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Background  

One of the main issues of long distance transport of offshore multiphase viscous crude is how to restart 

the production after un-expected shut-in of the flowline. If the fluid mixture is transported in terms of 

water continuous flow under normal production condition, during shut-in, the oil and water will separate, 

and form many oil or water columns in the flowline of un-even topology. At the same time, the fluids will 

be cooled down, and eventually the fluid temperature will reach sea bottom temperature, which gives 

extremely high oil viscosity. The complete displacement of these cold oils is needed before the production 

of oil is resumed.  

A correct prediction of the displacement of oil column of multiphase viscous flowline after shut-in is 

essential for the pipe line design and for effective operation. The classical multiphase flow codes assume 

plug flow, therefore it gives too conservative prediction of the restart time. There is a need to understand 

the physical process of propagation of interfaces of oil and water columns during the restart process at 

different pipe geometry.           

Objectives 

Perform experimental study on the flushing process of different combinations of oil and water columns at 

different pipe geometry: inclined, V and W shape, etc. The experiments should be able to provide 

transient information of interface movement.  

The following tasks are to be considered  

1 A short literature search on displacement of viscous oil column by water 

2 Laboratory preparation and instrument calibration  

3 Pipe flow experiment with different pipe geometry and different flushing flow rates of water 

4 Data analysis, and quantification of complete displacement process.  

5 Suggestions for further work 
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Abstract  

This study is specifically concerned with the understanding of real restart procedure that is very crucial 

for prediction of oil-water columns displacement after un-expected shut down at water-viscous crude oil 

transportation. This issue gets more important for subsea pipeline which is generally located in ups and 

downs topology and in average cold medium. At subsea pipelines the risk of formation of oil-water 

columns is high and in addition the viscosity of crude oil gets higher due to heat transfer with sea water. 

The present study has reported the experimental activities carried out to investigate of viscous oil 

displacement in pipes by water. Basic aspects regarding oil-water flow, viscosity of crude oil and flow 

assurance have been reviewed initially. The tests were established at the acrylic transparent 60-mm 

internal diameter pipe at horizontal/inclined test rig and in the small-scale of M-shaped jumper. In 

addition, a series of simulations have been run in LedaFlow® 1D. The experimental setup has been 

designed and constructed at NTNU multiphase laboratory. The setup was prepared for movable visual 

capturing such that a series of lightening and camera carrier have been installed. A total of 56 individual 

experiments were conducted and the measurements were made for different oil and water flow rate in 

horizontal and inclined pipe line. Some tested cases were simulated LedaFlow® 1D and results are 

compared.  

Both qualitatively and quantitatively results of the experiments and observation from displacement tests 

have been documented in this report. Most of outcomes indicate that the front of shape of propagation 

interface is changing along the pipe. Droplets accumulation and wavier interface have been observed at 

the end section of the pipe in compare to beginning section. By experimental analysis was found that the 

minimum superficial velocity of water in order to remove all residual oil at M-shaped jumper is around 

0.38 m/s. Concerning LedaFlow® 1D simulation efforts, the front shape prediction for number of tests 

was running and corresponded results have been stated. 
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Nomenclature 

Latin letters 

 

A  Cross-sectional area [m
3
] 

D   Pipe diameter [m] 

F  Shear force [N] 

f   Friction factor [-] 

g  Gravity coefficient [m/s
2
] 

H  Water Volume Fraction (Water hold up) [-] 

P  Pressure [bar] 

Q  Mass flow rate [Kg/s] 

S  Wetted periphery [m
2
] 

s   Slip ratio [-]  

U  Velocity [m/s] 

V  Volume [m
3
] 

 

Greek letters 

 

α   Phase volume fraction [-] 

λ  Phase volumetric flow rate fraction [-] 

ξ  Inclination Degree [rad] 

μ  Absolute viscosity [cP] 

τ  Share stress [Pa] 

   Kinematic viscosity [m
2
/s] 

 

Abbreviations 

 

1D  One Dimensional 

CFL  Courant–Friedrichs–Lewy condition 

CV  Control valve 

GVF  Gas volume fraction 

LEDA  A multiphase flow simulator 

PIP  Phase inversion point 

PLEM  Pipeline end manifold 

PLET  Pipeline end termination 

RHS  Rectangular hollow ection 

V  Valve 

 

Subscripts 

 

i  Initial 

m  Mixture 

o  Oil 

S  Superficial 

w  Water 
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1 Introduction 

1.1 Background  

Due to higher demand of energy, production of hydrocarbons has been increased. Transportation of this 

resource with pipeline is included at energy value chain. Oil-water mixture is content of transportation 

pipeline in some offshore and onshore fields. Shut down of hydrocarbon transportation is happened time 

to time due to technical problems and other operational issues. In order to resume the fluids transportation 

some issues occur frequently. For instance, forming of viscose oil and water columns causes trouble for 

the flow restarting. Viscose oil columns within pipeline should remove at the beginning of the restart 

procedure. 

Efficient operation of pipeline and even design of flow lines require to understanding of true oil column 

displacement prediction. The viscous oil column has been considered as a rigid plug in the classical 

multiphase codes. The experimental results concerning process of propagation of interfaces of oil - water 

columns are valuable for better prediction. The shape of front part of oil or water propagation can be 

significant phase of this investigation. Series of experiment have been conducted concerning models 

evaluation.   

Oil spill during subsea intervention is another issue which should be considered for subsea flow path such 

as jumpers within offshore production systems. Mainly water injection through, so-called, service line is 

common way to replace oil before disconnecting of the pipes at the sea bed. Minimum superficial velocity 

of water in order to displacement of all residual oil in such a complicated configuration jumpers is crucial 

to meet operation standard requirements. The qualitatively flushing description and oil-water front 

propagation estimation will be introduced at this dissertation effort.   

1.2 Objectives and Scope of work 

Conducting series of experiment in order to investigate of viscous column oil-water flushing have been 

our main objective. The tests have been run at various pipe geometries such as horizontal and inclined, 

with different flow rate injection and initial condition. The results show the transient behaviour of 

interface movement along the pipe. 

Another objective was to find the minimum water injection superficial velocity in order to removing all 

residual oil in special flow line configuration (jumper geometry) and finding the front shape estimation by 

both experiment and simulation.  
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1.3 Tools used 

The experimental purpose of our work was conducted at the NTNU multiphase flow laboratory. The 

laboratory is equipped with two relatively large centrifugal pumps for oil and water, two relatively small 

centrifugal pumps for oil and water, two screw pumps, separator tank, horizontal loop pipes and control 

panel. Two stationary cameras and one movable camera were used during the experiment. 

LedaFlow® was a multiphase flow simulator which has been used during this project. Leda considers 

flow as three phase fluid; water, oil and gas. Each phase could be continuous or dispersed to other phase. 

[1] 

1.4 Report Structure 

The report starts with introduction in chapter 1. Chapter 2 will introduce the fundamental theory of 

viscous oil flow assurance problem and basics of oil-water flow. Chapter 3 provides descriptions of the 

experimental efforts included setup description and tests procedure. Chapter 4 offers the results and 

discussion of the experiments. Chapter 5 deals with simulations work and the results. The last section is 

conclusions and recommendation for further works. The supplementary information is placed in the 

appendixes.  
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2 Theory 

This chapter provides an introduction of the fundamental theory of viscous oil flow assurance problem 

and basics of oil-water flow. 

2.1 Flow Assurance  

Flow assurance offers technical solutions at reasonable costs, environmentally and without risk to design 

and operate transportation through all flow lines and pipelines from reservoir to onshore process plants 

[2]. Flow assurance is a concept which is followed by the transportation of multiphase flow; mostly in 

offshore pipelines. Transportation of oil, gas, liquid and water simultaneously in flow lines and pipelines 

can have some operational problem [3].  Therefore the correct handling of flow assurance is critical for 

successful operation. 

