
Coordination of Asset Development in 
Software Ecosystems

Torbjørn Aarlott Aase

Master of Science in Informatics

Supervisor: Eric Monteiro, IDI
Co-supervisor: Vidar Hepsø, IDI

Department of Computer and Information Science

Submission date: June 2015

Norwegian University of Science and Technology



 



Abstract

This thesis looks into the academic literature of customer co-creation and software ecosys-
tems, in particular the governance of such ecosystems. A privately owned, commercial
software ecosystem built around software platform(s) in use by the E&P industry is used
as a case for further exploring the usefulness of frameworks and tools found in the aca-
demic literature. The ecosystem is analysed both for academic purposes as well as in
regards to the particular problem of coordinating asset production within software ecosys-
tems. A proposed solution to this problem is provided towards the end of this thesis, but
no technical deployment of it and the relevant tools is done or evaluated. There does,
however, seem to be some potential in the application of existing ecosystem literature.

i



Preface

This thesis is submitted for consideration as the finalization of my informatics master’s
degree programme at the Department of Computer and Information Science(IDI) at the
Norwegian University of Science and Technology(NTNU).

I would like to thank my supervisor at IDI, Eric Monteiro, for his help and guidance
through the process. In addition, I would also like to thank Trond Benum and Ahmed
Aqrawi at Schlumberger for their assistance and sponsorship of this thesis.

ii



Table of Contents

Abstract i

Preface ii

Table of Contents v

List of Tables vii

List of Figures ix

I Introduction 1

1 Motivation, structure and contribution 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II Literature Review 5

2 Software ecosystems 7
2.1 What are software ecosystems? . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Multi-sided markets and network effects . . . . . . . . . . . . . . . . . . 8
2.3 Types and classification of software ecosystems . . . . . . . . . . . . . . 9

2.3.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Benefits of platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Challenges and concerns . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Platform architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iii



2.8 Platform governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.8.1 Governance dimensions . . . . . . . . . . . . . . . . . . . . . . 17
2.8.2 Governance analysis framework . . . . . . . . . . . . . . . . . . 19
2.8.3 Governance tools . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.8.4 Decision making . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Customer involvement 27
3.1 Customer co-creation typology by O’Hern and Rindfleisch (2010) . . . . 27
3.2 Customer Co-creation typology by Piller et al. (2010) . . . . . . . . . . . 30

III Method 33

4 Approach 35

5 Data collection 37

IV Case 39

6 Background 41
6.1 What is the E&P sector? . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Digital tools in E&P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3 Schlumberger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3.1 Schlumberger Information Solutions . . . . . . . . . . . . . . . . 44
6.4 Petrel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.5 Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.6 Ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.6.1 The Ocean Framework . . . . . . . . . . . . . . . . . . . . . . . 45
6.6.2 The Ocean Store . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.7 The Ocean Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.7.1 The actors in the Ocean ecosystem . . . . . . . . . . . . . . . . . 48
6.7.2 Governance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Case presentation 51
7.1 Domain objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.1.2 CDO Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 The problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.2.1 Impact on users . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.2 Impact on developers . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2.3 Impact on owner . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3 What is being done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

iv



V Discussion 55

8 Reasoning 57

9 Ecosystem 59
9.1 Applying frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

9.1.1 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.1.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.1.3 Governance analysis framework . . . . . . . . . . . . . . . . . . 60
9.1.4 Governance tools . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9.1.5 Decision making framework . . . . . . . . . . . . . . . . . . . . 64

10 Co-creation 65
10.1 Applying frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

10.1.1 Co-creation typology 1 . . . . . . . . . . . . . . . . . . . . . . . 65
10.1.2 Co-creation typology 2 . . . . . . . . . . . . . . . . . . . . . . . 66

11 Proposed improvements 67
11.1 Possible solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

VI Conclusion 69

12 Conclusion 71
12.1 Limitations of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
12.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 73

Appendix 77

v



vi



List of Tables

2.1 Examples of classified ecosystems by Jansen and Cusumano (2012) . . . 13
2.2 Core features of marketplaces. . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Governance analysis framework . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Decision making framework . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Characteristics of co-creation types, by O’Hern and Rindfleisch (2010) . . 29

9.1 Decision making framework applied to the Ocean Ecosystem . . . . . . . 64

vii



viii



List of Figures

2.1 Software ecosystem taxonomy (Bosch, 2009) . . . . . . . . . . . . . . . 10
2.2 Four forces acting on an established platform (Romberg, 2007) . . . . . . 15
2.3 Governance model for ecosystem health preservation and improvement

(Jansen and Cusumano, 2012) . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Typology at front end of co-creation (Piller et al., 2010) . . . . . . . . . . 31
3.2 Typology at back end of co-creation (Piller et al., 2010) . . . . . . . . . . 32

6.1 Plug-in survey. 2013 Welling Report Geology and Geophysics. . . . . . . 42
6.2 Supplier survey. 2012 Welling Report Reservoir Characterization. . . . . 43
6.3 Schlumberger platform technologies. . . . . . . . . . . . . . . . . . . . . 44
6.4 Screenshot of Petrel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.5 Ocean architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.6 Ocean framework payment models. . . . . . . . . . . . . . . . . . . . . 47
6.7 Schlumberger’s vision for an integrated E&P plaform. . . . . . . . . . . . 48

7.1 Two plug-ins create different CDOs . . . . . . . . . . . . . . . . . . . . 52

9.1 Reminder of the governance model by Jansen and Cusumano (2012) . . . 63

ix



Part I

Introduction

1





Chapter 1
Motivation, structure and
contribution

1.1 Motivation
Software ecosystems are becoming an ever larger part of the software landscape. From
apps on smartphones to plug-ins for your browser, ecosystems facilitate much of the ex-
tendible functionality we have come to expect in the technology we use. By providing
third party developers the ability to extend functionality and create additional value for
their product, companies are seeing increased innovation without needing the proportion-
ate investment and risk in R&D. The third party developers enjoy low development costs
and an established customer base, and the users of the product enjoy a customizability
and variety not previously possible. All due to the interactions and qualities inherent in
software ecosystems that include these parties. Yet, their inner workings, even existence
as concepts, has gone largely unnoticed by the general public, and even academia to some
extent.

As more and more companies move towards turning their traditional software products
into software platforms that allow for ecosystems, such research becomes increasingly im-
portant. This thesis aims to contribute to the growing academic field of software ecosys-
tems, as well as make use of the existing literature in an actual industry setting.

1.2 Structure
Following part I, which is this introduction, this thesis goes on to part II, the literature
review. This literature review gives an introduction to the concept of software ecosystems
and platforms as well as some of the proposed academic models and frameworks that
exist. Some familiarity with software development on the part of the reader is assumed,
but not strictly required. The literature review also touches on the concept of customer

3



Chapter 1. Motivation, structure and contribution

involvement in product innovation. Part III describes the process that went into the creation
of this thesis. Part IV outlines the case of the Ocean ecosystem and problem of duplicate
assets. Finally, parts V and VI apply the frameworks and models presented in the literature
review to the Ocean ecosystem, and discusses a possible solution to the problem presented
earlier.

1.3 Contribution
The academic field of software ecosystems has gained prominence only recently, and can
be viewed as fairly young. This is the case in particular for software ecosystem gover-
nance. One of the major contributions of this thesis will be to provide yet another case
study for the field of ecosystem governance, and utilizing the existing models and frame-
works in the literature, adding to their maturity.

The second contribution of this thesis is to propose a solution to the problem of the
specific case presented. Ideally, the solution is specific enough to be useful, but also
general enough to be able to be applied in similar cases in other ecosystems.

1.4 Research Goal
The research goal of this thesis is to add a case study to the academic software ecosys-
tem space, while exploring the available academic tools for ecosystem governance
and problem solving in an actual industry setting. gain an increased understanding of
software ecosystem governance and its application in an industry setting

From this we derive the research questions:

RQ1: How is governance applied in a real-world setting?

RQ2: What appropriate tools for governance exist in the literature and how do they per-
form?

4



Part II

Literature Review

5





Chapter 2
Software ecosystems

2.1 What are software ecosystems?
In order to discuss software ecosystems, sometimes referred to as platform ecosystems,
we first have to establish what is meant by platform. In this thesis the definition used is
based on the one outlined in Tiwana (2014):

A software platform is a software-based product or service that serves as
a foundation on which outside parties can build complementary products or
services.

Such platforms are commonly associated with operating systems for computers and mo-
bile devices, popular examples being Microsoft’s Windows, Apple’s iOS and Google’s
Android. In all three cases the platform owner allows third parties to distribute software,
commonly known as apps, that add functionality to or extend already present functionality
in the platform.

The platform and its complementary software, in the form of apps, plug-ins, extensions
and so on, make up the two major elements of the ecosystem, though the exact definition of
what constitutes an ecosystem is debated (Manikas and Hansen, 2013). Within this ecosys-
tem there are three principal sets of actors. The platform owners, sometimes referred to
as keystone companies, that build a community of developers and end-users around their
core product or product line. As platforms and their functionality grow in complexity, it is
also common for some of these developers to create their own internal platform abstraction
layers or become platform owners themselves (Romberg, 2007) (Gawer, 2014).

According to Bosch (2012) the ecosystem approach to software development has be-
come more popular recently, with many companies opening up their product or product
lines as cores for platforms. These products may be proprietary software, open-source,
in-between or in some cases transitional from one state to the other(Kilamo et al., 2012).

7



Chapter 2. Software ecosystems

Bosch (2012) outlines two main drivers behind a company or organization moving to-
wards a software ecosystem: Firstly, a company realizes that the amount of functionality
that needs to be developed to satisfy the needs of their customers is far more than what
can be built in a reasonable amount of time and with an R&D investment that offers an
acceptable return on investment. Secondly, the mass customization trend drives the need
for a significant R&D investment for successful software applications.

2.2 Multi-sided markets and network effects

From an economic perspective the platforms discussed here can be viewed as multi-sided
markets (Gawer, 2014), indeed this multi-sidedness is one of their key properties (Tiwana,
2014). Multi-sided markets, more specifically two-sided markets in the case of many
platforms, are characterized by their ability to facilitate direct contact between two distinct
groups of stakeholders, not counting owners. Hagiu and Wright (2011) also differentiates
between degrees of multi-sidedness depending on how significant the value created by this
facilitation is to the platform owner, in comparison to the value created by other goods or
services offered. They go on to name shopping malls, video game consoles and eBay as
some examples of multi-sided platforms.

Tiwana (2014) points out that the viability of a multi-sided platform is in part dependent
on the degree to which the two sides need to interact. Both could in theory find and trade
with each other independently, and this process needs to be a costlier alternative for the
platform to be successful.

A large factor in multi-sided markets is the fact that they are subject to so-called net-
work effects which arise between the sides of the market (Gawer, 2014). Network effects
refer to the degree to which every additional user makes the platform more valuable to
each existing user (Tiwana, 2014). A common example of direct network effects, also
called same-side network effects, is the value of communication channels, such as phones
or social media, based on user count. Their value to each user is largely determined by the
number of peers using the same system, as a social media account is useless for commu-
nication unless other users also have accounts. Each subsequent user with an account then
increases value for existing users as well as make the social media site more attractive to
other users, triggering a self-reinforcing feedback loop (Gawer, 2014).

In much the same way that direct network effects can make a system more valuable
to users based on the number of other users of the same type, in multi-sided platforms
indirect network effects can also increase the value for users of one side of the platform
based on the number of users on the other side. Indirect network effects, also called cross-
group or cross-side network effects, come into play when there is an interdependency
and complementarity between the demands of the two sides (Gawer, 2014). A common
example is smart phone users and developers for smart phone apps. The more developers
there are developing complementary apps for a certain mobile platform, the more attractive

8



2.3 Types and classification of software ecosystems

that platform becomes for phone users. At the same time, the number of users there are on
the platform also influences its attractiveness to developers (Tiwana, 2014).

In addition to the positive network effects mentioned above, there are also negative
network effects (Tiwana, 2014). These negative effects exist when each additional user
negatively affects the system’s value for other users. Examples of this are a large number
of users slowing down a network, many cars on a highway making it more difficult for each
driver to navigate traffic or market saturation keeping developers away from a platform.

It is also possible for a platform to be affected by network effects from one of its com-
plements. The presence of an app with strong network effects, such as Skype, will make
all platforms that support it more attractive to potential users.

