
The Liner Shipping Network Design
Problem
Strengthened formulations considering

complex route structures, transhipment and

transit time

Marie Ameln
Julie Sand Fuglum

Industrial Economics and Technology Management

Supervisor: Henrik Andersson, IØT

Department of Industrial Economics and Technology Management

Submission date: June 2015

Norwegian University of Science and Technology

Problem description

The purpose of this thesis is to develop new extensive mathematical formulations of the

Liner Shipping Network Design Problem (LS-NDP) and to use theory and methods to

strengthen the formulations. The aim of the work will be on making models that reflect a

realistic situation and therefore transhipment, the cost of transhipment, a heterogeneous

fleet, route dependent capacities, complex route structures and transit time will be taken

into account. Since the LS-NDP is such a complex problem that cannot be solved in

polynomial time there will also be a focus on strengthening the formulations through

symmetry breaking constraints and valid inequalities.

Preface

This master thesis is the last part of our Master of Science degree at the Norwegian

University of Science and Technology (NTNU), Department of Industrial Economics and

Technology Management. The thesis was written during the spring semester of 2015. It

is done within the field of operations research.

We present new comprehensive exact formulations of the Liner Shipping Network De-

sign Problem (LS-NDP) with a particular focus on enabling complex route structures,

transhipment and transit time.

We would like to thank our supervisors Magnus St̊alhane, Kristian Thun and Henrik

Andersson for their sincere enthusiasm about our work, valuable feedback and guidance.

We will surely miss our weekly discussions.

We also want to thank Berit D. Brouer, who has been an inspiration for our work, and

we had the pleasure to discuss the LS-NDP with at the NTNU Ocean week conference

in Trondheim.

At last we want to convey that working with the Liner Shipping Network Design Problem

has been extremely interesting. As we have dealt with this problem now for some time its

complex nature reveals more and more, and we have understood that there is no simple

solution to it. However, that is also why it has been so exciting to work within this

field. We are convinced that the liner shipping industry has a lot to gain from operations

research.

Trondheim, June 11th, 2015

Marie Ameln Julie Sand Fuglum

I

Sammendrag

Internasjonal container linjefart er en milliardindustri, som opplever stadig lavere marginer.

Likevel har det vært begrenset forskning p̊a planleggingsproblemer innen bransjen. Arbeidet

som er presentert i denne rapporten er motivert av en overbevisning om at det er et stort

potensiale for kostnadseffektivisering innen linjefart, ved å forbedre ruteplanleggingsprosessene.

Det har blitt utviklet tre matematiske blandede heltallsmodeller for å løse linjefarts nettverk-

problemet, ogs̊a kalt the Liner Shipping Network Design Problem (LS-NDP). Modellene blir ogs̊a

utvidet til å ta hensyn til krav om maksimal transittid p̊a lastene, noe som gjør at det totalt

blir presentert seks formuleringer. I tillegg til hvorvidt formuleringene tar hensyn tid transittid

eller ikke, skiller de seg fra hverandre med tanke p̊a hvilke rutestrukturer de muliggjør.

Målet for alle modellene er å minimere kostnadene til et shippingselskap ved å utforme et ef-

fektivt rutenettverk, som tilfredsstiller alle etterspørselskrav. Alle formuleringene inkluderer

vesentlige funksjoner som omlasting, omlastingskostnader, et ukentlig frekvenskrav og en het-

erogen skipsfl̊ate.

Det største fokusomr̊adet i arbeidet har vært å utvikle formuleringer som åpner for mer fleksible

rutestrukturer. Den første formuleringen, the Basic model, tillater kun enkle rutestrukturer.

Dette vil si at en havn kun kan besøkes én gang av en gitt rute i en enkelt rotasjon. De to andre

modellene muliggjør forskjellige typer komplekse rutekonstruksjoner. The Flower model tillater

ruter hvor én port kan besøkes en rekke ganger av samme rute. The Chain model muliggjør

rutestrukturer hvor en flere havner kan besøkes to ganger av samme rute. Vi har ikke gjort

noen kompromisser som følge av de komplekse rutestrukturene, og alle omlastingskostnadene

er riktig beregnet.

Utifra litteraturstudien er v̊art inntrykk at i de mest omfattende LS-NDP modellene presentert

s̊a langt, er de komplekse rutene begrenset til å kun kunne besøke én port maks to ganger,

en s̊akalt butterfly route. S̊a vidt vi vet, er dette første gang eksakte løsninger av modeller

med mer komplekse rutestrukturer blir presentert. Vi har studert rutenettverket til flere store

shippingselskaper, og funnet at et betydelig antall av disse er komplekse. Dette har gitt oss tro

p̊a at dette arbeidet kan ha praktisk relevans.

III

Modellene presentert i denne rapporten er av høy beregningsmessig kompleksitet, noe som gjør

at de tar lang tid å løse. P̊a grunn av dette har vi utviklet symmetribrytende restriksjoner og

gyldige ulikheter som forsøk p̊a å styrke formuleringene. Testingen av flere av disse gir gode

resultater, og indikerer at den generelle løsningstiden forbedres. Disse ble inkludert i videre

testing av modellene.

Instansene løst til optimalitet er sammenlignbare i størrelse med instansene i eksisterende lit-

teratur om eksakte metoder for LS-NDP. Resultatene viser, ikke overraskende, at de komplekse

modellene tas vesentlig lenger tid å løse til optimalitet.

Resultatene fra studien viser fordelen med å muliggjøre komplekse rutestrukturer, og hvordan

dette bidrar til en bedre allokering av skipsfl̊aten. En interessant observasjon fra studien av

transittid-modellene er at det virker som fordelen av å tillate komplekse rutestrukturer blir

forsterket n̊ar det er strengere krav til transittid.

Abstract

International liner container shipping is a multibillon dollar business, experiencing increasingly

pushed margins. However, there have been scarce research efforts when it comes to planning

and scheduling problems within this industry. The work done in this report is motivated by

the conviction that shipping companies may expect large benefits from improving the routing

processes of their ships.

Three extensive mathematical models for the liner shipping network design problem (LS-NDP)

have been developed. The models have been extended to also take into account transit time,

making it six formulations in total. Besides whether they incorporate transit time, the models

differ in which route structures they enable.

We take the perspective of a liner shipping company. The objective of all the models is to

minimize costs by designing an efficient network of routes that satisfy all demand. All the

formulations include important features as transhipment, transhipment cost, a weekly frequency

requirement and a heterogeneous fleet.

The key focus area has been on developing formulations that allow for more flexible route

structures. The first formulation, called the Basic model, only allows simple route networks.

The two other models enable different types of complex route structures. The Flower model

allows the routes in the network to visit one port in the route multiple times, while the Chain

model incorporates the possibility of a route visiting several ports in the route twice. No

compromises have been made in allowing the complex route structures, and all transhipment

costs are calculated correctly.

To the best of our knowledge the most comprehensive liner shipping models in literature have

restricted the routes to have at most one port that is visited at most twice, socalled butterfly

routes. As far as we know, this is the first time exact solutions allowing even more complex

route structures, have been presented. Studying the route-nets of the world leading liners and

finding that a substantial number of the routes they provide are complex routes, have given us

a belief that there is a practical relevance of this research.

Since the models are of non-trivial complexity, a strong effort has been made in order to

V

strengthen the formulations to make them more computationally efficient. This has been done

by imposing symmetry breaking constraints and valid inequalities. The testing of the strength-

ening formulations show good results for several of them, and they are included in the models

in further computational study.

The instances solved to optimality are comparable in size to the instances in existing literature

of exact methods considering the LS-NDP. The computational results show that the complex

models take significantly longer time to solve to optimality.

The results show the advantage of more complex route structures and how it enables a better

allocation of the vessels. The results from the computational study of the transit time models

indicate that the advantage of allowing more flexible route structures, is amplified as the transit

time requirements get stricter.

Contents

1 Introduction 1

2 Liner container shipping 6

2.1 Containerized goods . 7

2.2 The world fleet . 9

2.3 Global market . 12

2.4 Benefits of liner shipping . 14

3 Literature review 16

3.1 Aspects of liner shipping . 17

3.2 Network design problems . 21

4 Problem description 24

4.1 Modeling assumptions . 25

4.2 Problem in context . 27

5 Basic model 31

5.1 Mathematical formulation . 32

5.2 Subtour elimination constraints . 37

5.3 Linearizations . 40

6 Flower model 42

6.1 Enabling the Flower structure . 42

6.2 Flower formulation . 45

7 Chain model 53

7.1 Twin network . 54

7.2 Chain formulation . 56

8 Transit time extensions 58

8.1 Assumptions and modeling choices . 58

VII

8.2 Basic transit time model . 61

8.3 Flower transit time model . 62

8.4 Chain transit time model . 63

9 Strengthening formulations 64

9.1 Symmetry breaking constraints . 64

9.2 Valid inequalities . 75

9.3 Integer rounding valid inequalities . 83

10 Instance generation 86

10.1 Instance reference scheme . 87

10.2 Parameters . 88

10.3 Network types . 90

10.4 Transit time instances . 93

11 Evaluation of strengthening formulations 95

11.1 Model variant reference scheme . 96

11.2 Symmetry testing . 98

11.3 Evaluation of valid inequalities . 102

12 Computational study 111

12.1 Impact of the size of the route set . 112

12.2 Analysis of the original models . 115

12.3 Analysis of the transit time models . 128

13 Concluding Remarks 137

13.1 Summary and conclusion . 137

13.2 Further research . 138

Bibliography 140

Appendix A Complete mathematical models 146

A.1 Variables, parameters and sets . 146

A.2 Basic model . 149

A.3 Flower model . 154

A.4 Chain model . 159

A.5 Basic transit time model . 160

A.6 Flower transit time model . 161

A.7 Chain transit time model . 162

Appendix B Computational results 163

B.1 Testing of symmetry breaking constraints . 164

B.2 Testing of valid inequalities . 167

Appendix C Attachments 180

List of Tables

2.1 Container ship size categories . 10

2.2 Top 10 leading liner operators . 11

2.3 Top 5 exporting and importing countries . 12

2.4 Top 5 trade routes . 13

2.5 Top 5 container-ports . 13

4.1 Numbers assigned to articles . 28

4.2 Kjeldsen (2011)’s classification scheme . 30

9.1 Example of symmetrical solutions due to route index assignment 66

10.1 Instance reference scheme . 87

10.2 Ship type data . 88

10.3 Transhipment costs . 88

10.4 Visiting costs . 89

10.5 Transit time urgency levels . 94

11.1 Model reference scheme . 97

11.2 Outcome of symmetry testing . 98

11.3 Run time ranking from the symmetry testing for Basic 99

11.4 Average ranking from the symmetry testing for Chain 100

11.5 Individual performance of valid inequalities. 106

11.6 Combinations of valid inequalities for testing . 108

11.7 Results from testing Flower specific valid inequalities 109

11.8 Results from testing Chain specific valid inequalities 110

12.1 Overview of included symmetry breaking constraints and valid inequalities 112

12.2 Run time, best integer solution and gap from testing of the original models . . . 117

12.3 Number of nodes from testing of the original models 119

12.4 Average solving time per node from testing of the original model 120

12.5 Examples of economical results of the original models 123

X

12.6 Difference in number of ships needed . 125

12.7 Run time, best integer solution and gap from testing of the transit time models . 130

12.8 Number of nodes from testing of the transit time models 131

12.9 Relative run times with different order split sizes from testing of the transit time

models . 131

12.10 Total costs with different urgency levels . 133

12.11 Comparison of actual and maximum transit times 136

B.1 Run time results of the symmetry testing of Basic 164

B.2 Results from symmetry testing of Flower . 165

B.3 Results from symmetry testing of Chain . 166

B.4 Results from α-testing for CM + IR-valid inequalities 171

B.5 Results from alpha-testing of the integer rounding 172

B.6 Instance categorization . 179

List of Figures

1.1 Growth in world seaborne trade (1975-2012) . 1

1.2 Maersk Asia-Europe-Roundtrip . 3

1.3 Levels of decision making in liner shipping . 4

2.1 Liner container ship . 6

2.2 Value of seaborne trade . 7

2.3 Global containerized trade (1996-2014) . 8

2.4 The value chain of containerized goods . 9

2.5 The world fleet . 10

2.6 A global market . 12

3.1 Formal definition of the general NDP . 22

4.1 The optimization process . 24

4.2 Calculation of sailing costs . 27

4.3 Relations between the models in the paper . 28

4.4 Different route structures . 29

5.1 A simple route-network . 31

5.2 The effect of SECs . 38

5.3 Subtour elimination . 39

6.1 Examples of flower routes . 42

6.2 Facilitating the flower structure . 43

6.3 Example of internal transhipment . 44

6.4 Illustration of the variables pSijr and pNijr . 50

6.5 Illustration of the variable qimodr . 52

7.1 Chain routes . 53

7.2 Butter-arc . 54

7.3 Twin network . 55

XII

8.1 Transit time . 59

9.1 Symmetric solutions in flower model: loop numbering 69

9.2 Setting first loop in order to break symmetry in Flower 70

9.3 Symmetric solutions in Chain caused by two layers 72

9.4 Illustration of symmetric solutions of simple routes in Chain model 73

9.5 Symmetric solutions in chain model: twin arcs usage 74

9.6 Capacity miles . 76

9.7 Illustration of the D/C valid inequalities . 78

9.8 Illustration of the µir-variable and the κir-variable 81

9.9 Minimum two ports with one visit in the Chain model 83

9.10 Integer rounding . 84

10.1 Generation of network types . 92

11.1 Gap/Time graph from the symmetry testing for Basic 100

11.2 Testing procedure of valid inequalities . 102

11.3 Results from testing the Xpress presolve . 103

11.5 The general valid inequalities’ impact on the number of nodes 107

11.6 Run times of the valid inequality combinations 108

12.1 How run times vary with the route set size . 114

12.2 Objective values by size of route set . 115

12.3 Low run times of the original models . 116

12.4 Medium run times of the original models . 116

12.5 Overview of economical results for original models 122

12.6 Solution network for a H&S-network . 124

12.7 Advantages of complex routes . 126

12.8 Solution network with occurrence of internal transhipment 127

12.9 A different Chain route . 128

12.10 Results with high urgency level . 134

B.1 Xpress preprocessing’s impact on LP objective values. 168

B.2 Xpress preprocessing’s impact on number of nodes. 169

B.3 Xpress preprocessing’s impact on run times. 170

B.4 Capacity miles’ impact on LP objective values. 173

B.5 Capacity miles’ impact on number of nodes. 173

B.6 Capacity miles’ impact on run times. 174

B.7 D/C valid inequalities’ impact on LP objective values. 174

B.8 D/C valid inequalities’ impact on number of nodes. 175

B.9 D/C valid inequalities’ impact on run times. 175

B.10 D/C flow-valid inequalities’ impact on LP objective values. 176

B.11 D/C flow-valid inequalities’ impact on number of nodes. 176

B.12 D/C valid inequalities’ impact on run times. 177

B.13 D/C IR-valid inequalities’ impact on LP objective values. 177

B.14 D/C IR-valid inequalities’ impact on number of nodes. 178

B.15 D/C IR valid inequalities’ impact on run times. 178

B.16 The LP objective values of the models with Xpress-valid inequalities 179

Glossary

l

LS-NDP Liner Shipping Network Design Problem

NM Nautic Mile

TEU The twenty-foot equivalent

FEU The forty-foot equivalent unit

RORO Roll-on/roll-off ships are vessels designed to carry wheeled cargo

Dwt Deadweight tonnage

GDP Gross domestic product

Trade route Trade between an origin and destination group of countries

Butterfly route A route where one port is visited twice by the same route

Flower route A route that can visit one and only one port in the route multiple

times

Chain route A route where multiple ports can be visited at most twice in the

same route

Butterhub A port that is visited multiple times in one route.

Butterarc An arc that is used multiple times in one route.

Transhipment Cargo that is unloaded in a hub and picked up by another vessel.

Internal transhipment Transhipment within the same route.

Exernal transhipment Transhipment among different routes.

XV

Chapter 1

Introduction

An efficient liner shipping network is of great importance both economically and environmen-

tally. The process of designing the service routes of a liner shipping company thus is essential for

the competitiveness of the company and its ability to sustain its share of the global containerized

freight market. The problem of determining the structure of the route network is often referred

to as the liner shipping network design problem (LS-NDP). The LS-NDP is NP-hard (Agarwal

and Ergun, 2010). In this report six comprehensive mixed integer programming (MIP) models

for the LS-NDP are presented. This initial chapter provides an introduction to the problem as

well as the motivation, purpose and focus of our work. At the end of the chapter the content

and organization of the report are presented.

Figure 1.1: The OECD Industrial Production Index and indices for world GDP, world merchandise trade

and world seaborne trade (1975-2012) (1990 = 100). (Asariotis et al., 2014).

1

Chapter 1. Introduction

Motivation. There are particularly four reasons to why there is a great potential of using

operations research (OR) in the liner shipping industry:

1. Increased world seaborne trade. Economic globalization and increased world trade

have led to rapid growth in the liner shipping industry for the last decades. The number of

containers shipped increased at an average rate of 8.2% per year between 1990 and 2010,

and World Shipping Council estimates that 60% of all goods by value are at one point

transported by container ships (World Shipping Council, 2014b). This is more than US $4

trillion worth of goods annually. Figure 1.1 shows that the world seaborne trade has been

growing relatively faster than the world gross domestic product (GDP). A consequence of

the increase in transportation is greater emissions, and the liner shipping industry makes

up nearly 3 % of the world’s total discharge of CO2. In a market as large as the liner

shipping market even a small cost reduction will have great effect both economically and

environmentally.

2. Lower margins. In the last years, when the world economy has seen little growth

following the financial crisis in 2008, the total supply in the shipping market has increased

by 37 %, far more than the worldwide economic growth in the same period, see Figure 1.1.

The oversupply in the freight market leads to lower freight rates, pushing the margins of

the shipping companies (Asariotis et al., 2014). Because of this the shipping companies

are searching for new potential cost reductions.

3. Complexity. The LS-NDP is complex by nature, and it is difficult to capture all the

operating features of liner shipping. The composite traits of the problem make it impossi-

ble for the liner shipping companies to make optimal decisions based on their traditional

planning approaches. The container paths are actually designed manually by experienced

managers. Evidently, manual planning is inefficient and may not find all possible con-

tainer paths (Wang et al., 2013). This demonstrates the great potential of operations

research.

4. Few research efforts on LS-NDP. The liner container shipping industry is more con-

servative than other transportation modes, such as the airline industry (Meng et al.,

2014). The global shipping companies have traditionally been sensitive about their oper-

ating data, and been reluctant to share their data and concerns with researchers. Recently,

however, several leading container shipping companies have sought to use OR methods to

make better decisions because of the increased competition and high bunker prices in the

container shipping industry. Only a few research efforts have actually been implemented

by liner shipping companies, and existing reviews on ship routing and scheduling have

mainly focused on industrial and tramp shipping. Therefore there is clearly a significant

2

Chapter 1. Introduction

opportunity for academic research to address practical containership routing and schedul-

ing problems. This is suggested as an area for future research by among others (Meng

et al., 2014).

Purpose. Kjeldsen (2011) points out that literature related to liner shipping is largely con-

cerned with specific applications which is why the problem formulations and solution methods

are much diversified. The purpose of the work presented in this report is to develop new and

more flexible formulations of the Liner Shipping Network Design Problem (LS-NDP). Our aim

is to include more of the important operating features of the problem in order to represent

the model more realistically - and then again to obtain better solutions. As emphasized above

an improved route network can make a great difference for a liner company. One of the most

challenging aspects of the LS-NDP is the modelling of complex route structures, i.e. routes

where one or several ports are visited more than once. Since complex routes often represent

a major part of the total route schedule provided by a liner company - the rich formulations

enabling complex routes are of great importance.

Figure 1.2 shows Maersk’s Asia-Europe Roundtrip. In this roundtrip Rotterdam and several

other cities are visited twice. Thus this illustrates the practical relevance of enabling complex

routes in the model. To the best of our knowledge previous work on complex route structures

has been scarce and characterized by a high level of simplification. In this report we therefore

have a great focus on the modelling of complex route structures.

Figure 1.2: In Maersk’s Asia-Europe-Roundtrip several ports are visited twice (Maersk, 2014a). This

illustrates the practical relevance of allowing complex route structures in the model.

Level of decision making. Decision problems are often categorized as operational, tactical

or strategic, based on the timeline of planning horizon for the decisions that need to be taken.

For global liner shipping companies it is common to publish their routenet on a yearly basis.

Whether the network design problem is regarded as a strategic or tactical problem differ among

papers. Meng et al. (2014) categorize the LS-NDP as a strategic decision problem. Agarwal

3

Chapter 1. Introduction

and Ergun (2010), on the other hand, defines it as a tactical problem, see Figure 1.3b. How

the two papers view the levels of decision making for liner shipping companies is depicted in

Figure 1.3. This may indicate that LS-NDP is on the border between belonging to the strategic

or tactical category.

(a) Meng et al. (2014) categorize network de-

sign as a strategic problem

(b) Agarwal and Ergun (2008) categorize net-

work design as a tactical problem

Figure 1.3: Levels of decision making in liner shipping. Whether the network design problem is regarded

as a strategic or tactical problem differ among papers.

Priorities and trade-offs. The terms reality representation and solution speed are classical

trade-offs in OR-modeling, and refer to the simple fact that an “increase” in a model’s reality

representation will almost always lead to a decrease in solution speed. As both normally are

seen to be positive from a users’ point of view, they introduce a difficult trade-off in practical

modeling (Nygreen et al., 1998). Considering the fact that this usually is a problem that only

needs to be solved at most every year, we have given the solution speed lower priority than the

reality representation. However, we have attempted to find other ways of reducing the solution

speed, and made a great effort in finding and testing different symmetry breaking constraints

and valid inequalities to strengthen the formulations.

Content and organization. The report is organized as follows; In Chapter 2 we present

the liner container shipping industry, where we look into the world of liner shipping and con-

tainerized goods. We then review relevant literature in Chapter 3. In this chapter we look into

important aspects in liner shipping and how these are handled in different papers, and also

different network designing problems and how these relate to the LS-NDP. This is followed by

our problem description in Chapter 4.

The mathematical formulations are presented in Chapters 5 to 8. First, we present the Basic

4

Chapter 1. Introduction

model in Chapter 5, a formulation that only allows simple routes. In Chapter 6 and Chapter 7

we present two models that allow for more complex route structures, the Flower model and the

Chain model, respectively. In Chapter 8 the three models are extended in order to incorporate

transit time.

In Chapter 9 we propose different symmetry breaking constraints and valid inequalities in order

to strengthen the formulations presented in Chapter 5-7. In Chapter 10 we describe the instances

used in the computational study. The strengthening formulations are tested and evaluated in

Chapter 11. Technical and economical results from a computational study are discussed in

Chapter 12, before we conclude and make suggestions for further research in Chapter 13.

5

Chapter 2

Liner container shipping

There are generally three modes of operations in shipping: industrial, tramp, and liner (Lawrence,

1972). Industrial shipping is characterized by cargo owner also owning the ship. Tramp ships

are like taxis as they follow the available cargo and liners, see Figure 2.1 are operated some-

what like bus lines with a published itinerary and schedule (Christiansen et al., 2004). Liner

shipping routes are characterized by cyclic routes repeatedly sailed during a scheduled horizon

and transhipment of cargo in hub ports. Liner ships have huge capacities in which makes one

journey very efficient.

Figure 2.1: Liner container ship

The liner shipping industry has contributed to advances in the standard of living of most of

the world’s population in the last 35 years, as the gains from trade through advancing global

commerce were enabled by a reliable, efficient and relatively low-cost transportation provided

by the industry (Insight, 2009).

6

Chapter 2. Liner container shipping

According to the World Shipping Council (WSC) 1 there are approximately 400 liner services

in operation today, most providing weekly departures from all the ports that each service calls.

Liner shipping companies publish their service routes, with fixed sequences of ports of call at a

regular service frequency, to attract cargo. A liner ship service route may not have an origin or

destination as the voyages become closed routes (Rönen, 1983).

Liner shipping mainly involves transporting containerized cargo on the regularly serviced routes.

In this we consider liner shipping with containerized cargo, and this industry will be described

in the following sections.

2.1 Containerized goods

Maersk, one of the world’s largest overseas cargo carriers, writes about containers on their

webpages; ”Over the past 60 years this unremarkable metal box has overhauled global industry

and transformed world trade, kickstarting the modern age of consumerism” (Maersk, 2014b).

Figure 2.3 shows how the growth in containerized trade has been the last 18 years. Today, more

than 50% of the value of global seaborne trade is transported in containers, see Figure 2.2.

Figure 2.2: Half of the value of world seaborne trade is

transported in containers (World Shipping Council, 2014a).

Container shipping uses containers

of various sizes to load, transport,

and unload goods. The container

sizes are standardized so that the

containers can be most efficiently

stacked and so that ships, trains,

trucks and cranes at the ports can

be specially fitted or built to a single

size specification. The two most im-

portant, and most commonly used

sizes today, are the 20-foot (TEU)

and 40-foot (FEU) lengths. The 20-

foot container is considered the in-

dustry standard reference so cargo volume and vessel capacity are commonly measured in TEU

(World Shipping Council, 2014a).

1The World Shipping Council is the peak industry trade group representing the international liner

shipping industry

7

Chapter 2. Liner container shipping

Figure 2.3: Global containerized trade, 1996–2014 (Millions of TEUs and percentage annual change).

(Asariotis et al., 2014)

History of containerization

Modern container shipping has existed since 1961, when the international standards for con-

tainer size was agreed on. Since then this method of transport for goods has grown steadily.