The main problems which can occur in the multiphase transportation are: [4] 

- Hydrate formation 

- Deposition of wax and asphaltene (problems for pigging operation). 

- Scale formation 

- Corrosion 

- Erosion 

- Severe slugging (dangerous for downstream processes) 

2.2 Problems related to viscose oil transportation 

Demand of oil increase globally. Figure 2-1 is shown the oil consumption of world by 2020 [5]. In 

addition, 70% of oil reserves in the world are heavy oil with high viscosity [6]. The viscosity of the light 

oil will be also increase due to heat transfer from oil.  

 

 

Figure 2-1: World oil consumption by region 1970 - 2020 
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In order to transport viscos oil through pipe line some methods are frequently used in oil industry, like:[7]  

- Heating 

- Dilution 

- Oil water emulsion 

- Core annular flow 

- Partial field upgrading  

Mixture of oil and water in design operation run without major problem. At undesirable shut down, oil 

and water separate from each other and form the columns in up and down sections. Figure 2-2 shows the 

shutdown procedure. 

 

Figure 2-2: Oil and water column formation in subsea pipeline 

 

2.3 Crude oil viscosity 

Viscosity is described as the internal resistance of the fluid to flow and it is one of the main governing 

properties of the fluid [8]. Generally fluid viscosity is divided into two main categories, absolute viscosity 

and kinematic viscosity. Absolut viscosity is shearing force per unit area of moving surface per velocity 

of moving surface, and Kinematic viscosity is absolute viscosity divided by mass density [9]. The main 

equations (Equation 2-1 and Equation 2-2) regarding viscosity are introduced here: 

 
 

       
  

  
 Equation 2-1 

     ⁄  Equation 2-2 

Where F (N) is shear force, τ (Pa) is shear stress, A (m
2
) is area, μ

1 
(cP1) is absolute viscosity and   (m

2
/s) 

is kinematic viscosity. There is many ways and correlations introduced in order to estimate crude oil 

viscosity. Some correlations such as: Beal, Vasquez and Beggs, Khan, and Kartoatmodjo and Schmidt 

[10].  

                                                 
1
 1 cP = 1 mPa·s = 0.001 Pa·s 
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2.3.1 Effect of Temperature on oil viscosity  

Many experimental results and also modeling works show the rheological behavior of crude oil at various 

temperatures. For instant, the Figure 2-3 shows the result of temperature effect (0-60°C) on viscosity 

value for 27 different crudes. This clearly indicates that by decreasing the temperature, viscosity value 

will increase dramatically. The maximum viscosity difference is almost 100 KcP. In simple word the 

crude oil convert to solid in low temperature. [11]  

 

 

Figure 2-3: Viscosity as a function of temperature for 27 various crudes oil[11] 
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2.4 Two phase Oil-water flow   

In this section, an overview of the existing studies on oil-water flow will be reviewed in brief and some 

issues related to that term will be discussed. Basic definitions, flow patterns and relevant maps and 

prediction flow models, especially on steady-state flows, are in focus. 

2.4.1 Basic definitions 

Assume oil-water flow in a pipe with cross-sectional area A. Qw and Qo are input water and oil volumetric 

flow rate, respectively. The volumetric flow rate fraction for water and oil are given by [12],[13] : 

 
   

  

     
 Equation 2-3 

 
   

  

     
 Equation 2-4 

Here λW is also used as the term water cut in oil-water occasionally, particularly in flow applications. The 

volume fraction (α) for water and oil respectively is defined as: 

 
   

  

 
 Equation 2-5 

 
   

  

 
 Equation 2-6 

The superficial velocity and the actual velocity for oil and water phases can be calculated as follows: 

 
    

  

 
                     

  

  
 Equation 2-7 

 
    

  

 
                     

  

  
 Equation 2-8 

The slip ratio (S) is applied as a relation between the two phases actual velocity and is defined as: 

 
  

  

  
 

  

  

   

   
 Equation 2-9 

If the slip ratio is greater than 1, means that the oil flows faster than water; while if s is less than 1, shows 

that the water is the faster phase. Same phases velocity is indicates S=1. The slip ratio is affected by the 

phases’ physical properties, the flow pattern, the flow rate and the pipe geometry. 

2.4.2  Oil-water flow regimes and flow pattern maps 

In oil-water flow, various internal flow structures and spatial distributions of their deformable interface 

can occur. These shapes are commonly called flow regimes or flow patterns. Knowledge of the flow 
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regimes in certain condition could be helpful for better predicting oil-water flow behavior. A large 

number of experiments have been conducted in order to investigate flow patterns under given conditions. 

The influence of pipe diameter, geometry and oil viscosity on the flow pattern has been investigated by 

[12]. The interfacial structures for oil-water flow (patterns) are classified by many people in different 

ways. One possible classification for horizontal flow is shown in Figure 2-4 by Trallero et al (1997) [14].  

The Figure 2-5 gives another classification of oil-water patterns in vertical pipe (106.4 mm) which are 

carried out by Abduvayt et al [15]. The flow patterns are divided in to main categories: Water dominated 

and oil dominated. The flow pattern maps are generated by results of observation. Here, two flow patterns 

are shown in Figure 2-6-b for horizontal and Figure 2-6-c for vertical pipe geometry at different gas and 

liquid superficial velocities. 

 

Figure 2-4: Horizontal oil-water flow patterns [14]  
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Figure 2-5: Vertical oil-water flow pattern [15] 

 

Figure 2-6: Flow pattern map [15] 

2.4.3 Phase inversion 

Phase inversion occurs when a dispersion of oil in a water continuum becomes dispersion of water in oil 

continuum or vice versa. The inversion occurs normally within a narrow band of change in the 

operational conditions. Phase inversion causes a sudden change in heat and mass transfer between the 

phases and rate of momentum due to change of continuous phase. A critical result associated with phase 

inversion is a dramatic change of pressure drop. PIP is defined as the phase inversion point. Figure 2-7 

gives the phenomenon process. Here, it is indicated that at PIP the phase inversion occurs and the 

pressure drop reduces. PIP is one a significant criteria in the design of transportation pipe lines. Therefore 

operators have to ensure that sufficient water or oil volume fraction is available during operation [12], 

[16]. 
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Figure 2-7: The phase inversion process [16] 

 

2.4.4 Oil-water flow pattern dependent prediction models 

Oil-water flow could be divided into two main categories of flow pattern: stratified and dispersed oil-

water flow. The available mechanistic models have been developed based on the expression of the 

dominant physical mechanism of the flow process. For separate flow (stratified flow) it is very common 

to use one dimensional two fluid balance for each phase. The momentum balanced equation for oil and 

water phase is derived as follow [12], [17], [18]: 

   (
  

  
)                                        Equation 2-10 

   (
  

  
)                                             Equation 2-11 

Where, AW and AO are the area of cross-section for water and oil, respectively.  Pressure gradient is 

presented by dp/dx.   ,   , and    are the wall share stress for oil, water and interfacial share stress, 

respectively. SO, SW and Si is wetted periphery for oil-wall, water-wall and interfacial phases, 

respectively.   