According to Gawer (2014) a purely economical perspective is problematic when deal-
ing with technological platforms and their evolution in particular. They argue that in most
economic models of two-sided markets, platforms are taken to be both exogenous and
fixed, not offering much insight into how or why they evolve. In addition they mention that
the nature of the relationship between the platform owner and the two sides gets reduced to
a seller-buyer relationship that views both developers and end-users as consumers. Gawer
(2014) claims this has the following limiting consequences for further study into platform
evolution:

(a) all forms of competitive interaction between a platform owner and its
own complements developers are left unexamined (as outside the scope of
these models); (b) the very existence of complementarity-in-demand between
the different consumer groups (the foundational network effects) is taken for
granted, deemed exogenous, and assumed to be unchanging; (c) the existence
of the platform itself is also taken for granted, exogenous and unchanging;
(d) the impact of platform design on developers incentives to innovate is left
untreated.

2.3 Types and classification of software ecosystems

2.3.1 Taxonomy

Bosch (2009) outlines an early taxonomy intended to help classify software ecosystems.
This taxonomy organizes ecosystems in a two-dimensional space, with one dimension re-
ferred to as the category or abstraction layer and the other dimension being the underlying
platform or base technology. The latter dimension is fairly self-explanatory in its presen-
tation in Fig. 2.1, but the former warrants further explanation.

The three categories of ecosystems presented by Bosch (2009) are operating systems,
applications and end-user programming.

9



Chapter 2. Software ecosystems

Figure 2.1: Software ecosystem taxonomy (Bosch, 2009)

Operating System-centric software ecosystems are characterized by being domain in-
dependent and typically being optimized for stand-alone applications to be deployed,
with little support for cross-application integration. These applications are the ba-
sis for the domain specific uses that make the OS attractive to users, meaning that
the ecosystem is very dependent on the number of actors. They are also heavily
dependent on the actual devices that have the OS installed, with the exception of
web-based ecosystems. Ecosystems based on operating systems for desktops and
mobile devices are affected by the number of devices that run the OS, but also in
changes to the technology surrounding those devices causing compatibility issues.

Application-centric software ecosystems generally start of as successful domain-specific
applications. As the application and its user-base grows, there are an increasing
number of requests for increasingly specific functionality. Depending on the vol-
ume and nature of these requests, it may not be feasible to develop these features
in-house. This might prompt the owners to open up the application by providing
APIs to third parties, turning the application into a domain-specific platform around
which they can build an ecosystem. Unlike the operating system-centric ecosystems,
the application-centric ecosystem is more dependent on the third party developers
extending the functionality already present in the platform, as opposed to adding
their own specific functionality. Since the original user-base is there because of
the already present functionality, many users may not see the merits, or indeed be
aware, of the extended functionality. It is therefore important for the platform owner
to actively facilitate visibility and interaction between end-users and third party de-
velopers, in order to make it an attractive platform to develop for.

End-user programming software ecosystems are fairly small in comparison to oper-
ating system-centric and application-centric ecosystems. Most take the form of
domain-specific programming languages (DSL), either graphical or textual. They
are primarily focused on developers with good domain understanding, but little pro-

10



2.3 Types and classification of software ecosystems

gramming skills. As such they are meant to be easy to develop for, but not particu-
larly powerful in the sense of being able to introduce new or advanced functionality.

2.3.2 Classification
Jansen and Cusumano (2012) propose a classification model for software ecosystems
based on four classification factors; Base technology, coordinators, extension markets and
accessibility.

Base technology: According to Jansen and Cusumano (2012) their survey suggests that
all software ecosystems are underpinned by some base technology. The three types
of technology identified here are software platforms, software service platforms
and software standards.
Most software ecosystems are based on the first type and have a specific software
platform as their base technology. On occasion they are underpinned by several
platforms, such as in the Microsoft ISV (Independent Software Vendor) ecosystem
which is underpinned by a variety of Microsoft platforms (Sharepoint, Exchange...).
A software service platform, the second technology, is any platform based around
some sort of online-only service, around which other ecosystem participants can
gather, but not host on their own.
The third type of base technology being used is the software standard, as is the case
for ODA(Open Design Alliance) which bases most of its technology around the
DWG(drawing) standards from AutoDesk.

Coordinators: This classification factor refers to the effective owners and major de-
cision makers of the ecosystem. An ecosystem is either owned by a commu-
nity(consortium) or owned by a private party. The Eclipse ecosystem is an exam-
ple of a community controlled ecosystem, where the Eclipse consortium represents
the wishes of its members. An example of a privately owned ecosystem would
be the iOS ecosystem, where Apple exerts definite control. Jansen and Cusumano
(2012) points out that ecosystems where the base technology is privately owned by
a commercial actor, tend to be controlled by that actor.

Extension markets: Many software ecosystems are centralized around a market of ex-
tensions (see section 2.6) , also known as app stores or app markets. The classifi-
cation model divides this factor into five possible situations; No extension market,
a simple list of extensions, an actual extension market, a commercial extension
market, and multiple extension markets.
In the case of no extension market, the components may be available through known
third parties. As an example of this Jansen and Cusumano (2012) mentions that the
Autodesk community site does have a short list of components, but most extensions
are available only through third parties that do their own marketing.
In the second case, a list of extensions, a simple list of available extensions can be

11



Chapter 2. Software ecosystems

accessible through a web page, for instance. Depending on the accessibility of the
ecosystem(see below), this list may be curated to some degree.
The third case is where there exists an actual extension market, through which it is
possible for developers to distribute and/or monetize their extensions. The Firefox
Extensions market is presented as an example of this, where third parties can offer
extensions, but without having to pay Mozilla.
Case number four is where a commercial extension market is used. These markets
are similar to the previous type of market, but here the owner uses the market to
make money. The two major mobile markets, the iOS App Store and Google Play,
are examples of this.
The fifth and final case presented in the model is when an ecosystem includes mul-
tiple extension markets. An example given of this is the ecosystem around the game
World of Warcraft, where the owner did not want to create their own extension store
and left it to the community to create solutions for distribution, resulting in multiple
markets.

Accessibility: Accessibility refers to the barriers to entry that determine which partici-
pants, or types of participants, will have a part to play in the ecosystem. The model
presents three possibilities for the accessibility factor: Open source, screened but
free, and paid.
In an open source ecosystem it is possible to add contributions to a project, create
and publish components in the extension market and otherwise be involved, without
any barriers.
A screened, but free, ecosystem has some sort of quality control to make sure that
contributions are of the right quality and fit.
The most restrictive case is the paid ecosystem, where entry to it requires some form
of payment.

Table 2.1 shows the classification of several existing ecosystems using the proposed
classification model. Jansen and Cusumano (2012) do acknowledge some potentially im-
portant elements are excluded from the model, such as network effects, switching costs,
multi-homing and whether or not there are more than two sides to the market.

12



2.3 Types and classification of software ecosystems

Name Base technology Coordinators Extension market Accessibility
AutoCAD plug-ins platform privately owned a list paid
Ubuntu platform consortium multiple markets for free
Android platform privately owned a commercial market screened
iOS platform privately owned a commercial market paid
Eclipse platform consortium a market screened
XBMC platform consortium multiple markets for free
Joomla platform consortium a list screened
GX platform privately owned a market screened
Ruby platform consortium multiple markets for free
Ogre3D platform consortium a list screened
MS ISV Partners platforms privately owned a commercial market paid
Wordpress service platform consortium a market screened
HubSpot service platform privately owned a commercial market screened
SalesForce service platform privately owned a commercial market screened
Spotify service platform privately owned a market screened
World of Warcraft service platform privately owned multiple markets for free
XBRL standard consortium a list paid
Open Design All. standard consortium a list paid
OSGi standard consortium a list paid

Table 2.1: Examples of classified ecosystems by Jansen and Cusumano (2012)

13



Chapter 2. Software ecosystems

2.4 Benefits of platforms
Platforms with surrounding ecosystems offer several benefits, not only to the platform
owners, but also the developers and end-users (Tiwana, 2014). The owners enjoy mas-
sively distributed innovation on the platform, while at the same time transferring the fi-
nancial risk to the developers. Highly specialized software can be made available on the
platform without the owner needing to bring in domain experts or even be aware of the
niche. The constant influx of outsiders to the development scene also allows the platform
long-term sustainability as it will be better able to evolve and respond to the changing
needs of the user base. The network effects of users and developers also offer a certain
security after the number of users and/or developers has reached a tipping point (Gawer,
2009).

For the developers the platform often offers a generic foundation for development.
This cuts down on development time that would have been spent on developing this base
functionality, and reduces the barrier to entry. It also gives the developer access to an es-
tablished market, with users already familiar with the base functionality. Because of this,
a small developer would be able to reach a disproportionate number of users through the
platform, compared to traditional distribution. The platform also usually offers the devel-
oper an established infrastructure with payment mechanisms, further reducing necessary
development (Tiwana, 2014). A study by Ceccagnoli et al. (2011) also found that while
there are benefits for smaller developers opting into an active ecosystem, these benefits
are in part dependent on their own capability for downstream marketing and IPRs such as
patents and copyrights.

End-users enjoy four distinct benefits from platforms (Tiwana, 2014). Firstly, the plat-
form offers a degree of customizability usually not found in individual products not asso-
ciated with platforms. A smartphone user, for instance, is able to add/remove functionality
to/from their device until it fits their specific needs, be it a scientific calculator or social
media software. Secondly, the user can expect their product to evolve and get access to
additional features over time, as the developers continue to innovate in the competitive
market. The third benefit to the user comes in the form of expected price drop for these
features, as both interplatform and intraplatform competition push prices down. Finally,
the fourth benefit to the end-users is a reduced search cost - the cost prior to transaction.
Software available on the platform is presumed to be screened and certified by the platform
owner, and therefore deemed safe. The platform might also offer reviews from other users
that have purchased the software, giving the user a quick way of gauging the software’s
quality or usefulness.

2.5 Challenges and concerns
Romberg (2007) identifies four main forces acting on an established platform, that owners
should be aware of. The base technology, competing platforms, outside developers and the
end-users. The latter two of these factors correspond directly to actors presented earlier,
with the competing platforms corresponding to actors associated with outside platforms.

14



2.5 Challenges and concerns

There are certain challenges and interactions associated with these forces, as illustrated in
Fig. 2.2.

The base technology is linked to assumptions made by the platform owner during spec-
ification and implementation of the platform. Romberg (2007) points to the progress of
the base technology (both hardware and software) as a potential source of disruption, as it
can invalidate these assumptions and force the entire technology stack to have to be recre-
ated upwards layer by layer. They mention the earlier generations of video game consoles
as examples of this, with radical changes in the base technology between generations. As
mentioned earlier, this is also especially important in operating system-centric ecosystems.

Competing platforms can threaten the platform in two different ways. The first, and
most obvious, is what Romberg (2007) refers to as substitution. This is the traditional
and expected competition for users and external developers to grow the ecosystem of their
own platform and increase their market share. The second threat that other platforms
can pose, is through what is referred to here as emulation. This is where the owner of
a, usually smaller, competing platform chooses not to engage in a standards battle, but
instead emulates that of the larger platform in order to benefit from the already established
reputation, technology or base of developers and users (Stanley and Farrell, 1994).

The users and developers, as integral parts of the ecosystem, affect the platform both
directly and indirectly. They affect it directly through sheer numbers, as gaining or losing
users and developers is inherently impactful to the platform. There is also an indirect effect
on the platform through these actors’ abilities to bring in more users/developers through
network effects. Growing, or at least maintaining, the base of users and developers is
therefore a very real challenge and important to keep in mind for platform owners (Bosch,
2009). There is also a very real risk of developers expanding their products to the point
where they turn the collaborative relationship with the platform owner into a competitive
one (Gawer, 2014).

Figure 2.2: Four forces acting on an established platform (Romberg, 2007)

15



Chapter 2. Software ecosystems

2.6 Distribution
While not strictly required, platform owners will often in some way facilitate transactions
between third party developers and end-users (Tiwana, 2014). This often takes the form
of a digital marketplace where users can browse and acquire apps. Well known examples
include the mobile app marketplaces of Apple and Google; App Store and Google Play,
respectively. These marketplaces can vary in functionality and prominence, however a
study by Jansen and Bloemendal (2013) found that certain core features are present in the
six largest marketplaces:

Core feature Description
app categories Apps are listed in categories and subcategories
app listing Apps are listed with full description, images, etc
app lists apps are listed, e.g. top selling lists or latest additions
dev app management Devs can manage their apps in a developer console
dev transaction list Devs can manage their transactions
distribution integration Distribution and installation happens through platform
featured apps Apps can be featured to receive more attention
free revenue model Apps can be offered for free
paid revenue model Apps can be sold
pay out methods Number of pay out methods
payment methods Number of payment methods
platform comp. filter Apps have information on their platform compatibility
ratings Apps can be rated by the user
reviews Users can read and write reviews of an app
search Users can search for apps using search keywords

Table 2.2: Core features of marketplaces.

2.7 Platform architecture
Architecture is the conceptual blueprint that describes the components of a complex sys-
tem, what they do and how they interact. The architecture of a platform or an app can
be seen as a high-level description of its building blocks and how they are related to
each other, not a working implementation (Tiwana, 2014). Platform architectures are also
unique in that they are not only modular, but also structured around a core and a periphery
(Gawer, 2014).

