
TransitVision: Approximating Vehicle
Locations Using SIRI-SM Real-Time Data

Sofia Nascimento Bakke
Ole Kristian Nakken

Master of Science in Computer Science

Supervisor: Rune Sætre, IDI

Department of Computer and Information Science

Submission date: June 2015

Norwegian University of Science and Technology

Abstract

Many public transportation agencies around the world track their vehicles using
GPS. However, the GPS data is usually not directly accessible by passengers, but
is used to provide real-time arrival estimates. This thesis attempts to approximate
the locations of vehicles using the available real-time arrival estimates, through
a smartphone application named TransitVision. By utilizing the SIRI standard1,
TransitVision is interoperable with other public transportation agencies.

A preliminary study on travelers’ habits and perceived waiting time, created a
solid foundation for TransitVision. This thesis also includes a study into the state-
of-the-art, to examine other applications, technologies and discover limitations.
The study included a thorough examination of several SIRI implementations, to
consider how to incorporate them in TransitVision. Finally, 15 testers evaluated
the application’s usability through the System Usability Scale2.

The preliminary study indicated that mobile transit application users believed
they waited on average five minutes, which was about the same as those using
non-digital retrieval methods. TransitVision was initially developed for Oslo, but
was also tested on transit data from Tampere. It worked well in both cities,
confirming TransitVision’s interoperability. However, other cities require major
modifications to TransitVision. TransitVision achieved a System Usability Scale
score of 86, which is close to a superior score.

1
Service Interface for Real Time Information, more at www.siri.org.uk

2
More information on SUS at http://www.measuringu.com/sus.php

i

www.siri.org.uk
http://www.measuringu.com/sus.php

ii

Sammendrag

Flere kollektivtransportselskaper verden over har systemer for å spore kjøretøyene
sine med GPS. GPS-dataen er som oftest ikke direkte tilgjengelig for passasjerer,
men blir brukt til å oppgi sanntidsestimater for ankomst. Denne masteroppgaven
prøver å tilnærme en plassering av kjøretøy ved å bruke tilgjengelig sanntidsesti-
mater. Dette blir gjort med en smarttelefonapplikasjon som heter TransitVision.
Ved å utnytte SIRI-standarden3 kan TransitVision modifiseres til å fungere med
andre kollektivtransportselskaper.

En forstudie om reisevaner og oppfattet ventetid dannet et solid grunnlag
for TransitVision. Denne masteroppgaven inkluderer også en “state-of-the-art”
studie for å undersøke andre applikasjoner, teknologier og oppdage begrensninger.
Studien inkluderte en grundig undersøkelse av flere SIRI-implementasjoner for å
se hva som kreves for å innarbeide de i TransitVision. Til slutt evaluerte 15
testere applikasjonens brukbarhet ved hjelp av System Usability Scale4.

Forstudiet indikerte at reisende som brukte mobilapplikasjoner for å hente
sanntidsinformasjon om kollektivtransporten tror de venter 5 minutter i gjen-
nomsnitt, som var omtrent det samme som de som brukte ikke-digitale metoder.
TransitVision var i utgangspunktet utviklet for Oslo, men ble også testet på
transportdata fra Tampere. Det fungerte bra i begge byene, noe som bekrefter
TransitVision sin interoperabilitet. Allikevel kan noen andre byer kreve større
modifikasjoner av TransitVision. TransitVision oppnådde en System Usability
Scale score på 86, noe som er nære en overlegen poengsum.

3
Service Interface for Real Time Information, mer på www.siri.org.uk

4
Mer informasjon om SUS på http://www.measuringu.com/sus.php

iii

www.siri.org.uk
http://www.measuringu.com/sus.php

iv

Preface

This report presents the master project conducted by Sofia Nascimento Bakke
and Ole Kristian Nakken. The work is a fulfillment of a Master of Science in
Computer Science at the Department of Computer and Information Science at
the Norwegian University of Science and Technology. The project was supervised
by Associate Professor Rune Sætre.

The thesis is a contribution to the FUIROS project. While earlier FUIROS
projects have primarily focused on the use of natural language for route querying
in Trondheim, this thesis focuses on displaying real-time public transit data in
Oslo on a smartphone map application.

v

vi

Acknowledgements

We would like to thank our supervisor Rune Sætre, for his guidance throughout
the development of this master thesis. We would also like to thank Carl-Fredrik
Sørensen, for helping with proofreading and structuring the report. Thank you
to all the people participating in both the preliminary study and the usability
test of TransitVision. Finally, we would like to thank our friends and family for
their moral support throughout this project.

vii

viii

Problem Description

An increasing number of public transportation companies around the world now
provide real-time estimates of bus arrival times. Most of them also give de-
velopers open access to these estimates via web APIs. However, the majority
of these companies restrict access to the actual GPS coordinates. A few cities
like Tampere, Finland, and New York, USA have successfully given GPS access
to software developers. These cities now experience a great influx of real-time
applications, for both smartphone and web, created by third parties.

Because GPS coordinates are still not available in Norway, this project aims
to use the estimated arrival times to approximate the locations of vehicles in
transit. To ensure portability, the SIRI standard should be used.

The application will be tested on at least 12 real users to measure its usability
and whether the implementation is a satisfactory representation of real-time data.
The test will include a scenario test where the application’s features are tested,
followed by a System Usability Scale questionnaire.

ix

x

Contents

Abstract i

Sammendrag iii

Preface v

Acknowledgements vii

Problem Description ix

List of Tables xv

List of Figures xvii

List of Listings xix

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 2
1.3 Research Method . 2
1.4 Thesis Structure . 4

2 Theory and Background 5
2.1 BusTUC and FUIROS . 5
2.2 Digital Schedule Formats . 6

2.2.1 The Norwegian REGTOPP Standard 6
2.2.2 The GTFS Standard . 6
2.2.3 NeTEx . 7

2.3 Real-time Vehicle Tracking Formats 7
2.3.1 SIRI . 8
2.3.2 NextBus . 11

xi

2.3.3 GTFS-Realtime . 11
2.4 Google Maps . 12

2.4.1 The Google Maps API . 13
2.4.2 The Google Directions API 13

2.5 Server Technologies . 14
2.5.1 Node.js . 14
2.5.2 MongoDB . 15

2.6 A Brief Look at Similar Applications 15
2.6.1 Google Maps . 16
2.6.2 RuterReise . 16
2.6.3 Bartebuss . 16
2.6.4 Nettbuss . 16
2.6.5 Busskartet.no . 17
2.6.6 Tampere Bus Map . 17

2.7 The System Usability Scale . 18
2.7.1 Calculating the SUS Score 18

3 Research and Development Method 21
3.1 Preliminary Survey . 21
3.2 Finding and Prioritizing Requirements 22
3.3 Designing TransitVision . 23
3.4 Testing Server Compatibility . 23
3.5 User Test . 24

4 Results 27
4.1 Results from the Preliminary Survey 27

4.1.1 Waiting Time . 27
4.1.2 Application Usage Feedback 29

4.2 TransitVision Requirements . 31
4.2.1 Quality Attributes . 31

4.3 The Technologies Behind TransitVision 33
4.3.1 Targeting a Platform . 33
4.3.2 Selecting a Server Framework 34
4.3.3 Selection of Database Technology 34
4.3.4 Map APIs . 35

4.4 System Architecture . 35
4.4.1 Architectural Pattern . 36
4.4.2 Class Structure of Mobile Application 36

4.5 Design . 38
4.5.1 Estimating Positions . 39
4.5.2 Mock-Ups . 39

xii

4.5.3 Line Search Tools . 41
4.5.4 Marker Icons . 42
4.5.5 Flow Chart . 43

4.6 Implementation of TransitVision 44
4.6.1 Mobile Application . 44
4.6.2 Providing Vehicle Positions 46

4.7 SIRI Interoperability . 50
4.7.1 Server Limitations . 50
4.7.2 Prerequisites for the SIRI-SM Implementations 52
4.7.3 Prerequisites for the SIRI-VM Implementations 52
4.7.4 Compatibility of Di�erent SIRI Implementations 53
4.7.5 Expanding to Tampere . 54
4.7.6 Prospect of including Kolumbus’ API 54

4.8 User Testing . 55
4.8.1 Feedback Received from User Testing 55
4.8.2 The SUS Score . 56

5 Discussion 59
5.1 Preliminary Study . 60
5.2 Fulfillment of Requirements . 60
5.3 Obstacles Found During Development 61

5.3.1 Vehicle Animations . 61
5.3.2 Irregularities in Ruter’s Data 61
5.3.3 Google Directions API . 62

5.4 User Test . 63
5.5 Research Questions and Goal Achievements 63

5.5.1 The Goal . 64
5.5.2 Research Question 1 . 64
5.5.3 Research Question 2 . 64
5.5.4 Research Question 3 . 64

6 Conclusions 65
6.1 Future Work . 66

6.1.1 Connecting the Oracle with the Map 66
6.1.2 Expand to Other Cities . 66

Acronyms 69

Bibliography 71

xiii

A SUS 75
A.1 The Questionnaire . 75
A.2 Error Bar Diagram . 76

B SIRI-VM Example 77

C Digital Attachements 79
C.1 Github Repositories . 79
C.2 TransitVision Google Play Link . 80
C.3 Video of TransitVision in Action 81

D Setting Up the Project 83

E Preliminary Study 85
E.1 Preliminary Study Questionnaire 85
E.2 Waiting Time Survey Answers . 86

xiv

List of Tables

1.1 Project Milestones . 3

4.1 Reasons for Being Too Late for the Bus 28
4.2 Average Percieved Waiting Time by Route Retrieval Method . . . 29
4.3 Average Frustration by Route Retrieval Method 29
4.4 TransitVision Requirements . 32
4.6 Stop Visit Requests from Multiple Machines to Ruter’s API 51
4.7 Network Tra�c Limitations for Kolumbus’ API 51
4.8 Comparison of SIRI Implementations 53
4.10 SUS Results . 56
4.11 Statement Statistics . 57

5.1 Status of Requirements . 60

E.1 Introductory and Bus Usage Questions 86
E.2 Waiting on the Bus . 90
E.3 App Questions . 95

xv

xvi

List of Figures

2.1 Google Transit in Oslo . 6
2.2 Results of APTA Survey: Arrival Time Formats (Grisby, 2013) . . 7
2.3 Google Maps Real-Time Arrivals in Boston 12
2.4 Public Transit Applications . 15
2.5 Busskartet Displaying Buses around Campus Gløshaugen 17
2.6 Tampere Public Transport’s Tra�c Monitor 18

4.1 Perceived Waiting Time . 28
4.2 Frustration Level for Public Transit in Trondheim 30
4.3 Popularity of Mobile Transit Applications 30
4.4 TransitVision Architecture . 36
4.5 Final Class Diagram for the Mobile Application 37
4.6 Interactions Between User, API, Database and Ruter 38
4.7 Navigation Drawer Menu, Tabbed Menu and Spinner Menu 40
4.8 Mockup Screens . 41
4.9 Collapsed SearchView . 41
4.10 The Search Components . 42
4.11 Early Icons . 42
4.12 Final Icons . 43
4.13 Flow Chart of TransitVision . 44
4.14 The Final Map Screen . 45
4.15 Oracle Example . 46
4.16 Position Estimation Model . 49
4.17 TransitVision using Tampere SIRI-VM Data 54

A.1 SUS Answers With 95 % Confidence Level 76

C.1 Links to Public Code Repositories 79
C.2 Link TransitVision in Google Play Marketplace 80
C.3 Link to Video Showing TransitVision in Action 81

xvii

xviii

List of Listings

1 A Stop Visit Returned from Ruter’s API 10
2 NextBus Vehicle Location on Line 2 of the Los Angeles Metro . . . 11
3 Excerpt of MBTA GTFS-realtime response 12
4 One of the Legs on a Route Through Oslo 14
5 Response From OsloTUC . 47
6 Position of a Subway on Ruter’s Line 1 50
7 SIRI-VM JSON Returned from Tampere Bus Service Online API . 77

xix

xx

Chapter 1

Introduction

TransitVision is an Android application capable of approximating locations of
public transit vehicles, using real-time arrival estimates. As many public tran-
sit agencies deny direct access to Global Positioning System (GPS) coordinates,
TransitVision serves as an alternative method for finding vehicle locations. It fo-
cuses on the area in and around Oslo, Norway, but TransitVision is interoperable
to many similar systems.

This thesis includes a preliminary study on schedule retrieval habits, and per-
ceived waiting time of travelers. After completing TransitVision, 15 participants
took part in a usability test, to measure how well such an application can convey
real-time transit information.

The background and motivation of this thesis, and the development of Tran-
sitVision, are summarized within this chapter. It includes the goal of the project,
and the three research questions guiding the development. Additionally, it con-
tains a section about the research method, which defines the approach of the
project. Finally, the thesis structure is outlined.

1.1 Background and Motivation
Bus, The Understanding Computer (BusTUC), or the Futures Ultimate Intelli-
gent Route-Organizing System (FUIROS), is a collection of projects consisting
of several master theses from the Norwegian University of Science and Technol-
ogy (NTNU). BusTUC is a service, allowing natural queries on public transit
schedules in Trondheim.

Many Norwegian public transit agencies have implemented real-time track-
ing systems of the vehicles. However, they restrict direct access to these, and
instead provide real-time arrival time estimates at individual stops. In cities

1

CHAPTER 1. INTRODUCTION

like Tampere, Finland, and New York, USA, agencies have successfully deployed
solutions, which present passengers with locations of public transit vehicles. A
Norwegian example of an online bus map is Busskartet.no (Section 2.6.5), which
uses timetable data to visualize the planned journey of all buses in Trondheim.
Combining Busskartet with real-time data could increase its usefulness.

Service Interface for Real Time Information (SIRI) is a modern European
Committee for Standardization (CEN) standard for relaying real-time informa-
tion (CEN/TC278/WG3/SG7, 2005). AtB has not yet deployed SIRI in Trond-
heim, but has scheduled its release to late 20151. Oslo became the primary target
for TransitVision, as Ruter has developed a SIRI implementation there. Making
an application that can be applied to any SIRI system would certainly increase
the number of potential users.

1.2 Goals and Research Questions
A software goal together with a set of research questions were outlined to guide
the direction of this master thesis. Goal fulfillment and answers to the research
questions are discussed in Section 5.5.
The Goal Develop a smartphone map application, which approximates the lo-

cations of public transit vehicles using the SIRI Stop Monitoring Service
(SIRI-SM).

The application will primarily be used as a platform for testing the prospect
of such an application, and its usability. After the development of TransitVision,
it will be used to help answer the following research questions:
Research Question 1 How can the SIRI standard be utilized to develop an

application that can be applied to any SIRI implementation, without con-
siderable modifications?

Research Question 2 How can a mobile map application, using SIRI-SM, pro-
vide a satisfactory representation of real-time data?

Research Question 3 What impact does mobile transit applications have on
travellers frustration and waiting time?

1.3 Research Method
At the beginning of the project, milestones were outlined to ensure the develop-
ment would fit within the time constraints. These milestones are displayed in
Table 1.1, and they were all finished on time.

1
Personal correspondence with Morten Wæraas, Senior ICT Administrator, AtB, 2015-01-13

2

Busskartet.no

1.3. RESEARCH METHOD

Table 1.1: Project Milestones

Milestone Finished by
Preliminary and State-of-the-art Studies 2014-12-17
Survey Planning 2015-01-25
Application Planning 2015-02-08
Application Development 2015-03-29
User Testing and Survey Execution 2015-05-03
First Draft of Project Report 2015-05-31

Preliminary Waiting Time Study Before the development of the applica-
tion, 55 travelers participated in a survey containing 15 questions, con-
ducted during the autumn project. The survey included questions about
mobile transit application usage, frustration, and waiting time. It serves
as a foundation for the rest of the thesis together with the state-of-the-art
study. More about how this study was conducted can be found in Sec-
tion 3.1.

State-of-the-Art Study It was primarily done by using Google Scholar2, and
other databases from the university library website, such as Oria3 and Sco-
pus4. Most of the time went into finding documents related to usability
testing, real-time public transit systems, and di�erent standards for com-
municating real-time transit data. Additional research went into finding
applications similar to TransitVision, to map their strengths and weak-
nesses. The findings are described in Chapter 2.

Survey Planning How to answer the research questions was decided before
how to develop the application. In this way, TransitVision would be better
suited to answer the research questions. Details about how the survey was
conducted can be found in Section 3.5.

Application Planning The basic features of the application were decided dur-
ing this stage, prioritized into a product backlog. This stage also included
selection of architecture, platforms, and technologies. Methods used are
described in Chapter 3.

Application Development By following the architecture, the application con-
sists of two parts: a back-end server and a front-end application. Both of

2scholar.google.no
3www.oria.no
4www.scopus.com

3

scholar.google.no
www.oria.no
www.scopus.com

CHAPTER 1. INTRODUCTION

these were successfully developed in this stage. This was the most time
consuming stage, and the results are described in detail in Section 4.6.

User Testing and Survey Execution After finishing the application, it was
tested on travellers to answer the research questions. The results from the
survey is presented in Section 4.8.

First Draft of Project Report Even though the report was written continu-
ously throughout the spring semester, time was set to focus on the report
towards the end. The first draft of the report was to be finished at the end
of May, which gave two weeks of polishing before the due date.

1.4 Thesis Structure
This section describes what the di�erent chapters contain and shows the structure
of the thesis.

Chapter 1: Introduction presents the goal and research questions, together
with the motivation behind them.

Chapter 2: Theory and Background contains the information gathered in
the state-of-the-art study. It describes similar transit applications and the
technologies behind them.

Chapter 3: Research and Development Method describes how the meth-
ods for answering the research questions.