Here, many empirical correlations have been established to predict wall and interfacial share stress. 
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For dispersed oil-water flow the most common prediction model is the homogenous no-slip model. In this 

method, mixture of a fluid is considered as a “pseudo-fluid” with average mixture properties. The 

pressure gradient homogenous model is given by: 

 
  

  
 

      
 

  
         Equation 2-12 

Where D is pipe diameter, fm is mixture friction factor. ρm and Um are mixture density and velocity, 

respectively. The mixture velocity is calculated by: 

            Equation 2-13 

The mixture density can be determined as follow: 

              Equation 2-14 

 

2.5 Subsea connections and jumpers  

Jumpers in subsea production system are defined as rigid or flexible flow lines between subsea 

components such as X-mas tree, manifold, PLEM, PLET and export sled. The length of the jumper is 

relatively short and it can be used as pipe for injecting water or chemicals to the well when production 

fluids are used. In technical terminology, jumpers are categorized as subsea tie-in system. Figure 2-8 

shows a typical subsea jumper system.  Since the jumper geometry normally has not any thermal 

insulation and because of its shape which has low a spot in flow line where free water can accumulate the 

risk of Hydrate formation raises. Therefore, studying of flow assurance aspects in this component is of 

major importance for oil and gas industry. [19]   

 

Figure 2-8: Subsea jumper systems [19] 
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Jumpers typically have two end connectors and a flow pipe line between the connectors. Based on the 

construction material, jumpers are also divided into rigid and flexible types. The flexible type has no 

special configuration, but the rigid types have some well-known configuration. M-shaped style (both 

normal and elbow), inverted U-shaped and Z-shaped which is frequently utilized in horizontal jumpers. 

Figure 2-9 show some of these configurations. [19] 

 

Figure 2-9: Rigid jumper configurations [19] 

 

 

Jumpers are often fabricated after the subsea component has been installed at the sea bed. Then the 

geometry and distance between the components are measured or calculated In order to provide the 

supplier with information needed. [19] In the experiment, a lab-model was built which mimics the typical 

M-shaped jumper. The M-shaped type inherently has a high risk of oil spill due to a low spot volume. 

In subsea intervention, the retrievable components are replaced frequently. The residual hydrocarbon in 

connection such as jumpers should be evacuated before disconnect at seabed. The residual oil connections 

will be discharged into sea water during replacement. The oil companies must prevent discharge of oil in 

the sea water in order to meet the operation standard such as OSPAR convention and KLIF (Klima- og 

forurensningsdirektoratet) requirements.[20] 
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2.6 LedaFlow1D, multiphase simulation tool 

Leda is a multiphase flow simulator which is released recently (version 1.1 January 2012). In Leda, the 

approach is to upgrade accuracy by implementing more fundamental physics. The capability of the 

simulator is improved by tuning correlation with experimental and field data (SINTEF and TOTAL) [21]. 

Leda considers flow as three phase fluid, water oil and gas. Each phase could be continuous or dispersed 

to other phase. For instant, water may be continuous flow, or dispersed as bubble in oil or in gas. 

Therefore nine phases could be defined as done in Leda.  Figure 2-10 gives a schematic of applied 

models in Leda. 

The fields are characterized by composition, volume fraction, velocity, viscosity and other fluid 

properties. The flow simulate by solve equations numerically. Thus Leda offers heat and mass transfer 

models. In addition LedaFlow® provides some option to add source, valve, bends, pig and slug tracking 

for more complicated case. 

The experimental cases were constructed in LedaFlow® 1D and the results were compared. 

 
 

Figure 2-10: View of multiphase flow model in Leda [22] 
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3 Experimental Setup and Methodology 

The purpose of this chapter is to present experimental activities which have been done at NTNU 

multiphase flow laboratory.  In section 3.1, small-scaled M-shaped jumper test and relevant issues are 

mentioned. In section 3.2, the horizontal rig test will be discussed. The tests procedures of oil-water front 

shape prediction and the water-oil experiment at the jumper is described in details in sections 3.3 and 3.4 

respectively. The results, qualitatively description of the flushing process and sweep efficiency are parts 

of this section.  

3.1 Small-scaled M-shaped jumper setup 

In this section, design of the experimental setups for small-scaled M-shaped jumper will be reviewed.  

Design consideration and constrains issues is also mentioned. 

Since our objective is studying on oil-water flushing based on special geometry of jumpers, therefore it 

was tried to make the experiment setup mimic to typical subsea jumper. M-shaped jumper was selected 

and the Lab-model has been made with some consideration regarding loop and material constrains. 

Because the experiment setup was connected to the multiphase flow lab loop, first the laboratory loop is 

brief described and then the main setup and design consideration is explained afterwards. 

3.1.1 Overview and design consideration  

The three-dimensional overview of the multiphase flow rig is shown in Figure 3-1. The flow loop is 

consist of air, water and oil supply. The whole system is placed at two levels. Large three phase separator, 

Oil and water pumps  and Air pressure supply tank is placed at basement and flow lines continue to lab-

level and all flow meter, control valve, horizontal test section and S-riser are placed this level. The flow 

line of test was connected to a mixer/inlet section containing the air/water/oil supply. The main fluid 

properties are listed briefly at Table 3-1 which is calculated at 1 atm. and 20°C. The outlet section of 

flow lines are connected to the atmospheric separator, therefore all properties are calculated in 1 atm.    
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Figure 3-1: Multiphase test rig layout, NTNU [23] 

Table 3-1: Fluid physical properties[23]  

Physical property Air Water Oil (Exxsol D80) NEXBASE® 3080 

density, kg/m3 1.20 1000 +/- 0.2% 800 +/- 0.2% 840 +/- 0.2% 

viscosity, Pa.s 1.8.10-5 1.11.10-3 +/- 1.2% 1.79.10-3 +/- 1.2% 90.10-3 +/- 1.2% 

surface tension, N/m - 0.0608 +/- 0.0005 0.0246 +/- 0.0005 - 

 

The main experimental setup is the small-scaled of a rigid M-shaped subsea jumper which was frequently 

used. This kind of jumper consists of vertical and horizontal parts, 90 degree bends and 180 degree bends 

which looks like two humps. Some of the design consideration and limitation for the setup are listed 

below: 

- The setup mimic to desired jumper geometry. 

- The flow line is transparent (semi-transparent) for capturing. 

- The pipe inlet diameter is not less than 50 mm. 

- The curves radius of bends should not be more than 1 meter due to lab-space limitation. 

- The setup can connect to the mail loop in order to supply oil, water and air. 

- The flow lines should be fixed to avoid vibration and effect to experiment and capturing. 
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Since part of the experiment was studying the different points of flow line; the pipe has to be transparent. 

On the other hand, Setup has some bends along the flow lines which limit our option. Two main choices 

were considerable: Plexiglas (acrylic) standard pipes or transparent hose. The problem of Plexiglas was 

absence of standard bend. Therefore in order to utilize the Plexiglas as flow path it should be ordered 

desired bends to suppliers. Making Plexiglas bend needed considerable time and money. Second option 

was to implement hoses. The hose can shape easily, however it needs support to keep its shape. The other 

issue regarding hose is limitation for bending. All hose suppliers recommend a minimum radius for each 

particular hose to avoid diameter change along bending. This limitation is less when spring reinforced 

hose is utilized. For example with the same inlet diameter (60 mm), the recommended minimum bend 

radius for without spring is 700 mm while it is 50 mm for reinforced hose. However, the reinforced hose 

has less transparency rather than fully transparent hose but it has acceptable for the experiment purpose.  

Therefore the reinforced hose with inlet diameter 50 mm has been chosen. 

As it mentioned before, the hose needs rigid support to keep its shaped. For supporting the horizontal and 

vertical sections the steel beam structure was utilized. The hose connected to the beam with wire tie as 

can be seen from Figure 3-2 a.  The most critical part was 180° bend. For making this part of our support, 

first the steel 50 x 20 mm RHS profile was bended by using the steel bending machine, see Figure 3-2 b. 

Then mount the fit pipe clamps along the bend as shown in Figure 3-2 c. Two 180° bend support was 

made with same dimension. After wards both bends was mounted at same level to the vertical support of 

the rig. 

 

 

Figure 3-2: Hose support components 
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3.1.2 Main dimension of the rig  

The initial part of the hose is connected to the S-riser fluid supplier and end part of the hose is continued 

till first separator. An overall view of the jumper section is shown in Figure 3-3 a.  Figure 3-3 b gives 

schematics representation of the test rig with dimension. 