The core, in terms of platform architecture, is the set of fairly stable components that
make up the platform itself. The periphery is made up of the high-variance complemen-
tary components. Mediation between the core and the periphery is done through stable
interfaces that divide all information required to build the system into visible and hidden

16



2.8 Platform governance

information. As the complexity of an element grows, this complexity can then be iso-
lated by defining a separate abstraction that has a simple interface(Baldwin and Woodard,
2008).

This makes platforms particularly good at facilitating innovation. Their modularity
helps manage complexity by breaking up a complex system into discrete components con-
nected by standardized interfaces. This reduces the scope of information that designers
require in order to design their modules and allows a specialization and division of innova-
tive labour (Gawer, 2014). Both innovation within modules and mix-and-match innovation
through innovative recombination of modules are facilitated by this (Gawer, 2014).

2.8 Platform governance

As with many aspects of platform ecosystems, the governance of such entities is a fairly
unexplored field both academically and in the industry (Jansen and Cusumano, 2012).
Governance is an important aspect to consider as it provides direction and coordination to
the ecosystem. A platform owner with a good reputation and a strategy that offers stability
in the ecosystem has an easier time attracting stakeholders to said ecosystem, and a lack
of perceived stability could, conversely, drive them away (Berk et al., 2010).

This section covers some of the literature and proposed tools for academia and industry
that have been published on the subject so far.

2.8.1 Governance dimensions

Tiwana (2014) divides platform governance into three dimensions: Decision rights par-
titioning, control portfolio and pricing policies.

Decision rights partitioning refers to who has the primary authority and responsibility
for making certain decisions. Such rights can be centralized, primarily held by the
platform owner, or decentralized, primarily resting with the developers. In practice,
however, most end up being somewhere along the spectrum, not purely centralized
or decentralized. Meaning both owners and developers have some authority and
responsibility, but usually leaning more towards one party. Tiwana (2014) further
divides rights into categories of strategic or implementation, as well as whether they
refer to apps or the platform itself. A structure of rights therefore has four dis-
tinct sets of rights: Strategic and implementation rights for the platform, as well as
strategic and implementation rights for apps. Note that a platform may use different
structures for different apps. Likewise, a developer might have to deal with differing
rights on different platforms for the same app.

17



Chapter 2. Software ecosystems

Control portfolio design is the second dimension of platform governance. Control here
refers to the means through which the platform owner ensures that the app devel-
opers’ work is aligned with what is in the best interests of the platform. Tiwana
(2014) identifies four tools, or control mechanisms, that owners use to implement
and enforce rules that reward desirable behavior, punish bad behavior, and promul-
gate standards of behavior among app developers. The control portfolio refers to
the combination of mechanisms used by the platform owner over a developer. As
with decision rights, it is possible for different apps to be subject to different control
mechanisms on the same platform.
The first of these mechanisms is gatekeeping, which represents the degree to which
the platform owner uses predefined objective acceptance criteria for judging what
apps and app developers are allowed into a platform’s ecosystem. If entry barriers
are set too low, the ecosystem is open to uncontrolled growth and a general loss
in the quality of both third party developers and apps. Too high entry barriers will
stifle innovation in the ecosystem and scare niche players away. Part of gatekeeping
is finding the right balance between innovation and quality (Berk et al., 2010).
The second mechanism is process control, the degree to which a platform owner
rewards or penalizes app developers based on the degree to which they follow pre-
scribed development methods, rules and procedures that it believes will lead to out-
comes desirable from a platform owner’s perspective. Desirability here refers to
how well apps interoperate with the platform, not how well they do on the market.
Process control is sometimes realized through the developer tools provided by the
platform owner.
The third control mechanism is the use of metrics. This control refers to the de-
gree to which the platform owner rewards or penalizes app developers based on the
degree to which the outcomes of their work achieve predefined target performance
metrics. Tiwana (2014) notes that in many contemporary platforms, the market it-
self rewards and penalizes apps through sales, leaving little reason for the platform
owner to involve themselves.
The fourth form of control is relational control. It is a less formal mechanism and
refers to the degree to which the platform owner relies on norms and values that
it shares with app developers to influence their behavior. It relies on the owner to
provide an over-arching collective goal for the platform ecosystem. As an informal
and inexpensive control mechanism, it is popular in open-source platforms.

Pricing is the third, and final, dimension of platform governance according to Tiwana
(2014). The goal of pricing policies is to create incentives for app developers to
make personal investments to ensure the prosperity of their own app offerings, which
translates into an increased vibrancy of the ecosystem as a whole. While the pricing
and payment model of the individual apps on the market often are decided by the
developer themselves, there are still important pricing decisions that the platform
owner has to make. One of these decisions is where they wish to profit. It is possible
to profit from both sides of a two-sided platform, a symmetrical approach, however
in some ecosystems one side is subsidized in the hopes that this has an effect on
the other side that turns into a net positive for the platform owners. An asymmetric

18



2.8 Platform governance

approach. In certain cases, a symmetric approach which fails to generate a profit on
either side is acceptable, due to alternate revenue streams that depend on the health
of the ecosystem. According to Hyrynsalmi et al. (2012) this seems to be the case
with the mobile platforms in particular. iOS using the ecosystem to promote sales
of Apple’s physical devices, Android to extend Google’s advertising business into
mobile devices and Windows to protect Microsoft’s software sales in the ongoing
mobile-desktop convergence. Actual revenue directly from app sales appear to be
secondary.

2.8.2 Governance analysis framework
Baars and Jansen (2012) presents a framework for analysis of governance and governance
structures in software ecosystems. They differentiate between these two concepts. In their
paper, governance refers to the processes and procedures by which a company controls
their position in the ecosystem, while the governance structure refers to the distribution of
rights and responsibilities among all the stakeholders, as well as the rules and protocols
that need to be followed in order to make decisions regarding the ecosystem.

The framework sets up a series of concepts surrounding governance and structures.
These concepts, when analysed in light of an ecosystem, will yield a yes/no answer or not
be applicable. In many cases such a simple answer will be insufficient, in which case the
framework will be annotated with an explanation for the result of the analysis of that par-
ticular concept. See Table 2.3 for the full framework. The first section covers processes,
procedures and tools used to execute the governance strategy. The second section covers
responsibility, control and measurement associated with the governance strategy. A further
explanation of the categories of the second section is given:

Explicitness of the ecosystem: Questions that relate to the explicitness of the ecosystem
in general. Without an explicit ecosystem, there of course cannot be an explicit
governance strategy.

Explicitness of the governance strategy: Questions that relate to the explicitness of the
governance strategy. Having an explicit governance strategy lets organizations re-
fer to rules, procedures, protocols and formalized processes when dealing with an
ecosystem. This leads to more control over the position in the ecosystem, which
ultimately leads to more potential benefit gained from the ecosystem (Baars and
Jansen, 2012).

Responsibility: It is important to have appointed members of the organization be re-
sponsible for the ecosystem in order to make sure that the governance strategy is is
executed correctly. The framework’s authors note that ecosystem governance can
easily become just a ”job on the side”, and get neglected in favour of other tasks.

Measurement: The effectiveness of the ecosystem should be measured in some way, in
order to determine the organization’s benefit from it. Key performance indicators

19



Chapter 2. Software ecosystems

(KPI) can be applied to various aspects of the ecosystem in order to achieve this.
Analysing the current state of the ecosystem and prospecting the future state can
lead to higher return on investment (Baars and Jansen, 2012).

Knowledge sharing: Knowledge sharing is not necessarily a vital aspect of a successful
governance strategy. The authors of the framework note that it might even be detri-
mental in some cases for for-profit corporations to actively share knowledge, while
for not-for-profit organizations it might be a core aspect.

The purpose of the framework is to allow organizations to be able to get an overview
of the state of their current ecosystem governance strategy, as well as allow researchers to
better compare different companies with each other, leading to a better understanding of
practice and more theoretical completeness. The authors of the framework acknowledge
that it is too early to consider it a basis for all research related to ecosystem governance.
At the time of their paper on the framework, it had only been applied to two cases. In
addition it lacks any expert reviews in order to validate it. The author’s point out that
another limitation of the framework is that it does not take into account the importance of
individual factors, such as knowledge sharing, but merely the existence of such factors.

20



2.8 Platform governance

Category Governance concept Result

Partnerships

Creating a partnership network
Degree of moderation
Degree of division in tiers, levels, etc
Acquiring new partners
Formalization of entry requirements

Supplier and
customer
governance

Coordination of contribution to other ecosystems
Setting up new suppliers
Changing the ratio of current suppliers
Ceasing cooperation with suppliers or customers
Using intermediaries

Development Creating a development standard
Enforcing a development standard

Partner
directory

Creating a partner directory
Degree of moderation

Customer
directory

Creating a customer directory
Degree of moderation

User groups Creating active user groups
Degree of moderation

Licence(s) Creating reusable software license(s)
Category Governance structure concept Result
Ecosystem
explicitness

Is the ecosystem explicit?
Is there documentation describing its current state?

Governance
explicitness

Is the ecosystem governance strategy explicit?
Are processes and procedures formalized?
Are there formalized and documented rules?
How is business strategy formalized to
governance strategy?

Responsibility

Where in the organization does ecosystem
governance take place?
Who does the decision making unit consist of?
Is this decision making unit made explicit?
Does the decision making unit report to the Board?

Measurement

Is the effectiveness of the ecosystem measured?
Which parts of it are measured?
Which KPIs are used?
How are goals defined?

Knowledge
sharing

Does the organization share its knowledge with
other companies?

Table 2.3: Governance analysis framework

21



Chapter 2. Software ecosystems

2.8.3 Governance tools
Jansen and Cusumano (2012) presents a set of governance tools for the preservation and
improvement of ecosystem health. The health of an ecosystem is represented here in three
aspects: robustness, niche creation, and productivity. Tools are provided for four differ-
ent types of ecosystems, corresponding to the classification model presented in subsection
2.3.2. Based on combinations of the factors base technology and coordinator these types
are: community run software platform, commercially run software platform, community
run standard and commercially run standard. For the sake of brevity, only the tools for
commercially run software platforms are focused on here, as they will be the most rele-
vant ones later on.

Figure 2.3: Governance model for ecosystem health preservation and improvement (Jansen and
Cusumano, 2012)

A privately owned (commercially run) software platform aims to maximize value by
penetrating the market as deeply as possible. This is done mostly by associating with
domain specific parties that leverage the platform within the ecosystem to create value
for customers that would have never been reached without these domain experts (niche
players) (Jansen and Cusumano, 2012). As is the case with other types of platforms, its
coordinators want to continuously increase the usage of the platform, however they are
also focused on maximizing profits as well.

Niche creation: Coordinators have to make sure that sufficient niche creation is happen-
ing for other parties to want to join in. Jansen and Cusumano (2012) present several

22



2.8 Platform governance

steps that can be taken here. Creation of APIs for third parties, extending the ap-
plicability of the platform (for instance by venturing into new domains), making
the strategy of the platform explicit. Making the strategy explicit involves making
explicit elements such as the product life cycle, acquisition strategy and ecosystem
strategy, allows the niche players to rest assured that their position in the ecosystem
remains safe.
Coordinators can also take more direct action by co-developing and co-funding
projects with third parties to attract them to the ecosystem. Another direct action
is to contribute to complimentary platforms, in the hope that the complimentary
platform’s growth also benefits the coordinator’s platform.
The introduction of new business models for third parties can also create niches and
business opportunities in the ecosystem. Extension markets, such as those discussed
earlier, are examples of this.

Robustness: In order to increase robustness, coordinators should focus on creating sta-
bility and stimulating activity in the ecosystem. One of the first steps to doing this is
the development of a partnership model that enables third parties to participate and
create value in the ecosystem according to set roles and positions in the ecosystem.
Stability of the ecosystem is also increased by doing marketing and growing profits
for stakeholders.
Partners with potential or weak partners can also play an impactful role in stabil-
ising or destabilising the ecosystem. Because of this it is suggested that a partner
development program be introduced that can strengthen weak participants and bring
high potentials closer to the ecosystem.
Robustness of the ecosystem can also be increased by raising entry barriers. This can
be done by raising membership fees, raising quality requirements, introducing cer-
tification programs, and assigning different levels within the partnership programs.
These raised entry barriers will contribute to the growth of a stable core of commit-
ted members within the ecosystem.
Finally, stabilizing the APIs creates a consistency within the ecosystem and enables
partners to create trustworthy and stable extensions to the platform.