Chapter 4: Results describes in detail how TransitVision works and its inter-
operability with other SIRI systems. The chapter also contains results from
both the preliminary study and the user test.

Chapter 5: Discussion summarizes the results before answering the research
questions.

Chapter 6: Conclusions concludes the thesis, including a description of some
of the enhancements that can be done to TransitVision. Because TransitVi-
sion is a prototype, it needs some improvements before it can be released
to the public.

4

Chapter 2

Theory and Background

The state-of-the-art study examined di�erent real-time standards, technologies,
and transit applications similar to TransitVision. Findings from the state-of-the-
art study, are described within this chapter.

2.1 BusTUC and FUIROS
This master thesis is part of the BusTUC project, also known as the FUIROS
project. Tore Amble developed BusTUC, and released it on the Web in 1996
(Amble, 2000). It is an application that supports written natural-language inter-
action for bus schedule retrieval. This means that users can ask about schedules
in plain text, and get the result printed to them in complete sentences. BusTUC is
available at NTNU’s website1, and supports both Norwegian and English queries.
AtB, the public transit agency in Trondheim (Team Trafikk until 2010), added
BusTUC, or the Bus Oracle as they call it, to their website2 in 1999 (Amble,
2000), and it has been there since.

After Amble’s initial work, other contributors have made improvements, in-
cluding many master theses. Bratseth (1997) created an English version of
BusTUC, and TaleTUC was a master thesis by Andersstuen and Marcussen
(2012), which incorporated speech recognition. Additionally, mobile applications
have been developed, giving easy access to BusTUC. One was Tore Amble Buss
(TABuss) by Marcussen and Eliassen (2011), incorporating TaleTUC. Another
was Multiple-platform approach to the Ultimate Bus Route Information System
(MultiBRIS) by Andersstuen and Engell (2011). Other improvements include

1http://busstuc.idi.ntnu.no/
2https://www.atb.no/spoer-bussorakelet/category1160.html#oracle

5

https://busstuc.idi.ntnu.no
http://busstuc.idi.ntnu.no/
https://www.atb.no/spoer-bussorakelet/category1160.html#oracle

CHAPTER 2. THEORY AND BACKGROUND

extending the functionality to work in Oslo (Jacobsson, 2015), and incorporating
train timetables into the system.

2.2 Digital Schedule Formats
A myriad of di�erent public transit information systems has spread across Eu-
rope, as many agencies developed individual standards. A result of this is a
lack of interoperability with other modes of transport and nations (Tibaut et al.,
2012). This section looks at the most prominent formats for relaying schedule
information.

2.2.1 The Norwegian REGTOPP Standard
Regional Trafikkopplysing (REGTOPP) was developed in Norway during the
1990s. It was a result of the growing need for a national standard for relaying
timetable information (Oslo og Akershus Trafikkservice AS, 1996). REGTOPP
data usually consists of between 10 to 14 files (depending on the REGTOPP
version), compressed into a zip file. These files include information about REG-
TOPP version, stops, lines, and time of validity. AtB (Sør-Trøndelag, Norway),
Ruter (Eastern-Norway), Kolumbus (Rogaland, Norway) and Agder Kollektiv-
trafikk AS (AKT) (Agder, Norway) are examples of agencies using REGTOPP.
With the advent of General Transit Feed Specification (GTFS) (Section 2.2.2),
some Norwegian public transit agencies now provide both data sets side by side3.

2.2.2 The GTFS Standard
The General Transit Feed Specification (GTFS) is a format for public transit
schedules developed by Google and Portland TriMet in 2005 (McHugh, 2013). It
has now become the leading international standard for transmitting route data,
primarily to Google Maps (Antrim et al., 2013).

Figure 2.1: Google Transit in Oslo
3http://next.kolumbus.no/2012/06/01/pne-rutedata-n-i-regtopp-1-2-format/

6

http://next.kolumbus.no/2012/06/01/pne-rutedata-n-i-regtopp-1-2-format/

2.3. REAL-TIME VEHICLE TRACKING FORMATS

The GTFS Data Exchange4 provides data from about 900 di�erent agencies
around the world, as of April 2015. In Norway, both Ruter and Kolumbus now
provide GTFS data, which can be found on the GTFS Data Exchange and their
individual home pages. Google Maps will display arrival times, stop locations,
and provide users with directions that include public transit.

Finding transit information in Google Maps is easy, and can be done by
clicking on a stop, with the results shown in Figure 2.1. In Oslo, and a few other
cities, it will also highlight polylines following routes that pass the selected stop.

2.2.3 NeTEx
Network Timetable Exchange (NeTEx)5 is a CEN technical standard for ex-
changing public transit schedules, and can be seen as a compliment to SIRI (Sec-
tion 2.3.1) (CEN/TC278/WG3/SG9, 2014). It aims for a high level of detail,
with support for complex route patterns, holiday exceptions and ticket pricing.
By using EXtensible Markup Language (XML), and the General Public License
(GPL), they try to make the standard as approachable as possible. NeTEx sup-
ports all forms of public transit, including planes.

2.3 Real-time Vehicle Tracking Formats
Numerous public transit agencies have implemented real-time tracking systems.
Without a standard unifying these implementations, many di�erent Application
Program Interfaces (APIs) were developed. Many have tried making a universal
standard, with varying success.

Figure 2.2: Results of APTA Survey: Arrival Time Formats (Grisby, 2013)

4http://www.gtfs-data-exchange.com
5http://netex-cen.eu/

7

http://www.gtfs-data-exchange.com
http://netex-cen.eu/

CHAPTER 2. THEORY AND BACKGROUND

In July 2012, the American Public Transportation Association (APTA) con-
ducted a survey measuring the spread of real-time APIs in USA (Grisby, 2013).
Of the 75 participants, only 16% lacked vehicle tracking capabilities, while the
vast majority could track over 90% of their vehicles. However, only 37% of the
agencies provide a real-time API or application. The survey also compared the
di�erent formats used for distributing real-time information. The results are
shown in Figure 2.2. Keep in mind that these results are for American agencies,
and may not reflect the world wide usage. SIRI is coming into wide spread use
in Norway6, while NextBus (further explained in Section 2.3.2) is only present in
Canada and USA7.

2.3.1 SIRI
Service Interface for Real Time Information (SIRI)8, is a CEN standard for
communicating real-time public transit information between di�erent devices
(CEN/TC278/WG3/SG7, 2005). It was made in a collaborative e�ort by public
transit agencies from many European countries, including France, the Scandina-
vian countries, United Kingdom and Germany. The standard is not owned by
any one vendor, public transit agency nor operator.

To persuade public transport agencies to switch from their current systems,
SIRI had to be exceptionally modern and usable. SIRI took on an open and
modularized approach, to allow free customization and expandability. Further-
more, by using XML, SIRI can easily be utilized by anyone familiar with web
development.

SIRI is made up of eight services that can be implemented according to the
transport agency’s needs and wishes. These services can be developed and up-
dated independently of each other because of the modularity of SIRI. Central
services of SIRI are listed below (Knowles, 2008).

Production Timetable Service (PT) returns the predicted timetables for a
specified day, which can be used in an Automatic Vehicle Location (AVL)
system. These timetables can easily be filtered by operator, line, and di-
rection to only display the desired data.

Estimated Timetable Service (ET) provides real-time details about devia-
tions from timetables. It also includes information about detours and can-
cellations.

6http://bent.flyen.no/realtimeNorway
7http://webservices.nextbus.com/service/publicXMLFeed?command=vehicleLocations&

a=lametro&r=2
8http://siri.org.uk

8

http://bent.flyen.no/realtimeNorway
http://webservices.nextbus.com/service/publicXMLFeed?command=vehicleLocations&a=lametro&r=2
http://webservices.nextbus.com/service/publicXMLFeed?command=vehicleLocations&a=lametro&r=2
http://siri.org.uk

2.3. REAL-TIME VEHICLE TRACKING FORMATS

Stop Timetable Service (ST) provides arrival times for stops, using timeta-
bles. It serves as a backup solution on information screens, when real-time
is unavailable.

Stop Monitoring Service (SM) updates information screens and web APIs
with real-time arrival estimates.

Vehicle Monitoring Service (VM) sends information about the location of
vehicles, together with general line information. It can be used to display all
public transit vehicles on a map, and gather detailed statistical performance
data.

Connection Timetable Service (CT) provides schedule data for connected
lines at a given public transpiration hub. It is usually used combined with
the CM service.

Connection Monitoring Service (CM) uses real-time arrivals, and sched-
ules, provided by SIRI-CT, to coordinate interchanges. If one vehicle is
delayed, connected vehicle routes are encouraged to wait to allow passen-
gers to transfer.

General Message Service (GM) allows sending of arbitrary data like news
related to the operation of the vehicles.

The services primarily used in this project are SIRI Stop Monitoring Service
and SIRI Vehicle Monitoring Service, which are detailed below.

SIRI-SM

The SIRI-SM is usually the main motivation behind implementing a SIRI solu-
tion. It provides arrival time estimates for incoming public transit vehicles to a
stop through an online API. These estimates are usually available on information
screens at stops.

An excerpt from Ruter’s SIRI-SM system can be seen in Listing 1. Ruter
provides both XML and JavaScript Object Notation (JSON) versions of SIRI-
SM, and the JSON version is included here as it is more readable. The arrival
estimates are contained within MonitoredCall, and in this example the bus is 6
minutes and 6 seconds behind schedule. The listing presents one of the vehicles
on line 74, and contains much more detailed information than NextBus (Listing
2) and GTFS-realtime (Listing 3).

9

CHAPTER 2. THEORY AND BACKGROUND

{
RecordedAtTime: "2015-02-23T13:38:04.276+01:00",
MonitoringRef: "3010722",
MonitoredVehicleJourney: {

LineRef: "74",
DirectionRef: "2",
FramedVehicleJourneyRef: {

DataFrameRef: "2015-02-23",
DatedVehicleJourneyRef: "4307"

},
PublishedLineName: "74",
DirectionName: "2",
OperatorRef: "Norgesbuss",
OriginName: "Mortensrud T [buss]",
OriginRef: "3010951",
DestinationRef: 3010047,
DestinationName: "Vika",
OriginAimedDepartureTime: "0001-01-01T00:00:00",
DestinationAimedArrivalTime: "0001-01-01T00:00:00",
Monitored: true,
InCongestion: false,
Delay: "PT366S",
TrainBlockPart: null,
BlockRef: "7007",
VehicleRef: "330568",
VehicleMode: 0,
VehicleJourneyName: "50740",
MonitoredCall: {

VisitNumber: 20,
VehicleAtStop: false,
DestinationDisplay: "Vika",
AimedArrivalTime: "2015-02-23T13:43:00+01:00",
ExpectedArrivalTime: "2015-02-23T13:49:06+01:00",
AimedDepartureTime: "2015-02-23T13:43:00+01:00",
ExpectedDepartureTime: "2015-02-23T13:49:06+01:00",
DeparturePlatformName: "2"

},
VehicleFeatureRef: null

}
}

Listing 1: A Stop Visit Returned from Ruter’s API

SIRI-VM

The SIRI Vehicle Monitoring Service (SIRI-VM) presents the positions of vehicles
in tra�c, and general information about them. It is ideal for online real-time
maps, and on board displays. However, SIRI-VM is not as widespread as SIRI-

10

2.3. REAL-TIME VEHICLE TRACKING FORMATS

SM, and is only operational in a handful of cities. These cities include Tampere,
Finland9 and New York City, USA10.

An excerpt from a vehicle location request for the bus service in Tampere
can be seen in Appendix B. It is extracted from a list of all vehicles in transit in
Tampere. An example of SIRI-VM usage in Tampere can be seen in Section 2.6.6.

2.3.2 NextBus
NextBus is an American standard for estimating and transmitting real-time pub-
lic transit data (Schmier and Freda, 2002). As shown in Figure 2.2, it is a very
popular standard in USA.

<vehicle id="7308" routeTag="2" dirTag="2_651_1" lat="34.051708"
lon="-118.504486" secsSinceReport="50" predictable="true"
heading="225" speedKmHr="53"

/>

<lastTime time="1431525204638"/>

Listing 2: NextBus Vehicle Location on Line 2 of the Los Angeles Metro

It is based on open URL access to information on stop data, line data, real-
time predictions and vehicle locations. Through nextbus.com, it is possible to
access this data from over 60 di�erent agencies around USA and Canada, through
a simple interface. A more developer-friendly interface is described in the public
NextBus Public XML Feed documentation (NextBus Incorporated, 2013). It is a
rather simple and straight forward format, as shown by the Los Angeles metro11

example in Listing 2.
Even if NextBus has become widespread in USA and Canada, nextbus.com

lists no European agencies. Because the author’s are located in Norway, a Euro-
pean standard would be more suitable for this project.

2.3.3 GTFS-Realtime
GTFS-realtime12 is Googles real-time expansion of GTFS (Section 2.2.2). It

supports schedule updates, vehicle positions, and service alerts. The data is
usually published using Google’s Protocol Bu�ers13, which has the same features

9http://lissu.tampere.fi//?lang=en
10http://bustime.mta.info/
11http://webservices.nextbus.com/service/publicXMLFeed?command=vehicleLocations&

a=lametro&r=2
12https://developers.google.com/transit/gtfs-realtime/
13https://developers.google.com/protocol-buffers/docs/overview

11

nextbus.com
nextbus.com
http://lissu.tampere.fi//?lang=en
http://bustime.mta.info/
http://webservices.nextbus.com/service/publicXMLFeed?command=vehicleLocations&a=lametro&r=2
http://webservices.nextbus.com/service/publicXMLFeed?command=vehicleLocations&a=lametro&r=2
https://developers.google.com/transit/gtfs-realtime/
https://developers.google.com/protocol-buffers/docs/overview

CHAPTER 2. THEORY AND BACKGROUND

{
trip_id: "CR-Providence-CR-Weekday-Providence-Dec13-801",
trip_name: "801 (6:20 am from South Station)",
trip_headsign: "Providence",
vehicle: {

vehicle_id: "1806",
vehicle_lat: "41.89791",
vehicle_lon: "-71.35422",
vehicle_bearing: "250",
vehicle_timestamp: "1430824356"

}
},

Listing 3: Excerpt of MBTA GTFS-realtime response

as XML, while being smaller and simpler. Listing 3 shows GTFS-realtime data
for one of Massachusetts Bay Transportation Authority (MBTA)’s vehicles, in a
JSON format.

Figure 2.3: Google Maps Real-Time Arrivals in Boston

No Norwegian public transit agencies have started using GTFS-realtime, and
instead rely on other standards like SIRI (Section 2.3.1). However, a few cities
outside Norway have added real-time arrival estimates to Google Maps. An
example can be seen in Figure 2.3, where the real-time arrivals are marked as
Live departure times.

2.4 Google Maps
Google Maps is developed by Google. Because of Google’s strong position in the
online market, Google Maps quickly became the de facto online map service, and

12

2.4. GOOGLE MAPS

now Google claim they serve over a billion users14. It exists on multiple plat-
forms both as mobile applications and through their website. With continuous
development, Google Maps has expanded to include functionality like street-view,
real-time tra�c, directions, and public transit.

2.4.1 The Google Maps API

At Google Maps’ release, many third-party developers saw the opportunity to
make the map into something more than just a map with driving directions.
However, Google had not yet opened for such extensions, and the developers
outside Google had to “hack” features into the map (Gibson and Erle, 2006).
Seeing some of the results, Google decided to embrace third-party developers by
opening an API for interacting with Google Maps.

The Google Maps API was released in June 2005, just four months after the
initial release. Since then they have added features like, drawing polylines and
polygons, custom map markers, and animated markers. Google has implemented
slightly di�erent versions for Android, iOS and Web.

2.4.2 The Google Directions API

The Google Directions API15, is Google’s open directions distribution service.
The API is used together with the Google Maps API, making it possible to
input any location or coordinate, and get driving directions to any other location
or coordinate. It will split the trip into various legs, each with an encoded
polyline that follows the roads in Google Maps. Included in the response is a
detailed description of every legs’ distance, duration, and HTML encoded driving
instructions. An example of a leg, as presented by the Google Directions API,
can be seen in Listing 4. With the HTML instructions the Google Directions API
can potentially be used to create navigation applications. For TransitVision, the
primary values used are the polyline points, which is an encoded set of changes
in latitude and longitude for each point along the leg16.

One of the limitations of the API, is that it is made for cars and will therefore
ignore bus-only roads, which will sometimes result in ridiculous detours. Addi-
tionally, navigating to and from a coordinate underneath a bridge will produce
unpredictable results, as there is no way of specifying a vertical coordinate.

14https://www.youtube.com/watch?v=7V-fIGMDsmE&t=6m46s
15https://developers.google.com/maps/documentation/directions/
16https://developers.google.com/maps/documentation/utilities/polylinealgorithm

13

https://www.youtube.com/watch?v=7V-fIGMDsmE&t=6m46s
https://developers.google.com/maps/documentation/directions/
https://developers.google.com/maps/documentation/utilities/polylinealgorithm

CHAPTER 2. THEORY AND BACKGROUND

{
"distance" : {

"text" : "84 m",
"value" : 84

},
"duration" : {

"text" : "1 min",
"value" : 36

},
"end_location" : {

"lat" : 59.9293528,
"lng" : 10.7165649

},
"html_instructions" : "Head southeast on Valkyriegata
toward Kirkeveien/Rv161",
"polyline" : {

"points" : "caxlJs{k‘APY^s@FMz@_B"
},
"start_location" : {

"lat" : 59.9299391,
"lng" : 10.7156175

},
"travel_mode" : "DRIVING"

},

Listing 4: One of the Legs on a Route Through Oslo

2.5 Server Technologies
A simple and lightweight web server was needed for the development of an API,
which can be read about in Section 4.3. Numerous technologies for servers and
databases were studied, focusing on the needs for TransitVision.