 

 

Figure 3-3: Jumper test setup – dimension 
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Two series conductance probe was connected to the end of the hose and the additional hose add to the 

probes for guiding flow into the separator. A tripod was placed in front of the probe in order to support 

camera for capturing. A view of additional part of the setup is given in Figure 3-4. 

 

Figure 3-4: The end parts of setup (probes and additional hose) 

3.2 Horizontal rig setup 

Horizontal rig actually is a part of multiphase flow loop which is started after supply mixed section and 

ended to upstairs gas-liquid separator. This part of the loop is consisting of 60-mm and 90-mm 

transparent acrylic pipe. In this experiment the 60-mm has been used. Initially the loop was ready; 

however it required some manipulation in order to achieve the best condition for our purposes. In the 

follow parts the main issue will be reviewed. 

3.2.1 Overview and main dimension of rig  

The horizontal rig position has been changed due to required inclination of tests. Moreover some 

additional parts have also been attached to the rig. All flow line and pipes section which have been used 

in the rig for these series of test, was 60-mm inlet diameter. Figure 3-5 is shown the overall picture of the 

rig with corresponded dimension. 

  

Figure 3-5: Horizontal (inclined) rig overview and dimension 
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3.2.2 Additional start and end section 

Since series of tests are carried out in the V-shaped and also the horizontal loop was inclined, the pipe 

was needed starting section which has been installed as it shown in Figure 3-6. At the end of the pipe is 

also another section was required for preventing discharge of the liquid. For this part a piece of 60-mm 

flexible hose was utilized which is turned around itself and ended to the separator. The end section is 

shown in Figure 3-6. 

 

Figure 3-6: Additional start and end pipe section 

3.2.3 Air Release valve 

The loop sucks air from leakage point when is running and always air bubble exists in the flow lines. 

When the flow was stopped for establishment of initial condition, the air bubbles was merging together 

and a significant air bubble was accumulated at the top level of the loop. The universal standard 

automatic air vent valve has been implementing for discharge of undesirable accumulated air. This kind 

of valve was frequently used in water based heating systems [24]. For attaching this part to the pipe 

section; a Plexiglas joint part has been glowed to the pipe and a holes drilled through it as shown in Fig.  

 

 

 

 

 

 

 

 

 

 
Figure 3-7: Air release valve 
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3.2.4 Cameras setup (stationary and movable) 

Capturing of the propagation front for the viscous oil and investigation of the front shape changing has 

been our objective; therefore a series of cameras have been installed and utilized for this purpose. Two 

stationary high quality (HD) web cameras have been installed at the start and end section of the pipe flow 

and a movable camera which was installed in rail-carrier is capturing film. Two separate laptops were 

connected to the web-cam in order to store the capturing data and external storage memory card was 

utilized for saving movable-camera footages. The stationary cameras installed in proper distance and 

lightening was illuminated the back side of pipe. The movable camera was moving with one of the 

experiment operators with approximately the same velocity of front propagation. Figure 3-8 is shown the 

rail carrier of the cameras. 

 

Figure 3-8: Movement camera rail system 

3.2.5 Lightening system 

Since one of the main objectives has been capturing of the front propagation during oil-water 

displacement, the lightening of the whole pipe was essential but it was challenging. Many suggestions 

have been evaluated. Florescent lamp was an option because of its length, but it could not utilize for this 

purpose due to lack of DC lightening. The accepted suggestion was using LED strips in parallel and 

attached in solid support. The resulting issue was non homogenous distribution of lightening because of 

the lamp was placed in discrete form. In order to distribute lightening in homogenous way, a semi-

transparent design paper has been used such that the half of pipe was covered with it. Figure 3-9 is shown 

the schematic-layered picture of lightening system. 
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3.2.6 Anti-reflection cover 

In the laboratory area, lots of light source have been exist which can be as noise for capturing. The 

surface of acrylic pipes are smooth such that light source can reflect. This reflection is undesirable for 

capturing system. Since most of the light is coming from upside of the pipe, series of opaque sheets have 

been placed at the top of flow line. Figure 3-10 is shown the covering sheet system.  

 

 

Figure 3-10: Anti-reflection cover 

 

Pipe section 

Semi-transparent paper 

LED strip 

Support 

Figure 3-9: Components of lightening system 
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3.2.7 Pressure transducer and calibration procedure 

In order to have pressure gradient of the flow line, the pressure transducer probe has been utilized. The 

pressure force in this kind of transducer is converting to the voltage which means that the each output 

voltage is corresponded to one absolute pressure. The logging system was store the real time pressure data 

in the logging storage file. Figure 3-11 is shown a type of pressure transducer which used in this 

experiment. 

 

Figure 3-11: Pressure transducer 

For calibration of the pressure transducer, mini pressured-gas generator, voltage meter and pressure 

transducer have been applied. Pressure transducer connected to generator and the electric output 

connected to the voltage meter.  The pressure generator produced absolute pressure up to 4.5 bars. The 

real time voltage appeared on the voltage meter. It means that each pressure is corresponded to voltage. 

Figure 3-12 is shown one step on recording data. The record of the pressure-voltage data into excel sheet 

was the next step. The calibration curve is shown in Figure 3-13.    

 

Figure 3-12: Calibration of pressure transducer 
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Figure 3-13: Graph of calibration of pressure transducer 

 

3.2.8 Conductance probe and calibration procedure 

Measurement of water volume fraction (water hold-up) in stratified flow regime can be measured with 

conductance probe such that the volume fraction of water in the pipe is proportion with the output 

voltage. Conductance probe has been applied for measuring the hold-up during the tests. In order to 

measure right amount of hold-up, the probe was calibrated. The first step for calibration is measuring the 

inside volume of the probe. One side of the probe was blocked with flat flange and then the probe was 

being completely filled with water. The volume of water was known by using an accurate measuring 

glass. The next steps were the logging probe with 16 known volumes of the water which increase 

gradually. At each step the probe filling with desired volume of water and both side of the probe got 

blocked. Then it placed horizontally, checked with spirit level and logging was started for about 30 

second. Figure 3-14 show the probe calibration in one of middle steps. Corresponding chart give the 

results of calibration. The calibration constant is calculated by linearization of the points of measurements 

(see Figure 3-15). In addition the scaling factor (0.61) needed due to conductivity difference between tap 

water which was used for calibration and water with fluorescent additive which runs in loop. This number 

is obtaining by Equation 3-1: 
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 Equation 3-1 

 

The calibration constant was implemented for all hold-up measurements since this calibration constant 

approximated the same for all voltage channels. 

 

Figure 3-14: Calibration of the probe 

 

 
Figure 3-15: Calibration curve 
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3.3 Oil-water front experiment at horizontal and inclined pipe  

The series of tests have been conducted for understanding of propagation of oil and water column during 

the restart process. The test has been run in the horizontal loop rig. NEXBASE® 3080 was the using oil.  

The experiment can be divided into four main series. Two series carried out in horizontal (0 degree) 

inclination and the others two series have been conducted in inclined (2.8 degree). In the following part 

each test series will be described. Capturing and logging were been the common thing in all experiment 

series. Two stationary cameras, a moving camera, conductance ring probes and pressure transducer were 

including for measurement and logging system. The detail steps of procedure can be found in Appendix 

B. Oil has been changed to the NEXBASE at the big separator before running the test.  

3.3.1 Oil bubble flushing with water at inclined test section  

The first test series of front propagation have been conducted at horizontal loop with +2.8 degree 

inclination. Each test has been run after initial condition establishment. In order to set the initial 

condition, first the whole loop was filled with water. The next step was to open the valve for making an 

oil bubble bulk in the heist point of the loop. After reaching to the desired volume of oil bubble, the oil 

valve was closed. 19 tests have been run after establishment of initial condition with various water flow 

rate. The logging and capturing was bingeing before run the water into the loop.     