However, according to the World Shipping Council, the idea of using some type of shipping

container was built on old concepts. Boxes similar to modern containers were used for combined

rail- and horse-drawn transport in England since 1792. The US government used small standard-

sized containers during the Second World War, which proved a means of efficiently unloading

and distributing supplies. In 1955, Malcom P. McLean, a trucking entrepreneur from North

Carolina, USA, bought a steamship company with the idea of transporting entire truck trailers

with their cargo still inside. He realized it would be much simpler and quicker to have one

container that could be lifted from a vehicle directly on to a ship without first having to unload

its contents (World Shipping Council, 2014a).

McLean’s ideas were based on the theory that efficiency could be vastly improved through a

system of intermodalism, in which the same container, with the same cargo, can be transported

with minimum interruption via different transport modes during its journey. Containers could

be moved seamlessly between ships, trucks and trains. This would simplify the whole logistical

process and, eventually, implementing this idea led to a revolution in cargo transportation and

international trade over the next 60 years (World Shipping Council, 2014a).

8

Chapter 2. Liner container shipping

The value chain

Goods transported by ocean containers on liner ships can be placed into the container at the

factory origin. The container is locked and sealed so the goods can be safely secured inside the

container until it arrives at the purchaser’s warehouse, factory or store.

Figure 2.4: The value chain of containerized goods in liner shipping. The global supply chains connect

producers on one side of the planet to consumers on the other (Asariotis et al., 2014).

The value chain of containerized goods is illustrated in Figure 2.4. An example of a process

can be described as follows: A store places an order of a product manufactured far away. The

company works with a freight forwarder to arrange transport from the factory for the shipment.

A trucking company, the freight forwarder, arrives at the factory, loads the order, along with

orders from many other retailers, into a container. The container will not be opened until it

arrives at its final destination, unless customs officials decide to open it and inspect it. The

freight forwarder trucks the container to a port. The freight company has contracted with a

liner shipping company, which must submit documentation, socalled “manifest data”, about the

shipment to government authorities in the exporting and importing countries. The container is

loaded onto a ship and shipped to its destination port, or a port where it is transhipped and

picked up by another liner ship. When the vessel arrives at its destination port, large cranes

are used to unload the containers of cargo. Workers load the containers onto a truck. If the

destination is far away the containers are often transported by trains. The truck arrives at its

destination.

2.2 The world fleet

World Shipping Council reports that there are approximately 4,900 container ships in today’s

global fleet and that there are approximately 600 new vessels on order. In an average year

9

Chapter 2. Liner container shipping

a large container ship travels about 290 000 km. To put this in perspective - this distance

corresponds to more than seven times around equator. The average age of a container ship in

the world fleet is 11.34 years (Asariotis et al., 2014).

Figure 2.5 shows the composition of the total world fleet. Container ships make up 12,8% of

the world fleet in year 2014, which is a huge increase compared to 1.5% in 1980.

Figure 2.5: World fleet by principal vessel types, 1980–2014 (Beginning-of-year figures, percentage share

of dwt) (Asariotis et al., 2014).

Container liners

Container ships are distinguished into seven major size categories (see Table 2.1): small feeder,

feeder, feedermax, panamax, post-panamax, new panamax and ultra-large (Vesterager, 2012).

Name Capacity (TEU)

Ultra Large Container Vessel (ULCV) 14,501 and higher

New panamax 10,000–14,500

Post panamax 5,101–10,000

Panamax 3,001 – 5,100

Feedermax 2,001 – 3,000

Feeder 1,001 – 2,000

Small feeder Up to 1,000

Table 2.1: Container ship size categories, based on capacity (TEU) (World Shipping Council, 2014a).

10

Chapter 2. Liner container shipping

Container ships carry their containers both on and below deck. Deck-stowed containers on an

11,000 TEU vessel are stacked up to seven to eight high and nineteen across, inter-locked with

fittings and secured by special lashings. Ships generally carry a mix of 20-foot and 40-foot

boxes. Most can also carry 45-foot and 48-foot containers on deck and some can carry 53-foot

containers as well.

Container ships have grown in size from just 1,500 TEU in 1976 to ships able to carry in excess

of 12,000 TEU today, with some ships on order capable of carrying 18,000 TEU. Today’s ships

are not only able to carry more goods in one voyage, they are much more fuel efficient (World

Shipping Council, 2014a).

Operators

From Table 2.2, we see that as per 1 January 2014, the largest container-ship operator in terms

of container carrying capacity in TEU is MSC, based in Switzerland. It is followed by Danish

Maersk Line and French CMA-CGM. Many of the ships deployed by the operators are in fact

not owned by them, but leased from so-called “charter owners”. In early 2014, it is estimated

that about 60% of the order book of new container ships is on account of these charter owners,

while the remaining 40% are ordered by the liner operators themselves; historically, the rela-

tionship used to be more in the range of 50:50 between operators and charter owners (Asariotis

et al., 2014).

Rank Operator Country Vessels TEU

1 Mediterranean Shipping Company S.A. Switzerland 461 2 609 181

2 Maersk Line Denmark 456 2 505 935

3 CMA CGM S.A. France 348 1 508 007

4 Evergreen Line China 229 1 102 245

5 COSCO Container Lines Limited China 163 879 696

6 Hapag-Lloyd Aktiengesellschaft Germany 159 762 613

7 China Shipping Container Lines Comp. Ltd China 134 750 644

8 Hanjin Shipping Company Limited Korea 115 671 210

9 APL Limited Singapore 121 629 479

10 United Arab Shipping Company (S.A.G.) Arab states2 73 610 294

Table 2.2: The 10 leading liner companies, 1 January 2014 (Number of ships and total shipboard capacity

deployed, in TEUs, ranked by TEU) (Asariotis et al., 2014).

11

Chapter 2. Liner container shipping

2.3 Global market

According to the World Shipping Council liner shipping could lay claim to be the world’s first

truly global industry. Likewise it could claim to be the industry which, more than any other

makes it possible for a global economy to work. It connects countries, markets, businesses and

people, allowing them to buy and sell goods on a scale not previously possible.

The needs of a rapidly growing world population can only be met by transporting goods and

resources between countries. The liner shipping industry has made this process more efficient

and changed the shape of the world economy. This benefits consumers by creating choice,

boosting economies and creating employment. Costs for the consumer are kept down and

efficiencies are improved and this in turn minimizes impact on the environment as well World

Shipping Council (2014a).

Figure 2.6: A global liner shipping network with 166 ports (Wang et al., 2013).

Global containerized trade grew by 4.6 % in 2013 taking total volumes to 160 million TEUs,

up from 153 million TEUs in 2012. Together, intraregional (led by intra-Asian trade) and

South–South trades accounted for 39.8 % of global containerized trade shipments in 2013, fol-

lowed in descending order by North–South trade, the trans-Pacific, Far East–Europe, secondary

East–West and transatlantic (Asariotis et al., 2014).

Rank Exporter TEUs (Millions) Importer TEUs (Millions

1 China 31.3 United States 17.6

2 United States 11.2 China 12.0

3 Japan 5.7 Japan 6.1

4 South Korea 5.2 South Korea 4.5

5 Taiwan 3.4 Germany 2.8

Table 2.3: Top 5 exporters and importers of containerized cargo in 2010 (World Shipping Council, 2014a).

12

Chapter 2. Liner container shipping

Table 2.3 shows the top five exporters and importers of containerized cargo, respectively. On

the export side, liner trade is dominated by countries in East Asia, with China in a class on its

own exporting more than the four following countries together.

Trade route TEUs shipped (Millions)

Asia - North America 22.0

Asia - North Europe 13.4

Asia - Mediterranean 6.2

North Europe - North America 4.6

Asia - Middle East 4.1

Table 2.4: Top 5 trade routes (TEU Shipped) 2012 (World Shipping Council, 2014b).

According to Asariotis et al. (2014) liner exports are highly concentrated, with the top ten

exporting nations accounting for more than two-thirds of the total liner export value, and

Greater China 3 account for 28% of the value of liner exports and 30% of the global volume of

containerized exports. This is also confirmed by Table 2.4, where we can see that Asia is a part

of four of the top five largest trade routes.

Rank Port Country TEUs (Millions)

1 Shanghai China 32.5

2 Singapore Singapore 31.6

3 Hong Kong China 23.1

4 Schenzen China 23.0

5 Busan South Korea 17.0

Table 2.5: Top 5 ports with most container traffic (TEU Shipped) in 2012 (American Association of Port

Authorities, 2013).

Since ports handle a variety of traffic other than containerized shipments, one must rank based

on container traffic in order to get a measure for the most active container ports, see Figure

2.5.

3Mainland China, Hong Kong S.A.R. and Taiwan, China.

13

Chapter 2. Liner container shipping

The Top 50 container ports represent 30 countries demonstrating the truly global nature of the

liner shipping business and the importance of the network of ports that facilitate timely and

efficient ship and cargo movement (World Shipping Council, 2014a).

2.4 Benefits of liner shipping

International liner shipping is a sophisticated network of regularly scheduled services that trans-

ports goods from anywhere in the world to anywhere in the world at low cost and with greater

energy efficiency than any other form of international transportation. In this section we high-

light some of the benefits of liner shipping.

With rates for sea cargo transportation at approximately one-tenth of air freight rates, fewer

accidents and less pollution, maritime transportation is regarded as a cheap, safe, and clean

transportation mode, compared with other modes of transportation.

Efficiency. Liner shipping is the most efficient mode of transport for goods. In one year, a

single large containership might carry over 200,000 container loads of cargo. While individual

ships vary in size and carrying capacity, many container ships can transport up to 8,000 con-

tainers of goods and products on a single voyage. Similarly, on a single voyage, some car carrier

ships can handle 7,600 cars. It would require hundreds of freight aircraft, many miles of rail

cars, and fleets of trucks to carry the goods that can fit on one large liner ship (World Shipping

Council, 2014a).

Global economic engine. Liner shipping connects countries, markets, businesses and peo-

ple, allowing them to buy and sell goods on a scale not previously possible. Today, the liner

shipping industry transports goods representing approximately one-third of the total value of

global trade. Additionally, as a major global enterprise in its own right, the international ship-

ping industry is responsible for millions of existing jobs and plays a crucial role in stimulating

new jobs. It contributes hundreds of billions of dollars to the global economy annually thereby

increasing gross domestic product in countries throughout the world. Moreover, as the lifeblood

of global economic vitality, ocean shipping contributes significantly to international stability and

security

Low environmental impact. Ocean shipping is the most carbon-efficient mode of trans-

portation and produces fewer grams of exhaust gas emissions for each ton of cargo transported

than air, rail, or road transport. In addition, new International Maritime Organization regula-

tions establish strict standards for vessels’ NOx, SOx, and particulate matter emissions. Also,

14

Chapter 2. Liner container shipping

the millions of containers that are used around the world are 98 % recyclable. Additionally, the

CO2 emissions per ton cargo transported using maritime transport is significantly lower than

road and rail transport (Karsten et al., 2015).

15

Chapter 3

Literature review

This chapter provides an overview of literature relevant to the Liner Shipping Network Design

Problem (LS-NDP). As mentioned in Chapter 1, the volume of publications about service route

planning is fairly limited, because of the confidentiality that often shrouds highly commercial

information such as service patterns, alliance operations and marketing strategies. Meng et al.

(2014) note the gap between existing academic studies and industrial practices within the in-

dustry. Kjeldsen (2011) points out that literature related to liner shipping is largely concerned

with specific applications which is why the problem formulations and solution methods are much

diversified.

As seen in Figure 1.3 it is common to distinguish between the problem of designing the routes,

the Network Design Problem (NDP), and the deployment of the fleet, the Fleet Deployment

Problem (FDP). The former is the problem of designing the routes, while the latter is concerned

with assigning ships to the routes. In this paper the main focus is on designing the routes, while

the fleet deployment problem will be solved implicitly as a part of this problem. Moreove, Meng

et al. (2014) emphasize that the NDP is associated with the tactical-level problems and thus

cannot be investigated in isolation. Because of this we have examined papers about both the

NDP and the FDP, and some other decisions associated with liner shipping.

Since the LS-NDP consists of two fields of study namely Liner Shipping and Network Design

Problems, we found it natural to divide the investigation of literature into two parts. In Section

3.1 we discuss how important aspects of liner shipping are handled in the literature, while we

in Section 3.2 review literature about general network design problems. Throughout the review

we point out how previous research about the LS-NDP relates to the work in this report.

16

Chapter 3. Literature review

3.1 Aspects of liner shipping

In this section we will go through key features one must adhere to when constructing routes in

liner shipping, and see how these are dealt with and discussed in the literature.

Sailing speed and fuel consumption. The sailing speeds have a significant impact on

the total operating costs. According to Meng et al. (2014) many researchers have used the

power of three relation in their studies, i.e. that the daily bunker consumption is approximately

proportional to the speed cubed.

Socalled slow steaming, i.e. the practice of operating transoceanic container ships at significantly

less than their maximum speed, is an increasingly popular method used to save money on fuel.

Slow steaming is currently often seen as a win-win-win proposition – delivering value through

a balanced “people-profit-planet” approach, but it is unclear if under a changing economic and

business environment slow steaming will sustain (CNSS, 2013).

According to Meng et al. (2014) most studies of LS-NDP and FDP have assumed that ships

sail at predetermined speed, which implies that they do not take into account the possibility of

slow steaming. For instance Fagerholt (1999), Christiansen and Nygreen (1998) and Agarwal

and Ergun (2008) relied on the assumption that all ships have the same sailing speed. Alvarez

(2009) discretized the speed range and considered each combination of ship type and speed

interval a separate ship type. This was done because a containership may vary its speed within

a certain range.

In this study we assume fixed sailing speed for each ship type, and thus the possibility of slow

steaming is not taken into account.

Frequency requirements. Christiansen and Nygreen (1998) write that recent efforts in

liner container shipping have generally adopted the weekly frequency because global liner ship-

ping companies usually provide weekly shipping services. Examples are Fagerholt (1999), Chris-

tiansen and Nygreen (1998) and Agarwal and Ergun (2008) who have a weekly frequency re-

quirement on the routes. In Reinhardt and Pisinger (2011) a port is allowed to be visited less

than once a week. However, they do not assume weekly demand as we do in this thesis. In this

report we assume weekly frequency requirements.

Repositioning of empty containers. A serious challenge associated with containerized

shipping is the repositioning of empty containers. Because of the huge imbalance in trade

volume on some routes, carriers need to reposition empty containers, incurring significant costs.

According to ROI (2002), a 10% reduction in equipment and repositioning costs can potentially

17

Chapter 3. Literature review

increase profitability by 30-50% (Agarwal and Ergun, 2008). The model provided by Agarwal

and Ergun (2008) has, with some modifications, the flexibility to incorporate empty container

repositioning. Cheung and Chen (1998) study empty container repositioning, however, the

paper only considers the movement of empty containers on a given network. In this report we

do not consider empty container repositioning.

Alliance strategies. In their latest report United Nations Conference on Trade and Devel-

opment (UNCTAD) state that building shipping alliances is becoming an important strategy for

shipowners to control costs and maximize capacity utilization on larger ships (Asariotis et al.,

2014). Agarwal and Ergun (2010) present three factors that drive carriers to adopt solutions

outside of their traditional business practices and collaborate with their competitors: (i) liner

shipping is a capital-intensive industry; (ii) large containerships produce economies of scale,

however, they require a longer period for container accumulation, resulting is a less frequent

service; (iii) alliances help carriers to explore new markets and enhance their service scope. Song

and Panayides (2002) applied cooperative game theory to analyze cooperation among members

of liner shipping strategic alliances, producing a conceptual framework that enhanced under-

standing of interorganizational relationships and decision-making behavior in the liner shipping

sector.

The possibility of collaborations and alliances is not taken into account in this report. We

assume one single actor that operates individually with no interference with other operators.

Fleet composition. Some papers assume a homogeneous fleet, while some arrange for ships

that differ in terms of capacity, speed and cost structure, i.e. a heterogeneous fleet. An example

of the former is Sambracos et al. (2004) who carried out a case study on the feeder ship route

design used to dispatch small containers in the Aegean Sea, from one depot to 12 other ports.

They assumed a homogeneous fleet that aimed to meet the minimum operating costs, including

fuel consumption and port changes. Agarwal and Ergun (2008) on the other side incorporated

a heterogeneous fleet in their model.

Perakis and Jaramillo (1991) and Jaramillo and Perakis (1991) implicitly and unrealistically

assumed that the number of ships allocated on a route was a continous rather than a integer

decision variable. Powell and Perakis (1997) presented an IP model to remedy this unrealistic

assumption.

In the model presented in this report we also model the number of ships on a route an integer

variable, and we allow a heterogeneous fleet with different ship types.

18

Chapter 3. Literature review

Route structures. A huge challenge in liner shipping network design is how to allow flexible

route structures. One of the main reasons for this is that complex route structures complicate

the calculation of the transhipment cost. Among existing literature the models either allow only

simple routes or a mix of butterfly routes and simples routes.

Agarwal and Ergun (2008) model butterfly routes by using a time-space graph where a port

can be visited several times as long as the visit is not on the same weekday. Butterfly routes

are routes where at least one port is visited more than once. Another way to put it is a cargo

route that encompass a combination of cycles rather than a single cycle. However, they do

not consider the transhipment costs that can occur in the intermediate port. Reinhardt and

Pisinger (2011) present a mathematical formulation which allows butterfly routes and also takes

into account the transhipment cost. Transhipment is further discussed in the next paragraph.

Note that Reinhardt and Pisinger (2011)’s definition of butterfly routes is more restrictive than

the definition used in this report - they define butterfly routes as routes where one port is visited

twice.

We have not found any articles that provide models that enable route structures with more

than two visits to the same ports, nor to have several ports in a route that are visited more

than once. In this report we present two different approaches that enable more flexible route

structures; the Flower model and the Chain approach. The former allows for multiple visits

to one single port in a route, while the latter allows a route to have several ports that can

be visited twice. The models presented in this report are therefore more general than the one

presented by Reinhardt and Pisinger (2011) in terms of route structures.

Transhipment and transhipment costs. Transhipment is the shipment of goods to an

intermediate destination, then to yet another destination. Reasons for transhipment can be for

consolidation or deconsolidation purposes, i.e. to combine small shipments into a large shipment

or divide the large shipment at the other end, respectively. Transhipment usually takes place

in transport hubs.

A few decades ago the use of transhipment was much less common, and older articles such as

Rana and Vickson (1991) do not include transhipment in their route planning. The use and

influence of transhipment on the liner shipping network design is described by Notteboom and

Rodrigue (2008). Whether or not transhipment operations are allowed between the routes differ

from paper to paper. In a classification done by Meng et al. (2014) 8 out of 12 of the papers

on fleet deployment did not consider transhipment.

In Agarwal and Ergun (2008) transhipment is considered, however they do not include the

associated cost. They explain this with the tremendous increase it will cause to the size of the

graph. In their concluding remark they write: ”Our results indicate high percentage utilization

19

Chapter 3. Literature review

of ships’ capacities and a significant number of transhipment in the final solution”. When

the transhipment cost is not taken into account the transhipment in the optimal solution will

probably be inexpendiently big.

Reinhardt and Pisinger (2011) argue that transhipment of goods is frequently occurring in liner

shipping and the associated cost should not be ignored when designing the network. They claim

that their paper presents the first exact solution methods to the LS-NDP with transhipment

cost.

More complex route structures allow for transhipment within the same route, because a route

can tranship to itself because it visits the same port multiple times. This type of transhipment

is denoted internal transhipment in this report. The cost of internal transhipment is also

included in Reinhardt and Pisinger (2011). They write about internal transhipment; ”In models

where each port is represented by one vertex at the points where two cycles are connected a

transhipment from an early visit of a vessel to a later visit of the same vessel can occur. [..] this

results in complications in the calculation of transhipment costs.” The internal transhipment

offers challenges in the modeling process because it is quite comprehensive to be able to capture

the internal transhipment happening in a port.

To capture the internal transhipment Reinhardt and Pisinger (2011) enumerate the edges on

the route and marks the first and last edge on the entire route. This is done to be able to

distinguish between two visits to the same centerports. 1

Transhipment and transhipment costs, for both external and internal transhipment, are incor-

porated in our models. Capturing the value of the internal transhipment is very complicated in

the Flower model and how this is done is thoroughly described in Chapter 6.

Uncertain future demand. Meng et al. (2014) classify a number of papers as to if they

incorporate deterministic or stochastic demand in the model. Of the in total 14 papers they

reviewed 3 of them model stochastic demand while 11 assume deterministic demand. Meng

and Wang (2011) analyzed a multi-period fleet planning problem. They assumed that container

shipment demand varied between periods, and that the liner shipping company could sell,

purchase, charter out ships at the beginning of each period.

Meng et al. (2012) modeled a two-stage stochastic integer programming model in order to take

into account their assumption of uncertain demand as a random variable with known probability

distribution.

1In Reinhardt and Pisinger (2011) the term centerport corresponds to what we in this report call the

depot, i.e. a port visited more than once in a butterfly route, or the arbitrarily chosen reference port in

a simple route.

20

Chapter 3. Literature review

In this paper we assume a deterministic weekly demand.

Pollution. Some studies have focused on the CO2 emissions of ships. Psaraftis and Kontovas

(2010) analyzed the implications of various maritime emission-reduction policies for maritime

logistics. They concluded that important trade-offs may have to be made between the environ-

mental benefits between associated with such measure as a reduction in steaming speed and

changes in the number of vessels in fleet, and more conventional logistics attributes such as

in-transit inventory holdings.

In this study we have not considered pollution explicitly. The considerations we take regarding

this is limited to the fact that an optimal economical solution will promote short sailing distances

and minimal fleet usage - and is in this way incentive compatible with an objective to reduce

the pollution.

Transit time. The transit time is the time it takes a commodity to travel from origin to

destination. Transit time is counted in days and allowed transit times may vary from one day

to several months (Brouer et al., 2014). Offering short transit time is a major competitive

factor for liner shipping companies, especially when the goods transported are time sensitive,

such as fashion and computers (Notteboom, 2006). Implications of travel time restrictions are

not well-studied in connection with LSND, but have recently been studied in connection with

related problems (Karsten et al., 2015). According to Notteboom (2006) it is very difficult for

link-based formulations to incorporate service-level considerations in terms of the O–D transit

time. Brouer et al. (2014) states that in liner shipping there is an inherent trade-off between

reducing the bunker consumption through speed reduction and achieving competitive transit

speed for cargo.

Karsten et al. (2015) studies the consequence of neglecting the transit time restrictions in

existing networks, and shows that it is essential to include transit time constraints in LSND.

In this paper we extend the models to incorporate a maximum transit time for each order in

the network.

3.2 Network design problems

Cieslik (2009) defines a network as a connected graph with a length-function. The general

Network Design Problem (NDP) is a combinatorial problem where the objective is to find

the optimal subgraphs that satisfy certain connectivity requirements. In Figure 3.1 a formal

definition of the general NDP is presented:

21

Chapter 3. Literature review

Figure 3.1: Formal definition of the general NDP (Korte and Vygen, 2006).

The multi-commodity network flow problem is an important sub-problem in several heuristics

and exact methods for designing route networks for container ships (Karsten et al., 2015).

Complexity. Network design problems are of nontrivial complexity. In fact, Johnson et al.

(1978) prove that the NDP is NP-complete even in the simple case where all edge weights are

equal and the budget restricts the choice to spanning trees. The LS-NDP is NP-hard (Agarwal

and Ergun, 2008). This means that we cannot expect to find a polynomial-time algorithm that

will produce the optimal solution.

Applications. Network design problems span a wide range of applications, from modeling

the evolution of species in biology to modeling soap films for grids of wires; from the design of

collections of data to the design of heating or airconditioning systems in buildings; and from the

creation of oil and gas pipelines to the creation of communication networks, road and railway

lines (Cieslik, 2009).

Schmid (2014) presents a model formulation for the bus rapid transit route design problem,

given a fixed number of routes to be offered. They use a decomposition strategy, where route

design and the determination of frequencies and passenger flows are dealt with separately. Due

to the complexity of the problem they propose a hybrid metaheuristic based on a combination

of Large Neighborhood Search (LNS) and Linear Programming (LP), and the decision upon the

design of routes is handled using LNS. The proposed algorithm is able to obtain high quality

solutions within short computational times.

Many of the problems associated with liner shipping are similar to those addressed by airlines:

among them aircraft routing and airline fleet assignment. Barnhart et al. (1998) present a single

model and solution approach to solve simultaneously the fleet assignment and aircraft routing

problems. Their approach is robust in that it can capture costs associated with aircraft con-

nections and complicating constraints such as maintenance requirements. However, according

to Meng et al. (2014), the problems associated with liner container shipping are generally more

22

Chapter 3. Literature review

challenging than the corresponding problems for airlines, because of its more complex opera-

tions. For instance, a flight generally has only two one or two legs and a liner service route may

have 10-20 legs.

LS-NDP. Maritime transportation has attracted much less research effort than other trans-

portation areas, such as public transit analysis, airline management, and general vehicle routing

problems (Psaraftis, 1999). Among the research done on maritime transportation, even fewer

studies are devoted to liner shipping, compared to industrial and tramp shipping.

Heaver and Uyeno (1987) proposed an analytical model for planning liner container ship-

ping operations. They first enumerated all possible ship routes and then developed a set-

partitioning model to choose the optimal set of ship routes that would satisfy the shipping

requirements.Fagerholt (1999) contributed a pioneering study in the feeder network category.

He proposed a set-partitioning model by enumerating all possible shipping service routes and

combining these single shipping service routes if possible. The model relied on the assumption

that all ships have the same sailing speed, while Fagerholt (2004) extended the model to address

a heterogeneous ship fleet with a given cost structure, capacity and speed for each type.

Recall that the LS-NDP is NP-hard. In Reinhardt and Pisinger (2011) they developed an exact

B&C algorithm to solve instances up to 15 ports. As far as we are concerned this appears to

be the state of the art when it comes to exactly solving LS-NDP instances.

The models in this paper are arc-flow formulations that construct the routes they solve the

problem, i.e. not a path-flow formulation like the one presented by Heaver and Uyeno (1987).