2.5.1 Node.js
Node.js17 is an open source, JavaScript runtime environement, used mostly for
real-time web applications. Combining an event-driven architecture, the Google
V8 JavaScript engine with the speed of C and C++, they achieved both low
memory usage and performance (Tilkov and Vinoski, 2010). It was originally de-
veloped by Ryan Dahl, together with other developers working at Joyent, in 2009.
However, its development is now overseen by the Node Foundation. Node.js’ scal-
ability and e�ciency has made it popular among large companies like Microsoft,
Walmart and PayPal. Meanwhile, its simplicity and heavy use of JavaScript

17https://nodejs.org/

14

https://nodejs.org/

2.6. A BRIEF LOOK AT SIMILAR APPLICATIONS

make it very approachable to web developers and programming novices.

2.5.2 MongoDB
MongoDB18 is a schemaless, document-oriented, open source database, that is the
most popular alternative to the well established relational databases, as of April
201519. It can quickly store and retrieve JSON-objects, which is one of the main
advantages when paired with JavaScript. MongoDB stores these JSON-objects
in Binary JSON (BSON) files.

Being schemaless, one can easily add new collections in the database without
setting up the columns beforehand. Additionally, it enables sudden changes to
the columns of data stored, without causing issues.

2.6 A Brief Look at Similar Applications
A number of similar applications were examined to find their strengths and weak-
nesses. It was especially important to assess the quality of the various map appli-
cations, and how they worked. Additionally, the search for similar applications
would also determine how unique TransitVision would become. Simply replicat-
ing an existing system is not as impressive as developing a distinctive approach.

(a) Google Maps (b) RuterReise (c) Bartebuss (d) Nettbuss

Figure 2.4: Public Transit Applications

18https://www.mongodb.org/
19http://db-engines.com/en/ranking

15

https://www.mongodb.org/
http://db-engines.com/en/ranking

CHAPTER 2. THEORY AND BACKGROUND

2.6.1 Google Maps
As discussed in Section 2.4, Google Maps is one of the largest transmitters of
transit data. By incorporating GTFS data from hundreds of agencies, Google
created a universal public transit schedule look-up. They support small-scale
real-time look-ups, but have yet to grasp the potential of combining their maps
with real-time position data. Some cities support drawing lines between stops,
and displaying arrivals in real-time, but that is the peak of their abilities. Their
main competitive edge is their large user base, and presence on all modern plat-
forms. An example of transit data being displayed in the Google Maps Android
application, is shown in Figure 2.4a

2.6.2 RuterReise
Ruter developed a simple and usable app, that allows real-time arrival look-ups
for all of Ruter’s stops. It has one of the simplest and intuitive user interfaces of
the real-time departure applications. In addition to displaying the arrival times
of lines at a given stop, it also has a travel planner. This planner can display
your trip on a map, with straight lines from one stop to another, and is shown
in Figure 2.4b.

2.6.3 Bartebuss
Bartebuss is a mobile application displaying public transit data in Trondheim.
The main feature of the application is the real-time arrival estimates, which are
displayed stop wise. This means the user searches for the desired stop, and then
the arrival times at the stop are listed. Additionally, it includes the functionality
of the Bus Oracle. An example is displayed in Figure 2.4c. The application can
also be reached from the Web20.

2.6.4 Nettbuss
Nettbuss is the largest bus agency in Norway, and served 137 million passengers in
2013 (Nettbuss, 2014). They have made a real-time map displaying their intercity
buses, that is released both on web21 and as a smartphone application22. The
Nettbuss Android application can be seen in Figure 2.4d.

20http://bartebuss.no/favoritter
21http://www.nettbuss.no/sanntid
22https://play.google.com/store/apps/details?id=se.optidev.nettbussno

16

http://bartebuss.no/favoritter
http://www.nettbuss.no/sanntid
https://play.google.com/store/apps/details?id=se.optidev.nettbussno

2.6. A BRIEF LOOK AT SIMILAR APPLICATIONS

2.6.5 Busskartet.no

Figure 2.5: Busskartet Displaying Buses around Campus Gløshaugen

There are many di�erent real-time and timetable based maps of public transit
vehicles. One example of the latter is Busskartet23 (The Bus Map), displayed
in Figure 2.5, which currently is the only map covering AtB’s lines. It does not
utilize AtB’s real-time system, but instead predicts vehicle movements based on
the timetables and the Google Directions API. Its accuracy is thereby negligible,
and Busskartet melts down to a curiosity, rather than a functional map.

The map’s primary achievement is the incorporation of the Google Directions
API, which allows their vehicle markers to follow the correct roads. It is the
result of a large amount of fine-tuning of the routes received from the Google
Directions API. More about these issues can be read in Section 5.3.3.

2.6.6 Tampere Bus Map
A great example of real-time vehicle tracking is deployed in Tampere, Finland.
Here they have successfully deployed SIRI-VM (Section 2.3.1), and created a
map24 displaying all buses and bus stops in and around Tampere. An image of
the map is displayed in Figure 2.6. The dots on the map indicate bus stops,
while the numbered circles are buses. It does not animate the buses, but instead
updates their positions every three to five seconds, which results in stuttering
movements.

23www.busskartet.no
24http://lissu.tampere.fi/?lang=en

17

www.busskartet.no
http://lissu.tampere.fi/?lang=en

CHAPTER 2. THEORY AND BACKGROUND

Figure 2.6: Tampere Public Transport’s Tra�c Monitor

2.7 The System Usability Scale
For a system to be successful, it must solve problems users have in a simple and
understandable way. By using the System Usability Scale (SUS)25, the usability
can be measured using a predefined ten-item questionnaire. The participants
will respond to each statement on a scale ranging from 1, strongly disagree, to 5,
strongly agree. If a test person is unable to respond to a statement, that person
should mark the middle of the scale instead of skipping it.

SUS was created by John Brooke (1996), and is constructed as a Likert scale.
A Likert scale uses a technique for selecting items to include (in this case the
statements) examples, which lead to extreme expressions of attitude (Brooke,
1996). Originally SUS had 50 questions, but through testing it was narrowed
down to just 10. The final statements are listed in Appendix A.1.

2.7.1 Calculating the SUS Score
The way the SUS statements are worded, every even numbered question measures
negative impressions, while the odd numbered questions are positive. Both of
them impact the score with an equal amount, but there is a slight di�erence in
how the score is calculated. For positive statements, the score contribution is
the scale position minus one. For negative statements, the score contribution is
five minus the scale position. This is explained clearer in Equation 2.1. These
scores are then added together, and divided by the number of contributions to

25http://www.measuringu.com/sus.php

18

http://www.measuringu.com/sus.php

2.7. THE SYSTEM USABILITY SCALE

find the mean value for each statement, as shown in Equation 2.2. When the
mean response value is found for every statement, they are added together, and
multiplied by 2.5 to make the result range from 0 to 100, as shown in Equation 2.3.
X

n

is the mean scale value for statement n, c is the total number of contributions
and X

ni

is the response i to statement n. Together, these three equations can be
used to calculate the resulting score form a System Usability Test using SUS.

f(X
ni

) =
;

5 ≠ X

ni

if n is even
X

ni

≠ 1 if n is odd (2.1)

Given: f(X
ni

), c X

n

= 1
c

q
c

i=1 f(X
ni

) (2.2)

Given: X

n

SUS = 5
2

q10
n=1 X

n

(2.3)

Given the responses 1, 5, 2, 4, 5, 4, 4, 5, 4, 5 and 2 on statement one, which
is 11 responses, it is possible to use Equation 2.2 combined with Equation 2.1 to
calculate the mean answer. Since this is statement 1, n = 1. f(X

ni

) is therefore
X

ni

≠ 1, which means Equation 2.2 becomes:

X

n

= 1
11

q11
i=1(X

ni

≠ 1) = 30
11 ¥ 2.73 (2.4)

Equation 2.3 can be applied, after calculating the mean score of every state-
ment in the survey. The final score computed by Equation 2.3 is the final score of
the scale. Bangor et al. (2008) stated that a passable product should have above
70 points. Better systems score in the high 70 to upper 80, while products with
a score above 90 are truly astounding. On the other hand, if a product gets a
SUS score below 70, it is in dire need of improvements.

19

CHAPTER 2. THEORY AND BACKGROUND

20

Chapter 3

Research and Development
Method

During the autumn project, a preliminary study was conducted. The method
used for this study will be described first in this chapter. Following, The chapter
describes the methods used for TransitVision development and testing.

3.1 Preliminary Survey
Before developing TransitVision, the authors mapped travelers public transit
habits through a web-based survey. The survey was distributed online using
Facebook, and could thereby reach people with di�erent ages and professions,
from all over Norway. The survey was active from September 22nd until October
6th 2014, which gave the participants 14 days to answer the survey.

Questions were chosen based on research question 3, and information that
could contribute in the development of TransitVision. These questions can be
found in Appendix E.1, and includes questions about waiting time, frustration
and schedule retrieval. Those using mobile applications as their main schedule
retrieval method were given additional questions to map opinions on existing
mobile applications.

The questions produce both quantitative and qualitative feedback, referred
to as “Triangulation” by Jick (1979). Triangulation can lead to greater accuracy
of the data gathered. In the preliminary survey, only the last question can be
seen as qualitative. The participants were asked to write what they thought of
the mobile application they used in a text box.

The survey maps travelers perceived waiting time. As travelers usually in-

21

CHAPTER 3. RESEARCH AND DEVELOPMENT METHOD

correctly estimate their average waiting time with about two minutes (Watkins
et al., 2011), the results may not reflect their actual waiting time. However,
reducing travelers’ perceived waiting time could have greater impact on traveler
satisfaction, than their actual waiting time.

By spreading the survey on the Web, there is no way to guarantee that all
traveler groups are represented. One of the problems with web surveys is the
exclusion of travelers without Internet connection (Couper, 2000), and is therefore
unable to create a complete picture of traveler habits. Additionally, as Porter
and Whitcomb (2003) describe it, people using the Internet are more interested
in technology than the general public, and may skew the results. A participant
may submit multiple responses to the survey, as there is no protection against
it. Requiring an email address could help minimize the issue, but it could also
negatively impact the number of participants as some are uncomfortable with
sharing their email address.

3.2 Finding and Prioritizing Requirements

Brainstorming (Diehl and Stroebe, 1987) was used for creating requirements. It
is a method where the team members write down all ideas that come to mind, and
revise them afterwards to define the final requirements. By using brainstorming,
many ideas were generated and could be evaluated as final requirements.

Initially, the authors utilized the Scrum methodology to structure the work.
A product backlog was created and hosted on Jira1, ant it kept track of all user
stories and tasks. Scrum (Sims and Johnson, 2014) allows developers to always
know what the rest of the team is doing, and what they should do next. However,
as the authors grew more confident with the requirements of the application, the
scrum methodology became redundant and its use slowly faded. Moreover, the
project had no customer. The product backlog still formed the base for what
functionality to implement, and their priority.

Basic ideas and requirements for the application had to be set to make sure
the application was suited for the problem description. It was important to
make the application user friendly, while representing the real-time data in an
adequate way. The requirements were created as a list containing the requirement
ID, a description, and a prioritization. The most important requirements were
implemented first, to ensure the completion of the most essential functions.

1https://www.atlassian.com/software/jira

22

https://www.atlassian.com/software/jira

3.3. DESIGNING TRANSITVISION

3.3 Designing TransitVision
A sequence diagram, a class diagram, a flow chart and prototypes form the design
of TransitVision. Every element helped unifying the thoughts of the authors,
which made planning the development much easier.

A sequence diagram describe the communication between entities in the sys-
tem (Li et al., 2004), a class diagram describe the code structure of the system
and the relationship between objects2, and the flow chart described the relation-
ship between screens in the user interface3. Together they formed the structure
of the code, and defined what was needed in the code to realize the requirements.
Additionally, the diagrams form a description of the systems architecture, which
makes it easier for outsiders to understand the structure.

The user interface was prototyped to plan the user interface design. Element
sizes, shapes and colors can be drawn on paper or a computer, making it easier for
a designer or developer to see which designs work best in practice. A prototype
can be used to test and refine the design more e�ciently than using a coded
prototype (Snyder, 2003).

An example of an important aspect to be aware of when creating a drawn
prototype is button placement and size. Buttons having the same function should
look the same. For example, all delete buttons should be colored red, and read
the text “Delete” wherever they are located within the application. The Android
Design Principles4 were strictly followed when developing TransitVision. These
design principles are created to make all Android applications work the same
way, and by that seem familiar for users.

By creating di�erent prototypes and testing the design, it is easier to make
sure the real-time data is presented in a satisfactory manner. Both digital and
paper prototypes were created for TransitVision to ensure the design, but they
were never tested on real users. Testing the prototypes on users would have
made the designs evaluated by a third party, which might have discovered flaws
the authors did not.

3.4 Testing Server Compatibility
Position estimation requires asking for arrivals on every stop on a line. This
may produce short bursts of requests to the servers of transportation agencies,
whenever a position query is executed. Some of these agencies, have implemented
barriers to prevent Distributed Denial of Service (DDOS) attacks (Lau et al.,
2000), and this barrier presents one of the primary interoperability issues. In

2http://www.agilemodeling.com/artifacts/classDiagram.htm
3http://www.breezetree.com/articles/what-is-a-flow-chart.htm
4https://developer.android.com/design/get-started/principles.html

23

http://www.agilemodeling.com/artifacts/classDiagram.htm
http://www.breezetree.com/articles/what-is-a-flow-chart.htm
https://developer.android.com/design/get-started/principles.html

CHAPTER 3. RESEARCH AND DEVELOPMENT METHOD

some cases, it could take several seconds for TransitVision to gather enough real-
time data to draw vehicles.

To provide a satisfactory user experience, the limitations of the various SIRI-
SM systems had to be determined. Additional measurements were taken to pin-
point whether two machines communicating with the SIRI system would interfere
with each other. The test itself was conducted by sending as many requests as
possible from two di�erent locations, for one minute. First individually, and then
simultaneously. Both small and large packages were used to measure whether
the system was limited by number of requests, or by the generated tra�c.

The machines used were placed at two di�erent locations, one in Trondheim,
and one in Amsterdam. Both machines had a 100 Mb

/s Internet connection at
their disposal. Neither their Internet speed, nor their hardware should produce
a mentionable impact on their performance in this test, as the amount of tra�c
sent is so low. Only Kolumbus’ and Ruter’s systems were tested this way, as they
were the primary focus of the interoperability study.

SIRI only defines which data should be included, and does not specify the
format of the data. Consequently, di�erent transportation agencies use di�erent
coordinate systems, and time formats. To further measure the interoperability of
TransitVision, many SIRI implementations were examined, by comparing the val-
ues in the data packages received from these SIRI implementations. Six systems
were examined in total.

3.5 User Test
Result validation was done through a SUS survey, combined with users testing
the application. The result from the SUS gives a quantitative measurement of
the TransitVision usability. This is required to interpret whether or not the
application present the real-time data well.

The test the participants have to complete before answering the SUS ques-
tionnaire was a scenario test (Kaner, 2003). Participants were presented with the
the application and the task to find information on their favorite line. If they
had no favorite line, they got a suggestion.

To ensure the reliability of the SUS score, there should not be too few people
included, while not becoming too time consuming because of a large number of
participants. Faulkner (2003) discusses the need to test usability on more than
five participants. It was assumed that five participants su�ced, but Faulkner
disproves that by showing many problems within an application were not recog-
nized by only five people. Only 85% of the problems were discovered on average.
By doubling the size of the group to 10, the average problems discovered became
95%, which is a significant di�erence. A set of 15 users found even more (about
97.5%).

24

3.5. USER TEST

Tullis and Stetson (2004) take a di�erent approach, with 123 participants
testing two di�erent websites. They discovered that one of the websites was
significantly preferred over the other. The paper shows how few participants
were needed before this trend was revealed, by comparing the results of subsets
ranging from 6 to 14 testers, of the total 123 participants. With a sample size of
12 participants, the System Usability Scale yielded a 100% “correct” conclusions,
meaning that only 12 participants were needed to indicate that one website was
significantly better than the other. Because of these two papers, the user test of
TransitVision would include at least 12 subjects.

A range of di�erent types of users, di�erent ages, and professions represented
by the testers was important. The age ranges from 20 to 60, and the professions
range from students, to health personnel to engineers. By this, the responses
represent di�erent types of users within the target group.

To maintain the meaning of the statements, the questionnaire was conducted
in English, instead of translating them to Norwegian. Finstad (2006) discovered
that 9 out of 18 (or 50%) non-native English speakers had a hard time under-
standing the word “cumbersome” in statement 8. However, because one author
would always be present when participants answered the questionnaire, di�cult
words could be explained if necessary. When asked, “cumbersome” would be
translated to the Norwegian word “tungvint”.

25

CHAPTER 3. RESEARCH AND DEVELOPMENT METHOD

26

Chapter 4

Results

A preliminary study into travelers’ public transit habits helped form the result
of TransitVision. The server back-end function as an adapter between di�erent
SIRI implementations and the mobile application. After implementation, the
application was evaluated by a group of testers through SUS.

4.1 Results from the Preliminary Survey
The preliminary survey had the purpose of identifying traveling habits of public
transit passengers. The results were expected to reveal the passengers using
mobile applications as the travelers with the shortest waiting time. However, the
data gathered contradicts this thought.

4.1.1 Waiting Time
The majority of the survey participants, 81%, thought that having the opportu-
nity to see the bus’ location would have a positive impact on their waiting time.
11% resisted the idea, for unknown reasons. Nevertheless, the results confirmed
that the passengers desire a transit map application. If the participants had
shown more resistance to the idea, it would have to be reworked.