3.3.2 Fully filled oil pipe flushing with water at inclined test section 

The inclination was the same for these test series. The oil has been filled in additional first part and in 

whole of the flow lines. In order to set the initial condition, small amount of water has been injecting to 

the loop such that the level of water has reached at the middle of additional first pipe section. The desired 

flow rate adjusted at the parallel test loop. The desired flow rate then has been switch to the horizontal 

loop. Logging the probes and also three capturing module have started just before run the water into the 

loop.       

3.3.3 Fully filled oil pipe flushing with water at horizontal test section 

In this experiment, the additional inclined pipe section still available. The loop was first filled with oil. 

The additional first section was half-filled with water and the initial condition was established. The test 

was run with 17 different water flow rates which have been already adjusted in parallel loop. The test was 

beginning when the flow was switched to the horizontal loop. Logging and capturing was started just 

before water flow into the loop. Figure 3-16-a is shown test setup.    

3.3.4 Fully filled water pipe flushing with oil at horizontal test section 

The pipe which was filled fully with water has been flushing out with two different oil flow rate. First the 

initial condition was established. The initial condition was the pipe filled with water and a bubble of oil 

was stand at the beginning of pipe section. Figure 3-16-b is shown the initial condition in this test series. 

The next step for run the experiment was adjusting the desired flow rate in the jumper loop. When the 

desired flow rate has been reached, the valves were switching flow to the horizontal loop. Capturing and 

logging was started just before water flow into the loop.        
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Figure 3-16: Initial condition for horizontal pipe flushing  

3.4 Oil-water flushing test in M-shaped jumper test  

These series of the experiments have been conducted for describing the front shape of the oil-water when 

water is flushing the residual oil in the jumper. Exxon D80 was the using oil in the tests.  This experiment 

was valuable due to run the flow into the special jumper setup. 16 tests were conducted with different 

water flow rate. In each experiment first the initial condition was established which means the pipe filling 

with oil until the middle of the first vertical section and before horizontal curvature (point A) and rest of 

the jumper was filled with water. Figure 3-17 gives the schematic and real picture of initial condition for 

the experiment.  

 

Figure 3-17: Initial condition in jumper 

After establishment of the initial condition the desired flow rate adjust in the horizontal pipe. The test 

started by switching the oil flow from the horizontal pipe to the jumper. The flow rate was being set in 

reasonable value (such as 1.20 Kg/s or 1.60 Kg/s) but when the flow was switched to the jumper, the flow 

rate was started to reduce due to gravity and friction of jumper flow line. Therefore measured flow rate 

was different but it still had reasonable increasing steps. All new flow rates was measured and put to the 

corresponded results. The logging was started a few second before flow run to the jumper. The camera 

captured flow through the probe frequently and sequences of picture at high capturing continues mode 

was collected. The detailed explanation of the experiment procedure can be found at the Appendix C. The 

result of these series of tests is presented in following sections. 
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4 Results of Experiments and Discussion 

This chapter presents the results of all series of experimental activities which was described in chapter 3. 

The discussions of the results are expressed besides. 

4.1 Oil bubble flushing with water at inclined test section  

19 tests have been conducted in order to studying the flushing phenomena. Some experiments have been 

repeated twice for compensating of technical issues; therefore the final tests are given in following matrix 

Table 4-1. The experiments put in low to high water flow rate.  

Table 4-1: Oil bubble flushing test matrix 

tag # experiment tag Usw (m/s) Flow rate m
3
/s length of oil bubble (cm) 

1 flushing_24apri_exp12_1441 0.1716 0.0004852 132 

2 flushing_24apri_exp10_1356 0.179 0.0005061 183.5 

3 flushing_24apri_exp13_1501 0.19496 0.0005512 141.5 

4 flushing_23apri_exp6_1532 0.2022 0.0005717 68.9 

5 flushing_24apri_exp11_1420 0.20385 0.0005764 90.5 

6 flushing_24apri_exp14_1519 0.28579 0.0008081 87 

7 flushing_24apri_exp15_1529 0.28962 0.0008189 129.5 

8 flushing_24apri_exp16_1546 0.38119 0.0010778 133 

9 flushing_23apri_exp5_1519 0.3972 0.0011231 230 

10 flushing_24apri_exp9_1212 0.42112 0.0011907 189.5 

11 flushing_24apri_exp8_1139 0.43732 0.0012365 82.5 

12 flushing_24apri_exp7_1116 0.4734 0.0013385 69 

13 flushing_23apri_exp4_1455 0.526 0.0014872 231 

  

Based on observation from pictures of the movable camera, qualitatively description of these series of 

tests has been reported in Table 4-2. Two parts, one in the beginning section and another at the end 

section have been discussed. The relative sharpness of the front, smoothness of interface and water hold 

up fraction and special issues have been reviewed. The pictures will be shown at the Appendix D. 
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Table 4-2: Observation results of oil bubble 

# Usw (m/s) Beginning section of pipe End section of pipe 

1 0.1716 

The interface is wavy. The water holdup 

gradually increases from near 0.5 to 1 in 

front. Some dispersed oil droplets in 

water are observed in the front. 

The interface gets sharper. The average water 

hold up is more here than beginning section. 

2 0.179 

The interface is very smooth and not 

wavy. The water holdup gradually 

increases from approximately 0.5 to 1 in 

the front. 

The whole bubble is take to part and the 

remaining front of bubble get very sharp 

3 0.19496 

The water holdup increase from less than 

0.5 to 1. The interface is approximately is 

smooth. Some oil droplets are in the 

interface. 

The front gets sharper. The bulk of dispersed oil 

in water accumulated in front. 

4 0.2022 
The smooth interface with hold up from 

0.5 to 1 in the front. 

The interface get wavy and the front get sharper. 

5 0.20385 
The interface is wavy. Some oil droplets 

have accumulated in the front. 

The front is full of oil dispersed droplets. 

6 0.28579 
The bubble has been separated in two 

parts. The interface is wavy and with 

some oil bubbles in the interface. 

The water hold up is dominated. The residual oil 

part is thin, wavy and with dispersed oil droplets 

in water. 

7 0.28962 
The oil bauble part is wavy and water 

holdup is dominated. 

The front is full of oil dispersed droplets. The 

interface is wavy 

8 0.38119 
The water holdup is more than 0.5 and 

interface is smooth and the front is sharp. 

The interface is wavy and oil droplet is 

accumulated in the front. 

9 0.3972 
The front is approximately vertical. The 

water hold up is more than 0.5 and the 

interface is smooth. 

Some relatively big oil droplets accumulate in 

the front. The interface is not wavy and the 

water hold up is more than half. 

10 0.42112 

The water hold up less than 0.5 and the 

interface is smooth and gradually increase 

to more than 0.5. The initial part of the 

front is sharp and the front is 

approximately vertical. 

The front is very sharp and some oil bubble is 

separated.  The interface is wavy and with 

dispersed oil droplets. 

11 0.43732 
The level of oil bubble is not change. The 

water hold up is higher than 0.5. The 

interface is very smooth. 

The interface is wavy and oil droplet is 

observed in the interface. Some part of bubble is 

separated to some parts. 

12 0.4734 
The interface is wavy. Water hold up is 

more than 0.5 and increase gradually. 

The bubble is divided into the separate part. The 

oil droplets can be observed in bubble parts. 

13 0.526 
The interface is ramped. Few oil droplets 

are observed in the interface. The 

interface is smooth. 