Another characteristic of the models are that they are not tailored towards a special type of

network, and are thus more general than the one Fagerholt (1999) presents.

23

Chapter 4

Problem description

Figure 4.1: The stages in the optimization pro-

cess. The problem description captures the

essence of the real problem into a simplified

problem.

The previous chapters have given an introduction

to the purpose of this report, the LS-NDP and

the liner shipping industry. We have described the

challenges related to the problem - both in terms of

reality representation, uncertainty and complexity.

In this chapter we boil this down to a problem de-

scription with accompanying assumptions and sim-

plifications. The problem description’s role in the

optimization process is illustrated in Figure 4.1.

We study the Liner shipping network design prob-

lem (LS-NDP) which consists of designing optimal

vessel routes with an associated fleet of vessels, so

that the forecasted demand is satisfied with a min-

imal cost for the company. The problem is consid-

ered from the point of view of a ship owner oper-

ating a heterogeneous fleet of vessels.

In order to reflect a realistic situation we take into

account multiple pickups and deliveries, the cost of

transhipment and route dependent capacities. In

Chapter 5 we present a basic model of the problem

- only allowing simple routes. In Chapter 6 and

Chapter 7 we extend this model, the Basic model,

and present two models that incorporate more complex route structures, namely the Flower

model and the Chain model. In Chapter 8 we present extensions of all these three models where

24

Chapter 4. Problem description

we introduce transit time. When nothing else is specified the assumptions and simplifications

made apply on a general basis, i.e. for all six models.

4.1 Modeling assumptions

Minimization of costs. The goal of the ship owner is to minimize costs by designing the

optimal routes. We consider three types of costs in this model:

• Sailing costs

• Transhipment costs

• Visiting costs

There are, obviously, several other types of costs that accrue for a liner shipping company.

However, we have taken into account the costs based on their magnitude and also the impact

they will have on differentiating different route structures from each other. We find this is a

reasonable assumption considering that bunker costs constitute up to 60% of the total ship

operating costs. Other costs we could have included are: the cost of using a vessel, maintenance

costs, route costs, steaming costs, and the cost of empty container repositioning.

Deterministic demand. We assume a known deterministic constant weekly demand. This

means that the model must ensure that if there is a demand Dod from port o to port d, Dod

must be transported from o to d every week.

Weekly service frequency. A weekly service frequency is a convention in the industry.

It should be noted that there are exceptions, e.g., Maersk Line provides a daily Asia-Europe

shipping service called Daily Maersk, which is more competitive than weekly services. In our

model we make the simplification of a weekly frequency requirement on all routes.

Constant sailing speed. We assume the speed of each ship type to be constant. This

clearly is a limiting simplification when we know that in reality the sailing speeds of ships have

a significant impact on the total operating costs. An increase of just a couple of knots results in

a dramatic increase in bunker consumption (Notteboom and Rodrigue, 2008). This means that

our model does not facilitate the possibility of slow steaming. Slow steaming is a cost-effective

option to reduce CO2 emissions in the short-term (Cariou, 2014).

25

Chapter 4. Problem description

Only one ship type per route. Because of the constant weekly demand there will have

to be only one ship type per route to comply with the weekly frequency demand. This is

in accordance with the tendency towards ships remaining on the same route throughout the

planning horizon (Kjeldsen, 2011).

Steady state model. Since all demands must be picked up and the weekly demand is

constant, the frequency of a route is also constant. This implies that it is not necessary to

specify a time period in the model, nor the origin and destination ports for the vessels, because

the behavior of the system will be equal at all times.

Heterogenous fleet. Our model takes into account a heterogeneous fleet. The ship types

can differ by the following characteristics:

• Speed

• Capacity

• Sailing cost

• Visiting costs at the ports

Symmetric sailing distances and triangle inequality. The network is expected to be

undirected, i.e. we presume symmetric sailing distances. We assume that the direct connection

between two ports will always be the fastest route between them.

Transhipment. Transhipment and transhipment cost are included in the model, however the

transhipment cost is independent of how long time the cargo spend at a port. The transhipment

of containers at a container port or terminal is defined as the number of containers (expressed

in TEU) of the total container flow that is handled at the port and, after temporary storage in

the stack, transferred to another ship to reach their destinations. There can be transhipment

in all ports, and we assume heterogeneous types.

Calculation of sailing costs. Because of the weekly frequency requirement the number

of vessels assigned to a route has to be greater than the number of weeks it takes to sail the

route for that particular ship type. E.g. if a route takes 10.8 weeks to sail it needs 11 vessels

to fulfill the frequency requirement. Since we assume constant sailing speed, i.e. if a ship is

assigned to a route it will sail in the predefined speed at all times, this implies that if a route

takes 10.8 weeks to sail and needs 11 ships - the sailing cost will be the same as if the route

26

Chapter 4. Problem description

Figure 4.2: Calculation of sailing costs. All vessels sail at constant speeds. This means that the sailing

cost is related to how many vessels the route needs, and not directly to the length of the route.

would have taken 11 weeks to sail, because all the 11 vessels have to sail ”all the time” anyway.

This corresponds to that the vessels have to take an extra loop to ensure that the route takes

an integer number of weeks to sail. This is illustrated in Figure 4.2. Since all vessels sail at

constant speed the calculation of sailing cost is related to how many vessels the route occupies,

and not directly to the length of the route.

Route structures. As has been stated before; in this report six models for the LS-NDP

are presented; the Basic model, the Flower model and the Chain model, along with the transit

time extensions of these. So far all the assumptions mentioned above apply for all of them.

Except from the transit time extension, the manner in which the models differ is what kinds of

route structures they enable. Exactly what kinds of route structures the different models allow

are thoroughly explained in the models’ respective chapters. Figure 4.4 show different route

structures along with their names and characterizations.

4.2 Problem in context

Kjeldsen (2011) has developed a classification scheme for the LS-NDP. The classification scheme

has eighteen characteristics with anywhere from two to eight possible options (Kjeldsen, 2011).

Twenty-four articles within ship routing and scheduling published between 1969-2010 are clas-

sified. The purpose of the classification is to enable a more informed choice of which model to

use in a specific case. Table 4.2 shows the classification scheme and the 24 classified articles

given in Table 4.1. To put our models into context we have marked the classification options

that apply for them with an *, so to see where the models are placed in the territory of LS-NDP.

27

Chapter 4. Problem description

Figure 4.3: The functionality of the six models presented in this paper differs in two dimensions; whether

or not they incorporate transit time and what kind of route structures they enable. The Flower and

Chain models enable different kinds of complex routes.

Even though it has been written several important articles since this classification was performed

(e.g. Reinhardt and Pisinger (2011)), the classification says something about what has tradi-

tionally been emphasized and what has been neglected in liner shipping routing and scheduling

models. An observation from the categorization is that only 3 of the 24 classified articles take

into account transhipment cost. Based on the importance of transhipment described in the

former chapter, this is an indication that there is a need for more models incorporating this.

1 Kydland (1969) 13 Fagerholt (2004)

2 Olson et al. (1969) 14 Sambracos et al. (2004)

3 Boffey et al. (1979) 15 Reinhardt et al. (2007)

4 Lane et al. (1987) 16 Shintani et al. (2007)

5 Rana and Vickson (1991) 17 Sigurd et al. (2007)

6 Pesenti (1995) 18 Agarwal and Ergun (2008)

7 Cho and Perakis (1996) 19 Alvarez (2009)

8 Fagerholt (1999) 20 Fagerholt et al. (2009)

9 Fagerholt and Lindstad (2000) 21 Imai et al. (2009)

10 Bendall and Stent (2001) 22 Karlaftis et al. (2009)

11 Moura et al. (2002) 23 Yan et al. (2009)

12 Ting and Tzeng (2003) 24 Chuang et al. (2010)

Table 4.1: Numbers assigned to articles in Kjeldsen (2011)

28

Chapter 4. Problem description

(a
)

S
im

p
le

ro
u

te
(b

)
B

u
tt

er
fl

y
ro

u
te

(c
)

C
h

a
in

ro
u

te

(d
)

F
lo

w
er

ro
u

te
(e

)
C

o
m

p
le

x
ro

u
te

(f
)

C
o
m

p
le

x
ro

u
te

F
ig

u
re

4.
4:

D
iff

er
en

t
ro

u
te

st
ru

ct
u

re
s:

(a
):

A
S

im
p
le

ro
u

te
is

a
ro

u
te

w
h

er
e

n
o

p
o
rt

s
a
re

v
is

it
ed

m
o
re

th
a
n

tw
ic

e
in

th
e

sa
m

e
ro

u
te

.
(b

):
A

B
u

tt
er

fl
y

ro
u

te

is
a

ro
u

te
w

h
er

e
o
n

e
a
n

d
o
n

ly
o
n

e
p

or
t

in
th

e
ro

u
te

is
v
is

it
ed

tw
ic

e.
(c

):
A

C
h
a
in

ro
u

te
is

a
ro

u
te

w
h

er
e

a
t

le
a
st

o
n

e
p

o
rt

is
v
is

it
ed

tw
ic

e,
a
n

d
n

o
p

o
rt

s
a
re

v
is

it
ed

m
or

e
th

an
tw

ic
e.

(d
):

A
F

lo
w

er
ro

u
te

is
a

ro
u

te
w

h
er

e
o
n

e
a
n

d
o
n

ly
o
n

e
p

o
rt

is
v
is

it
ed

m
o
re

th
a
n

o
n

ce
.

(e
)

a
n

d
(f

):
C

o
m

p
le

x
ro

u
te

s
a
re

ro
u

te
s

w
h

er
e

at
le

as
t

on
e

p
or

t
is

v
is

it
ed

at
le

as
t

tw
ic

e.
N

ot
e

th
at

a
b

u
tt

er
fl

y
ro

u
te

is
a
ls

o
a

fl
ow

er
a
n

d
ch

a
in

ro
u

te
,

a
n

d
fl

ow
er

a
n

d
ch

a
in

ro
u

te
s

a
re

a
ls

o
co

m
p

le
x

ro
u

te
s.

29

Chapter 4. Problem description

No. Characteristics Options Articles

1 Number of starting points None 18-20, 23

One 1, 6, 8-14, 16, 17, 22-24

Multiple 3-5

2 Type of operation Delivery 6, 9

Pick-up 8, 13

Pick-up and delivery separated 20, 24

Pick-up and delivery intervowen 1-5, 7, 10-12, 14-19, 21-23

3 Nature of demand Deterministic 2, 4-9, 11-23

Stochastic 1, 24

Dependent on service 3, 10

4 Scheduling constraints Time of service fixed in advance 2

at the ports Time windows 4, 9, 11, 12, 17, 18, 20, 22, 23

No restrictions 1, 3, 5-8, 10, 13-16, 19, 21, 24

5 Number of ships Fixed 3, 5, 12, 13, 15, 21, 23, 24

Changeable - constant over scheduling period 1, 4, 6, 8-11, 14, 16-19, 22

Changeable - changes over scheduling period 2, 7, 20

6 Fleet composition Heterogenous 2, 4-9, 11-13, 15-20, 23

Homogeneous 1, 3, 10, 14, 21, 22, 24

7 Cruising speed Yes 12, 16, 19

No 1-11, 13-15, 17, 18, 20-24

8 Demand splitting Allowed 1, 2, 5, 9-11, 15, 18, 19, 23

Not allowed 3, 4, 6-8, 12-14, 16, 17, 20-22, 24

9 Partial satisfaction of demand Allowed 1, 3, 5, 6, 10, 16, 18, 19, 23, 24

Not allowed 2, 7-9, 11-15, 17, 20-22

10 Number of capacity types One 3-8, 10-14, 16, 17, 19-24

Multiple 1, 2, 9, 15, 18

11 Cargo transhipment Allowed 11, 14, 15, 18, 19, 23, 24

Not allowed 1-10, 12, 13, 16, 17, 20-22

12 Number of routes per ship One 1, 4-5, 12, 15, 17-19, 21-24

Multiple 2, 6-11, 13, 16, 20

13 Planning horizon Defined- ships must finish routes 3, 5, 8-18, 20, 22

Defined - ships need not finish routes 2, 4, 7, 19, 21, 23

Undefined 1, 6, 24

14 Ships required to be empty Yes 1, 5, 8-10, 13, 14, 17, 20, 22, 24

No 2-4, 6, 7, 11, 12, 15, 16, 18, 19, 21, 23

15 Port precedence requirement Exists 1, 2, 5, 10, 17, 19, 20

None 3, 4, 6-9, 11-16, 18-22

16 Ship-port compatibility Exists 2, 7, 11, 17, 19, 20

None 1, 3-6, 8-10, 12-16, 18, 21-24

17 Cost types Fixed costs

-in operation 1, 6-8, 10, 11, 16, 17, 19, 21

-in lay-up 2, 7, 19

Variable costs

-steaming costs 1, 2, 4, 5, 7, 8, 10, 11, 13-20, 22-24

-port entry charges 1, 4, 5, 8, 10, 11, 13, 14, 16, 18, 23

-time spent in port 4, 18, 23-24

-cargo operation 1, 2, 4, 10, 19, 20, 23

-transhipment 15, 19, 23

Cost of unserviced demand 19

18 Objective Minimize costs 4, 7-9, 11, 13-15, 17, 19, 20, 22

Maximize profits 1-3, 5-7,10, 16, 18, 23, 24

Minimizing environmental impact

Table 4.2: Schematic overview of Kjeldsen (2011)’s classification scheme and the 24 classified

articles. Table 4.1 shows which articles the numbers correspond to. The options marked yellow

are the options that apply for the models presented in this thesis.

30

Chapter 5

Basic model

In this chapter, one of our formulations of the LS-NDP, the Basic model, is presented. The

Basic model only allows simple routes which means that a single route can not visit a port

more than once. However, a port can be visited several times by different routes. A network

of simple routes is illustrated in Figure 5.1. As the name indicates the Basic model serves as a

base model, i.e. the other models in this thesis build upon the formulation of this model. Figure

4.3 in Section 4.1 shows how the Basic model relates to the other models that are presented in

the subsequent chapters.

Figure 5.1: In a simple route-network a route does not visit any port more than once in the same

sequence. However, a port can be visited by several routes. In the network depicted, transhipment can

happen in the port visited by both Route 2 and Route 3.

This chapter is structured as follows: In Section 5.1 the mathematical formulation of the Basic

model of the LS-NDP is presented. Because of their complexity and need for explanations, the

31

Chapter 5. Basic model

subtour elimination constraints and linearizations are presented separately in Section 5.2 and

Section 5.3, respectively.

5.1 Mathematical formulation of the Basic model

There is no standard mathematical formulation for the liner shipping problem since each liner

service has specific constraints based on strategic decisions (Reinhardt and Pisinger, 2011).

In this section the proposed mathematical formulation for the Basic model of the LS-NDP is

presented, along with explanations of the constraints and modeling choices. For the compact

formulation of the Basic model see Appendix A.2.

Notation. The notation is based on lower-case letters to represent indices and decision vari-

ables and capital letters to represent constants. Normally, the variables are only defined for

some combinations of subscripts. To limit the level of detail in the mathematical formulation,

we regard the none-defined variable combinations as eliminated from the model.

A note on route indexing. The model is an arc-flow formulation and thus it is going to

construct the routes, i.e. it does not have a set of predefined routes to choose from. Even though

the number nor the composition of the routes in the optimal solution are (of course) not known

beforehand, the model still needs a way of referring to a specific route. This is resolved this by

introducing the set of routes, R, stretching from 1 to the maximum number of routes, and a

binary variable ykr that is 1 if route r is sailed by ship type k. This set of routes creates a lot

of symmetry in the problem, because which index a route gets is in reality totally irrelevant for

the quality of the solution. Symmetry breaking constraints (SBCs) are discussed separately in

Section 9.1, and in Chapter 12 their effect is evaluated to see which of them should be included

in the models. What number is set to be the maximum number of routes also has a signifi-

cant impact on the solution time. How this parameter should be set is discussed in Section 12.1.

Sets and indices
P - Ports, i,j

A - Arcs, (i,j) i, j ∈ P
D - Demands, (o,d) o, d ∈ P
K - Ship types, k

R - Routes, r r ∈ {1..
∑
k∈K

Mk}, k ∈ K

32

Chapter 5. Basic model

Parameters

Dod - Weekly demand from port o to port d (o, d) ∈ D
CT
i - Transhipment cost per unit port i i ∈ P

CP
ik - Visiting cost (per visit) at port i for ship type k i ∈ P, k ∈ K

CS
k - Sailing cost per week for ship type k k ∈ K

Vk - Velocity (NM/Weeks) of ship type k k ∈ K
Tij - Distance (in NM) on arc (i,j) (i, j) ∈ A
Tijk = Tij/Vk. Sailing time on arc (i,j) for ship type k (i, j) ∈ A, k ∈ K
Sk - Capacity of ship type k k ∈ K
Mk - Number of vessels of ship type k in fleet k ∈ K
N - Number of ports

L - Max route length (NM)

W - Max route time (Weeks)

Variables

xijkr - 1 if a vessel of type k is used on arc (i,j) by route r, 0 otherwise

ykr - 1 if a vessel of type k is used on route r, 0 otherwise

fijodkr - Flow of the demand (o,d) transported by a vessel of type k on arc (i,j) in route r

tiodr - The amount of demand (o,d) that is transhipped in port i in route r

akr - The number of vessels of ship type k sailing route r

bik - The number of times port i is visited by ship type k each week

33

Chapter 5. Basic model

Objective function

minimize
∑
k∈K

∑
r∈R

CS
k · akr +

∑
i∈P

∑
r∈R

CT
i · tiodr +

∑
i∈P

∑
k∈K

CP
ik · bik (5.1)

The objective function (5.1) minimizes total cost. The cost function of the LS-NDP consists of

the sailing costs of the routes, transhipment costs in hub ports and visiting costs in the ports.

Constraints

Route constraints

∑
k∈K

ykr ≤ 1, r ∈ R (5.2)

∑
i∈P

∑
j∈P

Tij · xijkr ≤ L · ykr, k ∈ K, r ∈ R (5.3)

∑
i∈P

∑
j∈P

Tijk · xijkr ≤W · ykr, k ∈ K, r ∈ R (5.4)

∑
i∈P

∑
j∈P

xijkr − ykr ≥ 0, k ∈ K, r ∈ R (5.5)

Constraints (5.2) state that there can only be one ship type assigned to each route, in order

to ensure the weekly demand frequency. Constraints (5.3)-(5.4) specify the maximum length

(in NM) and total time (in weeks) a route can have, respectively. They also ensure that ykr is

set to 1 if ship type k sails route r, while constraints (5.5) force ykr to 0 if the opposite is the case.

34

Chapter 5. Basic model

Flow constraints

∑
i∈P

∑
k∈K

∑
r∈R

(fijodkr − fjiodkr) = 0, j ∈ P, (o, d) ∈ D, j 6= o, j 6= d, (5.6)

∑
j∈P

∑
k∈K

∑
r∈R

fojodkr = Dod, (o, d) ∈ D, (5.7)

∑
i∈P

∑
k∈K

∑
r∈R

fidodkr = Dod, (o, d) ∈ D, (5.8)

∑
i∈P

xijkr −
∑
i∈P

xjikr = 0, j ∈ P, k ∈ K, r ∈ R (5.9)

Constraints (5.6) are demand flow conservation constraints in the transition ports. Constraints

(5.7)-(5.8) ensure that all cargoes are loaded and unloaded in their origin and destination ports,

respectively. Constraints (5.9) are flow conservation constraints for the vessels and ensure that

an equal number of ships enters and leaves a port.

Transhipment constraints

tiodr ≥
∑
j∈P

∑
k∈K

(fijodkr − fjiodkr), i ∈ P, i 6= o, i 6= d, (o, d) ∈ D, r ∈ R (5.10)

tiodr ·
∑
j∈P

∑
k∈K

(fijodkr − fjiodkr) ≥ 0, i ∈ P, (o, d) ∈ D, r ∈ R (5.11)

Constraints (5.10-5.11) set the value of the transhipment in the transition ports for demand

(o, d) on route r. The transhipment is thus associated with the route that picks up the cargo in

the hub. Constraints (5.11) force the transhipment to 0 when no transhipment occurs. These

constraints are not necessary in the Basic model because of the structure of the objective func-

tion - the transhipment will always get the lowest possible value. However, for some extensions

of the Basic model there is a need for the transhipment being explicitly specified. For lin-

earizations of constraints (5.11) see Section 5.3. For the sake of computational effectiveness the

constraints are omitted in the computational study of the Basic model in Chapter 12.

35

Chapter 5. Basic model

Fleet constraints

∑
r∈R

akr ≤ Nk, k ∈ K (5.12)

akr ≥
∑
i∈P

∑
j∈P

Tijk · xijkr, k ∈ K, r ∈ R (5.13)

∑
(o,d)∈D

fijodkr ≤ Sk · xijkr, (i, j) ∈ A, k ∈ K, r ∈ R (5.14)

Constraints (5.12) make sure that the number of vessels in use of ship type k does not exceed

the numbers of vessels in the fleet. Constraints (5.13) calculate the number of vessels of ship

type k that are needed on route r. Constraints (5.14) ensure that the vessels capacity is adhered

to.

Number of visits

bjk =
∑
i∈P

∑
r∈R

xijkr, j ∈ P, k ∈ K (5.15)

Constraints (5.15) calculate the number of times each port is visited by a ship type k each week.

Subtour elimination constraints

SEC, r ∈ R (5.16)

The SECs are represented by (5.16). Because of their complexity these are further described

separately in Section (5.2).

Binary, non-negativity and integrality constraints

xijkr, ykr ∈ {0, 1}, i, j ∈ P, k ∈ K, r ∈ R (5.17)

fijodkr, tiodr, akr, bjk ≥ 0, i, j ∈ P, (o, d) ∈ D, k ∈ K, r ∈ R (5.18)

36

Chapter 5. Basic model

akr, bjk integer, j ∈ P, k ∈ K, r ∈ R (5.19)

Constraints (5.17)-(5.19) impose binary, non-negativity and integrality constraints on the vari-

ables, accordingly.

5.2 Subtour elimination constraints

In this section we present the mathematical formulations of the subtour elimination constraints

(SECs), represented by constraints (5.16) in the mathematical formulation.

Straightaway it may seem contradictory imposing SECs in a model where the objective is to

make routes. In order to clarify this - in the LS-NDP context SECs are constraints that make

sure that multiple subtours can not be assigned to the same route index. If we did not have

these constraints the optimal solution would use less vessels than what is really possible, because

routes in geographically different places could ”share” vessels. This concept is illustrated in

Figure 5.2.

Making SECs for this problem differs from other routing problems, e.g. VRP, because there are

no natural depots, i.e. there are no ports we know for sure that will be part of a route before

we run the model. To impose SECs the model therefore has to select one port in each route

to be the reference point of the route, and make sure that all other ports in the same route

are linked with this reference port. The selected reference port of a route is denoted the depot.

It does not matter which port is chosen as the depot of the route, and therefore the random

selection of the depot port arises some symmetry issues. The symmetry related to the possible

solutions with different depots is discussed in Section 9.1.

So, to avoid subtours we assign a variable, sir, to each port in a route representing its sequence

number in the route, counted from the depot. By imposing the constraint that there cannot be

an arc from one port to another port with a lower sequence number, sir, except if it is connected

to the depot, we ensure that there will not be any subtours. The concept is illustrated in Figure

5.3. For instance there could not be an arc from port 5 to port 4 because s51 ≥ s41.

In the remainder of this section the additional variables and constraints needed to assure the

elimiation of subtours are presented and explained.

37

Chapter 5. Basic model

Figure 5.2: Illustration of the need for subtour elimination constraints. Without SECs two loops in

geographically different places can share a vessel. This is, obviously, not possible in reality, and will

result in the model reporting artificially good solutions.

Additional variables

rir - 1 if port i is visited in route r, 0 otherwise.

dir - 1 if port i is set to depot in route r, 0 otherwise.

sir - Variable that represents port i’s sequence number in route r, counted from the depot.

Additional constraints

(
∑
j∈P

∑
k∈K

xijkr) · (1− rir) = 0, i ∈ P, r ∈ R (5.20)

∑
i∈P

dir = 1, r ∈ R (5.21)

sjr − sir + (N − 1) · (1−
∑
k∈K

xijkr + djr) ≥ 1, i ∈ P, j ∈ P, r ∈ R (5.22)

38

Chapter 5. Basic model

Figure 5.3: Illustration of how subtour elimination is achieved by imposing sequence variables, sir.

dir +
1

N − 1
· sir ≤ 1, i ∈ P, r ∈ R (5.23)

sjr − (N − 1)(2−
∑
j∈P

∑
k∈K

xijkr − dir) ≤ 1, i ∈ P, j ∈ P, r ∈ R (5.24)

Constraints (5.20) - (5.24) are all related to the elimination of subtours. Constraints (5.20)

give value to the binary variable rir, that states whether or not port i is part of route r. For

linearization of (5.20) see Section 5.3. Constraints (5.21) force each route to have one and only

one depot. The depot serves as a reference point for the ordering of all the ports in a route in

order to ensure that all of them are connected. Constraints (5.22) give each port in a route a

number according to its order in the sequence starting from the chosen depot and through the

route. This numbering is essential in order to avoid subtours, because it ensures that all ports

must be connected to the depot through the variable sir, and since there is only one depot in

each route it will only be possible to create one tour for each route. Constraints (5.23) set the

depots’ order sir in route r to 0. Constraints (5.24) forces the first port in each loop to have

order number 1.

39

Chapter 5. Basic model

Binary, non-negativity and integrality constraints

rir, dir ∈ {0, 1}, i, j ∈ P, r ∈ R (5.25)

sir ≥ 0, integer i ∈ P, r ∈ R (5.26)

Constraints (5.25)-(5.26) impose binary, non-negativity and integrality constraints on the addi-

tonal variables needed for the subtour elimination.