Of the people traveling by bus, 65% thought they waited more than five
minutes for the bus to arrive (numbers in Figure 4.1). It is worth mentioning that
the waiting time data gathered is the participants own perceived waiting time,
and may not reflect the actual time spent waiting (as discussed in Section 3.1).

One of the questions posed in the survey dealt with reasons for missing the bus.
As shown in Table 4.1, the responses are evenly distributed, but one alternative
stands out; people have a hard time calculating how long it takes to get to the

27

CHAPTER 4. RESULTS

Figure 4.1: Perceived Waiting Time

bus stop. It is possible to create some kind of warning system that will alert the
passenger when it is time to leave.

As depicted in Table 4.2, the average perceived waiting time for travelers
using modern mobile applications, is about the same as the travellers using other
means of schedule retrieval. Furthermore, the users of web applications believe
they wait an average of 0.7 minutes (¥ 42 seconds) longer than mobile application
users. This di�erence in waiting time might stem from the fact that web users are
the least active bus users, with only 2.1 trips per week on average. Consequently,

Table 4.1: Reasons for Being Too Late for the Bus

Reason Count
I am never too late 3
The bus was ahead of schedule 4
Got incorrect route information from my app 5
Real-time was inaccurate and showed the wrong time 10
Miscalculation of walking time to the bus stop 20
Did not use route information 6
The bus departs so frequently that I do not care if I am late 6
Other 1

28

4.1. RESULTS FROM THE PRELIMINARY SURVEY

Table 4.2: Average Percieved Waiting Time by Route Retrieval Method

Retrieval method Count Waiting time Trips/week
Web application 17 5.7 min 2.1
Mobile Application 27 5.0 min 4.3
Other 11 4.9 min 6.7
Total 55 5.2 min 4.1

they might arrive too early at the bus stop because of their inexperience, and as
a result, they wait longer. Additionally, those that travel less by bus might not
want to go through the inconvenience of installing an application, or finding a
timetable, for just one trip. Either way the frustration level is about the same
for all sorts of travelers, as shown in Table 4.3.

Table 4.3: Average Frustration by Route Retrieval Method

Retrieval method Mean frustration level
All 5.8
Web application 5.5
Mobile Application 6.0
Other 5.8

The frustration level produced by waiting for the bus was measured on a scale
from 1 to 10, where 10 is extremely frustrated. Figure 4.2 shows the frustration
level distribution as a bar chart. No one was completely content with their time
spent at the bus stop, as none of the participants answered “1”. On the other
hand, the figure shows as many as five participants reach their maximum level of
frustration by simply waiting for their bus. These results indicate that there is a
lot of room for improvement on traveller satisfaction.

4.1.2 Application Usage Feedback
The survey also included a section on web and phone application usage, to map
their popularity. Of the 55 participants, 27 answered that they primarily used
mobile applications when finding route information. As shown in Figure 4.3, the
most popular applications were Bartebuss in Trondheim, and RuterReise in Oslo,
which are two popular applications with many di�erent features. By combining
the best features from these two, TransitVision should have a fair chance to
compete in the market. A more thorough description of RuterReise is found in
Section 2.6.2, and of Bartebuss in Section 2.6.3.

29

CHAPTER 4. RESULTS

Figure 4.2: Frustration Level for Public Transit in Trondheim

Participants were encouraged to comment on their favorite features in the
application they use, and which features it lacked. About RuterReise, people

Figure 4.3: Popularity of Mobile Transit Applications

30

4.2. TRANSITVISION REQUIREMENTS

commented that the application needed functionality for showing the whole trip,
and not just when the bus will pass the next stop. RuterReise does support
displaying the whole route through the trip planner, but it might not be visible
enough. Other than that, RuterReise’s comments were mostly positive. Accord-
ing to the feedback on Bartebuss, the application tends to sporadically update
arrival times, resulting in the bus arriving earlier than what the real-time sug-
gested. This may be caused by inaccuracies in AtB’s real-time system, and not
because of Bartebuss. Another person commented that finding the timetable for
a given bus route is too cumbersome, and that it should have a list of lines in
addition to their list of stops.

4.2 TransitVision Requirements
A list of requirements were created to capture all features needed to realize Tran-
sitVision. The final requirements are listed in Table 4.4. The first eleven require-
ments are intended for the mobile application, while the last eleven are for the
API.

In the beginning of development, the mobile application included three main
screens: 1) a map screen, 2) a screen containing a list of stops, and 3) a BusTUC
Oracle screen. Because the map screen is essential for answering the research
questions, M1, M2, M3 and M11 are the most important requirements for the
mobile application. M10 is also a highly prioritized requirement, because navi-
gation is important for the usability of the system. Requirements regarding the
list of stops and the Oracle are of secondary priority.

The API should be a simple interface for relaying position estimates, together
with stop and line information. Its main functionality is represented by require-
ment S4, and most of the requirements are associated with it. S1 and S8 are
related to information gathering, while S2, S3, S5, S6, S7, S10 and S11 deal with
information distribution. S9 concerns the architecture, and requires setting up a
remote server dedicated to TransitVision.

4.2.1 Quality Attributes
Many quality attributes were considered for TransitVision, but three were selected
as the most important attributes. These attributes are listed below.

Interoperability Bass et al. (2012) defines interoperability as how well two sys-
tems can communicate, often through an interface. Research Question 1
(Section 1.2) asks how easily di�erent SIRI implementations can be incorpo-
rated, and TransitVision’s interoperability is therefore considered of great
importance.

31

CHAPTER 4. RESULTS

Table 4.4: TransitVision Requirements

ID Description Priority
M1 The mobile application should display a map High
M2 The map should animate moving buses, using real-time

data from the API
High

M3 The map should display all bus stops managed by a given
company

High

M4 It should be possible for users to look up stops and see
when the next bus arrives

Medium

M5 Users should be able to ask the BusTUC Oracle for sched-
ules

Low

M6 The users should be able to create a list of their favorite
bus/tram/subway lines

Medium

M7 The users should be able to create a list of their favorite
stops

Medium

M8 The application should list stops by distance from the user Medium
M9 When clicking on a vehicle on the arrival list, that vehicle’s

location should be displayed on the map
Medium

M10 The application should allow easy switching between the
di�erent fragments

High

M11 The user should be able to search for a desired line High
S1 The Web-API should gather info about all stops and lines,

and store it in a database
High

S2 The Web-API should present a list of all bus stops High
S3 The Web-API should present which bus stops serve which

lines
High

S4 The Web-API should present the locations of buses on a
given line

High

S5 The Web-API should convert all coordinates to lat/long High
S6 The Web-API should list all available bus operators High
S7 The Web-API should present all data on JSON form High
S8 The Web-API should be able to read standard SIRI-SM

XML files (Ruter can convert to JSON automatically)
Medium

S9 The Web-API should be deployed on a remote server High
S10 The Web-API should provide positions of vehicles in an

area
Medium

S11 Position estimates should be placed on the road Medium

32

4.3. THE TECHNOLOGIES BEHIND TRANSITVISION

Portability Bass et al. (2012) defines portability as how easily software built
for one platform can be changed to run on a di�erent platform. As Tran-
sitVision aspires to become a popular application, it should be available on
as many platforms as possible. TransitVision should be portable, as long
as it does not a�ect interoperability.

Usability According to Bass et al. (2012), usability is measured by how easily
a user can accomplish a desired task by using the system. Usability was
important for TransitVision to determine whether it satisfied users as a
representation of real-time data, which is Research Question 2.

4.3 The Technologies Behind TransitVision
Technologies have to adhere to the requirements set in Section 4.2, while enabling
rapid development because of the limited time frame. The authors primarily
looked at familiar technologies, but also explored alternatives outside their area
of expertise.

4.3.1 Targeting a Platform
By building a web application, it is possible to target a broad user base, as
every platform can use it. Tools, such as Phonegap1 or SenchaTouch2, can be
used to “wrap” web application into a “native” mobile applications, making it
possible to develop for several mobile platforms simultaneously using HTML5,
CSS and JavaScript. However, issues arise regarding performance and design
when compared to native mobile applications (Charland and Leroux, 2011). The
authors have experience with actual native applications being better suited for
their respective platform than a Phonegap/SenchaTouch application.

Android OS had a worldwide market share of 81.5%3 in 2014. One of the
reasons for this is because Android is available on numerous smartphones, in all
price ranges (Mahapatra, 2013). iOS is developed by Apple and is exclusive to
iPhones and iPads. Even though Mahapatra states that iOS is the most popular
operating system in Norway at 56%, Android is not far behind at 41,41% at the
end of 2013.

Because Android is Java-based, it is more approachable than iOS develop-
ment, as the authors have more Java experience, but little to no experience with
iOS’ Objective-C or Swift. According to Goadrich and Rogers (2011), the bar for
Android development is usually a lot lower than iOS development.

1http://phonegap.com/
2http://www.sencha.com/products/touch/#overview
3http://www.idc.com/getdoc.jsp?containerId=prUS25450615

33

http://phonegap.com/
http://www.sencha.com/products/touch/#overview
http://www.idc.com/getdoc.jsp?containerId=prUS25450615

CHAPTER 4. RESULTS

One of the major di�erences is the cost of development for each platform. The
development team has both Android and iOS phones available, so the hardware
costs will not be discussed. However, while deploying an application on an An-
droid device is free of charge and easy to do, Apple requires a developer licence.
The Apple Developer Licence cost $99/year4, and without it the application can
only be run in a simulator.

Given the limited time frame of this project, it is perhaps unwise to choose too
many unfamiliar technologies. Combined with development costs, and platform
openness, it is natural to select Android as the primary platform.

4.3.2 Selecting a Server Framework
The selected server framework for the TransitVision API, had to be able to solve
requirement S5 (coordinate conversion), S7 (send JSON-objects) and S8 (read
XML). Most server frameworks should support these features, but having tools
available out of the box could have a great impact on development time.

Node.js (Section 2.5.1) has all these features either included or in their vast
package manager. As node.js is a JavaScript framework it can easily send JSON-
objects, without the need for external libraries. The Coordinator package5 al-
lows quick conversion from the Universal Transverse Mercator coordinate system
(UTM) and many other formats, to latitude and longitude. Numerous XML-
parsers are also available6.

Asp.net was one of the alternatives to node.js, as it can fulfill all the re-
quirements. It is primarily made for windows computers, but can run on Linux
computers by using Mono7, or by using a docker8. Because of all these underlying
frameworks, the initial setup is tedious when compared to node.js.

Java is also one of the logical choices when it comes to web development, as
the authors has previous experience using Java. However, Java needs external
libraries to enable JSON interaction, as required by S7.

Node.js was eventually chosen because of its simplicity, performance and
JSON integration.

4.3.3 Selection of Database Technology
The only requirement directly linked to data storage is S1 (see Figure 4.4), while
S2, S3 and S7 are related to formatting and distribution of stored data. S7

4https://developer.apple.com/programs/start/ios/
5https://www.npmjs.com/package/coordinator
6https://www.npmjs.com/search?q=xml
7http://www.mono-project.com/docs/web/aspnet/
8http://blogs.msdn.com/b/webdev/archive/2015/01/14/running-asp-net-5-

applications-in-linux-containers-with-docker.aspx

34

https://developer.apple.com/programs/start/ios/
https://www.npmjs.com/package/coordinator
https://www.npmjs.com/search?q=xml
http://www.mono-project.com/docs/web/aspnet/
http://blogs.msdn.com/b/webdev/archive/2015/01/14/running-asp-net-5-applications-in-linux-containers-with-docker.aspx
http://blogs.msdn.com/b/webdev/archive/2015/01/14/running-asp-net-5-applications-in-linux-containers-with-docker.aspx

4.4. SYSTEM ARCHITECTURE

requires data to be in JSON-format, and it could therefore be useful to fetch
JSON-objects directly from the database.

MongoDB goes hand in hand with node.js, and is the most popular alternative
to the relational databases (see Section 2.5.2). By storing the files in the BSON
format and exporting them as JSON objects, TransitVision can directly distribute
the values from the database. CouchDB9 is very similar to MongoDB, as they
are both document-oriented NoSQL databases using JSON-objects. It is possible
to combine a relational database with JSON-objects, as shown with a proof-of-
concept by (Chasseur et al., 2013). However, it was determined a combination
of MongoDB and Node.js would be the best approach for TransitVision, as these
are o�cial tools which the authors have previous experience with.

4.3.4 Map APIs
When it comes to map solutions for Android, the most commonly used is the
Google Maps API (Section 2.4.1). There are many alternatives to the Google
Maps API on the Android platform, such as Here10, Mapbox11 and MapQuest12.
However, the Google Maps API is the most established map solution on Android
and was actively used by 54% of smartphone users in 201313. Users should
therefore already be familiar with the look and feel of Google Maps.

Google Maps API support all the requirements set for the map, such as draw-
ing multiple custom markers. It also supports user interaction with markers,
enabling detailed information about stops and vehicles to be displayed. Addi-
tionally, the authors have previous experience with the Google Maps API, but
lack experience with the other map solutions.

4.4 System Architecture
To fulfill the requirements and quality attributes set in Section 4.2, TransitVision
had to be built on a fitting architecture. This includes selecting an architectural
pattern and code structure.

9http://couchdb.apache.org/
10https://developer.here.com/
11https://www.mapbox.com/
12http://developer.mapquest.com/web/products/featured/android-maps-api
13https://www.globalwebindex.net/blog/top-global-smartphone-apps

35

http://couchdb.apache.org/
https://developer.here.com/
https://www.mapbox.com/
http://developer.mapquest.com/web/products/featured/android-maps-api
https://www.globalwebindex.net/blog/top-global-smartphone-apps

CHAPTER 4. RESULTS

4.4.1 Architectural Pattern

Figure 4.4: TransitVision Architecture

The initial idea was to have the mo-
bile application do everything from in-
formation gathering, to position esti-
mation. However, the system needs
to know the travel time between every
stop on a line to provide accurate posi-
tion estimates (this will be further dis-
cussed in Section 4.6.2). When few ve-
hicles are active on a given line, Tran-
sitVision will not always be able to
find travel times between all the stops
on the line. In those cases, it will rely
on travel time data from earlier posi-
tion queries. By storing these travel
times on a server, every user would be
able to utilize them.

By employing the Service-Oriented
Architecture (SOA) pattern (Bass
et al., 2012), TransitVision can ex-
tend its interoperability to include
other SIRI implementations, or poten-
tially di�erent standards like GTFS-
realtime. Figure 4.4 shows the simple
SOA architecture used in TransitVi-
sion. This pattern splits TransitVision into a back-end API and a front-end
Android application. This structure will only present users with the data they
need to draw the vehicles. Additionally, it will allow caching of responses and
send the same data to multiple users, thereby relieving tra�c from the SIRI
servers. A centralized API fosters portability, as individual platforms will simply
have to render the position estimates received from the API.

4.4.2 Class Structure of Mobile Application
A class diagram describes the code structure of the mobile application. The
diagram shows all classes, their attributes and methods, and their relationship.
The diagram can be used to easily understand the relations and code structure
for current and future developers.

Figure 4.5 shows the class diagram for the mobile application. At the top of
the figure is the activity, containing two fragments, and communicates with them
through an interface. Most of the functionality is contained within the fragments,

36

4.4. SYSTEM ARCHITECTURE

Figure 4.5: Final Class Diagram for the Mobile Application

which can be seen in the figure as well. The class LineDbHelper stores all lines
in a local database on the phone, which makes it possible to check whether the
line the user searches for exist or not.

37

CHAPTER 4. RESULTS

4.5 Design

This section presents the design choices for TransitVision. This includes a se-
quence diagram, technique used for calculating vehicle positions, prototypes,
icons, search tools, and a flow chart.

Figure 4.6: Interactions Between User, API, Database and Ruter

38

4.5. DESIGN

4.5.1 Estimating Positions
As discussed in Section 4.4, the primary function of the API is to present position
estimates. This process consists of several steps, which require di�erent data.
These steps are listed below and detailed in Section 4.6.2.

1. Update stop and line information.

2. Wait for a position request.

3. Query all stops on the given line for real-time information.

4. Analyze all arrivals, extract the necessary information and store it in the
database.

5. Calculate vehicle positions.

6. Return a list of all vehicles on the line, with their estimated positions.

To estimate the positions, the API uses a combination of stop positions and
estimated arrival times. As shown in Figure 4.6, and the list above, the API
will first update lines and stops before storing these in a database. It will then
wait for requests from the front-end. One of which is the request for vehicle
positions on a specified line. Once the API receives such a request, the server
will find all stops on that line, and query the agency for real-time data on those
stops. Using this data, and data from previous real-time queries, the API will
attempt to estimate the expected travel times between all the stops on the line.
By combining these estimated travel times, with the real-time arrival data, the
system can create and return a list of estimated vehicle positions.

4.5.2 Mock-Ups
Prototype mock-ups are tools used when developing user interfaces. Mock-ups
promote easy design testing, and are most commonly combined with user test-
ing14. Prototypes for TransitVision were primarily used to decide which design
elements to include, and not to test it on users. Chosen elements were type of
menu, and colors to use in the implemented application.

Paper Prototype

The first prototype was created on paper using a pencil and an Android screen
template15. It focused primarily on navigation within the application. Figure 4.7

14http://www.paperprototyping.com/what.html
15http://www.androiduipatterns.com/2012/09/ui-sketching-on-paper-templates.html

39

http://www.paperprototyping.com/what.html
http://www.androiduipatterns.com/2012/09/ui-sketching-on-paper-templates.html

CHAPTER 4. RESULTS

displays three di�erent menus: a Navigation Drawer, a Tab Menu and a Spinner
Menu. The spinner menu was quickly discarded because it is not commonly used,
and may seem unfamiliar to users, and is more fitting when filtering data. For
instance, when switching from a weekly view to a yearly view in a calendar16.

