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power sector”. In Norwegian the new title is “Klimaeffekter av ko-forbrenning av biomasse 
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Abstract 

The primary objective of this thesis has been to assess the climate change impacts of co-

firing with biomass from Russian forest areas with coal, with special emphasis on the 

temporary change in atmospheric CO2 concentration caused by biogenic CO2 and surface 

albedo. With a mixture of boreal and temperate climate, the European part of Russia was 

chosen as the focus area and divided into eight regions. The scenarios looked into were 

10% co-firing of biomass, 20% co-firing and the ideal case of 100% bioenergy production, 

covering the coal demand in Russia for heat and electricity production. 

Currently only around 2% of the heat and power in Russia is from bioenergy. With an annual 

allowable cut of 633 million cubic metres forest and only 173,6 million cubic metres being 

harvested, it is apparent that there is a large unused potential for bioenergy in Russia, both 

for domestic use and export to the European power sector. Estimates show that by 

increasing current harvest by 30%, 20% of the coal demand in Russia can be covered with 

bioenergy. Covering the coal demand completely will require an increase in harvesting by 

150%, but this would still only equal around 50% of the annual increment available for 

exploitation. With well-designed governmental policies and improved infrastructure, 

especially in the forest rich areas, this could be a feasible scenario in the future for Russia.  

Co-firing can contribute to a smooth transition to renewable energy sources. Bioenergy is 

often assumed CO2 neutral, but this highly underestimates its true climate change impact. 

Through this assessment, both biogenic CO2 and the effect of surface albedo has been 

quantified for chosen sites in each of the eight regions, with focus on the time horizons of 

20, 100 and 500 years. The total climate change impact has further been found for each of 

the scenarios.  

The impacts are especially significant for short time horizons combined with boreal areas 

with seasonal snow cover and forest with long rotation periods. In the Northern, 

Northwestern and Urals region there was a net cooling effect from the beginning of the 

assessment period for the 100% bioenergy scenario due to surface albedo. It is therefore 

important to consider these climate forcings in the national and global environmental 

policies, especially when designing frameworks for bioenergy and forest management 

strategies in boreal areas. 
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Sammendrag 

Hovedformålet for denne masteroppgaven har vært å analysere klimaeffektene av 

ko-forbrenning av biomasse fra russisk skog med kull, med særlig fokus på de midlertidige 

endringene i den atmosfæriske CO2-konsentrasjonen som følge av biogent CO2 og 

overflatealbedo. Med en kombinasjon av borealt og temperert klima ble fokusområdet den 

europeiske delen av Russland, som videre ble delt inn i åtte regioner. Scenarioene som ble 

analysert var 10% ko-forbrenning, 20% ko-forbrenning og det ideelle scenarioet med 100% 

bioenergi, som ville kunne dekke hele etterspørselen for kull til kraftproduksjon i Russland. 

I dagens Russland har kun rundt 2% av kraftforsyningen opphav fra bioenergi. 633 millioner 

kubikkmeter skoghogst er lovlig på årlig basis, men ettersom det kun blir hogget 

173,6 millioner kubikkmeter årlig, har Russland tilsynelatende et stort ubrukt potentisale for 

bioenergi, både innenriks og gjennom eksport til den europeiske kraftsektoren. Beregnede 

estimater viser at ved å øke dagens skogsvirke med 30%, kan 20% av kulletterspørselen 

dekkes av bioenergi. Dersom hele etterspørselen for kull i kraftsektoren skal dekkes, må 

skoghogsten øke med 150%, men dette vil fortsatt kun tilsvare rundt 50% av den årlige 

utnyttbare tilveksten av skog. Med politiske tiltak og forbedret infrastruktur, særlig i de 

skogrike områdene, er scenarioet mulig i et framtidig Russland. 

Ko-forbrenning can bidra til en smidig overgang til fornybare energiressurser. Bioenergi er 

ofte karakterisert som CO2 nøytralt, men denne antakelsen gjør at den virkelige 

klimaeffekten blir sterkt undervurdert. Gjennom denne masteroppgaven har både 

biogent CO2 og overflatealbedo blitt beregnet for utvalgte områder i hver av de åtte 

regionene, med fokus på tidshorisontene 20, 100 og 500 år. Videre har de totale 

klimaeffektene blitt funnet for hvert av scenarioene. 

Klimaeffektene er særlig betydelige for korte tidshorisonter og for boreale skogområder med 

lange snøsesonger, samt for skog med lang rotasjonstid. I regionene Nord, Nordvest og 

Uralfjellene var resultatet en netto kjølingseffekt grunnet overflatealbedo for scenarioet 

100% bioenergi. Det er derfor svært viktig å ta disse klimapådriverne i betraktning både i 

nasjonale og internasjonale politiske rammeverk, og særlig i rammeverk knyttet til bioenergi 

og skogforvaltning i boreale skogområder. 
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1. Introduction 
 

In this part, first the motivation for the topic of this thesis is presented, based on the current 

situation both on a worldwide basis, as well as more specifically for the Russian Federation. 

The state of the field is also presented and the objectives of the thesis are introduced. As a 

final part, an outline of the content of the report is presented. 

1.1. Motivation 

As coal is a low-cost, highly available and reliable resource, it is widely used in power 

generation throughout the world. In 2010 it contributed to as much as around 30% of global 

primary energy consumption (IEA, 2012c; IEA, 2011). Accounting for over 40% of the 

electricity output in the same year, it can be defined as the backbone of global electricity 

generation (IEA, 2011). 

The increase in usage of coal for electricity generation is currently the single most 

problematic trend is the relationship between energy requirement and climate change. Due 

to the dependency on coal in several regions, it is likely that coal-fired power generation will 

continue to be substantial. To reduce the climate change impact of coal power, increasing 

the efficiency of the power plants, as well as having carbon-capture storage are important 

solutions. A more low cost alternative however is to increase the usage of co-firing with 

biomass, which is currently one of the most mature and promising technological options to 

reduce the dependency on coal and the climate change impacts that follow it. Co-firing is 

therefore looked upon as a way to give a smooth transition to energy sources that are both 

renewable and sustainable.  

Co-firing of biomass in a coal power plant only requires minor retrofitting of existing coal 

power plants, and is therefore seen as an easy and feasible way of integrating biomass into 

the power generation sector (Kabir and Kumar, 2012; Sebastián et al., 2011) Investment 

costs can therefore be reduced, and the biomass conversion can take advantage of the 

generally higher efficiency of large-scale power plants (Sebastián et al., 2011). Agricultural 

and forest biomass are the main resources used for power production, in the form of bale 

and chips (Kabir and Kumar, 2012).  
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Traditionally it is assumed that carbon dioxide (CO2) emissions from biomass combustion are 

climate neutral if the bioenergy system is carbon (C) flux neutral, i.e. that the CO2 released 

from biofuel combustion equals the CO2 sequestered in biomass (Cherubini et al., 2011a). 

This is strengthened with the guideline the Organisation for Economic Cooperation and 

Development (OECD) introduced in 1991, which states that “CO2 emissions resulting from 

bioenergy consumption should not be included in a country’s official emissions inventory” 

(OECD, 1991). In the field of industrial ecology and more specifically life cycle assessment 

(LCA), carbon neutrality has been assumed by a great majority. This results however in 

underestimating the true climate change impact of bioenergy (Cherubini et al., 2011a).  

The contributions from biogenic CO2 are divided between emissions from direct combustion 

of the final form of the bioenergy or biofuel, and the emissions from upstream processes 

such as harvesting (Bright et al., 2012). Carbon neutrality may be a reasonable assumption 

when the bioenergy is derived from fast growing biomass feedstock such as willow or 

rapeseed, but becomes more questionable for slow growing feedstock, for instance forest 

biomass with long rotation periods. This especially applies to boreal forest, which also has 

slow carbon turnover rates. For near-term climate change mitigation, this type of biomass is 

therefore not the best feedstock to utilise (Bright et al., 2012). The biogenic CO2 connected 

to direct biomass combustion as well as the albedo effect are therefore important metrics to 

take into consideration in LCA. 

In areas such as high latitude boreal regions, which have a long winter season, the albedo 

effect plays an important role. This is due to the albedo of forests being the dominant 

biophysical factor in terms of regulating the surface energy fluxes and hydrologic cycle. As it 

is in direct opposition with the carbon cycle, when particularly strong, it can even outweigh 

the biogenic CO2 and create a cooling effect at the site. Albedo is site-specific, so therefore it 

is important to quantify it for the forest management or site in question (Bright et al., 2011). 

The cumulative effects of albedo changes in forests over time and it is therefore of interest 

to investigate if an increased forest harvest for bioenergy purposes in Russia would give a 

net cooling effect due to enhanced surface albedo. 

Several studies have been conducted with focus on bioenergy and co-firing. The amount of 

studies that consider the temporary change in atmospheric CO2 concentration caused by 
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biogenic CO2 emissions and cooling effects from changes in surface albedo following harvest, 

are however limited. Moreover, the amount of studies undertaken in Russia is scarce, 

despite the large biomass resources available in this region. This is emphasised in a review 

done by Cherubini and Strømman in 2011 on life cycle assessments of bioenergy systems 

(Cherubini and Strømman, 2011b). 94 studies were reviewed, with 74 being papers 

published in scientific journals, and none of them covered the Russian Federation. The lack 

of studies and documentation is also highlighted in an article by Kraxner et al from 2011 that 

explores forest-based energy in a Eurasian context (Kraxner et al., 2011).  

The constant supply of sustainable biomass resources is vital to achieve reductions in coal 

usage. There are multiple sources of biomass, but forest wood is one of the most 

widespread raw materials, which can be used in many applications connected to bioenergy. 

In addition it can be used for gas-, solid and liquid biofuels and domestic heating and cooking 

purposes (Michelsen et al., 2012; Cherubini et al., 2011a). For bioenergy and co-firing 

opportunities, the forest areas of the Russian Federation are the basis for this study. The 

total area of forestland in Russia in 2010 amounted to 882 million hectares, with 611 million 

hectares being exploitable (FAO, 2012). Even with being a “biomass superpower”, looking at 

an industrial scale, the energy sector, forest biomass and associated bioenergy production 

plays a rather minor role in the Russian society. In 2010 only around 2% of the total energy 

consumption was from bioenergy (IEA, 2012b). The annual harvest was 173,6 million m3, but 

with an annual allowable cut of 633 million m3 and an annual increment available for 

exploitation of 552 million m3, it is apparent that there is a significant unused 

potential (FAO,  2012).  

Certain studies claim a bioenergy potential for Russia of 50-205 EJ1 annually by 2050 (Smeets 

et al., 2007) while studies on the global energy potential indicate a total of 10-76 EJ annually 

for non-European OECD countries (184 EJ/yr globally) (Offermann et al., 2011). The 

Intergovernmental Panel on Climate Change (IPCC) reports that the upper bound for the 

technical potential of biomass for energy may be as much as 500 EJ/yr by 2050 on a global 

scale (IPCC, 2012). These estimates consider all types of biomass. Based on numbers from 

the Forest Sector Outlook Study conducted by United Nations Food and Agriculture 

Organization (FAO), the current potential in Russia is 8-9 EJ based on the exploitable forest 

                                                           
1 Exajoule – 1018 joule 
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resources. Even with significant differences in the estimated values, there is a consensus that 

there is unexploited potential currently in the Russian Federation, and that the forest sector 

in Russia does not contribute to a significant share of the output in value terms (Backman, 

1997).  

However, reaching a substantial fraction of these potentials would require measures such as 

a sophisticated land and water management and a large increase in worldwide plant 

productivity (IPCC, 2012). The assessment from International Energy Agency (IEA) concerning 

the world energy outlook (IEA, 2012e), concludes that the global energy resources are more 

than sufficient to meet the projected demand without competing with food production, 

although the land use implications will have to be managed in a sustainable manner. In some 

regions, the policy goals will exceed the production capacity, and international trade of solid 

biomass is estimated to increase about six-fold, with import focus especially on the 

European Union, India and Japan (IEA, 2012e).  

In 2010, the Russian Federation produced 10% of global energy, 20% of global natural gas 

and 12% of global oil, and is increasing its production faster than its domestic supply. 

Worldwide, Russia currently holds the position as first exporter of natural gas, second 

exporter of crude oil and third exporter of coal (IEA, 2012b). Why focus on all the 

unexploited forest biomass in the country? 

The share of bioenergy in the total energy consumption is generally increasing in the G8 

countries2, a lot due to the use of modern biomass forms (i.e. co-firing or co-combustion for 

electricity generation) (GBEP, 2008). This is especially happening in Germany, Italy and the 

UK, but with improved policies and subsidies, the remaining countries may also increase 

their usage. In addition, the global primary energy demand for bioenergy, excluding 

traditional biomass, is forecasted to more than double from 2010 to 2035 (from 526 Mtoe to 

1200 Mtoe), growing at an average of 3% per year (IEA, 2012e). 

Recently the United Nations launched its Sustainable Energy for All initiative, which has the 

target of doubling the share of renewable energy globally by 2030. There is also the ongoing 

schemes of the European Union since 2009 through the Renewable Energy Directive which 

has set legally binding targets that the share of renewable energy (covering electricity, heat 

                                                           
2 G8 countries: Canada, France, Germany, Italy, Japan, Russia, the United Kingdom, and the United States 
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and biofuels) in gross final energy consumption has to equal 20% by 2020 (IEA, 2012e). 

Russia is not a part of the European Union, but with these policies there will be an increased 

pressure in the future for the country to further improve its environmental focus, especially 

due to currently being one of the lead exporters of oil and gas worldwide (IEA, 2012b).  

A study by Pantskhava et al from 2006 concludes that Russia has the possibilities of 

becoming a large exporter of wood chips and pellets to the world, but there are certain 

factors that hold back the wide use of biomass in the power industry. Three of the most 

pressing are the lack of special laws and policies concerning renewable energy sources, the 

lack of leasing for development and selling equipment, and high interest rates on loans, 

which do not provide attractive conditions for development of equipment. Moreover the 

transportation infrastructure needs to be further developed (Pantskhava and Pozharnov, 

2006). 

The capacity of the logging companies allow to some extent an increased volume of forest 

harvesting, but the main challenges are the limited transportation capabilities. Unutilised 

energy wood can currently only be supplied if the quantity of all the machines, harvesters, 

forwarders and especially trucks and chippers are increased (Goltsev et al., 2010). This 

requires investments in more efficient equipment, but highly productive systems require 

fewer operators, which can cause negative effects on the labour market. On the contrary, 

increased harvest may also bring prosperity to areas that are more rural. Therefore one 

needs to find a balance between cost of equipment, production and the social effects 

connected to a further exploitation (Goltsev et al., 2010).  

Concerning the climate change impact of the upstream processes for bioenergy, a study by 

Kabir et al (2012) which compared the energy and environmental performances of nine 

biomass/coal co-firing processes, had upstream processes for biomass resulting in 

5,6 g CO2-eq/MJfuel-mix using wood chips from whole tree (Kabir and Kumar, 2012). In an 

article by Cherubini et al (2012), four cases were compared which also gave various results 

for upstream process emissions for biomass. For heat production using domestic wood, 

Canadian wood had upstream processes of 10g CO2-eq/MJfuel-mix, wood from the Pacific 

Northwest in the United States had biomass upstream emissions of 17 g CO2-eq/MJfuel-mix, 

whilst for Wisconsin (USA), the total emissions were 18 g CO2-eq/MJfuel-mix. For the case of 
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Norway, the emissions were significantly lower with 4,4 g CO2-eq/MJfuel-mix. The total 

emissions connected to the upstream processes of coal and the coal combustion was 

105 g CO2-eq/MJfuel (Cherubini et al., 2012). 

Furthermore, a study by Mann and Spath (2001) showed that co-firing significantly reduced 

the environmental footprint of the average coal-fired power plant. By co-firing with 5% and 

15%, the greenhouse gas emissions were reduced with 5% and 18% respectively (Mann and 

Spath, 2001). However, this study, along with most other literature on the subject, does not 

take biogenic CO2 and the albedo effect into consideration, so they are not suitable for 

benchmarking.  

For the research connected to biogenic CO2 and the albedo effect, apart from the 

aforementioned article by Cherubini et al. (2012), which focuses on the site-specific global 

warming potentials of biogenic CO2 for bioenergy, GWP characterisation factors for biogenic 

CO2 were developed based on rotation periods of the biomass in an article by 

Cherubini et al (2011a). These GWPbio factors are used as a basis for the calculations in this 

thesis. Furthermore, for surface albedo, in addition to Cherubini et al (2012), one of the 

most important contributions to this field is Bright et al (2012), which focus on how to 

include the carbon cycle and albedo dynamics in life cycle assessment. These two articles 

have been the main sources for assessing the surface albedo in this thesis assessment. 

For environmental assessments, a framework called Life Cycle Assessment (LCA) is often 

used. By using this method one takes on a holistic approach, looking at all parts of the life 

cycle of the system in question, and thereby being able to assess the overall environmental 

impacts. In addition, the method gives the possibility to compare the results with other 

examples of energy production, both fossil and renewable. However, the site- and time-

generic framework of LCA limits its ability to assess the temporary stock changes and issues 

of carbon cycling, as this requires a full linkage of atmosphere-biosphere flows of carbon in 

time and space (Bright et al., 2011). Biogenic CO2 and surface albedo have for instance 

proved to far outweigh the GHG emission impacts throughout the life cycle in the cases 

where biomass is derived from slow growing biomass feedstock, and especially with short 

time horizons (Bright et al., 2012).  
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An LCA has therefore been conducted for the upstream emissions connected to biomass and 

coal, as well as the coal combustion together with additional biogenic CO2- and albedo 

calculations, to find the total climate change impact of co-firing of biomass with coal. The 

LCA framework is described in Chapter 2.1 and the methodology behind biogenic CO2 and 

the albedo effect is found in 2.2 and 2.3 respectively. 

1.2. Objective 

The primary objective for this thesis is to assess the climate change impacts for various 

shares of co-firing forest biomass with coal to produce electricity and heat in the Russian 

Federation. The analysis of the climate change impact considers the two most important 

contributions to global climate change in connection with bioenergy, namely the temporary 

change in the atmospheric CO2 concentration caused by biogenic CO2 emissions and cooling 

effects following harvest due to changes in the surface albedo.  

Three scenarios were chosen to be investigated - 10% co-firing of biomass in a coal power 

plant, 20% co-firing, and the ideal scenario of the coal demand being covered completely 

with 100% bioenergy. All the cases were narrowed down to having European Russia as the 

focus area, and were divided into eight regions, based on the economic regions of the 

Russian Federation. The case of 100% coal-fired power generation was used as a reference 

and the functional unit of 1 MJ fuel mix was chosen for all scenarios. 

The functional unit may also vary from study to study, with climate change impact often 

being measured per unit output of electricity or heat. In this study however, the functional 

unit is input of biomass and coal, measured in energy content of 1 MJ. By having this 

approach, the results are independent from conversion processes and type of end products. 

This functional unit is also often chosen when the study aims at comparing the best uses for 

a given biomass feedstock (Cherubini and Strømman, 2011b; Sebastián et al., 2011). 

The assessment is limited to the impact on climate change and focusing on the 

characterisation factor of Global Warming Potential (GWP) without considering other impact 

categories where bioenergy could contribute. This is supported by the fact that the main 

driving factors behind worldwide bioenergy development is climate change mitigation and 

reduction of fossil fuel consumption (Cherubini and Strømman, 2011b). 
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As a part of developing the life cycle inventory, for each of the regions a distribution was 

made of the amount of boreal and temperate climate that covered the region, as well as the 

amount of coniferous and deciduous forest that could be found there. Furthermore, 

transportation routes were developed for each region. A life cycle assessment was 

conducted for each region for each of the scenarios, with focus on the upstream processes 

connected to coal and biomass input needed for 1 MJ. The emissions from coal combustion 

were then added, as well as the climate change impact from direct biomass combustion, 

which was calculated based on the GWP characterisation factors developed for each region. 

As a final part, by choosing both a forested and open site centrally in each region, one was 

able to gather data on albedo, develop GWPalbedo and calculate the climate change impact. 

By combining these various results, one was able to get the total climate change impact for 

the three scenarios for each region. Moreover, information was extracted for the three most 

common time horizons of 20, 100 and 500 years so one could conduct a more in depth 

comparison of the various impacts. 

It is important to emphasise that the increased harvesting in the scenarios would not stem 

from bringing new forest area into production, but rather exploiting more of the currently 

productive forest. Therefore there would be no direct land use change and issues concerning 

if the land should be for food or energy production (Bright et al., 2011).  

1.3. Content outline 

The first part of this thesis, Chapter 2, gives an overview of the life cycle framework used for 

the assessment, as well as the methodology behind calculations connected to biogenic CO2 

and the surface albedo. Chapter 3 provides background information on the current state of 

the coal power sector in Europe, along with information on the general power sector of the 

Russian Federation. Furthermore an overview of the forest sector in Russia is given, with 

special emphasis on the European part. This data has been collected to develop the 

scenarios, which will also be presented in detail in this chapter. In Chapter 4 the 

development of characterisation factors for biogenic CO2 and albedo are shown, as well as 

results of the life cycle assessments conducted for the three scenarios in the eight regions. 

This further leads to Chapter 5 where the environmental impacts are discussed in a broad 

context and benchmarking is conducted, in addition to discussing the further implications 
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and future scenarios. As a final part, the conclusion is presented in Chapter 6, followed by 

relevant appendices in Chapter 8. 
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2. Methodology 
 

This chapter contains three equally important parts. First the environmental assessment tool 

Life Cycle Assessment (LCA) is presented, which has been used as a basis for the analysis 

conducted in this project. The different parts of the framework will be explained, including 

the calculations that are used for reaching the results. In addition the applied life cycle 

impact assessment method ReCiPe is introduced. Secondly, the theory and calculations 

connected to biogenic CO2 will be presented, and as a final part, the methodology behind 

climate forcing from changes in surface albedo will be explained.  

2.1. Life Cycle Assessment (LCA) 

Life cycle assessment as a tool has several purposes, but one of the main ones is considered 

compiling and evaluating the environmental impacts of a project from cradle to grave. In 

addition, LCA is often used to compare different options for fulfilling the same or a similar 

function and to identify the areas of the product life cycle where environmental impacts and 

energy efficiencies can be improved (Brattebø et al., 2007).  

The framework of LCA is generally structured in four phases, which can be found below. It 

has been standardised through the ISO 14 040 international standard, but research, 

including this thesis, does not necessarily embrace all facets of the standard, but rather 

practice variations of it.  

According to the standard, the phases are: 

1. Goal and scope definition 

2. Inventory analysis 

3. Impact assessment 

4. Interpretation 
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Figure 1: Framework for Life Cycle Assessment (LCA) (Brattebø et al. 2007) 

Each of the phases are defined in the ISO 14 040 standard and structured in a number of 

possible or mandatory steps (Brattebø et al., 2007). As shown in Figure 1, the phases are 

interrelated and one is therefore able to have a holistic approach to the problem. This is a 

key part of the concept of industrial ecology.  