5.3 Linearizations

Constraints (5.11) can be linearized by substituting them by constraints (5.27-5.29):

Introduce the dummy variable cijodkr:

cijodkr - 1 if the net flow in port i of demand (o,d) associated with route r

is non-positive, 0 otherwise.

∑
k∈K

(fijodkr − fjiodkr) +Dod · cijodkr ≥ 0, i ∈ P, r ∈ R (5.27)

Dod · (1− cijodkr)− tiodr ≥ 0, i ∈ P, r ∈ R (5.28)

cijodkr ∈ {0, 1}, i, j ∈ P, (o, d) ∈ D, k ∈ K, r ∈ R (5.29)

Constraints (5.27) set the value of cijodkr to 1 when the net flow in port i of demand (o,d)

associated with route r is non-positive, i.e. there are no transhipment. Finally, constraints

(5.28) enforce the transhipment to 0 when there is no transhipment.

40

Chapter 5. Basic model

Constraints (5.20) can be linearized by replacing them with constraints (5.30)-(5.31):

∑
j∈P

∑
k∈K

xijkr − rir ≤ 0, i ∈ P, r ∈ R (5.30)

∑
j∈P

∑
k∈K

xijkr − rir ≥ 0, i ∈ P, r ∈ R (5.31)

Constraints (5.30) set variable rir to 1 if port i is visited by route r, while constraints (5.31)

force rir to 0 if port i is not visited by route r.

41

Chapter 6

Flower model

Figure 6.1: Examples of flower routes. All the routes

above are enabled with the Flower model

.

The first formulation that incorporates com-

plex route structures is called the Flower-

model, because it allows a route to sail in a

”flowery-pattern”. The model enables routes

where one and only one port in a route to be

visited an indefinite number of times. The

port that is visited multiple times is denoted

the butterhub of a route. Examples of Flower

routes can be seen in Figure 6.1.

In this section we present the properties of

the Flower model, along with an explanation

of the main conceptual challenges that arise

with the modelling. In Section 6.2 the mathematical formulation is provided.

The Flower model does not require any changes to the underlying structure from the Basic

model, i.e. we can keep the same sets and indices. However, there is a need for a considerable

amount of new variables and constraints.

6.1 Enabling the Flower structure

There are two main issues related to the modeling of the Flower model; facilitating the flower

structure and the calculation of internal transhipment. In this section we will describe the

conceptual issues in words, while the additional mathematical formulation is presented later in

Section 6.2.

42

Chapter 6. Flower model

1. Facilitating the flower routes.

In the Basic model only simple routes are permitted. In the Flower model, on the other

hand, we want a route to be able to contain several connected loops. To allow this

structure two actions are required:

(a) Allow a port to have multiple arcs coming in and out from the same route.

(b) Make sure that the butterhub is set to be the depot of the flower route.

When the butterhub is set to be the depot its sequence variable sir will be set to 0 and

this way we ensure that loops are allowed as long as they are connected to the butterhub.

Recall that there can be only one depot of a route. This means that there can also only be

one butterhub in the flower-route, which again imposes the elimination of ”subflowers”.

Figure 6.2 illustrates how the flower structure is allowed when the two above criteria are

met.

Figure 6.2: Facilitating the flower structure: Illustration of how several loops are allowed when the

butterhub is set to be the depot of the route and ports can have several incoming and outgoing arcs.

43

Chapter 6. Flower model

2. Capturing the internal transhipment.

Recall from Chapter 1 that butterfly routes open up the possibility for a route to tranship

to another ship in the same route, and thus socalled internal transhipment can occur.

Figure 6.3 shows an example where internal transhipment takes place: The cargo is

dropped off in port 1, i.e. the butterhub, and later picked up by the same route before

it gets transported to its final destination port 2. Since the internal transhipment does

not affect the net flow of a demand through a butterhub, as opposed to the external

transhipment, we need some way of examining how the flow changes between the different

loops of the flower. To do this we need a way to separate the different loops from each other

and in which order they are in the route. The calculation of the internal transhipment

in the Flower approach is quite intricate, and it requires a significant amount of new

variables and constraints. The calculations of the internal transhipment is thoroughly

explained in Section 6.2.

Figure 6.3: Example of internal transhipment. Cargo is dropped off in the butterhub and picked up later

by the same route.

44

Chapter 6. Flower model

6.2 Flower formulation

In this section we present the modifications and additions we need in the mathematical for-

mulation of the Basic model in order to obtain the desired properties of the Flower model. A

complete compact version of the Flower model can be found in Appendix A.3.

Modifications We have to substitute the transhipment variable from the Basic model, tiodr,

into internal and external transhipment, tIiodr and tEiodr, respectively.

tiodr → tEiodr + tIiodr

tIiodr - Internal transhipment of demand (o, d) in butterhub i of butterfly route r

tEiodr - External transhipment of demand (o, d) in port i of route r

Due to the substitution of tiodr into tIiodr and tEiodr, the modified objective function becomes:

minimize
∑
k∈K

∑
r∈R

CS
k · akr +

∑
i∈P

∑
o∈P

∑
d∈P

∑
r∈R

CT
i · (tEiodr + tIiodr) +

∑
i∈P

∑
k∈K

CP
ik · bik (6.1)

Additional variables

mir - 1 if port i has multiple arcs (i.e. is a butterhub) in route r, 0 otherwise

nir - The loop number of port i in route r

lr - The number of loops in route r

eFir/e
L
ir - 1 if port i is in the first/last loop (nir=1/nir=lr), 0 otherwise

gNijr/g
S
ijr - 1 if port i’s loop/order number is greater than port j’s, 0 otherwise

hijr - 1 if port i and port j are in the same loop (nir = njr), 0 otherwise

oijr - Difference between port i and port j’s loop number (nir-njr)

pSijr - 1 if port i is in the last loop (eLir=1) and port j is in the first loop (eFjr=1)

pNijr - 1 if port i and j are in neighbouring loops and port i’s loop is sailed before port j’s loop

qimodr - The positive pairwise difference between out-flow and in-flow of demand (o, d)

in neighbouring loops in Flower route r

45

Chapter 6. Flower model

Enabling Flower routes

Modifications in constraints

Constraints (5.30) from the subtour elimination in the basic model have to be replaced by

Constraints (6.2) because a port now can have several arcs coming out belonging to the same

route.

∑
j∈P

∑
k∈K

xijkr − 2(N − 1) · rir ≤ 0, i ∈ P, r ∈ R (6.2)

Construction of the additional variables

As described above the flower-approach requires a substantial number of new variables to enable

butterfly routes. Below the constraints needed to construct the new variables are presented:

mir- 1 if port i is butterhub in route r, 0 otherwise

∑
j∈P

∑
k∈K

xijkr − (N − 1) ·mir ≤ 1, i ∈ P, r ∈ R (6.3)

∑
j∈P

∑
k∈K

xijkr − 2 ·mir ≥ 0, i ∈ P, r ∈ R (6.4)

mir − dir ≤ 0, i ∈ P, r ∈ R (6.5)

Constraints (6.3)-(6.4) set the value of mir to 1 if port i has more than 2 arcs, 0 otherwise.

Constraints (6.5) ensure that if a port i has more than two connecting arcs in a route it should

be set to the depot of the route (mir = 1 =⇒ dir = 1).

Calculations of internal transhipment

lr - The number of loops in route r

lr ≤
∑
j∈P

∑
k∈K

xijkr + (N − 1)(1− dir), i ∈ P, r ∈ R (6.6)

46

Chapter 6. Flower model

Constraints (6.6) give value to the variable lr that states how many loops there are in a route.

This is done by calculating how many arcs that are going into the butterhub, and stating that lr

cannot be greater or less than this value. In a non-butterfly route the value of lr is 1. Together

with constraints (6.11) they ensure that variable lr only can have the value equal to the exact

number of loops in a route.

nir - The loop number of port i in route r

nir − (N − 1)(1− dir) ≤ 0, i ∈ P, r ∈ R (6.7)

nir − njr − (N − 1)(1−
∑
k∈K

(xijkr + xjikr) + 2dir + 2djr) ≤ 0, i, j ∈ P, r ∈ R (6.8)

|(N − 1)(sir − sjr) + nir − njr| ≥ 1, i, j ∈ P, r ∈ R (6.9)

sir + dir + (1− ykr) ≥ 1, i ∈ P, r ∈ R (6.10)

nir ≤ lr, i ∈ P, r ∈ R (6.11)

Constraints (6.7)-(6.11) above are related to variable nir and the loop numbers of the butterfly-

route. They make sure that the butterhub gets loop number 0 (nir=0), that ports in the same

loop have the same loop number and that ports in different loops have different loop numbers

and that the loops are numbered from 1 to the total number of loops in the route (lr). This is

needed because we need to know the sequence of which the different loops are sailed, in order

to calculate the internal transhipment.

Constraints (6.7) set the loop number, nir, of the butterhub to 0. Constraints (6.8) make sure

that ports in the same loop get the same loop number, by stating that if there is an arc between

two ports in the same route, none of them being the depot port of the route, they must have

equal loop numbers. Constraints (6.9) make sure that ports in different loops in route r get

different loop numbers. This is done by stating that ports in a route with equal order number,

sir, have to have different loop numbers. The linearization of these constraints are explained

47

Chapter 6. Flower model

later in the paper, and can be replaced by constraints (6.26). Constraints (6.10) ensure that

non-butterhubports have to have loop numbers greater or equal to 1, while constraints (6.11)

ensure that a loop number cannot be greater than the total number of loops in a route.

eFir/eLir - 1 if port i is in the first/last loop, 0 otherwise

nir − 2(1− eFir − dir) ≥ 0 i ∈ P, r ∈ R (6.12)

nir − (N − 1)(1− eFir) ≤ 1 i ∈ P, r ∈ R (6.13)

eFir − nir ≤ 0 i ∈ P, r ∈ R (6.14)

eLir − nir + lr ≥ 1 i ∈ P, r ∈ R (6.15)

nir − lr + (N − 1)(1− eLir) ≥ 0 i ∈ P, r ∈ R (6.16)

Constraints (6.12-6.16) give values to the binary variables eFir and eLir that state whether or not a

port is in the first or last loop, respectively. Constraints (6.14) ensure that the variable eFir is set

to 0 for the butterhub, while eLir is automatically set to 0 for the butterhub by constraints (6.16).

gNijr/gSijr - 1 if port i’s loop/order number is greater than port j’s, 0 otherwise :

nir − njr − (N − 1)gNijr ≤ 0, i, j ∈ P, r ∈ R (6.17)

nir − njr + (N − 1)(1− gNijr) ≥ 1, i, j ∈ P, r ∈ R (6.18)

sir − sjr − (N − 1)gSijr ≤ 0 i, j ∈ P, r ∈ R (6.19)

48

Chapter 6. Flower model

sir − sjr + (N − 1)(1− gSijr) ≥ 1 i, j ∈ P, r ∈ R (6.20)

Constraints (6.17)-(6.20) set the value of the binary variables gNijr/g
S
ijr to 1 if port i’s loop/order

number, respectively, is greater than port j’s loop/order number, and to 0 otherwise. Con-

straints (6.17)-(6.18) ensure correct value of variable gNijr, while constraints (6.19)-(6.20) are

related to variable gSijr. Constraints (6.17) and (6.19) enforce 1, while constraints (6.18) and

(6.20) enforce 0 on the binary variables.

hijr - 1 if ports i and j are in the same loop, 0 otherwise

gNijr + gNjir + hijr = 1 i, j ∈ P, r ∈ R (6.21)

Constraints (6.21) set the binary variable hijr to 1 if ports i and j are in the same loop, 0

otherwise. Constraints (6.21) state that if both variables gNijr and gNjrr are 0 (which means that

none of port i or port j has greater loop number than the other port, i.e. they have the same

loop number), hijr is set to 1. 6.21 also state that if gNijr or gNjir is 1, hijr is set to 0.

oijr - the positive difference between port i and j’s loop numbers

oijr − nir + njr + (N − 1)(1− gNijr) ≥ 0, i, j ∈ P, r ∈ R (6.22)

oijr − nir + njr − (N − 1)(1− gNijr) ≤ 0, i, j ∈ P, r ∈ R (6.23)

oijr − (N − 1)(1− gNjir) ≤ 0, i, j ∈ P, r ∈ R (6.24)

oijr − (N − 1)(1− hijr) ≤ 0, i, j ∈ P, r ∈ R (6.25)

oijr + ojir + (N − 1)hijr ≥ 1, i, j ∈ P, r ∈ R (6.26)

49

Chapter 6. Flower model

Constraints (6.22)-(6.26) together set the value of the variable oijr to max {nir-njr,0}. Con-

straints (6.22)-(6.23) set the value of oijr to the difference between ports i and j’s loop number

if port i’s loop number is greater than the loop number of port j. Constraints (6.24) set oijr

to 0 if port i’s loop number is less than port j’s loop number. Constraints (6.25) set oijr to 0

when ports i and j are in the same loop, while constraints (6.26) ensure that ports in different

loops get different loop numbers.

pSijr - 1 if port i is in the last loop and j in the first loop of route r

eLir + eFjr − 2pSijr ≤ 1, i, j ∈ P, r ∈ R (6.27)

eLir + eFjr − 2pSijr ≥ 0, i, j ∈ P, r ∈ R (6.28)

Constraints (6.27-6.28) set the value of the variable pSijr to 1 if port i is in the last loop and j

is in the first loop, and 0 otherwise. An illustration of the variable pSijr can be seen in Figure 6.4.

(a) Illustration of the variable pSijr (b) Illustration of the variable pNijr

Figure 6.4: Illustration of the variables pSijr and pNijr. (a) The variable pSijr is 1 if port i is in the last

loop and port j in the first loop, 0 otherwise. (b) Variable pNijr is 1 if port i and j are in neighbouring

loops and port i’s loop is sailed before port j’s loop, 0 otherwise. (pSijr = 1 =⇒ pNijr = 1).

pNijr - 1 if ports i and j are in neighbour loops and route r sails j’s loop directly after i’s loop.

pSijr − pNijr ≤ 0, i, j ∈ P, r ∈ R (6.29)

50

Chapter 6. Flower model

ojir + 2gNijr + 2hijr + pNijr + 2dir + 2djr ≥ 2, i, j ∈ P, r ∈ R (6.30)

oijr + ojir − (N − 1)(1− pNijr + pSijr) ≤ 1, i, j ∈ P, r ∈ R (6.31)

pNijr + hijr ≤ 1, i, j ∈ P, r ∈ R (6.32)

Constraints (6.29)-(6.32) set the value of the variable pNijr to 1 if port i and j are in neighbour

loops and i’s loop is sailed before j’s loop, 0 otherwise. Constraints (6.29)-(6.30) ensure that

pNijr is 1 if ojir = 1, i.e. ports i and j are neighbour loops and port i’s loop is sailed before port

j’s loop. Constraints (6.31)-(6.32) set pNijr to 0 if i and j are not in neighbour loops. See Figure

6.4 for illustration of variable pNijr.

The one additional ”help-variable” qimodr, which is the positive pairwise difference between

out-flow and in-flow of demand (o, d) in neighbouring loops in route r, is illustrated in Figure

6.5.

qimodr ≥
∑
k∈K

(fjmodkr − fijodkr −Dod(4−mjr − pNijr − xijkr − xjmkr), (i, j), (j,m) ∈ A, r ∈ R

(6.33)

Constraints (6.33) calculate the positive difference between the flow coming from the depot into

a loop and the flow coming into the depot coming in from the loop that is sailed before. If this

value is positive this means that something is picked up in the depot. It only makes sense to

calculate qimodr when: r is a butterfly route with butterhub j (mjr=1), port i and port m are

in neighbouring loops and i is in the loop before m (pNijr=1), and there is a direct connection

between the butterhub j and i and m (xijkr = xjmkr = 1).

tIjodr ≥
∑
i∈P

∑
m∈P

qimodr − tEjodr, j ∈ P, (o, d) ∈ D, r ∈ R (6.34)

Constraints (6.34) calculate the internal transhipment in the butterhub by summarizing all

positive pairwise differences (qimodr) and subtracting the external transhipment tEjodr. The

51

Chapter 6. Flower model

Figure 6.5: Illustration of the variable qimodr. We see that the incoming flow of demand (3,2)

from port 4 to the butterhub, port 1 (f413211), is zero, while the successive outgoing flow from

the butterhub to port 5 (f153211) is 4. This leads to a positive pairwise difference of 4 which

means that 4 units of demand (3,4) has been picked up in the butterhub between loop 3 and loop

1. Since there is only one route in this network we know that all positive pairwise differences

are caused by internal transhipment.

rationale as to why the internal transhipment can be calculated this way is the following: when

the variable is positive this means that a vessel has picked up something in the depot that it

did not bring. The demand that is picked up can be one of two things: external transhipment

or internal transhipment. Thus, by summarizing all positive pairwise differences and exploit

the fact that we already know the value of the external transhipment; what’s left has to be the

internal transhipment.

Binary, non-negativity and integrality constraints

mir, e
F
ir, e

L
ir, g

N
ijr, g

S
ijr, hijr, p

S
ijr, p

N
ijr ∈ {0, 1}, i ∈ P, r ∈ R (6.35)

nir, oir, lr, qimodr ≥ 0, integer i ∈ P, r ∈ R (6.36)

Constraints (6.35-6.36) impose binary, non-negativity and integrality constraints on the addi-

tonal variables needed to allow butterfly routes with the flower approach.

52

Chapter 7

Chain model

Figure 7.1: Chain routes. The Chain model allows a

route to visit multiple ports twice.

In this chapter we present another formula-

tion to enable complex route structures than

the one presented in Chapter 6.

The two models are fundamentally different,

both in which types of complex route struc-

tures they allow, and also how they are for-

mulated.

The model presented in this chapter is called

the Chain model because it facilitates the

modelling of ”chain-like”-routes. Figure 7.1

shows examples of routes that can be con-

structed with the Chain model.

The Chain model allows a route to visit sev-

eral ports more than once. However, each port can only be visited at most twice. It enables

a route to traverse the same arc twice. An arc that is traversed twice is denoted a butterarc.

Figure 7.2 shows an example of a butterarc and how it can be realized with the Chain model.

A virtual double network, called the twin network, forms the foundation of the formulation of

the Chain model. The properties and advantages of this network is explained in Section 7.1. In

Section 7.2 the mathematical formulation of the Chain model is given.

53

Chapter 7. Chain model

(a) Butter arc (b) Butter arc realization in a twin network

Figure 7.2: Figure 7.2a shows an example of a butterarc - an arc that is traversed twice in the same

route. Figure 7.2b shows how the butterarc can be realized in a twin network. The Flower model does

not facilitate butter arcs.

7.1 Twin network

The basis of the Chain model is a virtual double network - called the twin network. Figure 7.3

illustrates the concept of the twin network used in the Chain model, and shows how complex

route structures can be enabled by utilizing the network.

In the twin network all the ports are duplicated, each port getting an associated twin port.

Doubling the network makes it possible to visit the same port twice by visiting the original port

and its twin, and count this as two visits to the same port. This way, we do not have to alter

the flow constraints that apply for each node in the network.

The set of original ports and twin ports is called nodes and denoted N . Original ports are

indexed from 1 to N , while the twin ports are indexed from N + 1 to 2N . Port i’s twin is

indexed i+N . This makes it possible to refer to the original port and its twin port together.

The twin network has the following properties:

• The distance between port i and its twin port i+N is 0, i.e. Ti,i+N = Ti+N,i = 0.

• The distance between twin port i+N and twin port j+N is equal to the distance between

port i and j, i.e. Ti+N,j+N = Tij .

• The transhipment cost of twin port i+N is equal to the transhipment cost of port i, i.e.

CT
i+N = CT

i . The same applies for the visiting cost.

54

Chapter 7. Chain model

(a) Twin network

(b) Butterfly route

(c) Twin network with a route

Figure 7.3: Twin network. Figure 7.3a shows the twin network structure in the Chain model. All ports

are duplicated getting a corresponding twin node. The white nodes represent the original ports while

the grey nodes represent the twin ports. Figure 7.3b shows a butterfly route, and Figure 7.3c shows how

this butterfly route is realized in the Chain network structure.

55

Chapter 7. Chain model

7.2 Mathematical formulation of the Chain model

In this section the additional notation and changes necessary in the Basic model to enable the

described properties of the Chain model.

Unlike the Flower model, the realization of the Chain model requires few new variables and

constraint formulations. On the other hand, in the Chain model we need a new set, and make

some assumptions regarding the combinations of indices of which the variables are defined.

Sets and indices

N - Nodes, i,j i, j ∈ {1..2N}

We introduce the set of nodes N which consists of both original ports and twin ports. The

original ports are indexed from 1 to N , while the twin ports are indexed from N + 1 to 2N .

Port i’s twin is indexed i + N . With regards to the set of arcs A this is not defined for any

tuples of ports and twin ports, except between a port and its own twin, i.e. (i,i+N).

Constraints

Number of visits

We have to make a slight change in constraints (5.15) from the Basic model because a move

between a port and its twin port should not be counted as a visit. This is because they are in

reality the same port, and we have to avoid double counting the visits. So, constraints (5.15)

have to be modified to:

bik =
∑

j∈P,j 6=i+N,

∑
r∈R

xijkr, i ∈ P, k ∈ K (7.1)

Demand flow

It is not necessary to do any changes in regards to the ship flow xijkr - we still need ship flow

conservation in every node. On the other hand, when it comes to the demand flow fijodkr we

have to do some changes. This is to enable transhipment in all ports. If one route visits port i

and leaves some units of demand (o,d) we want a route that visits port i’s twin port, port i+N ,

to be able to pick up these units without visiting port i. In order to allow this we redefine the

demand flow conservation in a node to be a joint demand flow conservation for twin ports. This

means that the net flow into port i and port i + N has to be equal to the net flow going out

56

Chapter 7. Chain model

of the nodes, but not necessarily for each node. The same concept applies in origin ports and

destination ports the joint outgoing/incoming flow has to equal the demand (o,d).

Therefore we have to substitute constraints (5.6-5.8) from the Basic model with the correspond-

ing constraints (7.2-7.4).

∑
i∈N

∑
k∈K

∑
r∈R

(fijodkr + fi+N,jodkr − fjiodkr − fj,i+N,odkr) = 0,

j ∈ N , (o, d) ∈ D, j 6= o, j 6= d, j ≤ N
(7.2)

∑
j∈P,j 6=o,j 6=o+N

∑
k∈K

∑
r∈R

(fojodkr + fo+N,jodkr) = Dod, (o, d) ∈ D, (7.3)

∑
i∈P

∑
k∈K

∑
r∈R

(fidodkr + fi,d+N,odkr) = Dod, (o, d) ∈ D, (7.4)

Calculation of internal transhipment

In the Chain model the calculation of the internal transhipment does not require any extra

consideration. The internal transhipment is taken care of by constraints (5.10) because we,

unlike what we do with the demand flow conservation constraints do not calculate the flow

balance for the port and its twin port in total. Thus, constraints (5.10) will track a change

in the flow for each node separately, hence discovering any transhipment that happens in each

node.

57

Chapter 8

Transit time extensions

As has already been mentioned, offering short transit time is a major competitive factor for

liner shipping companies, especially when the goods transported are time sensitive. Also, liner

shipping networks that are optimized only with respect to cost get an unrealistically high net-

work utilization as containers are allowed on detours that offer unused capacity but in practice

they will violate transit time restrictions (Karsten et al., 2015). By introducing a maximum

transit time for each commodity in the network, the number of allowed paths will be limited

significantly for the individual commodities and introduces new limits on the feasible solutions

in the network design process (Karsten et al., 2015).

In this chapter we present the formulations that extend the Basic, Flower and Chain models to

take transit time into account. From here the models without transit time will be collectively

denoted the original models, while the models incorporating transit time are called the transit

time models.

The way the transit time requirements are incorporated is equal for all models. Section 8.1

cover some of the assumptions and modeling choices done with regards to the incorporation of

transit time in the models. In Section 8.2-8.4 the mathematical formulations of the transit time

extensions of the Basic, Flower and Chain models, are presented.

8.1 Assumptions and modeling choices

The transit time models make it possible to specify a maximum transit time for each order.

By order we mean a bundle of containers with the same origin and destination port. How

many containers that constitute an order is decided by the user. The transit time models

construct routes that ensure that all containers are delivered within their specified transit time

58

Chapter 8. Transit time extensions

requirement. Between one single O-D pair, there can be several orders with different transit

times. This is illustrated in Figure 8.1. The orders can take different paths depending on their

transit time requirement. The Figure illustrates that even though there are two orders going

from O to D, they take different paths. This can for instance be because there is not enough

capacity on the shortest path.

Figure 8.1: Transit time. The figure illustrates that different orders with the same origin and destination

can take different paths because of their individual transit time requirement. The green order (o,d,1)

could not have taken the blue path, and still comply with the transit time requirement. The blue order

(o,d,2) could have taken the green path, but there may be other reasons for not doing it, for instance

the capacity on the path is not sufficient.

Enabling the properties described above requires some changes from the original models. Two

new sets are introduced; the set Ω is the set of possible order indices available for orders between

a particular O-D pair. The second set is the set of orders, O, which consists of all order triplets

(o, d, ω). Thus, compared with the original models, the tuplet (o, d) is replaced by the triplet

(o, d, ω). This way it is possible to refer to a particular order. The size of each order is given

by the parameter Dodω.

Binary restrictions are imposed on the flow variable fijodωkr. The binary restrictions on the

flow variable imply that the containers included in the same order have to follow the same path.

The reason for this is that if each order could be spilt, calculating the transit time of all paths of

the parts of the order would make the complexity of the model excessive. An implication of the

binary restrictions imposed on the flow variable, is that the order sizes will affect the demand

59

Chapter 8. Transit time extensions

splitting possibilities. However, since the sizes of the demands are parameters specified by the

user, this provides an opportunity rather than a limitation.