Figure 4.7: Navigation Drawer Menu, Tabbed Menu and Spinner Menu

More detailed drawings were created based on the decision to discard the
Spinner Menu. The prototype deemed the tabbed menu unfit, due to an ad-
ditional tabbed menu required for the list of stops; two tabbed menus on one
screen is not good practice. The navigation drawer was chosen as a menu for the
TransitVision.

Digital Prototype

The digital prototype contain the same elements as the paper prototypes, as
displayed in Figure 4.8. However, the digital mock-ups take the design one step
further by introducing colors, and more “real” screens and components. It is
thus easier to settle on which components are needed to realize the user interface
design, and which color combinations work well together. The presented mock-

16http://developer.android.com/guide/topics/ui/actionbar.html#Dropdown

40

http://developer.android.com/guide/topics/ui/actionbar.html#Dropdown

4.5. DESIGN

ups are visually clean and contain few components simultaneously. Colors used
are mainly black and green, in addition to grayscales.

(a) Navigation Drawer (b) Map View (c) Oracle View

Figure 4.8: Mockup Screens

The color chosen for the action bar is green. Other than being aesthetically
pleasing, its association with environmentally friendliness is related to using pub-
lic transit, and thus is a fitting color.

4.5.3 Line Search Tools
To interact with the map, the user has to search for the desired line. This is
done through the search field above the map. Tapping it will reveal a custom
keyboard where the user can type the line number.

Figure 4.9: Collapsed SearchView

The search field was initially a collapsi-
ble SearchView menu item appearing in
the action bar. It is illustrated in Fig-
ure 4.9 as the magnifying glass on the right
side of the action bar. When tapped, the
magnifying glass would slide to the left
and reveal a search field. However, a regular text field (or EditText) replaced it
because of incompatibility with the custom keyboard. The search field is visible
in Figure 4.10b.

The Android soft keyboard is used for regular typing on the phone, such
as text messages or Internet surfing. Other standard soft keyboards exist, like

41

CHAPTER 4. RESULTS

(a) Custom Keyboard (b) Search Field

Figure 4.10: The Search Components

a keyboard that only uses numbers for dialing phone numbers. Figure 4.10a
displays the keyboard used for Ruter. The keyboard consists of all digits, and a
set of letters, selected based on the Ruter database of line numbers. The letters
discovered in Ruter’s lines are A, B, C, E, F, L, N, P, R, T, X and Y.

4.5.4 Marker Icons
The marker icons representing stops and vehicles were di�cult to create. It is
important that the user understands what the icons mean as quickly as possible,
by making them as intuitive as possible. This will also promote usability, given
that the user understands the icons better. How intuitive the icons are depends
on what kind of icons already exists, and which of these the user is familiar with.

(a) Bus Icon (b) Subway Icon (c) Stop Icon

Figure 4.11: Early Icons

An example of the early icons created are illustrated in Figure 4.11. The figure
displays three of the icons used in the beginning of the development. These icons
were supposed to show what kind of transportation type the line were, and where
the stops were located. After showing the icons to others, they did not understand
which icons were the stops, and which were vehicles. Another disadvantage with

42

4.5. DESIGN

these icons is they do not illustrate which direction the vehicle is moving. Because
of this, new icons were created which clearly di�ers between what is a stop, and
what is a vehicle, displayed in Figure 4.12. This icon collection does not show
the di�erence between transportation types.

(a) Vehicle Icon (b) Stop Icon

Figure 4.12: Final Icons

The vehicle marker is inspired by GPS navigation arrows, which makes it more
associable with a moving vehicle than the older icons. The marker is animated
to show the vehicle’s position estimated with the real-time arrival data gathered
from Ruter. Additionally, the marker rotates to indicate the vehicle’s bearing.

The stop markers, on the other hand, are not moving. They are pinned on
the map when the request is sent. The icon is inspired by a tra�c stop sign, and
they are used to mark each stop on a line.

Both marker types are clickable. When clicked, the marker reveals a snippet,
or a text box, providing the user with more information. The stop marker snippet
contains information on the stops name, and which vehicles are arriving next.
Vehicle markers reveal which line it is, its final destination and its next stop.

4.5.5 Flow Chart

Figure 4.13 describes the interaction flow of TransitVision. The map screen is
the first screen presented at application launch, and is the top left picture. From
this screen, it is possible to either search for a line to display on the map, or to
change to the Oracle.

The arrows used to depict the flow are color coded, meaning the arrows with
the same color are part of the same action. Red and yellow arrows show how to
switch between the map and the Oracle. Green is the line search action, and blue
is the action for asking the Oracle.

43

CHAPTER 4. RESULTS

Figure 4.13: Flow Chart of TransitVision

4.6 Implementation of TransitVision
The final product of TransitVision consists of two main parts: an API and a
mobile application communicating with the API. This section presents the final
result of TransitVision based on previous sections in this chapter.

4.6.1 Mobile Application
The final mobile application consists of two screens, represented as fragments:
a Map Fragment and an Oracle Fragment. Each fragment has their individual
functionality, and is completely separate.

The list of stops had to be discarded due to the time frame being too short to
include it all. Because of this, the final product does not include the functionality

44

4.6. IMPLEMENTATION OF TRANSITVISION

to see a given stop and its future incoming vehicles.
Because of the stop fragment disappearing, the navigation drawer was unnec-

essary. It is more applicable for larger applications requiring the user to switch
between more screens. Since TransitVision only include two screens, the naviga-
tion drawer was changed. The screens are now represented as menu items in the
action bar. As seen in Figure 4.14, the Oracle can be reached from the icon in
the top right corner. Equally, the map can be reached from the top right corner
from the Oracle screen as well.

Figure 4.14: The Final Map Screen

Map Fragment

The map screen looks like the digital prototype from Section 4.5.2. Exceptions
are 1) the removal of the Navigation Drawer, 2) there is a new menu item in the
action bar and 3) the search field appears between the map and the action bar.

The fragment includes a map, and a search field connected to a custom key-
board. Figure 4.14 shows an example of the screen after a user has searched for
line number 1. By clicking the search field, a custom keyboard appears. Typing
the desired number and searching, will display the desired line on the Google Map.
This includes the polyline showing the links between stops, the stops themselves,
and the vehicles. Clicking a marker, either stop or vehicle, displays information
about the respective marker.

45

CHAPTER 4. RESULTS

Oracle Fragment

As mentioned in Section 2.1, this master thesis is part of the FUIROS project.
Previous projects have focused on the Bus Oracle and schedules, while this thesis
target real-time data. Including a fragment for the Oracle, was an e�ort to
combine the two. One of FUIROS newest additions, OsloTUC, is the expansion
of BusTUC to Oslo. This new feature created an incentive to utilize the potential
of BusTUC within TransitVision.

Figure 4.15: Oracle Example

The Oracle screen contains a simple search field. When a user interacts with
the search field, he is presented with the default soft keyboard, containing a
submit button. The Oracle presents its answer underneath the search field, as
shown in Figure 4.15.

Interaction with the OsloTUC (Jacobsson, 2015) is done by sending a POST
request to http://vm-6114.idi.ntnu.no:9001/search. Requests are format-
ted as a simple JSON-object similar to { "query": "How do I get from Majorstuen
to frogner plass?" }. OsloTUC will then respond with a JSON-object containing
a list of arrivals, together with a HTML encoded BusTUC response (Listing 5).
TransitVision does not use the HTML tags, and will trim them away before
displaying the result.

4.6.2 Providing Vehicle Positions
As mentioned in Section 4.5.1, the process of providing positions is split into sev-
eral steps. These steps involve data gathering, analysis, calculation and trans-

46

http://vm-6114.idi.ntnu.no:9001/search

4.6. IMPLEMENTATION OF TRANSITVISION

Bus 20 passes by Majorstuen
at 2:17 pm ,
at 2:25 pm ,
at 2:32 pm ,
at 2:40 pm ,
at 2:47 pm and
at 2:55 pm

and arrives at Frogner plass ,
3 minutes later .

The hours indicate the earliest passing times.

Listing 5: Response From OsloTUC

mission. How TransitVision executes these steps is detailed below, where the
most important steps are given their individual sections.

The API will start by gathering as much information it can, about the stops
and lines of a given transit agency. Afterwards, the API will wait for a position
request from the TransitVision application. When such a request is received, it
will attempt to estimate the positions of every vehicle on a line.

Updating Stop and Line information

The API requires a lot of information about the operation of vehicles in order
to estimate their position. Stop positions form the base of the estimation, to-
gether with information about which stops serve which lines. Ruter’s online API
provides easy access to this data. However, some obstacles must be overcome
to use these data for approximating positions. Firstly, the coordinate system
used by Ruter is UTM32V, has to be converted to latitude and longitude, to be
used by Google Maps. Other operators may use di�erent coordinate systems,
and converting them all to latitude and longitude would certainly be preferable.
Secondly, the list of stops served by a line is somewhat unordered, and does not
contain any information about travel times between the stops. Therefore the
order of stops, and time spent between them, is calculated using the real-time
information in the Analyzing Real-Time Data step.

Querying for Real-Time Arrival Information

The main function of Ruter’s real-time system is to provide developers and pas-
sengers with real-time arrival estimates for a given stop. These arrival estimates
are made using GPS-receivers fitted on vehicles, and logs of previous passes on
the same line.

When querying a stop for its next arrivals, a varying number of JSON objects,

47

CHAPTER 4. RESULTS

similar to the one in Listing 1, are returned. They contain information about
arrival time, vehicle, line, destination, and origin. By combining this information
from all stops on a given line, it is possible to extract the IDs of vehicles currently
in tra�c on this line by simply gathering the VehicleRef values. It is also possible
to compile a list of stops yet to visit for each vehicle, with their respective arrival
times. Sorting this list by arrival time will produce the correct order of the stops
on the line.

Analyzing the Real-Time Data

Once the API has gathered the real-time data, it must extract the data needed
for position estimation. Getting the order of stops and the average travel time
between them, is imperative to the position estimation. This is due to Ruter’s
API not sending any information about when vehicles passed stops in the past,
but only its future predictions. In order to position a vehicle, the API must know
which stop it passed last, and when. Why this is important is detailed in the
next step.

Finding travel time between stops is accomplished by using the list of stop
visits received in the previous step, which is sorted by VehicleRef and ExpectedAr-
rivalTime. By examining the list, it is possible to use the di�erences in arrival
times between stops, to find the average expected travel time between stops. Ve-
hicles yet to start on their route, will often list all the stop visits on the line,
and are very useful in this process. After finding all travel times, the API will
store them all in a database for future use. Whenever a query is executed, the
database will be checked for discrepancies, and updated.

Position Estimation

As the core functionality of the developed system is to provide position estimates,
their accuracy and reliability is crucial to the success of the system. Position
estimation is done as shown in Figure 4.16, by using the positions of stops and
vehicles’ estimated arrival times. In this example, vehicle 100001 has just passed
a stop, and is no longer listed there. The system does not know the exact time
the vehicle visited the previous stop, but it knows when it will arrive at the next
stop. It also knows how much time vehicle 100002 expects to spend traversing
the same distance. Thereby it can approximate the time vehicle 100001 passed
the last stop by simply subtracting the travel time from the expected arrival time
on the next stop. In this example, the vehicle likely passed the previous stop at
about 12:27:45, as the travel time between the stops is about 2 minutes.

Equation 4.1 is used to calculate the positions. Here pos1 and t1 indicate
position and time of visit for the next stop. pos0 and t0 are position and time
of visit for the previous stop. t

x

is the current time, and pos

x

is the resulting

48

4.6. IMPLEMENTATION OF TRANSITVISION

Figure 4.16: Position Estimation Model

position estimate of the vehicle. This method does not take roads into account,
and will simply draw the vehicle somewhere on a direct line between the two
stops. Including the Google Directions API (Section 2.4.2) in the (pos1 ≠ pos0)
factor, could allow vehicles to be drawn on the road, for a more realistic look.

Given: t0 < t

x

< t1 pos

x

= t

x

≠t0
t1≠t0

◊ (pos1 ≠ pos0) + pos0 (4.1)

Once all vehicles on a line have had their positions calculated, they are re-
turned to the user who initiated the request. This estimation method only applies
to SIRI-SM systems, as SIRI-VM already include vehicle locations.

Returning the Position Estimates

After the API has estimated the positions of the vehicles on the line, it will
return them to the user whom issued the request. This is done by sending a
list JSON-objects similar to the one in Listing 6, where each object represents a
vehicle. Only the VehicleID, TimeSinceLast, Position and Bearing are directly
related to the drawing of the vehicle-marker. ExpectedArrivalTime, NextBusStop-
Name, DestinationName, LineName and Transportation are used to display more
information about the vehicle when its marker is clicked. NeaxtBusStopID and
DestinationBusStopID are used for updating the arrival information.

49

CHAPTER 4. RESULTS

{
VehicleID: "21",
LineID: "1",
LineName: "1",
NextBusStopName: "Haugerud [T-bane]",
NextBusStopID: 3011530,
NextBusStopArrival: "2015-04-16T16:54:15+02:00",
ExpectedArrivalTime: "2015-04-16T16:54:15+02:00",
ExpectedArrivalTimeMS: 1429196055000,
Position: {

Longitude: 10.851413775636043,
Latitude: 59.92025840288001

},
DestinationName: "Ellingsrudaasen",
DestinationBusStopID: 3011630,
DestinationArrival: "null",
PreviousStopID: 3011520,
TimeSinceLast: 134000,
Transportation: 8,
Bearing: 37.450087647845805

}

Listing 6: Position of a Subway on Ruter’s Line 1

4.7 SIRI Interoperability
The SIRI standard only defines what data to transmit, not how and in which
format. Every agency presents a di�erent set of functions to interact with their
systems, which may cause interoperability issues. Network limitations and heavy
use of local standards, can also become a problem. This section defines the
di�erent issues, and proposes a set of properties that a SIRI implementation
must have to be compatible with TransitVision.

4.7.1 Server Limitations
Testing during development revealed that Ruter limits the tra�c to individual
machines. Because of this, the SOA structure became unscalable, as every in-
stance of the application send requests through the same machine. Position
queries may also take several seconds to gather enough information because of
these limitations. Because of time constraints, TransitVision kept the current
prototype structure. When further developing the system, individual phones
should communicate directly with Ruter, and other SIRI providers.

To measure the limitations, a simple test was executed using two machines
at di�erent locations. Each machine sent a new request as soon as their previous

50

4.7. SIRI INTEROPERABILITY

request was answered. See Section 3.4 for more details about this process.

Table 4.6: Stop Visit Requests from Multiple Machines to Ruter’s API

Stop 1 Stop 2
Alone Simultaneous Alone Simultaneous

Response Size ≥ 19 kB ≥ 19 kB ≥ 207 kB ≥ 207 kB
Machine 1 110 113 10 11
Machine 2 112 115 11 11

Based on the results displayed in Table 4.6, it is possible to calculate the
upper tra�c limit of Ruter’s API. Because Stop 2 is a transportation hub, it
returns a large number of arrivals compared to Stop 1. In the table, Response
Size represents the size of the packages returned from Ruter.

Machine 1 is located in Trondheim, Norway, while Machine 2 is located in
Amsterdam, Netherlands. As the machines achieve roughly the same results
independently of their location, it seems like Ruter does not treat foreign IPs
di�erently. They also seem to have no impact on the other machine’s response
time. Because of the proportionality between Response Size and the amount
of responses received, it became apparent Ruter limited the speed, and not the
number of responses.

Calculating the upper request limit was done by using the mean number of
requests per stop. For instance, the mean amount of requests was (110 + 113 +
112+115)/4 = 112.5, for Stop 1. This gave 19kB◊112.5

60s

= 35.6kB

/s for Stop 1 and
207kB◊11

60s

= 38.0kB

/s for Stop 2, indicating that Ruter’s limit is close to 40kB

/s

for each machine.

Table 4.7: Network Tra�c Limitations for Kolumbus’ API

Response Size Requests per minute Average speed
3557 Bytes 730 43kB

/s

913 Bytes 1076 16.4kB

/s

717 Bytes 1078 12.9kB

/s

3279 Bytes 751 41kB

/s

2033 Bytes 1081 36.62kB

/s

Pinpointing Kolumbus’ tra�c limitations was done using the method de-
scribed in Section 3.4. The only exception being that the test only used one
machine. Table 4.7 shows the results, which indicate that Kolumbus limit tra�c

51

CHAPTER 4. RESULTS

at about 18 requests per second, and 45kB

/s. Because of the decreased response
size, Kolumbus’ API can send packages about ten times faster than Ruter, with
the same tra�c limit. Consequently, Kolumbus could potentially create a more
responsive experience than Ruter.

4.7.2 Prerequisites for the SIRI-SM Implementations
Many SIRI-SM systems use di�erent versions of SIRI with slight deviations from
the standard. Below is a list of prerequisites a SIRI-SM implementation must
meet before TransitVision can use it. Data, such as list of lines and stops, may
be available through di�erent formats like GTFS or REGTOPP. If the SIRI-SM
implementation fails on one of the following prerequisites, TransitVision is unable
to estimate positions for that agency.

Fetching arrival times At the core of SIRI-SM is the functionality to get infor-
mation about incoming vehicles at a given stop. SIRI-SM is useless without
arrival times.

Distinguishing between vehicles using an ID It is imperative that the sys-
tem can distinguish between individual vehicles. SIRI defines this ID as
VehicleRef (see Listing 1 in Section 2.3.1), but it is not always included in
the SIRI-SM data.

Access to complete list of stops Usually a stop ID has to be presented to
query for real-time arrivals. The positions of the stops are also a crucial
part of the positioning algorithm described in Section 4.6.2.

Access to complete list of lines, and their stops When querying for a spe-
cific line, it is important that TransitVision knows which stops serve that
line.