The bubble is separated. The water hold up is 

more than 0.5. The interface is wavy with some 

oil droplets. 
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Figure 4-1 is shown that the typical holdup vs. time for three different conductance probe in different 

position along the horizontal pipe. All 13 graphs can be found in Appendix E.  From water holdup 

measurement graph which is measured with conductance probes the further result can be summarized:  

 

 

Figure 4-1: Typical conductance probes logging graph 

1- The bubble is remaining in the pipe in superficial water velocity less than 0.179 m/s. 

2- The time of bubble passing decreased in each probes by increasing the injection water superficial 

velocity.  

3- The time of bubble passing increased along the pipe. In the constant velocity and based on hold up 

measurement graph, the bubble is get longer in the end of pipe. 

4- The front part of the bubble at relatively high velocity has flat tip, which means that in the front edge 

of bubble we have sudden drop in water holdup in high velocity.  

4.2 Fully filled oil pipe flushing with water at inclined test section 

Two different tests have been conducted in order to studying the flushing phenomena. The final tests are 

given in following matrix Table 4-3. The experiments put in low to high water flow rate.  

 

Table 4-3: Inclined pipe oil flushing by water test matrix 

tag # experiment tag Usw (m/s) Flow rate m
3
/s 

1 flushing_29apri_exp20_0926 0.102 0.000200277 

2 flushing_29apri_exp21_1011 0.0202 3.96626E-05 

 

 

The capturing pictures of beginning and end section and in addition the water holdup measurement graphs 

are presented in Table 4-4.  
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Table 4-4: Inclined pipe oil flushing by water graph and pictures 
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From start and end section and water holdup measurement graph which is measured with conductance 

probes show that: 

1-At the beginning and at the end section of the pipe the front part is sharp. 

2- In both flow rates the oil volume fraction at the beginning of the pipe is more than the end of the pipe.  

3- The flushing efficiency (removing the oil) has been increased by increasing of the water injection flow 

rate. 

The average water holdup at the start and end section of the two flow rates is shown in Table 4-5. 

Table 4-5: Average water holdup 

Usw (m/s) 
Water holdup (-) 

Start section End section 

0.102 0.421 0.563 

0.0202 0.790 0.849 

  

4.3 Fully filled oil pipe flushing with water at horizontal test section 

17 tests have been conducted in order to studying the flushing phenomena. Some experiments have been 

repeated twice for compensating of technical issues; therefore the final 7 tests are given in following 

matrix Table 4-6. The experiments put in low to high water flow rate.  

Table 4-6: Horizontal pipe oil flushing by water test matrix 

tag # Experiment tag Usw (m/s) Flow rate m
3
/s 

1 flushing_25mar_exp14_1543 0.05 9.81748E-05 

2 flushing_25mar_exp13_1525 0.1 0.00019635 

3 flushing_25mar_exp10_1448 0.15 0.000294524 

4 flushing_25mar_exp9_1437 0.19 0.000373064 

5 flushing_25mar_exp7_1400 0.28 0.000549779 

6 flushing_25mar_exp2_1255 0.38 0.000746128 

7 flushing_25mar_exp5_1341 0.49 0.000962113 
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The water holdup measurement graphs are presented in Table 4-7.  

Table 4-7: Conductance probe measurement graph 

Usw (m/s) Figures 
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From the holdup measurement graph which is measured with conductance probes the further results show 

that: 

1-The critical water superficial velocity for flushing all oil from the pipe is 0.384 m/s because all oil 

flushed out from pipe after this water flow rate. 

2- The front part of propagation of water is getting more flat in higher velocity. 

3- The oil volume fraction in lower velocity is higher. 

 

4.4 Fully filled water pipe flushing with oil at horizontal test section 

Two different tests have been conducted for investigation of water flushing phenomena with oil. The final 

tests matrix is given in Table 4-8. The experiments put in low to high water oil superficial velocity.  

 

Table 4-8: Horizontal pipe water flushing by oil test matrix 

Tag # Experiment tag Uso Flow rate m
3
/s 

1 flushing_29apri_exp26_1644 0.053 0.000104065 

2 flushing_29apri_exp25_1626 0.078 0.000153153 

 

The capturing pictures of beginning and end section and in addition the water holdup measurement 
graph are presented in Table 4-9.  

From start and end section and water holdup measurement graph which is measured with conductance 

probes the further result show that: 

1-Both in beginning and end section of the pipe the front part is sharp and gradually water holdup 

decreases. 

2- The behavior of the propagation front along the pipe is the approximately the same. 

3- Both flow rates of oil have flushed out and removed the whole of water from the pipe. 
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Table 4-9: Graph and pictures of horizontal pipe water flushing by oil 
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4.5 Oil-water flushing test in M-shaped jumper test 

Concerning qualitatively explanation of flushing experiment, as commented in test description, various 

water flow rates run through the jumper such that in each step oil flow rate was increased gradually. 

Another aim of this part was finding the water injection velocity for totally removing of oil from jumper.   

After sufficient time the flow in jumper became steady-state and transient phenomena has not observed 

anymore. Considerable point of the jumper setup was captured during the steady-state condition. The 

explanations is divided and identified by the oil flow rate in following Table 4-10. The whole oil was 

removed along jumper after water injection superficial velocity higher than 0.38 m/s as can be seen in 

Table 4-10.  

Table 4-10: Observation of tests in the jumper 

Usw [m/s] Comment 

0.01 The middle jumper section slowly filling, water droplets in oil continuum in both down 

comers, risers filled with water. 

0.02 As previous flow rate, more water droplets in down comer, and more droplets in elbow 

and droplet with relatively small size can be observed. 

0.04 As before, more water droplets in down comer, more droplets in elbow, droplet size 0.2 - 

1cm (more small droplets) , right after increasing the velocity, some oil was transported 

through the horizontal section, hard to say which phase the continuous is, looks like phase 

inversion in pipe sometimes 

0.08 In this flow rate oil droplets in water continuum (visible from droplet movement), in the 

lower elbow we found an accumulation of many small oil droplets, oil droplet size smaller 

as water droplets, 0.3 - 0.7 cm 

0.11 By increasing flow rate the oil is transported through horizontal section as thin film or 

droplets on top part, as before, many small oil droplets 3mm in lower elbow, larger 

droplets 1cm in upper part 

0.16 Down comer almost pure water, only a few oil droplets, oil accumulation in top section 

left, and still many small droplets in lower elbow 

0.2 As before, even less droplets in down comer, only some droplets in top section, still many 

droplets in lower elbow 

0.25 Top section and down comer pure water, only some residual droplets can be observed in 

lower elbow. 

0.32 The lower elbow is almost empty. 

0.38 The jumper is totally empty. 



35 

 

  

Usw = 0.38 m/s Usw = 0.25 m/s 

  

Usw = 0.2 m/s Usw = 0.11 m/s 

Figure 4-2: Middle section in the jumper at 4 different velocities 

Some experiments were executed in order to study the oil-water front. The results were given in 

Table 5-2 and Figure 5-5 (both experimental and simulation are presented in the same graph). The water 

removing time for each individual test equals to the period between the first oil droplet is coming (   ≠ 0) 

and last water droplet goes out (   = 0). The trend of data is indicated that the required time for 

displacement of the water with oil decreased by increasing the water mass flow rate. Typical water hold 

up graph which was measuring with conductance probe is shown in the Figure 4-3. The water remove 

time is indicated with the red line. All trend graphs could be found in Appendix F.  

 

Figure 4-3: Typical water hold up at the end of pipe measurement 
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5 Simulation of experimental cases, results and discussion 

In this chapter the simulation of the individual test runs are presented. In section 5.1, the case construction 

is stepwise explained with implementing the M-shaped jumper geometry, fluid properties, numerical 

setting and boundary condition. Section 5.2 deals with the results and comparison of water-oil front 

estimation cases.  

5.1 Construction of the case 

The initial steps for simulation process is establishment of a case with particular items such as: fluid 

properties, numerical setting, initial and boundary condition, flow path geometry and meshing setup. 

