version 2.

The corpus is serialized with Apache Thrift, encrypted with GnuPG and
compressed with XZ. Documents span in publication time from December
2011 to April 2013 and are divided into folders by hour. Each hour worth
of data is divided into multiple chunks where each chunk contain a certain
type of documents. Document types in this context means different types of
sources, for instance news documents, forum posts or posts on social media.
The creators of the corpus format supply a set of tools that can be used to
extract the documents from the corpus in various formats.

The unfiltered version of the corpus consists of just above 16TB worth of
documents. To make the amount of data more manageable for the partici-
pants, the track organizers supply a filtered version. The filtered version is
around 590GB in size, this is achieved by removing documents that are not
within the time frame of at least one of the evaluation events. Documents
that does not contain at least one word from the evaluation event queries
are also removed, as they are very unlikely to be relevant to any of the test
events.

Each document in the corpus is timestamped and should be processed in
chronological order. As the name suggests, the stream corpus emulates a
stream of newly published documents and should be treated as such. As
can be seen in the temporal summarization general procedure 1 reading a
document requires you to set your system time to a time no less than the
time stamp from the read document. It is not allowed to “peek ahead” by
reading documents without adjusting system time. This also means that
you are not allowed to use TF-IDF scores or similar based on data that is
published after the document.

4.4 Evaluation Events

The documents also contain a title and a link to a Wikipedia article describing
the event but these are retrospective data not to be used during simulations.

2TREC Temporal Summarization 2014 corpus, http://s3.amazonaws.com/aws-
publicdatasets/trec/ts/index.html
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The timestamps are GMT UNIX-timestamps and are defined as the number
of seconds passed since 00:00 1.January 1970.

Example events are provided by the track organizers and consists of:

• Id: The identifier for the event

• Start: A time stamp that defines when the event started

• End: A time stamp that defines when the event ended

• Query: A query representing a users description of an event

• Type: The type of event, is one of accident, bombing, earthquake,
hostage, impact event, protest, riot, shooting, storm

The query of an event is what people would likely use when referring to
an event in the present, not how they would refer to an event after it has
passed. The query for the event “Early 2012 European cold wave” is for
instance simply “European cold wave”.

4.5 Results format

The results of a run is a set of updates for each event. Each update consists
of:

• Query Id: The id of the event that the update belongs to

• Run Id: The name of the solution that generated the update, this
allows for a system run multiple solutions in a single batch.

• Document Id: The id of the document that contains the sentence
that was selected as an update

• Sentence Id: The index of the sentence in the document

• Decision timestamp: The system time at the time the update was
generated

In addition to these fields each update contains the name of the team that
created the solution and a confidence value that was used by the track or-
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ganizers when evaluating submissions. None of these are relevant for this
thesis.

The results of a run is evaluated using a script that calculates the scores of
the systems using different evaluation metrics.

4.6 Evaluation and Metrics

To accurately compare different systems using different approaches, the or-
ganizers of the temporal summarization track have defined a set of common
evaluation metrics that measure different aspects of a temporal summariza-
tion system creating according to the specifications of the task. The metrics
are based on common information retrieval metrics, but has been tailored
to the real time temporal summarization domain by combining these with
latency and verbosity of updates. The complete definition of these metrics
can be found in [5].

Scoring different systems is at the basic level done by comparing updates
produced by the systems to a set of gold standard updates chosen by the track
organizers for each event. These gold standard updates are called nuggets and
are extracted from Wikipedia edit history of pages concerning the events for
the task. Submitted systems are evaluated based on how well their updates
cover the information provided by the nuggets. The evaluation criteria are
based on traditional information retrieval metrics but also take into account
that a temporal summarization system is not a standard information retrieval
system. In addition to equivalents of precision and recall, the systems are
evaluated by how early the produced updates based on the Wikipedia edit
and how verbose or concise they are.

Below is a list of the main evaluation criteria for the track.

• Expected Gain - How much information is provided by the updates

• Comprehensiveness - How well the updates cover the event

• Latency - How soon the updates are delivered

• Verbosity - How compact the updates are
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• Combined Metric - A combination of the different metrics to produce
a single score

4.6.1 General Definitions and Functions

The output of a system is a set of updates where every update is a sentence
from one of the documents in the corpus. The set of updates generated by a
system id referred to as S.

S = the updates of a system (4.1)

Metrics are calculated separately for each event that is summarized by the
system. The subset of updates produced for a particular event is referred to
as Se.

Se = the updates of a system for a particular event (4.2)

The set of nuggets that are relevant to an event is referred to as Ne.

Ne = the defined nuggets for a particular event (4.3)

Updates are compared with nuggets to calculate the various metrics used to
evaluate a system. The earliest matching update of a nugget is defined as the
earliest update generated by a system that matches the content of a given
nugget.

M(n, Se) = min{u ∈ S : n ≈ u}u.time (4.4)

The set of nuggets that have an update u as it’s earliest matching update is
referred to as M ′.

M ′(u, Se) = {n ∈ Ne : M(n, Se) = u} (4.5)
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4.6.2 Expected Gain

The expected gain of a temporal summarization system is the expected in-
formation gain for an update and is defined as the sum of every update gain
divided by the number of updates produced by the system. This metric is
similar to precision in information retrieval system in that it says something
about how valuable each result is for the user. A high expected gain tells us
that each update provides relevant information and that the amount of noise
and irrelevant results are low.

The gain of an individual update is calculated based on how many nuggets are
covered by the update and how relevant to the event these nuggets are.

gain(u, Se) =
∑

n∈M ′(u,Se)

relevance(n) (4.6)

The expected gain of a system is the sum of the gain generated by each
update divided by the total number of updates.

EG(Se) =
1

|Se|
∑
u∈Se

gain(u, Se) (4.7)

4.6.3 Comprehensiveness

The comprehensiveness of a temporal summarization system is how well the
updates of the system cover the defined nuggets for an event. The compre-
hensiveness is a measure of how many of the nuggets that are covered by
every update on average. A system is rewarded for covering as many nuggets
as possible and punished for leaving out information.

C(Se) =
1∑

n∈Ne
R(n)

∑
u∈Se

gain(u, Se) (4.8)
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4.6.4 Latency Discount

To penalize systems that produce late updates and reward system that pro-
duce early updates, the gain of a specific update for a given set of matching
nuggets is discounted by a latency factor. The latency factor is given by a
function that compares the time stamp of the update with the time stamp
of the nugget. Depending on how many hours before of after the nugget
the update was generated, the factor increases or decreases. The function is
an inverse tangent where the function varies from 2 to 0, with updates that
are generated at exactly the same time as the nugget will have a latency
factor of 1. At positive or negative 10 hours, difference the factor will be
approximately 0.3 or 1.7.

To incorporate the latency factor into the overall evaluation of the system, the
latency factor is applied to the gain of each update. The latency discounted
gain function looks like this:

gain(u, Se) =
∑

n∈M ′(u,Se)

relevance(n)× latency(u, n) (4.9)

4.6.5 Verbosity Normalization

Verbosity normalization is applied to the expected gain function to punish
systems that are too verbose and reward systems that manage to convey
meaningful information in a compact manner. This normalization is applied
to the overall verbosity of the system and not each individual update. This is
to ensure that systems are not punished for longer updates that cover many
nuggets. The normalization works by taking the number of words in the
updates that do not match nuggets and divide it by the average number of
words in a nugget for the given event.

The verbosity normalized version of the expected gain divides the sum of the
combined gain from each update by the combined verbosity of the updates
instead of the number of updates.