Productivity: Productivity can be fostered in a variety of ways. Coordinators can arrange
development days that help raise awareness and activity surrounding the platform.
Ververs et al. (2011) found that such events have a clear influence on developer
participation in open source communities. Coordinators can also engage in collabo-
rative marketing and sales with third parties, to emphasize that the third party has a
respectable relationship with them. Finally, new sales channels can be created to en-
able more revenue for third parties, presumably leading to increased value creation
in the ecosystem.

As is the case with many of the other tools, frameworks and models currently existing
in ecosystem literature, the model presented here is in too early a stage to be viewed
as complete. Jansen and Cusumano (2012) acknowledge that further evaluation of it is
needed.

23



Chapter 2. Software ecosystems

2.8.4 Decision making
Manikas et al. (2014) presents a framework for defining the decision making strategies in
software ecosystem governance. They decompose governance into three main activities:
data collection, decision making, and applying actions. These actions form a cycle of
constantly gathering data, processing and interpreting the data, and taking action based
on the results, followed by again gathering data. The proposed framework, as mentioned,
deals primarily with the second step of this cycle, the decision making.

The framework is in part based on six politically inspired archetypes in IT governance
outlined by Weill and Ross (2004). Manikas et al. (2014), however, acknowledge that there
are some clear differences between IT governance and software ecosystem governance. IT
governance has a separation between IT and the product, whereas in a software ecosystem
the software is the product itself. There is also a difference in that ecosystems focus on
the alignment between independent entities, not entities directly governed by the same or-
ganization. Consequently, the framework here differs from the original archetypes, having
four instead of six.

The proposed ecosystem governance decision framework consists of five main decision
areas that group the main governance decisions of the ecosystem and the four archetypes
that describe how decisions are taken for each area. The main decision areas are the
following:

Principles: Decisions that address core principles, general values and main directions of
the ecosystem. Usually decisions that have a major influence on the entirety of the
ecosystem.

Actor Interaction: Decisions that are related to and affect the actors in the ecosystem.
Decisions such as total number of actors allowed in the ecosystem, how/if new actors
are allowed access, or how actors are allowed to interact with each other.

Software Interaction: Decisions regarding the software interaction and structure of the
software component network of the ecosystem, including software release manage-
ment, software architecture of the ecosystem, and other procedures and rules affect-
ing the software build and distribution.

Platform: Decisions regarding the technological platform and other common technical
infrastructure. Due to the platform being such an important and central part of the
ecosystem, this decision area is considered distinct from the previous software in-
teraction area. Decisions in this area include management of the platform, platform
architecture, commercialization of the platform and the platform openness. The
openness here refers to the extent to which different actors are allowed to be in-
volved with the core development of the actual platform itself, not the ecosystem.

Ecosystem business and products: Decisions concerning the business models of the
ecosystem, motivation of the actors and distribution/availability of products, such
as strategies for the ecosystem’s extension market(s) and incentives for actors.

24



2.8 Platform governance

For each such decision area, the framework categorises the way decisions are made,
based on the archetypes:

Monarchy: A single actor making decisions for a specific decision area. An example is
Apple deciding the principles, as they are the main hardware supplier and orches-
trator of the iOS ecosystem.

Collective: Decisions are made through processes involving all the actors, for instance
by voting. An example is the Django framework, where developers are asked to vote
for which new features should be implemented.

Federal: A number of actors are assigned as representatives to make decisions. An ex-
ample is the Apache ecosystem where changes in the Apache server repository can
only be done by a specific group of actors. Also, in the ODA ecosystem, the found-
ing members can decide to change the way new actors enter the ecosystem.

Anarchy: Each actor makes decisions on their own. An example is the software ecosys-
tem surrounding the game World of Warcraft, where any actor create their own ex-
tension market, or in the Ruby on Rails ecosystem where anyone can make commits
to the platform.

Principles Actor
interaction

Software
interaction Platform Business

and products
Monarchy Apple iOS
Collective Django
Federal ODA Apache

Anarchy Ruby on
rails World of Warcraft

Table 2.4: Decision making framework

An example of the framework being applied to the examples above can be seen in table
9.1. It is worth noting that the decision areas in this framework are fairly general and
abstract. Some ecosystems might have multiple applicable archetypes for a given decision
area. Decision areas might need to be further divided into subcategories or have their
classification of archetypes explained in greater detail.

25



Chapter 2. Software ecosystems

26



Chapter 3
Customer involvement

The creation of new products has traditionally been viewed as an internal firm-based pro-
cess, where customers are seen as passive buyers and users. Recently however, businesses
are experimenting with a higher degree of customer involvement, letting customers take
on a more active co-creator role (O’Hern and Rindfleisch, 2010). In this chapter, we will
briefly cover some of the academic literature on customer involvement, more specifically
the process of customer co-creation.

3.1 Customer co-creation typology by O’Hern and Rind-
fleisch (2010)

O’Hern and Rindfleisch (2010) outline a typology with four types of co-creation and their
uses, briefly described here:

Collaborating: In this typology, collaborating is defined as a process in which customers
have the power to collectively develop and improve a new product’s core compo-
nents and underlying structure, i.e. source code. Examples of such initiatives are
open source software projects, such as Linux, Apache and Firefox. Collaborating
offers customers a high degree of latitude to contribute their own improvements, as
well as take part in deciding the features of a product. It does, however, also require
a less controlled environment, which might turn away IP holders from opening up.

Tinkering: Tinkering is defined as a process in which customers make modifications to
a commercially available product and some of these modifications are incorporated
into subsequent product releases. It resembles collaborating, however much more
control is retained by the firm owning the IP. Tinkering often involves the firm dis-
tributing tools to allow customers to make their desired modifications. Examples
mentioned by O’Hern and Rindfleisch (2010) are modifications (mods) for com-
puter games and individually tailored web-applications. A possible challenge for

27



Chapter 3. Customer involvement

firms that allow for tinkering is to ensure that their newest product iterations actu-
ally surpass the functionality offered by a customer modified version of an older
iteration.

Co-designing: Co-designing is the process in which a relatively small group of cus-
tomers provides a firm with most of its new product content or designs, while a larger
group of customers helps select which content or designs should be adopted by the
firm. It is characterized by a relatively fixed contribution approach, but a high degree
of customer autonomy over the selection of these contributions. Co-designing offers
an advantage for the firm in that it drastically decreases development costs for new
designs and creative content, as well as providing pre-launch evaluation of a product
by the customer base. Some challenges to the co-designing approach are actually
attracting enough designers to provide sufficient content, as well as maintaining an
internal competency and distinctiveness that competitors cannot easily imitate.

Submitting: Submitting is defined here as a process in which customers directly commu-
nicate ideas for new product offerings to firm. Submitting is differentiated from tra-
ditional forms of customer inquiry(focus groups, surveys, tracking studies) by both
the degree of customer effort required and by the nature of the input that customers
provide to the firm. It required customers to expend considerable energy developing
detailed and tangible ideas for new product offerings, providing well-defined pro-
cesses, detailed graphic depictions or working prototypes. Firms that make use of
this process often actively solicit input from customers, for instance through con-
tests. Submitting resembles co-designing, however differs in that the firm retains
full control in the selection. Some advantages of submitting are a reduction in de-
velopment time, as well as an increase in customer relationships. Compared to the
other forms of co-creation, submitting has the lowest level of customer empower-
ment, which might make it a less attractive option and firms might have difficulty
maintaining or increasing participation.

28



3.1 Customer co-creation typology by O’Hern and Rindfleisch (2010)

Type of
Co-Creation

Selection
Activity

Contrib.
Activity

Key
Payoffs

Key
Challenges

Prototypical
Application

Collaborating
Customer-
Led Open

Reduced
development costs

Continuous
product
improvement

Protecting intellectual
property

Attracting a critical
mass of collaborators

Open source
software

Tinkering Firm-Led Open

Enhanced
differentiation

Virtual test markets
for new products

Policing the content
of rogue co-creators

Creating new
competitors

Modified
computer
games

Co-designing
Customer-
Led Fixed

Reduced
development costs

Decreased risk of
product failure

Attracting a critical
mass of designers

Defending against
new entrants

Online voting
on customer-
generated
content and
designs

Submitting Firm-Led Fixed

Shortened product
development
cycles

Increased access to
novel customer
ideas

Acquiring
knowledgeable new
co-creators

Retaining and
motivating existing
co-creators

Company-
sponsored
design
competitions

Table 3.1: Characteristics of co-creation types, by O’Hern and Rindfleisch (2010)

29



Chapter 3. Customer involvement

3.2 Customer Co-creation typology by Piller et al. (2010)
Another typology for co-creation in the innovation process, presented in Piller et al. (2010),
identifies three characteristics that form its conceptual dimensions: The stage in the inno-
vation process, which refers to when in the development process the customer is involved.

Stage in the innovation process: This refers to when in the development process the
customer is involved. Either early in the front end stages of the process (idea gener-
ation, concept development) or later in the back-end (product design and testing).

Degree of collaboration: This refers to the underlying relationships between actors. Whether
there is collaboration between the firm and one customer at a time or whether there
exist networks of customers who collaborate among themselves more or less inde-
pendent from the firm.

Degrees of freedom: This refers to the broadness of the task assigned to customers.
Whether it is a narrow and predefined task or whether it as open and creative task
many degrees of freedom.

Using the available combinations of these three dimensions, they further identify eight
types of co-creation, visualised in fig 3.1 and fig 3.2:

Idea contest: In an idea contest a firm can post a request to a population of independent
agents, such as customers, to submit solutions to a given task within a given time
frame. The request can be for a solution that conforms to a specified set of require-
ments, or be more or less an open call for solutions to a vaguely specified problem.
Rewards for providing the best solutions can range from simple monetary prizes
or licensing contracts, to non-monetary acknowledgements for marketing purposes.
Idea contests aim to incentivize customer involvement early in the innovation pro-
cess, as customers might not intrinsically see the benefit of their contributions in a
short time frame until later stages.

Idea screening and evaluation: Screening and evaluation of ideas is the natural next
step after several such ideas have been generated, for instance through an idea con-
test. Selecting the ideas with the highest potential is a task that can be carried out
by a panel of experts from the firm, or by the customers themselves. Depending
on their number and their complexity, it might be unreasonable to expect a single
customer to evaluate more than a few ideas. Some sort of system for distributing the
up-and-coming ideas for evaluation should be implemented.

Product related discussion forums: In these kinds of communities customers primar-
ily exchange usage experiences and support each other in the usage of a product.
Innovation and creative activity can sometimes occur, but is not the primary focus.

Communities of creation: These communities differ from the previous discussion fo-
rums in that they are primarily concerned with generating novel ideas and concepts.
Their innovation productivity is high, and can provide output beyond simple de-
scriptions, such as code and technical drawings.

30



3.2 Customer Co-creation typology by Piller et al. (2010)

Figure 3.1: Typology at front end of co-creation (Piller et al., 2010)

Toolkits for user innovation: These kinds of toolkits provide customers with a develop-
ment environment that allows for them to create an improved product for themselves
from the manufacturer’s standard modules and components, but also lets them ex-
periment with creating entirely new solutions.

Toolkits for customer co-design: These kinds of toolkits are geared more towards prod-
uct customization and developing variants of existing versions, rather than develop-
ing new goods and services. They have a more limited solution space, and modifi-
cations are restricted according to the pre-defined ”building blocks”.

Communities of creation for problem solving: These are an extension of the previously
mentioned communities of creation. In this case, however, the scope stretches all
the way to the back end of the innovation process where a product reaches its final
stages. Open source software projects are the typical examples of such communities,
with products being developed through a collaborative effort by the customers/users.

Virtual concept testing: Similar to the screening and evaluation of ideas in the front-
end, making use of virtual concept testing at the back-end can allow for customer
feedback on more tangible representations of products. This can be in the form
of allowing customers access to virtual presentations and test simulations of future
products, or in the form of bug fixing activities in open source projects.

31



Chapter 3. Customer involvement

Figure 3.2: Typology at back end of co-creation (Piller et al., 2010)

32



Part III

Method

33





Chapter 4
Approach

Over the summer of 2014 it was determined, after conversations with the thesis supervisor,
that the theme of the thesis would be software ecosystems. Initial contact was made with
Trond Benum at Schlumberger in Trondheim in August 2014, requesting sponsorship for
a case study of the Ocean ecosystem. An agreement was made the following September,
with Schlumberger agreeing to sponsor visits to their Stavanger offices as well as provide
information on request. At this point, relevant academic literature was collected, largely
by using Google Scholar to find articles, but also physical books. An exploratory (Oates,
2005) approach was taken in regards to the literature, as well as the first visit to Schlum-
berger in Stavanger in December 2014. This allowed for a more defined direction for
the thesis to be ready for the start of 2015, after discussing the details of a problem they
presented, as seen in part IV of this thesis.