Transit time is defined as the time from when a container leaves its origin port until it arrives

its destination port. The models assume that the transit time consists of two parts; Sailing

time and Transhipment time, as can be sees from (8.1). It could be argued that time in port

also should be included, but we consider this as a part of the sailing time.

Transit timeodω = Sailing timeodω + Transhipment timeodω, (o, d, ω) ∈ O (8.1)

The sailing time is the time the container order is at sea sailing from one port to another. The

calculation of the sailing time is given by (8.2). It shows that the sailing time is calculated by

multiplying each arc (i, j) where order (o, d, ω) is transported with the time Tijk that ship type

k needs to sail it. It should be noted that this is a slight simplification, because the vessels

seldom sail at full speed because of the weekly frequency requirement. So if route r takes 3.6

weeks to sail the vessel still needs to spend 4 weeks on it. In reality this is the same as if the

vessel had a speed that is 4−3.6
3.6 ≈ 11.4 % less than their real speed. Thus, the sailing time will

be lower than what it is in reality. There are many ways to compensate for this. However, we

do not think this will affect the solution too much and we have therefore chosen to stay with

the simplification shown in (8.2).

Sailing timeodω =
∑
i∈P

∑
j∈P

∑
k∈K

∑
r∈R

Tijk · fijodωkr, (o, d, ω) ∈ O (8.2)

The transhipment denotes the time an order that is being transhipped has to wait in the hub

port before it gets picked up. This is extremely complicated to calculate exact and we have

therefore made the simplification that the transhipment time always is half a week. This serves

as a good approximation because we know that the longest time possible it has to wait is one

week, while the lowest time is that it gets picked up immediately. This follows from the weekly

frequency requirement.

The transhipment time can thus be written:

Transhipment timeodω =
∑
i∈P

∑
r∈R

tiodωr
2

, (odω) ∈ O (8.3)

60

Chapter 8. Transit time extensions

8.2 Basic model with transit time

In this section the additional formulation needed in order to extend the Basic model to take

into account transit time, is presented.

Additions and changes in sets and indices

Ω - The set of possible order indices per O-D pair, ω

O - Orders, (o,d,ω) o, d ∈ P, ω ∈ Ω

The set of demands D in the original models is substituted by the set of orders, O. Thus all

tuplets (o,d) are replaced by the triplets (o,d,ω).

Additions and changes in parameters

DB
odω - 1 if there is demand of order ω from port o to port d, (o, d, ω) ∈ O

0 otherwise

DQ
odω - Weekly quantity (in TEU) of order (o,d,ω) (o, d, ω) ∈ O

T T
odω - Transit time requirement (in weeks) for order (o,d,ω) (o, d, ω) ∈ O

The parameters DB
odω and T T

odω are added to the model. The demand quantity parameter, DQ
odω,

is redefined to be per order (o,d,ω), and not per O-D pair as in the original model.

Changes in variables

fijodωkr - 1 if demand (o,d,ω) is transported by a vessel of type k on arc (i,j) in route r,

0 otherwise

tiodωr - 1 if demand (o,d,ω) is transhipped to route r in port i, 0 otherwise

There is no need for additional variables, however the flow and transhipment, fijodωkr and tiodωr,

variables need to be redefined. Both variables need the additional index, ω. We also have to

impose binary requirements on them. This is because each order has to follow the same O-D

path. Note that this does not mean that the all cargo from O-D have to follow the same path,

only the cargo within the same order.

Transit time constraints

Besides imposing transit time constraints no additional constraints are needed. The Transit time

constraints (TTCs) ensure that all orders are transported from their origin to their destination

within the specified transit time requirement, T T
odω.

The transit time constraints are given by:

61

Chapter 8. Transit time extensions

∑
i∈P

∑
j∈P

∑
k∈K

∑
r∈R

(2 · Tijk · fijodωkr + tiodωr) ≤ 2 · T T
odω, (o, d, ω) ∈ O (8.4)

Constraints (8.4) ensure that all demands (o,d,ω) are transported from their origin port o to

their destination port d so that their transit time requirement, T T
odω, is met.

8.3 Flower model with transit time

In this section the additional formulation needed in order construct the Flower transit time

model (Flower TT), is presented. The same additions and changes required to obtain the Basic

transit time model from the Basic model, also applies when including transit time in the Flower

model. There are also some modifications to the Flower specific constraints and variables. These

are listed below.

tIiodωr - Internal transhipment of order (o, d, ω) in butterhub i of butterfly route r

tEiodωr - External transhipment of order (o, d, ω) in port i of route r

cijodωkr - 1 if the net flow in port i of order (o,d, ω) associated with ship type k and route r

is non-positive, 0 otherwise.

qimodωr - The positive pairwise difference between out-flow and in-flow of order (o, d, ω)

in neighbouring loops in butterfly route r

In constraints (6.33), the flow variables are now binary and need to be multiplied with the order

size to correctly set the pairwise positive difference.

qimodωr ≥
∑
k∈K

(Dodω(fjmodωkr − fijodωkr)−Dodω(4−mjr − pNijr − xijkr − xjmkr),

(i, j), (j,m) ∈ A, r ∈ R
(8.5)

The same applies for the calculation of external and internal transhipment. Constraints (5.10)

and (6.34) have to be substituted with (8.6) and (8.7), respectively.

tEiodωr ≥
∑
j∈P

∑
k∈K

Dodω(fijodkr − fjiodkr), i ∈ P, i 6= o, i 6= d, (o, d, ω) ∈ O, r ∈ R (8.6)

62

Chapter 8. Transit time extensions

tIiodωr ≥
∑
j∈P

∑
m∈P

qjmodωr −Dodω(1− dir)− tEiodωr, i ∈ P, (o, d, ω) ∈ O, r ∈ R (8.7)

The transit time constraints in the Flower TT model become:

∑
i∈P

∑
j∈P

∑
k∈K

∑
r∈R

(2 · Tijk · fijodωkr + tIiodωr + tEiodωr) ≤ 2 · T T
odω, (o, d, ω) ∈ O (8.8)

8.4 Chain model with transit time

In this section the additional formulation needed in order construct the Chain transit time

model (Chain TT), is presented. The same additions and changes in the Basic model also

applies for the Chain model. The only difference in the realization of transit time requirements

in the models is that the Chain model has to take into account the two layers in the transit

time constraints:

2 · Tijk · (
∑
i∈P

∑
j∈P

∑
k∈K

∑
r∈R

fijodωkr +
∑

i∈N∩P̄

∑
j∈N∩P̄

∑
k∈K

∑
r∈R

fijodωkr) +
∑
i∈N

∑
r∈R

tiodωr) ≤ 2 · T T
odω,

(o, d, ω) ∈ O
(8.9)

Constraints (8.9) ensure that all orders (o,d,ω) are transported from their origin port o to their

destination port d so that their transit time requirement, T T
odω, is met. In the Chain model it

is important to ensure that it is irrelevant if a demand arrives in a port or its twin port with

regards to the transit time.

63

Chapter 9

Strengthening formulations

In this chapter we present different possibilities of strengthening the formulations of the three

models explained in the previous chapters. First, in Section 9.1 we present measures trying to

remove or reduce the symmetry in the three models. After this, in Section 9.2, valid equalities

that can be added to the formulations, are introduced. At last, in Section 9.3 we show how the

valid inequalities can be further enhanced with integer rounding.

9.1 Symmetry breaking constraints

Symmetry is a common problem in many combinatorial problems. The term symmetry means

solutions that are different mathematical solutions, but that represent the same practical solu-

tions. Symmetries increase the size of the search space. We must take into account symmetry

or we will waste much time visiting symmetric solutions, as well as those parts of the search

tree which are symmetric to already visited states.

One way of dealing with symmetry is to add constraints that eliminate symmetric solutions

(Walsh, 2012). These constraints aim to make the solutions look different even though they

are the same mathematical solutions, without restricting the problem. In this section symme-

try challenges in the models are identified, and corresponding symmetry breaking constraints

(SBCs) are suggested. In Section 11.2 the results of testing the effect of the SBCs are presented.

Symmetry breaking constraints have a number of good and bad properties (Walsh, 2012). This

will be further addressed in Chapter 12.

64

Chapter 9. Strengthening formulations

9.1.1 General symmetry breaking constraints

In this section two symmetry issues that arise in all models are discussed, and accompanying

solutions presented. The symmetry issues are related to Route index assignment and Subtour

elimination.

Route index assignment. In the models, there is a lot of symmetry related to the route index

assignment. The number of symmetrical solutions caused by route index assignment is given

by expression (9.1), where R is the set of route indices, and A is the set of routes generated in a

feasible solution. In the models the set of routes consists of the maximum potential routes that

can possibly be generated. This only serves the purpose of being able to index the variables

based on the routes they are in. Besides this there is no practical difference between route 1

and 2 etc, and hence our problem will have a solution space that is a lot greater that necessary.

of symmetric solutions caused by route indexing =
|R|!

(|R| − |A|)!
(9.1)

The number of symmetric solutions related to the route generation and assignment of ship type

are equal to the possible combinations values of the binary variable ykr which states whether or

not ship type k sails route r, as long as the number of routes sailed by the different ship types

are the same. Table 9.1 shows an example of three symmetrical solutions. The mathematical

solutions are different, however they represent the same practical solution.

Below we present two different approaches of symmetry breaking constraints that help reducing

the symmetry associated with the route index assignment:

Route index assignment solution approach 1 (R1):

The first solution approach (hereby referred to as R1) to reduce the symmetry related to route

index assignment, ensures that routes are generated in ascending order and that ship types are

assigned in descending order. This is done by imposing constraints (9.2). Using this approach

only Solution 3 in Table 9.1 would have provided a valid solution - this shows that the SBCs

(9.2) succeed in reducing the solution space.

∑
k∈K

k · yk(r+1) ≤
∑
k∈K

k · ykr, r ∈ R (9.2)

Constraints (9.2) reduces the symmetry related to route index assignment by stating that route

r has to be created before route r+ 1 and so on. They also force routes that are sailed by ship

type k + 1 have to have lower route numbers than the routes sailed by ship type k.

65

Chapter 9. Strengthening formulations

|K| = 2 Number of routes sailed by ship type 1:
∑
r∈R

y1r = 2

|R| = 10 Number of routes sailed by ship type 2:
∑
r∈R

y2r = 1

Value of ykr: r=1 r=2 r=3 . . . r=10
∑
r∈R

ykr

k=1 1 1 0 . . . 0 2

Symmetrical solution 1 k=2 0 0 0 . . . 1 1∑
k∈K

ykr 1 1 0 . . . 1 3

k=1 0 0 1 . . . 1 2

Symmetrical solution 2 k=2 0 1 0 . . . 0 1∑
k∈K

ykr 0 1 1 . . . 1 3

k=1 0 1 1 . . . 0 2

Symmetrical solution 3 k=2 1 0 0 · · · 0 1∑
k∈K

ykr 1 1 1 0 0 3

Table 9.1: Same same, but different. The table shows three examples of symmetrical solutions related

to route index assignment, i.e. the value of variable ykr. Variable ykr is 1 if ship type k sails route r, 0

otherwise.

Route index assignment solution approach 2 (R2):

The second approach (hereby referred to as R2) ensures that route r is longer or equal the

length of route r+1. This way the longest routes will be assigned to the lowest route numbers

and so on. This is done by constraints (9.3), which make make sure that the routes will be

ordered in descending length.

∑
i∈P

∑
j∈P

∑
k∈K

Tij · xijkr ≥
∑
i∈P

∑
j∈P

∑
k∈K

Tij · xijk(r+1), r ∈ R (9.3)

Comparison of the two approaches

The first approach (R1) removes most of the symmetry due to route index assignment, except

from the symmetry among routes using the same ship type. If there are five routes where

three routes use ship type 1 and two routes use ship type 2, the symmetrical solutions will be:

3! · 2! = 12. The second approach (R2) will erase more of the symmetry than R2. The only

symmetrical solutions than can occur related to route index assignment when R2 is included is

if some routes have the exact same route lengths. This is reasonable to assume that they will

66

Chapter 9. Strengthening formulations

not have in most cases.

Subtour elimination. There is also symmetry issues related to the subtour elimination con-

straints. This is because in the current models an arbitrary port is set to be the depot of a

non-butterfly route. This means that if a route visits five ports there are five different mathe-

matical solutions which in reality are the same practical solution.

A way to reduce the number of possibilities is to decide that the port with the highest index is

set to be the depot of a route. This reduces the symmetry of the problem because the program

does not have to check if it can improve the solution by changing which port is set to be the

depot.

We introduce variable pRijr:

pRijr - 1 if both port i and port j are visited in route r, 0 otherwise.

pRijr ∈ {0, 1}, i, j ∈ P, r ∈ R (9.4)

The following constraints give value to variable pRijr:

rir + rjr − pRijr ≤ 1, i, j ∈ P, r ∈ R (9.5)

rir + rjr + 2(1− pRijr) ≥ 2, i, j ∈ P, r ∈ R (9.6)

Constraints (9.5) - (9.6) give value to variable pRijr and ensure that it is set to 1 if both port i

and port j are in route r, and 0 otherwise.

djr − pRijr + 1 ≥ dir, i, j ∈ P, r ∈ R, j > i (9.7)

Constraints (9.7) make sure that the port within a route with the highest index is set to be the

depot of the route, and can be added to the Basic and Chain model. However, in the Flower

model a tiny modification is needed.

The change is needed because in a flower route we want the butterhub to be the depot, not the

port with the highest index. Therefore we need to add mir to the left hand side of constraints

(9.7) to relax the constraint for butterfly routes. This means that if the route is a Flower

67

Chapter 9. Strengthening formulations

route the fact that there is a butterhub in the route must override the highest-index rule. The

corresponding constraints for the Flower approach thus become constraints (9.8):

djr − pRijr +mir + 1 ≥ dir, i, j ∈ P, r ∈ R, j > i (9.8)

By introducing these symmetry breaking constraints there will be only one port that is qualified

to be set to the depot of a route - and hence the constraints have removed all symmetry related

to the problem of arbitrarily chosen depots.

68

Chapter 9. Strengthening formulations

9.1.2 Flower specific symmetry breaking constraints

In this section symmetry issues and corresponding solutions in the Flower model are presented.

In the Flower model there is symmetry due to the assignment of loop numbers, nir, in flower

routes. This is because it is only the sequence of the loops that matter, not the numbering

itself. Specifically, there will be as many symmetric solutions as there are loops in a route. This

is shown in Figure 9.1.

Figure 9.1: In reality the only thing that matters is the sequence of the loops, not the numbering itself.

Therefore all the solutions in the figure are practically the same solution. In a Flower route with four

loops, as is depicted in the figure, there will be four symmetrical solutions.

To break the symmetry related to loop numbering we want to specify the loop number of one

port in the route, so that it can serve as an anchor for the rest of the ports. As long as one

port has a loop number, the rest of the numbering will not have symmetric solutions, because

the relative loop numbering is not random, as opposed to which loop is set to the first loop.

One way to do this is to decide on a port that is going to be in the first loop. In order to

”choose” an arbitrary loop as the first loop, we need a feature that uniquely identifies a loop so

that only one loop number is fixed. We chose to set the loop that contains the port with an arc

from the depot, i.e. the ”starting port” where sir = 1, with the lowest index to be in the first

69

Chapter 9. Strengthening formulations

loop. Since no ports have the same index there will only be one loop with the lowest indexed

starting port. This is illustrated in Figure 9.2.

Figure 9.2: The symmetry related to loop numbering is broken by en-

forcing the lowest indexed starting port to be the first loop. in this case,

the lowest indexed starting port is Port 3, and it is therefore contained

in loop number 1.

Below the additions to

the Flower model in order

to enable the symmetry

breaking constraints ex-

plained above, are given.

Note that starting port

refers to a port where sir

is 1, see 9.2 for illustra-

tion.

To make the symmetry

breaking constraints ex-

plained above, the ad-

ditional integer variable,

δr, and two sets of con-

straints, (9.9) and (9.10),

are needed.

Additional variable

δr - equal to or less than the index of the route r’s lowest indexed starting port.

Additional constraints

δr − (2−mjr −
∑
k∈K

xjikr) ≤ i, i, j ∈ P, r ∈ R, (9.9)

1

i
· δr − (N − 1)(dir + sir − 1)− eFir ≤ 1− ε, i ∈ P, r ∈ R, (9.10)

Constraints (9.9) set the value of δr to be less or equal to the lowest starting port index of route

r. Constraints (9.10) state that if a starting port of a route, i.e. sir = 1, has an index in which

70

Chapter 9. Strengthening formulations

is more than the value of δr, variable eFir, which indicate whether port i is in the first loop of

route r, is set to 0. Since we know that at least one loop will have to be set to be the first loop,

it is not necessary with a set of constraints forcing eFir to one because this will follow directly

by the constraints presented in Chapter 6.

9.1.3 Chain specific symmetry breaking constraints

In the Chain model there are symmetry issues caused by the virtual network, i.e. the division of

the ports into layers of original ports and twin ports. Since there is no logical difference between

the top and bottom layer in the chain model, i.e. the original and the twin nodes, the same

route can unfold itself in numerous ways in the network. We present three measures that will

reduce this type of symmetry: Top layer priority, One layer for simple routes and Restricted

twin arcs usage. In this section symmetry issues and proposed solutions in the Chain model are

presented.

Top layer priority (T)

In the virtual double network all routes have equal-valued counterparts found by switching all

arcs from one layer to another. This type of symmetry, illustrated in Figure 9.3, can be avoided

by introducing a set of constraints that assigns a layer based on some feature of the route

structure. We have chosen to assign the layer in the route with the highest number of arcs to

the top layer, saying that the top layer should always be used more or as much as the bottom

layer. This way constraints (9.11) ensure that there will be no ambiguity about which set of

arcs should be on which layer, except from when there are exactly the same number of arcs in

both layers.

71

Chapter 9. Strengthening formulations

(a)

(b)

(c)

Figure 9.3: The route depicted in Figure 9.3a can be realized in both ways showed in 9.3b and 9.3c.

However, by imposing constraints (9.11), this symmetry is avoided by allowing only 9.3b where the

number of top layer arcs are more than the number of bottom layer arcs.

∑
i∈P

∑
j∈P

∑
k∈K

xijkr −
∑

i∈N∩P̄

∑
j∈N∩P̄

∑
k∈K

xijkr ≥ 0, r ∈ R (9.11)

Constraints (9.11) state that for every route r the number of arcs in the top layer should always

be more or equal to the arcs in the bottom layer. Note that the notation is the same as in

Chapter 7, i.e. N denotes the set of both original ports and twin ports while P is the set of

only the original ports.

72

Chapter 9. Strengthening formulations

One layer for simple routes (O)

A non chain-route (i.e. a simple route) has numerous of different possibilities going up and

down between the two layers, not improving or altering the objective value. This symmetry

challenge is illustrated in Figure 9.4. By restricting simple routes to only use one layer, this

type of symmetry is avoided. Preliminary testing as well as empirical research of the shipping

companies’ routes indicate that the majority of the routes created will be non-butterfly routes,

therefore these constraints will be activated often, and hopefully improve the solution time.

Figure 9.4: The figure shows three examples (there are many more, this is only the tip of the iceberg!)

of symmetric solutions that are all valid ways of representing a simple route in the two layered network.

By imposing (9.12) and (9.13) the upper solution will be preferred over the two others, i.e. simple routes

will only use one layer in the network.

In order to enforce the SBCs explained above the following additional formulation needs to be

included in the Chain model:

Additional variable

We introduce the binary variable, γir, that indicates whether or not the port is visited twice

or less than twice in the route. If there do not exist any variables that are visited twice in one

route, the route should stay on one layer.

γir - 1 if port i is visited twice in route r, 0 otherwise

∑
j∈P

∑
k∈K

(xijkr + xi+Nj+Nkr)− γir ≤ 1, i ∈ P, r ∈ R (9.12)

73

Chapter 9. Strengthening formulations

∑
j∈P

∑
k∈K

(xijkr + xi+Nj+Nkr) + 2 · (1− γir) ≥ 2, i ∈ P, r ∈ R (9.13)

The sets of constraints (9.12)-(9.13) give value to the new variable γir. Constraints (9.12) force

variable γir to 1 when port i is visited twice, while constraints (9.13) set variable γir to 0 when

port i is visited less than twice in route r.

∑
i∈P

γir −
∑
i∈P

∑
k∈K

(xi(i+N)kr + x(i+N)ikr) ≥ 0, r ∈ R (9.14)

Constraints (9.14) ensure that that when all ports in a route are only visited once the route

should stay on one layer. This is done by stating that none of the arcs between twin nodes

can be used when no ports are visited twice. Note that since constraints (9.11) ensure that a

route should always use the top layer more or as much as the bottom layer, the upper layer

will always be used for simple routes. Thus, there is not necessary to specify which of the two

layers should be used for non-chain routes.

Restricted twin arcs usage (U)

The constraints presented earlier in this section ensure that the upper layer is always used more

than the lower layer, and that simple routes only use the upper layer. We also want to remove

the symmetry coming from chain routes going up and down between the layers for no reason,

see Figure 9.5 for illustration.

Figure 9.5: Two examples of symmetric solutions coming from a route going up and down between the

layers for no reason. After constraints (9.15) are imposed only the first example will be valid.

We acknowledge that in order to create a butterhub the route needs to change layer and stay

at the other layer for at least two arcs, and if the route is going up and directly up again in

the neighbour node, the change of layer was of no reason. We want to enforce that a change of

74

Chapter 9. Strengthening formulations

layer can only happen to enable a butterhub. This can be done by stating that the number of

arcs a route uses in the second layer must be at least as big as the number of twin arcs it uses.

∑
i∈P

∑
i+N∈N

∑
k∈K

xijkr −
∑

i∈N∩P̄

∑
j∈N∩P̄

∑
k∈K

xijkr ≤ 0, r ∈ R (9.15)

Constraints (9.15) state that the number of utilized twin arcs has to be less than the number

of used arcs in the lower layer.

9.2 Valid inequalities

In order to strengthen the linear relaxation of the problem, we have attempted to create valid

inequalities to cut off solutions that are not integer feasible. This could make the problem

easier to solve. We have created cuts that are added a priori to the formulations and also tried

generating cuts dynamically as they are violated.

According to Wolsey (1998) the use of inequalities to improve formulations and obtain tighter

bounds is the area in which probably the most progress has been made in the last ten years. In

this section we present different constraints that can be added to the formulations in order to

make them tighter. The motivation behind the valid inequalities is to get an improved optimistic

bound in the root node of the B&B-tree and that this again leads to shorter computation time

for larger instances of our problem. Put in another way the goal is to find effective ways to try

to approximate conv(X) for the given instance. In the best case, when conv(X) is equal to the

feasible area of the problem, the LP-solution will be equal to the optimal solution.

The effect of imposing valid inequalities is a trade off between a more narrow solution space

and the fact that the LP-solution in the root node will take longer time to solve because of

the extra constraints. Therefore, finding valid inequalities is not enough, there is a need for a

computational study to figure out whether or not the valid inequalities is actually enhancing

the solution time for realistic instances.

In order to find the valid inequalities that will pay off in terms of solution time we have tried

to identify features of the routes that now is formulated implicitly that can be tighter with an

explicit formulation.

This section is organized as follows; In Section 9.2.1 general valid inequalities that apply for all

the six models are presented. In Subsection 9.2.2 and 9.2.3 model specific valid inequalities are

presented for Flower and Chain models, respectively. In Section 9.3 we propose how the valid

inequalities can be further strengthened by integer rounding and coefficient specification.

75

Chapter 9. Strengthening formulations

9.2.1 General valid inequalities

Two types of general valid inequalities, that are applicable for all models, are proposed. These

are called the Capacity miles-valid inequality and the Demand/capacity-valid inequalities. In

this section the formulations of the general valid inequalities are presented, in addition to an

explanation of the rationale behind them.

Capacity miles valid inequality (CM)

The Capacity miles-valid inequality takes advantage of the known distances between the O-D

pairs, and the fact that a demand at a minimum has to travel the distance between its origin

port and its destination port. This is certain because the shortest path between two ports

always is the direct path between them because the ports are positioned in an Euclidean 2-

space. This fact can be utilized to calculate a lower bound on the total capacity of the fleet,

which is exactly what is done by the Capacity miles-valid inequalities, given by constraint

(9.16). The demand quantity multiplied with its direct distance makes up a lower bound on the

total fleet capacity. The total fleet capacity is calculated by summarizing all vessels in use by

their respective capacities and speed (in weeks). The concept behind the Capacity miles-valid

inequality is illustrated in Figure 9.6.

Figure 9.6: The capacity miles valid inequality exploits the fact that we know that a demand at a

minimum has to travel the direct distance between its origin port and its destination port. Therefore,

the direct distance between a demand multiplied with the size of the demand makes up a lower bound

on the capacity.

∑
k∈K

Sk · Vk · akr ≥
∑
k∈K

min{Sk · Vk,
∑
o∈P

∑
d∈P

Dod · Tod} · akr ≥
∑
o∈P

∑
d∈P

Dod · Tod, (9.16)

The formulation of the Capacity miles-valid inequality is given by onstraint (9.16). A stronger

versions of the constraint is obtained by replacing the product of ship type dependent parameters

capacity and velocity, i.e. Sk ·Vk, with the minimum of this and the total demand in the system

multiplies with its respective direct distances. The reason why this is possible is that there will

76

Chapter 9. Strengthening formulations

never be necessary to use the exceeding capacity of a vessel if this is greater than the total

demand in the whole system.

Demand/capacity valid inequalities (D/C)

The Demand/capacity (D/C)-valid inequalities exploit the fact that if the ports are split into

two subsets we know that the flow between the subsets at least has to equal the total demand

between them. This knowledge can be used to determine a lower bound on the capacity of the

ships sailing between subset 1 and subset 2 - and thus also a lower bound on the arcs needed

to be used between the two subsets. The concept is illustrated in Figure 9.7a. In the following

two versions of the D/C-valid inequalities will be presented: the Simple D/C -valid inequalities

and the D/C flow-valid inequalities.