EGV (Se) =
1∑

u∈Se
verbosity(u)

∑
u∈Se

gain(u, Se) (4.10)
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The verbosity of an update is defined as 1 plus the number of words in an
update that does not match a nugget, divided by the average nugget length
for the particular event. An update that does not contain any words not
found in a nugget will have a verbosity score of 1, the score will increase with
the number of unrelated words.

V (u, e) = 1 +
|u| − |words from u matching nugget|

avgn∈Ne|n|
(4.11)

4.6.6 Combined Metric

The overall metric for the system is the harmonic mean between the expected
gain and the comprehensiveness of the system. This is the equivalent of an F-
measure in information retrieval where expected gain corresponds to precision
and comprehensiveness corresponds to recall. The function is a combination
of comprehensiveness, expected gain, latency and verbosity. This ensures
that different systems are scored according to multiple criteria of a good
temporal summarization system.

F (S) =
EGV (S)× C(S)

EGV (S) + C(S)
(4.12)



Chapter 5

TREC Temporal
Summarization 2013 and
2014

The TREC temporal summarization track was ran in 2013 and 2014. Both
of these runs featured roughly the same task description, evaluation criteria,
test events and data set. This chapter presents the results of the participants
of the 2013 and 2014 track.

5.1 2013 Results

2013 was the first year of the temporal summarization track. The teams chose
widely different approaches and even after the track, there are no definitive
answers as to what is the best approach for this problem.

The 2013 track did not use a combined metric to evaluate the results but
rather looked at gain and comprehensiveness separately. In order to prop-
erly compare the results with the results from 2014 I calculated this score
myself using the formula used for the 2014 track and the supplied gain and
comprehensiveness scores. As mentioned in the track overview, the formula
is a standard harmonic mean between gain and comprehensiveness.

29
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Below is a list of the different participants and their most important tech-
nologies as well as the results of each submitted run. The Highest achieved
score for each metric category is bolded.

• ICTNET - title filtering, Wikipedia based trigger words, simhash re-
dundancy detection

• HLTCOE - bag of words event models based on unigrams; named
entities and verbs with Wikipedia expansion, feature based sentence
selection based on document and sentence relevance; novelty; salience
and number presence

• PRIS - query expansion, document and sentence relevance, latent
Dirichlet allocation based keyword mining

• UOG - search engine, sentence ranking, Gibbs sampling

• ZZISTI - sentence importance by entity identification, cosine similarity
based novelty detection

• UWaterlooMDS - ranking hourly chunks of documents using query
likelihood with Dirichlet Smoothing, various sentence ranking schemes

5.2 2013 General Discussion

In general there was a big difference in how the different runs performed
by different metrics. Some runs performed great in the comprehensiveness
metric but these where often the poorest performers when it came to the
update gain metric. The best runs where the runs with a good update gain,
as their comprehensiveness was often just half of the comprehensiveness score
of the most comprehensive runs, while the expected gain of the runs with
good comprehensiveness was often many times worse. There was also a large
difference in overall score achieved by the different teams,

All of the submitted systems submitted used an approach where documents
first were judged for relevance and sentences were selected only after deter-
mining if the document was relevant or not.

The way the participants determined if a document was relevant or not can
be separated into two categories. The first approach was to filter documents
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Run Id Gain Comp. F-Measure
ICTNET-run2 0.127 0.251 0.1686
ICTNET-run1 0.125 0.253 0.1674
hltcoe-TuneBasePred2* 0.114 0.244 0.1554
hltcoe-TuneExternal2* 0.117 0.203 0.1484
PRIS-cluster5 0.136 0.126 0.1308
PRIS-cluster3 0.103 0.176 0.1300
PRIS-cluster2 0.074 0.260 0.1152
hltcoe-BasePred 0.067 0.368 0.1134
PRIS-cluster1 0.067 0.292 0.1090
PRIS-cluster4 0.067 0.288 0.1088
hltcoe-Baseline 0.063 0.381 0.1082
uogTr-uogTrNMTm1MM3 0.069 0.216 0.1046
uogTr-uogTrNSQ1 0.060 0.184 0.0904
hltcoe-EXTERNAL 0.054 0.413 0.0956
uogTr-uogTrNMM 0.045 0.254 0.0764
uogTr-uogTrNMTm3FMM4 0.049 0.170 0.0760
uogTr-uogTrEMMQ2 0.040 0.259 0.0692
ZZISTI-wim-GY-2013-SUS1 0.036 0.148 0.0580
UWaterlooMDS-rg4 0.028 0.516 0.0532
UWaterlooMDS-rg3 0.026 0.506 0.0494
UWaterlooMDS-rg2 0.022 0.562 0.0424
UWaterlooMDS-rg1 0.021 0.571 0.0406
UWaterlooMDS-UWMDSqlec4t50 0.018 0.530 0.0348
UWaterlooMDS-UWMDSqlec2t25 0.017 0.537 0.033
UWaterlooMDS-CosineEgrep 0.010 0.018 0.0128
UWaterlooMDS-NormEgrep 0.001 0.061 0.0020

Figure 5.1: Gain, Comprehensiveness and F-Measure scores of the 2013 runs
[7]

based on some criteria. Examples of this include the solution created by the
ICTNET team[13] that filtered documents based on the presence of the query
terms in the title of the document, and the solution by the ZZISTI team[22]
that considered a document relevant if it contains the query terms. The other
solutions[24][25][23][15] all used some form of similarity based comparison to
decide if a document is related to a particular event. Some participants used
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TF-IDF scoring and cosine similarity while others relied on various search
engines or clustering techniques to achieve the same goal.

The three best performing teams all used some form of external corpus such
as a Wikipedia dump to extend their various forms of event models. What
made these teams stand out was their very high gain score compared to
the other participants, indicating that their way of selecting sentences is
a good one. Many participants also used some form of query expansion,
either for expanding event models or for the initial identification of relevant
documents.

HLTCOE used a solution where sentences where selected based on various
features, not only the presence of certain terms. Most of these features were
based on their generated bag-of-words representations of each event, but
they also included features such as the presence of numbers and the novelty
of a sentence compared with the current bag-of-words representation of the
event.

The WARTERLOOMDS team submitted several different runs and all of
them got poor latency gain score but the team had the best scores by the
comprehensiveness metric. The runs with the highest comprehensiveness
score expanded the original query by the top expansion terms each hour
to track the evolution of the event. Relevant sentences were also selected
based on the expansion terms. These runs where also among the runs that
generated the highest number of updates. The low gain score combined with
the high comprehensiveness could indicate that while the event expansion
method is good at finding more relevant documents, it also causes the system
to produce more irrelevant updates or updates with no new information.
This could also mean that redundancy detection is not enough to ensure
that produced updates provide relevant information, at least if the number
of believed relevant documents is high. The ICTNET team relied on simple
similarity based redundancy detection to ensure novelty, but in their case,
the pool of possible sentences were much lower because of their restrictive
document relevance judgement.
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5.3 2013 Highlight: ICTNET

The team with the highest combined score in the 2013 track was the ICTNET
team. This team employed a real time multi stage filtering approach where
documents and sentences are gradually filtered and the sentences remaining
after the filtering are selected as updates.

The filtering process can be summarized as follows:

• Filter out irrelevant documents

• Select sentences that contain trigger words learned from Wikipedia

• Remove redundant sentences

This approach differs from a couple of other approaches in that their approach
is entirely real time and does not introduce delays by collecting documents
or sentences at any stage throughout the process. As long as the system is
able to identify good updates, this could yield considerable bonus points for
generating updates in a timely fashion.

The first stage of their filtering process is to discard documents that are
believed to be irrelevant. This is done by discarding documents where the
title does not contain all terms in the query. Using the title of the document
proved to yield better results than using the body of the document. The
second stage of the filtering is selecting sentences that contains certain trigger
words. These terms include words such as “killed”, “victims” etc.