5.1.1 Flow path geometry and meshing 

The jumper geometry was simulated in LedaFlow® based on the 

measurements. 81 points were defined (81 parts) in order to 

represent jumper geometry. Curvatures was drawn by put the 

corresponding points in each 10° and use trigonometry relations to 

calculate Cartesian coordinate positions (Figure 5-1). Geometry 

specification will be found in Appendix H. The uniform algorithm 

method was utilized for meshing the geometry. 150 mesh cells 

have been chose for a reasonable simulation time, simulation 

stability and simulation accuracy. crated and the length of each cell 

was about 0.16 m. Figure 5-2 gives an overview of the geometry 

that has been established in simulation. 

 

 

 

Figure 5-2: Pipe geometry in simulator 

 

Figure 5-1: X-Y Position of curve 
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5.1.2 Fluid properties 

All fluid properties were written in PVT file. Heat transfer and temperature change was not care in the 

simulation due to experiment condition. The oil-water flow was also assumed as an incompressible flow. 

Therefore 2×2 table (two pressure points and two temperature points) was enough for each property. The 

interpolation and extrapolation option in the simulator were set to operational mode for calculation of the 

fluid properties. Heat transfer and temperature related properties such as enthalpy or entropy were being 

filled with dummy number. Oil and water densities, viscosities, surface tension and oil-water interfacial 

tension have been written in PVT file. The properties values could be found in Table 3-1.  

5.1.3 Boundary Condition 

The type of the inlet nod was defined as inlet mass flow. In each simulation case, the flow rate was 

changed to desired number. The water volume fraction was established to 1 while oil and gas fraction was 

set to 0. The outlet nod type was selected to pressure type and it has been set to atmospheric pressure.    

5.1.4 Initial Condition 

Since Leda Flow 1D has not any option to establish initial condition manually, a dummy case about 10 

second with fully water was run (water cut 100%) and the restart file was crated. The same simulation 

was run but this time with 100% oil. By studying the restart test file, the phase fraction and phase velocity 

format for each mesh cell was found. Then the restart file was converted to the initial condition file by 

manipulating of the restart file. Velocity and volume fraction for each mesh (150 points) have been 

replaced one by one to get initial set condition. The time of restart file was also set to 0. Figure 5-3 a 

shows that in time = 0, phases volume fractions, and phases velocities (both phases equal zero) is given in 

Figure 5-3 b. 

 

Figure 5-3: Initial condition in simulation 
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5.1.5 Numerical setting 

The numerical setting specification such as simulation time, sample time, time step and CFL was adjusted 

in different number from case to case. This happens because of the phase velocity diversity in different 

cases. The range of the numerical setting is given in Table 5-1. These properties were selected based on 

typical values and try and error. For instance many time steps have been tried for reasonable simulation 

time and accuracy. The typical CFL suggested in LedaFlow® guidance. [22] 

Table 5-1: Numerical setting values 

Numerical properties Minimum value Maximum value 

Simulation time 100  5000  

Time step 0.005  1 

Sample time 0.1 3 

CFL* 0.7 0.8 
* CFL: The number ensures a time step is sufficiently low in relation to the grid cell length and the phase velocities 

 

5.2 Oil-water front simulation results 

Figure 5-4 gives a typical trend data for volume phase fraction at the end of the jumper. Corresponded 

data was used in order to compare the experimental data regarding oil-water front shape estimation. 

 

Figure 5-4: Typical phase volume fraction at the end of pipe by simulation 

7 simulations were run in order to study the oil-water front as the same values in the experiment. The 

results were given in Table 5-2 and Figure 5-5. The time for each simulation equals to the period 

between the first oil droplet is coming (αO ≠ 0) and last water droplet goes out (αW = 0). Here, it is clear 



39 

 

that the required time for displacement of the water with oil increases by increasing the oil mass flow rate. 

All trend graphs could be found in Appendix I. 

In comparison with experiment, the overall trend for both experiment and simulation is the same. 

However, dramatically difference is observed in relative low flow rate.      

Table 5-2: Removing water time, represents interface oil-water front 

Test 

# 
Usw [m/s] 

Water Remove 

Time[s](simulation) 

Water Remove 

Time[s](experiment) 

1 0.404 141.459 159.000 

2 0.616 95.063 71.000 

3 0.843 54.282 52.000 

4 1.200 38.266 34.000 

5 1.552 30.641 24.000 

6 1.903 21.097 20.400 

7 2.236 14.360 15.540 

 

Figure 5-5: Removing water time, represents interface oil-water front 
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6 Conclusions and recommendation for further works 

The defined tasks in the project description were tracked and the looked-for results obtained. Some tasks 

were done in order to prepare the setup of tests. Oil-water flushing experiment and corresponded 

simulations have been conducted. 

 

The preparation of setup for both horizontal/inclined rig and small scale M-shaped jumper has been 

designed and done in NTNU multiphase laboratory. In addition the simulation case was constructed and 

the main conclusions of each effort are listed in follow. 

 

The experiment of oil bubble flushing with water at inclined test section indicated that: 

 

 At the beginning part of pipe, the interface of front part was approximately smooth and without oil 

droplets nearly at all different flow rates. 

 At the end part of pipe, the interface of front part was wavy and with oil droplets nearly at all 

different flow rates. 

 The water hold up reduces along the pipe and therefore the front shape gets sharper at the end of 

pipe. 

 

The test of fully filled oil pipe flushing with water at inclined test section showed that: 

 

 Both in beginning and end section of the pipe the front part was sharp and no propagation 

difference observed along the pipe. 

 Water hold up at the beginning of the pipe was less than the end of the pipe in both flow rates. 

 The flushing efficiency (removing the oil) has been increased by increasing the water injection 

flow rate. 

The experiment of fully filled oil pipe flushing with water at horizontal test section indicated that: 

 

 The front part of propagation of water was getting more flat in higher water flow rates.  

 The oil volume fraction in lower velocity was higher. 

 The critical water superficial velocity for flushing all oil from the pipe was around  0.384 m/s. 

 

The tests of fully filled water pipe flushing with oil at horizontal test section showed that: 

 

 The behavior of the propagation front shape was the approximately the same along the pipe. 

 Both in beginning and end section of the pipe the front part was sharp. 

 

 The M-shaped jumper flushing experiment results mainly indicated: 

 

 No oil remained in the jumper if a certain superficial velocity was exceeded, for our test this 

critical velocity was around 0.38 m/s. 

 The required time for displacement of the water with oil decreased by increasing the water mass 

flow rate. 
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The M-shaped jumper flushing test runs cases have been simulated at multiphase flow simulator, 

LedaFlow. The initial condition, fluid properties and geometry of tests have been set similarly to 

simulator. The simulation results showed:     

 

 The time of removing residual water in setup decreased by increasing the oil mass flow rate. 

 

The comparison between results of simulation and experiment indicated that: 

 

 At relative low oil mass flow rates, the simulation and experiment have given different results but 

in same trend. 

 Difference between test and simulation value was higher at relatively low velocity based on value 

comparison. 

 

Recommendations for further works: 

 

Here some suggestions are listed below:  

  

 Running the series of experiment in other geometries with various inclinations. 

 Conduction of these experiments can be tested at the other pipe diameters like 50 mm or 90 mm. 

 Conducting the same experiment can be evaluated for various oil viscosity and different 

temperature. 

 Preparation of setup without optical obstacles (pipe supports) in order to capture continuously.   

 Providing the setup with more stationary cameras with a managing control system. 

 Using CFD programming model to evaluate prediction of particular flow model. 

 Capturing through the pipe with high speed camera especially at higher flow rate.  
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Appendices 

Appendix A 

The summery of risk assessment of horizontal loop are presented here. 
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Appendix B 

Explanation of details regarding procedure for the horizontal flushing experiment is listed in Table 0-1. 