The approach then shifted towards a more descriptive, short-term, contemporary
study (Oates, 2005), focusing on the case in its current state. Most external interviews
were performed in Q1 and Q2 of 2015, interspersed with retrieving literature, as well as
staying in contact with Schlumberger primarily through Ahmed Aqrawi at the Stavanger
offices. Finally, the literature was applied to the data gathered on the Ocean ecosystem,
and the results applied to the case itself.

35



Chapter 4. Approach

36



Chapter 5
Data collection

Data collection for this thesis was primarily done in two ways; interviews and observation.
Before any data collection took place, a preliminary outline of the project was sent to the
Norwegian Social Science Data Services(NSD), the data protection official, for evaluation.
After clearance from NSD, the initial data collection was performed during a week-long
visit to Schlumberger’s Stavanger offices in early December of 2014. This visit allowed
for both semi-structured interviews as well as overt observation of day-to-day operation.
In addition, some data was collected through more informal means such as ”watercooler
talk” and chats during lunch breaks. This visit also established contacts with key personnel
at Schlumberger. Finally, a direction for the thesis was determined during this visit based
on the interactions had with these individuals.

Contacts at Schlumberger opened up further contact with third parties involved with
the ecosystem. These parties were then contacted by e-mail with a request for an inter-
view. As many of them were located outside of Norway, these interviews were primarily
performed using VOIP through either Skype calls or Lync meetings. Face-to-face inter-
views and further observations were performed when possible. Interviews were primarily
conducted with third party heads of development and developers, but also with internal
developers at Schlumberger. In addition to developers, users of the Petrel platform were
also interviewed.

A second visit to the Stavanger offices was made in March 2015, for the purposes of
follow-up interviews as well as new, full, interviews.

Interview subjects were chosen from four main categories:

• Internal developers at Schlumberger that create plug-ins for commercialization in
the Ocean Store (two participants).

37



Chapter 5. Data collection

• Third party developers that create plug-ins for commercialization in the Ocean
Store (three participants).

• Third party developers at E&P companies that specifically create plug-ins for
internal use within their own company (One participant, managerial position).

• Petrel users who make use of Petrel plug-ins created with Ocean (One participant,
managerial position responsible for Petrel deployment and use).

In addition to these subjects, various staff and managers at Schlumberger were also
interviewed during visits in Stavanger (five participants).

Interviews generally lasted for 40 minutes and were transcribed by the interviewer. In
addition, four brief follow-up interviews were also performed for the purpose of clarifica-
tion in some cases.

38



Part IV

Case

39





Chapter 6
Background

6.1 What is the E&P sector?

The oil and gas industry is often viewed as a chain involving three major sectors. Up-
stream, midstream and downstream. E&P is short for Exploration and Production, which
is another name for the upstream sector. This sector, as the name implies, is where oil and
natural gas is found and extracted. The midstream sector refers to the industry where these
commodities are stored and transported after production. Finally, the downstream sector
refers to the refineries, petrochemical plants, distributors and retail outlets that terminate
the chain. (PSAC, 2015).

An important part of the E&P sector, or upstream sector, is locating new potential
sources of oil and natural gas. This process begins with observations by geophysicists
and geologists to find areas with a reasonable chance of containing petroleum reservoirs.
Once such an area has been found, seismic exploration is performed there to further de-
termine if it is suitable for drilling. Seismic exploration involves using sound waves that
travel through the subsurface rocks, is reflected off the subsurface rock layers, and returns
to the surface to be recorded. On land, the waves are typically created by use of explosives
or mechanical vibrations, while at sea it is often an array of air guns trailing after a ship
with sensors (Hyne, 2001). In addition to seismic exploration there is also gravity and
magnetic exploration, however seismic is the most common.

The geophysicists and geologists then analyse the data to find evidence of reservoirs or
similarities to other areas where petroleum production has already started. If the results
are promising, an initial drill site is determined and drilling starts. Throughout the drilling
process continuous analysis is performed of the drill’s log in addition to rock samples
recovered from the well, in order to further determine the profitability of the reservoir.
New wells are then drilled at other potential reservoirs in the area, or sometimes multiple
wells to the same reservoir, to increase the production of petroleum. Wells deemed to no

41



Chapter 6. Background

longer be profitable, or never profitable in the first place after sample analysis, are shut
down and the borehole filled.

6.2 Digital tools in E&P

Until the prominence of digital technology, the representation of data in the E&P sector
was mostly done by hand. The transition to digital tools in the 1980s coincides with both
the need for 3D representations of data and the capabilities of the new technology to actu-
ally provide them (Laver, 2012). A transitional mechanical approach to 3D was attempted
in the 80’s with the SeisCrop Table, transcribing seismic data to film strips, however it was
quickly overshadowed by the introduction of commonplace computers in the workplace
(Roth, 2005). In addition to 3D modelling capabilities and interpretation, the functional-
ity required by E&P software soon expanded to include data sharing capabilities between
dissimilar tools to better allow geophysicists and geologists to collaborate. As computing
power increased, the possibility of running simulations on reservoirs was introduced as
well. Today, visualization, modelling and simulation software are in heavy use by geo-
physicists, geologists and petroleum engineers all over the world to help with optimizing
both exploration and production. Recently, a move towards extendible software platforms
has taken hold, as opposed to stand-alone products. Figures 6.1 and 6.2 are taken from
Welling reports on the subject.

Figure 6.1: Plug-in survey. 2013 Welling Report Geology and Geophysics.

42



6.3 Schlumberger

Figure 6.2: Supplier survey. 2012 Welling Report Reservoir Characterization.

6.3 Schlumberger
Schlumberger is the leading supplier of technology, integrated project management and
information solutions to the oil and gas industry worldwide. It employs approximately
126,000 people (Schlumberger, 2014a) and had a full-year revenue of $45.27 billion in
2013 (Schlumberger, 2014b).

The precursor to Schlumberger, Societe de Prospection Electrique, or Pros, was estab-
lished in 1926 by brothers Conrad and Marcel Schlumberger (Schlumberger, 2014d). Pros
initially carried out surface prospecting for ores, but gradually extended its activities to
exploration of possible oil-bearing structures. They soon pioneered the use of a new tech-
nique of using probes lowered into boreholes to measure resistivity. These measurements
allowed for improved well logging, where previously samples from the subsurface rock
would be required. By 1929 demand for the patented ”electrical coring” was growing
rapidly in many countries across the globe.

Further technological innovation and business expansion resulted in the now multi-
national company Schlumberger Limited being listed on the NYSE in 1962. The following
years would see the company furthering research in oil exploration as well as providing
sensing and measuring equipment both to deep sea exploration vessels as well as NASA
spacecraft during the space race.

Today, Schlumberger is also heavily involved in software for the oil and gas industry
through Schlumberger Information Solutions(SIS). Their main software products are the
Petrel E&P Software Platform, the Studio E&P Knowledge Environment, the Techlog
Wellbore Software Platform, the Avocet Production Operations Software Platform
and the Ocean Software Development Framework, which allows for the development
of plug-ins for the platforms. Ocean currently supports development for both the Petrel

43



Chapter 6. Background

platform as well as Studio, with support for Techlog expected in 2015 and Avocet at a later
date (Schlumberger, 2014g). The Ocean framework is central to the ecosystem discussed
in this thesis and is presented in greater detail below. Petrel and Studio will also briefly be
presented, as they are currently extendible by the Ocean framework. Techlog and Avocet
do not currently have support in Ocean and so are considered outside the scope of this
work.

Figure 6.3: Schlumberger platform technologies.

6.3.1 Schlumberger Information Solutions

6.4 Petrel
The Petrel E&P Software Platform is the SIS flagship product. It supports the rapid devel-
opment and updating of three-dimensional subsurface models, with workflows spanning
seismic interpretation through reservoir simulation (Schlumberger and Microsoft, 2014).
By offering a wide range of features and perspectives, it facilitates cross-discipline col-
laboration without the need for disparate applications (Schlumberger, 2014e). The plat-
form also supports automated, repeatable workflows, allowing best practices to be shared
across an organization. Additional features in the form of plug-ins can be obtained from
the Ocean Store, given that the required so-called ”core” for that module is installed. A
Petrel core is a package of additional features intended for a particular domain. The four
cores in Petrel are the Combined Core, Geoscience Core, Reservoir Engineering Core and
Shale Core.

44



6.5 Studio

Figure 6.4: Screenshot of Petrel.

6.5 Studio

The Studio E&P Knowledge Environment enhances the Petrel platform by allowing effec-
tive capturing and sharing of knowledge. Long term it is planned for all four main products
to be integrated through Studio (Schlumberger and Microsoft, 2014).

Studio offers a multi-user, concurrent-access project environment that provides scala-
bility over large sets of data and users (Schlumberger, 2014f). Collaboration is facilitated
through contextualized representation of the data for each user, integrated communication-
channels with other members of the team, and data management tools for the Studio envi-
ronment. It’s primary purpose is to allow for an easy and accessible way to get an overview
of many and large sets of data.

6.6 Ocean

6.6.1 The Ocean Framework

Ocean is an application development framework for developing plug-ins for the SIS soft-
ware platforms, though currently only Petrel and Studio are supported. Plug-ins are built
with Visual Studio for .NET with the help of a platform-specific wizard that takes care
of the interaction with the Ocean core as well as some low-level access to functionality
provided by the product family.(Schlumberger, 2014c). A plug-in consists of modules, ex-
tensions to the product family, that are packaged together along with meta-data to complete
and identify the plug-in.

Fig.6.5 shows the architecture of the framework as it is presented in the documentation
for the Ocean for Petrel API. The Ocean Core serves as the basic infrastructure, managing
Ocean modules and registering services, as well as managing data sources provided by
the product family or external data sources defined by a module. The Ocean Services are
a set of application independent utilities; modules that benefit from being standardized
across product families. The product family is the host for Ocean applications and is the
environment in which the Ocean module needs to run, for instance the Petrel platform.

45



Chapter 6. Background

Figure 6.5: Ocean architecture.

6.6.2 The Ocean Store
The Ocean Store enables platform users to browse a catalogue of Ocean plug-ins for the
SIS platforms (Schlumberger, 2014g). Most of these plug-ins are developed by third par-
ties using the Ocean framework and offered as licences through the store, though some are
developed in-house by SIS. There are currently 138 plug-ins available for Petrel and one
for Studio (Schlumberger, 2014c). Compensation for the developers varies, as shown in
Fig.6.6. Note that only partners and certified partners can distribute commercial plug-ins
through the Ocean Store. Certified partners are partners with a proven track record of de-
veloping quality plug-ins and are displayed as such in the Ocean Store, along with various
other benefits. Some third party developers, remain unconvinced by the partnership pro-
gram and the Ocean Store however. One developer commented that using their own sales
channels were a better option than using the Ocean Store for distribution, and that being
a preferred partner seemed to be effectively little more than a marketing gimmick. ”SIS
seems more interested in selling copies of Petrel than truly developing a platform.”

6.7 The Ocean Ecosystem
While ultimately all of the SIS platforms might be considered part of the ecosystem, the
central unifying piece is the Ocean framework which allows for extensibility in the other

46



6.7 The Ocean Ecosystem

Figure 6.6: Ocean framework payment models.

platforms. For this reason, the ecosystem will be referred to as the Ocean ecosystem from
here on in. It is an application-centric software ecosystem, as described in the taxonomy
by Bosch (2009), born out of a general desire for extensibility.

While in the process of renewing their older flagship product, GeoFrame, the idea of
extensibility and openness inspired work on Ocean to start in 2001. Shortly after, in 2003,
the Petrel platform was acquired when Schlumberger bought Technoguide. Based on the
existing reputation of Petrel, it was decided that it and Ocean combined would gradually
replace GeoFrame. Work on the new GeoFrame product, called iGeoFrame, ceased and
development resources were moved to the new products. Since then the Ocean framework
has been closely tied to the Petrel platform and vice versa, despite some initial concerns
about giving up potential revenue streams by allowing functionality to be commercialized
by external parties. Interviews with Schlumberger staff reveal that there was also some
contention between those who wanted Ocean to remain independent of Petrel and those
who wanted the integrated solution that is in use today. An interviewed representative
from a large E&P company with several years of Petrel and Ocean experience regarded
this to be an important move, citing that Ocean was ”really lacking a killer-app up until
that point”.

The Ocean ecosystem is currently focused around Ocean and the extensibility it offers
to the Petrel platform, as well as the Studio platform to a lesser extent. Long term, how-
ever, the plan is for the ecosystem to encompass all five of the SIS platform technologies.
This means adding Ocean support for Techlog, which is focused on the detailed well level,
and Avocet, which is focused on the business level. The intention is for the Ocean ecosys-
tem to be host to a holistic platform that integrates all the functionality needed by E&P
companies, with easy interaction between its sub-platforms as visualized in Fig.6.7.