Simple D/C valid inequalities

∑
i∈PA

∑
j∈P∩PA

∑
k∈K

∑
r∈R

Sk · xijkr ≥
∑
i∈PA

∑
j∈P∩PA

∑
k∈K

∑
r∈R

min{Sk,
∑
i∈PA

∑
j∈P∩PA

Dij} · xijkr ≥

∑
i∈PA

∑
j∈P∩PA

Dij , PA ⊂ P

(9.17)

The simple D/C-valid inequalities are given by constraints (9.17). The understanding of these

constraints are that the set of ports is divided into two non-overlapping and extensive subsets

non of them being the empty space and that the flow between the subsets has to be greater or

equal to the net demand between them. As for the CM-valid inequality, a stronger versions of

the constraint is obtained by tightening the parameters. In this case this is done by replacing

the vessel capacity parameter, Sk, with the minimum of this and the total demand between the

two sets,
∑
o∈P

∑
d∈P

Dod. This can be done because if the total demand between the two subsets is

lower than some of the vessel capacities, the exceeding capacity is in fact irrelevant, and using

the demand instead makes a tighter bound on the constraint.

D/C flow-valid inequalities (D/C-f)

The second version of the D/C-valid inequalities is based on the same concept as the simple

version, but they are further strengthened by exploiting that the flow going via Subset 1 to

Subset 2 can be added on RHS of the constraints. This is because if there is external flow

coming in to subset 1 with final destination subset 2 this may have implications for the lower

bound of the vessel capacity between the two subsets, because this demand also needs vessel

77

Chapter 9. Strengthening formulations

(a) Simple D/C-valid inequalities

(b) D/C flow-valid inequalities

Figure 9.7: The D/C valid inequalities exploit the fact that the total flow from Subset 1 to Subset 2

must be at least equal to the net demand from Subset 1 to Subset 2, and vice versa. By calculating this

we get an immediate lower bound for the total capacity of the fleet between the two subsets of ports.

The D/C flow-valid inequalities extends this concept further by stating that the total flow from Subset

1 to Subset 2 must be at least equal to the demand from Subset 1 to Subset 2 and the flow going to

Subset 2 via Subset 1, with destination in Subset 2.

78

Chapter 9. Strengthening formulations

capacity to return to its correct subset. The D/C-f -valid inequalities are given by constraints

(9.18). Note that for the D/C-flow-valid inequalities the same parameter substitution (Sk =⇒∑
o∈P

∑
d∈P

Dod) as was done for the Simple D/C is not possible. This is because it is not possible

to know an upper bound on the flow from Subset 1 to Subset 2, because in theory a demand

can cross the line between two subsets an infinite number of times.

∑
i∈PA

∑
j∈P∩PA

∑
k∈K

∑
r∈R

Sk · xijkr ≥
∑
i∈PA

∑
j∈P∩PA

Dij + fjiodkr, PA ⊂ P (9.18)

Formulation of the D/C valid inequalities in Chain model

In the Chain model some minor notational adjustments are needed in the formulations of the

D/C-valid inequalities. the Simple D/C-valid inequalities are given by constraints (9.19) instead

of constraints (9.17), and the D/C valid inequalities with flow are given by constraints (9.20)

instead of (9.18). The only difference is that the flow variable xijkr is replaced with xijkr +

xi+Nj+Nkr because the flow in both layers needs to be included.

∑
i∈PA

∑
j∈P∩PA

∑
k∈K

min{Sk,
∑
i∈PA

∑
j∈P∩PA

Dij} · (xijkr + x(i+N)(j+N)kr) ≥
∑
i∈PA

∑
j∈P∩PA

Dij ,

PA ⊂ P
(9.19)

∑
i∈PA

∑
j∈P∩PA

∑
k∈K

∑
r∈R

Sk · (xijkr + x(i+N)(j+N)kr) ≥
∑
i∈PA

∑
j∈P∩PA

Dij + fjiodkr, PA ⊂ P

(9.20)

9.2.2 Flower specific valid inequalities

In this section we present valid inequalities that can be added to the Flower and Flower TT

models to make the formulations stronger. As for the symmetry breaking constraints, the

problem specific valid inequalities in the Flower model are also related to the loop numbering

in a flower route.

Only one first/last loop-valid inequalities (L)

We know that in a Flower-route, there will never be more than one loop that is set to be the

first loop or last loop, i.e. where the loop number, nir, has the value 1 or lr, respectively. This

79

Chapter 9. Strengthening formulations

is not explicitly stated in the model, so specifying this as a valid inequalities might be beneficial

for the run time.

The Only one first/last loop-valid inequalities are state that the variables indicating if port i

is in route r’s first or last loop, eFir and eLir, can only take the value 1 for one of the ”starting

ports”, i.e. a port i having sequence number sir = 1. Even though the concept of the Only

first/last loop-inequalities is almost banal, the formulation is not straightforward, and a bundle

of new variables and constraints are required:

Additional variables

To construct the Only one first/last loop-valid inequalities two extra binary variables are re-

quired, κir and µir:

κir - 1 if port i is a starting port in route r, i.e. if sir =1, 0 otherwise

µir - 1 if port i is a starting port in the first or/and last loop of route r, 0 otherwise

Variable κir takes on the value 1 when port i is a starting port in route r, i.e. when sir = 1,

and 0 otherwise. Variable µir is 1 when port i is a ”starting port”, i.e. κir = 1, and port i is

in the first or/and last loop of route r, i.e. eFir = 1. For simple routes the loop is both the first

and last loop of the route.

Additional constraints

sir + κir + 2dir + 2(1−
∑
k∈K

ykr) + 2rir ≥ 2, i ∈ P, r ∈ R (9.21)

sir + (N − 1)κir ≤ N, i ∈ P, r ∈ R (9.22)

Constraints (9.21)-(9.22) give value to κir. Constraints (9.21) make sure that κir is set to 1

when port i is a starting port, i.e. sir = 1. In the constraints, κir is forced to be 1 if sir ≤ 1,

thus we have to relax the constraints for the cases where the node is not in the route (rir = 0),

the node is a depot (dir = 1) or when the route does not exist (ykr = 0). Constraints (9.22)

force it to 0 when the sequence number sir > 1.

80

Chapter 9. Strengthening formulations

Figure 9.8: Illustration of how the µir-variable and the κir-variable are set for different port/route-

combinations. κir-variable is 1 when port i is a starting port, and µir is 1 when port i is the starting

port in the first and/or last loop of route r, for all other ports or routes µir is 0.

81

Chapter 9. Strengthening formulations

κir + eFir + eLir − pSiir − µir ≤ 1, i ∈ P, r ∈ R (9.23)

∑
i∈P

µir + 2(1−
∑
k∈K

ykr) = 2, r ∈ R (9.24)

Constraints (9.23)-(9.24) give value to variable µir. Constraints (9.23) ensure that µir gets the

value 1 if both κir = 1 and eFir = 1 and/or eLir = 1, i.e. when port i is the starting port in route

r’s first and/or last loop. If the route is a simple route with only one loop, eFir and eLir will both

be 1, thus we have to subtract 1 when this is the case, so the constraints hold. That is the

reason for subtracting pSiir, which is 1 when port i is in both the first loop and the last loop at

once. Constraints (9.24) ensure that exactly two µir per route can have the value 1, in other

words, only one starting port in each route can be in the first loop, and only one starting port

can be in the last loop. However, one starting port can be in both the first and last loop. This

happens for simple routes because they have only one loop.

9.2.3 Valid inequalities for the Chain model

In this section we present valid inequalities that can be added to the formulations of the Chain

and Chain TT models to make them stronger. As for the symmetry breaking constraints, the

valid inequalities for the Chain models are also related to the two layered virtual network.

Two single visits (V)

In a chain route there must be at least two ports that are only visited once, as Figure 9.9 shows.

This comes from layer structure that is used to enable chain routes. Since this is a known

feature the model might as well get this explicitly through a valid inequality.

∑
i∈P

γir ≤
∑
i∈P

rir − 2, r ∈ R (9.25)

The set of constraints (9.25) states that in the Chain model at least two ports must be visited

only once. It uses variable γir introduced in Section 9.1.3 that is 1 if port i is visited twice in

route r.

82

Chapter 9. Strengthening formulations

Figure 9.9: The figure shows that in the Chain model every route must have at least two ports

that are visited only once. This is because that in complex routes both layers are needed, and

there have to be two ”transportation ports” that the route use to move up and down between

the layers, and thus these two ports cannot be visited more than once.

9.3 Integer rounding valid inequalities

In this section no new problem specific valid inequality concepts are introduced, however, we

show how some of the valid inequalities presented in Section 9.2.1-9.2.3 , can be further strength-

ened with applying integer rounding.

Integer rounding inequalities arise in the context of (mixed-)integer programs, that is to say,

optimization problems where some of the variables are required to take integral values. They

exploit the knowledge about some variables being integer to round up both sides of a constraint,

hopefully producing a tighter bound. This is sort of a way of telling the LP-relaxation of the

problem that this variable is in fact integer. The goal of the MIR is to round up one side of

the inequality as much as possible, and the other side as little as possible, creating a tighter

bound. This is illustrated in Figure 9.10. In order to obtain an inequality that is suitable for

integer rounding the whole constraint is divided by a number that ensure that the right hand

side is rounded up as little or as much as possible, depending on the constraint being a ≥- or

≤-constraint, respectively.

Procedure. The general procedure of deriving a MIR constraint is as follows; we are given a

constraint of the form:

x+ Cy ≥ b, where y is integral, x ≥ 0, C > 0 and b are given values (9.26)

To derive a MIR inequality we calculate a help parameter α:

83

Chapter 9. Strengthening formulations

Figure 9.10: The goal with integer rounding is to round up one side as much as possible, and the other

side as little as possible and this way obtain tighter bound.

β + ε = d b
α
e, β is integral (9.27)

The MIR inequality is obtained by dividing (9.26) by the α gotten from (9.27):

dx+ Cy

α
e ≥ d b

α
e (9.28)

The original constraint, (9.26), has two variables, x and y, where x is nonnegative and y is

integer. To obtain the MIR we need a parameter, α, that is such that the right handside

becomes 1.001 (or another number that would be rounded up with almost 1 by the ceiling

function). By dividing both sides (9.26) by this α-parameters found from (9.27) we obtain the

mixed inequalities in 9.28. Because of the way the α is calculated in (9.27) we can be sure that

the right hand side of the constraint will be rounded up a lot (≈ 1) by the ceiling function.

Hopefully, and most probably, the left hand side will be rounded up by less, all this leading to

a tighter constraint.

Different β-values give different α-values that give different integer rounding valid inequalities.

We want the α-parameter to be such that the rounding valid inequalities get the most effect.

This happens when the right side of the constraint is just above some integer value forcing the

left side to round up by almost 1.

84

Chapter 9. Strengthening formulations

Below the Capacity miles- and Demand/Capacity-valid inequalities are presented:

CM-valid inequality with integer rounding. Constraint (9.29) gives the Capacity miles-

valid inequality strengthened with integer rounding.

∑
k∈K

⌈min{Sk, ∑
o∈PA

∑
d∈P∩PA}

·Vk

α

⌉
· (
∑
r∈R

akr) ≥

⌈ ∑
o∈P

∑
d∈P

Dod · Tod

α

⌉
(9.29)

Simple D/C valid inequalities with integer rounding. Constraints (9.30) express the

simple D/C-valid inequalities with integer rounding.

∑
i∈PA

∑
j∈P∩PA

∑
k∈K

∑
r∈R

⌈min{Sk, ∑
o∈PA

∑
d∈P∩PA

Dod}

α

⌉
· xijkr ≥

∑
i∈PA

∑
j∈P∩PA

⌈
Dij

α

⌉
,

PA ⊂ P

(9.30)

85

Chapter 10

Instance generation

In this chapter the background, construction and reference scheme for the test data used for

the computational study in Chapter 12 are presented.

The aim of the computational study is twofold; one is to explore how well the models perform

in terms of scalability and running time, and the second is to evaluate the sensibility of the

solutions they make. The intention of the test instances is thus to facilitate a meaningful and

conducive analysis in the computational study, so that it gives a real impression of how they

work and what are their main improvement areas. In order to learn as much as possible about

the models it is therefore key to have test instances that differ in structure and size.

The Basic, Flower and Chain models use the same format for the input data, while the models

with transit time extensions need separate input files.

The instances are comparable in size to the instances used in recent literature that presents

exact models for solving the LS-NDP, i.e. (Reinhardt and Pisinger, 2011). The number of ports

range from 4 to 15, while the number of ship types is either 2 or 3 and the number of demands

range from 5 to 12.

First, in Section 10.1, the reference scheme for the data instances is presented. In Section

10.2 an overview of the parameters related to the different ship types and ports is given. In

Section 10.3 there is a description of the three instance types in terms of port positions and

the distribution of demands; namely the General, Feeder and Hub and Spoke. This section also

contains an explanation of how the instances are generated. In the last section, Section 10.4, a

specification of the instances used for the Transit time-models is given.

86

Chapter 10. Instance generation

10.1 Instance reference scheme

The test instances vary in four dimensions:

1. The number of ports

2. The number of ship types

3. The number of demands

4. The network type

The domains of the four dimensions and the instance reference scheme are shown in Table

10.1. The three former dimensions (number of ports, ship types and demands) are quite self

explanatory, while the latter dimension, network type, on the other hand needs some further

explanation. This is given in Section 10.3. Table 10.1 shows the domain of the four dimensions

specifying a test instance. It also shows the reference scheme used to uniquely refer to the

specific instance for the original and transit time models. Example; a test instance for an

original model with a Feeder-structure, five ports, two ship types and seven demands will be

denoted F[527]. A test instance for a transit time model with Hub and spoke-structure with

seven ports, three ship types and eight demands is denoted T-H[738]

Instance reference scheme

Data instance original models: Type[#Ports, #Ship types, #Demands]

Data instance transit time models: T-Type[#Ports, #Ship types, #Demands]

Where: Network type ∈ { F (Feeder), H (Hub and spoke),G (General)}

Ports ∈ [4,15]

Ship types ∈ [2,3]

Demands ∈ [4,12]

Table 10.1: Instance reference scheme and domains of the four dimensions specifying a particular test

instance.

87

Chapter 10. Instance generation

10.2 Parameters

In this section the parameters used in the computational study are presented.

The parameters are not based on real data. The reason for this is that considering the models’

high degree of simplification it would not be meaningful to give any real interpretation of the

numbers. For instance there would be no point in exploring how much Maersk would gain

from applying these models compared to the services they offer today. However, the relative

difference between the parameters are meant to encourage and facilitate different solutions for

different settings. For example; the cost of using ship type # 3 is higher than using ship type

1, however if it is fully loaded the cost per container will be lower than by using ship type

1. This way it is possible to evaluate to which degree the models make rational decisions and

work the way they are intended.

As was explained in Section 10.1 an instance is identified by type, number of ports, number of

ship types and number of demands. If an instance has 5 ports these ports are port # 1, port

#2, · · · , port # 5, and if it has 6 ports these are port # 1, port #2, · · · , port # 6, and so on.

The same goes for ship types. Table 10.2 shows the Capacity, Speed and Sailing cost data of

each ship type.

Ship type Capacity Speed Sailing cost Number of vessels

1 5 5 10 20

2 10 9 16 15

3 22 8 18 12

Table 10.2: Ship type parameter used in test instances. Since the data is not based on real numbers the

units are not specified.

Port number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transhipment cost 1 3 1 1 6 5 2 3 1 2 1 2 1 5 1

Table 10.3: The table shows the transhipment costs per container shipped for the 15 ports used

in the test instances. The transhipment cost does not depend on the ship type, it is only

dependent on the port.

88

Chapter 10. Instance generation

Visiting costs Ship type 1 Ship type 2 Ship type 3

Port 1 1 1 1

Port 2 1 3 4

Port 3 2 2 3

Port 4 1 1 2

Port 5 1 1 1

Port 6 3 4 5

Port 7 1 2 3

Port 8 1 2 2

Port 9 2 2 2

Port 10 4 5 7

Port 11 1 2 2

Port 12 2 2 3

Port 13 1 2 2

Port 14 2 3 3

Port 15 1 2 4

Table 10.4: Visiting costs for each combination of the 15 ports and the three ship types. In

general Ship type 1 has the lowest visiting costs and Ship type 3 the most expensive visiting

costs. This has to do with the size of the vessels, hence the capacity that can be seen in Table

10.2.

89

Chapter 10. Instance generation

10.3 Network types

The optimal network of routes depend on the geographical spread of the ports as well as how

the demand is distributed among them. Since we aim to make our models as general as possible,

we tested them on three types of data sets with different structures that often appear in liner

shipping and possess different characteristics. As seen in Table 10.1 network type is one of the

characteristics used to describe a test instance.

The interpretation of a network type is the structure when it comes to the position of the ports

and the distribution of the demand between them. The three network types used are called

the Feeder network, the the Hub & Spoke-network and the General network. The networks are

illustrated in Figures 10.1a-10.1e.

The Feeder-network

A feeder line is a peripheral route or branch in a network, which connects smaller or more

remote nodes with a route or branch carrying heavier traffic. Figure 10.1a shows an example of

a feeder-network. An example can be the airline traffic in Norway where a substantial part of

the airline traffic is between Oslo and smaller cities. Since it would not be economical to have

a direct route between Oslo and all other cities it often happens that the route stops at 2 or 3

smaller places before returning to Oslo.

An example of this is Widerøe’s route going Oslo-Ørsta Volda-Sandane-Oslo. The advantages

with this is better exploitation of the plane capacity and lower fuel costs (and other variables

costs caused by a reduced flight distance). The disadvantages is that the passengers going from

Oslo to Sandane or from Ørsta Volda to Oslo have to make a transfer and thus the transit time

becomes higher. How the feeder-instances are generated is illustrated and explained in Figure

10.1b.

The Hub & Spoke-network

The Hub and Spoke-network can be viewed as a network of several Feeder-networks, see Figure

10.1c. It is characterized by a network with several clusters of nodes where each cluster has

a hub. A Hub and Spoke-network is often effective when there exist collections of ports that

are geographically separated, and there is demand internally in the clusters as well as between

them.

An example of this is the global shipping network shipping goods between the continents.

Typically large vessels sail between the hubs of the continents (i.e. Shanghai and Rotterdam),

while smaller vessels sail inside one continent. How the Hub and Spoke-instances are generated

is illustrated in Figure 10.1d. In the H&S-instances there are two clusters of ports that are

placed in a circle with radius 5. Half of the ports are in one cluster and the rest in the other.

90

Chapter 10. Instance generation

The distance between the two clusters are 20. This means that inside of a cluster the maximum

distance between two ports is 10, while for ports in different clusters the maximum distance is

40.

The General-network

The general liner shipping networks do not have a specific structure, and the sets used in the

testing contain randomly distributed demands and positions. Figure 10.1e is an example of a

route in a general liner shipping network. We model this by placing all ports randomly within a

squared area within a length range [0,L] and a breadth range [0,L]. This is described in Figure

10.1f.

91

Chapter 10. Instance generation

(a) Feeder network (b) Generation of Feeder instance

(c) Hub and Spoke-network (d) Generation of Hub and Spoke-instance

(e) General network (f) Generation of general instance

Figure 10.1: Hub and Spoke-instance. Figure 10.1e shows a typical General network. The General

network is characterized of the ports being spread all over with no clear clusters of ports. Figure 10.1f

illustrates the generation of a General instance. he general instance is generated by placing the ports

randomly in BxL squared area. In our cases both B and L are set to 10. The demand is randomly

distributed with random values ranging from 1 to 9.

92

Chapter 10. Instance generation

10.4 Transit time instances

As seen from Table 10.1 a transit time-instance is referenced by T-Type[# of ports, # of ship

types, # of demands]. The data instances for the transit time models are almost similar to the

ones for the general models, however there are some exceptions.

First of all; the transit time instances contains data about the maximum allowed transit time

for each order. A drawback with the functionality of the transit time models compared to the

original models is that the flow variable, fijodωkr is binary rather than integer. However, if each

container was seen as its own order this would be equivalent to in the original models. In each

transit time instance the orders are bundled in sets of one, two or nine containers - leading to

different degrees of ”flowability”. We denote the size of the bundle the order split size (OSS).

An other aspect to notice is that in the transit time models the notion of a demand is still

all demand from one port to another port, independently of how many orders each demand is

divided into.

In the computational study of Transit Time models it is interesting to see how the models

behave when some orders have low transit time requirements and other orders do not. The

feasibility of the transit time requirements are ensured by setting it as the time ship type # 1

spends on sailing the direct distance of from order ω’s origin port o to its destination port d. We

also want to investigate how the general transit time requirements influence the solution and

the run time of a particular instance. In order to facilitate the investigation of these aspects

there are three versions of each instance; Urgent, Moderate and Uncritical dependent of the

transit time requirements on the orders. In the Moderate version of an instance all the transit

times are considerably higher than the transit time requirements of the Urgent instance. In the

Uncritical version of an instance the transit times are very high, and will very rarely have any

effect. How the transit times of the different versions of the instances are set is shown in Table

10.5.

93

Chapter 10. Instance generation

Transit time Group 1 Group 2 Group 3

urgency levels (1/3 of all orders) (1/3 of all orders) (1/3 of all orders)

Urgent 0.7 0.8 1

Moderate 1 1.2 1.4

Uncritical 2.8 3.6 6

Table 10.5: Transit time urgency levels for different versions of a transit time instance. The

numbers in the table represent the transit time requirement as this number multiplied with

the sailing time ship type # 1 spends on sailing the direct distance between the origin and the

destination of the particular order. For each urgent level the orders are divided into three groups

with different transit time requirements (Group 1 has the lowest transit time requirement and

Group 3 has the largest).

94

Chapter 11

Evaluation of strengthening

formulations

Before the main computational study was carried out, we performed a thorough preliminary

testing of the suggested measures of strengthening the formulations presented in Chapter 9. The

purpose of the testing was to explore the effect of the symmetry breaking constraints (SBCs)

and valid inequalities, and to use this to conclude on which of the strengthening formulations

that should be included in the different models. Table 11.1 gives an overview of the SBCs and

valid inequalities that were tested.

Testing approach. Ideally, every single combination of SBCs and valid inequalities should

have been tested on all the six models on all instances. Since this is not practically feasible,

we have attempted to perform the testing in a logical order and with test cases that would

give the best basis for decisions on the performance of the strengthening formulations. Detailed

descriptions of how the symmetry and valid inequality-testings were performed, are given in

their respective sections. Anyhow, on a high level: First, the symmetry elimination constraints

(SBCs) were tested. The SBCs that had good performance were added to the models for further

evaluation of the valid inequalities. The strengthening formulations have been tested on the

original models, and the general SBCs and valid inequalities have been tested on the Basic

model. All the test instances in this section have been of type General.

A note on evaluation principles. There is no recipe for how one can evaluate the effect

of strengthening formulation, and therefore we would like to convey some of the principles

that pervade the assessment of the strengthening formulations in this thesis. Our overarching

motivation for adding the strengthening formulations is to reduce the actual run time of the

models. It is not to show some theoretical feature of the valid inequalities. We are interested

in the practical gains from the valid inequalities, not the theoretical. If the valid inequalities

95

Chapter 11. Evaluation of strengthening formulations

perform well when Xpress presolve is disabled, but does not perform well when it is enabled,

we have not included it in the model.

Even though it is the run times that we really want to reduce, looking only at run times is not

enough. We are looking for the SBCs and the valid inequalities that will enhance the run times

of large instances. For small instances, adding strengthening formulations will seldom enhance

solution time. In the evaluation of the SBCs and valid inequalities we have therefore also taken

the number of nodes and LP objective values into account. We have especially emphasized

how the strengthening formulations scale, and if they show a relatively positive trend as the

instances get larger.

Outline. This chapter is structured as follows; In Section 11.1 the model reference scheme

is presented, making it possible to unambiguously refer to a certain model containing a spe-

cific combination of symmetry breaking constraints and valid inequalities. The results from

the testing of the SBCs and valid inequalities are presented in Section 11.2 and Section 11.3,

respectively.

11.1 Model variant reference scheme

The numerous SBCs and valid inequalities that have been tested in the computational studies

can easily be a source of confusion discussing the computational results. Therefore, there is

a need for an explicit way of referring to a certain model containing a specific combination of

strengthening formulations. Table 11.1 shows the model reference scheme with the different

codes used to denote the symmetry breaking constraints and valid inequalities. This way there

will be no doubt about which results that are discussed and analyzed. As an example of the use

of the reference scheme: Take an original Flower model containing the route index assignment-

SBC that sort the routes by length (R2) and the Flower specific valid inequality Only one

first/last loop (L), will be referred to as: F[R2,L].