In the first phase, the goal and scope definition, the aim of the intended study is defined as 

well as the limits (width) of the system (Brattebø et al., 2007). One of the core elements of 

the goal definition is defining the functional unit, which is a measure of the function of the 

system and defines what can be compared of input and output values. For this study, the 

functional unit is 1 MJ input of fuel mix from coal and biomass for energy production.  

When defining the scope one is able to narrow down the width of the study and omit certain 

elements of the life cycle if they do not differ across product alternatives. Moreover, the 

environmental impact categories that are relevant to focus on can be defined 

(Brattebø et al., 2007). 

The inventory analysis is the core of the modelling of the system and the most technical part 

of an LCA (Brattebø et al., 2007). It contains the environmental inputs and outputs for each 

of the different processes of the defined system and their interrelations. They are presented 
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as environmental flows (not in monetary values) and it is important that they each have a 

defined unit to be able to be used further in the analysis.  

The aim of the third phase, the impact assessment, is to give an increased understanding of 

the results from the inventory analysis, so that the overall environmental impacts can be 

interpreted. It consists of an overview of all the emissions of pollutants and extractions from 

resources for the functional unit chosen for the assessment (Brattebø et al., 2007). The main 

focus of the impact assessment is how the various processes contribute to the impact 

categories. In total there are 18 categories defined, for example Ozone layer depletion and 

Acidification. For this thesis however, the category of Climate Change has been found the 

most important focus area. The corresponding indicator to climate change is Global 

Warming Potential (GWP) and is measured in CO2-equivalents. 

In the final phase, the interpretation part is in focus. The definitions and findings in phase 

one and two can also be interpreted, but the focus for this analysis is interpreting the results 

from part three, which is the impact assessment.  

2.1.1. Basic contribution analysis 

The calculations connected to the impact assessment are based on linear systems and 

consist of matrices and linear algebra (Brattebø et al., 2007). The calculations can be quite 

comprehensive if there are several processes involved and large sets of data. The matrices 

and variables that make up the contribution analysis will now be explained in further detail, 

with enclature for the LCA framework. 

Table 1 presenting the nomenclature for the LCA framework. 
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Table 1: Nomenclature for the different matrices used in the mathematical framework of LCA (Strømman, 2009)

 

The A-matrix is the main matrix and is called the process requirements matrix. It is built up 

like a cooking recipe and each element, aij, denotes how much input of process i is needed 

per output of process j (Strømman, 2009). The total A-matrix consists of a foreground 

processes matrix, Aff, background processes matrix, Abb and an Abf-matrix, which represents 

the upstream inputs of background processes to the foreground system, see Equation (2.1.1) 

(Strømman, 2009). A foreground process refers to data that is collected for a specific study, 

whilst a background process consists of data gathered from a database, ecoinvent in the 

case of this thesis, together with own calculations. The Abf-matrix links the foreground and 

the background processes together and represents the upstream activities.  

0ff

bf bb

A
A

A A

 
  
 

 
(2.1.1) 

The A-matrix is further used to set up a production balance and find the output vector x, see 

Equation (2.1.2).  

x Ax y   (2.1.2) 

The right hand side of the Equation represents the total demand for x. It consists of two 

parts, where Ax represents the intermediate (internal) demand of products between the 

various processes in the production network, and y is the external demand, which 
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represents the requirement of products that the network has to deliver (Strømman, 2009). 

y is typically the functional unit of the system. 

The Equation is solved for the unknown output of the processes, the x vector, and can be 

expressed as Equation (2.1.3) (Strømman, 2009). The coefficients lij, shows how much 

output from process i that is required per unit of external demand j, see Equation (2.1.4). 

1( )x I A y   (2.1.3) 

1( )L I A x Ly     (2.1.4) 

A contribution analysis needs to be conducted to be able to calculate the total amount of 

emissions and environmental load for a given external demand. The first part consists of 

establishing a stressor intensity matrix, S, which is a vector comprised of stressors per unit 

from each of the specific processes (Strømman, 2009). Stressors are a more general term for 

emissions, and are used to categorise other environmental impacts as well such as land use, 

and not only direct pollution.  

When the S matrix is established, it can be applied to find the stressors associated with a 

given final demand, see Equation (2.1.5) (Strømman, 2009). 

e Sx  (2.1.5) 

To more easily assess the environmental impacts, a characterisation matrix, C, is introduced. 

This matrix is used to “convert emissions of different substances with the same type of 

environmental impact into equivalents” (Strømman, 2009). An example is global warming 

potential (GWP), which is measured in CO2-equivalents. There are several greenhouse gases 

that contribute to global warming, but the objective is to gather all of them into a common 

impact category, and therefore global warming as a whole is expressed in the form of 

CO2- equivalents. If one is interested in finding the amount of CO2-equivalents for methane 

(CH4), one needs to multiply the value with a factor of 25, which is the most recent number 

from the Intergovernmental Panel on Climate Change (IPCC), and indicates that 1 kg of 

methane emitted equals the same as 25 kg of CO2 (IPCC, 2006). Acidification is an example of 

another impact category and is expressed as SO2-equivalents (Strømman, 2009). With the 
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characterisation matrix identified, one can further calculate the d vector, which represents 

the total impacts of a given external demand. See Equation (2.1.6).  

d Ce CSx   (2.1.6) 

It is important to understand how the various processes, as well as the stressors, contribute 

to the different impact categories. This can be expressed by Dpro and Dstr, see Equation 

(2.1.7) and (2.1.8). Equation (2.1.9) illustrates that the sum of the rows in Dpro and Dstr is the 

vector with total impacts, d (Strømman, 2009).  

ˆ
proD CSx  (2.1.7) 

strD CSx  (2.1.8) 

               pro str

pro str

d D D    (2.1.9) 

2.1.2. Life Cycle Impact Assessment (LCIA) – ReCiPe method 

For the assessment of environmental impacts, several frameworks can be used. For this 

thesis, the ReCiPe method has been chosen. Characterisation models are a source of 

uncertainty, as one cannot completely comprehend the environmental mechanisms. The 

various sources of uncertainty and different choices are therefore modelled into three 

scenarios or perspectives. They are the individualistic (I), hierarchical (H) and egalitarian (E) 

perspective and are merely used to group similar types of assumptions and choices 

(Goedkoop et al., 2009). The individualistic perspective is based on short-term interest, 

undisputed impact types and technological optimism concerning human’s way of adapting. 

The hierarchical perspective is based on the most common policy principles with regards to 

time frame in today’s society. The egalitarian perspective, which is the most precautionary 

perspective, has the longest time-frame and takes into account both the impact categories 

that are already well established, and the ones that are still under development 

(Bare et al., 2000). 

For the impact category of climate change, the individualist perspective uses a time frame of 

20 years, the hierarchic perspective, 100 years, and the egalitarian world view assumes a 

500 year time frame (Goedkoop et al., 2009). For this thesis, the hierarchic view has been 

chosen as the main time horizon as it represents an “average view”, but most results have 
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been displayed in all three time horizons (TH) for comparison and illustrating the significant 

effect the time horizon can have on the results.  

In the environmental impact assessment one also distinguishes between using midpoint- or 

endpoint indicators for the impact categories. In this thesis midpoint indicators have been 

chosen, which for climate change is CO2-equivalents. If endpoint indicators had been chosen 

instead, the focus would have been Human health damage [DALY] or Ecosystem damage 

[Species, yr]. More information about the midpoint and endpoint indicators can be found in 

the article by Bare et al (2000) and is displayed in Figure 2 below. 

 

Figure 2: Relationship between life cycle inventory parameters (left), midpoint indicator (middle) and endpoint indicator 
(right) in ReCiPe 2008 (Goedkoop et al., 2009) 

Whether it is best to use the midpoint indicators or endpoint indicators is a widely discussed 

topic in the research community of life cycle assessment. For further reading see the article 

by (Hertwich and Hammitt, 2001). 

2.2. Biogenic CO2 methodology 

Biogenic CO2 is defined as the CO2 fluxes circulating between the vegetation and the 

atmosphere. An example is i.e. CO2 from oxidation of carbon in bio-materials harvested for 
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energy (both at the conversion plant and through the various life-cycle stages), dead organic 

matter decomposition and CO2 sequestered by growing biomass (Cherubini et al., 2012). 

CO2 emissions from C flux neutral systems (which is from temporary C losses) contribute to 

climate change, alongside the CO2 emissions from the permanent C losses. The reason for 

this is that before being captured by regrowth of the biomass, the CO2 molecules spend time 

in the atmosphere and contribute to global warming. A forest may take up to 100 years to 

regrow, and it is only at the end of the proper time boundaries that the system can be 

defined as C neutral (Cherubini et al., 2012).  

Cherubini et al (2011a) have developed a method to estimate the climate change impacts 

from biomass combustion and is the basis for the calculations in this thesis. The 

methodology will be explained in detail in the following paragraphs. In short, the method 

uses CO2 impulse response functions (IRF) from C cycle models in the elaboration of 

atmospheric decay functions for biomass derived CO2 emissions. The contributions to global 

warming are then estimated with a unit-based index, the characterisation factor GWPbio, 

which is a function of the rotation period of biomass. Due to this, it can be applied to all 

cases of biomass species (Cherubini et al., 2011a). 

Figure 3 below is a simplified graph explaining the carbon flux neutral system. In a) one sees 

the biomass stand in steady state. b) Represents all aboveground carbon being harvested 

and emitted to the atmosphere as CO2. Simultaneously, the same biomass is replanted and 

starts growing by sequestering the CO2 released from combustion. Finally in c) one sees that 

at the end of the rotation period, the same quantity of carbon originally released is 

sequestered once again in the vegetation (Cherubini et al., 2011a).  

 

Figure 3: Simplified scheme of the carbon flux neutral system (Cherubini et al., 2011a) 
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In general, the concentration in the atmosphere of biogenic CO2 over time can be described 

by the means of an IRF. The IRF refers to the reaction (as a function of time) of any dynamic 

system in response to some external change. The atmospheric decay of biogenic CO2 is in 

this thesis therefore derived through a combination of the biomass regrowth sink together 

with the IRF modelling the removal of CO2 by the ocean and/or terrestrial biosphere sinks. 

Furthermore, the atmospheric CO2 concentration f(t) after a pulse emission can be 

represented as the sum of earlier emissions g at time t’, multiplied by the fraction that has 

remained in the atmosphere after time t-t’ (Cherubini et al., 2011a). 

Once in the atmosphere, CO2 molecules of biogenic origin are identical to fossil derived 

CO2-molecules, but the time profile of the atmospheric decay should be understood as 

principally different. A more complex decay profile based on IRF’s with several decay times is 

used for anthropogenic CO2. The absolute global warming potential (AGWP) due to a pulse 

GHG emission, relative to that of a CO2 over the same integration horizon, is known as GWP. 

This is expressed in terms of CO2-equivalents (Bright et al., 2011). 

The final Equation to be used is therefore as follows: 

0
( ) ( ) ( ') ( ') '

t

f t y t g t y t t dt    (C0=1) (2.2.1) 

This describes the atmospheric decay of a pulse of biogenic CO2 over time, with g(t’) 

representing the regrowth of biomass and being defined by the following Equation: 

2 2( ) /2

2

1
( )

2

tg t e  



    (2.2.2) 

For the specific case of CO2-emissions: 

2 2 2

0

( ) ( ) ( ') ( ') '

t

bio CO CO COf t y t g t y t t dt      (2.2.3) 

Furthermore, y(t) represents the IRF and has three possible scenarios. The first scenario 

represents biogenic CO2 emissions being removed from the atmosphere by the onsite 

biomass growth and thereby following the convention of OECD3. This is a closed perspective 

and referred to as the vegetation IRF (VIRF). The second option focuses on that the key role 

                                                           
3 OECD: Organisation for Economic Co-operation and Development 
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of the oceans in the removal of CO2 from the atmosphere. The ocean sink is therefore added 

to the vegetation regrowth sink by considering a proper climate model and thereby giving a 

specific profile for the atmospheric decay of biogenic CO2. This scenario is called the ocean 

and vegetation IRF, OVIRF. The final case is the full IRF, FIRF, which is when a complete IRF is 

used and thereby represents the CO2 being able to be removed by both the ocean and 

terrestrial biosphere (Cherubini et al., 2011a). The full IRF is used as the basis for this thesis 

assessment. 

In all the cases, the resulting function f(t) is used to get an index of the relative climate 

change impact of CO2 emissions from biomass combustion. 

22
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where f(t) represents the IRF for biogenic CO2 and y(t) the IRF for CO2, and 
2CO is the 

radiative efficiency, which for CO2 is: 

 
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  
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  (2.2.5) 

where [
2

*CO ] is the concentration in the atmosphere after small perturbation and [CO2] is 

the initial concentration of CO2 in the atmosphere. 

In the FIRF alternative, the CO2 emissions from biomass combustion are considered to be 

removed from all the possible sinks, both the oceans, terrestrial biosphere and on-site 

biomass regrowth. As the biogenic CO2 emissions therefore become integrated fully into the 

global C cycle, one can refer to it as a full IRF.  
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Figure 4: CO2 atmospheric decay following the FIRF method for the selected rotation periods (t, years) of the cases 
presented in this thesis 

Concerning the biomass rotation period, the longer it is, the longer is the average stay of CO2 

in the atmosphere. In the long term however, all the decays asymptotically tend to zero, as 

long as a C flux neutral system is modelled. At around t = 50-65 years in Figure 4 above, there 

are certain negative values, meaning that there is less CO2 in the atmosphere than before 

the emissions occurred. This is due to the atmospheric CO2 being taken up in different 

biogeochemical sinks at different time constants, which are also applied to the uptake of CO2 

in biomass regrowth.  

Shortly after the emissions, when the biomass growth rate is still low, a significant fraction of 

the CO2 originally released is quickly stored in the upper layer of the ocean. Next, the C is 

transported to the deeper ocean layers and is slower than the previous processes. 

Therefore, when the uptake by the onsite biomass regrowth increases, the C initially stored 

in the upper layer of the ocean will be released at a lower rate back to the atmosphere to 

compensate for the initial over absorption (out-gassing). The climate change impact derived 

from biomass combustion and further reabsorbed in terrestrial sinks and ocean can never 

become higher than the same quantity released by fossil fuel combustion or deforestation. 

In the long term, the airborne fraction of biogenic CO2 reduces itself towards zero (Cherubini 

et al., 2011a). 
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See Figure 5 below for an illustration. 

 

Figure 5: Illustration of the ocean uptake of CO2 (Cherubini, 2012) 

GWPbio is used the same way as other GWP equivalency factors and is therefore to be 

multiplied by the direct CO2 emissions from combustion of biomass to get their relative 

contribution to global warming in terms of kg CO2-eq. This way one can incorporate the 

climate change impact of CO2 flux neutral systems in LCA and other assessment tools. The 

GWP factor can be used for all types of biomass, but in the cases of biomass with short 

rotation periods such as annual crops, the GWPbio is very small (Cherubini et al., 2011a). As 

this thesis is looking at temperate and boreal forest with rotation periods between 75 and 

100 years, the GWPbio has shown to have quite a significant contribution to the total climate 

change impact. In the results section in Chapter 4.2, one can also see a comparison between 

the three most common time horizons, 20, 100 and 500 years and illustrates that bioenergy 

is particularly an effective long-term strategy for climate change mitigation. 

CO2 fluxes on the forest site or plantation after harvest are site specific and based on Net 

Ecosystem Productivity (NEP). If it is not feasible to measure it directly at the site, it can be 

modelled indirectly. Due to lack of data, neither was possible for this thesis, but the 

methodology for modelling is still explained below. 

hNEP NPP R    (2.2.6) 

where NPP is the Net Primary Productivity and Rh is the heterotrophic respiration, which is 

CO2 emissions from oxidation of dead organic materials. If NEP > 0 (larger than zero), the 

forest (or ecosystem in question) is a CO2 sink and NPP (photosynthetic production) 
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dominates. If NEP < 0, the forest is a CO2 source and the respiration process, Rh, dominates. 

NEP profiles are usually shown in mass C per year (Cherubini et al., 2012).  

To be able to compute the IRFs for biogenic CO2 emissions, one can use the following 

Equation: 

 
0

( ) ( ') ( ') ( ') '

t

f t t NEP t y t t dt      (2.2.7) 

where f(t) represents the change caused in the atmospheric CO2 concentration (decay/IRF), 

δ(t’) represents the emissions from combustion, NEP(t’) equals the fluxes on site after 

harvest and y(t-t’) represents the CO2 decay (Cherubini et al., 2012). 

2.3. Climate forcing from changes in surface albedo 

2.3.1. Global energy flows 

Before explaining the concept of albedo, an introduction to what factors determine the 

Earth’s climate will be given. The amount of energy reaching the top of Earth’s atmosphere 

each second on a surface area of one square meter facing the Sun during daytime is around 

1 370 Watts. Approximately one quarter of this is the average amount of energy per square 

meter per second over the entire planet. Of the sunlight that reaches the top of the 

atmosphere, around 30% is reflected back to space. Clouds and small particles in the 

atmosphere known as “aerosols” are responsible for around two-thirds of the reflection 

back to space, and the remaining part is due to light-coloured areas of the Earth’s surface, 

mainly snow, ice and deserts (IPCC 2007, 2007). An example here is the boreal areas in the 

Northern parts of Russia with seasonal snow cover. 

The energy that is not reflected back to space is absorbed by the Earth’s surface and 

atmosphere, with the total amount being around 240 W/m2. To balance this incoming 

energy, the Earth itself radiates on average the same amount back to space by continuously 

emitting outgoing longwave radiation (IPCC 2007, 2007).  

The global energy flows are illustrated in Figure 6. 
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Figure 6: The global annual mean Earth’s energy budget for the period of March 2000 to May 2004 [W/m2]. The broad 
arrows indicate the schematic flow of energy in proportion to their importance (Trenberth et al., 2008). 

The presence of greenhouse gases is the reason the surface of the Earth is warm. They act as 

a partial “blanket” for the continuous longwave radiation being emitted from the surface, 

and this effect is known as the natural greenhouse effect. There are several feedback 

mechanisms in the climate system, both positive and negative, which influence the effects of 

a change in climate forcing. An example is the so-called “ice-albedo feedback loop”. As rising 

concentrations of greenhouse gases warm the Earth’s climate, snow and ice begin to melt, 

which result in darker areas and water surfaces appearing that initially were hidden under 

the ice and snow. These darker surfaces absorb more of the heat from the Sun, which causes 

an increased warming, which further results in more melting, and so on (IPCC 2007, 2007). 

This is why surface albedo and the cooling effect it gives in areas with seasonal snow cover is 

important to keep in mind when designing bioenergy strategies. Open landscape has more 

snow coverage, causing more cooling than a forested area, which has a darker surface.  

2.3.2. Theory behind the albedo effect 

Surface albedo, αs, can be defined as the ratio of reflected radiation from the surface to 

incident radiation upon it, and is measured on a scale of zero for a black body and one for a 

white body (Bright et al., 2012). As a part of the calculations in this thesis, 16 sites were 
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chosen, two per region and the MODerate Resolution Imaging Spectroradiometer (MODIS) 

from NASA was used, which provides high quality, cloud-cleared albedo data for various land 

surface types. In general, global MODIS albedo product (BRDF/MCD43) subsets for all sites 

(by providing the coordinates), area and time period can easily be accessed online free of 

charge via the MODIS Data Subsetting and Visualization Tool (ORNL DAAC, 2010).  

Concerning the calculations connected to radiative forcing from change in albedo, for the 

case of biomass grown for bioenergy, an instantaneous radiative forcing from albedo is given 

by this formula: 

TOA pRF R      (2.3.1) 

where TOAR represents the incoming solar radiation flux at the top of the Earth’s atmosphere 

(TOA) and 
p  shows the variation in planetary albedo (Bright et al., 2012). The latter part 

is linearly related to changes in surface albedo, s , by a two-way atmospheric 

transmittance parameter called fa, which accounts for the reflection and absorption of solar 

radiation throughout the atmosphere (Bright et al., 2012): 

, ,( )TOA a s new s oldRF R f       (2.3.2) 

where fa is the product of the clearness index KT, which is the fraction of TOAR  that reaches 

the surface of the Earth after reflection from clouds and absorption by the atmosphere, and 

Ta, which represents an atmospheric transmittance factor, or the fraction of the radiation 

reflected at the surface that arrives back at the TOA (Bright et al., 2012): 

a T af K T   (2.3.3) 

To find the values for KT, NASA has a database that freely offers information about 

minimum, maximum and average values for KT for a given location and time, from one single 

month to a 22-year period (NASA, 2013). For the case of this thesis, the average monthly 

values for a period of 22 years was chosen. For Ta, a value of 0,854 (Lenton and Vaughan, 

2009) was used and represents the global annual average, as literature with values for 

specific sites is limited.  
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Further, to find the TOAR on any given Julian day of the year from 1 to 365, id , one needs to 

know the latitude L in degrees of the site, the declination angle δ in degrees, as well as the 

sunset hour angle in degrees, ω (Bright et al., 2012). With this information, one can then use 

the following formula: 

,

360
(1 0.033cos ) (cos cos sin sin sin )

365 180

sc i
TOA i

R d
R L L


  


                               (2.3.4) 

where scR is the solar constant (in W/m2) and the further parameters are found using the 

following Equations (Bright et al., 2012): 

284
23.45sin(360 )

365

id



   (2.3.5) 

and 

1cos ( tan tan )L     (2.3.6) 

Regarding the mean annual extraterrestrial radiation at the top of the atmosphere, 
,TOA annR is 

then found by the formula below (Bright et al., 2012): 
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

 
 (2.3.7) 

By inserting 
,TOA annR into Equation (2.3.2) together with the calculated mean values for s

and fa, one then gets the value for mean annual instantaneous forcing from a surface albedo 

change, RFα (Bright et al., 2012).                                                                                                                                                                                                         

When initial albedo change is only temporary, for instance when forest being harvested is 

immediately replanted again, the original surface albedo value, 
,s old , will at a certain point 

return, e.g. when s = 0. However, until this point, an instantaneous forcing τ will occur, 

which needs to be accounted for. For this to be possible, an expression that describes the 

“decay” of the initial surface albedo change as a function of time, t is introduced: 
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( ) ( )s st y t      (2.3.8) 

where ( )y t describes the time evolution of the initial albedo change and is dependent on 

the vegetation dynamics of the type of vegetation that is newly planted on the same site. 

( )y t  is therefore always both case specific and a factor between 0 and 1, alongside 
2COy

(Bright et al., 2012). 

With this accounted for, the local mean annual instantaneous radiative forcing from mean 

annual albedo change (in W/m2) as a function of time can be expressed, as displayed below 

(Bright et al., 2012):  

Harvesting of biomass induces a radiative forcing due to a change in surface albedo in local 

W/m2, and to be able to compare the forcing with emissions from CO2, Equation (2.3.9) 

needs to be converted to a global forcing. This is simply done by dividing the local area with 

the Earth’s surface area: 

where AA is the local area affected (in m2) and AE is the area of the Earth’s surface (Bright et 

al., 2012).  