It is unclear from the report weather or not these trigger words are event
specific, event type specific or generic.

Additional words were learned by using an old snapshot of Wikipedia to iden-
tify terms frequently used in updates concerning the different types of events.
The last step in the filtering process is to remove redundant updates. This
is done by computing the similarity between selected sentences and previous
updates using a simhash algorithm and discarding redundant sentences while
the remaining sentences are added to the results.

Compared to many of the other participants, the methods used were very
simple. The only part of the system that involves any actual analysis of data
is the selection of trigger words. The fact that the system is very restrictive
in choosing relevant documents and sentences may be one of the reasons it



34CHAPTER 5. TREC TEMPORAL SUMMARIZATION 2013 AND 2014

performed relatively well compared to other systems. Choosing documents
based on their titles is very restrictive, but if this diminishes the likelihood
of choosing irrelevant documents it might be worth it. Choosing sentences
based on trigger words might discard relevant sentences, but is also less likely
to choose irrelevant sentences. The fact that many other runs loose out to
this simple but conservative system could indicate that these other systems
have problems with noise. This will have to be tested to be verified, but it
is important to consider the effects of irrelevant documents when selecting
sentences as updates.

5.4 2014 Results

The 2014 track is mostly the same as the 2013 version. Guidelines, metrics
and corpus are all the same, the only thing that was changed from 2013
was the events used for evaluation. Some participants from 2013 make their
return, but there are also new participants. Some of the participants signif-
icantly altered their approach, but some techniques return in some way or
form.

Below is a list of the main techniques used by the different participants for the
2014 run and the results achieved by each submitted solution[12][9][10][16][27][19].

• CUNLP - affinity propagation, Gaussian processes, semantic similar-
ity

• BJUT - query expansion, classification, clustering

• UOG - filtering of various sentence features

• IRT - machine learning, generic event model

• ICTNET - latent Diriclet allocation, support vector machine learner

• BUPT - unclear, query expansion and improvement
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Run Id Gain Comp. Lat F-Measure
CUNLP-2APSal 0.0631 0.322 0.2304 0.1162
BJUT-Q1 0.0657 0.4088 0.3238 0.1110
BJUT-Q0 0.0632 0.3979 0.2421 0.1091
BJUT-Q2 0.0632 0.3979 0.2421 0.1091
uogTr-uogTr2A 0.0467 0.4453 0.1424 0.0986
uogTr-uogTr4AC 0.0347 0.4539 0.1076 0.0793
uogTr-uogTr4ARas 0.0387 0.3691 0.1300 0.0772
IRIT-KW30H5NW3600 0.0383 0.3521 0.0621 0.0723
IRIT-KW30H5NW300 0.0378 0.3538 0.0614 0.0714
uogTr-uogTr4A 0.0281 0.4733 0.0752 0.0677
average 0.0327 0.3615 0.1031 0.0620
IRIT-KW80H5NW3600 0.0289 0.3764 0.0440 0.0604
CUNLP-1APSalRed 0.0325 0.3058 0.0601 0.0602
IRIT-KW30H10NW300 0.0298 0.378 0.0504 0.0602
IRIT-KW80H5NW300 0.0285 0.3806 0.0435 0.0596
ICTNET-run3 0.0531 0.1081 0.2794 0.0530
BUPT-PRIS-Cluster4 0.0155 0.2692 0.0314 0.0508
IRIT-KW80H10NW300 0.0225 0.4012 0.0361 0.0503
BUPT-PRIS-Cluster3 0.0115 0.338 0.0208 0.0407
CUNLP-3AP 0.0174 0.4265 0.0318 0.0403
ICTNET-run2 0.0418 0.0934 0.2269 0.0311
BUPT-PRIS-Cluster2 0.0059 0.3728 0.0101 0.0222
ICTNET-run4 0.0079 0.407 0.0096 0.0178
ICTNET-run1 0.007 0.409 0.0084 0.0160
BUPT-PRIS-Cluster1 0.0033 0.4369 0.0059 0.0127

Figure 5.2: Gain, Comprehensiveness, latency and F-Measure score of the
2014 runs [6]

5.5 2014 General Discussion

In general there was no improvement in the scores compared to the 2013
track, although there was some interesting new approaches. The trend from
2013 where runs with high gain score much better than runs with high com-
prehensiveness, this is also noted by the organizers in the overview paper[6]
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and they conclude that further research should be focused on improving the
precision of temporal summarization systems.

5.6 2014 Hightlight: CUNLP

One of the best performers from the 2014 run was the team from Columbia
University. Their solution used methods that was not used in 2013 and stand
out in comparison to the other participants.

Their solution is primarily based on affinity propagation and Gaussian pro-
cesses. Affinity propagation is a clustering technique based on message pass-
ing. Clusters are defined by exemplars that are actual data points, and data
points are assigned clusters based on. Affinity propagation is initialized with
a matrix of similarity between each data point and a preference vector where
each data point have a preference value that express an a priori interest in
using each point as an exemplar.

The similarity between the data points are a form of semantic similarity and
the preference values is a numeric representation of how likely this sentence
is to be selected as an update. This likelihood is estimated by training a
Gaussian process model to recognize the structure of a gold nugget update
from the 2013. The features used to model each nugget are non-semantic to
allow for recognition of good updates regardless of content and what event
it would be relevant to.

The team divide the corpus into hourly chunks and evaluates one hour at a
time, this means that each update will will have a delay of one hour which
will affect the score but this is also necessary with the methods chosen by
the team. Documents are filtered so that only documents containing at
least on query word is selected. Each hour worth of documents are divided
into sentences and each sentence gets a preference value and their similarity
computed. After the preferences and similarity matrix is computed, affinity
propagation is run to identify clusters. The exemplars of each cluster is
chosen as an update.

The team experienced some problems with their system selecting sentences
that contained category text such as a news site navigation bars as cluster
exemplars. The reason this happened was that navigation often use words
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that describe categories and that added together they would be similar to
many different topics. To compensate for this they trained their system
to detect such sentences and discard them. This problem seems to be a
consequence of their choice of clustering algorithm, other participants have
not reported similar problems.

The team submitted 3 different runs, where one of them received a noticeably
better score than the other two. The run with the best score was also the
one with the least amount of updates. This was also observed in last year’s
run, likely reasons for this are discussed in the previous section.

The team achieved a good score in this years run in comparison to many of
the other participants. Despite the good score it is not better than the top
performing teams from last years run. It seems that in general, the scores
were about the same as last year, however the top performers from last year
still performed better than the best performers this year. It is not clear
whether this has to do with the evaluation events or if the top performer
from last year was simply better.

5.7 Summary

Most submissions employ some form of query expansion or others means of
identifying terms that are important to an event. some use generic event
models generated based on a corpus, while others continually update several
models of an event. Either way, query expansion is an important part of iden-
tifying sentences that are suitable as updates. Some participants use query
expansion for identifying relevant documents, but this seems less necessary.
In some cases this leads to poor performance because too many documents
are selected.

The reason some form of query expansion is needed is that each event comes
with very little data. Selecting sentences based on the presence of query
terms alone can cause a system to miss many good updates. This can be
intuitively explained by the following example: Suppose you want to receive
updates about the 2008 olympic games, your query would probably look
something like “2008 olympic games” or “Beijing olympic games”. With a
functional information retrieval system we would find documents that are
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about the 2008 Beijing olympic games. The problem is that sentences that
would be considered good updates often are nothing like the original query.
An example of a good update could be “Shelly-Ann Fraser-Pryce takes gold
in 100m sprint” or “china finishes as the nation with the most gold medals
at 51 gold medals”, but none of these sentences contains any terms from
the original query. To produce updates like these, we have to use different
techniques than simple query similarity.