47



Chapter 6. Background

Figure 6.7: Schlumberger’s vision for an integrated E&P plaform.

6.7.1 The actors in the Ocean ecosystem
The owner of the ecosystems and its platforms is Schlumberger, through its SIS segment.

The developers in the ecosystem consist of a mixture of traditional software develop-
ment companies, developers specializing in creating plug-ins for the SIS platforms,
in-house development teams from E&P companies as well as SIS themselves. In
addition to this is the development of plug-ins that are never released on the Ocean
Store, but created for usage within certain companies or in an academic context.
There are however instances of the latter being commercialized later with assistance
from SIS.

The end-users of the ecosystem are E&P companies of varying sizes and prominence
that make use of the platforms, primarily Petrel.

6.7.2 Governance
SIS has purposely opted for a low involvement approach to the ecosystem, claiming open-
ness and a free marketplace to be important. An analysis of the governance of the Ocean
ecosystem using the dimensions outlined in Tiwana (2014) gives us the following:

Decision rights in the ecosystem are left fairly decentralized. Certainly for plug-ins.
Developer’s develop the functionality that they believe will generate a profit, with little
involvement or direction from SIS. In the platform category there are a number of efforts
made towards making the ecosystem more open. Input from users is encouraged on ideas
for improvements to both Petrel and Ocean, as well as maintaining an active dialogue
between themselves and SIS. Annual week-long events for users and partners are held to
further discuss the long-term plans for Petrel and Ocean, as well as allow for voting on

48



6.7 The Ocean Ecosystem

changes or new features to prioritize. The actual prioritization and impact of requests are
not known publicly, however.

The control portfolio of the Ocean ecosystem primarily consists of strict gatekeeping
of plug-ins. All plug-ins must satisfy certain criteria in regard to technical quality, mar-
keting and documentation. Only plug-ins that satisfy this acceptance test laid out by SIS
are approved to be available on the Ocean Store. There is also a certain amount of process
control, although it is more a case of encouragement than enforcement: Online instruc-
tional resources provide some best practices, as well as the Ocean user group involving
developers with presentations and workshops. Long term adherence to best practices and
creating high quality plug-ins opens up the possibility of a developer getting status as a
preferred partner. Preferred partners get improved visibility in the Ocean Store, as well as
other benefits such as information on upcoming releases of the platforms in the ecosystem.
In addition SIS frequently recommends their preferred partners to E&P companies look-
ing for a developer to develop a specific solution. This creates incentives for developers to
follow best practices, without anything being directly enforced.

The pricing dimension of the Ocean ecosystem follows an asymmetrical approach.
While the profits generated from the sale of plug-ins on the Ocean Store are not incon-
sequential to SIS, the main source of revenue from the ecosystem comes from the sale
of platform licenses. As such, the main purpose of the Ocean ecosystem becomes to
add value to the existing platforms. Developers are subsidized in part through the Ocean
framework and its APIs, online resources, as well as the user group and other community
events. Pricing models for plug-ins on the Ocean Store are restricted to licensing, though
actual prices can be set by developers. An Ocean representative noted, however, that they
see it as preferable that prices stay at a reasonable level as it ”sets a standard for what
plug-in technology is worth and, consequently, reflects on the value of Ocean.”.

49



Chapter 6. Background

50



Chapter 7
Case presentation

7.1 Domain objects

7.1.1 Description
The term ”domain object” is used in the context of Ocean and its associated platforms
to refer to a class of data. This domain object is often a representation of a physical
entity, such as a geological horizon, surface, reservoir and so on. These objects have
properties which in turn are also technically domain objects, however cannot exist on their
own as they have to be linked to a parent object. Properties such as height fields along a
surface or porosity distribution in a reservoir. Both entities and their properties are stored
in Petrel projects as domain objects. There are several kinds of domain objects native to
each platform, however the Ocean framework also allows developers to create their own
custom domain objects (CDO) to be used in their plug-ins. These CDOs can also be used
to extend native domain objects to be used in a plug-in.

7.1.2 CDO Usage
Not every plug-in requires the use of CDOs. The developers interviewed seemed to tie the
usage of CDOs to how well established the domain of the plug-in is. A plug-in dealing with
cutting edge processes in electromagnetism in oil exploration, for instance, might not have
sufficient native objects in Petrel, and one or more CDOs might be needed. Developers
generally expressed that they preferred to use native objects as much as possible, only
using CDOs as a last resort. ”Our policy is to try to not re-invent the wheel, so we try
to make sure we don’t develop features that we know are coming to Petrel soon” one
developer commented. However, due to the constant advances in the E&P industry, it was
often the case that CDOs were a necessity.

Occasionally functionality from a plug-in may later be included wholly or partially in a
Petrel release or in a Petrel core, which also creates a native version of any CDOs required

51



Chapter 7. Case presentation

for that functionality. One developer commented that in their case this was not a problem,
as their plug-in was competitive in price compared to the core, and also that the lack of
compatibility with a user’s stored work done in their plug-in caused a lock-in effect where
users continued to use the plug-in rather than switch to the native solution and have to redo
work.

7.2 The problem

Most domain objects used in the platforms are native to the platform. As mentioned above,
however, developers can include their own custom domain objects in their plug-ins. In
itself, this does not pose a problem. A developer using a custom domain object in their
plug-in to better represent the user’s data should, after all, be a good thing. The issues
arise when the user runs two or more plug-ins, presumably from different developers, that
both represent the same data in different custom domain objects. This results in the same
data being represented twice or more without benefit to the user. Users of Petrel report
frustration with having to interact with these multiples of what is, to the user, essentially
the same object. In addition to the inconvenience described by end-users of the software,
data managers have also described the multiples of data as a problem for them.

As an example, let us assume that a pioneering new technique ”new-tech” for deter-
mining the location and amount of oil in a given area has been developed. Since this is an
entirely new concept, no support for it exists in Petrel. Developers Alice and Bob each de-
cide to take advantage of this by creating plug-ins that provide features for E&P companies
looking to make use of this new type of exploration. The two developers create plug-in
A and plug-in B, respectively, each with some distinct features. Both plug-ins use the
same algorithm to create a CDO for an area’s initial new-tech outline from already present
data that they then do work on, however Alice and Bob develop and commercialize their
plug-ins separately.

Figure 7.1: Two plug-ins create different CDOs

52



7.2 The problem

A Petrel user, Carol, works in an E&P company interested in using new-tech explo-
ration. Both plug-in A and plug-in B have features that Carol thinks would be
useful, so she licenses and installs them both. They both generate their own new-tech
outline of a geographical area that Carol is working on, as the CDOs CDO A and CDO
B. Initially these two CDOs are identical, since the plug-ins happen to generate them the
same way, and the fact that there are two different CDOs in use by the plug-ins is not
apparent to Carol. She then uses one of plug-in A’s features which does some work
on the outline and alters it. After the changes have been made, Carol wants to make use of
some of plug-in B’s features in order to do some work on the updated outline. Now
she notices that there is a discrepancy. This is because what to her was the same business
object, was represented by two distinct objects by the plug-ins. Plug-in B cannot ac-
cess the updated CDO A, and is only able to do work on CDO B, which it created. Carol
now realizes that she is stuck with two new-tech outlines for the same area in her project,
if she wants to continue using the features of both plug-ins. Additionally, each feature set
will only work with one of the outlines and updates to them will be done individually.

7.2.1 Impact on users

See above. In addition, SIS has received reports from those users responsible for data
management that it adds unneeded complexity to their work.

7.2.2 Impact on developers

Besides the fact that it can sometimes mean ”re-inventing the wheel” and causing unnec-
essary work, overlapping CDOs can also have an impact on developers by limiting the
interoperability between plug-ins. This impact is not necessarily a negative one, however.
One developer noted that it could have a ”sometimes desirable lock-in effect for us”, while
still acknowledging it as an issue. Another noted that they indeed think it would be prefer-
able to be rid of the problem altogether and had no problem with potentially sharing their
CDOs, if able: ”We usually find that our important IP is in the actual business logic. We
would not be opposed to others being able to make use of CDOs we create. Moving main-
tenance over to SIS would benefit everyone.”. Implied here is that SIS recreate the CDO
as a native DO in Petrel.

A related issue that also came up during interviews was the inability to reach native
DOs that were children of CDOs from different plug-ins, i.e. instantiated as properties of
a CDO.

7.2.3 Impact on owner

As these overlapping domain objects create usability problems for end-users, this, in turn
translates into a problem for SIS as the platform owner through a potential loss of cus-
tomers.

53



Chapter 7. Case presentation

7.3 What is being done
Interviews with SIS staff reveal that they currently have a, self-described, ”reactive ap-
proach”. ”We can’t just pre-emptively create objects”, one Ocean representative remarked,
as the workload on the Ocean developer team is already high enough in addition to the po-
tential bloating it might cause. If problems of this nature arise, the response from SIS
is usually to implement their own solution after the fact and attempt to get everyone on
board. It also takes time before objects can be added natively. This means that the devel-
opers of the plug-ins with the offending domain objects are encouraged to migrate to the
SIS solution. They are not forced to migrate, meaning it is up to the developers themselves
to decide how they would like to proceed. On the one hand code migration can potentially
be very costly for these developers, on the other it can mean future savings in terms of re-
duced code maintenance. Several developers noted that they would prefer for SIS to carry
the responsibility and centralize maintenance.

54



Part V

Discussion

55





Chapter 8
Reasoning

This part of the thesis examines the Ocean ecosystem closer by applying some of the
frameworks already presented in the literature review, for the purpose of providing an
overarching analysis of the ecosystem both for future academic use and in relation to
the case. Due to the nature of the case, extra attention is paid to the governance of the
ecosystem and the collaborative aspects. The reason for this is that an expected solution
would need some measure of customer involvement in such a decentralized environment,
and the orchestration of such a solution would inevitably fall within the purview of the
ecosystem’s governance.

The models and frameworks covered here are:

• Ecosystem taxonomy by Bosch (2009)

• Ecosystem classification model by Jansen and Cusumano (2012)

• Ecosystem governance analysis framework by Baars and Jansen (2012)

• Ecosystem governance model and tools by Jansen and Cusumano (2012)

• Decision making framework by Manikas et al. (2014)

• Co-creation typology by O’Hern and Rindfleisch (2010)

• Co-creation typology by Piller et al. (2010)

57



Chapter 8. Reasoning

58



Chapter 9
Ecosystem

9.1 Applying frameworks
In order to investigate possibilities surrounding the case outlined in the previous chapter,
we further analyse the Ocean ecosystem. In this section, ecosystem frameworks and mod-
els from the literature review are applied to the Ocean ecosystem, in particular as they
relate to ecosystem governance. This also serves the purpose of expanding the, somewhat
lacking, number of cases available in academic literature on the subject.

9.1.1 Taxonomy
In the taxonomy proposed by Bosch (2009) it is clear that the Ocean ecosystem can be de-
scribed as an application-centric software ecosystem. As with many other such ecosys-
tems, it had its start with a successful domain-specific application, in this case, Petrel. Its
history further conforms with the expected development of such an entity. The volume
and nature of new requests were too large to be feasible to develop in-house, and the ap-
plication became a domain-specific platform with a surrounding ecosystem complete with
development tools for third parties, the Ocean framework.

To reiterate some of what Bosch (2009) mentioned regarding pitfalls for this kind of
ecosystem, the original user base of the application, now platform, are users of it primarily
due to the existing functionality. They may not be aware of or realize the extended func-
tionality available to them. Actively facilitating the interaction of users and developers,
as well as improving the visibility of extensions available, therefore becomes important in
order to attract developers.

9.1.2 Classification
Using the classification model proposed by Jansen and Cusumano (2012), the Ocean
ecosystem is described in terms of the four classification factors:

59



Chapter 9. Ecosystem

Base technology: The Ocean ecosystem is underpinned by several platforms, although
it could be argued that, at present, Petrel is the actual basis for the ecosystem. The
Studio, Techlog and Avocet platforms might become more prominent in the future,
if the plans for integration are realized. In which case, the new unified platform
might be considered the base technology as a single platform.

Coordinators: The ecosystem is privately owned by Schlumberger, more specifically
SIS. They are the owners and decision makers of the ecosystem. This is to be ex-
pected, as they are also the owners of the base technology being used.

Extension markets: The classification model calls for this factor to fit into one of five
cases: No extension market, a simple list of extensions, an actual extension market,
a commercial extension market, or multiple extension markets. The Ocean Store,
operated by SIS, is clearly a commercial extension market, with SIS taking a por-
tion of the revenue from sales. It is however worth noting that not all plug-ins are
distributed through the Ocean Store. Many plug-ins are created through agreements
made between two ecosystem actors directly. Some E&P companies also develop
plug-ins themselves, for internal use. As such, the truth might lie somewhat outside
the description of just a commercial market, as distribution of plug-ins exists not
just within the Ocean Store.