The final formula that describes the radiative forcing from changes in surface albedo on a 

monthly basis can be found below (updated from the work by Bright et al., 2012). 
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 




 
 (2.3.11) 

where ( )R m represents the mean incoming solar radiation at top of the atmosphere (TOA) 

over months (m), ( )f m describes the atmospheric transmittance parameter accounting for 

the monthly mean reflection and absorption of solar radiation, ( )m is the difference in 

monthly mean surface albedo between standing biomass and clear-cut sites and Aaff 

, , ,( ) ( )TOA ann a ann s annRF t R f y t        (2.3.9) 

1

, , ,( ) ( )Global

TOA ann a ann s ann A ERF t R f y t A A         (2.3.10) 
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represents the affected area. ( )y t is the function describing the albedo return to pre-

harvest levels and 1

EarthA  is the area of the Earth of 145,1 10 m2 (Cherubini et al., 2012).  

The next and final step is to find the characterisation factor GWPalbedo. For the derivation for 

this factor, one always assigns AA with a factor of 1 m2. GWP is defined as the time-

integrated global radiative forcing (in W/m2) from a 1 kg pulse emission of a GHG type x, 

relative to that of CO2 across any time horizon in kg CO-eq/m2. Integrating ( )GlobalRF t over 

the same time horizon will therefore allow one to determine a characterisation factor for an 

albedo change in kg CO2-eq/m2 of the surface area of the local land, which is affected in the 

case-specific region (Cherubini et al., 2012). However, before this one needs to include the 

climate efficacy. 

The climate efficacy corrects for the fact that certain forcing agents are more effective than 

others, and the albedo efficacy in terms of affecting the global surface temperature is 

1,5-5 times higher than CO2. The climate efficacy is defined as the global mean temperature 

change per unit forcing produced by the specific forcing agent, relative to the response 

produced by a standard CO2 forcing (Cherubini et al., 2012). 

2 2
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

  (2.3.13) 

An example of values can be found below. 

Table 2: Climate efficacies for the most common forcing agents (Hansen et al., 2005) 

Forcing agent Climate efficacy 

CO2 1 

CH4 1,33 

N2O 1,17 

Δ Albedo 1,94 

Based on this, an efficacy of 1,94 for albedo was used for the calculations. The final 

characterisation factor for surface albedo when biomass is harvested for bioenergy is 

displayed below. 
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  (2.3.14) 
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where represents the carbon yield in kg-bioCO2 per affected area.  

The results can be found in Chapter 4.1. 

Surface albedo is site-specific and the reason for this is that forested areas reflect less 

incoming radiation than open land areas, especially in regions that are affected by seasonal 

snow cover. An example could be that open land before afforestation has an albedo effect of 

α ≈ 0,86 and for forest land it would be α ≈ 0,23. Bioenergy from managed forests causes 

temporary changes in albedo, which is very significant when snow is present. If one goes 

from “open land” to “forest land” (harvesting), one causes a global warming. If one goes 

from “forest land” to “open land” one will experience a global cooling (Cherubini, 2012). This 

is why for instance a forest fire in Alaska caused a net cooling effect, as the warming from 

biogenic CO2-emissions and cooling from albedo gave a “negative” net effect (Randerson et 

al., 2006). Another example is that deforestation in northern latitudes (and thereby snow-

covered during parts of the year) cools the climate on a global scale (Bala et al., 2007). 

The climate change impact can be quantified anywhere along the cause-effect chain, but the 

uncertainty greatly increases along the chain for the case of forcing. An example is radiative 

forcing, where if caused by a change in the albedo, it can be calculated with good certainty. 

What one lacks to understand though, is how the change in the surface energy and in the 

atmosphere leads to a change in latent and sensible heat fluxes, changes to cloudiness, air 

circulation or for instance local or regional pressure gradients, due to i.e. geographic location 

(Bright et al., 2011).  
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3. Case description 
 

This part will give background information about the coal power sector in Europe, the 

general power sector in the Russian Federation and more importantly the forest sector in 

the Russian Federation, with special emphasis on the European part. An overview of the 

co-firing technology and opportunities connected to this will also be presented. This 

information has all been needed to develop the scenarios. As a final part, the models 

developed for the various co-firing scenarios chosen will be presented and explained with 

regards to the technical analysis. 

3.1. Coal power and bioenergy sector in Europe 

The increase in usage of coal for electricity generation is currently the single most 

problematic trend in the relationship between energy requirement and climate change. In 

2010 it contributed to as much as around 30% of global primary energy consumption 

(IEA, 2012c; IEA, 2011) and with accounting for over 40% of the electricity output in the 

same year, it can be defined as the backbone of global electricity generation (IEA, 2011).  

Table 3 shows that there are several countries in Europe heavily dependent on coal, in spite 

of countries such as the United States and China being even more dependent on it as an 

energy source.  
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Table 3: Overview of countries in Europe with coal power plants, their electricity production and average degree of 
efficiency for hard coal and lignite, in addition to the percentage amount of coal-fired power in each country (data from 
2010) (IEA, 2012d) 

 
Country 

Hard coal Lignite % of total 
el.prod Production 

[GWh/y] 
Efficiency Production 

[GWh/yr] 
Efficiency 

Austria 4 598  44,0 % - -  6,8 % 

Belgium 4 095  38,3 % -    -  4,4 % 

Czech Republic 2 358  32,5 % 31 074  35,6 % 39,2 % 

Estonia -     - 10 729  32,5 % 82,8 % 

Finland 10 075  42,5 %   14  33,2 % 12,5 % 

France   22 867  40,9 %   -    -  4,1 % 

Germany 102 429  41,3 %   140 428  38,3 % 39,0 % 

Greece 421  35,9 % 22 058  35,2 % 39,2 % 

Hungary 257  25,5 %  5 859  34,0 % 16,4 % 

Ireland 4 135  41,0 %   -    -  14,5 % 

Italy 38 835  37,9 %  769  37,3 % 13,3 % 

Netherlands 13 266  41,6 % -    -  11,2 % 

Portugal 7 100  38,2 % -    -  13,2 % 

Slovakia      -     -     573  35,0 % 2,1 % 

Spain 23 799  37,0 % 1 282  39,1 % 8,4 % 

Turkey   16 393  38,4 %  36 491  33,3 % 25,0 % 

United Kingdom 107 090  37,6 % -    -  28,3 % 

Total/Average: 357 718  39,2 %  249 277  36,5 % 19,9 % 

The studies conducted by the International Energy Agency (IEA) are focusing primarily on the 

OECD-countries and if one shall rank them based on percentage of coal used for total 

electricity generation, the top four countries are Estonia with 83% and Czech Republic, 

Greece and Germany with 39% of their total generation. Bear in mind that the efficiency of 

the power plant varies between the countries, as well as the coal type used, as lignite has a 

lot lower quality and therefore contributes to an even higher degree of pollution. By looking 

at the total amount of coal fired electricity generation, Germany, United Kingdom and 

Turkey have the highest production.  

Apart from electricity production, in certain countries coal is a major resource used for 

combined heat and power plants (CHP). In Poland, Denmark and the Czech Republic, coal 

contributes as fuel input in over 50% of their CHP electricity production (IEA, 2012d). 

Certain countries are self-sustained regarding coal, but what is interesting is the amount of 

imported coal for the various European countries. If one were to export biomass from the 

Russian Federation to the rest of Europe in the future, it is more likely that the countries 
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interested in this would already be heavily importing coal. Based on data from “Coal 

Information 2012” published by the IEA, the largest coal importers in Europe/Eurasia in 2011 

were Germany with 41,3 Mt, United Kingdom with 32,6 Mt and the Russian Federation and 

the Netherlands with 24,5 Mt. The Russian Federation, Poland and Ukraine were the largest 

European suppliers of coal to the rest of the world (IEA, 2012a). 

The electricity information from 2012 reports that in 2011, biofuels and waste was used in 

electricity and CHP plants to produce 263 TWh of electricity in the OECD countries. This is 

the equivalent of 3,8% of OECD production using only combustible fuels, and 2,4% of the 

total electricity production of OECD from all sources. For non-OECD countries (Russia 

amongst others) in 2010, biofuels and waste produced 67,5 TWh of electricity in electricity 

and CHP plants, which is a total of 0,9% of combustible fuel-fired power generation. In 

addition, 1,8% of the total heat generation was provided from biofuels and waste 

combustion in 2010 (IEA, 2012d). 

3.2. Power sector in the Russian Federation 

To give an overview of the power sector in the Russian Federation, in 2010, the total 

electricity generation was 1 036 116 GWh and the heat generation was 6 015 631 TJ. As 

shown in Table 4, natural gas is the main provider of electricity and heat in the Russian 

Federation, but coal contributes a considerable amount with 16% of the electricity 

generated and 21% of the heat generation. In comparison, despite the large amount of 

forest resources, biofuels and waste is only responsible for 0,3% of the electricity generated 

and 2% of the heat generated. A great potential therefore exists for substituting coal as fuel 

with biomass by having a co-firing process in the power plant (IEA, 2012b).  
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Table 4: Percentage distribution of the energy sources in Russia for electricity and heat production (IEA, 2012b) [%] 

Electricity and Heat Output [%] 

Supply and 
consumption 

Coal and 
peat 

Crude 
oil 

Oil 
products 

Natural 
gas 

Nuclear Hydro Geother
mal & 
solar 

Biofue
ls & 
waste 

Electricity 
generated 
[GWh] 

16,0%  -  0,9% 50,2% 16,4% 16,1% 0,05% 0,3% 

Electricity 
plants 

-  -  18,7% 1,0% 100% 100% 100% - 

CHP plants 100% 100% 81,3% 99,0% - - - 100% 

Heat 
generated [TJ] 

20,5% 0,4% 4,8% 66,7% 0,2% - 5,4% 2,0% 

CHP plants 61,3% 0,8% 16,4% 46,5% 100% - - 29,7% 

Heat plants 38,7% 99,2% 83,6% 53,5% - - 100% 70,3% 

The total primary energy production in Russia is around 1 293 049 ktoe, of which 46% 

(601 986 ktoe) is exported, mainly oil and gas (and some coal). 40% (177 109 ktoe) of the 

country's remaining total final energy consumption of 445 764 ktoe is used in the form of 

electricity and heat.  

Table 4 further indicates that the primary energy for electricity generation in Russia is 

dominated by fossil sources such as gas (50%) and coal/peat (16%). Additionally, around 16% 

of the electricity is produced from nuclear power, the same amount for hydropower. Heat 

production is also dominated by the fossil sources natural gas (67%) and coal/peat (21%). 

Smaller contributions come from oil (5%) and other renewable sources than biomass (5% 

from geothermal and solar). The largest share of the produced electricity and heat comes 

from Combined Heat and Power (CHP) plants, with 33% of the electricity being produced at 

pure electricity plants and 54,9% being produced by pure heat plants (IEA, 2012b). 

3.3. Forest sector in the Russian Federation 

In September 2012, the Food and Agriculture Organization of the United Nations (FAO) 

published the report “The Russian Federation Forest Sector – Outlook study to 2030” and it 

shows that the Russian forest sector has considerable potential for development. The 

Russian forest sector has a crucial role concerning both the environment and from an 

economic perspective in local, national and global levels, with accounting for more than 

20 percent of the planet’s forest estate (FAO, 2012). 
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In 2010, the total amount of forestland in the Russian Federation was 882 million hectares. 

Of this, available forest for wood supply (FAWS) was 677 million hectares and had an 

allowable cut of 633 million m3, which included 61 million m3 in protective forests and 

573 million m3 in exploitable forests. Depending on three future scenarios that have been 

developed, the forest areas are expected to increase with 0,8-1,5% by the year 2030. The 

study advises national policy-makers to start objective systematic calculations of the 

economically allowable cut, which excludes all physically and economically inaccessible 

forest resources (FAO, 2012). Regardless of this, it is clear that the Russian forest sector 

currently has a lot of unused potential. 

For the forest industry, the study predicts that the wood biomass for energy usage will 

double, increasing from the current 32 million m3 to 75 million m3. The national market is 

the prime consumer of this biofuel and export is limited to pellets to those regions in Europe 

that have the necessary transportation and economic conditions intact (FAO, 2012). The 

national possibilities regarding bioenergy is the main scope of this thesis, with emphasis on 

the market in the European part of the Russian Federation. 

Conventionally one can classify the Russian forest areas into two groups. The first one being 

the sparsely wooded and moderately wooded regions, which concerns Central, Volga, Ural, 

Southern and North Caucasus Federal districts, all in the European part of Russia. The richly 

wooded regions are looked upon as Northwestern (European Russia), Siberia and the Far 

Eastern Federal District. The Russian Federation is a vast country and more than half of the 

forest areas are grown on permafrost soils (Siberia and Far East), in climatic conditions that 

are very severe, and only around 45% of this forest area is available for exploitation. 

Therefore, the predominant part of the forest areas that have been exploited intensively are 

the Northern part of European Russia, the Urals and along the Trans-Siberian Railway 

(FAO, 2012). 

In this thesis the resources in the European part of Russia has been focused on and a study 

done by Charles A. Backman in 1997 looked into the 9 economic regions of European Russia 

with a percentage distribution of the forest resources available (Backman, 1997). This 

distribution has been used as a basis for developing the current scenario with the numbers 

presented in the report by FAO (2012). A map of the economical regions of Russia can be 
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found below in Figure 7. As the thesis has its focus on European Russia, the regions of West 

Siberia, East Siberia and Far Eastern Siberia have been disregarded. In addition, Kaliningrad is 

not taken into consideration for the further model purposes, as the power production there 

has a very limited impact.  

 

Figure 7: Map of the economic regions of the Russian Federation 
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Based on the upscaling, the forest resources that are exploitable in the economic regions in 

European Russia are as follows: 

Table 5: Amount of exploitable forest land in each region of European Russia in [%] and [1000 ha] 

Region Share of forest 
land exploitable 

Updated estimate for 
exploitable land [1000 ha] 

North 88 %                           92 466  

Northwest 95 %                           13 635  

Central 91 %                           25 561  

Volga-Vyatka 94 %                           17 286  

Central Chernozem 81 %                             1 644  

Volga 75 %                             4 946  

North Caucasus 57 %                             2 886  

Urals 87 %                           42 978  

Kaliningrad Oblast 81 %                                 299  

Russia 58 %                         617 954  

European Russia 88 %                         201 700  

 

The Russian forest consists of several different biomes, the most important ones for this 

study being the boreal forest and temperate forest. Based on maps from 

(McShaffrey; FAO, 2012; Peterson), a distribution was made that can be found below in 

Figure 8. 

 

Figure 8: Map of the distribution of boreal and temperate climate in the Russian Federation 
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A biome is a large, naturally occurring, regional ecosystem that contains communities of 

plants and animals that are adapted to the conditions in which they occur. Biomes are 

strongly influenced by climate, and their distributions often coincide with climate regions, 

although many other factors also influence the distribution of plants and animals 

(Park, 2008). In European Russia, the boreal and temperate forest is the most dominant.  

Boreal forests, or taiga, represents the largest terrestrial biome in the world and occurs at 

latitudes between 50 and 60 degrees north. Aside from parts of Eurasia (two-thirds can be 

found in Siberia), the rest can be found in Scandinavia, Alaska and Canada. The seasons are 

characterised by having long, cold and dry winters, with moist and moderately warm 

summers. The length of the growing season is around 130 days (UC Berkeley, 2004). 

The temperate forests occur more in the eastern parts of North America, north-eastern Asia 

and western and central Europe. This forest biome has more well-defined seasons and a 

distinct winter, resulting in a moderate climate during the 4-6 frost free months and a 

growing season of around 140-200 days (UC Berkeley, 2004). 

Moreover, due to calculations connected to biogenic CO2-fluxes and albedo (further 

elaborated in Chapter 3.5) and system modelling, a distribution was needed for coniferous 

wood (softwood) and deciduous wood (hardwood). Based on data from the article by 

Backman (1997) and converting the values from hectares to cubic metres, an estimation was 

made which can be found in Table 6 below. 

Table 6: Distribution of coniferous and deciduous wood in the boreal and temperate forest areas in European Russia [%] 

Region 
Boreal forest [%] Temperate forest [%] 

Con Dec Con Dec 

North 76,8 % 23,2 %                      -                     -    

Northwest 24,5 % 25,5 % 24,5 % 25,5 % 
Central                   -                     -    40,1 % 59,9 % 
Volga-Vyatka                   -                     -    45,6 % 54,4 % 

Central Chernozem - - 34,9 % 65,1 % 

Volga                   -                     -    25,3 % 74,7 % 

North Caucasus                   -                     -    20,5 % 79,5 % 

Urals 34,0 % 36,0 % 14,6 % 15,4 % 

Kaliningrad Oblast 76,8 % 23,2 %                      -                     -    

Russia 62,3 % 22,7 % 14,6 % 15,4 % 
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3.4. Co-firing technologies 

There exists several co-firing technologies, where the two main ones will be summarised. 

Direct co-firing consists of biomass and coal being fed simultaneously into the same boiler. 

First the coal and biomass is blended together and then the mixture is processed through a 

coal mill, crusher and pulveriser before going into the final burning stage. This process can 

be used for wood chips, and with slight modifications, this technique can be used for pellets 

and pellets from combined torrefaction and pelletisation (TOP). TOP pellets have some 

added advantages over conventional biomass-based pellets, including an improved 

durability, grindability and a coal-like combustion nature (Kabir and Kumar, 2012). For a 

continuous co-firing over 24 hour periods, an automated feeding system is needed to be 

able to supply biomass to the boiler continuously (Mann and Spath, 2001), with wood chips 

preferably pulverised down to 3 mm in size (Sebastián et al., 2011) and this can be done in a 

single-stage size reduction process.  

Parallel co-firing involves having a separate biomass pre-treatment, feeding mechanism and 

combustion system in the power plant. Due to higher moisture content, particle size and 

non-uniform combustion behaviour, feedstock such as bale and wood chips can be more 

complicated for direct co-firing, and therefore parallel co-firing can be considered as an 

alternative option. Bale and wood chips are still suitable as feedstock for direct co-firing, but 

need to be dried beforehand, as the maximum allowable moisture content is usually 20% for 

co-firing (Kabir and Kumar, 2012).  

Co-firing usually takes place in already existing coal-fired power plants and does not need to 

increase the capacity. Most boiler types have been tested for co-firing in the past, including 

pulverised coal boilers, cyclone boilers, stoker boilers and bubbling and circulating fluidised 

bed boilers. The type that can handle the highest amount of biomass is the pulverised coal 

boiler (Mann and Spath, 2001). 

There are both advantages and disadvantages with co-firing. The plant capacity slightly 

decreases due to efficiency losses, which is reasoned with the biomass having lower heating 

value and also a higher moisture content than coal (Mann and Spath, 2001). The efficiency 

therefore decreases with increased level of co-firing. However, the total system also 

increases its energy efficiency. This is due to less coal being burned, which implies less 
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energy consumed by the system over all. In addition, the upstream processes connected to 

biomass are in less need of energy than for coal, so this would also result in energy savings, 

relative to the level of co-firing (Mann and Spath, 2001). The life cycle assessment also 

highlights this. 

3.5. System models used for the LCA scenarios 

In this part of the report, the models that have been used for the four scenarios will be 

described, both how they were developed and used. Furthermore, the considerations 

needed to be taken for the model and templates will be highlighted.  

Four scenarios for the thesis were developed; a reference system of 100% coal-firing, one 

scenario with 10% biomass used as fuel input to the co-firing, one with 20% biomass 

co-firing and an ideal case of a 100% bioenergy as fuel input. Below in Figure 9 one can find a 

generic model used for all four cases, where one disregards the processes connected to coal 

and bioenergy for the two 100% scenarios.  

 

Figure 9: Flowchart for co-firing of biomass with coal power with functional unit as 1 MJ fuel mix 

The functional unit of the analysis is 1 MJ fuel mix (input), which implies that it is converted 

by an energy system to an energy carrier. The input of coal and biomass has been calculated 

accordingly for each of the scenarios and each region.  

3.5.1. Scenario 1: 100% coal-fired 

As the base case for comparison of the three other scenarios and the variations in climate 

change impact, a scenario of 100% coal-firing was chosen. The model is built on the system 

developed for the thesis project in the autumn, “Life cycle assessment of coal based 

electricity generation with focus on coal bed methane” (Kviljo, 2012), and contains the 
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processes connected to extraction of coal until combustion in the power plant. The system 

consists of three main processes: coal production, transport and coal combustion at the 

power plant. 

One of the main processes in the foreground system is “hard coal at mine” which is specified 

for the Russian Federation. Included in this process is everything connected to the coal 

extraction from the mine, both from underground and open cast mining, and materials such 

as concrete, steel, copper, explosives and wood, as well as energy requirements. Most of 

input represents European or Global conditions. Transport to the coal power plant is also 

included in this foreground process, and the final output is 1 kg of coal produced. 

The efficiency of the power plant together with the lower heating value of the coal, which 

depends on the coal type, are the factors that influence the amount of coal needed for coal 

combustion. As the functional unit is 1 MJ fuel mix, the coal power plant and efficiency is not 

necessary, only the lower heating value for coal. For this, the value from ecoinvent for Russia 

was used, which is 23,4 MJ/kg (ecoinvent, 2010). The input of coal for the 100% coal-fired 

scenario is therefore 0,0427 kg/MJ. 

3.5.2. Scenario 2: 10% co-firing with biomass 

In this scenario, the processes and technology connected to the coal production and 

combustion are the same as in scenario 1, but the input of coal is now 90% (0,9 MJ) and 

there is a 10% input of biomass (0,1 MJ). The biomass is a combination of hardwood and 

softwood. These are the two broad classes trees are divided into, with hardwoods usually 

being broadleaved and softwoods being coniferous. The processes chosen for biomass are 

“wood chips, hardwood, u=80%, at forest/RER/m3” and “wood chips, softwood, u=140%, at 

forest/RER/m3” and based on the distribution in each region of coniferous and deciduous 

wood, an estimation was made for how much of the 10% fuel input was hardwood and 

softwood.  

The industrial wood at the forest road is further fed into a mobile chopper immediately after 

being harvested (Werner et al., 2007). As the volume of the biomass has an impact related 

to the transportation, Norwegian spruce was chosen to represent coniferous forest and 

birch to represent deciduous forest, with 470 kg/m3 and 630 kg/m3 as the respective 

densities (Norwegian Institute of Wood Technology). If the wood is chopped a few days after 
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harvesting, another density would have been chosen, as the water content could be 

considerably lower (in dry weather) due to evaporation over the leaves 

(Werner et al., 2007). 

Included in the aforementioned processes is the harvesting of the trees with chainsaws to 

suitable pieces, loading them onto a tractor-driven trailer and forwarding to the roadside 

(Werner et al., 2007). Depending on the end-use, chips can be produced onsite or the wood 

can be transported to a chipper (Fagernäs et al., 2006). In our case, we have chosen a wood 

chipper processing the timber logs into wood chips at the forest site, all original ecoinvent 

data, together with the harvesting and forwarding. The biomass is then transported directly 

to the respective power plant, which was calculated for each case. Wood chips are 

commonly used directly in coal-fired power plants or CHP production (IPCC, 2012), and the 

climate change impact of biomass combustion was calculated seperately, based on the 

GWPs developed, and were therefore not included in the model. 