An approach used by HLTCOE in 2013 involved using many different fea-
tures that are not only based on the presence of trigger words generated by
query expansion or similar. This technique was not very common among the
submissions, but the performance of the HLTCOE submission make this an
interesting approach. Simply increasing the likelihood of selecting a sentence
that contains numbers will probably not increase the performance of a sys-
tem by a large margin, but if good features can be identified it might be a
supplement to the keyword approach. A potential difficulty with this is that
different features might not be well suited to all kinds of events.

All of the successful submissions also included some form of novelty or re-
dundancy detection when selecting sentences. Because the corpus contains
republications of many articles, having no form of redundancy or novelty
detection will severely hurt the performance of a system.



Chapter 6

Temporal Summarization Test
Framework

This chapter will discuss the overall design of the TREC temporal summa-
rization system and it’s general components.

6.1 System Overview

In it’s most simple form, the temporal summarization system reads from a
stream of documents and produces updates related to one or more event that
is has been set to monitor.

Below, each major part of the system is Described briefly to give an overview
of the design and responsibilities of each component. The different parts are
discussed in more detail in their own sections.

6.1.1 Preprocessor

The temporal summarization corpus supplied by the track organizers comes
serialized in the Apache Thrift format and is semantically tagged by the Serif
tagger. This makes the corpus very large and it contains a lot of data that
is not needed by a typical solution to the task. To reduce that size of the
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corpus and make the format easier to work with, the corpus will have to be
preprocessed in a way that is tailored to the implementation of the temporal
summarization system.

6.1.2 Generic Text Corpus and TF-IDF Index

The rules of the track states that a solution may not use data that became
available after a given document was published to produce updates from said
document. This means that any statistical data, TF-IDF scores or similar
must be compiled before the first document in the corpus or generated on
the fly by the system. Since the temporal summarization corpus comes pre-
filtered by the track organizers, it is not suitable as a generic corpus. Some
participants have used Wikipedia dumps for this purpose with good results.
A generic corpus can be used to calculate reliable TF-IDF values that can
be used for various purposes by a text index.

The index must be able to compare text vectors, discover related terms, or
identifying important terms in a document, depending on what is needed
by the different solutions. The index can be thought of as a semantic back-
bone that allows the solutions to make informed decisions when evaluating
text.

6.1.3 Corpus Reader

Since the corpus is too large to fit in main memory, it has to be read from
disk before it van be processed. The function of the corpus reader is to read
chunks of the corpus, parse it into individual documents and feed them to
the rest of the system in a format that is suitable for processing.

6.1.4 Document Processors

The document processors are the main parts of the system, they analyze doc-
uments to produce updates. The document processors should use a common
interface to ensure that they are interchangeable and easy to implement and
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test. They must also be allowed and able to store any information they need
to process future documents.

6.2 Preprocessing

The data set provided by the track organizers comes serialized in the Apache
Thrift format. Because this format require a specific tool set to work with
and because the format is a little cumbersome, most participant chose to
extract the desired data and store it in a more compact and easily manageable
format. Many participants simply extracted the raw content and stored the
documents as .txt files. The format also stores the content in multiple forms
such as raw HTML and cleaned versions, making the corpus many times
larger than it needs to be.

Only English news articles are considered when generating updates. The
main reason for this is that the nuggets and queries are all English, allowing
other languages is a potential source of noise, but is unlikely to contain any
interesting information. It is also likely that a user monitoring an update
stream would like the stream to be in his or her language, making it a rea-
sonable decision to only look at documents in a specific language. For the
sake of keeping the collection of documents small, non-English documents
are removed by the preprocessor.

The preprocessor reads the documents from the corpus and extracts the
desired data before it stores them as JSON-files. Only the Id, timestamp
and full text of the original documents are kept. Additionally, the title of
each document is extracted by scanning the HTML version of the document
for the title tag.

Each JSON file contains one hour worth of documents and is compressed
before written to disk. Each compressed chunk is about 3-10 MB in size.

The preprocessor(2) is written in python and is not part of the temporal
summarization system, it is run separately and produces files that are used
by the actual system.
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Algorithm 2 Preprocessor pseudo code

1: procedure Preprocess
2: Hours← ordered list of hours
3: for all hour h in Hours do
4: Chunks← list of chunks in hour
5: HourChunk ← output
6: for all chunk c in Chunks do
7: for all document d in chunk do
8: if d.language = english and d.source = news then
9: d′ ← empty document

10: d′.id← d.id
11: d′.timestamp← d.timestamp
12: d′.title← extractTitle(d)
13: d′.body ← d.cleanBody
14: HourChunk.append(d′)

15: wiriteToDisk(HourChunk)

6.3 System Structure

The general system structure is based on the temporal summarization gen-
eral procedure that is provided by the track organizers and reproduced in
chapter 4. The figure 3 below illustrate how the system operates and what
components are used throughout the process.

When the process is started, it starts by reading the events to be evaluated
as well as initializing the text index and indexing the text corpus. When this
is complete, summarizers are initialized based on the process parameters and
the events that will be summarized.

When the setup is done, the system starts reading from the stream corpus
with the document stream reader. Each document is processed by the active
summarizers until the entire corpus is processed. Because of the general
summarizer interface the method for generating updates can be changed
without changing other parts of the system. When this is done, the updates
from each summarizer are written to disk for evaluation.
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Algorithm 3 General Framework pseudo code

1: procedure Sumarize(sumarizerType, tuning)
2: Corpus← readCorpus()
3: Index← createIndex()
4: Events← readEvents()
5: DocumentStream← initializeDocumentStream()
6: Sumarizers← empty set
7: updates← empty list
8: for all document d in Corpus do
9: Index.index(d)

10: for all event e in Events do
11: Sumarizers.put(createSumarizer(e, summarizerType, tuning))

12: for all document d in DocumentStream do
13: for all sumarizer s in Sumarizers do
14: s.process(d)

15: for all summarizer s in Summarizers do
16: Updates.add(s.getUpdates())

17: writeUpdates(Updates)

6.4 Document Stream

The document stream is responsible for reading the stream corpus from disk
and parsing documents. The corpus is much larger than the main memory
of most machines and have to be read gradually. When the corpus has
been processed by the preprocessor, it is stored in hourly chunks. Most
chunks are between 8 and 30 MB and can be read fairly quickly. Each chunk
is a compressed JSON file, it is read using a stream reader that can read
compressed formats and parsed from JSON after it has finished reading. The
stream reader itself behaves as an iterator. When an element is assessed, the
reader reads a chunk from disk and fills a buffer with documents. When the
chunk has been exhausted, a new chunk from disk to refill the buffer.
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6.5 Text Index and News Corpus

The system contain a text index that is used for generating TF-IDF scores
and comparing text vectors. The text index is used by different solutions for
various purposes.

It would have been possible to use an open source search engine for this
purpose, but while many open source search engines such a Lucene are very
good and easy to use, they often hide the more primitive features of a search
engine such as the TF-IDF vectors. This is a problem because if I wish to do
more than just finding relevant documents, this may require modifications of
the framework which could be very difficult. Because of this it was decided
that a simple in-memory text index should be implemented for use by the
temporal summarization system.

To generate TF-IDF scores and compare vectors, a corpus for generating
term statistics are needed. Because the temporal summarization track focus
on news stories, the New York Times corpus was chosen for this purpose. The
corpus consists of over 1.8 million English news documents published between
1987 and 2007. A downside to this corpus is that all documents are written
in American English, while the documents in the temporal summarization
corpus consists of documents from all over the world. The stories are however
well covered by media all over the world and even if the system inherit a slight
bias for American English documents it should be OK. The corpus also have
the advantage of being readily available and comes with a set of tools to read
and extract the documents that is easy to use.