Accessibility: Paid. In order to develop usable plug-ins using the Ocean framework,
a paid license is required. In addition, there is a screening process in order for a
developer to be allowed purchase such a license. Distributing a plug-in through the
Ocean Store requires further quality control, and that a portion of the revenue goes
to SIS.

Name Base technology Coordinators Extension market Accessibility
Ocean
ecosystem platforms privately owned

a commercial
market paid

9.1.3 Governance analysis framework
When applying the governance analysis framework proposed by Baars and Jansen (2012),
we get the following table. Some concepts are marked with *, meaning that a yes/no
answer was deemed insufficient and that an explanation can be found below.

Partnerships: The Ocean ecosystem does operate with a partnership model. Partnership
in the ecosystem involves being an Ocean developer with at least one commercial
plug-in on the Ocean Store. This means that the developer must have produced a
plug-in that passed the quality control for the Store. The partnership model is tiered,
with the title of certified partner being reserved for partners that can demonstrate
consistent adherence to the acceptance criteria in the quality control, and generally
create high quality software. Status as a certified partner is reviewed annually, and
as such, it is possible to lose this status.

60



9.1 Applying frameworks

Category Governance concept Result

Partnerships

Creating a partnership network
Degree of moderation
Degree of division in tiers, levels, etc
Acquiring new partners
Formalization of entry requirements

Yes
*
*
*
Yes

Supplier and
customer
governance

Coordination of contribution to other ecosystems
Setting up new suppliers
Changing the ratio of current suppliers
Ceasing cooperation with suppliers or customers
Using intermediaries

N/A
N/A
N/A
N/A
N/A

Development Creating a development standard
Enforcing a development standard

Yes
Yes

Partner
directory

Creating a partner directory
Degree of moderation

Yes
*

Customer
directory

Creating a customer directory
Degree of moderation

No
N/A

User groups Creating active user groups
Degree of moderation

Yes
*

Licence(s) Creating reusable software license(s) No
Category Governance structure concept Result
Ecosystem
explicitness

Is the ecosystem explicit?
Is there documentation describing its current state?

Yes
No

Governance
explicitness

Is the ecosystem governance strategy explicit?
Are processes and procedures formalized?
Are there formalized and documented rules?
How is business strategy formalized to
governance strategy?

Yes
Yes
Yes
*

Responsibility

Where in the organization does ecosystem
governance take place?
Who does the decision making unit consist of?
Is this decision making unit made explicit?
Does the decision making unit report to the Board?

*
*
No
No

Measurement

Is the effectiveness of the ecosystem measured?
Which parts of it are measured?
Which KPIs are used?
How are goals defined?

Yes
*
*
*

Knowledge
sharing

Does the organization share its knowledge with
other companies?

Development: Partners, and certified partners in particular, are expected and required to
conform to a certain level of quality in their finished products. The actual develop-
ment process, however, is not regulated by SIS, beyond an imposed time limit for
developing a marketable plug-in.

61



Chapter 9. Ecosystem

Partner directory: Partners and certified partners are listed on the Ocean Store and on
the website for the Ocean framework itself. The list is curated by SLB.

User groups: There is an official user group for Ocean, with annual events. These events
include presentations by SIS and partners, as well as workshops. They are meant
to promote interaction and best practices. In addition there are message boards
available where developers can interact. There are also several events for Petrel
customers. Ranging from small local events, to bi-annual summits that are invite-
only for the 30 largest customers. There is also the more, marketing-oriented SIS
global forum, with a 1000+ attendants.

Governance explicitness: Rules, procedures and guidelines for the actors in the ecosys-
tem are clearly explained in their individual contracts. The stated purpose of the
ecosystem is to increase competency of all actors and to facilitate distributed inno-
vation, with the goal of increasing the value of the platforms involved.

Responsibility: Decisions regarding the individual platforms are made by the portfo-
lio organization for that product. This includes the portfolio manager, legal team,
partner manager, marketing team, product champions and support teams. For the
ecosystem as a whole, this effectively means the portfolio organizations for Petrel
and Ocean. These organizations then report to SIS management.

Measurement: The ecosystem is measured primarily through number of agents involved
and the number of plug-ins that are distributed. As the ecosystem’s purpose is to in-
crease the value of the existing platforms, the actual revenue from plug-in sales
through the Ocean Store is not as important as the number of sales. Customer satis-
faction gathered from surveys is also used as an indicator. Goals for the ecosystem
and the platforms themselves are generally given as percentage-based increases in
certain indicators, though occasionally they are also in the form specific goals, such
as increasing sales in a given region.

Knowledge sharing: Through openness in the ecosystem, SIS aims to promote dis-
tributed innovation and draw in outside expertise. Knowledge is shared to as high
a degree as possible within the limits of not violating IP rights. Certain informa-
tion regarding the ecosystem and it’s partners, such as financial records, are also not
shared.

9.1.4 Governance tools
Based on the results from 9.1.2, the Ocean ecosystem is clearly based on privately owned
software platforms. In this subsection we will go through the governance tools for such
ecosystems as outlined in Jansen and Cusumano (2012) and compare them to the Ocean
ecosystem.

Niche creation: SIS facilitates niche creation largely through the Ocean Framework, aid-
ing and allowing third parties to contribute extended functionality through plug-ins
for the platforms. Niche creation is further enhanced by the creation of new busi-
ness models through the existence of the Ocean Store, which allows for distribution

62



9.1 Applying frameworks

Figure 9.1: Reminder of the governance model by Jansen and Cusumano (2012)

and sale of plug-ins. Explicitness of strategies involved in the ecosystem is achieved
through clear rules and regulations that members have access to, as well as certain
members getting access to early information on the direction of the Petrel platform
and the Ocean Framework. One might argue the existence of the development of
complementary platforms in the Ocean ecosystem, as all the involved SIS products
are eventually meant to be interconnected. However, as neither of these are exter-
nal to the ecosystem, they are only complementary to each other, not the ecosystem
itself. Co-funding and co-development (not to be confused with co-creation, dis-
cussed in chapter 10) by SIS is done to a certain degree through the sponsoring of
academic endeavours, with competitions and donated licences.

Robustness: As mentioned previously, the Ocean ecosystem does operate with an ex-
plicit partnership model for third party developers, which also them to be marketed
in the Ocean Store. Access requirements to this partnership and its different levels
also serves as an entry barrier and, as such, should contribute to the growth of a
stable core of committed members. As the Ocean Framework is its own commercial
product, APIs created by SIS in the ecosystem are well maintained.

Productivity: The Ocean user group’s annual meetings contain workshops in addition
to presentations, but designated dev. days are not organized by SIS. A form of
collaborative marketing is done in the form of the perks for preferred partners, as
they are featured more prominently on the Ocean Store and can be presumed to have
a respectable relationship with SIS.

63



Chapter 9. Ecosystem

9.1.5 Decision making framework
Here we will apply the decision making framework presented by Manikas et al. (2014) to
the Ocean ecosystem. To quickly recap: the framework defines decision making strate-
gies for an ecosystem based on five decision areas and four archetypes. Below we will
go through each of these decision areas and identify the corresponding archetype for the
Ocean ecosystem, describing how decisions are made.

Principles: Core principles, values and the main direction of the ecosystem is controlled
by SIS, as they are the proprietors of the platforms involved. As such, the most
appropriate archetype for this decision area is monarchy.

Actor Interaction: Much like the previous decision area, access to the ecosystem and
the rules governing actor interaction is controlled by SIS alone. Monarchy.

Software Interaction: In this decision area, the ecosystem begins to lean in the direction
of a collective. Requests for upcoming features for the SIS products involved in the
ecosystem are gathered, and in some cases voted for. The extent to which an actor
has influence over these decisions can vary and is unknown, as the final say rests
with SIS. Because of this, it would be more correct to also classify the decision
making process in this area as a monarchy, as well.

Platform: See above.

Ecosystem business and products: The Ocean Store is controlled and curated by SIS,
however decisions regarding distribution outside this market can be made by indi-
vidual actors. Decision making in this area then falls somewhere between monarchy
and anarchy. Due to the degree of autonomy that exists in regards to business con-
ducted outside the Ocean Store, however, it can be argued that anarchy is the most
fitting archetype.

Principles Actor
interaction

Software
interaction Platform Business

and products
Monarchy X X X X
Collective
Federal
Anarchy X

Table 9.1: Decision making framework applied to the Ocean Ecosystem

64



Chapter 10
Co-creation

10.1 Applying frameworks
Taking part in a software ecosystem, regardless of position, can be seen as an ultimately
collaborative effort where one actor’s actions affect the others. Considering the case pre-
sented in this thesis in particular, some manner of orchestration is called for. In this section,
the co-creation typologies from the literature review are applied to the Ocean ecosystem.
In applying these typologies in this setting, the roles of firm and customers no longer fit in
the traditional sense. Instead, we here deal with platform owners and third party develop-
ers, as well as end users to a lesser degree.

10.1.1 Co-creation typology 1
The first typology is the one proposed by O’Hern and Rindfleisch (2010), which defines
four types of co-creation. Collaborating, tinkering, co-designing and submitting. The
Ocean ecosystem does, of course, allow for the extension of functionality provided by the
platforms. Full-on, unrestricted access to the source code is, however, not provided. As
such, there is no collaborating in the ecosystem, as precisely defined in this typology. The
type of co-creation which most fittingly describes the Ocean ecosystem, is tinkering. SIS
retains control over their IP and product, however they provide the tools for extending this
functionality through the Ocean framework.

One could argue that there are elements of the co-designing and submitting types of co-
creation, as well, although these may not be differentiated enough from traditional forms
of customer inquiry such as focus groups and surveys. These elements can be found in
the requests that are routinely accepted by SIS for improvements to both the platforms
and the Ocean framework, which are a form of submitting. These requests are taken
into account by SIS, and a backlog of requested features is built up. The prioritization
of which features are to be included, and when, is completely up to SIS, however. One
developer noted, for example, that they were mostly happy with the Ocean framework,

65



Chapter 10. Co-creation

but felt that it was ”difficult to get our requested improvements implemented by SIS”. An
Ocean representative explained that incoming requests had to be weighted according to
feasibility, as well as the size and importance of the customer making the request. As
such, not all requests can be implemented. A more direct use of submitting can be seen in
the Ocean Academic Competition, where participants submit working plug-ins that aim to
solve specific challenges.

10.1.2 Co-creation typology 2
The second typology in this chapter is the one presented by Piller et al. (2010) for co-
creation in the innovation process. To quickly recap, the types here are based on a set of
three characteristics; At what stage in the innovation process the co-creation occurs, the de-
gree of collaboration between actors, and the degree of freedom that the actors have. With
two alternatives for each of these characteristics, the possible combinations give us eight
different types of co-creation within the typology. These are: Idea contest, idea screen-
ing and evaluation, product related discussion forums, communities of creation, toolkits
for user innovation, toolkits for customer co-design, communities of creation for problem
solving, and virtual concept testing.

The Ocean ecosystem is heavily based around two of these types of co-creation, namely
the toolkits. While the Ocean framework does mostly fall into the toolkit for customer co-
design type, due to the restrictions inherent in the available APIs, it could also be argued
that it also serves as a toolkit for user innovation in accordance with the definitions
provided in the typology, as the framework does allow for experimentation with original
”building blocks”. This is one of the key features of a user innovation toolkit, and so I
would argue that the Ocean framework has elements from both of the co-creation toolkit
types.

We also find the use of product related discussion forums in the online forums hosted
by SIS themselves, as well as some use of Stack Overflow with the ”ocean” or ”petrel”
tags. These forums see little activity by the larger development houses, however. Devel-
oper’s interviewed expressed that they felt little need to use them, preferring to ask/answer
questions internally. Somewhere between these online forums and the communities of
creation type of co-creation, we find the Ocean user group which meets twice per year
with presentations and workshops. These meetings are hosted by SIS, but also feature
presentations by the third party developers in the community.

The Idea contest type of co-creation is also present in the ecosystem, through the re-
gional Ocean Academic Competitions for academia held by SIS each year. It should be
noted, however, that these contests are more in-depth than what is defined in the typology,
as they require participants to submit working code.

66



Chapter 11
Proposed improvements

11.1 Possible solution
The interactions between actors in the Ocean ecosystem appear to be effectively dyadic,
that is to say 1:1. Either between SIS and the individual actors, or between individual
third party developers and individual end-users of the platforms. Other than the Ocean
user group meetings, there appears to be little interaction between third party developers.
In order to reach a solution to the case presented, however, it would seem reasonable that
a more community-oriented approach might be suitable, if SIS is to retain a hands-off
approach to the development process of plug-ins in terms of governance.

Looking to the typologies in chapter 10 we identify that submitting and communities
of creation both facilitate innovation between actors towards a common goal even at a
fairly late stage in the process.