All the scenarios were modelled for the eight economic regions in European Russia 

(excluding Kaliningrad). For each region a centre point was chosen, an area that was 

approximately in the middle of the region, and it was assumed that there was a power plant 

at each of these centre points. The other assumption made was that every power plant 

produced the same amount of energy, so that the input was equally distributed. An 

overview of the points chosen can be found in the map in Figure 10. 

The total final consumption (TFC) of coal and peat for electricity and heat production in 

Russia was 4 807 619 TJ in 2010 (IEA, 2012b). It is estimated that around 22,7% of the energy 

is produced in European Russia (Belobrov). Within European Russia it was assumed an equal 

distribution of the coal power, 2,8% per region (136 434 TJ), which was further used for the 

calculations connected to input of biomass and transportation. 
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Table 7 gives an overview of the input of biomass and coal for each region for the scenario of 

10% co-firing. 

Table 7: Input of coal [kg/MJ] and biomass [m3/MJ] for each region in the scenario of 10% co-firing 

Region Hard coal  
[kg/MJ] 

Hardwood biomass 
[m3/MJ] 

Softwood biomass 
[m3/MJ] 

North 0,0384 2,4E-06 8,0E-06 

Northwest 0,0384 4,9E-06 4,7E-06 

Central 0,0384 5,6E-06 3,7E-06 

Volga-Vyatka 0,0384 5,1E-06 4,3E-06 

Central Chernozem 0,0384 6,0E-06 3,2E-06 

Volga 0,0384 6,7E-06 2,3E-06 

North Caucasus 0,0384 7,0E-06 1,8E-06 

Urals 0,0384 4,9E-06 4,6E-06 

A lower heating value of 19 MJ/kg was used together with the chosen densities of the wood 

for the conversions to m3/MJ, which was the ecoinvent unit for the chosen processes. 

As each region varies in size, individual transportation routes with a specific radius were 

assigned for each region. An assumption was made that biomass and coal would be 

transported from all parts of the region to the centre point where the power plant is 

situated. The map with the regional transportation routes can be found below in Figure 10, 

in addition to a table with the values for each region.  

 

Figure 10: Map of the modelled transportation routes for the eight regions in European Russia, as well as the centre point 
chosen for the coal power plant 
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The loading capacity of the truck is estimated to 21 tons and a fuel consumption of 3 litres 

per kilometre (Michelsen et al., 2008). The values for tonkm per cubic metre are the values 

that were used in Arda for each region, both for softwood and hardwood chips. 

Table 8: Overview of the data connected to the transportation route for each region 

 
Region 

Distance to collection 
point [km] 

Ton  
kilometre [tkm] 

Ton kilometre per m3 
[tkm/m3] 

North 564,3 11 850,5 286,2 

Northwest 171,3 3 597,9 94,5 

Central 353,0 7 412,2 199,7 

Volga-Vyatka 327,6 6 880,2 182,5 

Central Chernozem 197,2 4 142,0 113,3 

Volga 340,9 7 158,1 200,9 

North Caucasus 323,3 6 788,9 193,1 

Urals 360,0 7 560,8 198,8 

Further information regarding the calculations can be found in Appendix 8.2, Table 29 and 

Table 30. 

3.5.3. Scenario 3: 20% co-firing with biomass 

Technology today has the possibility of 20% co-firing in coal power plants and therefore this 

was chosen as a realistic scenario. For this scenario, the transportation routes are the same, 

but the fuel mix of coal and biomass varies. The amount of ton kilometre is the same as in 

scenario 2 (in Table 8). Below one can find the fuel input for each region for the scenario of 

20% co-firing. 

Table 9: Overview of the input of coal [kg/MJ] and biomass [m3/MJ] for each region in the scenario of 20% co-firing 

Region Hard coal for 
heat [kg/MJ] 

Hardwood biomass for 
heat [m3/MJ] 

Softwood biomass for heat  
[m3/MJ] 

North 0,0341 4,8E-06 1,6E-05 

Northwest 0,0341 9,7E-06 9,3E-06 

Central 0,0341 1,1E-05 7,5E-06 

Volga-Vyatka 0,0341 1,0E-05 8,6E-06 

Central Chernozem 0,0341 1,2E-05 6,4E-06 

Volga 0,0341 1,3E-05 4,5E-06 

North Caucasus 0,0341 1,4E-05 3,6E-06 

Urals 0,0341 9,8E-06 9,3E-06 

3.5.4. Scenario 4: 100% bioenergy as fuel 

For 100% bioenergy a different technology would be used than a coal power plant, but as 

the functional unit is input of fuel mix only, the upstream processes and overall climate 
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change impact is of interest. With covering the coal demand in Russia, the input for 

European Russia for 1 MJ input is as follows: 

Table 10: Overview of the input of coal [kg/MJ] and biomass [m3/MJ] for each region in the scenario of 100% bioenergy 

Region Hardwood biomass for heat 
[m3/MJ] 

Softwood biomass for heat  
[m3/MJ] 

North 2,4E-05 8,0E-05 

Northwest 4,9E-05 4,7E-05 

Central 5,6E-05 3,7E-05 

Volga-Vyatka 5,1E-05 4,3E-05 

Central Chernozem 6,0E-05 3,2E-05 

Volga 6,7E-05 2,3E-05 

North Caucasus 7,0E-05 1,8E-05 

Urals 4,9E-05 4,6E-05 

The values for the other upstream processes remain the same. However, biogenic CO2 and 

surface albedo are the factors where the amount of biomass for co-firing plays the most 

important role. 

3.5.5. Biogenic CO2 - Calculations and data 

Concerning the calculations of biogenic CO2, certain information was needed. A lower 

heating value of 19MJ/kg was chosen, and the conversion factor of 3,6 MJ/kWh was used. In 

addition, there is 50% carbon in dry mass, which equals 0,5 ton C/ton wood. This was further 

used to estimate there being 1,83 ton CO2/ton wood, by multiplying carbon in wood with the 

molar weight of CO2 divided by the molar weight of carbon. Despite a lot of research one 

specific rotation periods from the Russian boreal and temperate forest were not found and 

therefore values from the Intergovernmental Panel on Climate Change (IPCC) were used 

(IPCC, 2006). Below in Table 11 is an overview of the rotation periods, as well as the 

corresponding GWPbio characterisation factor extracted from the paper by 

(Cherubini et al., 2011a), for the three most common time horizons of 20, 100 and 500 years.  
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Table 11: Overview of rotation periods [year] and the corresponding GWPbio factor (Cherubini et al, 2011a) 

Forest type GWPbio 

TH = 20 TH = 100 TH = 500 

CO2 1,00 1,00 1,00 

Boreal, coniferous (100 yrs) 0,96 0,43 0,08 

Boreal, deciduous (85 yrs) 0,95 0,37 0,07 

Temperate, coniferous (90 yrs) 0,95 0,39 0,07 

Temperate, deciduous (75 yrs) 0,94 0,32 0,06 

Furthermore, a final important factor needed for the calculations is the amount of biomass 

per hectare, which was taken from the IPCC guidelines on forest land (IPCC, 2006) and can 

be found below.  

Table 12: Overview of the amount of biomass per hectare for each of the forest types [t dry mass/ha] (IPCC, 2006) 

  Biomass per hectare [t dry mass/ha] 

Boreal forest Temperate forest 

Coniferous 50 175 

Deciduous/Broadleaved 57,1 200 

Based on the estimated amount of hectares of exploitable forest in each of the regions in 

European Russia, it was first converted to tons of dry mass using the factors in Table 12 and 

then finding the amount of carbon in the exploitable forest for each region using the 

conversion factor of 0,5 t C/t wood. Next, the amount of CO2 in the wood was calculated and 

by using the rotation periods, it was estimated how much carbon and CO2 there was per 

year for the four combinations of forest. After this, the energy quantity in each of the forest 

combinations was calculated, using the lower heating value and rotation periods for results 

both in GJ and then further in TJ/year.  

For each combination of forest type, the g CO2-equivalent per MJ was found, using the 

GWPbio and the CO2 emissions from biomass combustion, being 96,5 g CO2-eq/MJ. The 

values can be found in Table 23 in Appendix 8.1.3 for each of the time horizons. 

Based on the percentage distribution of the m3 biomass of the different forest types in each 

region, the final amount of g CO2-equivalents per MJfuel-mix was calculated, which can further 

be found in Chapter 4.2. The remaining data can be found in Appendix 8.3. For further 

results connected to the GWPbio and the implications of these, see Chapter 4 and 5. 
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3.5.6. Surface albedo - Calculations and data 

In connection with the albedo calculations, two sites were located for each of the eight 

regions, both close to the centre points that were chosen for the power plant. One of the 

sites had coordinates and elevation for an area of heavy forest, and the other site had a 

similar location in terms of elevation and forest biome, but was in an open landscape 

instead, for instance an open field or mountainous area. The sites should not be too far 

apart and all locations and elevations were found using Google Earth, which involves some 

inaccuracy, but was found as the most optimal of the tools available. The chosen locations 

can be found below in Table 13 and are representative for the whole region. 

Table 13: Overview of the coordinates and elevation for each of the chosen sites for albedo calculations 

 
Region 

Forest area Open landscape 

Latitude Longitude Elevation 
[m.a.s.l.]4 

Latitude Longitude Elevation 
[m.a.s.l.] 

North 64,4 40,4 29 64,3 40,4 29 

Northwest 59,4 30,7 33 59,3 31,2 32 

Central 56,2 36,5 247 56,2 36,5 247 

Volga-Vyatka 56,6 47,7 76 56,6 47,8 86 

Central Chernozem 51,9 39,6 116 52,0 39,3 119 

Volga 51,6 45,9 287 51,5 45,9 268 

North Caucasus 45,1 41,9 614 45,1 41,8 628 

Urals 55,0 56,7 257 55,1 56,6 257 

As a first part of the calculations, the two-way atmospheric transmittance parameter af  was 

calculated using Equation (2.3.3) found in the methodology chapter. The values of KT for 

each month averaged over 22 years were extracted from the Surface Meteorology and Solar 

Energy database of NASA (NASA, 2013). By entering the latitude and longitude for each site 

and selecting “insolation clearness index, k (Average, Min, Max), the values were extracted 

for each specific site and repeated for all the sites identified as forest areas (one per region). 

Finally, the parameter fa was computed for each month, as a product between KT and TA. 

The results can be found in Appendix 8.1.1.  

The next step was calculating the mean incoming solar radiation RTOA per month. This was 

done through Equation (2.3.4) to (2.3.7) in a matlab script that can be found in Appendix 

8.1.1, where the elevation was the only parameter needed to be changed for each region. 

                                                           
4 Metres above sea level 
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When one had RTOA calculated for each region, observational albedo data for the sites that 

were identified for each region could be extracted, both for forest area and open landscape 

using MODIS Land Subsetting tool (ORNL DAAC, 2010). For each of the sites, the 

geographical coordinates were entered and as product, “MCD43A MODIS/Terra+Aqua BRDF 

and Calculated Albedo” was selected as the product, which calculated the data by using a 

solar angle equal to 0,2. The spatial boundaries were set to “0 km” above/below and “0 km” 

left/right and the time series was selected as February 2000 to March 2013, so a time period 

of 13 years. 

The extraction of data was conducted for all 16 sites (two for each region) but Northwestern 

and North Caucasus had to have some extra sites added for open landscape, as when 

analysing the results, it was shown that the original sites chosen were not ideal to represent 

“open landscape”. When receiving the data, the Julian days were converted to averages for 

each month for each year (the albedo values are measured every 8 days), with focus on 

“black-sky shortwave” albedo. Furthermore, an average was made for each month based on 

all of the years. By calculating the monthly mean, the uncertainties were minimized for the 

variations that could occur that affect the albedo (Bright et al., 2011). Certain days had 

insufficient observational data to perform the BRDF/albedo inversion, giving an error value 

of 32 767. These were not taken into consideration and a general average was made based 

on the days with adequate data measured.  

The next step was to find Δ Albedo (absolute value of the difference between forest and 

open landscape site) and the values can be found in Chapter 4.1.1. 

By using Equation (2.3.11) with the area of the Earth being 145,10 10 m2 and the climate 

efficacy for albedo being 1,94, one was able to calculate the radiative forcing from change in 

albedo for each region, measured in W/m2. As a final part, one used this value to find the 

annual mean radiative forcing from Land Use Change, measured in (W/m2)/m2. 

For each forest type within each region (from two to four), one then uses the biomass yield 

for the forest type (amount of dry mass per hectare multiplied by 0,5 to get t C/ha) to find 

t CO2/ha. This value multiplied with the annual mean radiative forcing for the respective 

region ((W/m2)/kg CO2) gives the instantaneous effective forcing (W/(m2 kg CO2)). The 

rotation period of the forest type together with the year (in time horizon) in an exponential 
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function, gives the albedo return function, which begins at 1 and then reduces itself towards 

zero with time (displayed in years). The integrated effective forcing (W yr/(m2 kg CO2)) is 

then found by the sum of the instantaneous effective forcing and the previous value of 

integrated effective forcing. The final step is then to find the GWPalbedo characterisation 

values, which are the integrated effective forcing value for a year, divided by the value for a 

fossil reference. See Equation (2.3.14). The values for the time horizons of 20, 100 and 

500 years can be found in Chapter 4.1.2. The ERF-results for each forest type in each region 

can be found as graphs in Chapter 4.1.1, together with the biogenic CO2-curves for 

integrated effective forcing.  

For each combination of forest type, the g CO2-equivalent per MJ was found, using the 

GWPalbedo and the CO2 emissions from biomass combustion, being 96,5 g CO2-eq/MJ. The 

values for each of the time horizons can be found in Appendix 8.1.3. 

Based on the percentage distribution of the m3 biomass of the different forest types in each 

region, the final amount of g CO2-equivalents per MJ was calculated, which can further be 

found in Chapter 4.2. The remaining calculations are displayed in Appendix 8.1 and 8.3. For 

further results connected to the GWPalbedo and the implications of these, see Chapter 4 

and 5.  
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4. Results and analysis 
 

In this part, the work connected to biogenic CO2 and the albedo effect is shown, based on 

the various formulas and data collected, which was explained in Chapter 2 and 3. In addition 

the results from the life cycle assessment for the eight regions in European Russia and the 

corresponding scenarios will be presented for the time horizons of 20, 100 and 500 years. All 

the results are shown graphically in order to more easily understand and compare the 

outcomes, in addition to looking more in depth at what processes contribute the most to 

climate change, how if differs in each region and where the climate forcings connected to 

biomass combustion and albedo have the largest impact. To conduct parts of the analyses, 

the software Arda was used, which has been developed at the Programme for Industrial 

Ecology at the Norwegian University of Science and Technology. 

4.1. Characterisation of biogenic CO2 and albedo 

4.1.1. Absolute metrics 

Based on the sites found for each region and the extraction of albedo-data from MODIS as 

explained in Chapter 3.5.6, Figure 11 below gives an overview of the monthly mean Δ albedo 

values. These are the net albedo values (absolute) between the sites chosen for forest and 

open landscape. 

 

Figure 11: Overview of the monthly mean Δ albedo values for each region [W/m2] 
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The highest net values for albedo are during the winter months from mid-October to March. 

Central Chernozem has the overall highest differences, with its peak in February and a 

Δ albedo of 0,5 W/m2. The Northern region also has high values in general, with a peak of 

0,44 W/m2 for the month of March. North Caucasus has on the other hand lower differences 

overall for each month, with its highest peak being in January with 0,37 W/m2 as Δ albedo. 

As the snow season is longer in certain regions, the Δ albedo value remains higher, due to 

the solar radiation being reflected for a longer period of time in the open areas. For the 

exact numerical values, see Table 20 in Appendix 8.1.1. 

Figure 12 below gives an overview of the effective radiative forcing (instantaneous) from 

biogenic CO2 fluxes and changes in albedo associated with 1 kg of emission for the eight 

regions of European Russia which are analysed in this thesis. As there was up to four 

different forest types in each region, combinations of both boreal and temperate climate 

with either coniferous or deciduous forest, an average has been calculated for each region 

based on the forest distribution. The effective forcing of CO2 pulse emissions from fossils or 

deforested biomass is shown for comparison. The exact values can be found in Table 21 and 

Table 22 in Appendix 8.1.2, in addition to the digital appendix. 

 

Figure 12: Effective radiative forcing from biogenic CO2 fluxes and changes in albedo associated with 1 kg of emission for 
the eight regions. The effective forcing of CO2 pulse emissions from fossils or deforested biomass is displayed for 
comparison. [10-16 Wm-2kg-1] 
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The graph continuously above the x-axis represents the fossil reference, which has a very 

slow atmospheric decay, and at year 500, still has an effective radiative forcing of around 

4,18·10-16 W/m2kg CO2. As a comparison, the biogenic references have an ERF of 

around -0,07·10-16 W/m2kg CO2, and represent the rotation period of the four different 

forest types in the various regions. Boreal forest with coniferous trees has a rotation period 

of 100 years, boreal with deciduous trees has a rotation period of 85 years, and temperate 

climate with coniferous or deciduous forest has a rotation period of 90 and 75 years 

respectively. For the cases of the surface albedo, one can see that it has the highest impact 

for the Northern, Northwestern and Urals region with values 

between -24,2·10-16 W/m2kg CO2 (Northern) and -19,3·10-16 W/m2kg CO2 (Northwestern) for 

year 1. The lowest impact is in the region of North-Caucasus, with an ERF 

of -5,5·10-16 W/m2kg CO2 in year 1. The values for all the regions go asymptotically towards 

zero between the time period of 75 to 100 years, which is also the rotation periods of the 

various forest types. 

Based on the results displayed in Figure 12, one can draw certain conclusions. When 

biogenic CO2 emissions come from combustion of forest biomass, their atmospheric decay is 

slower than that of fossil CO2 for the first decades. The interaction which causes a 

postponement in the atmospheric CO2 concentrations takes place in the upper layers of the 

oceans, which slowly outgas the CO2 that is quickly absorbed soon after the pulse emission 

(Cherubini et al., 2012). This is only a “short-term” effect however, and CO2 neutrality is still 

reached at the end of the rotation period. 

If one were able to include NEP (Net Ecosystem Productivity) in the assessment, there 

would have been a clear inflection point in the biogenic CO2 decay at the end of the rotation 

period. This is due to harvesting taking place and NEP stopping abruptly 

(Cherubini et al., 2012). Prior to this, the values would still be negative due to a negative 

NEP caused by the additional emissions from the site after harvest.  

The graph also shows the importance of the cooling contribution from albedo in areas 

affected by a significant snow cover. This is especially visible for the cases of the North 

region, Northwestern region and the Urals, where the snow lays longer and the boreal 



51 
 

climate is represented. The effect is less for the remaining regions, especially 

North-Caucasus, which also is also reasonable due to the geographic placement.  

Figure 13 below displays the average net effective radiative forcing for each region. This was 

reached by calculating the net ERF between each individual forest type in the region and the 

respective rotation period, and further finding the mean average for each of the regions. 

 

Figure 13: Net effective radiative forcing (instantaneous) for each region with fossil reference shown for comparison [10-

16 Wm-2kg-1] 

The graph presents the dynamics of the effective radiative forcing for each of regions, 

compared to a fossil-based reference system. The curves show the complexity of the 

systems and the large time dependency of the results. Central, Volga-Vyatka, 

Central Chernozem, Volga and Northern-Caucasus all have a net effective radiative forcing 

above the x-axis at year 1, with values from 8,2·10-16 W/m2kg CO2 (Central Chernozem) to 

12,6·10-16 W/m2kg CO2 for the case of North-Caucasus. The fossil reference starts at 

18,1·10-16 W/m2kg CO2 and for all regions the net impact is lower than that of the fossil 

reference.  

For the Northern, Northwestern and Urals region, there is a strong cooling contribution from 
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x-axis until around year 50. For the remaining regions, the albedo contribution is not as 

strong in the beginning and the warming from the biogenic CO2 fluxes clearly has the largest 

impact. From around year 50, the cooling effect is dominating for all regions, moving 

asymptotically towards zero, and having a value of around -0,6·10-16 W/m2kg CO2 by year 

140. At this time interval, the fossil reference still has an estimated value of 

6·10-16 W/m2kg CO2. 

The ERF’s for albedo were used as a basis for finding the corresponding GWP equivalency 

factor, whilst for biogenic CO2, they are based on the values developed by 

Cherubini et al (2012) and connected to the rotation period. A site can therefore have the 

same biogenic CO2-value, but have different albedo values, as this is site-specific. 

4.1.2. Normalised metrics 

Below are two tables representing GWP equivalency factors for biogenic CO2 and the albedo 

effect. The first one, Table 14, displays the GWPbio factors which were developed by 

Cherubini et al and published in the article “CO2 emissions from biomass combustion for 

bioenergy: atmospheric decay and contribution to global warming” in 2011 

(Cherubini et al., 2011a). They were combusted with time-integrated effective radiative 

forcings and using CO2 as a reference. The chosen factors are connected to the relevant 

rotation period of the forest type, and are displayed for the three most common time 

horizons of 20, 100 and 500 years.  

Table 14: Biogenic CO2 GWP equivalency factors for the selected regions and respective biomass for the three time 
horizons. Extracted from the paper by Cherubini et al, 2011a 

Forest type 
GWPbio 

TH = 20 TH = 100 TH = 500 

CO2 1,00 1,00 1,00 

Boreal, coniferous (100 yrs) 0,96 0,43 0,08 

Boreal, deciduous (85 yrs) 0,95 0,37 0,07 

Temperate, coniferous (90 yrs) 0,95 0,39 0,07 

Temperate, deciduous (75 yrs) 0,94 0,32 0,06 

There is a significant difference in the three time horizons, with factors having increased 

with between 92% and 94% from the egalitarian perspective with a time frame of 500 years 

to the individualist perspective of 20 years. Moreover, the factor increases with the rotation 
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period, so the GWPbio is higher for boreal forest with coniferous wood, which has a rotation 

period of 100 years, and for temperate forest with deciduous wood, with a rotation period 

of 75 years. This influences the contribution of direct biomass combustion to the impact on 

climate change significantly, which is elaborated more in the discussion part. 

Table 15 below shows the GWP equivalency factors for the albedo effect for the time 

horizons of 20, 100 and 500 years. The factors were combusted with time-integrated 

effective radiative forcings and using CO2 as a reference, by using the procedure explained in 

the methodology, Chapter 2.3.2.  