Network tra�c limitations Limits on networking tra�c can cause a severe
performance hit to the map, shown in Section 4.7.1, a 40kB

/s cap is just
barely enough.

4.7.3 Prerequisites for the SIRI-VM Implementations
As SIRI-VM already has the positions available, TransitVision does not have
many prerequisites for SIRI-VM implementations. SIRI-VM systems usually send
a list of all vehicles in transit through a single web query (similar to the Tampere
example in Appendix B). TransitVision requires no further information from these
systems. While not required, it is preferable to have a list of stops, so they can
be drawn on the map together with the vehicles.

52

4.7. SIRI INTEROPERABILITY

Other SIRI-VM implementations return vehicle information on a line by line
basis. For those implementations TransitVision must have a list of the available
lines. Both line information and stop information may be available through
GTFS, REGTOPP or a similar format.

4.7.4 Compatibility of Di�erent SIRI Implementations
To establish the interoperability of TransitVision, numerous SIRI implementa-
tions were evaluated. Figure 4.8 shows the results from this examination. Agen-
cies included are Ruter17, Kolumbus18, Fram19, and AtB20 in Norway, Metropoli-
tan Transportation Authority (MTA)21 in USA, and Tampere Public Transport22

in Finland. The test examined the various prerequisites within each of the im-
plementations. AtB’s system is currently in development, and could not be ex-
amined. It is included because it is a prime target for expansion as it is located
in the same city as NTNU.

Table 4.8: Comparison of SIRI Implementations

Agency SIRI Solu-
tions

Format Coordinate
System

Eligible

Ruter SM JSON &
XML

UTM32V Yes

AtB SM is in de-
velopment

XML UTM32V Unknown

Kolumbus SM JSON &
XML

Lat/Long Yes with
GTFS data

MTA SM & VM JSON &
XML

Lat/Long Yes

Tampere
Public
Transport

SM & VM JSON &
XML

Lat/Long Yes

Fram (Fer-
ries)

SM & VM XML Lat/Long Yes

17http://labs.ruter.no/ofte-stilte-spoersmaal.aspx
18http://next.kolumbus.no/2013/08/30/forste-sniktitt-pa-sanntids-api-et
19http://www.frammr.no/info/Sanntidsinformasjon
20https://www.atb.no/aapne-data/category419.html
21http://bustime.mta.info/wiki/Developers/SIRIIntro
22http://developer.publictransport.tampere.fi/pages/en/siri.php

53

http://labs.ruter.no/ofte-stilte-spoersmaal.aspx
http://next.kolumbus.no/2013/08/30/forste-sniktitt-pa-sanntids-api-et
http://www.frammr.no/info/Sanntidsinformasjon
https://www.atb.no/aapne-data/category419.html
http://bustime.mta.info/wiki/Developers/SIRIIntro
http://developer.publictransport.tampere.fi/pages/en/siri.php

CHAPTER 4. RESULTS

4.7.5 Expanding to Tampere

Figure 4.17: TransitVision using Tampere SIRI-VM Data

An attempt of including Tampere’s SIRI-VM implementation was successfully
made. Their system provides locations of all buses using a single query, which
makes displaying the vehicles very straight forward. It must be noted that it
was a simple interoperability test, and Tampere is not currently available in
the application. This is mainly because it draws all buses in Tampere, and
phones have a tendency to lag when drawing and updating hundreds of markers
at the same time. The Tampere test version can be seen in Figure 4.17, and an
example for what is included when Tampere Public Transport sends their vehicle
information can be found in Appendix B.

4.7.6 Prospect of including Kolumbus’ API
Kolumbus’ API uses two simple URLs: one for sending stop information, and one
for real-time arrival estimates. Unfortunately, there is no line information in the
API, this can, however, be obtained through Kolumbus’ detailed GTFS data.

There are some di�erences in the data sent by Kolumbus compared to Ruter.
Kolumbus has decided to omit SIRI data they have deemed unnecessary, which
explains the extreme di�erence in response size when compared to Ruter (Sec-
tion 4.7.1). Even with these limitations, Kolumbus still meet the requirements set
in Section 4.7.2. Ruter send their date-times in ISO 8601 format (International
Organization for Standardization, 1988), while Kolumbus send their date-times

54

4.8. USER TESTING

in milliseconds since Unix epoch23. Ruter follows the Norwegian UTM32V coor-
dinate system, which has to be converted to latitude and longitude to be used
in Google Maps. Kolumbus provide their coordinates in latitude and longitude,
thus no conversion is necessary.

Including Kolumbus in TransitVision should be easy once information about
the lines can be gathered. Lack of line information is the main obstacle when
including Kolumbus data. It may be overcome by creating a GTFS parser, to
gather the missing line information. Such a GTFS parser could also be used to
include many other SIRI implementations.

4.8 User Testing
After completing TransitVision, the test phase could begin as described in Sec-
tion 3.5. 15 participants answered a SUS questionnaire after doing a short test
of the application. The SUS questionnaire resulted in a score of 86. Participants
were also asked to give their thoughts on TransitVision, which gave valuable
feedback.

4.8.1 Feedback Received from User Testing
Testers discovered several flaws, and potential improvements for the application.
Some participants noted that the application does not notify the user if the API
is unavailable. Instead, it might seem like the application is searching for the line
as expected.

When a request is sent, there is a little response delay, due to the server
needing to gather all data to calculate vehicle positions. Because of the response
delay, the user is sometimes left wondering whether the application is working as
intended. To combat this, the participants suggested some sort of loading screen,
to indicate TransitVision is processing the request.

Other participants wanted an easier way of finding the name of a stop. They
suggested having the name of the stops appear when zooming in on the map.
Thereby eliminating the need for the user to tap on the marker to see the name
of the stop. By adding this feature, the user would only have to tap the stop
marker to see when the next vehicles arrive.

One of the participants also suggested di�erent vehicle icons for the di�erent
modes of transport. This removes the need to tap vehicle markers in order to
find its vehicle type. The first icons indicated the vehicle type, but because of
earlier feedback claiming the icons looked like stops, they were discarded (further
discussed in Section 4.5.4).

23
00:00:00 UTC, Thursday, January 1st 1970

55

CHAPTER 4. RESULTS

4.8.2 The SUS Score
The survey and testing phase of the project was conducted with 15 participants.
Section 2.7 describes the test, and justifies the number of participants. Most of
the participants lived in Oslo, and had used other public transit mobile applica-
tions before.

Table 4.10: SUS Results

Participant # 1 2 3 4 5 6 7 8 9 10
1 1 1 3 1 4 2 5 2 5 1
2 5 1 4 1 4 1 5 1 5 2
3 2 1 5 1 1 1 5 1 5 1
4 4 1 5 1 4 1 4 1 3 1
5 5 2 4 1 4 5 1 1 2 1
6 4 1 5 2 4 1 4 2 5 1
7 4 1 5 2 4 2 5 1 4 1
8 5 1 5 1 5 1 5 1 5 1
9 4 2 4 1 4 1 5 3 4 2
10 5 1 5 1 5 1 4 2 4 2
11 2 1 3 1 4 2 4 2 3 1
12 4 1 5 1 4 1 4 1 5 2
13 5 2 5 1 5 1 5 1 5 1
14 5 2 4 1 4 1 5 2 4 1
15 4 1 5 2 5 2 5 1 4 2

Table 4.10 lists the responses received from the testers through the SUS ques-
tionnaire, further described in Section 2.7. Each row in the table indicates a
new participant, while the columns represent the statements. The statements
are listed in Appendix A.1.

By using the equations 2.1, 2.2 and 2.3 from Section 2.7.1, the SUS score
of TransitVision could be computed. After shifting all responses to range from
0 to 4 by using Equation 2.1, the mean response of each question computes to
2.93, 3.73, 3.47, 3.80, 3.07, 3.47, 3.40, 3.53, 3.20 and 3.67. Adding them together
and multiplying by 2.5, results in a SUS score of 85.67 ¥ 86. Which, according
to Bangor et al. (2008), is close to being considered superior, and confirms the
TransitVision’s usability as described in Section 4.4.

Table 4.11 shows statistics about the ten statements, based on the fifteen
responses from Table 4.10. It includes the mean values, the standard deviation,
a confidence interval with a 95% confidence level, and the range. The true range
column contains the range values rounded to integers, making them more suitable

56

4.8. USER TESTING

as SUS responses.
The least desirable reactions are lower numbers for odd numbered statements,

and higher numbers for even numbered statements. Picking out the worst possible
responses within the true range in Table 4.11, gives 3, 1, 4, 1, 4, 2, 4, 2, 4, 2.
Shifting the numbers to range from 0 to 4 with the method earlier mentioned
in Section 2.7, results in 2, 4, 3, 4, 3, 3, 3, 3, 3, 3. Adding them together and
multiplying by 2.5 gives:

(2 + 4 + 3 + 4 + 3 + 3 + 3 + 3 + 3 + 3) ú 5
2 = 77.5 (4.2)

The result from the worst possible response within the range is still a good score
at 77.5 (Bangor et al., 2008).

Table 4.11: Statement Statistics

Statement Mean Standard
Deviation

Confidence
Interval

Range True
Range

1 3.93 1.2365 ±0.63 3.30 - 4.56 3 - 5
2 1.27 0.4422 ±0.22 1.05 - 1.49 1 - 1
3 4.47 0.7180 ±0.36 4.11 - 4.83 4 - 5
4 1.20 0.4000 ±0.20 1.00 - 1.40 1 - 1
5 4.07 0.9286 ±0.47 3.60 - 4.54 4 - 5
6 1.53 1.0242 ±0.52 1.01 - 2.05 1 - 2
7 4.40 1.0198 ±0.52 3.88 - 4.92 4 - 5
8 1.47 0.6182 ±0.31 1.16 - 1.78 1 - 2
9 4.20 0.9092 ±0.46 3.74 - 4.66 4 - 5
10 1.33 0.4714 ±0.24 1.09 - 1.57 1 - 2

In order to show the variations in the responses better, an error bar diagram
was created for a visual representation. The diagram is displayed in Figure A.1
in Appendix A.2.

57

CHAPTER 4. RESULTS

58

Chapter 5

Discussion

Initial plans were determined during the autumn project, such as platform and
real-time standard to use. Thus, the decisions on which features to include and
how to organize the project were established early. Because of the emergence of
several ambitious ideas, the project quickly became too big to fit within the time
constraint. Eventually, the scope of the application required a reduction to make
the map feature as good as possible.

TransitVision turned out close to the original plan. The map functionality
works well on a smartphone, and does not need a computer-sized screen to be
functional. During development, it was discovered that simultaneously drawing
markers for all stops and all vehicles in Oslo would be too much work for a regular
smartphone to handle. This would also look very messy on a small smartphone
screen, and be counterproductive by giving the user too much information at the
same time. Because of this, the application requires input from the user to show
a desired line. Even though there is some latency when displaying vehicles, as
described in Section 4.8.1, the authors are pleased with how fast the application
is calculating vehicle locations based on the real-time data retrieved from the
server.

The mobile application uses a simple design, and thereby emphasizes the map
functionality. UI design is also true to the standard concepts for Android applica-
tion development. There are not introduced any new elements in the application
which users may be unfamiliar with. The authors believe TransitVision promotes
an easy flow of information on user request, and does not push unnecessary data
or details.

The discoveries made during development, an analysis of the results, and
discussion are included in this chapter.

59

CHAPTER 5. DISCUSSION

5.1 Preliminary Study
Information gathered through the preliminary survey helped in the development
of TransitVision. The section of the survey were participants answered questions
about the transit application they used made it possible to map functionality
that worked well.

Information on waiting time helped with answering Research Question 3, and
made the authors realize that mobile applications may not help that much with
the time spent waiting for a buss. Given that the waiting time data gathered only
captures the participants’ perceived waiting time, it might be possible to point
out that mobile application users expect more accurate data. When the bus does
not arrive when it says it should, the mobile application users get frustrated.
Travelers using time tables are aware the bus is not necessarily on schedule, and
thus do not mind waiting. Based on the feedback, it might seem like the existing
mobile applications do not present real-time data in a satisfactory manner.

5.2 Fulfillment of Requirements
Even though several system requirements were created early in the development,
not all of them were feasible mostly due to the time constraint. The requirements
not implemented are presented and explained in this section. As a reminder, the
requirements are listed in Table 4.4 in Section 4.2.

Table 5.1: Status of Requirements

Status Requirements
Fully Completed M1, M2, M5, M10, M11, S1, S2, S3, S4, S5, S7, S9, S6
Partly Completed M3, M4, S11
Not Completed M6, M7, M8, M9, S8, S10

Table 5.1 shows an overview of the requirement fulfillment. Requirement M3
and M4 are only partly implemented as originally intended. To display stops (M3)
the user has to search for a line, and only the stops managed by that line will be
displayed. The map can draw all stops, just not at the same time. Requirement
M4 was initially related to the list of stops, were the user could search for a stop
and see incoming vehicles. By searching for a line, the related stop markers are
clickable, making the user able to see incoming vehicles.

Requirement S10 was one of the lowest rated server requirements, and was
quickly deemed unnecessary. S11 was only partially implemented and is discussed
in detail in Section 5.3.3. The lack of S8 has a severe impact on the interoper-

60

5.3. OBSTACLES FOUND DURING DEVELOPMENT

ability of TransitVision. Many SIRI systems use JSON because it is more human
readable than XML, and is usually smaller in size. SIRI is primarily an XML
standard, and TransitVision should be able to read XML files to become inter-
operable. Because development was done in node.js and JavaScript, it was easier
to use JSON. Switching to XML should be manageable as the SIRI-XML files
contain the same data and attribute names as the SIRI-JSON objects. Node.js
packages like xml2js1 can help making the process easy.

5.3 Obstacles Found During Development
As with any IT system, many issues arose during development. Some of these
altered the structure of the implementation, and are described below.

5.3.1 Vehicle Animations
Initially the vehicles would be static on the map, and would simply display their
locations at the time of request. Ideally, the application could retrieve the posi-
tions from the API regularly, creating a smooth animation. However, because of
the limitations of the servers, this seems to be problematic. To solve this issue,
the API sends a list of estimated stop visits to the mobile application, instead of
sending position estimates. This means that the individual phones would han-
dle the position estimation, reducing the API to a simple adapter between the
di�erent SIRI implementations and the application.

The application calculates the position estimates every frame (frame rate may
vary depending on the device running the application), creating smooth vehicle
animations. The frequency of the real-time data updates increases the closer a
vehicle is to the stop, spanning from 12 to 60 times an hour. Once a vehicle
passes a stop, TransitVision will instantly update the vehicle’s next stop, further
ensuring the accuracy of the position estimate.

All these precautions for updating frequency ensure accurate position esti-
mates, smooth animations, and reduced Internet tra�c. The phone estimates
the positions using the same technique as described in Section 4.6.2. Server-side
estimates are still available, but the application does no longer use them.

5.3.2 Irregularities in Ruter’s Data
When asking Ruter for information about a given line, it will present a list of
stop IDs served by this line. The order of the list is usually correct, but there are
several problems associated with it.

1https://www.npmjs.com/package/xml2js

61

https://www.npmjs.com/package/xml2js

CHAPTER 5. DISCUSSION

1. Stops visited while going in one direction, are not always the same as the
opposite direction. For instance, a vehicle sometimes serves a stop in only
one direction. Ruter’s metro stop Gulleråsen on line 1, is an example of
this.

2. Some lines visit di�erent stops on their last and first run of the day. Trains,
metros and trams sometimes park at a depot not directly connected to their
line. Consequently, most metro lines list Ryen, and stops in between as a
part of their line, because Ryen is the largest depot in Oslo.

3. Some of the listed stops are not visited by that line number. For example
line 6 lists stops visited by line 4, as metros on these two lines will switch
from line 6 to line 4, at a certain stop.

TransitVision handles the first issue in the Analyzing the Real-Time Data step
in Section 4.6.2. TransitVision deduces the correct order of stops by comparing
the real-time data with the line data. TransitVision has issues number 2, but
the rarity of the case makes the issue negligible. Issue 3 causes TransitVision to
draw line 6 with the stops of line 4. It will not draw any vehicles between those
stops, as line 6 has no arrivals there. Similar issues may exist for other lines.

5.3.3 Google Directions API
As suggested in Section 4.6.2, TransitVision should draw buses on roads in the
Google Map. The Google Directions API (Section 2.4.2) is able to do just that,
and it is compatible with Google Maps.

There is currently an unused Google Directions integration in the developed
web API. The integration was discarded mainly because of inaccuracies in Ruter’s
stop positioning. Ruter uses a single coordinate to denote stops, even though
there usually are stops on both sides of the road. Ruter has simply chosen
one of the stops as the coordinate for both. Consequently, Google Directions
would sometimes produce an extreme detour to get to the other side of the road,
especially if the stop is on the highway.

Another issue with the Google Directions API is that it is not made for public
transportation in the sense that it will never present a route that follow a bus-
only road. It will instead take yet another detour. Manually editing the bus stop
location slightly or altering the polyline drawn on the map can solve both these
issues. The large amount of such errors made them too time consuming to fix.

Because Google Directions API set a limit on the amount of queries an appli-
cation can send in a day, the API will store the directions between two stops. By
combining the directions, TransitVision can draw a polyline following the entire
route. By storing the directions, it is possible to include Google Directions in a
future version.

62

5.4. USER TEST

5.4 User Test

The results from SUS were very promising, giving TransitVision a score of 86.
Even though this is not a superior score, it is a decent start. Based on this, the
application could expand features, and then run another SUS questionnaire. The
new score could be compared to the previous to see the change in reaction, and
used to evaluate whether the responses are positive or negative to the new feature.
An example of a new testable feature could be connecting the Oracle with the
map, displaying the query result on the map. This idea is further explained in
Section 6.1.1.