The valves which are mentioned at the procedure are referred to Figure 0-1 which gives a schematic of 

the jumper and horizontal loop. 

Table 0-1: Experimental procedure, flushing water in horizontal 

Step Action Comment 

1 Close all valves (CV1-3 and V1-6)  

2 Open V1  

3 
Open CV1 gradually and simultaneously run the oil pump 

up 

To reach the desired flow rate 

we use jumper 

4 Set the flow rate to desired flow rate (set by Uso)  

5 Make a logging file and start the logging (for hold up)  

6 Start capturing in multiple cameras system  

7 
At a moment change flow from jumper to horizontal by 

closing V1 and opening V6 
First close V6 and then open V1 

8 
Move the third camera along the pipe with flow 

propagation 
To have front shape 

9 Wait to separate two phases  

10 Stop the experiment when no water goes out 
Run the horizontal to reach high 

oil flow rate 

 

 

Figure 0-1: Test schematic configuration 



47 

 

Appendix C 

Explanation of details regarding procedure for the jumper flushing experiment is listed in Table 0-2. The 

valves which are mentioned at the procedure are referred to Figure 0-1 which gives a schematic of the 

jumper and horizontal loop. 

Table 0-2: Experimental procedure, flushing in jumper 

Step Action Comment 

1 Close all valves (CV1-3 and V1-6)  

2 Open V4  

3 
Open CV2 gradually and simultaneously run the water 

pump up 

To reach the desired flow rate we 

use horizontal 

4 Set the flow rate to desired flow rate (set by Usw) 
 

5 Make a logging file and start the logging (for hold up)  

6 
At a moment change flow from horizontal to jumper by 

closing V4 and opening V3 
First close V4 and then open V3 

7 Take a pictures at the middle pipe To have front shape 

8 Wait to separate two phase  

9 Stop the experiment when no oil goes out 
Run the horizontal to reach high 

water flow rate 
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Appendix D 

All figures with different mass flow rate are represented in this section. All data are relevant to oil-water 

front simulation. 
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Appendix E 

All water hold up (-) vs. time(s) graphs with different mass flow rate are represented in this section. All 

data are relevant to oil-water front experiments.  
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Appendix F 

All graphs with different mass flow rate are represented in this section. All data are relevant to oil-water 

front experiments. 
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Appendix G 

All graphs with different mass flow rate are represented in this section. All data are relevant to oil-water 

front simulation. 

 

 



59 

 

 

 

 



60 

 

 

 

 

 

 

 

 

 

 

 



61 

 

Appendix H 

Pipe geometry is listed in details at Table 0-3. 

Table 0-3: Pipe simulation geometry 

X[m] Y[m] Z[m] Diameter[m] Roughness[m] Temperature[°C] 

0.00 0 0.00 0.05 1.00E-07 15 

0.50 0 0.00 0.05 1.00E-07 15 

0.59 0 0.01 0.05 1.00E-07 15 

0.67 0 0.03 0.05 1.00E-07 15 

0.75 0 0.07 0.05 1.00E-07 15 

0.82 0 0.12 0.05 1.00E-07 15 

0.88 0 0.18 0.05 1.00E-07 15 

0.93 0 0.25 0.05 1.00E-07 15 

0.97 0 0.33 0.05 1.00E-07 15 

0.99 0 0.41 0.05 1.00E-07 15 

1.00 0 0.50 0.05 1.00E-07 15 

1.00 0 2.00 0.05 1.00E-07 15 

1.01 0 2.07 0.05 1.00E-07 15 

1.02 0 2.14 0.05 1.00E-07 15 

1.05 0 2.20 0.05 1.00E-07 15 

1.09 0 2.26 0.05 1.00E-07 15 

1.14 0 2.31 0.05 1.00E-07 15 

1.20 0 2.35 0.05 1.00E-07 15 

1.26 0 2.38 0.05 1.00E-07 15 

1.33 0 2.39 0.05 1.00E-07 15 

1.40 0 2.40 0.05 1.00E-07 15 

1.47 0 2.39 0.05 1.00E-07 15 

1.54 0 2.38 0.05 1.00E-07 15 

1.60 0 2.35 0.05 1.00E-07 15 

1.66 0 2.31 0.05 1.00E-07 15 

1.71 0 2.26 0.05 1.00E-07 15 

1.75 0 2.20 0.05 1.00E-07 15 

1.78 0 2.14 0.05 1.00E-07 15 

1.79 0 2.07 0.05 1.00E-07 15 

1.80 0 2.00 0.05 1.00E-07 15 

1.80 0 1.00 0.05 1.00E-07 15 

1.80 0 0.50 0.05 1.00E-07 15 

1.81 0 0.41 0.05 1.00E-07 15 

1.83 0 0.33 0.05 1.00E-07 15 

1.87 0 0.25 0.05 1.00E-07 15 

1.92 0 0.18 0.05 1.00E-07 15 

1.98 0 0.12 0.05 1.00E-07 15 

2.05 0 0.07 0.05 1.00E-07 15 

2.13 0 0.03 0.05 1.00E-07 15 

2.21 0 0.01 0.05 1.00E-07 15 

2.30 0 0.00 0.05 1.00E-07 15 

6.90 0 0.00 0.05 1.00E-07 15 

6.99 0 0.01 0.05 1.00E-07 15 

7.07 0 0.03 0.05 1.00E-07 15 

7.15 0 0.07 0.05 1.00E-07 15 

7.22 0 0.12 0.05 1.00E-07 15 

7.28 0 0.18 0.05 1.00E-07 15 

7.33 0 0.25 0.05 1.00E-07 15 

7.37 0 0.33 0.05 1.00E-07 15 

7.39 0 0.41 0.05 1.00E-07 15 

7.40 0 0.50 0.05 1.00E-07 15 



62 

 

 

 

 

 

 

 

 

 

 

 

X[m] Y[m] Z[m] Diameter[m] Roughness[m] Temperature[°C] 

7.40 0 2.00 0.05 1.00E-07 15 

7.41 0 2.07 0.05 1.00E-07 15 

7.42 0 2.14 0.05 1.00E-07 15 

7.45 0 2.20 0.05 1.00E-07 15 

7.49 0 2.26 0.05 1.00E-07 15 

7.54 0 2.31 0.05 1.00E-07 15 

7.60 0 2.35 0.05 1.00E-07 15 

7.66 0 2.38 0.05 1.00E-07 15 

7.73 0 2.39 0.05 1.00E-07 15 

7.80 0 2.40 0.05 1.00E-07 15 

7.87 0 2.39 0.05 1.00E-07 15 

7.94 0 2.38 0.05 1.00E-07 15 

8.00 0 2.35 0.05 1.00E-07 15 

8.06 0 2.31 0.05 1.00E-07 15 

8.11 0 2.26 0.05 1.00E-07 15 

8.15 0 2.20 0.05 1.00E-07 15 

8.18 0 2.14 0.05 1.00E-07 15 

8.19 0 2.07 0.05 1.00E-07 15 

8.20 0 2.00 0.05 1.00E-07 15 

8.20 0 0.50 0.05 1.00E-07 15 

8.21 0 0.41 0.05 1.00E-07 15 

8.23 0 0.33 0.05 1.00E-07 15 

8.27 0 0.25 0.05 1.00E-07 15 

8.32 0 0.18 0.05 1.00E-07 15 

8.38 0 0.12 0.05 1.00E-07 15 

8.45 0 0.07 0.05 1.00E-07 15 

8.53 0 0.03 0.05 1.00E-07 15 

8.61 0 0.01 0.05 1.00E-07 15 

8.70 0 0.00 0.05 1.00E-07 15 

17.20 0 0.00 0.05 1.00E-07 15 