Table 15: Albedo GWP equivalency factors for the selected regions and respective biomass for the three time horizons 
(con = coniferous, dec = deciduous) 

Region 

TH = 20 TH = 100 TH = 500 

Boreal Temperate Boreal Temperate Boreal Temperate 

Con Dec Con Dec Con Dec Con Dec Con Dec Con Dec 

North -1,32 -1,08     -0,6 -0,45     -0,19 -0,14     

Northwest -1,64 -1,34 -0,45 -0,36 -0,74 -0,56 -0,19 -0,14 -0,23 -0,17 -0,06 -0,04 

Central     -0,47 -0,38     -0,2 -0,15     -0,06 -0,05 

Volga-Vyatka 
  

-0,44 -0,35 
  

-0,19 -0,14 
  

-0,06 -0,04 

Central 
Chernozem 

    -0,52 -0,42     -0,22 -0,16     -0,07 -0,05 

Volga 
  

-0,44 -0,35 
  

-0,19 -0,14 
  

-0,06 -0,04 

North Caucasus     -0,44 -0,23     -0,12 -0,09     -0,04 -0,03 

Urals -1,89 -1,54 -0,52 -0,41 -0,86 -0,64 -0,22 -0,16 -0,27 -0,2 -0,07 -0,05 

There is a significant difference in the GWP equivalency factors for the time horizon of 

20 years and 500 years and there is also a distinct variance in the factors for boreal forest 

and temperate forest, which is connected to the climate being cooler and the length of 

seasonal snow cover. 

The Northern, Northwestern and Urals region are the only regions with partly or fully boreal 

climate, therefore these are the only regions that have GWP equivalency factors 

corresponding to these forest scenarios. For the time horizon or 100 years, for boreal 

climate with coniferous wood, the factors vary from -0,60 (North) to -0,86 in the Urals, and 

for deciduous wood, -0,45 (North) and -0,64 in the case of Urals. For temperate forest with 

coniferous wood, the values vary from -0,12 in North Caucasus to -0,22 in Central 

Chernozem and the Urals. For the final combination, temperate climate with deciduous 
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wood, the GWP values vary from -0,09 in North Caucasus to -0,16 in both Central Chernozem 

and the Urals once again. 

Table 16 below shows the net values of the GWP equivalency factors from biogenic CO2 and 

albedo for the four types of forest for the time horizons of 20, 100 and 500 years. 

Table 16: Net GWP equivalency factors between biogenic CO2 and albedo for the selected regions and respective biomass 
for the three time horizons (con = coniferous, dec = deciduous) 

Region 

TH = 20 TH = 100 TH = 500 

Boreal Temperate Boreal Temperate Boreal Temperate 

Con Dec Con Dec Con Dec Con Dec Con Dec Con Dec 

North -0,36 -0,13     -0,17 -0,08     -0,11 -0,07     

Northwest -0,68 -0,39 0,50 0,58 -0,31 -0,19 0,20 0,17 -0,15 -0,11 0,01 0,02 

Central     0,48 0,56     0,19 0,17     0,01 0,01 

Volga-
Vyatka   

0,51 0,58 
  

0,20 0,18 
  

0,01 0,02 

Central 
Chernozem 

    0,43 0,52     0,17 0,15     0,00 0,01 

Volga 
  

0,51 0,59 
  

0,20 0,18 
  

0,01 0,02 

North 
Caucasus 

    0,51 0,71     0,27 0,22     0,03 0,03 

Urals -0,93 -0,59 0,43 0,52 -0,43 -0,28 0,17 0,15 -0,19 -0,13 0,00 0,01 

The albedo values are site specific and the biogenic CO2 factors are connected to the 

rotation period. A site can therefore have the same biogenic CO2 GWP characterisation 

factor, but different albedo values. The negative net GWP values for biogenic CO2 and 

albedo for the Northern, Northwestern and Urals region indicate that in these areas the 

albedo effect is strong enough to contribute to a cooling effect. For the Northern region, it is 

definite as there is no temperate forest present, whilst for the Northwestern region there is 

temperate forest as well, which will close to outweigh the cooling effect from the boreal 

parts of the region. However, a small cooling effect overall is still present. For the Urals, the 

cooling effect from albedo is very strong and will contribute to cooling even if temperate 

forest is present. Due to their geographic location and presence of forest with long rotation 

periods, the results for these three regions are realistic. Northern Caucasus is the region with 

the highest positive net value, and there the albedo affect is not strong enough to have a 

proper impact and further outweighing the contribution from biogenic CO2. 
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4.2. Scenario results 

For the analysis conducted for each of the scenarios, the life cycle assessment in Arda was 

run solely for the upstream processes. Next the value for coal combustion was added, as 

well as the values calculated for direct biomass combustion and surface albedo. This was 

calculated for each of the eight regions for the scenarios, namely 10% co-firing with biomass, 

20% co-firing with biomass, and the scenario of 100% bioenergy. Moreover the values were 

extracted for the three time horizons of 20, 100 and 500 years to be able to make the 

comparison.   

The graph below, Figure 14, displays the total climate change impact in g CO2-eq/MJfuel mix for 

each of the three scenarios and the 100% coal-fired scenario is the line above the charts at 

115 g CO2-eq/MJfuel mix as a reference. The time horizon is of 100 years. The value for total 

climate change impact for each case is found on top of each chart, and one can see the 

magnitude of the different parts of the analysis, namely the life cycle (upstream processes 

for coal and biomass), direct coal combustion, direct biogenic CO2 combustion as well as the 

albedo effect, and how they contribute to the over all climate change impact. The black line 

in each of the charts indicates the net impact of biogenic CO2 and the albedo effect, and is of 

interest to see where the albedo effect outweighs the impact from biogenic CO2 and creates 

a cooling effect. 

 

Figure 14: Total climate change impact of the three scenarios for each region at TH = 100 years (N=North, 
NW=Northwestern, C=Central, VV=Volga-Vyatka, CC=Central Chernozem, V=Volga, NC=North Caucasus, U=Urals) [g CO2-
eq/MJfuel-mix] The black line for each chart indicates the net impact of biogenic CO2 and the albedo effect. 
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In the case of 10% co-firing, the overall reduction for each of the eight regions from 100% 

coal-firing is not extremely high, but there is in general a reduction in climate change impact 

for each region of between 9 and 13 g CO2-eq/MJfuel-mix. The greatest difference is for the 

Urals and Northern region, both with an improvement of around 11% (reduction in 

emissions). These are also the regions with the largest contribution of the albedo effect. The 

smallest improvement is in North Caucasus with a reduction of 8%. 

For the case of 20% co-firing, the improvement is more significant, and the total global 

warming potential is below 100 g CO2-eq/MJfuel-mix for all regions. The reductions vary 

between 18 and 26 g CO2-eq/MJfuel-mix. Naturally, the greatest reductions here are also in the 

Urals and Northern region, with an improvement of 23% and 21% respectively. The lowest 

reduction was for North Caucasus with a reduction of around 15% in climate change impact. 

The ideal scenario is if the coal demand would be completely covered by 100% bioenergy. 

There is a significant reduction for each region and this is where the direct biomass 

combustion and the albedo effect plays an important part in the total impact on climate 

change. The three most northern regions, North, Northwest and the Urals all have a final 

result below zero, of -8, -1 and -15 g CO2-eq/MJfuel-mix respectively. This implies that there is a 

cooling effect due to the large contribution from albedo, and thereby Δ albedo > biogenic 

CO2. The black line representing the net value of these climate forcings also indicates this. 

The largest reduction is of 113% for the Urals region and the smallest reduction is 77% for 

North Caucasus with a final climate change impact of 26 g CO2-eq/MJfuel-mix respectively, 

which is still a substantial improvement.  

Regarding the net value between biogenic CO2 and albedo, at the time horizon of 100 years, 

the highest net differences between the climate change impact from biogenic CO2 and 

albedo are for the Urals, with a difference of -19 g CO2-eq/MJfuel-mix, and the Northern region 

with -15 g CO2-eq/MJfuel-mix. The regions where the biogenic CO2 is too high for the albedo to 

have a noteworthy impact is for the regions of North Caucasus with 23 g CO2-eq/MJfuel-mix 

and Volga-Vyatka with 18 g CO2-eq/MJfuel-mix respectively. 

Figure 15 below represents the percentage contribution of each of the processes to the total 

climate change impact for the scenario of 10% co-firing with biomass for each region with a 

time horizon of 100 years. 
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Figure 15: Percentage distribution of the climate change impact for each of the processes in the scenario of 10% co-firing 
with biomass for TH=100 years [%] 

The largest contribution is from coal combustion, contributing with between 86% (North 

Caucasus) and 89% (Urals) of the total climate change impact for each region. The 

corresponding coal upstream processes contribute with around 12%. As it is only 

10% co-firing and one is looking at 1 MJ fuel mix, the actual amount of biomass is not very 

substantial, and the bio-upstream processes therefore only contribute to between 0,2% 

(Central Chernozem) and 0,6% (North) of the overall emissions. The factors effecting it is 

mostly connected to the length of the transportation route designed for the region and the 

distribution between hardwood and softwood chips. The direct biomass combustion is 

responsible for between 3% (Urals) and 4% (North) of the total climate change impact, and 

the albedo effect has an impact of between 1% (North Caucasus) and 6% (Urals), but then in 

the terms of reducing the overall impact. 

As the metric for climate change impact is based on GWP, it is heavily influenced by the 

selected time horizon, and the variations are especially noticeable for biogenic CO2 and 

albedo. In the following three figures, Figure 16 to Figure 18, one can find an overview of the 

total climate change impact for each of the individual scenarios per region, with focus on the 

three time horizons 20, 100 and 500 years. The lines at the top of the chart visualise the 

emissions from the 100% coal-fired scenario for the three time horizons.  
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Figure 16: Total climate change impact for each region with co-firing of 10% biomass for TH=20, TH=100 and TH=500 [g 
CO2-eq per MJfuel-mix] 

The time horizon of 500 years is more precautionary than for the time horizons of 20 and 

100 years, and therefore have lower results for all regions. For the time horizon of 20 years, 

the highest climate change impact is found in North Caucasus with 127 g CO2-eq/MJfuel-mix 

and the lowest in the Urals with 117 g CO2-eq/ MJfuel-mix. As a reference, the total emissions 

for 100% coal-firing is for this time horizon 133 g CO2-eq/MJfuel-mix. For the time horizon of 

100 years, North Caucasus has a total climate change impact of 106 g CO2-eq/MJfuel-mix and 

the Urals have an impact of 102 g CO2-eq/MJfuel-mix, with the 100% coal-firing having total 

emissions of 115 g CO2-eq/MJfuel-mix. For the final time horizon of 500 years, the total GWP of 

the North Caucasus region is 98 g CO2-eq/MJfuel-mix and for the Urals it is 

96 g CO2-eq/MJfuel-mix with the 100% coal-firing scenario having a climate change impact of 

108 g CO2-eq/MJfuel-mix. 
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The chart below describes the emissions for each time horizon for the various regions 

concerning the scenario of 20% co-firing with biomass. 

 

Figure 17: Total climate change impact for each region with co-firing of 20% biomass for TH=20, TH=100 and TH=500 [g 
CO2-eq per MJfuel-mix] 

In this scenario, the highest climate change impact for the time horizon of 20 years is found 

in North Caucasus with 120 g CO2-eq/MJfuel-mix and the lowest in the Urals with 

100 g CO2-eq/MJfuel-mix. The total emissions for 100% coal-firing is for this time horizon 

133 g CO2-eq/MJfuel-mix. For the time horizon of 100 years, North Caucasus has a total climate 

change impact of 97 g CO2-eq/MJfuel-mix and the Urals have an impact of 

89 g CO2-eq/MJfuel-mix, with the 100% coal-firing having total emissions of 

115 g CO2-eq/MJfuel-mix. Finally, for the time horizon of 500 years, the total GWP of the North 

Caucasus region is 87 g CO2-eq/MJfuel-mix and for the Urals it is 85 g CO2-eq/MJfuel-mix with the 

100% coal-firing scenario having a climate change impact of 108 g CO2-eq/MJfuel-mix. 
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As a final part, in Figure 18 below, the emissions for each time horizon for the various 

regions concerning the scenario of 100% co-firing with biomass are visualised. 

 

Figure 18: Total climate change impact for each region with 100% bioenergy for TH=20, TH=100 and TH=500 [g CO2-eq per 
MJfuel-mix] 

For the ideal case of 100% bioenergy, there are quite significant differences between for 

each region and time horizon. The highest climate change impact for the time horizon of 

20 years is found in North Caucasus with 68 g CO2-eq/MJfuel-mix and the lowest in the Urals 

with -33 g CO2-eq/MJfuel-mix. As a reference, the total emissions for 100% coal-firing is 

133 g CO2-eq/MJfuel-mix for this time horizon. With the time horizon being 100 years, 

North Caucasus has a total climate change impact of 26 g CO2-eq/MJfuel-mix and the Urals 

have an impact of -15 g CO2-eq/MJfuel-mix, with the 100% coal-firing having total emissions of 

115 g CO2-eq/MJfuel-mix. In the end, for the time horizon of 500 years, the total climate 

change impact of the North Caucasus region is 7 g CO2-eq/MJfuel-mix and for the Urals it 

is -6 g CO2-eq/MJfuel-mix with the 100% coal-firing scenario having a climate change impact of 

108 g CO2-eq/MJfuel-mix. The numerical values connected to Figure 16 to Figure 18 can be 

found in Table 34 in Appendix 8.3. 

The results for the time horizon of 20 years are clearly higher than for the time horizon of 

500 years. To emphasise the impacts of biogenic CO2 and albedo, for the Urals, for 
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TH=20 years, the climate change impact from albedo is -129 g CO2-eq/MJfuel-mix, whilst it 

is -17 g CO2-eq/MJfuel-mix for the time horizon of 500 years. However, due to the high impact 

from direct biomass combustion, the net value evens it more out so there are no “extreme” 

values. Despite this, in the Urals, as well as for the Northern and Northwestern region, the 

albedo effect is high enough to give an overall cooling effect in the scenario of 100% 

bioenergy. The region of North Caucasus has the lowest values overall, and the remaining 

four regions have very similar values from -14 to -18 g CO2-eq/MJfuel-mix in the time horizon of 

100 years. 

To further illustrate the impact of the time horizons, for the case of the Northern region, the 

impact on climate change at TH=500 from biogenic CO2 and albedo is 8% and 13,7% of the 

impact when TH=20. The albedo effect is also stronger at TH=20, causing a much larger 

cooling effect and having a net negative impact at TH=20 with -8,8 g CO2-eq/MJfuel-mix 

compared to 11,6 g CO2-eq/MJfuel-mix at TH=500. 

4.3. Potential future co-firing scenarios 

To summarise the scenarios and future possibilities, the current harvest in Russia is 

173,6 mill m3 and approximately 1 649 200 TJ/yr in terms of energy potential. The current 

coal demand (fuel input) is around 2 471 719 TJ/yr (260,2 mill m3). If one assumes that all of 

the current harvest is used for wood production, to cover various percentages of coal 

demand, the current harvest needs to increase with the following: 

a) 10% coal demand scenario 

Will result in a 15% increase in harvesting, a total of 3% of the Net Annual Increment (NAI) 

and 5% of the Annual Increment Available for Exploitation (AIAE). The increase in harvest 

together with the current harvest, would result in a total of 23% of NAI, 36% of AIAE and 

32% of Annual Allowable Cut (AAC). 

b) 20% coal demand scenario 

The harvest would have to increase with 30%, which is a total of 6% of NAI and 10% of the 

AIAE. In total, the increase in harvest together with the current harvest would result in a 

total of 27% of NAI, 41% of AIAE and 36% of AAC. 



62 
 

c) 50% coal demand scenario 

Will result in a 75% increase in harvesting, a total of 15% of NAI and 24% of the AIAE. The 

increase in harvest, together with the current harvest would result in a total of 37% of NAI, 

55% of AIAE and 48% of AAC. 

d) 100% coal demand scenario 

As a final scenario, if the coal demand in Russia would be covered 100% by bioenergy, this 

would require an increase in harvest by 150%, which is a total of 31% of the NAI and 47% of 

the AIAE. In total, the increase in harvest together with the current harvest equals 51% of 

NAI , 79% of AIAE and 69% of AAC. 

To reach a coal-free Russia in terms of power generation, harvest needs to be increased 

significantly, but even for the 100% coal demand coverage, only close to 50% of the annual 

increment available for exploitation is being used. The numerical values can be found in 

Appendix 8.4, Table 35 and Table 36. 
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5. Discussion 
 

In this part, first the key assumptions and limitations will be presented. Furthermore, the 

results of the various analyses will be looked at more closely, both by comparing the 

outcomes relative to each other, as well as connecting them to already existing results. As a 

final part, the implications of the results will be discussed, focusing on future scenarios, 

policy recommendations and research. 

5.1. Key assumptions and limitations 

As a first point, properties for coal such as the lower heating value (LHV), varies for each 

mine and even within the mine itself. The lower the heating value implies that more coal is 

necessary for 1 MJ of fuel input. Coal types such as lignite, which has a lower quality than for 

instance anthracite, has therefore a much larger negative impact on the environment during 

combustion. The average LHV for the Russian Federation from ecoinvent (ecoinvent, 2010) 

has been used for this assessment. Even if the value could have been more accurate by being 

connected to specific mines, this is still a representative value, as the main focus of this 

thesis is the impact on climate change from biomass. 

The developed scenarios include all the relevant processes needed to assess the emissions 

connected to 1 MJ fuel input. The input needed of coal and biomass has been calculated and 

made specific for each of the regions in European Russia, together with the transportation 

routes. The remaining background processes of the wood chip production are however 

based on standard inventory from ecoinvent. As the forestry activities can differ 

substantially from region to region, and even within regions (Michelsen et al., 2012) and the 

electricity mix for the processes being a “European average”, some inaccuracy is expected. 

Due to a limited amount of relevant studies done on Russia and very few decent sources 

being in English, gathering data for this part of the inventory has been challenging. However, 

as the results show, upstream emissions for biomass only contribute a minor part of the 

total climate change impact, with the direct biomass combustion and albedo effect being of 

far more importance. Therefore priority was given to gathering data and developing this part 

of the assessment, rather than for the upstream processes. 

Estimations were made for the distribution of boreal and temperate forest, as well as the 

amount of coniferous and deciduous wood in each region. These estimations were based on 
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the most accurate and up-to-date data found, but as Russia is such a vast country, with over 

20% of the world’s forest resources, there are uncertainties in the assessments. In addition, 

as the fuel input was in m3 per MJ, one had to convert from values in hectare forest to m3, 

and used the density of Norwegian spruce to characterise coniferous wood (softwood) and 

birch for deciduous wood (hardwood). However, the estimations used in this thesis are more 

representative than i.e. using an average for the whole of the European Russia, as the 

percentage distribution is specified for each of the nine regions. 

Concerning the rotation periods and yields for the forest types in the Russian Federation, the 

average estimations from IPCC were used (IPCC, 2006). The values from IPCC are still 

representative for the four forest types present in European Russia and the main impact on 

the results will be connected to how fast the carbon is removed from the atmosphere 

(Michelsen et al., 2012). Overall, the difference is not as substantial compared to i.e. 

assigning GWPbio representing short rotation periods to the forest areas in this assessment, 

which evidently have long rotation periods. 

Choosing appropriate site locations for gathering albedo data is of importance. By using 

Google Earth, two sites were chosen for each region, one forest site and one with open 

landscape. For the Northwestern and Northern Caucasus region, extra sites were added for 

open landscape, as when analysing the results, it showed that the original sites chosen were 

not ideal to represent “open landscape”. To better the accuracy for each region and make 

the average more representative, one could have increased the number of sites for each 

region. Due to time constraints, this was not prioritised. The results have however been 

quality checked and as there were two to four values calculated for each region, based on 

the forest types, the calculations connected to the climate change impact from albedo are 

thorough for each site in question. 

For estimating RFα, one has to rely on simplified numerical models such as the ones 

presented in this thesis, by making use of the single two-way transmittance parameter fa. 

Ideally one would rather make use of more sophisticated radiative transfer (Fu and Liou, 

1993; Hatzianastassiou et al., 2005), especially those coupled with a chemical transport 

model or that give the possibility for user-defined input data regarding the cloud cover and 

aerosol optical properties. Obtaining fa requires information on the atmospheric absorption 
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or the scattering of incoming and outgoing shortwave radiation, and in this thesis, fa is based 

on KT, which is further based on satellite measurements of surface irradiance collected for a 

22-year period from the dataset provided by NASA’s Surface meteorology and Solar Energy 

(SSE). Reviews done by (Schmetz, 1989) and (Pinker et al., 1995) claim that the daily 

insolation estimates from geostationary satellite data are generally within 10-15% of the 

ground-based measurements (Bright et al., 2012). Therefore it was concluded that the 

radiative transfer data was still was reliable for the final assessment. 

Furthermore, since the chosen sites are user-defined, there are uncertainties in the 

calculation of ΔRFα(t) based on the data concerning albedo, αnew, αold and fa, as well as the 

albedo decay function, yα(t). The functional form of yα(t) is case-dependent and more 

research is needed to increase the empirical understanding of the physical factors that drive 

vegetation albedo change in time on managed land. For now, the parameter therefore poses 

an uncertainty in the derivation in this area. When possible, the results should be presented 

together with results that describe the sensitivity to changes in τ and the functional 

formulation of yα(t) (Bright et al., 2012). Regarding the data collected from MODIS 

representing the cloud-cleared surface albedo data, this has shown to have minimal 

uncertainty connected to it if pixels for high quality is used, which is the case in this thesis 

(Jin et al., 2003a; Jin et al., 2003b; Liang et al., 2002; Stroeve et al., 2005; Wang et al., 2004). 

As one also gathers data for multiple years (Feb 2000 to March 2013) and develop monthly 

averages, the uncertainties of αnew and αold are reduced. Overall the data collected is as 

optimal as it can get with regards to the scope of the thesis and time frame for the work and 

analyses conducted.  

Regarding the functional unit, by looking at 1 MJ input fuel mix, rather than 1 MJ electricity 

or heat, one does not let efficiency degrees and the infrastructure connected to the power 

plant be a part of the analysis. This makes it easier to compare the various alternatives, 

especially with the scenario of 100% bioenergy, which would use a different power plant 

infrastructure than in the 100% coal-fired scenario for instance.  

As a final part, calculating the temporary change in atmospheric CO2 concentrations caused 

by biogenic CO2 emissions and cooling effects from changes in surface albedo following the 

harvest is not incorporated as a common practice yet for LCA practitioners. Any attempt of 
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highlighting these issues and trying to quantify the impact is therefore of importance. With a 

limited amount of studies done on Russia, this study has given a good starting point for 

exploring the potential further in this country. Since the study is divided into eight regions in 

European Russia and particularly with the albedo effect being site-specific, the results are 

more accurate and representative than for instance having a general average of European 

Russia.  

5.2. Further discussion of results 

The magnitude of the albedo contribution can vary a lot depending on several factors. Aside 

from the local climate variables, elevation and vegetation dynamics affecting the 

atmospheric transmittance of solar radiation, an important aspect is the yield of biomass per 

unit area affected. The amount of emissions here is inversely proportional to the effect of 

the increased yields (Cherubini et al., 2012). 

With a lower amount of dead organic material left on the site to decompose due to cleaning 

the site, the contribution to global warming from biogenic CO2 fluxes decreases. At the same 

time, the albedo effect is highly influenced in two contrasting ways. By increasing the 

cleaning of the site after harvest, it becomes a smoother surface and thereby less snow is 

needed to cover the area to provide a homogeneous solar radiation reflectivity. However, 

due to collecting the forest residues, one also increases the biomass yield of the site, which 

results in reducing the area harvested per unit. The effects of the increased biomass yield 

outweighs the effects caused by the smoother surfaces and in total the albedo cooling effect 

is actually reduced (Cherubini et al., 2012).  