There are some irregularities in the responses, as seen in Table 4.10 in Sec-
tion 4.8.2. An example is participant 5’s response to statement 7: I would imagine
that most people would learn to use this system very quickly. The rest of the re-
sponses to statement 7 are only 4s and 5s. Statement 4: I think that I would need
the support of a technical person to be able to use this system, should have been
answered di�erently by participant 5, due to the response to number 7. Because
if most people would take a long time learning the system, they should need
support from technical persons to be able to use it. It is impossible to know why
such irregularities occur. It may stem from the participant 1) not understanding
the statement, 2) reading the statement incorrectly (for instance thinking that
statement 7 said wouldn’t, instead of would), or 3) simply not paying attention
to what they were responding to. Given that the participant is not agreeing with
himself, he could have been disregarded from the sample. However, the complete
sample was included in the calculation of the SUS score.

The number of participants was argued in Section 3.5. However, a larger
sample size would have made the result even better. With a sample size of 15, each
individual response have a big e�ect on the final score. With the irregularities
discovered, the final score might not be entirely correct.

While SUS is a quantitative measure, the study could also benefit from qual-
itative feedback from testers. Qualitative feedback is easier to interpret and use
when improving a user interface. In addition to SUS, some testers gave ver-
bal feedback about TransitVision. In retrospect, more verbal feedback would be
preferable from the user test, combined with response from more users.

5.5 Research Questions and Goal Achievements

The following section discusses in which degree the goal has been fulfilled, and
the research questions answered.

63

CHAPTER 5. DISCUSSION

5.5.1 The Goal
Develop a smartphone map application, which approximates the locations of pub-
lic transportation vehicles using SIRI-SM real-time arrival data. TransitVision
fulfills this goal. The final result is a mobile application capable of estimating
vehicle positions based on real-time data gathered from Ruter’s API. Currently
it supports SIRI-SM, but was also tested for SIRI-VM, which was easily included
in the system.

5.5.2 Research Question 1
How can the SIRI standard be utilized to develop an application that can be ap-
plied to any SIRI implementation, without considerable modifications? SIRI is
not a very strict standard, and every implementation of it is di�erent regarding
function names, tra�c limitations, file-format, or data-format. Because of this,
not all SIRI implementations are applicable. For a SIRI-SM implementation to
be classified as usable for TransitVision, it must fulfill the prerequisites set in Sec-
tion 4.7.2. While these prerequisites apply to TransitVision, other applications
utilizing the SIRI standard may have di�erent requirements.

5.5.3 Research Question 2
How can a mobile map application, using SIRI-SM, provide a satisfactory repre-
sentation of real-time data? TransitVision is a possible solution to this question.
The results from the questionnaire deemed a positive response from the testers
with a SUS score of 86. This shows that TransitVision delivers a satisfactory
representation of the real-time data using SIRI-SM on a map.

5.5.4 Research Question 3
What impact does mobile transit applications have on travellers frustration and
perceived waiting time? Numerous applications and their usage were examined in
the preliminary study. However, the survey indicated the applications had little to
no impact on the participants’ perceived waiting time, compared to participants
of more traditional methods. Thus, TransitVision focuses on a di�erent way of
presenting real-time data, which the testers had a positive response to. With
some more work and perfecting, TransitVision might have a positive impact on
waiting time.

64

Chapter 6

Conclusions

As travelers using transit applications think they wait about as long as other trav-
elers, these applications are perhaps inadequate for presenting real-time transit
data. TransitVision provides a working alternative, and can be converted to al-
most any SIRI-SM system with few code modifications. A user test confirmed
TransitVision’s usefulness and provided ideas for future improvements.

SIRI is a very flexible standard, and every implementation of it is di�erent.
SIRI does not foster interoperability to a satisfactory degree, because agencies
use di�erent data formats. To achieve interoperability, third party applications
must be tailored for the individual SIRI implementations.

Usability is an important factor in transit applications, and is often the decid-
ing factor when choosing which application to use. By expanding TransitVision
to include features from similar applications, while maintaining its current level of
usability, it should be able to challenge its competition. Because of its unrivaled
map functionality, it may even be able to outmatch them.

TransitVision shows that it is possible to generate position approximations for
public transportation vehicles using real-time arrival estimates. Hopefully, more
widespread use of such applications might give public transportation agencies
more incentive to make their GPS data publicly available. It may also have a
positive impact on the travelers’ satisfaction.

Through this thesis, TransitVision became a successful proof-of-concept, but
still requires work before it can become a finished product.

65

CHAPTER 6. CONCLUSIONS

6.1 Future Work
Several ideas for future work with TransitVision have been discussed, and this
section presents two of these suggestions.

6.1.1 Connecting the Oracle with the Map
The finished version of TransitVision’s two main features (the map and the Ora-
cle) are completely separate, and define two completely di�erent ways of present-
ing arrival data. By connecting the Oracle and the map it would be possible to
draw the response from the Oracle on the map, including the vehicle’s position.
The trip can be drawn on the roads using the Google Directions API. TransitVi-
sion will require modifications to the Google Directions response, as discussed
in Section 5.3.3. By implementing this Oracle improvement, it will be better
integrated into the map application.

6.1.2 Expand to Other Cities
The primary incentive to choose SIRI, was the aspect of interoperability be-
tween multiple cities. Several approaches have been discussed, but the focus of
this project has been on developing an adaptable prototype application and not
deploying it on as many systems as possible. To reach as many cities as possi-
ble, TransitVision could also incorporate other real-time standards like NextBus
(Section 2.3.2), or GTFS-realtime (Section 2.3.3).

AtB in Trondheim has promised the release of their SIRI-SM implementation
later this year, and because the FUIROS project is centered in Trondheim, it is
the ideal candidate for further expansion.

66

6.1. FUTURE WORK

67

CHAPTER 6. CONCLUSIONS

68

Acronyms

AKT Agder Kollektivtrafikk AS. 6

API Application Program Interface. 7–9, 13, 14, 17, 31, 32, 34–36, 39, 44, 47–49,
51, 52, 54, 55, 61, 62, 64, 66, 73, 77, 78

APTA American Public Transportation Association. 7

AVL Automatic Vehicle Location. 8

BSON Binary JSON. 15, 35

BusTUC Bus, The Understanding Computer. 1, 5, 31, 32, 46

CEN European Committee for Standardization. 2, 7, 8

DDOS Distributed Denial of Service. 23

FUIROS the Futures Ultimate Intelligent Route-Organizing System. 1, 5, 46,
66

GPL General Public License. 7

GPS Global Positioning System. 1, 43, 47, 65

GTFS General Transit Feed Specification. 6, 9, 11, 15, 36, 52–55, 66

JSON JavaScript Object Notation. 9, 11, 14, 15, 32, 34, 35, 46, 47, 49, 53, 61

MBTA Massachusetts Bay Transportation Authority. 11

MTA Metropolitan Transportation Authority. 53

69

Acronyms

MultiBRIS Multiple-platform approach to the Ultimate Bus Route Information
System. 5

NeTEx Network Timetable Exchange. 7

NTNU Norwegian University of Science and Technology. 1, 5, 53

REGTOPP Regional Trafikkopplysing. 6, 52, 53

SIRI Service Interface for Real Time Information. 2, 4, 7–9, 11, 24, 27, 31, 36,
50, 52–55, 61, 64–66

SIRI-SM SIRI Stop Monitoring Service. 2, 9, 10, 23, 32, 49, 52, 64–66

SIRI-VM SIRI Vehicle Monitoring Service. 9–11, 17, 49, 52–54, 64

SOA Service-Oriented Architecture. 36, 50

SUS System Usability Scale. 18, 19, 24, 27, 55–57, 63, 64

TABuss Tore Amble Buss. 5

UTM Universal Transverse Mercator coordinate system. 34, 47, 53, 55

XML EXtensible Markup Language. 7–9, 11, 32, 34, 53, 61

70

Bibliography

Amble, T. (2000). BusTUC - A Natural Language Bus Route Oracle. In Pro-
ceedings of the sixth conference on Applied natural language processing, pages
1–6. Association for Computational Linguistics.

Andersstuen, R. and Engell, T. B. (2011). MultiBRIS: A Multiple Platform
Approach to the Ultimate Bus Route Information System for Mobile Devices.
Master’s thesis, Norwegian University of Science and Technology.

Andersstuen, R. and Marcussen, C. J. (2012). TaleTUC: Automatic Speech
Recognition for Bus Route Information System. Master’s thesis, Norwegian
University of Science and Technology.

Antrim, A., Barbeau, S. J., et al. (2013). The many uses of gtfs data–opening
the door to transit and multimodal applications. Location-Aware Information
Systems Laboratory at the University of South Florida.

Bangor, A., Kortum, P. T., and Miller, J. T. (2008). An empirical evaluation of
the system usability scale. International Journal of Human-Computer Inter-
action, 24(6):574–594.

Bass, L., Clements, P., and Kazman, R. (2012). Software Architecture in Practice.
Addison-Wesley Professional, 3rd edition.

Bratseth, J. S. (1997). Bustuc - a natural language bus tra�c information system.
Master’s thesis, Norwegian University of Science and Technology.

Brooke, J. (1996). Sus-a quick and dirty usability scale. In Jordan, P. W.,
Thomas, B., McClelland, I. L., and Weerdmeester, B., editors, Usability Eval-
uation in Industry, chapter 21, pages 189–194. London: Taylor & Francis.

CEN/TC278/WG3/SG7 (2005). Siri management overview - white paper.

CEN/TC278/WG3/SG9 (2014). Public transport - Network and Timetable Ex-
change (NeTEx).

71

BIBLIOGRAPHY

Charland, A. and Leroux, B. (2011). Mobile application development: web vs.
native. Communications of the ACM, 54(5):49–53.

Chasseur, C., Li, Y., and Patel, J. M. (2013). Enabling json document stores in
relational systems. In WebDB, pages 1–6.

Couper, M. P. (2000). Review: Web surveys: A review of issues and approaches.
Public opinion quarterly, pages 464–494.

Diehl, M. and Stroebe, W. (1987). Productivity loss in brainstorming groups:
Toward the solution of a riddle. Journal of personality and social psychology,
53(3):497.

Faulkner, L. (2003). Beyond the five-user assumption: Benefits of increased
sample sizes in usability testing. Behavior Research Methods, Instruments, &
Computers, 35(3):379–383.

Finstad, K. (2006). The system usability scale and non-native english speakers.
Journal of Usability Studies, 1(4):185–188.

Gibson, R. and Erle, S. (2006). Google Maps Hacks. " O’Reilly Media, Inc.".

Goadrich, M. H. and Rogers, M. P. (2011). Smart Smartphone Development:
iOS Versus Android. In Proceedings of the 42Nd ACM Technical Symposium
on Computer Science Education, pages 607–612. ACM.

Grisby, D. (2013). Apta surveys transit agencies on providing information and
real-time arrivals to customers. Am. Public Transit Assoc, pages 1–13.

International Organization for Standardization (1988). Data Elements and Inter-
change Formats: Information Interchange: Epresentation of Dates and Times.
International Organization for Standardization.

Jacobsson, E. (2015). Oslotuc - natural language bus oracle for a new city.
Master’s thesis, Norwegian University of Science and Technology.

Jick, T. D. (1979). Mixing qualitative and quantitative methods: Triangulation
in action. Administrative science quarterly, pages 602–611.

Kaner, C. (2003). An introduction to scenario testing. Software Testing & Quality
Engineering magazine.

Knowles, N. (2008). SIRI Handbook & Functional Service Diagrams. Ki-
zoom Limited. http://user47094.vs.easily.co.uk/siri/schema/1.3/
doc/Handbook/Handbookv15.pdf.

72

http://user47094.vs.easily.co.uk/siri/schema/1.3/doc/Handbook/Handbookv15.pdf
http://user47094.vs.easily.co.uk/siri/schema/1.3/doc/Handbook/Handbookv15.pdf

BIBLIOGRAPHY

Lau, F., Rubin, S. H., Smith, M. H., and TrajkoviÊ, L. (2000). Distributed denial
of service attacks. In Systems, Man, and Cybernetics, 2000 IEEE International
Conference on, volume 3, pages 2275–2280. IEEE.

Li, X., Liu, Z., and Jifeng, H. (2004). A formal semantics of uml sequence dia-
gram. In Software Engineering Conference, 2004. Proceedings. 2004 Australian,
pages 168–177. IEEE.

Mahapatra, L. (2013). Android vs. iOS: What’s the Most Popular Mobile Oper-
ating System in Your Country? http://www.ibtimes.com/android-vs-ios-
whats-most-popular-mobile-operating-system-your-country-1464892.
Accessed: 2014-10-29.

Marcussen, C. J. and Eliassen, L. M. (2011). TABuss: An Intelligent Smartphone
Application. Master’s thesis, Norwegian University of Science and Technology.

McHugh, B. (2013). Pioneering open data standards: The gtfs story. Edited by
Brett Goldstein with Lauren Dyson, pages 125–135.

Nettbuss (2014). Årsrapport 2013, nettbuss. http://www.nettbuss.no/www/
resources/nbno/f/fc02b61a1b120b332dfda8c6cefb82f9.pdf.

NextBus Incorporated (2013). Public xml feed. http://www.nextbus.com/
xmlFeedDocs/NextBusXMLFeed.pdf.

Oslo og Akershus Trafikkservice AS (1996). Regtoppformatet versjon 1.2. http:
//labs.trafikanten.no/media/12753/RF_1-2-1-1.pdf.

Porter, S. R. and Whitcomb, M. E. (2003). The impact of contact type on web
survey response rates. Public Opinion Quarterly, pages 579–588.

Schmier, K. and Freda, P. (2002). Public transit vehicle arrival information
system. US Patent 6,374,176.

Sims, C. and Johnson, H. L. (2014). Scrum: a Breathtakingly Brief and Agile
Introduction. Dymaxicon.

Snyder, C. (2003). Paper prototyping: The fast and easy way to design and refine
user interfaces. Newnes.

Tibaut, A., Kau�i�, B., and Rebolj, D. (2012). A standardised approach for
sustainable interoperability between public transport passenger information
systems. Computers in Industry, 63(8):788–798.

Tilkov, S. and Vinoski, S. (2010). Node. js: Using javascript to build high-
performance network programs. IEEE Internet Computing, (6):80–83.

73

http://www.ibtimes.com/android-vs-ios-whats-most-popular-mobile-operating-system-your-country-1464892
http://www.ibtimes.com/android-vs-ios-whats-most-popular-mobile-operating-system-your-country-1464892
http://www.nettbuss.no/www/resources/nbno/f/fc02b61a1b120b332dfda8c6cefb82f9.pdf
http://www.nettbuss.no/www/resources/nbno/f/fc02b61a1b120b332dfda8c6cefb82f9.pdf
http://www.nextbus.com/xmlFeedDocs/NextBusXMLFeed.pdf
http://www.nextbus.com/xmlFeedDocs/NextBusXMLFeed.pdf
http://labs.trafikanten.no/media/12753/RF_1-2-1-1.pdf
http://labs.trafikanten.no/media/12753/RF_1-2-1-1.pdf

BIBLIOGRAPHY

Tullis, T. S. and Stetson, J. N. (2004). A comparison of questionnaires for assess-
ing website usability. In Usability Professional Association Conference, pages
1–12.

Watkins, K. E., Ferris, B., Borning, A., Rutherford, G. S., and Layton, D. (2011).
Where Is My Bus? Impact of Mobile real-Time Information on the Perceived
and Actual Wait Time of Transit Riders. Transportation Research Part A:
Policy and Practice, 45(8):839–848.

74

Appendix A

SUS

This chapter contanis extra information on SUS.

A.1 The Questionnaire
This list contains all statements used in the SUS evaluation.

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to
use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very
quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

75

APPENDIX A. SUS

A.2 Error Bar Diagram
Figure A.1 displays the mean answers to each statement, including the confidence
interval at a 95% confidence level.

Figure A.1: SUS Answers With 95 % Confidence Level

76

Appendix B

SIRI-VM Example

{
ValidUntilTime: 1424172074013,
MonitoredVehicleJourney: {

LineRef: {
value: "11"},

DirectionRef: {
value: "2"},

FramedVehicleJourneyRef: {
DataFrameRef: {

value: "2015-02-17"},
DatedVehicleJourneyRef: "1235"},

OperatorRef: {
value: "paunu"},

OriginName: {
value: "Korvenkatu 44",
lang: "fi"},

DestinationName: {
value: "Sarankulma",
lang: "fi"},

Monitored: true,
VehicleLocation: {

Longitude: 23.7416098,
Latitude: 61.45785},

Bearing: 43,
Delay: "P0Y0M0DT0H0M33.000S",
VehicleRef: {

value: "paunu_136"}
},
RecordedAtTime: 1424172044013

},

Listing 7: SIRI-VM JSON Returned from Tampere Bus Service Online API

77

APPENDIX B. SIRI-VM EXAMPLE

78

Appendix C

Digital Attachements

C.1 Github Repositories

The QR codes direct you to the repositories of the application. One for the
API, https://github.com/OleKN/busMapAPI, and one for the mobile applica-
tion, https://github.com/sofiabakke/BusMapApp.

(a) The Web API (b) The Mobile Application

Figure C.1: Links to Public Code Repositories

79

https://github.com/OleKN/busMapAPI
https://github.com/sofiabakke/BusMapApp

APPENDIX C. DIGITAL ATTACHEMENTS

C.2 TransitVision Google Play Link
The QR code in Figure C.2 will take you to the Google Play listing for Tran-
sitVision. It can alternativly be reached through: https://play.google.com/
store/apps/details?id=no.application.sofia.busmapapp

Figure C.2: Link TransitVision in Google Play Marketplace

80

https://play.google.com/store/apps/details?id=no.application.sofia.busmapapp
https://play.google.com/store/apps/details?id=no.application.sofia.busmapapp

C.3. VIDEO OF TRANSITVISION IN ACTION

C.3 Video of TransitVision in Action
The QR code below will direct you to a short YouTube video. The link goes to
the video http://youtu.be/GVLsDureRfs and shows the main features of the
map.