A very important use of the index is finding terms related to a query or
another document. This can be used as a form of query expansion and is
very useful. The algorithm(4) first searches the index to find the top N
most relevant documents for the query. These documents are assumed to be
relevant and contain terms that are related to the query. To find the terms
that are the most related to the query, each therm in each document is added
to a map where the value of a term is the sum of it’s TF-IDF value from
each document. Another way of doing this is to simply count how many
documents a term occurs in or count the number of occurrences throughout
the documents, but this could lead to frequent unimportant term such as
stop-words to be selected. By summing the TF-IDF values, we ensure that
both frequency and importance is considered when selecting top terms.
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Algorithm 4 Query Expansion pseudo code

1: procedure ExpandQuery(query, numTopDocuments, numTopTerms)
2: TopDocuments← empty sorted list
3: Terms← empty map
4: TopTerms← empty list
5: for all documentVector d in index do
6: score← similarity(query, d)
7: if TopDocuments.length < numTopDocuments then
8: TopDocuments.add({d, score})
9: else if score > TopDocuments.lowest().score then
10: TopDocuments.removeLowest()
11: TopDocuments.add({d, score})
12: for all documentVector d in TopDocuments do
13: for all (term, tfidfScore) p in d do
14: if Terms.containsKey(p.term) then
15: Terms.add(p.term, p.tfidfScore)
16: else
17: Terms.incrementKey(p.term, p.tfidfScore)

18: for all (term, tfidfSum) p in Terms do
19: TopTerms.add((p.term, p.tfidfSum))

20: sortReverse(TopTerms)
return TopTerms.subList(0, numTopTerms)

6.6 Summarizer Interface

The solution interface defines how a specific implementation of a solution to
the temporal summarization problem looks like to an external module. The
interface is simple and states that a solution implementation must be able to
process a document and generate results. The inner workings of a solution is
not defined and will look different based on what solution is being employed.
Solutions are also tunable with a set of parameters that are specific to each
solution.

The next chapter will discuss the implementation of each summarizer and
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evaluate the results achieved with different approaches.

6.7 Evaluation

Evaluation of the results are done by running a script provided by the track
organizers. The results are written to disk using a specific format and each
summarizer have a unique name that separates it’s updates from other sum-
marizers. The result format was discussed in chapter 4.

When the evaluation script is run it produces a list of results for all the
summarizers in the results file as well as detail statistics on individual events
and different versions of the measures used to evaluate a solution.



Chapter 7

TREC Temporal
Summarization Solutions

This chapter covers the design and implementation of the different solutions
that was implemented for the TREC temporal summarization track task.
The layout for these solution is outlined in the previous chapter. This chapter
deals with the inner workings of these solutions and how they perform their
task of generating updates.

7.1 Baseline Design

The first solution that was implemented is a simple solution based roughly
on the solution implemented by the ICTNET team for the 2013 track[13].
This was the best solution of the year, but it also relied on simple techniques
that can be modified in many ways.

The solution works by sending the data through multiple filters and returning
sentences that pass every stage of the filtering process. The first stage in
this process is to discard documents that are believed to be irrelevant. A
document is determined to be irrelevant if the title does not contain every
work of the query. When a document is determined to be relevant, sentences
are extracted based on the presence of trigger words. If a sentence contain
one or more trigger words, the sentence is considered a potential update.

47



48 CHAPTER 7. TREC TEMPORAL SUMMARIZATION SOLUTIONS

Sentences are added to the update stream if they are adequately different
from all earlier updates. A sentence is considered adequately different if
it is similar but contains new numbers or if it is sufficiently different. The
similarity between sentences is computed using the Jaccard coeficcient.

The collection of trigger words can be referred to as an event model, a collec-
tion of terms that are believed to be significant when identifying sentences
that are suited as updates. To have a basis for comparing future solutions
and to decide if the overall structure of the solution was suited to the prob-
lem, this first version was supplied with a manually created event model for
update identification. A manually generated event model so not very inter-
esting by itself, but can be used as a comparison for other event models and
Will still let other parts of the system be tested as normal.

Trigger words were chosen specific for each event type based on intuition and
expected subclasses of the event type. The trigger words were not tailored
to the test events but rather chosen to cover as many event sub types as
possible. The trigger words for the storm category were chosen to fit many
kinds of weather events, not just storms and cold waves, which was the types
of events included in the test events.

7.1.1 Parameters

Below is an overview of the parameters used by this solution.

• sl - maximum sentence length - Sentence length limit in number of
words. This is used to ensure that overly long sentences are not selected
as updates.

• tt - trigger word threshold - How many words from the event model a
sentence must contain to be considered a potential update.

• rt - sentence redundancy threshold - The threshold score for a sentence
to be considered redundant with another sentence. Used to eliminate
redundant updates.
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7.1.2 Pseudocode

Algorithm 5 Evolving Individual Event Model pseudo code

1: procedure Process(DocumentStream, Event, Parameters)
2: Results← empty list
3: SystemTime← timestamp
4: EventModel← manually grenerated event model
5: for all document d in DocumentStream do
6: candidateSentences← empty list
7: if Document.titleContainsAll(Event.query) then
8: SystemTime← d.timestamp
9: for all sentence s in d do
10: if sentence.numWords() < sl and

sentence.numberOfWordsContained(EventModel) >= tt then
11: candidateSentences.add(s)

12: updates← empty list
13: for all sentence s in candidateSentences do
14: duplicate← false
15: for all sentence r in Results do
16: similarity ← jaccardCoefficient(r, s)
17: if similarity > rt then
18: duplicate← true

19: if duplicate = false then
20: updates.add(s, SystemTime)

21: Results.add(updates)

return Updates

This solution was implemented in multiple steps, the first version featured
a generic event model that attempted to model sentences that contained
new information about an event. The terms used for constructing this event
model is generic terms that can be expected to show up in the coverage of a
large variety of catastrophic events. Examples of such terms include “killed”,
“confirmed”, “casualties”, “damage” and so on. This attempted to capture
sentences that contains some information about what has happened during
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an event. The backside of this solution is that these generic terms might not
be able to capture more specific sentences that use vocabulary related to the
event class or information about this particular event such as location. Such
sentences are often very interesting.

The second version of the solution replaced the generic event model with
event models custom made for each event type. This allowed the solution
to identify more interesting updates and less updates that were unrelated to
the event.

The results below show the difference between the generic and the type spe-
cific event models.

7.1.3 Results

Parameters Updates Gain Comp. F-Measure
generic sl75 rt0.75 tt2 ms 10 100.3077 0.0601 0.0774 0.0629
generic sl75 rt0.75 tt2 ms 20 1067.3333 0.0371 0.2406 0.0613
generic sl75 rt0.75 tt2 ms 30 1389.3333 0.0372 0.2684 0.0604
generic sl75 rt0.75 tt2 ms 50 2565.0667 0.0283 0.2897 0.0481

Figure 7.1: Average values of performance measures for the manual generic
event model

Parameters Updates Gain Comp. F-Measure
type sl100 tt1 rt0.75 1434.8667 0.0375 0.2024 0.0559
type sl50 tt2 rt0.75 207.6000 0.1421 0.0733 0.0701
type sl75 tt2 rt0.75 232.8000 0.1516 0.0949 0.0837
type sl100 tt2 rt0.75 243.1333 0.1475 0.0956 0.0808
type sl75 tt3 rt0.75 47.8000 0.1004 0.0352 0.0446

Figure 7.2: Average values of performance measures for the manual event
spesific model

As the results show, the version with event models tailored to each event
type performed much better than the generic version. One of the problems
with the generic event model is the selection of sentences that are not related
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to the event. This often occurred when documents contained sentences that
were not related to the main article. This is not uncommon because the
documents of the stream corpus often contain navigational elements and
similar unrelated text from websites. This problem often occurred when
documents containing unrelated headlines relating to crime or similar. The
vocabulary of crime is overlapping with the vocabulary of disasters to some
degree, and were some times selected because they contained terms from
the event model. They also often contain words that are different from the
words used in documents describing disasters, and are therefore likely to be
considers novel as well as relevant. Some events would only produce updates
that had nothing to do with the event in question, causing the solution to
receive a very low score for these events. This severely reduced the overall
performance of the system.