Regarding the equivalency factors, Table 14 and Table 15 give an overview of the GWPs for 

the three most common time horizons of 20, 100 and 500 years for biogenic CO2 and albedo 

respectively. These equivalency factors make is possible for LCA practitioners to quantify the 

temporary change in atmospheric CO2 concentration the same way as for other common 

greenhouse gases, for which the emissions are included in the IRF that is the basis for the 

respective factor (Cherubini et al., 2012). 

The carbon cycle and albedo change dynamics are affected by the biomass species and 

location amongst others, and therefore the characterisation of biogenic CO2 and albedo are 

case-specific. This is one of the main differences from the calculations of the GWP for the 
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other greenhouse gases and enables a more accurate attribution of climate change impact 

from biogenic CO2 emissions and albedo to a life cycle inventory for a bioenergy system. 

Therefore no other modelling tools or frameworks are needed for this part (see e.g. 

(Bright et al., 2011; McKechnie et al., 2010)).  

The equivalency factors were used to calculate the climate change impact of biogenic CO2 

and albedo. However, one also needs to assess the emissions concerning the upstream 

processes and the climate change impact of co-firing and bioenergy therefore increases. This 

is not only due to the coal combustion in the co-firing scenarios, but also the upstream 

processes connected to transport and conversion processes which often are depended on 

fossil fuels such as diesel. The total climate effects also depend on the type of fuel mix used, 

the system boundaries and the reference energy system which the bioenergy chain is 

compared to (Cherubini et al., 2009). As the scope has been 1 MJ of fuel mix input, the 

upstream processes are the main focus in this thesis.  

The upstream processes vary for each scenario and region. Looking at the coal upstream 

processes and combustion as an isolated case, the result is 115 g CO2-eq/MJfuel. In an article 

by Cherubini et al (2012) which used standardised ecoinvent data, the results was 

105 g CO2-eq/MJfuel (Cherubini et al., 2012). The main reason for the difference is that this 

was a general case for reference, whilst in our case, the data is specific for the Russian 

Federation, which amongst others has higher emissions connected to the hard coal 

production.  

For the upstream emissions for biomass, the easiest to compare is for the scenario of 100% 

bioenergy, with the time horizon of 100 years. Due to different lengths of the transportation 

routes and the amount of coniferous and deciduous biomass used as fuel input for each 

region, there are some variations. The highest emissions are in the Northern region with 

6,3 g CO2-eq/MJfuel-mix and the lowest in Northwest with 2,3 g CO2-eq/MJfuel-mix followed by 

Central Chernozem with emissions of 2,5 g CO2-eq/MJfuel-mix. The remaining regions have 

values ranging from 3,8 g CO2-eq/MJfuel-mix for Volga to the Urals with 4,2 g CO2-eq/MJfuel-mix, 

and the complete overview can be found in Appendix 8.3. 

To compare to similar studies, an article by Cherubini et al (2012) looks into four cases with 

different types of biomass (Cherubini et al., 2012). For heat production using domestic 
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wood, Canadian wood had upstream processes of 10 g CO2-eq/MJfuel-mix, wood from the 

Pacific Northwest in the United States had biomass upstream emissions of 

17 g CO2-eq/MJfuel-mix, whilst for Wisconsin (USA), the total emissions were 

18 g CO2-eq/MJfuel-mix. For the case of Norway, the emissions were significantly lower with 

4 g CO2-eq/MJfuel-mix. A study by Kabir et al found that upstream processes for wood chips 

from whole tree had an impact of 5,6 g CO2-eq/MJfuel-mix (Kabir and Kumar, 2012). It is 

apparent that the biomass upstream emissions vary substantially. The upstream emissions 

connected to the regions in European Russia are somewhat lower than expected, but still 

feasible. This is due to using generic ecoinvent data for the harvesting, forwarding and wood 

chipping, rather than more country specific. However, the upstream emissions are not the 

processes with the most crucial contribution to the overall climate change impact, compared 

to combustion of both coal and biomass, in addition to the albedo effect. 

The overall results for each region clearly illustrate that biogenic CO2 and albedo cannot be 

overlooked, as they substantially influence the climate change impact for bioenergy systems. 

This especially applies to the regions with boreal climate and thereby have longer snow 

seasons and stronger cooling effect. With the time horizon of 100 years, the total climate 

change impact for the North and Urals region were decreased with over 100% due to albedo 

effect being of higher value than direct biomass combustion. As emphasised in an article by 

Bright et al (2012), it is therefore important to maximize the benefits from the albedo 

change in the short term, while at the same time preserving the integrity of the forest as a 

strong carbon sink. However, there is still a lot unknown concerning the albedo dynamics in 

an actively managed boreal forest and the time profile of the albedo change. Therefore it is 

recommended to continue research on this area before any implementation of climate-

effective biomass management strategies (Bright et al., 2012). 

5.2.1. GWP of biogenic CO2; 0, 1 or site-specific? 

Previous studies such as Bright et al. and Cherubini et al. from 2012 both show that 

substantially misleading conclusions can be achieved if biogenic CO2 emissions are 

improperly characterised, regardless of the type of biomass and the contributions from the 

albedo effect (Bright et al., 2012; Cherubini et al., 2012), and this study is no exception. If 

one was to assume carbon neutrality and use an equivalency factor of zero, the direct 

impact to climate change from bioenergy would be highly underestimated. If one used a 
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factor of one, which is the equivalent of the fossil reference, it would be over-estimated 

(Bright et al., 2012).  

As an example, if one were to conduct the LCA without taking biogenic CO2 and albedo into 

consideration, one would for the Northern region with TH=100 have a final result of 

6,3 g CO2-eq/MJfuel-mix. Due to direct biomass combustion of 40 g CO2-eq/MJfuel-mix and the 

cooling effect of albedo with -55 g CO2-eq/MJfuel-mix, the final result actually 

becomes -8 g CO2-eq/MJfuel-mix. It is therefore apparent that improper accounting can result 

in highly ineffective and counter-productive climate mitigation efforts. One further needs to 

realise that the situation for biogenic CO2 is complex and that it is not appropriate to account 

with a value of either 0 or 1 (Bright et al., 2012). 

5.3. Future scenarios and implications 

The future potential co-firing scenarios in Russia, presented in Chapter 4.3, are feasible in 

the long-term. However, the development of infrastructure and policies need to be a priority 

for the scenarios to become realistic. 

5.3.1. Implications of increased harvest and export 

“Opportunities for expanding bioenergy for heat production in non-OECD countries are 

larger than in the OECD because of their rapid energy demand growth” (IEA, 2012e). An 

increase in bioenergy implies an increase in harvesting, which can create certain implications 

apart from the ones already mentioned. If harvesting is to be developed, equipment that is 

more productive is needed, and these systems would require less labour. There may 

therefore be effects on the labour market in the more rural areas (Goltsev et al., 2010). In 

spite of this, increased harvest will also create prosperity in various regions by expanding the 

industry and investment in rural areas and thereby having a positive impact 

(Junginger et al., 2006). Moreover, there are great opportunities for Russia to export 

biomass to European countries especially, in addition to the current export of oil, gas and 

coal. Overall the harvesting needs to be a compromise between investment costs, 

production and the effects on society (Goltsev et al., 2010). 

IPCC also focuses on the possibilities of increasing the regional economic development, in 

addition to replacing the fossil fuel based systems for heat and power generation 

(IPCC, 2012). The availability of biomass in a territory will vary though and for certain areas it 
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will be hard to supply a biomass-fired power plant that produces the same amount of 

electricity as a large scale coal power plant without having significant impacts on the 

environment (Sebastián et al., 2011). The effects on biodiversity is an important aspect. 

Moreover, depending on the geographic location (if the albedo effect plays a part or not) 

and the carbon density of the converted forest, the biomass plantations may lead to 

significant CO2 emissions. These emissions would then reduce the annual accumulated 

climate benefit drastically for substituting fossil fuels with the bioenergy derived from such a 

forest area (IPCC, 2012). 

Looking into the future trends in bioenergy, one of the main issues will also be if the biomass 

should be used as biofuel in stationary energy systems for heat and electricity, or if it should 

rather be used as feedstock for liquid biofuel production for transportation 

(Cherubini et al., 2009). However, the efficiency for converting biomass to fuel is a lot lower 

than for biomass to bioenergy. For production of transportation fuels, more emissions would 

therefore occur, resulting in a higher impact on climate change. 

Regarding the exporting potential, logistics and infrastructure are quite essential for the set-

up of large scale biomass systems and the related necessary facilities such as ports and ships 

(IEA, 2012e). Studies such as (Sikkema et al., 2010; Sikkema et al., 2011) have shown that 

long-distance transport by ship is feasible concerning transportation costs and energy usage. 

However for i.e. Scandinavia and Russia, the meteorological conditions need to be taken into 

consideration in terms of having available vessels that are suitable for these type of missions 

(IPCC, 2012). Moreover, even if technologies are currently being developed, there is also a 

lack of technically mature technologies to densify biomass at a low cost to further keep the 

costs for handling and transportation down (IPCC, 2012; Kabir and Kumar, 2012).  

There is a possibility that these barriers could prevent imports and exports from increasing 

fast enough to meet the demand (IEA, 2012e). According to the Forest Sector Outlook Study 

by the Food and Agriculture Organization of the United Nations, export in the future is only 

envisioned for biomass pellets originating from regions where the necessary economic and 

transport conditions are available (FAO, 2012). This would currently exclude Siberia and the 

Far East, but if prioritised and investments were made, it could be feasible in the long term 

due to the extensive unexploited forest potential there. 
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The aforementioned study also highlights the potential impacts of the climate change on the 

forest in Russia. The climate change is likely to contribute to an increased average forest 

productivity nationwide and the growth conditions are especially favourable for the 

deciduous species (FAO, 2012), so there would potentially be an increase of hardwood. 

Moreover, it is predicted that forest areas with high latitudes will have an increased 

industrial development (FAO, 2012). This is quite interesting, as the development of new 

regions here will have a negative impact on the forest areas, but as it is in the boreal climate 

with seasonal snow cover, the albedo effect will have a significant impact in connection with 

climate change and forest management. 

5.3.2. Policy recommendations 

The increased demand for bioenergy for heat and electricity production worldwide is largely 

driven by government policies. Some bioenergy power technologies manage to become 

competitive with fossil fuel based power plants during the projection period in regions that 

have established a carbon price. CHP and co-firing in coal power plants have especially given 

promising results (IEA, 2012e). Carbon pricing in Russia remains a prospective plan to be 

implemented. According to Russia’s strategy 2020, a broad policy document concerning the 

national development until 2020, provisions are made of carbon taxation in mid-term, 

around year 2016 (Chernenko, 2012). Standards for renewable energy sources as well as 

subsidies are other examples of policies that contribute to the growth in the demand for 

bioenergy for heat and electricity (IEA, 2012e). 

Not only in Russia, but more general, for most power plant companies the decision to co-fire 

with biomass, even if it only requires minor retro-fitting, will be driven by economic interests 

rather than environmental concerns (Mann and Spath, 2001). This is the case for most other 

sectors as well. There may be an increased interest if incentives are introduced, such as 

subsidies from the government with regulatory policies, or there is an electricity 

deregulation or issues with fuel supply, so that one needs to change strategy and become 

more energy efficient.  

In addition, without it being the main priority for Russian companies, there is an increasing 

focus globally of becoming more “green” as companies and thinking about their 

environmental footprints. Companies may therefore wish to receive their power supply from 
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renewable resources or partially renewable resources in the future as a part of their 

environmental strategy, which could become an incentive for the power plant companies 

(Mann and Spath, 2001). 

The International Energy Agency (IEA) have certain policy recommendations in connection 

with bioenergy on a global scale, which are highlighted in their publication Energy 

Technology Perspective 2012. Firstly an increased amount of research is needed in mapping 

land suitability and bioenergy feedstock, so one can see what are the most promising 

locations for increasing the bioenergy harvest, as well as what type of feedstock is the most 

appropriate. In addition, internationally agreed sustainability criteria, indicators and 

assessment methods for bioenergy should be implemented, which also provides the basis 

for developing a scheme for resource efficiency and sustainable production (IEA, 2012c).  

Furthermore, recently the United Nations launched its Sustainable Energy for All initiative, 

which amongst others has a target of doubling the share of renewable energy globally by 

2030. There are also the ongoing targets of the European Union since 2009 through the 

Renewable Energy Directive, which has set legally binding targets that the share of 

renewable energy (covering electricity, heat and biofuels) in gross final energy consumption 

has to equal 20% by 2020 (IEA, 2012e). Even if Russia is not a part of the European Union, 

there will be an increased pressure in the future for the country to further develop its 

environmental focus (IEA, 2012b), and it would be beneficial for the country to start their 

climate mitigation strategies sooner rather than later. This is also highlighted through the 

recently published roadmap “EU-Russia Energy Cooperation until 2050”, which “aims at 

improving the investment opportunities in the energy sector to ensure continued energy 

production, to secure and expand transportation infrastructure as well as to reduce the 

environmental impact” (EC for Energy, 2013).  

Globally, further investigation of the climate change impact of CO2 emissions from 

temporary carbon loss is needed, and it should be looked into the possibilities of including 

biogenic CO2 in the national GHG reporting for bioenergy production, and stepping away 

from the current carbon neutral accounting recommended by the OECD. Furthermore, LCA 

studies and climate accounting schemes such as the second phase of the Kyoto Protocol that 

started 1st January 2013 (Russia decided not to renew their commitment) should 
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transparently acknowledge these issues and incorporate the climate forcings in the reporting 

(Bright et al., 2012). 

5.3.3. Recommendations for future research 

On a large scale, increased research efforts should be made on feedstock and the land 

availability to identify what are the most promising feedstock types and locations for 

developing harvest to large-scale bioenergy production and meet the future demands. In 

addition there should be more funding and support mechanisms for emerging technologies 

within the bioenergy field, with special focus on BIGCC (biomass integrated gasification 

combined cycle), torrefaction and pyrolysis. With this the IEA hope that the technologies can 

reach commercial production within the next 10 years (IEA, 2012c). 

With a more narrow scope, further investigation is needed to see how albedo estimation 

procedures can be incorporated into life cycle GHG accounting standards and regulations, 

alongside biogenic CO2 (Bright et al., 2012). With more studies conducted on what is looked 

upon as the two most important contributions to global climate change, an increased 

awareness is hopefully achieved, significant enough for the governmental and international 

policies to take these climate forcings into account. More research should also be focused on 

stepping away from stand-alone LCA or carbon footprint type assessments, and rather going 

towards more integrated frameworks which have a higher temporal and spatial resolution, 

and are not restricted to emission-based metrics (Bright et al., 2011). 

As a final part, due to the limited amount of existing research on the bioenergy possibilities 

in Russia, it is highly recommended that this will become a priority in the future. Moreover, 

there should be an increase in the amount of literature in English, making it more accessible 

for the global research community. 
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6. Conclusion 
 

The main objective of this thesis has been to look at the climate change impacts of co-firing 

biomass from Russian forest areas with coal.  

There is a significant amount of exploitable forest resources in the Russian Federation and 

the harvesting needs to increase by 30% to cover 20% of the current coal demand in Russia 

with bioenergy. If the coal demand is to be covered completely (100% bioenergy), the 

harvesting needs to increase by 150%. This is a substantial growth, but still only 50% of the 

annual increment available for exploitation would be utilised, and the new total harvest 

would be 69% of the annual allowable cut. For this to be feasible in the long term, policies 

would need to be introduced to promote renewable energy sources in Russia, in addition to 

focusing on developing the infrastructure in richly wooded areas. Russia also has great 

potential of becoming a large exporter of bioenergy to the European power sector. 

Through the life cycle assessment, effective radiative forcing has been used as a basis for the 

climate metrics for the temporary effects of biogenic CO2 and albedo, and the final results 

have been expressed both with absolute and normalised metrics (i.e. in terms of 

g CO2-eq per MJfuel-mix). The inclusion of these factors have had a significant impact and has 

reinforced conclusions drawn in previous literature, especially concerning the cooling effects 

in high latitude boreal areas and forest with long rotation periods. The chosen time horizon 

is also of importance and the impacts of bioenergy and co-firing are generally higher for 

shorter time horizons, but considerably decrease over time. Certain areas, such as the 

Northern and Urals region of European Russia, both have a net negative global warming 

contribution (net global cooling effect) from the beginning of the assessment period in the 

case of 100% bioenergy production. 

Further research is needed to understand the relationships between physical properties of 

managed forest and albedo, and how this can be used in forest management strategies for 

mitigating climate change in the future. Moreover it should be investigated how biogenic 

CO2 and albedo can be included in climate accounting mechanisms both on a national and 

global scale, and thereby acknowledging the importance of these climate forcings, especially 

when designing bioenergy policies for boreal forest areas.  
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8. Appendix 
 

8.1. Characterisation of biogenic CO2 and albedo 

8.1.1. Calculations for albedo effect 

Below in Figure 17, is the 22-year average KT (radiation reaching the Earth’s surface) for the 

forest sites for each region. The data was extracted from the Surface Meteorology and Solar 

Energy database of NASA (NASA, 2013). 

Table 17: Overview of the 22-year average KT extracted for each of the forest sites for each region 

 

Table 18 gives an overview of the values of fa, which is the product of KT found in Table 17 

and the solar constant T = 0,854. 

Table 18: Displays the values of fa for each of the forest sites, based on KT·TA 

Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

North 0,290 0,367 0,410 0,436 0,401 0,418 0,418 0,376 0,359 0,325 0,333 0,222 

Northwest 0,342 0,401 0,418 0,427 0,427 0,418 0,418 0,410 0,376 0,333 0,342 0,307 

Central 0,359 0,410 0,427 0,410 0,410 0,384 0,401 0,393 0,342 0,325 0,333 0,316 

Volga-Vyatka 0,359 0,410 0,427 0,436 0,436 0,427 0,436 0,410 0,359 0,325 0,342 0,333 

Central 
Chernozem 

0,376 0,427 0,427 0,384 0,410 0,393 0,401 0,418 0,367 0,333 0,325 0,350 

Volga 0,376 0,444 0,461 0,393 0,427 0,410 0,427 0,436 0,393 0,342 0,333 0,350 

North 
Caucasus 

0,350 0,384 0,376 0,393 0,427 0,427 0,461 0,461 0,436 0,401 0,342 0,316 

Urals 0,350 0,401 0,427 0,444 0,427 0,427 0,436 0,393 0,359 0,299 0,350 0,367 

The matlab script used to further find RTOA can be found below. 

% Solar insolation calculation parameter inputs 
Rsc = 1367; % W/m2, Solar constant 
% 
L = x; % Latitude (degrees); Here you enter the latitude of the site for 

each region 
% 

Region Latitude Longitude Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

North 64,39 40,39 0,34 0,43 0,48 0,51 0,47 0,49 0,49 0,44 0,42 0,38 0,39 0,26

Northwest 59,38 30,72 0,40 0,47 0,49 0,50 0,50 0,49 0,49 0,48 0,44 0,39 0,40 0,36

Central 56,19 36,54 0,42 0,48 0,50 0,48 0,48 0,45 0,47 0,46 0,40 0,38 0,39 0,37

Volga-Vyatka 56,55 47,71 0,42 0,48 0,50 0,51 0,51 0,50 0,51 0,48 0,42 0,38 0,40 0,39

Central 

Chernozem
51,93 39,61 0,44 0,50 0,50 0,45 0,48 0,46 0,47 0,49 0,43 0,39 0,38 0,41

Volga 51,57 45,93 0,44 0,52 0,54 0,46 0,50 0,48 0,50 0,51 0,46 0,40 0,39 0,41

North 

Caucasus
45,08 41,89 0,41 0,45 0,44 0,46 0,50 0,50 0,54 0,54 0,51 0,47 0,40 0,37

Urals 55,02 56,66 0,41 0,47 0,50 0,52 0,50 0,50 0,51 0,46 0,42 0,35 0,41 0,43
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pie = 3.141592654; % pie 

  
% Downward daily solar radiation at TOA ("Extraterrestrial solar radiation 

on horizontal surface") -- Duffie & Beckman, (1991); Kalogirou, (2009) 
R_TOA = zeros(365,1); 
for i = 1:365; % i = Julian Day 
dec = 23.45*sind(360*(284+i)/365); % Angle of declination in degrees 
sshr = acosd(-tand(L)*tand(dec)); % Sunset hr. angle in degrees 
R_TOA(i,:) = 

((Rsc/pie)*(1+0.033*cosd((360*i)/365)))*(((cosd(L)*cosd(dec)*sind(sshr))+((

(pie*sshr)/180)*sind(L)*sind(dec)))); % TOA irradiance on day "i" 
end 

  
R_TOA_ann = sum(R_TOA)/365; % Mean annual instantaneous R_TOA (local 

W/m2/year, south Norway) 
% Monthly mean incoming radiation at top of atmosphere ("TOA") 
R_TOA_month = zeros(1,12); 
R_TOA_month(:,1) = (sum(R_TOA(1:31,1)))/31; %  January mean 
R_TOA_month(:,2) = (sum(R_TOA(32:59,1)))/28; % February mean... 
R_TOA_month(:,3) = (sum(R_TOA(60:90,1)))/31; 
R_TOA_month(:,4) = (sum(R_TOA(91:120,1)))/30; 
R_TOA_month(:,5) = (sum(R_TOA(121:151,1)))/31; 
R_TOA_month(:,6) = (sum(R_TOA(152:181,1)))/30; 
R_TOA_month(:,7) = (sum(R_TOA(182:212,1)))/31; 
R_TOA_month(:,8) = (sum(R_TOA(213:243,1)))/31; 
R_TOA_month(:,9) = (sum(R_TOA(244:273,1)))/30; 
R_TOA_month(:,10) = (sum(R_TOA(274:304,1)))/31; 
R_TOA_month(:,11) = (sum(R_TOA(305:334,1)))/30; 
R_TOA_month(:,12) = (sum(R_TOA(335:365,1)))/31; 

 

Based on the matlab script, the RTOA values were found, which can be seen in Table 19 

below for each region. 

Table 19: Monthly RTOA values for each of the forest sites [W/m2] 

Region Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

North 16,7 66,3 165,5 296,9 414,8 473,9 444,1 340,2 209,0 94,1 26,5 6,2 

Northwest 44,1 100,5 200,0 322,2 425,6 474,7 449,8 360,3 240,8 129,1 56,0 29,8 

Central 64,1 122,9 221,2 337,5 432,7 476,7 454,3 372,5 260,2 151,3 76,8 48,4 

Volga-Vyatka 61,7 120,3 218,8 335,8 431,9 476,5 453,8 371,1 258,0 148,8 74,4 46,2 

Central 
Chernozem 

92,5 152,8 248,4 356,6 441,6 479,7 460,1 387,7 284,8 180,7 105,7 75,6 

Volga 95,0 155,4 250,7 358,2 442,3 480,0 460,6 388,9 286,9 183,2 108,2 78,1 

North 
Caucasus 

140,5 200,5 289,6 383,9 453,4 482,9 467,4 408,9 321,2 226,5 153,6 122,8 

Urals 71,7 131,1 228,8 342,9 435,2 477,6 455,9 376,8 267,1 159,4 84,6 55,6 
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Below in Table 20 the numerical values of the monthly mean Δ albedo for each region in 

W/m2 are displayed. 