96

Chapter 11. Evaluation of strengthening formulations
M
o
d
e
l
v
a
r
ia
n
t
r
e
f
e
r
e
n
c
e
sc

h
e
m
e

M
o
d
el

re
fe

re
n
ce

:
M

o
d
el

co
d
e[

S
B

C
s

co
d
e,

V
al

id
in

eq
u
al

it
ie

s
co

d
e]

W
he

re
:

M
o
d
el

co
d
e:

∈
{B

as
ic

(B
),

F
lo

w
er

(F
),

C
h
ai

n
(C

),
B

as
ic

T
T

(B
T

),
F

lo
w

er
T

T
(F

T
),

C
h
ai

n
T

T
(C

T
)}

S
tr

e
n
g
th

e
n
e
d

fo
rm

u
la

ti
o
n
s

C
o
d
e

C
o
n
st

ra
in

ts

S
B

C
s

G
en

er
al

R
ou

te
in

d
ex

as
si

gn
m

en
t

-
A

p
p
ro

ac
h

1
R

1
(9

.2
)

-
A

p
p
ro

ac
h

2
R

2
(9

.3
)

S
u
b
to

u
r

el
im

in
at

io
n

S
(9

.7
)

(B
as

ic
an

d
C

h
ai

n
),

(9
.8

)
(F

lo
w

er
)

F
lo

w
er

sp
ec

ifi
c

L
o
op

n
u
m

b
er

in
g

L
(9

.9
)-

(9
.1

0)

C
ha

in
sp

ec
ifi

c
T

op
la

ye
r

p
ri

or
it

y
T

(9
.1

1)

O
n
e

la
ye

r
fo

r
si

m
p
le

ro
u
te

s
O

(9
.1

4)

R
es

tr
ic

te
d

tw
in

ar
cs

u
sa

ge
U

(9
.1

5)

V
a
li
d

in
e
q
u
a
li
ti

e
s

G
en

er
al

C
ap

ac
it

y
m

il
es

w
it

h
in

te
ge

r
ro

u
n
d
in

g
(C

M
)

C
(9

.2
9)

S
im

p
le

D
em

an
d
/C

ap
ac

it
y

(D
/C

)
D

(9
.1

7)
(B

as
ic

an
d

F
lo

w
er

),

(9
.1

9)
(C

h
ai

n
)

D
/C

w
it

h
fl
ow

(D
/C

-f
)

F
(9

.1
8)

(B
as

ic
an

d
F

lo
w

er
),

(9
.2

0)
(C

h
ai

n
)

D
/C

w
it

h
in

te
ge

r
ro

u
n
d
in

g
(D

/C
-I

R
)

IR
(9

.3
0)

X
p
re

ss
p
re

p
ro

ce
ss

in
g

X

F
lo

w
er

sp
ec

ifi
c

O
n
ly

on
e

fi
rs

t/
la

st
lo

op
N

(9
.2

1)
-(

9.
24

)

C
ha

in
sp

ec
ifi

c
T

w
o

si
n
gl

e
v
is

it
s

V
(9

.2
5)

T
ab

le
11

.1
:

T
h

e
ta

b
le

sh
ow

s
th

e
re

fe
re

n
ce

sc
h

em
e

u
se

d
to

u
n

iq
u
el

y
re

fe
r

to
a

m
o
d

el
w

it
h

sp
ec

ifi
c

S
B

C
s

a
n
d

va
li

d
in

eq
u

a
li

ti
es

.
O

v
er

v
ie

w
o
f

th
e

S
B

C
s

a
n

d

th
e

va
li

d
in

eq
u

al
it

ie
s

th
at

ar
e

ev
al

u
at

ed
in

th
e

co
m

p
u

ta
ti

on
al

st
u

d
y,

a
n

d
h

ow
th

ey
a
re

re
fe

rr
ed

to
in

th
e

m
o
d

el
re

fe
re

n
ce

sc
h

em
e.

97

Chapter 11. Evaluation of strengthening formulations

11.2 Symmetry testing

In this section the results from the testing of the symmetry breaking constraints (SBCs), pre-

sented in Section 9.1, are described, and the effectiveness of each SBC is evaluated. The final

outcome of the testing, i.e. which SBCs that were added to the models, is shown in Table 11.2.

SBCs Outcome

General: R1 7

R2 X

S X

Flower specific: L X

Chain specific: T X

O X

U 7

Table 11.2: Outcome of symmetry testing

Testing of the general symmetry break-

ing constraints

The testing of the general SBCs presented in

Section 9.1.1 are done with the Basic model.

This is because all the other five models are

based on this model, and we think that it

is likely that the conclusions from the test-

ing on the Basic model also would apply for

these. In addition, since the Basic model

is the least complex of the models the con-

clusions of symmetry testing can come from

smaller instances than for the other models.

This is because the other models have more

variables, and therefore the gains from the

SBCs might come for larger instances.

Two general symmetry issues are discussed in Section 9.1; symmetry related to route index

assignment and subtour elimination. For the route index assignment-symmetry two approaches

were proposed; R1 given by constraints (9.2) and R2 given by constraints (9.3). For the sym-

metry in subtour elimination there was one, S given by constraints (9.7). The symmetry testing

was done by running the Basic model with all possible combinations of the SBCs on 9 instances

of varying sizes. R1 and R2 are mutually exclusive, because they are both measures to reduce

the symmetry due to the route indexing. Because of this, the symmetry testing consisted of

testing the three SBCs separately, as well as the combinations R1 + S and R2 + S.

Table B.1 shows the run time the different combinations of SBCs gave for different instances.

The symmetry testing shows that including the symmetry breaking constraints is effective and

help reduce the run time. The results indicates that the best combination of SBCs is R2 + S.

The symmetry testing were performed on instances with two ship types, from 5-9 ports and 5-9

demands. The instances were categorized into Small (G[525], G[527], G[725]), Medium (G[529],

G[727], G[729]) and Large(G[925], G[927], G[925]). For each instance the SBC combinations

were ranked from 1 (fastest) to 6 (slowest) based on the run time on that particular instance.

Table 11.3 shows the average ranking for each SBC combination on the Small, Medium and

98

Chapter 11. Evaluation of strengthening formulations

Average ranking: Run time # of nodes

Small instances Medium instances Large instances All instances

(G525,G527,G725) (G529,G727,G729) (G925, G927, G929)

B[] 1.0 2.6 2.7 4.75

B[R1] 2.3 4.0 5.0 3.75

B[R1+S] 4.7 3.3 2.3 1.5

B[R2] 4.3 4.3 4.3 4.25

B[R2+S] 5.0 3.7 1.3 2.5

B[S] 3.7 3.0 5.3 4.75

Table 11.3: Symmetry testing Basic. The table shows the average ranking of all the combinations of

SBCs based on run time on small, medium and large instances. For each instance the SBC combinations

have been ranked from 1 (fastest)- 6 (slowest).

Large instances. For the Small and Medium category the Basic model without any SBCs has

the best on average ranking. However, on the Large instances category, B[R2+S], stands out

from the other ones with a ranking of 1.3. Considering the average run time ranking, B[] and

B[R1] are getting strictly worse when the instance size grows. B[R2] has the same ranking for

all categories, while B[R1] and B[S] have no clear trend. Only B[R1+S] and B[R2+S] have a

strictly improving ranking when the instances grow. B[R2+S] perform better than B[R1+S] on

the Medium category. On the other hand, B[R1+S] on average has less number of nodes in the

B&B tree than B[R2+S]. It is not obvious which of B[R1+S] and B[R2+S] that performs the

best. However, since the run time is what matters after all, we chose to include the symmetry

breaking constraints R2 and S, because these gave the best run times on the large instances.

As was discussed in Section 9.1 the models suffer a lot from symmetry. Throughout the initial

testing of the computational study the fact that symmetry is indeed a great problem has been

steadily confirmed. An example is shown in Figure 11.1. It shows the Gap/Run time graph for

instance G[9211] on models B[] and B[R2+S]. The two models find optimal solution at about

the same time, however B[] does not manage to prove optimality within the cut off time og

10’000 s. This is probably due to symmetrical solutions, and indicates that it is beneficial to

include these symmetry breaking constraints in the model.

Testing of Flower specific symmetry breaking constraints

In Section 9.1.2 one set of Flower-specific symmetry breaking constraints is presented; the loop

numbering constraints (L). The symmetry testing on the Flower model indicates good effect of

this set of constraints, and it is thus included in the further testing of the Flower model. Table

99

Chapter 11. Evaluation of strengthening formulations

Average ranking: Run time # of nodes

Small instances Medium instances Large instances All instances

(G524,G525, G526) (G527,G529,G5211) (G5215, G725, G728)

C[] 1.7 2.0 3.3 4.0

C[T] 2.3 4.3 3.3 4.6

C[O] 4.0 3.3 4.4 3.8

C[U] 3.0 5.7 3.3 3.7

C[TO] 4.7 1.7 1.3 2.1

C[TOU] 5.3 4.0 5.3 2.9

Table 11.4: Symmetry testing Chain. Average ranking of the tested combinations of Chain specific SBCs

based on run time on small, medium and large instances. For each instance the SBC combinations have

been ranked from 1 (fastest)- 6 (slowest). It also shows the average ranking of the # of nodes.

Figure 11.1: The Gap/Time graph for instance G[9211] on models G[] and G[R2+S]. The two models

find optimal solution at about the same time, however B[] does not manage to prove optimality within

the cut off time of 10’000 s. This is probably due to symmetrical solutions.

B.3 shows the results from the symmetry testing of Flower. From this it can be seen that 6 of

9 instances get lower run time by including the Loop numbering valid inequality. As much as 8

of 9 instances get a lower number of nodes by including the constraints. To us this seems like

a good indication that it will be beneficial to include this cut and that it will have good effect

on larger instances too.

100

Chapter 11. Evaluation of strengthening formulations

Testing of Chain specific symmetry breaking constraints

In Section 9.1.3 three sets of Chain-specific SBCs were proposed; namely Top layer priority

(T), One layer for simple routes (O) and Restricted twin arcs usage (U). In this Section the

outcome of the testing is presented. The complete overview of the test results can be found in

Appendix B.3.

The testing was performed as follows: First the three sets of constraints were added separately

and run on nine instances of type General with a varying number of ports and demands. This

initial testing showed that the performance of T and O was significantly better than for U, as

can be seen from Table 11.4. Then the same instances were run on Chain model with T and

O in combination, i.e. C[TO], and the Chain model included all three SBCs, i.e. C[TOU], to

see if any of these combinations outperformed the SBCs in isolation. The results of the testing

indicate that it will be beneficial for the technical performance of the Chain model to include

the two first mentioned sets of SBCs, i.e. T and O.

101

Chapter 11. Evaluation of strengthening formulations

11.3 Evaluation of valid inequalities

In this section the results from the testing of the different valid inequalities are presented. The

effect of adding strong valid inequalities is twofold. On one hand a tighter formulation results in

a smaller branch-and-bound tree which is desirable with respect to the run time. On the other

hand, this comes at the cost of the added complexity due to an increased number of variables

and constraints. In this section we investigate which of the two effects that dominates the other

for the valid inequalities that were proposed in Chapter 9 - to see which of them that should

be added to the formulations.

Testing procedure. Figure 11.2 illustrates the procedure of which the testing of the valid

inequalities was performed. First, we performed testing to investigate if the Xpress presolve

should be enabled or disabled. Then the general valid inequalities were tested. The first decision

was to determine which α-values and -combinations that seemed best for the integer rounding

valid inequalities. After that, the general valid inequalities were tested both separately and

in combinations. The ones that performed well, were added to the models in advance of the

testing of the Flower and Chain specific valid inequalities.

Figure 11.2: Testing procedure of valid inequalities

102

Chapter 11. Evaluation of strengthening formulations

11.3.1 Testing Xpress presolve

Xpress Optimizer’s presolve function generates sophisticated valid inequalities and improves the

bounds of the problem before the actual branch-and-bound search starts. In general, disabling

presolve should lead to a larger search tree and worse upper and lower bounds. However, even

though the presolve facility may improve performance by modifying the user’s matrix so that

it is easier to solve, it also adds complexity in the problem, that can influence the run time in

the opposite direction.

When testing the different valid inequalities, the models have been run with presolve disabled, as

well as enabled, in order to test the effect of valid inequalities without having Xpress Optimizer

generate improvements of its own. The intention was to figure out if the rest of the testing

should be run with or without Xpress presolve.

(a) The LP objective values from the runs of B[X] and B[] on 45 instances

(b) The number of nodes from the runs of B[X] and B[] on 45 instances.

Figure 11.3: Results from testing the Xpress presolve

In order to decide if the Xpress presolve should be turned on, 45 instances were run on the B[

], B[C], B[D], B[F] and B[IR], and the corresponding models with Xpress enabled. For all runs

(45*5=225) the LP objective value improved, i.e. increased, between 12% and 68%. Figure

11.3a shows the LP objective value of B[] and B[X] on all 45 runs. It shows clearly that the

LP objective value of B[X] is consistently better than for B[].

The testing also shows that the number of nodes are lower for B[X] than B[], in particular

103

Chapter 11. Evaluation of strengthening formulations

for large and more complex inputs. While the number of nodes increase drastically for B[], it

is severely more modest for B[X]. This tendency is apparent in Figure B.8a. The results from

testing reveals that the run times for the models with Xpress presolve enabled in general are

equal to or better than the models without, especially for the largest inputs. All the results

(LP objective values, # of nodes and run times) can be found in in Appendix B.2.

From Figure we observe that B[], B[F] and B[C] only manage to solve the first data input

within the time limit. B[X], B[DX], B[IRX], B[CX] and B[FX] have better results and appear

at the lower parts of the graph, which means that they for several of the inputs manage to solve

to problem to optimality within the time limit.

(a) The LP objective values of all the models including different valid inequalities.

(b) The run times the Basic model with different valid inequalities with larger data inputs

104

Chapter 11. Evaluation of strengthening formulations

To summarize; the testing showed that the Xpress presolve improves the performance signifi-

cantly, especially with regards to the LP objective value. Thus, the Xpress presolve was enabled

for all consecutive runs in the computational study.

11.3.2 Finding good α-parameters for integer rounding

As described in Section 9.3 the values of the α parameters have to be calculated in advance to

derive the integer rounding valid inequalities. The best α parameters are those that make the

left hand side of the inequality to be just above some integer, β.

Models B[C] and B[IR] were tested with the following values and combinations of β (ε was set

to 0.001 in all tests):

• Alt. 1: β = 1

• Alt. 2: β1 = 1 and β2 = 2

• Alt. 3: β1 = 1, β2 = 2 and β3 = 3

To set the α-values for the integer rounding cuts, we followed the procedure described in Sec-

tion 9.3. By looking at which values and combinations that gave the best effect in terms of

LP objective values, number of nodes and run time the α-decisions were made. For B[CX]

Alternative 3 performed the best, while for B[IRX] Alternative 1 seemed to be the best. A

detailed description of the results, and how they were analyzed, is given in Table B.4.

11.3.3 Results from separate testing of the general valid in-

equalities

The purpose of the individual testing was to get an impression of the effect of each set of general

valid inequalities, and use this to determine which combinations of valid inequalities we should

combine in further testing. By comparing the results from the runs of B[X] with and without

including a particular set of valid inequalities, their isolated effect were investigated.

The testing of the valid inequalities was performed on the same 45 instances as the testing of

the Xpress presolve, as well as 9 larger instances. The first 45 had a cut off time of 10’000

seconds (3 hours), while the large 9 instances the cut off time was set to 40’000 seconds.. All

the results from the testing can be found in Appendix B.2.

Table 11.3.3 shows a summary of the observed performance of the testing of the general valid

inequalities based on the runs on 54 instances. The instances were categorized into Small,

105

Chapter 11. Evaluation of strengthening formulations

Performance of valid inequalities

= Significantly improved

= Slightly improved

= Equal or worse

Valid inequalities LP. obj value # of nodes Run time

Small Medium Large Small Medium Large Small Medium Large

B[CX]

B[DX]

B[FX]

B[IRX]

Table 11.5: Individual performance of valid inequalities. The table shows how the performance of the

Basic model changed by adding the general valid inequalities. The assessment is based on the runs of 54

instances. The instances and their categorization can be found in Table B.6.

Medium and Large instances, to be able to see how the model scaled with the different valid

inequalities. An overview of the instances applied in the testing, as well as their categorization

is given in Table B.6.

From Table 11.3.3 it is apparent that the Capacity miles cut with integer rounding scores very

poorly on every point of measure. The three other sets of general valid inequalities, on the other

hand, have a positive effect.

Particularly the number of nodes in the B&B tree show a significant decrease in B[DX] and

B[IRX] compared to B[X]. The decline gets relatively stronger for the larger instances. This

tendency for the D/C valid inequality can be seen in Figure 11.5a.

B[DX] shows good performance in run times, especially on the large instances. This can be seen

from Figure 11.4b.

106

Chapter 11. Evaluation of strengthening formulations

(a) The number of nodes on B[DX] and B[X] from runs on 45 different instances

(b) The number of nodes on B[FX] and B[X] from runs on 45 different instances

(c) The number of nodes on B[IRX] and B[X] from runs on 45 different instances

Figure 11.5: The graphs show how the number of nodes is influences in the runs on 45 instances by

including the general valid inequalities D, F and IR. It is clear that the nodes are reduced, especially for

the large and complex instances.

11.3.4 Results from testing combinations of valid inequalities

The testing of each valid inequality presented above, showed the best results for B[DX], second

best for B[IRX] and third best for B[FX], while the Capacity Miles-valid inequality only made the

Basic model perform worse. In order to see if any of the sets of valid inequalities in conjunction

would give better results than any of them separately, we run tests on combinations of them.

Since running tests on all combinations would be too time consuming, we chose to combine the

107

Chapter 11. Evaluation of strengthening formulations

best performer (B[DX]) with all the others, the second best with all the others but the worst

performer (B[FX]), etc. The combinations of valid inequalities that were tested are shown

in Table 11.6. We compared the combinations with B[DX] since this showed the best effect

separately.

Valid inequality combinations

1 B[DX] ⇒ B[DX]

2 B[DX] and B[IRX] ⇒ B[DIRX]

3 B[DX], B[IRX] and B[FX] ⇒ B[DIRFX]

4 B[DX], B[IRX], B[FX] and B[CX] ⇒ B[DIRFCX]

5 B[DX] and B[FX] ⇒ B[DFX]

6 B[DX] and B[CX] ⇒ B[DCX]

7 B[DX], B[IRX] and B[CX] ⇒ B[DIRCX]

8 B[DX], B[FX] and B[CX] ⇒ B[DFCX]

Table 11.6: The combinations of valid inequalities that were tested. The combinations were based on

the results from the individual testing of the valid inequalities.

Figure 11.6: Run times of the valid inequality combinations on instances G[827], G[926] and G[1227].

Figure 11.6 shows the run times of the Basic model with the 8 combinations of valid inequalities

on five large instances. Model B[DIRX] has the best run time in 3 of these, while on the two

others it is the second and third best performer. From the tests we have done B[DIRX] seems

to have the best combination of valid inequalities.

108

Chapter 11. Evaluation of strengthening formulations

To sum up; the following general valid inequalities are added to all models: Simple De-

mand/Capacity(D/C)- valid inequality and the Simple Demand/Capacity(D/C)- valid inequal-

ity with integer rounding.

Evaluation of Flower specific valid inequalities

In Section 9.2.2 one set of Flower specific valid inequalities is introduced; namely the Only one

first/last loop (N)-valid inequalities given by Constraints (9.21)-(9.24).

In Table 11.3.4 the results from the testing of the Only one first/last loop-valid inequalities

are presented. It shows the difference in the number of nodes and the run time for 9 different

instances, run on F[X] and F[XN]. The number of nodes are mostly lower for the model variant

excluding the valid inequalities, F[X], than the one including them, F[XN]. The run time is

better for F[XN] than for F[X] in 6 out of 9 test instances. We can see no pattern in which is

better at the more complex and larger instances, however F[X] had significantly lower run time

(1960.69 vs. 2965.92) than F[XN] on the largest instance tested, G[1125] When it comes to the

LP objective values no improvements were observed.

Even though the run time results might account for the ”Only one first/last loop”-valid inequal-

ities to be included, the number of nodes results and insignificant improvement in LP objective

value contribute to the conclusion of not including the valid Flower specific valid inequalities.

Results of Flower specific valid inequalities

= Lowest # of nodes/run time for given instance

of nodes Run time (s)

F[X] F[XN] F[X] F[XN]

G[425] 365 725 25.07 15.81

G[437] 441 1249 40.10 34.30

G[526] 5591 9763 100.96 155.17

G[537] 6107 14149 158.26 194.23

G[634] 1965 2917 155.74 139.75

G[735] 6103 1937 354.57 229.03

G[827] 2761 4311 683.74 637.24

G[926] 35953 35679 2172.08 1753.72

G[1125] 9435 23965 1960.69 2965.92

Table 11.7: Results from testing Flower specific valid inequalities. The number of nodes and run times

from the runs of F[X] and F[XN] on 9 instances. The cut off time was set to 10’000 seconds on all runs.

109

Chapter 11. Evaluation of strengthening formulations

Evaluating Chain specific valid inequalities

One Chain specific set of valid inequalities has been proposed, namely the Two single visits

(V)-valid inequalities, given by constraints (9.25).

The test results from testing of the Chain model specific valid inequalities are shown in Table

11.3.4. As can be seen from the table, V seems to reduce the number of nodes on the larger

data instances.

The run times are also better for C[XN] for all inputs except G[827], and for this data in-

stance the difference is insignificant (the run time for C[X] is 640 seconds, or only 3% better

than C[XV]’s run time). The results showed that the LP objective values were not improved

significantly, but they were slightly improved for the majority of the instances.

Neither C[X] nor C[XV] managed to solve instance G[12212] within the cut off time of 10’000

seconds (3 hours). However, C[XV] managed to find an integer feasible solution, as opposed to

B[X].

Although the results are not completely indisputable, we chose to include the V-valid inequality.

The strongest arguments were that B[XV] showed good performance on the larger instances and

managed to find an integer solution, when its counterpart without the cut did not.

Results of Chain specific valid inequalities

= Lowest # of nodes/run time for given instance

= Did not prove optimality within cut off time. Gap shown if integer solution found.

of nodes Run time (s)

C[X] C[XV] C[X] C[XV]

G[425] 3441 5849 60.96 33.12

G[437] 9479 10529 324.38 280.09

G[526] 19221 10665 338.08 204.33

G[537] 44956 50127 3929.52 3073.28

G[538] 38027 25531 3591.38 3348.16

G[736] 49007 28181 4217.26 4170.85

G[827] 44651 27869 23377.5 24017.8

G[828] 17 % 9 %

G[12212] - 21 %

Table 11.8: Results from testing Chain specific valid inequalities. The number of nodes and run times

from the runs of C[X] and C[XV] on 9 instances. The cut off time was set to 10’000 seconds on all runs.

110

Chapter 12

Computational study

This chapter provides results and analyses from the computational study of the six models

presented in Chapters 5 to 8.

The models now includes the chosen strengthened formulations according to the results pre-

sented in Chapter 11. Table 12.1 summarizes the results from the evaluation of strengthened

formulations. For the corresponding models with and without transit time, the same combina-

tions of SBC’s and valid inequalities are chosen. The models are referred to as Basic, Flower,

Chain, Basic TT, Flower TT and Chain TT, and the interpretation of this is the models with

the strengthening formulations according to Table 12.1.

The aim of the computational study is to evaluate the performance of the models considering

the solutions they produce as well as getting insight into their computational efficiency, i.e. run

time and scalability.

The test instances used in the computational studies, and how they are generated, are described

in Chapter 10. The LS-NDP problems solved to optimality are comparable in size to the test

instances presented in recent literature on shipping network design using exact methods (e.g.

Alvarez (2009) and Reinhardt and Pisinger (2011)). The cut off times differ among the runs,

and are explicitly stated when referring to specific results.

The computational studies are based on implementation of the original models and transit time

models in commercial optimization software. Xpress Mosel has been the modeling language. The

implementations have been solved using Xpress 1.24.00 64 bit with Xpress Optimizer Version

24.01.04. The code was run for different test instances, which are introduced in Section 6.1.

All runs were performed on a cluster of computers with HP bl685c G7, 4 x AMD Opteron 6274

2.2GHz, 128 GB of RAM, and 300 GB SAS 15000 rpm.

In Section 12.1 the impact of the size of the route set, R, is discussed. There is also a discussion

111

Chapter 12. Computational study

of how it should be set. Section 12.2 provides results and analyses of the computational study

of the original models, while in Section the same is presented for the transit time models. In

both sections technical and economical results are discussed.

Basic and

Basic TT

Flower and

Flower TT

Chain and

Chain TT

SBCs

All models: R1 7 7 7

R2 X X X

S X X X

Flower specific: L N/A X N/A

Chain specific: T N/A N/A X

O N/A N/A X

U N/A N/A 7

Valid inequalities

All models: C 7 7 7

D X X X

F 7 7 7

IR X X X

X X X X

Flower specific: N N/A 7 N/A

Chain specific: V N/A N/A X

Table 12.1: Overview of included symmetry breaking constraints and valid inequalities in the six

models.

12.1 Impact of the size of the route set

In this section we investigate and discuss the impact of the route set size, on the computational

efficiency of the models. We also explain the rationale behind how the route set size was set in

this computational study.

Recall that the models have a predefined set, R, of route indexes available. This is necessary

because we do not not in advance how many routes there will be in the optimal solution. As

have been discussed in previous chapters, this causes a lot of symmetry. Even though most of

the symmetry is removed by the symmetry breaking constraints, the size of the R still has a

strong correlation with the run time. This is because almost all variables are indexed with r,

112

Chapter 12. Computational study

and most of the sets of constraints are per route. In the preliminary testing of the strengthened

formulations the size of the route set was set to 20. Through testing we observed that the size

of the route set clearly affects the run time. This can be seen very clearly from Figure 12.1.

Thus, considering the computational efficiency of the models, there is a strong incentive to not

have a route index set size that is larger than necessary.

On the other hand, the maximal number of routes should not be at the expense of finding the

optimal, or good feasible, solutions. Consequently, the challenge is to find an optimal size of

the route set that balance these two objectives. To investigate how the objective values change

along with the available number of route indices, we run tests on a sample of instances with |R|
from 1 to 20. The results are shown in Table 12.2. Instance G[1329] has the optimal number

of routes of 5, while for the other instances the number is lower. The largest number of routes

observed in the overall testing has been 6.

In further testing, we chose to set the route set size to 9. This way we could save some time,

be able to do more testing, and hopefully not miss any optimal solutions.

For further use of the models there could be more sophisticated ways of finding a reasonable

route set size. Perhaps, the size could be set as a function of the number of ports, demands and

ship types, or as the number of routes in the LP solutions. There are plenty of ways, but this

will also depend on the size and type of instances, so we will leave this for the users to decide.