This problem is present in every solution that is based on event models, but
is especially pronounced when the event model is generic or imprecise. If a
document contains sentences that are unrelated to to the main document,
and the terms used for identifying potential updates are of a generic nature,
they have a much greater chance of being selected than if the terms are more
specific to the event in question.

Adjusting the tt (trigger word threshold) parameter also contributes to re-
ducing this problem when using a non-generic event model because the more
terms are required to match, the less likely it is that an unrelated sentence
will contain multiple terms from the event model.

Generic event model also have a problem with scaling, the more event type a
model is designed to cover, the more generic it has to be and it will perform
worse.

When testing the event type model, increasing the trigger word threshold to 2
instead of 1 improved the solution, this also eliminated some of the problems
where updates were selected from irrelevant documents, as sentences from
unrelated stories are much less likely to contain two trigger words as opposed
to one.

Adjusting the tt greatly affected the score of the system. Because of the
size of a normal sentence, the usable range for this parameter is not very
big unless the event model contains a large amount of terms. A value of 1
caused the solution to select over 1000 updates per event on average which
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is a vary large amount of updates. A value of 3 dropped the number of
updates very low and the comprehensiveness score of the system dropped by a
considerable amount. Because of the verbosity normalization of scores, short
relevant sentences are very attractive, and a too high tt value makes it very
unlikely that such updates are selected. A value of 2 significantly reduces the
amount of irrelevant sentences because the likelihood of an unrelated sentence
containing two event related terms is much less than one. Increasing this
value from 1 to 2 increased the score of the system with a large amount.

7.2 Event Model Design

This solution is based on event type models and follows the same structure as
the manual solution. This solution is however completely automatic. Instead
of using an manually created event model, an event model is generated by
finding terms that are related to the terms in the event query and using
these terms as an event model. The process of finding terms related to a
given vector is described in chapter 6.

There are many ways to automatically generate an event model, but the
rules of the task puts some restrictions on how we can approach this prob-
lem. A good way of doing this would be to use a classifier that learned the
rules of sets of terms that can discover good updates. Because of the real
time requirement for this application and lack of training data this is not
applicable in this case. Another way of generating an event model is using
query expansion. Query expansion is used for finding terms that are related
to a query in the hope that adding these terms to the original query will give
more or better results. Query expansion requires an initial query for finding
related terms. There are two available pieces of data for each event that can
be used for this purpose. The first is using the event query, the other is using
the event type.

Generating the event model using the event type will essentially attempt
to automatically generate the event models used by the manual solution.
A potential advantage of using the event type for generating a model is
that if the type of event is precisely defined, information from similar events
could be used to generate a model with strong event type specific vocabulary.
Unfortunately, many of the event types for the track are very generic. The
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event type “storm” for instance covers both hurricanes and cold waves. The
vocabulary for a storm type event might be terms such as “wind” and “rain”,
while cold waves would most likely not contain these terms. This negates any
advantage that could be gained from a specific event type. Another downside
compared to using the query is that it might not capture information that is
specific to the location or time of the particular event in question.

Using the query for the event can make the vocabulary more specific because
the queries used are often more specific. The argument for using the query
is that every event is different in some way and is not necessarily best mod-
elled by a model made to fit all events of the same type. Queries often also
include some form of location for the event, which is very useful. The theo-
retical downside to using the event query is that the combinations of terms
in the query might not be related to any similar events. This could occur if
we try to expand the query “Oslo tornado” but there is no record of a tor-
nado happening in Oslo before in the corpus used for expansion. Documents
about Oslo or tornadoes might still be selected and provide terms related
to these separate topics, but the results might have been better by simply
expanding the event type “tornado” and avoiding potential noisy expansion
terms related to “Oslo”.

Below are examples of event models generated for the event “2011-13 Russian
protests” using the query and event type respectively. The parameters used
to generate this event model is nd 40 and ms 8.

eventModel(russian protests, 40, 8) =
{russian, protests, nyt, moscow, russia, russias, vladimir, government}

Figure 7.3: Event model generated for the query “russian protests”

eventModel(protest, 40, 8) =
{protest, protesters, antiwar, opposition, president, party, said, rally}

Figure 7.4: Event model generated for the event type “protest”
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7.2.1 Parameters

• sl - maximum sentence length - Sentence length limit in number of
words. This is used to esure that overly long sentences are not selected
as updates.

• tt - trigger word threshold - How many words from the event model a
sentence must contain to be considered a potential update.

• rt - sentence redundancy threshold - The threshold score for a sentence
to be considered redundant with another sentence. Used to eliminate
redundant updates.

• ms - event model size - Number of terms used in event model.

• nd - top terms document pool - The number of documents to consider
when generating event model.

7.2.2 Pseudocode

Since this solution is the same except for the generation of the event model,
the pseudo code below 7 only includes a demonstration of how this event
model is generated using the methods discussed. The implementation of the
expandQuery method is listed in chapter 6. In this example, the event query
is used for generating the event model.

Algorithm 6 Event model generation

1: procedure Process(DocumentStream, Index, Event, Parameters)
2: EventModel← Index.expandQuery(Event.query, nd, ms)

7.2.3 Results

To see if it was possible to increase the performance of the system by us-
ing another form of redundancy detection, a solution based on TF-IDF and
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Parameters Updates Gain Comp. F-Measure
sl75 tt2 rt0.75 ms30 nd6 808.7692 0.0608 0.1630 0.0771
sl75 tt2 rt0.75 ms40 nd8 825.0000 0.0667 0.1926 0.0861
sl75 tt2 rt0.75 ms50 nd8 728.4615 0.0670 0.1677 0.0858
sl75 tt2 rt0.75 ms60 nd8 673.0000 0.0665 0.1681 0.0847
sl75 tt2 rt0.75 ms70 nd10 685.5000 0.0603 0.1438 0.0758
sl75 tt2 rt0.75 ms80 nd10 731.0714 0.0564 0.1571 0.0731
sl75 tt2 rt0.75 ms100 nd50 895.3571 0.0537 0.1829 0.0765

Figure 7.5: Average values of performance measures of event model

cosine similarity for comparison of sentences was tested. This way of com-
paring sentences to detect duplicates severely reduced the performance of
the system. A likely explanation for this is that TF-IDF scoring puts more
weight on the more important terms. This can cause sentences that are dif-
ferent but share trigger words to be discarded because they are believed to
be redundant. Because sentences are selected based on the presence of trig-
ger words, they are more likely than other terms to be present in multiple
selected sentences. Even with a similar number of updates per event, the
performance drop was considerable. Because of this, it was decided that the
use of the Jaccard coeficcint is reasonable and that effort should be put into
making better event models.

The event model based on the event query consistently outperformed the
event model based on the event. This was the expected behavior. Even if
the query for an ongoing event is not very precise, the queries for the test
events are still more specific that the event types. The query “european
cold wave” is s clearly about a cold wave, even if “european” is a very broad
term. The event type “storm” on the other hand could be any type of weather
related event.