Table 20: Overview of the monthly mean Δ albedo values for each region [W/m2] 

Region Jan Feb March Apr May June July Aug Sept Oct Nov Dec 

North 0,332 0,405 0,445 0,183 0,003 0,002 0,002 0,002 0,005 0,187 0,162 0,247 

Northwest 0,321 0,403 0,145 0,052 0,054 0,052 0,051 0,048 0,057 0,066 0,264 0,264 

Central 0,338 0,352 0,263 0,055 0,041 0,043 0,028 0,027 0,033 0,063 0,195 0,299 

Volga-
Vyatka 

0,325 0,342 0,365 0,026 0,026 0,026 0,021 0,025 0,020 0,033 0,135 0,230 

Central 
Chernozem 

0,401 0,504 0,285 0,012 0,016 0,012 0,024 0,012 0,010 0,030 0,106 0,393 

Volga 0,371 0,439 0,267 0,010 0,007 0,004 0,002 0,003 0,007 0,009 0,033 0,308 

North 
Caucasus 

0,304 0,258 0,052 0,019 0,001 0,010 0,004 0,001 0,012 0,005 0,028 0,224 

Urals 0,358 0,413 0,381 0,068 0,004 0,011 0,028 0,028 0,027 0,046 0,162 0,302 
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8.1.2. Absolute metrics 

Below in Table 21, the values for effective radiative forcing (ERF) for the four forest types, as 

well as the fossil reference can be found. 

 Boreal forest, coniferous wood (r=100) 

 Boreal forest, deciduous wood (r=85) 

 Temperate forest, coniferous wood (r=90) 

 Temperate forest, deciduous wood (r=75) 

The values are displayed for 0-140 years and the unit is 10E-16 W m-2 kg-1, which is also what 

is found in Figure 12. The complete values can be found in the digital appendix. 

Table 21: Effective radiative forcing values for the four forest types and fossil reference for the time period of 0-140 years 
[10E-16 W m-2 kg-1] 

 Instantaneous Effective forcing [10E-16 W m-2 kg-1] 

Time 
[year] 

Fossil Biogenic  
(r = 100) 

Biogenic  
(r = 90) 

Biogenic  
(r = 85) 

Biogenic  
(r = 75) 

0 18,09 18,09 18,09 18,09 18,09 

1 15,82 15,78 15,77 15,77 15,76 

2 14,66 14,58 14,57 14,56 14,55 

3 13,99 13,87 13,85 13,84 13,82 

4 13,54 13,37 13,35 13,34 13,30 

5 13,19 12,98 12,95 12,93 12,88 

6 12,89 12,63 12,59 12,57 12,51 

7 12,62 12,31 12,26 12,23 12,15 

8 12,37 12,00 11,94 11,91 11,82 

9 12,13 11,71 11,64 11,60 11,49 

10 11,91 11,42 11,34 11,29 11,16 

11 11,69 11,15 11,05 11,00 10,85 

12 11,49 10,88 10,77 10,70 10,53 

13 11,30 10,62 10,49 10,42 10,21 

14 11,11 10,36 10,22 10,13 9,90 

15 10,94 10,10 9,95 9,85 9,59 

16 10,77 9,86 9,68 9,57 9,28 

17 10,61 9,61 9,42 9,29 8,97 

18 10,46 9,37 9,15 9,02 8,66 

19 10,31 9,13 8,89 8,74 8,35 

20 10,17 8,90 8,64 8,47 8,03 

21 10,04 8,66 8,38 8,20 7,72 

22 9,91 8,43 8,12 7,92 7,40 

23 9,79 8,20 7,86 7,65 7,09 

24 9,67 7,97 7,61 7,38 6,77 

25 9,56 7,74 7,35 7,10 6,46 

26 9,46 7,52 7,10 6,83 6,14 
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Instantaneous Effective forcing [10E-16 W m-2 kg-1] 

Time 
[year] 

Fossil Biogenic  
(r = 100) 

Biogenic  
(r = 90) 

Biogenic  
(r = 85) 

Biogenic  
(r = 75) 

27 9,35 7,29 6,84 6,56 5,82 

28 9,26 7,06 6,59 6,28 5,50 

29 9,16 6,84 6,33 6,01 5,18 

30 9,07 6,61 6,08 5,74 4,87 

31 8,99 6,39 5,82 5,46 4,55 

32 8,90 6,16 5,57 5,19 4,24 

33 8,82 5,94 5,31 4,92 3,93 

34 8,75 5,72 5,06 4,65 3,62 

35 8,67 5,49 4,81 4,38 3,32 

36 8,60 5,27 4,55 4,11 3,02 

37 8,53 5,05 4,30 3,85 2,73 

38 8,47 4,83 4,06 3,58 2,44 

39 8,41 4,61 3,81 3,33 2,16 

40 8,35 4,39 3,56 3,07 1,89 

41 8,29 4,17 3,32 2,82 1,63 

42 8,23 3,95 3,08 2,57 1,37 

43 8,18 3,74 2,85 2,32 1,12 

44 8,12 3,52 2,61 2,09 0,89 

45 8,07 3,31 2,39 1,85 0,66 

46 8,02 3,10 2,16 1,63 0,44 

47 7,98 2,89 1,94 1,40 0,23 

48 7,93 2,69 1,73 1,19 0,04 

49 7,89 2,49 1,52 0,98 -0,15 

50 7,84 2,29 1,32 0,78 -0,32 

51 7,80 2,09 1,12 0,59 -0,49 

52 7,76 1,90 0,93 0,41 -0,64 

53 7,72 1,71 0,74 0,23 -0,78 

54 7,68 1,53 0,57 0,06 -0,91 

55 7,65 1,35 0,39 -0,10 -1,03 

56 7,61 1,18 0,23 -0,25 -1,13 

57 7,57 1,01 0,07 -0,39 -1,23 

58 7,54 0,84 -0,08 -0,53 -1,32 

59 7,51 0,68 -0,22 -0,66 -1,39 

60 7,47 0,53 -0,35 -0,77 -1,46 

61 7,44 0,38 -0,48 -0,88 -1,52 

62 7,41 0,24 -0,60 -0,98 -1,57 

63 7,38 0,10 -0,71 -1,08 -1,61 

64 7,35 -0,03 -0,82 -1,16 -1,64 

65 7,32 -0,16 -0,92 -1,24 -1,67 

66 7,30 -0,28 -1,01 -1,31 -1,69 

67 7,27 -0,40 -1,09 -1,37 -1,70 

68 7,24 -0,50 -1,16 -1,42 -1,71 

69 7,21 -0,61 -1,23 -1,47 -1,71 
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Instantaneous Effective forcing [10E-16 W m-2 kg-1] 

Time 
[year] 

Fossil Biogenic  
(r = 100) 

Biogenic  
(r = 90) 

Biogenic  
(r = 85) 

Biogenic  
(r = 75) 

70 7,19 -0,70 -1,30 -1,51 -1,71 

71 7,16 -0,79 -1,35 -1,55 -1,70 

72 7,14 -0,88 -1,40 -1,58 -1,69 

73 7,11 -0,96 -1,45 -1,60 -1,67 

74 7,09 -1,03 -1,49 -1,62 -1,66 

75 7,07 -1,10 -1,52 -1,63 -1,64 

76 7,04 -1,17 -1,55 -1,64 -1,61 

77 7,02 -1,22 -1,57 -1,65 -1,59 

78 7,00 -1,28 -1,59 -1,65 -1,56 

79 6,98 -1,32 -1,60 -1,65 -1,54 

80 6,95 -1,37 -1,61 -1,64 -1,51 

81 6,93 -1,40 -1,62 -1,63 -1,48 

82 6,91 -1,44 -1,62 -1,62 -1,45 

83 6,89 -1,47 -1,62 -1,61 -1,42 

84 6,87 -1,49 -1,62 -1,59 -1,39 

85 6,85 -1,51 -1,61 -1,57 -1,36 

86 6,83 -1,53 -1,60 -1,55 -1,33 

87 6,81 -1,55 -1,59 -1,53 -1,30 

88 6,79 -1,56 -1,58 -1,51 -1,27 

89 6,77 -1,56 -1,56 -1,49 -1,24 

90 6,76 -1,57 -1,54 -1,46 -1,22 

91 6,74 -1,57 -1,53 -1,44 -1,19 

92 6,72 -1,57 -1,51 -1,42 -1,16 

93 6,70 -1,57 -1,49 -1,39 -1,14 

94 6,68 -1,56 -1,47 -1,36 -1,11 

95 6,66 -1,56 -1,44 -1,34 -1,09 

96 6,65 -1,55 -1,42 -1,31 -1,06 

97 6,63 -1,54 -1,40 -1,29 -1,04 

98 6,61 -1,52 -1,38 -1,26 -1,02 

99 6,60 -1,51 -1,35 -1,24 -1,00 

100 6,58 -1,50 -1,33 -1,22 -0,98 

101 6,56 -1,48 -1,31 -1,19 -0,96 

102 6,55 -1,47 -1,28 -1,17 -0,94 

103 6,53 -1,45 -1,26 -1,15 -0,92 

104 6,51 -1,43 -1,24 -1,12 -0,90 

105 6,50 -1,41 -1,22 -1,10 -0,88 

106 6,48 -1,39 -1,19 -1,08 -0,87 

107 6,47 -1,37 -1,17 -1,06 -0,85 

108 6,45 -1,35 -1,15 -1,04 -0,83 

109 6,44 -1,33 -1,13 -1,02 -0,82 

110 6,42 -1,32 -1,11 -1,00 -0,81 

111 6,40 -1,30 -1,09 -0,99 -0,79 

112 6,39 -1,28 -1,07 -0,97 -0,78 
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Instantaneous Effective forcing [10E-16 W m-2 kg-1] 

Time 
[year] 

Fossil Biogenic  
(r = 100) 

Biogenic  
(r = 90) 

Biogenic  
(r = 85) 

Biogenic  
(r = 75) 

113 6,37 -1,26 -1,05 -0,95 -0,77 

114 6,36 -1,24 -1,03 -0,93 -0,76 

115 6,35 -1,22 -1,02 -0,92 -0,74 

116 6,33 -1,20 -1,00 -0,90 -0,73 

117 6,32 -1,18 -0,98 -0,89 -0,72 

118 6,30 -1,16 -0,97 -0,87 -0,71 

119 6,29 -1,14 -0,95 -0,86 -0,70 

120 6,27 -1,12 -0,94 -0,85 -0,69 

121 6,26 -1,11 -0,92 -0,83 -0,68 

122 6,25 -1,09 -0,91 -0,82 -0,67 

123 6,23 -1,07 -0,89 -0,81 -0,66 

124 6,22 -1,06 -0,88 -0,80 -0,66 

125 6,21 -1,04 -0,87 -0,79 -0,65 

126 6,19 -1,03 -0,85 -0,78 -0,64 

127 6,18 -1,01 -0,84 -0,77 -0,63 

128 6,16 -1,00 -0,83 -0,76 -0,63 

129 6,15 -0,98 -0,82 -0,75 -0,62 

130 6,14 -0,97 -0,81 -0,74 -0,61 

131 6,13 -0,95 -0,80 -0,73 -0,61 

132 6,11 -0,94 -0,79 -0,72 -0,60 

133 6,10 -0,93 -0,78 -0,71 -0,59 

134 6,09 -0,92 -0,77 -0,70 -0,59 

135 6,07 -0,90 -0,76 -0,70 -0,58 

136 6,06 -0,89 -0,75 -0,69 -0,57 

137 6,05 -0,88 -0,74 -0,68 -0,57 

138 6,04 -0,87 -0,73 -0,67 -0,56 

139 6,02 -0,86 -0,73 -0,67 -0,56 

140 6,01 -0,85 -0,72 -0,66 -0,55 

Below in Table 22 the values for effective radiative forcing (ERF) for each of the eight regions 

can be found, displayed in 10E-16 W m-2 kg-1. These are the average values based on the ERF 

for the two to four forest types in each region. The values are displayed for 0-140 years, 

which can also be seen in Figure 12. The complete values can be found in the digital 

appendix.  
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Table 22: Effective radiative forcing values for the surface albedo for each region for the time period of 0-140 years [10E-

16 W m-2 kg-1] 

Instantaneous Effective forcing [10E-16 W m-2 kg-1] 

t  
[yr] 

North North-
west 

Central Volga-
Vyatka 

Central-
Chernozem 

Volga North-
Caucasus 

Urals 

0 -24,21 -19,27 -9,06 -8,39 -9,92 -8,32 -5,46 -22,26 

1 -22,93 -18,23 -8,53 -7,90 -9,33 -7,83 -5,14 -21,05 

2 -21,72 -17,25 -8,03 -7,43 -8,78 -7,37 -4,84 -19,92 

3 -20,58 -16,31 -7,55 -6,99 -8,27 -6,94 -4,55 -18,84 

4 -19,50 -15,43 -7,11 -6,58 -7,78 -6,53 -4,29 -17,82 

5 -18,47 -14,60 -6,69 -6,20 -7,32 -6,15 -4,03 -16,86 

6 -17,50 -13,81 -6,30 -5,83 -6,89 -5,79 -3,80 -15,95 

7 -16,58 -13,07 -5,93 -5,49 -6,49 -5,45 -3,57 -15,09 

8 -15,71 -12,37 -5,58 -5,17 -6,11 -5,13 -3,36 -14,28 

9 -14,88 -11,70 -5,25 -4,86 -5,75 -4,83 -3,17 -13,51 

10 -14,10 -11,07 -4,94 -4,58 -5,41 -4,54 -2,98 -12,78 

11 -13,36 -10,47 -4,65 -4,31 -5,09 -4,28 -2,81 -12,10 

12 -12,66 -9,91 -4,38 -4,06 -4,80 -4,03 -2,64 -11,45 

13 -12,00 -9,38 -4,13 -3,82 -4,51 -3,79 -2,49 -10,83 

14 -11,37 -8,88 -3,88 -3,60 -4,25 -3,57 -2,34 -10,25 

15 -10,77 -8,40 -3,66 -3,39 -4,00 -3,36 -2,20 -9,70 

16 -10,21 -7,95 -3,44 -3,19 -3,77 -3,16 -2,08 -9,18 

17 -9,67 -7,52 -3,24 -3,00 -3,55 -2,98 -1,95 -8,69 

18 -9,17 -7,12 -3,05 -2,83 -3,34 -2,80 -1,84 -8,22 

19 -8,69 -6,74 -2,87 -2,66 -3,14 -2,64 -1,73 -7,78 

20 -8,23 -6,38 -2,71 -2,51 -2,96 -2,49 -1,63 -7,36 

21 -7,80 -6,04 -2,55 -2,36 -2,79 -2,34 -1,54 -6,97 

22 -7,39 -5,71 -2,40 -2,22 -2,63 -2,20 -1,45 -6,60 

23 -7,01 -5,41 -2,26 -2,09 -2,47 -2,08 -1,36 -6,24 

24 -6,64 -5,12 -2,13 -1,97 -2,33 -1,95 -1,28 -5,91 

25 -6,29 -4,85 -2,00 -1,86 -2,19 -1,84 -1,21 -5,60 

26 -5,97 -4,59 -1,89 -1,75 -2,07 -1,73 -1,14 -5,30 

27 -5,65 -4,34 -1,78 -1,65 -1,95 -1,63 -1,07 -5,01 

28 -5,36 -4,11 -1,67 -1,55 -1,83 -1,54 -1,01 -4,75 

29 -5,08 -3,89 -1,58 -1,46 -1,73 -1,45 -0,95 -4,49 

30 -4,81 -3,68 -1,49 -1,38 -1,63 -1,36 -0,90 -4,25 

31 -4,56 -3,49 -1,40 -1,30 -1,53 -1,29 -0,84 -4,03 

32 -4,33 -3,30 -1,32 -1,22 -1,44 -1,21 -0,79 -3,81 

33 -4,10 -3,13 -1,24 -1,15 -1,36 -1,14 -0,75 -3,61 

34 -3,89 -2,96 -1,17 -1,08 -1,28 -1,07 -0,71 -3,42 

35 -3,68 -2,80 -1,10 -1,02 -1,21 -1,01 -0,66 -3,24 

36 -3,49 -2,65 -1,04 -0,96 -1,14 -0,95 -0,63 -3,06 

37 -3,31 -2,51 -0,98 -0,91 -1,07 -0,90 -0,59 -2,90 

38 -3,14 -2,38 -0,92 -0,85 -1,01 -0,85 -0,56 -2,75 

39 -2,98 -2,25 -0,87 -0,80 -0,95 -0,80 -0,52 -2,60 



IX 
 

Instantaneous Effective forcing [10E-16 W m-2 kg-1] 

t  
[yr] 

North North-
west 

Central Volga-
Vyatka 

Central-
Chernozem 

Volga North-
Caucasus 

Urals 

40 -2,82 -2,13 -0,82 -0,76 -0,89 -0,75 -0,49 -2,46 

41 -2,67 -2,02 -0,77 -0,71 -0,84 -0,71 -0,46 -2,33 

42 -2,54 -1,91 -0,73 -0,67 -0,79 -0,67 -0,44 -2,21 

43 -2,40 -1,81 -0,68 -0,63 -0,75 -0,63 -0,41 -2,09 

44 -2,28 -1,72 -0,64 -0,60 -0,71 -0,59 -0,39 -1,98 

45 -2,16 -1,63 -0,61 -0,56 -0,66 -0,56 -0,37 -1,88 

46 -2,05 -1,54 -0,57 -0,53 -0,63 -0,53 -0,35 -1,78 

47 -1,94 -1,46 -0,54 -0,50 -0,59 -0,50 -0,33 -1,68 

48 -1,84 -1,38 -0,51 -0,47 -0,56 -0,47 -0,31 -1,59 

49 -1,75 -1,31 -0,48 -0,44 -0,52 -0,44 -0,29 -1,51 

50 -1,66 -1,24 -0,45 -0,42 -0,49 -0,41 -0,27 -1,43 

51 -1,57 -1,17 -0,43 -0,39 -0,47 -0,39 -0,26 -1,36 

52 -1,49 -1,11 -0,40 -0,37 -0,44 -0,37 -0,24 -1,28 

53 -1,41 -1,05 -0,38 -0,35 -0,41 -0,35 -0,23 -1,22 

54 -1,34 -1,00 -0,36 -0,33 -0,39 -0,33 -0,21 -1,15 

55 -1,27 -0,95 -0,34 -0,31 -0,37 -0,31 -0,20 -1,09 

56 -1,20 -0,90 -0,32 -0,29 -0,35 -0,29 -0,19 -1,03 

57 -1,14 -0,85 -0,30 -0,28 -0,33 -0,27 -0,18 -0,98 

58 -1,08 -0,80 -0,28 -0,26 -0,31 -0,26 -0,17 -0,93 

59 -1,03 -0,76 -0,27 -0,25 -0,29 -0,24 -0,16 -0,88 

60 -0,97 -0,72 -0,25 -0,23 -0,27 -0,23 -0,15 -0,83 

61 -0,92 -0,68 -0,24 -0,22 -0,26 -0,22 -0,14 -0,79 

62 -0,88 -0,65 -0,22 -0,21 -0,24 -0,20 -0,13 -0,75 

63 -0,83 -0,61 -0,21 -0,19 -0,23 -0,19 -0,13 -0,71 

64 -0,79 -0,58 -0,20 -0,18 -0,22 -0,18 -0,12 -0,67 

65 -0,75 -0,55 -0,19 -0,17 -0,20 -0,17 -0,11 -0,64 

66 -0,71 -0,52 -0,18 -0,16 -0,19 -0,16 -0,11 -0,60 

67 -0,67 -0,49 -0,17 -0,15 -0,18 -0,15 -0,10 -0,57 

68 -0,64 -0,47 -0,16 -0,14 -0,17 -0,14 -0,09 -0,54 

69 -0,60 -0,44 -0,15 -0,14 -0,16 -0,14 -0,09 -0,51 

70 -0,57 -0,42 -0,14 -0,13 -0,15 -0,13 -0,08 -0,49 

71 -0,54 -0,40 -0,13 -0,12 -0,14 -0,12 -0,08 -0,46 

72 -0,52 -0,38 -0,12 -0,11 -0,13 -0,11 -0,07 -0,44 

73 -0,49 -0,36 -0,12 -0,11 -0,13 -0,11 -0,07 -0,41 

74 -0,46 -0,34 -0,11 -0,10 -0,12 -0,10 -0,07 -0,39 

75 -0,44 -0,32 -0,10 -0,10 -0,11 -0,10 -0,06 -0,37 

76 -0,42 -0,30 -0,10 -0,09 -0,11 -0,09 -0,06 -0,35 

77 -0,40 -0,29 -0,09 -0,09 -0,10 -0,08 -0,06 -0,33 

78 -0,38 -0,27 -0,09 -0,08 -0,09 -0,08 -0,05 -0,32 

79 -0,36 -0,26 -0,08 -0,08 -0,09 -0,08 -0,05 -0,30 

80 -0,34 -0,25 -0,08 -0,07 -0,08 -0,07 -0,05 -0,28 

81 -0,32 -0,23 -0,07 -0,07 -0,08 -0,07 -0,04 -0,27 

82 -0,30 -0,22 -0,07 -0,06 -0,08 -0,06 -0,04 -0,26 
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Instantaneous Effective forcing [10E-16 W m-2 kg-1] 

t  
[yr] 