Figure C.3: Link to Video Showing TransitVision in Action

81

http://youtu.be/GVLsDureRfs

APPENDIX C. DIGITAL ATTACHEMENTS

82

Appendix D

Setting Up the Project

This chapter explains the steps required for setting up the API. To use a local
API, the address in the mobile application source code has to be changed. This
is done by locating line 42 of the class RouteMarkerHandler:
private final String IP = "http :// api.bausk.no/";

// Change IP address of server here

The first step is to download all the necessary frameworks and code to your
computer. The Github repositories for both the mobile application and server
are listed in Section C.1. For this walk through, you need to clone the server
repository. Next, download Node.js from https://nodejs.org, or though a
package manager. Follow the installation guide on their website. MongoDB can
be downloaded from https://www.mongodb.org.

Run npm install Locate the cloned code from the previous step. Open a
terminal or command prompt and navigate to the busMapAPI folder, which is the
root folder of the source code. Type npm install and hit execute. This will
install all node.js dependencies required to run the API.

Start MongoDB Start MongoDB by executing service mongod start in
your command prompt/terminal.

Start the API Now start the API in the following way.

1. The first time the API is run it must be run with the –updateDB argument
to update the database. Following restarts will simply call node app.js.

2. To prevent the API from shutting down when logging out, forever can be
used. It can be installed by using the command npm install forever -g.
After installing forever, the API is started with forever app.js. Forever
will also restart the API if it crashes, so do not include –updateDB as it will
then update the database if it has to restart.

83

https://nodejs.org
https://www.mongodb.org

APPENDIX D. SETTING UP THE PROJECT

After starting the API it can be reached at port 3000. Look inside app.js for
a complete list of available functions.

84

Appendix E

Preliminary Study

E.1 Preliminary Study Questionnaire
This list contain the questions posed in the preliminary study questionnaire,
described in Section 3.1.

1. How many times a week do you commute by bus?

2. What is your work status? (Voluntary)

3. How old are you? (Voluntary)

4. In which city do you utilize bus the most?

5. In what context do you commute by bus?

6. How long do you usually wait for the bus?

7. Do you think knowing the exact location of the bus would be helpful to
reduce the time spent waiting for the bus?

8. On a scale from 1 to 10 (10 being extremely frustrated), how infuriated do
you become by waiting for the bus?

9. If you arrive late for your bus, what is the reason?

10. What service do you primarily use to find route information? If the answer
was phone application, a new set of questions were asked in addition

(a) Which phone do you use?
(b) Which application do you primarily use?

85

APPENDIX E. PRELIMINARY STUDY

(c) On a scale from 1 to 10 (10 being super happy), how satisfied are you
with the application of your choice

(d) How did you hear about the application?
(e) Please elaborate on your experiences with the application (Voluntary)

E.2 Waiting Time Survey Answers
This chapter contains the responses to the preliminary study. Responses are
divided into three tables, and the reference to the participants makes it easy
to cross reference one participant’s answer throughout the tables. Table E.1
contains the answers regarding bus usage, Table E.2 is about waiting time, and
Table E.3 contains responses about mobile application usage. Last, a list contains
responses to the question Describe your experience with the app, which was an
optional question.

Table E.1: Introductory and Bus Usage Questions

Answer nr 1 2 3 4 5
1 1-2 Student 18-20 Trondheim To/from

school,
To/from
the city, Visit

2 3-4 Student 21-23 Trondheim To/from
school

3 3-4 Student 21-23 Trondheim To/from the
city

4 1-2 Student 21-23 Trondheim To/from the
city, Airport
express, Visit

5 1-2 Student 26-27 Trondheim To/from
school

6 3-4 Unemployed 21-23 Trondheim To/from the
city

7 7-9 Student 24-25 Trondheim To/from
school,
To/from
work,
To/from
the city

86

E.2. WAITING TIME SURVEY ANSWERS

8 1-2 Employed 21-23 Oslo To/from work
9 1-2 Student 24-25 Trondheim To/from the

city, Airport
express

10 1-2 Student 21-23 Oslo To/from
school,
To/from
work, Visit

11 1-2 Student 21-23 Oslo To/from the
city

12 3-4 Student 21-23 Trondheim To/from
school,
To/from
work,
To/from
the city

13 5-6 Employed 24-25 Oslo To/from
work,
To/from
the city

14 1-2 Student 21-23 Trondheim To/from the
city, Airport
express, Visit

15 1-2 Student 18-20 oslo To/from
school

16 1-2 Employed 28-30 Oslo To/from work
17 7-9 Employed 40< Oslo To/from work
18 1-2 Running a

business
40< Oslo To/from the

city
19 1-2 Student 24-25 Trondheim To/from the

city, Airport
express

20 1-2 Student 26-27 Trondheim To/from the
city

21 10-12 Student 21-23 Tønsberg To/from
school,
To/from
the city

22 13-16 Student 21-23 Oslo To/from
school

87

APPENDIX E. PRELIMINARY STUDY

23 7-9 Employed 26-27 Oslo To/from
work,
To/from
the city, Air-
port express,
Visit

24 10-12 Employed 40< oslo To/from work
25 7-9 Student 21-23 Trondheim To/from

school,
To/from
the city

26 3-4 Student 24-25 Trondheim To/from
work,
To/from the
city, Airport
express

27 1-2 Student 21-23 Trondheim Airport ex-
press

28 <1 Student 26-27 Oslo To/from work
29 1-2 Student 24-25 trondheim Visit
30 10-12 Employed 24-25 Oslo To/from work
31 10-12 Employed 24-25 Oslo To/from

work,
To/from
the city, Visit

32 1-2 Student 21-23 Trondheim To/from the
city

33 10-12 Student 21-23 Trondheim To/from
school

34 <1 Student 21-23 Trondheim To/from the
city, Visit

35 17+ Employed 40< oslo To/from work
36 <1 Student 24-25 Trondheim To/from the

city
37 1-2 Student 21-23 Trondheim To/from the

city, Airport
express

38 5-6 Employed 26-27 Trondheim To/from
work, Visit

88

E.2. WAITING TIME SURVEY ANSWERS

39 <1 Student 21-23 Oslo Home to
parents every
other week

40 1-2 Student 21-23 Trondheim Workout
41 <1 Employed 28-30 Trondheim To/from the

city
42 5-6 Student 21-23 Sarpsborg To/from

school,
To/from
the city

43 <1 Employed 30-34 Trondheim To/from the
city

44 13-16 Employed 26-27 Trondheim To/from work
45 <1 Student 21-23 Trondheim To/from the

city
46 1-2 Employed 26-27 Trondheim To/from the

city
47 13-16 Student 26-27 Trondheim To/from

school
48 3-4 Employed 26-27 Trondheim To/from work
49 <1 Employed 28-30 Gardermoen Airport - Ho-

tel
50 1-2 Student 21-23 Trondheim Workout
51 <1 Employed 21-23 Trondheim Visit
52 7-9 Student 21-23 Trondheim To/from

school
53 <1 Employed 21-23 Trondheim Airport ex-

press
54 <1 Employed 40< Molde To/from work
55 <1 Employed 18-20 Trondheim Airport ex-

press

89

APPENDIX E. PRELIMINARY STUDY

Table E.2: Waiting on the Bus

Answer nr 6 7 8 10 9
1 5-6

minutes
Yes 6 App Got wrong

route informa-
tion from the
app

2 0-2
minutes

Yes 8 Route map at
stop

The bus departs
so often that I
do not care if
I’m one minute
late

3 3-4
minutes

Yes 7 App I am never too
late

4 7-8
minutes

Yes 9 App Miscalculation
of walking time
to the bus stop

5 5-6
minutes

Yes 8 App Real-time was
inaccurate and
showed the
wrong time

6 5-6
minutes

Yes 3 Route map at
stop

Did not use the
route informa-
tion

7 5-6
minutes

Do not
know

5 App Miscalculation
of walking time
to the bus stop

8 3-4
minutes

No 2 Information
screen at stop

The bus departs
so often that I
do not care if
I’m one minute
late

9 9-10
minutes

Yes 3 Information
screen at stop

Did not use the
route informa-
tion

10 5-6
minutes

Yes 10 App Real-time was
inaccurate and
showed the
wrong time

90

E.2. WAITING TIME SURVEY ANSWERS

11 3-4
minutes

Yes 4 App Real-time was
inaccurate and
showed the
wrong time

12 3-4
minutes

Yes 5 App Miscalculation
of walking time
to the bus stop

13 3-4
minutes

Yes 5 App Real-time was
inaccurate and
showed the
wrong time

14 7-8
minutes

Yes 4 App Got wrong
route informa-
tion from the
app

15 3-4
minutes

Yes 2 Web page Real-time was
inaccurate and
showed the
wrong time

16 3-4
minutes

Yes 2 App Miscalculation
of walking time
to the bus stop

17 5-6
minutes

No 2 App Miscalculation
of walking time
to the bus stop

18 9-10
minutes

Yes 8 App Real-time was
inaccurate and
showed the
wrong time

19 3-4
minutes

Yes 2 Web page The bus departs
so often that I
do not care if
I’m one minute
late

20 9-10
minutes

Yes 8 Web page Real-time was
inaccurate and
showed the
wrong time

91

APPENDIX E. PRELIMINARY STUDY

21 7-8
minutes

Do not
know

5 App Did not use the
route informa-
tion

22 3-4
minutes

Yes 3 Web page Did not use the
route informa-
tion

23 3-4
minutes

Yes 8 Web page Miscalculation
of walking time
to the bus stop

24 0-2
minutes

Yes 5 App The bus departs
so often that I
do not care if
I’m one minute
late

25 3-4
minutes

Yes 5 App Got wrong
route informa-
tion from the
app

26 7-8
minutes

Yes 8 App Got wrong
route informa-
tion from the
app

27 7-8
minutes

Yes 7 App The bus was
ahead of sched-
ule

28 0-2
minutes

No 3 Web page The bus departs
so often that I
do not care if
I’m one minute
late

29 5-6
minutes

Yes 7 Web page Miscalculation
of walking time
to the bus stop

30 3-4
minutes

Yes 5 App Miscalculation
of walking time
to the bus stop

31 3-4
minutes

Yes 4 App Miscalculation
of walking time
to the bus stop

92

E.2. WAITING TIME SURVEY ANSWERS

32 5-6
minutes

Yes 7 App Real-time was
inaccurate and
showed the
wrong time

33 0-2
minutes

No 8 App Real-time was
inaccurate and
showed the
wrong time

34 9-10
minutes

Yes 9 Web page Got wrong
route informa-
tion from the
app

35 7-8
minutes

Yes 10 Timetable book-
let

Miscalculation
of walking time
to the bus stop

36 3-4
minutes

Yes 6 App I was slow out
the door

37 5-6
minutes

Yes 4 App Miscalculation
of walking time
to the bus stop

38 5-6
minutes

Yes 6 Information
screen at stop

Miscalculation
of walking time
to the bus stop

39 11-14
minutes

No 9 Web page Miscalculation
of walking time
to the bus stop

40 3-4
minutes

Do not
know

6 Web page The bus was
ahead of sched-
ule

41 11-14
minutes

Yes 5 Web page I am never too
late

42 9-10
minutes

Yes 10 Web page The bus was
ahead of sched-
ule

43 5-6
minutes

Yes 8 Web page Miscalculation
of walking time
to the bus stop

44 3-4
minutes

Yes 5 Information
screen at stop

Miscalculation
of walking time
to the bus stop

93

APPENDIX E. PRELIMINARY STUDY

45 3-4
minutes

Do not
know

2 Web page Did not use the
route informa-
tion

46 5-6
minutes

Yes 7 Timetable book-
let

Miscalculation
of walking time
to the bus stop

47 3-4
minutes

Yes 7 Information
screen at stop

Real-time was
inaccurate and
showed the
wrong time

48 9-10
minutes

Yes 10 App I am never too
late

49 5-6
minutes

Yes 5 Information
screen at stop

Did not use the
route informa-
tion

50 5-6
minutes

No 3 App The bus departs
so often that I
do not care if
I’m one minute
late

51 5-6
minutes

Yes 2 Web page Miscalculation
of walking time
to the bus stop

52 3-4
minutes

Yes 8 Timetable book-
let

Miscalculation
of walking time
to the bus stop

53 0-2
minutes

Yes 5 Web page Miscalculation
of walking time
to the bus stop

54 3-4
minutes

Yes 5 Web page Miscalculation
of walking time
to the bus stop

55 Do not
know

Yes 10 App The bus was
ahead of sched-
ule

94

E.2. WAITING TIME SURVEY ANSWERS

Table E.3: App Questions

Answer nr 10a 10b 10c 10d
1 iPhone Bartebuss 8 Friends
3 iPhone Bartebuss 5 Friends
5 iPhone Bartebuss 6 Friends
7 iPhone Bartebuss 6 Friends
10 Android RuterReise 7 Do not know
11 iPhone Bartebuss 3 Friends
12 Android Bartebuss 5 Friends
13 iPhone RuterReise 5 Appstore search
14 Android RuterReise 5 Friends
16 Windows phone Trine i farta 8 Friends
17 Android RuterReise 8 Friends
18 Android RuterReise 5 Web search
21 Android VKT 6 Web search
24 Android RuterReise 9 Appstore search
25 Android AtB sanntid 5 Add
26 Android Bartebuss 8 Friends
27 iPhone Bartebuss 6 Friends
30 Android RuterReise 3 Appstore search
31 iPhone RuterReise 6 Add
32 iPhone Bartebuss 8 Friends
33 Android Bartebuss 8 Friends
36 Android AtB reiseplanleg-

ger
6 Appstore search

37 Android AtB reiseplanleg-
ger

5 ?

48 Android AtB sanntid 6 Friends
50 Android Bartebuss 5 Friends
55 iPhone Bartebuss 4 Friends

This list contains answers to the question Describe your experience with the
app, sorted by the participant number.

• #10 RuterReise It needs a lot more features, such as being able to see
the entire bus route (with stops) when you press a route.

• #17 RuterReise When you scale from 1 to 10, it should say what is worst,
best, etc.. Such as the previous question. Eg. the one about frustration
could easily be clarified.

95

APPENDIX E. PRELIMINARY STUDY

• #24 RuterReise Very good! Definitely a "must have" app.

• #26 Bartebuss Very good experience with the app, particularly fond of
the UI and the way information is displayed. Could have been better at
updating time when it comes to major delays, but expect that some of this
lies with AtB’s real tables ...

• #30 RuterReise The way developers think I use the app is quite banal.
For example cumbersome to find the bus from A to B, but easy to find
when the next bus passes. When the next bus passes I do not care if I have
to wait 20 minutes at the bus exchange.

• #33 Bartebuss The app frequently change the time the bus will arrive
when it is approaching, so it comes sooner than you think. This makes it
di�cult to calculate when to go home.

• #55 Bartebuss Cumbersome to identify the timetable for a single bus,
should have been a function to select the bus you want and not just a menu
for bus stops you want.

96

	Abstract
	Sammendrag
	Preface
	Acknowledgements
	Problem Description
	List of Tables
	List of Figures
	List of Listings
	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Thesis Structure

	Theory and Background
	BusTUC and FUIROS
	Digital Schedule Formats
	The Norwegian REGTOPP Standard
	The GTFS Standard
	NeTEx

	Real-time Vehicle Tracking Formats
	SIRI
	NextBus
	GTFS-Realtime

	Google Maps
	The Google Maps API
	The Google Directions API

	Server Technologies
	Node.js
	MongoDB

	A Brief Look at Similar Applications
	Google Maps
	RuterReise
	Bartebuss
	Nettbuss
	Busskartet.no
	Tampere Bus Map

	The System Usability Scale
	Calculating the SUS Score

	Research and Development Method
	Preliminary Survey
	Finding and Prioritizing Requirements
	Designing TransitVision
	Testing Server Compatibility
	User Test

	Results
	Results from the Preliminary Survey
	Waiting Time
	Application Usage Feedback

	TransitVision Requirements
	Quality Attributes

	The Technologies Behind TransitVision
	Targeting a Platform
	Selecting a Server Framework
	Selection of Database Technology
	Map APIs

	System Architecture
	Architectural Pattern
	Class Structure of Mobile Application

	Design
	Estimating Positions
	Mock-Ups
	Line Search Tools
	Marker Icons
	Flow Chart

	Implementation of TransitVision
	Mobile Application
	Providing Vehicle Positions

	SIRI Interoperability
	Server Limitations
	Prerequisites for the SIRI-SM Implementations
	Prerequisites for the SIRI-VM Implementations
	Compatibility of Different SIRI Implementations
	Expanding to Tampere
	Prospect of including Kolumbus' API

	User Testing
	Feedback Received from User Testing
	The SUS Score

	Discussion
	Preliminary Study
	Fulfillment of Requirements
	Obstacles Found During Development
	Vehicle Animations
	Irregularities in Ruter's Data
	Google Directions API

	User Test
	Research Questions and Goal Achievements
	The Goal
	Research Question 1
	Research Question 2
	Research Question 3

	Conclusions
	Future Work
	Connecting the Oracle with the Map
	Expand to Other Cities

	Acronyms
	Bibliography
	SUS
	The Questionnaire
	Error Bar Diagram

	SIRI-VM Example
	Digital Attachements
	Github Repositories
	TransitVision Google Play Link
	Video of TransitVision in Action

	Setting Up the Project
	Preliminary Study
	Preliminary Study Questionnaire
	Waiting Time Survey Answers