7.3 Evolving Event Model Design

The evolving individual event model is based on the same fundamental tech-
niques as the event type model. It functions in the same way except the
event model is expanded and adapted as the event in question unfolds.
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The argument for this type of solution is that every event is different in
some way and even if earlier events are very similar, creating an accurate
event model from past events is not perfect. The ideal solution would be to
tailor the event model specifically to every event as we start to summarize
it. Because we do not want to manually create this event model we need
some automatic way to fit the models individually without having tom know
how the event will unfold before it does. Another reason to implement an
evolving solution is that only a few participants have used this approach in
the past.

To ensure that event models are well suited to a particular event and remains
this way for the lifespan of the event, an initial event model is generated and
is evolved as the event is summarized. This will make the event model more
specialized over time and could also follow the development of an event if the
event changes over time.

The way this is implemented is that each summarizer starts out with an event
model generated in the same way as in the event model solution. Selecting
documents are still done by matching the title of each document. When a
relevant document is identified and one or more sentence is determined to be
a good update according to the event model, the model is modified based on
the important terms from these sentences.

When the summarizer is initialized, the terms in the event model is given an
initial score. This score is a measure of the importance of each term, and the
terms most related to the event type are given a higher score.

The summarizer keeps a map of every related term and as more terms are
selected from chosen sentences, we increment the score of these terms by
the TF-IDF value of the term in each sentence. This way, terms that occur
in many updates will gradually receive a higher score. The event model is
defined as the N terms with the highest score from this set of terms. The
initial terms start out with a score that is higher than the TF-IDF score of an
important term in a sentence, but if they are not found in any updates they
will soon be replaced with frequent and important terms from the selected
updates.

In theory, if unrelated documents or updates are chosen early in the summa-
rization, it could make the model drift but this is offset by the score of the
initial terms in the event model and the fact that the selection of documents
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are not based on the event model. This makes it unlikely that any large drift
could occur, as it would require multiple irrelevant documents and updates
to be selected in succession.

7.3.1 Parameters

Below is an overview of the parameters used by this solution.

• sl - maximum sentence length - Sentence length limit in number of
words. This is used to esure that overly long sentences are not selected
as updates.

• tt - trigger word threshold - How many words from the event model a
sentence must contain to be considered a potential update.

• rt - sentence redundancy threshold - The threshold score for a sentence
to be considered redundant with another sentence. Used to eliminate
redundant updates.

• ms - event model size - Number of terms used in event model.

• nd - top terms document pool - The number of documents to consider
when generating event model.

• nt - number of expansion terms - The number of terms to extract from
a selected sentence for evolving event model.

• it - initial event model term score - The initial score of the term in the
event model most closely related to the event type.
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7.3.2 Pseudocode

Algorithm 7 Evolving Individual Event Model pseudo code

1: procedure Process(DocumentStream, Index, Event, Parameters)
2: Results← empty list
3: SystemTime← timestamp
4: ImportantTerms← Index.expandQuery(Event.query, nd, ms)
5: EventModel← selectTopTerms(ImportantTerms, ms)
6: for all document d in DocumentStream do
7: candidateSentences← empty list
8: if Document.titleContainsAll(Event.query) then
9: SystemTime← d.timestamp

10: for all sentence s in d do
11: if sentence.numWords() < sl and

sentence.numberOfWordsContained(EventModel) >= tt then
12: candidateSentences.add(s)

13: updates← empty list
14: for all sentence s in candidateSentences do
15: duplicate← false
16: for all sentence r in Results do
17: simmilarity ← jaccardCoefficient(r, s)
18: if simmilarity > rt then
19: duplicate← true

20: if duplicate = false then
21: updates.add(s, SystemTime)

22: for all sentence u in updates do
23: for all (term, score) p in In-

dex.topTermsInDocument(sentence, nt) do
24: if ImportantTerms.containsKey(p.term) = false then
25: ImportantTerms.incrementKey(p.term, p.score)
26: else
27: ImportantTerms.add(p.term, p.score)

28: EventModel← selectTopTerms(ImportantTerms, ms)

29: Results.add(updates)

return Updates
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7.3.3 Results

Parameters Updates Gain Comp. F-Measure
v1 sl75 tt2 rt0.75 ms8 nd40 nt1 it10 69.6923 0.0729 0.0913 0.0768
v1 sl75 tt2 rt0.75 ms8 nd40 nt1 it15 79.0000 0.0782 0.1115 0.0880
v1 sl75 tt2 rt0.75 ms8 nd40 nt1 it20 77.3077 0.0718 0.1262 0.0851
v2 sl75 tt2 rt0.75 ms8 nd40 nt1 it10 112.1538 0.0897 0.1261 0.1025
v2 sl75 tt2 rt0.75 ms8 nd40 nt1 it15 137.8462 0.0825 0.1261 0.0955
v2 sl75 tt2 rt0.75 ms8 nd40 nt1 it20 135.9231 0.0771 0.1191 0.0904
v3 sl75 tt2 rt0.75 ms8 nd40 nt1 it10 217.3077 0.0891 0.1601 0.1090

Figure 7.6: Average values of performance measures of Evolving event model

The results from this solution was a very noticeable improvement from the
static event model. The evolution of each individual model helps the sum-
marizer better catch the nuances of each event and ensure that

The first version of this solution expanded the event model by selecting a
number of top terms from the document sentences were selected from. This
was later changed so that the summarizer instead extracts a fewer number
of terms from the individual chosen sentences.

This improved the results, as can be seen in the results table below, the
first and second version is labeled v1 and v2 respectively. This increase in
performance can be explained by the reduced risk of selecting noisy expan-
sion terms. If the selected terms are all from sentences with good match
with the trigger words, these sentence are more likely to be on subject than
other sentences from the same document, making it less likely that we select
terms that are very specific to the document but maybe not to the event at
hand.

The third version was a late fix where some text filters were removed from
the query expansion module. The text filter was meant to cover an error that
turned out was not relevant and could be safely removed. This improved the
performance across the board by a small margin, as the filtered terms were
terms that was likely to be selected by the query expansion module.

The it (initial score of expansion terms) parameter turned out to be im-
portant for how the summarizer performed. The tuning of this parameter
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is somewhat determined by the normal TF-IDF score of the top terms in a
given selected sentence. This is because value dictates how quickly the initial
score is overtaken by fresh terms. The average TF-IDF score of the top term
in a sentence seems to be around 4-6 depending on the sentence. To make
sure that the least important terms are replaced first, the it parameter only
dictates the score of the best term, the others are decremented by the rank
of the term. With an initial term score of 10, the best terms are overtaken
after about 3-4 hits in selected sentences, while the lower ranked terms are
replaced are overtaken after 1-2. It is important to remember that these
terms are not removed and if they occur in later sentences their score will
increase again and they may be used in the event model. A low it value
makes the event model more responsive to changes in the coverage of the
event, while a high it value makes for a more rigid model. The results seems
to indicate that a responsive model performs better.



Chapter 8

Evaluation of Results

In general the results achieved with the evolving event model based solution
performed close to the best participants of 2014. There is a clear progression
from the initial baseline, to the query expansion based event model to the
evolving event model. Showing that the solution is at least competitive. A
strength of the solution not shown by this score is that it is easy to combine
with other solutions, an that there are potential to make this approach work
event better by refining one or more of the stages in the process.