North North-
west 

Central Volga-
Vyatka 

Central-
Chernozem 

Volga North-
Caucasus 

Urals 

83 -0,29 -0,21 -0,06 -0,06 -0,07 -0,06 -0,04 -0,24 

84 -0,27 -0,20 -0,06 -0,06 -0,07 -0,06 -0,04 -0,23 

85 -0,26 -0,19 -0,06 -0,05 -0,06 -0,05 -0,03 -0,22 

86 -0,25 -0,18 -0,05 -0,05 -0,06 -0,05 -0,03 -0,21 

87 -0,23 -0,17 -0,05 -0,05 -0,06 -0,05 -0,03 -0,20 

88 -0,22 -0,16 -0,05 -0,04 -0,05 -0,04 -0,03 -0,19 

89 -0,21 -0,15 -0,05 -0,04 -0,05 -0,04 -0,03 -0,18 

90 -0,20 -0,14 -0,04 -0,04 -0,05 -0,04 -0,03 -0,17 

91 -0,19 -0,14 -0,04 -0,04 -0,04 -0,04 -0,02 -0,16 

92 -0,18 -0,13 -0,04 -0,04 -0,04 -0,04 -0,02 -0,15 

93 -0,17 -0,12 -0,04 -0,03 -0,04 -0,03 -0,02 -0,14 

94 -0,16 -0,12 -0,03 -0,03 -0,04 -0,03 -0,02 -0,13 

95 -0,15 -0,11 -0,03 -0,03 -0,04 -0,03 -0,02 -0,13 

96 -0,15 -0,10 -0,03 -0,03 -0,03 -0,03 -0,02 -0,12 

97 -0,14 -0,10 -0,03 -0,03 -0,03 -0,03 -0,02 -0,11 

98 -0,13 -0,09 -0,03 -0,03 -0,03 -0,02 -0,02 -0,11 

99 -0,12 -0,09 -0,03 -0,02 -0,03 -0,02 -0,02 -0,10 

100 -0,12 -0,08 -0,02 -0,02 -0,03 -0,02 -0,01 -0,10 

101 -0,11 -0,08 -0,02 -0,02 -0,02 -0,02 -0,01 -0,09 

102 -0,11 -0,08 -0,02 -0,02 -0,02 -0,02 -0,01 -0,09 

103 -0,10 -0,07 -0,02 -0,02 -0,02 -0,02 -0,01 -0,08 

104 -0,10 -0,07 -0,02 -0,02 -0,02 -0,02 -0,01 -0,08 

105 -0,09 -0,06 -0,02 -0,02 -0,02 -0,02 -0,01 -0,08 

106 -0,09 -0,06 -0,02 -0,02 -0,02 -0,02 -0,01 -0,07 

107 -0,08 -0,06 -0,02 -0,01 -0,02 -0,01 -0,01 -0,07 

108 -0,08 -0,06 -0,02 -0,01 -0,02 -0,01 -0,01 -0,06 

109 -0,07 -0,05 -0,01 -0,01 -0,02 -0,01 -0,01 -0,06 

110 -0,07 -0,05 -0,01 -0,01 -0,01 -0,01 -0,01 -0,06 

111 -0,07 -0,05 -0,01 -0,01 -0,01 -0,01 -0,01 -0,05 

112 -0,06 -0,04 -0,01 -0,01 -0,01 -0,01 -0,01 -0,05 

113 -0,06 -0,04 -0,01 -0,01 -0,01 -0,01 -0,01 -0,05 

114 -0,06 -0,04 -0,01 -0,01 -0,01 -0,01 -0,01 -0,05 

115 -0,05 -0,04 -0,01 -0,01 -0,01 -0,01 -0,01 -0,04 

116 -0,05 -0,04 -0,01 -0,01 -0,01 -0,01 -0,01 -0,04 

117 -0,05 -0,03 -0,01 -0,01 -0,01 -0,01 -0,01 -0,04 

118 -0,05 -0,03 -0,01 -0,01 -0,01 -0,01 -0,01 -0,04 

119 -0,04 -0,03 -0,01 -0,01 -0,01 -0,01 0,00 -0,04 

120 -0,04 -0,03 -0,01 -0,01 -0,01 -0,01 0,00 -0,03 

121 -0,04 -0,03 -0,01 -0,01 -0,01 -0,01 0,00 -0,03 

122 -0,04 -0,03 -0,01 -0,01 -0,01 -0,01 0,00 -0,03 

123 -0,04 -0,03 -0,01 -0,01 -0,01 -0,01 0,00 -0,03 

124 -0,03 -0,02 -0,01 -0,01 -0,01 -0,01 0,00 -0,03 

125 -0,03 -0,02 -0,01 -0,01 -0,01 -0,01 0,00 -0,03 
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Instantaneous Effective forcing [10E-16 W m-2 kg-1] 

t  
[yr] 

North North-
west 

Central Volga-
Vyatka 

Central-
Chernozem 

Volga North-
Caucasus 

Urals 

126 -0,03 -0,02 -0,01 0,00 -0,01 0,00 0,00 -0,02 

127 -0,03 -0,02 -0,01 0,00 -0,01 0,00 0,00 -0,02 

128 -0,03 -0,02 0,00 0,00 -0,01 0,00 0,00 -0,02 

129 -0,03 -0,02 0,00 0,00 0,00 0,00 0,00 -0,02 

130 -0,02 -0,02 0,00 0,00 0,00 0,00 0,00 -0,02 

131 -0,02 -0,02 0,00 0,00 0,00 0,00 0,00 -0,02 

132 -0,02 -0,02 0,00 0,00 0,00 0,00 0,00 -0,02 

133 -0,02 -0,01 0,00 0,00 0,00 0,00 0,00 -0,02 

134 -0,02 -0,01 0,00 0,00 0,00 0,00 0,00 -0,02 

135 -0,02 -0,01 0,00 0,00 0,00 0,00 0,00 -0,02 

136 -0,02 -0,01 0,00 0,00 0,00 0,00 0,00 -0,01 

137 -0,02 -0,01 0,00 0,00 0,00 0,00 0,00 -0,01 

138 -0,02 -0,01 0,00 0,00 0,00 0,00 0,00 -0,01 

139 -0,02 -0,01 0,00 0,00 0,00 0,00 0,00 -0,01 

140 -0,01 -0,01 0,00 0,00 0,00 0,00 0,00 -0,01 
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8.1.3. Normalised metrics 

Table 23 gives an overview of the total g CO2-eq/MJ for each of the forest types in each 

region in connection with the direct biomass combustion for all three time horizons. This 

was calculated by using the relevant GWPbio and a factor of 96,49 g CO2-eq/MJ. The values 

below were further used together with the percentage distribution in Table 6 to calculate 

the final contribution to climate change from biogenic CO2 in each of the scenarios. 

Table 23: Overview of total g CO2-eq per MJ in each of the forest types for each region concerning biogenic CO2 [g CO2-
eq/MJ]. Displayed for all three time horizons. 

 All regions Boreal forest Temperate forest 

 Coniferous Deciduous Coniferous Deciduous 

TH = 20 92,63 91,67 91,67 90,22 

TH = 100 41,49 35,22 37,63 30,39 

TH = 500 7,72 6,27 6,75 5,79 

The total g CO2-eq/MJ for each of the forest types in each region in connection with the 

surface albedo for all three time horizons can be found in Table 24. This was calculated by 

using the relevant GWPalbedo and a factor of 96,49 g CO2-eq/MJ. Together with the 

percentage distribution in Table 6, the values below were further used to calculate the final 

climate change impact from albedo in each of the scenarios. 

Table 24: Overview of total g CO2-eq per MJ in each of the forest types for each region concerning albedo for all three 

time horizons [g CO2-eq/MJ]. (Con=coniferous, dec=deciduous) 

 

  

Con Dec Con Dec Con Dec Con Dec Con Dec Con Dec

North -57,9 -43,4                -                  -   -127,7 -104,1                -                  -   -17,9 -13,4                -                  -   

Northwest -71,7 -53,7 -18,5 -13,6 -158,1 -128,9 -43,2 -34,7 -22,2 -16,6 -5,7 -4,2

Central                -                  -   -19,6 -14,4                -                  -   -45,7 -36,7                -                  -   -6,0 -4,4

Volga-

Vyatka
               -                  -   -18,2 -13,3                -                  -   -42,3 -33,9                -                  -   -5,6 -4,1

Central 

Chernozem
               -                  -   -21,5 -15,8                -                  -   -50,0 -40,1                -                  -   -6,6 -4,9

Volga                -                  -   -18,0 -13,2                -                  -   -42,0 -33,7                -                  -   -5,6 -4,1

North 

Caucasus
               -                  -   -11,8 -8,7                -                  -   -42,3 -22,1                -                  -   -3,6 -2,7

Urals -82,8 -62,1 -21,4 -15,7 -182,6 -148,9 -49,9 -40,0 -25,6 -19,1 -6,6 -4,8

Regions

TH = 20 TH = 100 TH = 500

Boreal forest Temperate forest Boreal forest Temperate forest Boreal forest Temperate forest
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8.2. Foreground matrix and inventory for scenario 

Below the foreground matrix for the case of 10% co-firing with biomass in the Northern 

region and the corresponding inventory can be found. 

Table 25: Foreground matrix Aff for the scenario of 10% co-firing in the Northern region 

     A_ff 

Name Full Name Locati
on 

Unit y_f Combust
ion 

Fuel, 
coal 

Fuel, wood 
chips, 
hardwood 

Fuel, wood 
chips, 
softwood 

Combustion Coal and 
biomass 
combustion 

RU MJ 1         

Fuel, coal Hard coal, at 
mine/RU/kg 

RU kg 0 0,0384       

Fuel, wood 
chips, 
hardwood 

Wood chips, 
hardwood, 
u=80%, at 
forest/RER/m3 

RU m3 0 2,40E-06       

Fuel, wood 
chips, 
softwood 

Wood chips, 
softwood, 
u=140%, at 
forest/RER/m3 

RU m3 0 8,00E-06       
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The inventory is shown in Table 26 to Table 28. 

Table 26: Inventory for Fuel input, coal, for the Northern region in European Russia 

Fuel, coal 1 kg 

      

Input:     

Blasting/RER/kg 0,000767 kg 

Diesel, burned in building machine/GLO/MJ 0,0418 MJ 

Electricity, high voltage, production UCTE, at grid/ UCTE/ kWh 0,093 kWh 

Heat, at hard coal industrial furnace 1-10MW/ RER/ MJ 0,0737 MJ 

Disposal, spoil from coal mining, in surface landfill/ GLO/ kg 7,4009 kg 

Disposal, tailings from hard coal milling, in impoundment/ GLO/ kg 0,271 kg 

Tap water, at user/ RER/ kg 0,503 kg 

Open cast mine, hard coal/GLO/unit 1,10E-11 Unit 

Underground mine, hard coal/GLO/unit 2,23E-11 Unit 

Transport, freight, rail/ RER/ tkm 0,501 tkm 

   

Stressors:   

Heat, waste/ air/ low population density 3,35E-01 MJ 

Methane, fossil/ air/ low population density 1,96E-02 kg 

Particulates, > 10 um/ air/ low population density 1,99E-04 kg 

Radon-222/ air/ low population density 1,20E-02 kBq 

Coal, hard, unspecified, in ground/ resource/ in ground 1,23E+00 kg 

Gas, mine, off-gas, process, coal mining/ resource/ in ground 1,49E-02 Nm3 

Occupation, dump site/ resource/ land 6,90E-03 m2a 

Occupation, mineral extraction site/ resource/ land 2,70E-03 m2a 

Transformation, from unknown/ resource/ land 8,00E-05 m2 

Transformation, to dump site/ resource/ land 5,70E-05 m2 

Transformation, to mineral extraction site/ resource/land 2,30E-05 m2 

Water, well, in ground/ resource/ in water 1,24E-03 m3 

Aluminium/ water/ ground- 1,00E-06 kg 

Ammonium, ion/ water/ ground- 1,00E-06 kg 

Chloride/ water/ ground- 1,12E-02 kg 

Dissolved solids/ water/ ground- 1,50E-06 kg 

Fluoride/ water/ ground- 3,00E-06 kg 

Iron, ion/ water/ ground- 2,00E-06 kg 

Manganese/ water/ ground- 1,00E-06 kg 

Nickel, ion/ water/ ground- 1,00E-07 kg 

Solids, inorganic/ water/ ground- 3,30E-05 kg 

Strontium/ water/ ground- 5,00E-06 kg 

Sulfate/ water/ ground- 5,00E-04 kg 

Zinc, ion/ water/ ground- 1,00E-07 kg 
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Table 27: Inventory for Fuel input, wood chips from hardwood, for the Northen region in European Russia 

Fuel, wood chips, hardwood 1 m3 

      

Input:     

Industrial wood, hardwood, under bark, u=80%, at forest road/RER/m3 0,329 m3 

Wood chopping, mobile chopper, in forest/RER/kg 239 kg 

Transport to power plant, hardwood, truck/tkm (own calculation) 286,18 tkm 

 

Table 28: Inventory for Fuel input, wood chips from hardwood, for the Northen region in European Russia 

Fuel, wood chips, softwood 1 m3 

      

Input:     

Industrial wood, softwood, under bark, u=140%, at forest road/RER/m3 0,341 m3 

Wood chopping, mobile chopper, in forest/RER/kg 169 kg 

Transport to power plant, softwood, truck/tkm (own calculation) 286,18 tkm 

For the reference case of 100% coal-firing, the processes for bioenergy were not included 

and for the scenario of 100% bioenergy, the processes for coal were excluded. For each of 

the regions, the input of wood chips from hardwood and softwood varied, and the 

distribution for each scenario can be found in Table 7 (10% co-fire), Table 9 (20% co-fire) and 

Table 10 (100% bioenergy), in addition to the coal input in the fuel mix. Furthermore, the  

transportation in ton kilometre varied for each region, and the overview can be found in 

Table 8. The emissions from direct biomass combustion and albedo effect were calculated 

seperately and for coal combustion 101 g CO2-eq/MJ was used (IPCC, 2006). 
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For more information concerning the calculations for the transportation routes, see Table 30 

and Table 31 below for the scenario of 10% co-firing (total tkm/m3 is the same for each 

scenario). Loading capacity is 21 tons and fuel consumption is 3 litres per km. 

Table 29: Overview of the amount of wood needed per truck-trip for the scenario of 10% co-firing (and covering 10% of 
the coal demand in the region). 

Region Amount of 
wood, 10% co-
firing [m3] 

Amount of 
softwood, 10% 
co-firing [m3] 

Amount of 
hardwood, 10% co-
firing [m3] 

Amount of 
wood per truck-
trip [m3] 

North 1 415 971  1 087 416  328 555  41,4 

Northwest 1 301 476 636 591 664 884  38,1 

Central 1 269 141  509 273 759 868 37,1 

Volga-Vyatka 1 289 147 588 045  701 101  37,7 

Central Chernozem 1 250 664  436 520 814 144 36,6 

Volga 1 218 189  308 650  909 539 35,6 

North Caucasus 1 202 385  246 422  955 963 35,2 

Urals 1 300 190  631 531 668 659  38,0 

Total 10 247 161  4 444 449 5 802 712  37,5 

To find the final tonkm per m3, the total amount of tonkm for each region was divided by the 

amount of wood per truck trip in m3, found in Table 29 above. 

Table 30: Calculations connected to the transportation routes for each region for the scenario of 10% co-firing 

Region Km to 
power 
plant 
[km] 

Total 
times 
distance 
is 
needed 

Total 
amount of 
km [km] 

Total fuel 
consumpt
ion [L] 

Lt of 
diesel 
per MJ 
[L/MJ] 

Ton 
kilmetre 
[tkm] 

Tonkm 
per 
ton 
[tkm/t] 

Tonkm 
per m3 
[tkm/m3] 

North 564,3 34 194  19 296 042  6 432 014  4,7E-04 11850,5 564,3 286,2 

Northwest 171,3 34 194  5 858 466  1 952 822  1,4E-04 3597,9 171,3 94,5 

Central 353,0 34 194  12 069 130  4 023 043  2,9E-04 7412,2 353,0 199,7 

Volga-
Vyatka 

327,6 34 194  11 202 995  3 734 332  2,7E-04 6880,2 327,6 182,5 

Central 
Chernozem 

197,2 34 194  6 744 433  2 248 144  1,6E-04 4142,0 197,2 113,2 

Volga 340,9 34 194  11 655 382  3 885 127  2,8E-04 7158,1 340,9 200,9 

North 
Caucasus 

323,3 34 194  11 054 251  3 684 750  2,7E-04 6788,9 323,3 193,1 

Urals 360,0 34 194  12 311 224  4 103 741  3,0E-04 7560,8 360,0 198,8 
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8.3. Numerical values for climate change impact 

Below in Table 31 to Table 33 the climate change impact for upstream processes for 

biomass, direct biomass combustion and albedo in g CO2-eq/MJfuel-mix can be found. The 

values correspond to the forest types present in each region, for the three time horizons. 

The values are for the scenario of 100% bioenergy, which can be used to further find the 

biomass upstream values for 10% co-firing and 20% co-firing. 

Table 31: Climate change impact of biomass upstream processes for the case of 100% bioenergy in each region [g CO2-
eq/MJfuel-mix]. Displayed for all three time horizon. 

Region TH=20 TH=100 TH=500 

100% coal-fired 32,3 13,6 6,61 

North 6,73 6,33 6,17 

Northwest 2,42 2,28 2,22 

Central 4,36 4,1 4,0 

Volga-Vyatka 4,25 4,0 3,9 

Central Chernozem 2,68 2,52 2,46 

Volga 4,08 3,83 3,74 

North Caucasus 4,01 3,77 3,68 

Urals 4,44 4,18 4,07 

 

Table 32: Climate change impact of direct biomass combustion for the scenario of 100% bioenergy for each forest type in 

each region [g CO2-eq/MJfuel-mix]. Displayed for all three time horizons. (Con=coniferous, dec=deciduous) 

 

 

 

 

 

Total Total Total

Con Dec Con Dec Con Dec Con Dec Con Dec Con Dec

North 71,1 21,3         -           -   92,4 31,9 8,2       -           -   40,0 5,9 1,5      -        -   7,4

Northwest 22,7 23,4 22,4 23 91,5 10,1 9,0 9,2 7,8 36,1 1,9 1,6 1,7 1,5 6,6

Central         -           -   36,8 54 90,8         -           -   15,1 18,2 33,3         -        -   2,7 3,5 6,2

Volga-

Vyatka
        -           -   41,8 49,1 90,9         -           -   17,2 16,5 33,7         -        -   3,1 3,1 6,2

Central 

Chernozem
        -           -   32,0 58,7 90,7         -           -   13,1 19,8 32,9         -        -   2,4 3,8 6,1

Volga         -           -   23,2 67,4 90,6         -           -   9,5 22,7 32,2         -        -   1,7 4,3 6,0

North 

Caucasus
        -           -   18,8 71,7 90,5         -           -   7,7 24,2 31,9         -        -   1,4 4,6 6,0

Urals 31,5 33,0 13,4 13,9 91,8 14,1 12,7 5,5 4,7 37,0 2,6 2,3 1,0 0,9 6,8

TH = 500

Boreal Temperate Boreal Temperate Boreal TemperatRegion

TH = 20 TH = 100
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Table 33: Climate change impact of surface albedo for the scenario of 100% bioenergy for each forest type in each region 
[g CO2-eq/MJfuel-mix]. Displayed for all three time horizons. (Con=coniferous, dec=deciduous) 

 

Below in Table 34 one can find the numerical values which Figure 16 to Figure 18 are based 

on. The values represent total climate change impact in g CO2-eq/MJfuel-mix for each of the 

scenarios and corresponding time horizon. 

Table 34: Total climate change impact for each scenario for each region [g CO2-eq/MJfuel-mix]. Displayed for all three time 
horizons. 

  10% co-firing 20% co-firing 100% bioenergy 

Region TH=20 TH=100 TH=500 TH=20 TH=100 TH=500 TH=20 TH=100 TH=500 

100% coal-
fire 

133,3 114,6 107,61 133,3 114,6 107,6 133,3 114,6 107,6 

North 117,7 102,3 96,52 102,0 90,0 85,4 -23,1 -8,1 -3,29 

Northwest 120,3 103,0 96,52 107,2 91,5 85,4 2,94 -0,9 -3,27 

Central 125,5 105,2 97,35 117,6 95,8 87,1 54,9 20,9 5,1 

Volga-
Vyatka 

125,7 105,3 97,38 118,1 96,0 87,1 57,4 22,2 5,34 

Central 
Chernozem 

125,0 104,9 97,16 116,6 95,2 86,7 49,8 17,7 3,12 

Volga 125,9 105,3 97,38 118,4 96,0 87,2 58,9 21,6 5,33 

North 
Caucasus 

126,8 105,8 97,52 120,3 96,9 87,4 68,3 26,3 6,8 

Urals 116,7 101,6 96,2 100,1 88,7 84,8 -32,9 -14,9 -6,46 

  

Total Total Total

Con Dec Con Dec Con Dec Con Dec Con Dec Con Dec

North -98,1 -24,1         -           -   -122,2 -44,4 -10,1       -           -   -54,5 -13,7 -3,1      -        -   -16,8

Northwest -38,7 -32,9 -10,6 -8,9 -91,0 -17,5 -13,7 -4,5 -3,5 -39,3 -5,4 -4,2 -1,4 -1,1 -12,1

Central         -           -   -18,3 -21,9 -40,3         -           -   -7,9 -8,6 -16,5         -        -   -2,4 -2,7 -5,1

Volga-

Vyatka
        -           -   -19,3 -18,5 -37,8         -           -   -8,3 -7,3 -15,5         -        -   -2,6 -2,2 -4,8

Central 

Chernozem
        -           -   -17,5 -26,1 -43,6         -           -   -7,5 -10,3 -17,8         -        -   -2,3 -3,2 -5,5

Volga         -           -   -10,6 -25,1 -35,8         -           -   -4,6 -9,9 -14,4         -        -   -1,4 -3 -4,4

North 

Caucasus
        -           -   -8,7 -17,6 -26,2         -           -   -2,4 -6,9 -9,3         -        -   -0,7 -2,1 -2,9

Urals -62,1 -53,6 -7,3 -6,2 -129,1 -28,1 -22,3 -3,1 -2,4 -56 -8,7 -6,9 -1,0 -0,7 -17,3

Boreal Temperate BorealRegion

TH = 20 TH = 100 TH = 500

Boreal Temperate Temperat
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8.4. Potential future co-firing scenarios 

Calculations in connection with the potential future co-firing scenarios and the percentage 

amount it will cover of the current Net Annual Increment (NAI), Annual increment available 

for exploitation (AIAE) and Annual Allowable Cut (AAC) is shown in Table 35 and Table 36. 

Covering the complete coal demand is the equivalent of 2 471 719 TJ or 260,18 mill m3 of dry 

mass. 

Table 35: Values in m3 and % connected to the needed increase of current harvest for the scenarios 10% and 20% co-
firing, as well as 100% bioenergy. 

  Russia (NAI) Russia (AIAE) Russia (AAC) Increase of 
current harvest 

Total estimated potential 
[mill m3] 

853 552 633  173,6 

10% of coal demand  
[mill m3] 

26,0  26,0 26,0  26,0  

% of each scenario 3,1 % 4,7 % 4,1 % 15,0 % 

20% of coal demand  
[mill m3] 

52,0  52,0  52,0 52,0  

% of each scenario 6,1 % 9,4 % 8,2 % 30,0 % 

50% of coal demand  
[mill m3] 

130,1 130,1 130,1 130,1 

% of each scenario 15,3 % 23,6 % 20,6 % 74,9 % 

100% of coal demand  
[mill m3] 

260,2  260,2  260,2  260,2 

% of each scenario 30,5 % 47,1 % 41,1 % 149,9 % 

 

Table 36: Percentage amount the current harvest together with the increased harvest will account for of NAI, AEIE and 
AAC. 

  10% co-firing 20% co-firing 50% co-firing 100% bioenergy 

Current harvest + new 
harvest [mill m3]  

199,6  225,6  303,7  433,8  

% of NAI  23,4 % 26,5 % 35,6 % 50,9 % 

% of AEIE 36,1 % 40,9 % 55,0 % 78,5 % 

% of AAC 31,5 % 35,6 % 48,0 % 68,5 % 
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