Taking a cue from other online communities, a possibility could be to open an online
space for submissions of CDOs. If a developer suspects that a CDO in their up-coming
plug-in might be useful outside their plug-in, and therefore be likely to be reproduced in
some way by a different developer, they can submit it here. Interviews suggest that devel-
opers do not consider the CDOs themselves to be important IP, and have few reservations
about sharing them. This online service would be open to all licensed Ocean users (third
party developers) to submit their CDOs to. These submissions can then be voted on by
other Ocean users, if they see it as a useful addition, bringing in an element of screening
and evaluation done by the community. Submitted CDOs can also be edited by other users,
effectively becoming open source within the ecosystem, and letting the CDO be applicable
to more plug-ins.

By letting the community share in the development and maintenance of the CDO, the
time between iterations is kept low, and more importantly, it can see use by multiple plug-

67



Chapter 11. Proposed improvements

ins without having to wait for a new release from SIS in order to be centralized. When the
time does come for a new release by SIS, the highest voted submission(s) can be adopted
natively and SIS takes over the responsibility for maintenance of the CDO. This removes
the workload previously shouldered by the Ocean community, while still keeping the CDO
available for use. All without needing to retroactively coordinate and promote the usage
of the centralized CDO, as it is already in use where needed.

A possible challenge in getting this solution to work, is to get and keep the community
motivated enough sustain the co-creation. As opposed to traditional open source ecosys-
tems, privately owned commercial ecosystems do not have the same ”sense of commu-
nity”. Ocean users will therefore have to be convinced that actively participating in the co-
creation is something that will ultimately be beneficial, or be incentivized through other
means. Making further use of the partnership model might be an alternative, by letting
preferred partners be more influential in the system. This would provide added value to
the status of preferred partner, as well as push decision making in a more federal direc-
tion, keeping more in line with the stated ”hands-off” approach of SIS. A similar challenge
that is also a possibility is a lack of activity due to an inability to reach ”critical mass”.
The possibility that there simply aren’t enough developers affected by the issue to justify
co-creation, and the initiative fades. This might lie outside the possibility for governance
or orchestrating co-creation to mend, as it relies on the inherent value of the proposition
itself.

Given that these hurdles are overcome, however, a successful implementation might
resolve the current issue, while also starting to foster a stronger community, which in turn
is associated with an increase in overall innovation and niche production in the ecosystem.

68



Part VI

Conclusion

69





Chapter 12
Conclusion

This thesis has taken a closer at some of the existing literature in the field of software
ecosystems and customer involvement. We have also looked closer at a software ecosys-
tem surrounding multiple software platforms in use by the E&P industry today. The exist-
ing literature in the areas of software ecosystem, in particular governance, and customer
co-creation have been presented and frameworks from this literature has subsequently been
applied to the ecosystem. Several tools have been found in academia for analysis of soft-
ware ecosystems, however studies actually making use of these tools are sparse. This has
hopefully been a useful addition to the, presently, small number of cases in the growing
academic field of software ecosystems and governance.

A proposed solution to the particular problem of duplicate assets being developed in
an ecosystem has also been provided, grounded in the academic literature presented and
field work performed as part of this thesis. The solution is presently untested, and so
the efficacy of the literature it is built on remains uncertain. If successful, this solution
could also be applicable to other software ecosystems. The potential seems present for
ecosystem literature to provide value to owners of ecosystems, although further research
should continue to be done in the field in order to gather empirical data to confirm efficacy
and improve.

12.1 Limitations of this work

One major limitation of this work is the inability to fully deploy and test the proposed
solution, due to time and scope constraints. Even more interview subjects could also have
been useful, in order to gain more perspectives on the situation. This study has also been
purely contemporary, and so does not offer insight into long-term effects of any subjects
discussed.

71



Chapter 12. Conclusion

12.2 Future work
A deployment of the proposed, or similar, solution combined with a longitudinal case study
to assess its usefulness over time would be a natural follow-up to the work presented in this
thesis. Care should be taken to record both the response of the actors in the ecosystem,
as well as the gathering of quantitative data that might suggest the value created by the
solution.

72



Bibliography

Baars, A., Jansen, S., 2012. A framework for software ecosystem governance. Software
Business, 168–180.

Baldwin, C., Woodard, C., 2008. The Architecture of Platforms: A Unified View. Harvard
Business School Working Paper No. 09-034.

Berk, I., Jansen, S., Luinenburg, L., 2010. Software ecosystems: A software ecosystem
strategy assessment model. In: Proceedings of the Fourth European Conference on Soft-
ware Architecture: Companion Volume. Copenhagen, Denmark.

Bosch, J., 2009. From software product lines to software ecosystems. In: SPLC ’09. Pro-
ceedings of the 13th International Software Product Line Conference. San Francisco,
California, the United States of America.

Bosch, J., 2012. Software ecosystems: Taking software development beyond the bound-
aries of the organization. Journal of Systems and Software 85 (7), 1453–1454.

Ceccagnoli, M., Forman, C., Huang, P., Wu, D., 2011. Co-creation of value in a platform
ecosystem: The case of enterprise software. MIS Quarterly.

Gawer, A., 2009. Platforms, Markets And Innovation. Edward Elgar Publishing Limited.

Gawer, A., 2014. Bridging differing perspectives on technological platforms: Toward an
integrative framewok. Research Policy 43 (7), 1239–1249.

Hagiu, A., Wright, J., 2011. Multi-Sided Platforms. Harvard Business School Working
Paper No. 12-024.

Hyne, N., 2001. Nontechnical Guide to Petroleum, Geology, Exploration, Drilling, and
Production. PennWell Corporation.

Hyrynsalmi, S., Makila, T., Jarvi, A., Suominen, A., Seppanen, M., Knuutila, T., 2012.
App store, marketplace, play! an analysis of multi-homing in mobile software ecosys-
tems. Jansen, Slinger, 59–72.

73



Jansen, S., Bloemendal, E., 2013. Defining app stores: The role of curated marketplaces in
software ecosystems. Software Business. From Physical Products to Software Services
and Solutions, 195–206.

Jansen, S., Cusumano, M., 2012. Defining software ecosystems: A survey of software
platforms and business network governance. In: Proceedings of the Forth International
Workshop on Software Ecosystems. Cambridge, MA, USA.

Kilamo, T., Hammouda, I., Mikkonen, T., Aaltonen, T., 2012. From proprietary to open
source - growing an open source ecosystem. Journal of Systems and Software 85 (7),
1467–1478.

Laver, R., 2012. How geoscience support software tools have evolved and what it means
for e & p companies. First Break 30 (6), 121–125.

Manikas, K., Hansen, K., 2013. Software ecosystems - a systematic literature review. Jour-
nal of Systems and Software 86 (5), 1294–1306.

Manikas, K., Wnuk, K., Shollo, A., 2014. Defining decision making strategies in software
ecosystem governance.

Oates, B., 2005. Researching information Systems and Computing. Sage.

O’Hern, M., Rindfleisch, A., 2010. Customer co-creation. Review of marketing research,
84–116.

Piller, F., Ihl, C., Vossen, A., 2010. A typology of customer co-creation in the innovation
process.

PSAC, March 2015. Industry overview.
URL http://www.psac.ca/business/industry-overview/

Romberg, T., 2007. Software platforms – how to win the peace. In: HICSS 2007. 40th
Annual Hawaii International Conference on System Sciences. Waikoloa, Hawaii, the
United States of America.

Roth, M., 2005. Automating petrotechnical workflows. Hart’s E & P 78 (12), 75–77.

Schlumberger, November 2014a. Corporate profile.
URL http://www.slb.com/about/who.aspx

Schlumberger, November 2014b. Financial news.
URL http://investorcenter.slb.com/phoenix.zhtml?c=97513&p=
irol-resultsNewsArticle&ID=1891675&highlight=

Schlumberger, November 2014c. Getting started with ocean.
URL http://www.ocean.slb.com/Docs/gettingstarted/
GettingStartedWithOcean-2014-1.pdf

Schlumberger, November 2014d. History.
URL http://www.slb.com/about/history.aspx

74

http://www.psac.ca/business/industry-overview/
http://www.slb.com/about/who.aspx
http://investorcenter.slb.com/phoenix.zhtml?c=97513&p=irol-resultsNewsArticle&ID=1891675&highlight=
http://investorcenter.slb.com/phoenix.zhtml?c=97513&p=irol-resultsNewsArticle&ID=1891675&highlight=
http://www.ocean.slb.com/Docs/gettingstarted/GettingStartedWithOcean-2014-1.pdf
http://www.ocean.slb.com/Docs/gettingstarted/GettingStartedWithOcean-2014-1.pdf
http://www.slb.com/about/history.aspx


Schlumberger, November 2014e. Petrel ep software platform.
URL http://www.software.slb.com/products/platform/Pages/
petrel.aspx

Schlumberger, November 2014f. Studio product sheet.
URL http://www.software.slb.com/lists/
salesandmarketingdocuments/attachments/426/
studio-ep-environment.pdf

Schlumberger, November 2014g. What is ocean.
URL http://www.ocean.slb.com/Pages/ocean-what-is.aspx

Schlumberger, Microsoft, November 2014. Uniting the business and petrotechnical
worlds.
URL http://www.software.slb.com/Lists/
SalesandMarketingDocuments/Attachments/233/5102%
20Schlumberger%20and%20Microsoft%20White%20Paper%20%281%
29.pdf

Stanley, M., Farrell, J., 1994. Choosing how to compete: Strategies and tactics in stan-
dardization. The Journal of Economic Perspectives 8 (2), 117–131.

Tiwana, A., 2014. Platform ecosystems: aligning architecture, governance, and strategy.
Elsevier.

Ververs, E., Bommel, R., Jansen, S., 2011. Influences on developer participation in the de-
bian software ecosystem. Proceedings of the International Conference on Management
of Emergent Digital EcoSystems, 89–93.

Weill, P., Ross, J., 2004. IT governance: How top performers manage IT decision rights
for superior results. Harvard Business School Press.

75

http://www.software.slb.com/products/platform/Pages/petrel.aspx
http://www.software.slb.com/products/platform/Pages/petrel.aspx
http://www.software.slb.com/lists/salesandmarketingdocuments/attachments/426/studio-ep-environment.pdf
http://www.software.slb.com/lists/salesandmarketingdocuments/attachments/426/studio-ep-environment.pdf
http://www.software.slb.com/lists/salesandmarketingdocuments/attachments/426/studio-ep-environment.pdf
http://www.ocean.slb.com/Pages/ocean-what-is.aspx
http://www.software.slb.com/Lists/SalesandMarketingDocuments/Attachments/233/5102%20Schlumberger%20and%20Microsoft%20White%20Paper%20%281%29.pdf
http://www.software.slb.com/Lists/SalesandMarketingDocuments/Attachments/233/5102%20Schlumberger%20and%20Microsoft%20White%20Paper%20%281%29.pdf
http://www.software.slb.com/Lists/SalesandMarketingDocuments/Attachments/233/5102%20Schlumberger%20and%20Microsoft%20White%20Paper%20%281%29.pdf
http://www.software.slb.com/Lists/SalesandMarketingDocuments/Attachments/233/5102%20Schlumberger%20and%20Microsoft%20White%20Paper%20%281%29.pdf


76



Appendix

77


	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	I Introduction
	Motivation, structure and contribution
	Motivation
	Structure
	Contribution
	Research Goal


	II Literature Review
	Software ecosystems
	What are software ecosystems?
	Multi-sided markets and network effects
	Types and classification of software ecosystems
	Taxonomy
	Classification

	Benefits of platforms
	Challenges and concerns
	Distribution
	Platform architecture
	Platform governance
	Governance dimensions
	Governance analysis framework
	Governance tools
	Decision making


	Customer involvement
	Customer co-creation typology by 36
	Customer Co-creation typology by 35


	III Method
	Approach
	Data collection

	IV Case
	Background
	What is the E&P sector?
	Digital tools in E&P
	Schlumberger
	Schlumberger Information Solutions

	Petrel
	Studio
	Ocean
	The Ocean Framework
	The Ocean Store

	The Ocean Ecosystem
	The actors in the Ocean ecosystem
	Governance


	Case presentation
	Domain objects
	Description
	CDO Usage

	The problem
	Impact on users
	Impact on developers
	Impact on owner

	What is being done


	V Discussion
	Reasoning
	Ecosystem
	Applying frameworks
	Taxonomy
	Classification
	Governance analysis framework
	Governance tools
	Decision making framework


	Co-creation
	Applying frameworks
	Co-creation typology 1
	Co-creation typology 2


	Proposed improvements
	Possible solution


	VI Conclusion
	Conclusion
	Limitations of this work
	Future work

	Bibliography
	Appendix