Below is a table with the results from the 2014 run and the results from the
different solutions from the previous chapter.
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Run Id Gain Comp. F-Measure
CUNLP-2APSal 0.0631 0.322 0.1162
BJUT-Q1 0.0657 0.4088 0.1110
BJUT-Q0 0.0632 0.3979 0.1091
BJUT-Q2 0.0632 0.3979 0.1091
evolving sl75rt0.75tt2nd40ms8nt1it10 0.0891 0.1601 0.1090
uogTr-uogTr2A 0.0467 0.4453 0.0986
event sl75rt0.75tt2nd8ms40 0.0697 0.1876 0.0859
uogTr-uogTr4AC 0.0347 0.4539 0.0793
uogTr-uogTr4ARas 0.0387 0.3691 0.0772
IRIT-KW30H5NW3600 0.0383 0.3521 0.0723
IRIT-KW30H5NW300 0.0378 0.3538 0.0714
uogTr-uogTr4A 0.0281 0.4733 0.0677
average 0.0327 0.3615 0.0620
IRIT-KW80H5NW3600 0.0289 0.3764 0.0604
CUNLP-1APSalRed 0.0325 0.3058 0.0602
IRIT-KW30H10NW300 0.0298 0.378 0.0602
IRIT-KW80H5NW300 0.0285 0.3806 0.0596
ICTNET-run3 0.0531 0.1081 0.0530
BUPT-PRIS-Cluster4 0.0155 0.2692 0.0508
IRIT-KW80H10NW300 0.0225 0.4012 0.0503
BUPT-PRIS-Cluster3 0.0115 0.338 0.0407
CUNLP-3AP 0.0174 0.4265 0.0403
ICTNET-run2 0.0418 0.0934 0.0311
BUPT-PRIS-Cluster2 0.0059 0.3728 0.0222
ICTNET-run4 0.0079 0.407 0.0178
ICTNET-run1 0.007 0.409 0.0160
BUPT-PRIS-Cluster1 0.0033 0.4369 0.0127

Figure 8.1: The results from the 2014 track, runs from this thesis are in bold

Below is the results for each individual event for the evolving event model
based solution created for this thesis.
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Event Id Updates Gain Comp. F-Measure
11 487.0000 0.0104 0.0256 0.0148
12 8.0000 0.1168 0.0405 0.0602
13 78.0000 0.0613 0.0972 0.0752
14 255.0000 0.0000 0.0000 0.0000
15 17.0000 0.0076 0.0057 0.0065
16 56.0000 0.2312 0.4325 0.3014
17 7.0000 0.0123 0.0076 0.0094
18 147.0000 0.0952 0.2069 0.1304
19 13.0000 0.1158 0.0826 0.0964
20 20.0000 0.0879 0.0567 0.0689
21 42.0000 0.0400 0.0276 0.0327
22 40.0000 0.0095 0.0084 0.0089
25 3.0000 0.0000 0.0000 0.0000

Figure 8.2: Results of the best run for every event

The scores achieved by the participants of the 2014 track were lower across
the board than the scores achieved by the teams in 2013. One possible reason
for this could be that some of the events of the 2014 track was harder than
the ones in the 2013 runs. The results from the evolving event model shows
that some events had a very low score compared to the rest, but this could
be a coincidence. Because the results published does not include results for
every event, it is unknown if the other participants had similar results or
not.

The event model solutions achieved a very high score in the gain metric,
but a low score in the comprehensiveness metric. A likely explanation for
this result is that the strict selection of documents prevents the system from
selecting unrelated documents, but also leaves out documents that could be
relevant.

8.1 Future Work

An advantage to the evolving event model solution is that each step in the
process is independent. This means that each step can be modified without
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having to modify the other stages in the solution.

Because the systems did not score very well in the comprehensiveness metric,
it could be a good idea to improve the way documents are selected so that
it is not as restrictive. One approach to this is to use the evolving event
model for selecting documents as well as sentences. This would have to be
tuned to avoid selecting too many documents but would also likely improve
comprehensiveness by selecting more diverse documents.

Another possible improvement is to use more sentence features than term
presence when selecting sentences. Sentence extraction often use features
such as sentence position and some teams from the 2013 track used pres-
ence of named entities or numbers to better differentiate between good and
bad updates. This can relatively easily be combined with an evolving event
model, the challenge is to identify features that provide meaningful informa-
tion and does not reduce comprehensiveness.



Chapter 9

Conclusion

This thesis had three main goals.

1. Create a real time temporal summarization system based on research
of other system and related technologies.

2. To test different approaches to the problem and evaluate and evaluate
how the different approaches perform.

3. To compare the results of the system with the results of comparable
systems to evaluate the methods used.

The main goal of this thesis was to implement a real time temporal summa-
rization system and to compare the results with similar systems to evaluate
the techniques used.

A temporal summarization system was created based on the requirements
of the 2014 TREC Temporal Summarization track. Based on the experience
gained with each cycle of implementation, better solutions were created. The
final product is a solution that use an evolving event model to follow the
development of events as they are summarized.

The results of the different versions were tested according to standard eval-
uation criteria and compared with each other as well as the results of the
participants of the 2014 Temporal Summarization track. The results show
that the solutions got better each iteration and that the results of the final
version was comparable to the top teams of 2014.
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Appendix A

System Guide

This short manual is a short guide to how the various parts of the temporal
summarization system can be started.

The corpus data is not included in the source delivery for size reasons. Every
part of the system is located in the temporal-summarizer folder. Contact
Kjetil Nørv̊ag gain access to this folder.

A.1 Preprocessing

WARNING! Do not perform preprocessing unless absolutely necessary. The
procedure takes a couple of days and it is much faster to simply copy the
clean version.

The KBA stream corpus is very large and contains a lot of data that is not
of any use for the temporal summarization task.

To use the preprocessor navigate to the temporal-summarizer/preprocessor
folder and run the command below. The preprocessor.py file is also the
source code of the preprocessor.

python preprocessor.py ../corpus ../clean-corpus

This will process the stream corpus located in temporal-summarizer/corpus

and write a cleaned version to the temporal-summarizer/clean-corpus

1
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folder.

To be able to run the preprocessor the system, must install the streamcorpus
tools1 and the system must have a key for the KBA stream corpus 2. The
key is located at temporal-summarizer/trec-kba.rsa and must be added
to the host machines gpg keychain for the preprocessor to be able to decrypt
the corpus.

A.2 Temporal Summarization System

To start the temporal summarization system navigate to the temporal-summarizer
folder and run the following command.

sh launch.sh

This file contains the following script to start the system.

java -jar -Xmx12000M -Xms4000M temporal-summarizer.jar parameters.txt

The parameters.txt file contains the launch parameters for the system and
can be modified to run different solutions with different parameters.

Below is a list of what parameters are used for the different solutions. The ex-
planation of these parameters can be found in chapter 7. The first parameter
dictates what solution are initiated.

1. Event Model(event) - sl, rt, tt, nd, ms

2. Evolving Event Model(evolving) - sl, rt, tt, nd, ms, nt, it

Processing the corpus and generating updates for all example events will take
around 3 hours depending on how fast the host computer can read the corpus
and how many solutions are tested in a single run.

The system will generate results for each solution/event combination and
write the results to the temporal-summarizer/result-processing/ts-results.tsv
file.

1http://streamcorpus.org/
2http://trec-kba.org/kba-stream-corpus-2014.shtml
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Because of a late change to the system, the results generated by the current
version of the system might be slightly better compared to some of the results
presented in chapter 7. The results in chapter 8 are all final and should be
identical to the results generated.

A.3 Evaluation Script

The evaluation script is provided by TREC and can be run by navigating
to the temporal-summarizer/result-processing folder and running the
following command.

sh evaluate.sh

This will initiate the command below to read file with updates from the tem-
poral summarization system and evaluate them according to the evaluation
criteria of the track.

python tseval.py ts-results.tsv > results.txt

The results can be observed by reading the results.txt file. The format of
this file is explained in [4]. The values used when evaluating the systems in
chapter 7 and 8 is nE[Latency Gain], Latency Comp. and HM(nE[LG],Lat.
Comp.).