113

Chapter 12. Computational study

(a)

(b)

Figure 12.1: How run times vary with the route set size

114

Chapter 12. Computational study

Figure 12.2: Objective values by size of route set

12.2 Original models

In this section, the computational results and economical solutions of the original models (Basic,

Flower and Chain), are analyzed and discussed.

First, in section 12.2.1, the technical results are presented. Secondly, in Section 12.3.2, the

solutions of the three models are analyzed and compared.

12.2.1 Technical results

In this section, the technical results from the testing of the original models on 32 different data

instances, are presented. Of the data instances 16 of them were of a General network type,

while there were 8 instances of both the Feeder and Hub & Spoke network type.

On all runs the route set size, |R|, is set to 9, like stated in Section 12.1. The upper run time

limit is set to 40’000 seconds.

Run times, best integer solutions and gaps

The run times range from 14 seconds to the upper run time limit of 40’000 seconds. In order

to show the nuances in the difference between the models’ run times, the run time results are

presented in three different graphs. Figure 12.3 shows the run times for the three original models

for the results where all the run times are up to 800 seconds. Figure 12.4 shows the results of

when the highest run time is between 800 seconds and less than 25’000 seconds. And finally,

table 12.2 show the run times, the best integer solutions and the gap where at least one of the

115

Chapter 12. Computational study

models have a run time of more than 25’000 seconds, which also turned out to be when at least

one of the models did not solve to optimality within the run time of 40’000 seconds.

Figure 12.3: Run times of the models, where all run times are under 800 seconds.

Figure 12.4: Run times of the models, where all the run times are under 25’000 seconds.

Figure 12.3 shows that the Basic model clearly has the lowest run times for the instances that

all the models manage to solve within a run time of 800 seconds. For four of the data inputs,

the Flower model has a higher run time than the Chain model, and for five of them, it is the

other way around. The common feature for the inputs where the Flower model perform better

than the Chain model is that there are few demands (7 or less). For the inputs where there are

more demands (G[529], H[529], H[5211], H[215]), the Chain model manage to solve the problem

faster.

Figure 12.4 shows the results for the instances that were solved within the medium run time

(25’000).

The results show that Chain’s run times are significantly larger than for the two other models.

116

Chapter 12. Computational study
B

a
si

c
F

lo
w

e
r

C
h

a
in

R
.t

.
B

e
st

in
t.

so
l.

G
a
p

R
.t

.
B

e
st

in
t.

so
l.

G
a
p

R
.t

.
B

e
st

in
t.

so
l.

G
a
p

G
[8

2
9
]

13
80

.6
2

12
5

0
%

-
13

5
15

%
-

12
1

22
%

G
[9

2
1
3
]

-
17

6
14

%
-

20
2

51
%

-
25

9
93

%

G
[1

0
2
1
4
]

-
19

1
28

%
-

30
6

12
3

%
-

23
7

70
%

G
[1

2
2
1
2
]

-
16

1
28

%
-

*
*

-
*

*

G
[1

5
2
1
3
]

-
22

2
71

%
-

*
*

-
*

*

G
[1

5
2
1
5
]

-
30

8
12

4
%

-
*

*
-

*
*

G
[7

3
1
1
]

39
51

.5
6

10
5

0
%

26
00

4.
3

96
0

%
-

20
4

15
3

%

G
[7

3
1
4
]

54
03

.2
7

11
7

0
%

-
11

7
3

%
-

15
5

71
%

G
[9

3
1
1
]

-
13

0
13

%
-

15
4

60
%

-
*

*

G
[9

3
1
4
]

-
19

1
65

%
-

17
7

62
%

-
*

*

F
[7

2
1
1
]

16
88

.8
1

13
2

0
%

18
00

7.
7

13
2

0
%

-
14

1
27

%

F
[7

2
1
3
]

48
49

.8
9

14
8

0
%

-
15

6
21

%
-

15
0

19
%

F
[7

2
1
5
]

51
42

.4
1

15
8

0
%

-
16

0
14

%
-

16
6

28
%

H
[7

2
7
]

16
74

.7
7

30
8

0
%

-
32

0
30

%
-

28
6

2
%

H
[7

2
1
1
]

-
35

7
5

%
-

37
8

47
%

-
*

*

H
[7

2
1
3
]

-
*

*
-

*
*

-
*

*

H
[7

2
1
5
]

-
49

5
20

%
-

*
*

-
*

*

T
ab

le
12

.2
:

R
u

n
ti

m
e,

b
es

t
in

te
ge

r
so

lu
ti

on
an

d
ga

p
fr

om
te

st
in

g
o
f

th
e

o
ri

g
in

a
l

m
o
d

el
s

fo
r

d
a
ta

in
p

u
ts

w
h

er
e

a
t

le
a
st

o
n

e
m

o
d

el
d
id

n
o
t

so
lv

e
to

o
p

ti
m

a
li

ty

w
it

h
in

th
e

ru
n

ti
m

e
li

m
it

.
*

=
N

o
re

su
lt

s
d

u
e

to
n

o
fo

u
n

d
in

te
g
er

fe
a
si

b
le

so
lu

ti
o
n

.
It

a
li

c
n
u

m
b

er
s

a
re

w
h

en
th

e
re

su
lt

is
n

o
t

p
ro

ve
n

o
p

ti
m

a
l

b
u

t
in

te
g
er

fe
as

ib
le

.
-

=
R

u
n

ti
m

e
li

m
it

re
ac

h
ed

.

117

Chapter 12. Computational study

The run times of Flower are also a lot larger than for Basic, but the difference is not as huge as

between Chain and the other two. For six out of seven instances the run time of Chain is more

than twice the run time of Flower. For all data inputs except F[529], the run times of Chain are

higher than 3’200 seconds, while both the Flower model and the Basic model manages to solve

the problem in a run time beneath 2’700 seconds. Common for all the data inputs in Figure

12.4 is that the number of demands are high, ranging from 7 to 14.

The results of the data inputs that the models have spent the longest time solving, or not

managed to solve at all, are presented in Table 12.2. For 10 of the data inputs, neither of

models manage to solve to optimality within 40’000 seconds. For 5 of the data inputs (G[829],

G[7314], F[7213], F[7215] and H[727]), the Basic model is the only model that manages to solve

to optimality within the run time limit. There are also two instances, G[7311] and F[7211],

where both the Basic model and the Flower model manage to solve to optimality, while the

Chain model does not. However, for two of the data inputs (G[829] and H[727]), the Chain

model’s best bounds and feasible integer solutions are not proven optimal, but are still better

than the Basic model’s and the Flower model’s. For H[727], the gap is only 2%, so the solution

found is likely to be the optimal one. This is also the case for the Flower model for data input

G[7314] where the Flower model has found an equally good solution as the Basic model, and

the gap is only 3%, and for G[9314] the best bound is not proven optimal, but better than the

Basic model’s solution.

From the results shown in graphs in Figure 12.3, Figure 12.4 and Table 12.2, it is clear that the

Basic model has the shortest run times. This is not surprising, being the least complex model,

the Basic model has less variables and less constraints. The differences between the Chain

model and the Flower model vary more, but while the Flower model’s run time outperform the

Chain model’s for 14 of the data inputs, the Chain model only have a better run time for 3 of

the data inputs. Looking only at the results in Figure 12.3, the Flower model and the Chain

model seem to perform equally good, but for the more challenging instances (where the general

solution time is high), Chain’s run times are always higher than Flower’s. Even though Chain

and Flower do not manage to prove optimality on some instances, they still manage to find

better integer solutions than Basic’s proven optimal solution, within the cutoff time.

Number of nodes in B&B tree

The number of nodes is another feature of the models that is interesting to explore in a technical

analysis. The number of nodes says something about the size of the B&B tree and the integrality

features of the problem. More integer variables generally lead to more nodes in the tree. Table

12.3 shows the number of nodes for the instances that all three models managed to solve to

optimality. For each data input, the model with the lowest number of nodes are marked green,

and the largest number of nodes are marked red.

118

Chapter 12. Computational study

Basic Flower Chain

G[526] 911 8261 9447

G[529] 2987 5415 1647

G[627] 5595 1467 15155

G[6210] 6451 51031 31446

G[535] 223 1661 11264

G[5314] 7715 4429 38034

F[525] 707 1923 12999

F[529] 317 5591 27525

F[5211] 2241 11253 39827

F[5214] 30521 8977 79551

F[727] 8205 3813 101872

H[525] 1353 17543 12733

H[529] 1077 26757 7584

H[5211] 495 19513 12563

H[5214] 14923 25809 153601

Table 12.3: Number of nodes from testing of the original models

In most cases, the Basic model has the fewest numbers of nodes and the Chain model has the

highest number of nodes. For the Flower model, the number of nodes varies mores. For some of

instances, the Flower model has the fewest number of nodes, for some it is in the middle, and for

others, it has the most. The Chain model’s high number of nodes could possibly be caused by

the doubled network. An additional port in the Chain model has more severe consequences than

for the other models. For instance: In the Basic model and the Flower model, one additional

port means 2(N-1) additional arcs (an arc back and forth from the new node to the existing

nodes). However, this is different for the Chain model: In the Chain model, one additional

port added will create as much as 4(N-1) + 2 new arcs (2(N-1) (arcs between ports) + 2(N-1)

(arcs between twin ports) + 2 (arcs between port and twin port). This will also create a lot of

symmetric solutions. Some of these are removed with the symmetry breaking constraints, but

there are still symmetric solutions in the solution space caused by the doubled network.

Average solving time per node

Another feature that may say something about the technical properties of a model is how long

time it takes to solve the nodes of the B&B tree. In each node in the B&B tree the LP-relaxation

is solved and thus the time spent in a node is related to solving the LP-relaxation. The time

119

Chapter 12. Computational study

spent on solving each node therefore indicates the complexity of the problem not related to its

integrality features.

Table 12.4 shows the average solving time per node

(
RunTime

NumberOfNodes

)
.

Basic Flower Chain

G[526] 0.016 0.027 0.029

G[529] 0.015 0.148 0.162

G[627] 0.013 0.192 0.052

G[6210] 0.022 0.052 0.173

G[535] 0.327 0.150 0.070

G[5314] 0.039 0.227 0.218

F[525] 0.032 0.061 0.020

F[529] 0.146 0.104 0.040

F[5211] 0.029 0.037 0.081

F[5214] 0.006 0.046 0.075

F[727] 0.011 0.203 0.106

H[525] 0.014 0.015 0.023

H[529] 0.036 0.020 0.068

H[5211] 0.077 0.037 0.043

H[5214] 0.005 0.025 0.057

Average 0.053 0.090 0.081

Table 12.4: Average solving time per node

The average solving time in a node is lowest for the Basic model, followed by the Chain model.

The average solving time per node in the Flower model is more than twice as high as for the

Chain model. This observation makes intuitively sense because the Flower model has many

complicated constraints making the structure of the problem difficult, independently of the

integrality of the problem. Knowing that the main difference of the Basic model and the

Chain model is the Chain model’s doubled network, not the constraints and how the problem

is solved, it makes sense that the Chain model’s average solving time per node are closer to the

Basic model’s average solving time than the Flower model’s average is. The increase in solving

time per node for the Chain model compared to the Basic model could possibly be caused by

the additional complexity that the Chain model’s twin network approach includes regarding

demand flow constraints, ship flow constraints, transhipment constraints, and also the Chain

specific valid inequalities and symmetry breaking constraints.

120

Chapter 12. Computational study

12.2.2 Comparison of solutions

In this section, the solutions from the original models are explored and presented. The aim is to

show that the models behave as expected, and to compare the solutions they give for different

instances.

Economical comparisons

Figure 12.5 shows an overview of economical results for original models.

Figure 12.5a shows the frequency of which models most often give the best objective value,

based on the instances in the testing where all models managed to solve to optimality. This

was 25 of 42 tested instances. For 44% of the instances the three models perform equally well.

For 24% of the instances Chain and Flower provide an equally good solution that is better than

the one Basic gives. Chain is better than both the others in 28% of the cases. For 57% of

these instances Basic and Flower provide the same objective value, while for the remaining 43%

Flower outperforms Basic. In 4% (which corresponds to one instance) of the cases, Flower is

the better than both the others.

Figure 12.5b shows which model had the best integer solution at cut off time, independently of

whether it was proven optimal or not. This gives a whole other picture of the performance of the

different models than Figure 12.5a. In 23 % of the cases Basic finds an integer solution better

than the best integer solution found by Flower and Chain. This means that neither Flower nor

Chain solved those instances to optimality within cut off time. We know this because the whole

solution space of Basic is included in Flower and Chain, so if they solve to optimality, Basic will

never be able to provide a better solution than the two other models. This is in accordance with

what was shown in Figure 12.5a. For 29 % of the instances the three models find an equally

good integer solution. This number is lower than for the corresponding value shown in Figure

12.5a.

To sum up the observations; In 65 % of the cases Chain finds the best integer solution after 40’000

seconds. The corresponding numbers for Flower and Basic are 55 % and 56 %, respectively.

This means that even though Chain does not prove optimality, it still finds a better solution

than Basic after 40’000 seconds.

121

Chapter 12. Computational study

(a) Overview of objective values of instances solved to optimality

(b) Overview of best integer solutions found within cut off time

Figure 12.5: Overview of economical results for original models. The figure shows how often which

models give the best objective value. Graph 12.5a is based on the instances in the testing where all

models managed to solve to optimality. This was 25 of the 42 tested instances. Graph 12.5b is based on

the all 42 instances in the testing. B/C/F = objective value of Basic/Chain/Flower

As has been discussed above the three models provide the best objective values for different

instances. By looking closer at the solutions of the different instances, we attempt to investigate

in which situations the models outperform each other and when their shortcomings get man-

ifested. Table 12.5 shows the objective value, the sailing cost, visiting cost and transhipment

cost from the solutions of a sample of interesting test instances.

As shown in Figure 12.5b, Basic and Flower find equally good solutions that are better than

Basic’s solution for 5 % of the cases. This can both be caused by the models finding two

122

Chapter 12. Computational study

different solutions with the same objective value, or that Flower and Chain find exactly the

same solution. For the latter case, we know that the solution include at least one butterfly

route. This is also the case in some of the examples presented in Table 12.5, where the Chain

model and the Basic model find the same optimal solution. For the Hub & spoke instance

H[528] Flower and Chain achieve an objective value of 123, while Basic only finds a solution of

128. In this case Chain and Flower provide the same solution, namely a butterfly route, which

is one of the route structures they both can make, and Basic cannot. This is also the case F[324]

and G[426].

Table 12.5 also shows an interesting case of the objective values of instance G[519]. Flower

finds a solution that is better than both Chain’s solution and Basic’s solution. This means that

Flower’s optimal solution includes at least one butterfly route with at least 3 loops from a single

depot. Chain also allows solutions with three loops, but not on a ”Flower”-format.

Model

Instance Basic Flower Chain

F[324] Objective value 33 30 30

Sailing cost 26 24 24

Visiting cost 7 6 6

Transhipment cost 0 0 0

G[426] Objective value 66 62 62

Sailing cost 50 48 48

Visiting cost 16 14 14

Transhipment cost 0 0 0

H[528] Objective value 128 123 123

Sailing cost 96 91 91

Visiting cost 16 16 16

Transhipment cost 16 16 16

G[519] Objective value 46 32 39

Sailing cost 25 15 15

Visiting cost 16 15 15

Transhipment cost 5 2 9

G[5214] Objective value 349 321 313

Sailing cost 320 290 290

Visiting cost 20 17 18

Transhipment cost 9 14 5

Table 12.5: Examples of economical results from testing of the original models. The best values of the

objective values for each instance are highlighted.

123

Chapter 12. Computational study

Impact of the sailing cost calculation

For data instance H[528], the models find the solutions illustrated in Figure 12.6. Table 12.5

shows that the Flower model and the Chain model manage to reduce the sailing cost compared

to the Basic model, while the visiting costs and the transhipment costs stay the same. The

output also shows that all three models use one larger and more expensive ship on route 1, and

several smaller, cheaper ships on the other routes.

Figure 12.6: Solution network for data instance H[528] with Basic, Flower and Chain.

The reason for this is that the length of a route in weeks (the sailing time) will be rounded up

to the nearest integer in order to find the number of ships needed on that route. For instance,

if the sailing time of a route is 4.1 weeks, the route needs 5 ships. With two routes with sailing

time 3.33 weeks, it thus needs 4 ships. In the Flower model and the Chain model, however, if

two routes with sailing time 3.33 weeks are merged into one, it will have a sailing time of 6.66

and only needs 7 ships. Thus, for H[528], the merging of routes will save one ship when the

Basic routes are merged into butterfly routes, like the Flower model and the Chain model does.

More precisely, route 3 and route 5 in the Basic solution will need 7 ships instead of 8 when

they are merged. This is illustrated in Table 12.6.

The advantages of complex routes

The Flower model and the Chain model allow complex route structures, as opposed to the Basic

model. Data instance H[5214] resulted in three different solutions for the three original models.

The costs are listed in Table 12.5, and the routes generated are illustrated in Figure 12.7.

124

Chapter 12. Computational study

Basic Route length (in weeks) Number of ships

Route 1 (R1) 2.00 ⇒ 2

Route 2 (R2) 3.33 ⇒ 4

Route 3 (R3) 3.33 ⇒ 4

Route 4 (R4) 3.33 ⇒ 4

Route 5 (R5) 3.33 ⇒ 4

Total number of ships needed 18

Flower and Chain Route length (in weeks) Number of ships

Route 1 = Basic R1 2 ⇒ 2

Route 2 = Basic R2 3.33 ⇒ 4

Route 3 = Basic R3 + Basic R5 6.66 ⇒ 7

Route 4 = Basic R4 3.33 ⇒ 4

Total number of ships needed 17

Table 12.6: Difference in ship utilization in the solutions of Basic, Flower and Chain on instance H[528]

The Basic model generates 5 different routes which results in a visiting cost of 20 and a sailing

cost of 320. Including the transhipment cost of 9, the Basic model’s solution is the most

expensive one. The Flower model’s solution includes two butterfly routes (Route 1 and Route

2), which makes the total objective value 321, 28 cheaper than the Chain model’s objective

value. The sailing costs are decreased the most, but also the visiting costs are smaller. The

transhipment costs however, are increased, but not enough for the Basic solution to be more

profitable.

125

Chapter 12. Computational study

Figure 12.7: Advantages of complex routes. Routes from the different original models generated

for data input H[5214].

The Flower model’s solution is also possible to create with the Chain model, but the Chain

model has generated yet another, and cheaper, solution. This solution includes a Chain route

which is not allowed by the Flower model, thus it has more than one port that are visited twice.

Both port 5 and Port 3 are visited twice by Route 1, creating a ”Chain-shaped”-route. This

solution have the same sailing costs as the Flower model’s, a little higher visiting costs, but

Route 1 decreases the solution’s transhipment costs and the total cost ends up at 313, which is

8 less than the Flower solution and 36 less than the Basic solution. This example clearly shows

the advantages and saving opportunities of allowing for more complex routes like the Flower

model and Chain model do.

The gain of internal transhipment

For data instance G[519], the optimal solutions are different for each of the three models. The

Flower model obtains the best optimal solution, hence this solution contains at least one route

with more than two loops. The three models’ different solutions are illustrated in Figure 12.8.

126

Chapter 12. Computational study

Figure 12.8: The three models give different solutions for data instance G[519]. The networks

they make are depicted in the figure. The upper left routes are made by the Basic model, the

upper right routes are made by the Chain model and the lower route is made by the Flower

model. The blue and orange lines illustrate the transhipment. In the Flower route internal

transhipment occurs in the butterhub.

The solution from the Basic model for instance G[519] tranships two different demands in the

butterhub (port 1), and as Table 12.5 shows, this transhipment leads to an additional cost of 5.

The Chain model’s solution of G[519] consists of two butterfly route with two loops each. This

solution also tranships two demands in the butterhub, and gets a transhipment cost of 9. This

is higher than the Basic model, but the Chain model saves on the sailing cost and visiting cost

and ends up with a lower total cost than the Basic model. The best optimal solution, generated

by the Flower model for data instance G[519], involves internal transhipment in the butterhub,

illustrated by the blue line in Figure 12.8. This transhipment adds a cost of 2 to the objective

value, and the Flower model gets an objective value of 32. By studying the output in further

depth, it looks like if there are many demands and the ship capacity of a route fills up more

due to this, it can pay off to tranship internally in stead of creating a new route with capacity

for the demands.

127

Chapter 12. Computational study

A different Chain route

A Chain route is defined as a route where at least one port is visited twice, but no ports are

visited more than twice. This allows for the ”Chain-shaped” routes as Route 1 in the Chain

model’s solution in Figure 12.7. It also allows for more complex looking routes like the one

shown in Figure 12.9.

Figure 12.9: A different Chain route. No ports are visited more than twice, but several ports are

visited more than once.

The demand of maximum two visits per port is complied, so it clearly qualifies for being a Chain

route, but it is interesting that the route structure might be a little different than what one

first might think of as a typical Chain route. A lot of the solutions from the testing resulted in

the Chain model saving more than the two other models due to route structures similar to the

one in Figure 12.9. The savings are mostly caused by the saving in sailing costs because of the

rounding up when calculating the sailing costs (this concept is exemplified in detail in Table

12.6), but also the reduction in the visiting costs and the transhipment costs are playing a part

in making these routes more profitable.

12.3 Analysis of the transit time models

In this section, the computational results and economical solutions of the transit time models

(the Basic TT model, the Flower TT model and the Chain TT model) are analysed. The three

transit time models’ computational results are compared and discussed in section 12.3.1, and

the solutions are compared in Section 12.3.2.

As in the original models’ analysis, all the transit time models include the chosen symmetry

128

Chapter 12. Computational study

breaking constraints and valid inequalities from Section 11.2 and Section 11.3. Table 12.1 shows

an overview of what is included in the models and the route set size is 9, like stated in 12.1.

12.3.1 Technical results

In this section the technical results from the testing of the transit time models are analysed.

It has been run tests on 15 different data instances, where 5 of them are of a General network

type, 5 are of a Feeder network type and 5 are of a Hub & Spoke network type. The inputs

have either 2 and 3 ship types, a number of demands between 5 and 14, and a number of ports

between 5 and 9.

General technical characteristics

Table 12.7 shows the run times, the best bound and the gap of the transit time models.

As for the original modes, the tendency is clear. Chain TT has the longest run times, followed

by Flower TT. Basic TT has significantly lower run times than the other two.

Although the Chain TT model does not manage to solve to optimality for several inputs, there

are examples where the best solution of the Chain TT model is better than the Flower TT model

and the Basic TT model, even though it might not be the optimal solution of the Chain TT

model. This is the case for data input T-H[727], where both the Basic TT model and the Flower

TT model have solved to optimality with an objective value of 346 and 334, respectively. The

Chain TT model however, has not managed to prove its solution optimal, but the best integer

solution of 312 is still better than both of the other models’ solutions.

Table 12.8 shows the number of nodes for the run times that solved to optimality within the

time limit. The Chain TT model has the most nodes for all the test instances, and with only

one exception, the Basic TT model has the fewest.

129

Chapter 12. Computational study

B
T

F
T

C
T

R
.t

.
B

e
st

in
t.

so
l.

G
a
p

R
.t

.
B

e
st

in
t.

so
l.

G
a
p

R
.t

.
B

e
st

in
t.

so
l.

G
a
p

T
-G

[5
2
6
]

44
.8

03
78

0
%

27
6.

76
7

78
0

%
27

0.
56

2
76

0
%

T
-G

[5
3
5
]

26
7.

15
3

65
0

%
55

1.
89

1
65

0
%

12
88

.5
6

65
0

%

T
-G

[6
2
7
]

43
5.

00
9

11
3

0
%

26
34

.6
7

11
3

0
%

-
11

4
8

%

T
-G

[7
2
8
]

23
25

.5
7

10
0

0
%

-
12

0
35

%
-

*
*

T
-G

[9
3
1
1
]

-
*

*
-

*
*

-
*

*

T
-F

[5
2
5
]

80
.8

05
72

0
%

33
3.

35
8

70
0

%
10

74
.5

2
72

0
%

T
-F

[5
2
9
]

14
5.

23
7

78
0

%
10

37
.1

4
78

0
%

59
70

.0
6

78
0

%

T
-F

[7
2
7
]

30
04

.0
9

99
0

%
11

94
9.

1
99

0
%

-
11

5
41

%

T
-F

[5
2
1
1
]

14
5.

96
3

90
0

%
12

24
.7

5
90

0
%

13
60

5.
8

90
0

%

T
-F

[7
2
1
1
]

19
59

1.
5

13
7

0
%

-
17

2
54

%
-

*
*

T
-H

[5
2
5
]

85
.2

25
25

2
0

%
21

4.
37

3
25

2
0

%
51

1.
39

4
25

2
0

%

T
-H

[5
2
9
]

67
.0

99
18

9
0

%
31

9.
86

2
18

9
0

%
21

12
.7

7
18

6
0

%

T
-H

[7
2
7
]

73
97

.4
2

19
2

0
%

-
22

8
28

%
-

21
1

22
%

T
-H

[5
2
1
4
]

15
15

.0
5

34
6

0
%

38
18

.9
8

33
4

0
%

-
31

2
5

%

T
-H

[7
2
1
1
]

-
22

5
28

%
-

24
1

50
%

-
25

8
66

%

T
ab

le
12

.7
:

R
u

n
ti

m
e,

b
es

t
in

te
ge

r
so

lu
ti

on
an

d
ga

p
fr

om
te

st
in

g
o
f

th
e

tr
a
n
si

t
ti

m
e

m
o
d

el
s.

*
=

N
o

re
su

lt
s

d
u

e
to

n
o

fo
u

n
d

in
te

g
er

fe
a
si

b
le

so
lu

ti
o
n

.

It
al

ic
n
u
m

b
er

s
ar

e
w

h
en

th
e

re
su

lt
is

n
ot

p
ro

ve
n

op
ti

m
al

b
u

t
in

te
g
er

fe
a
si

b
le

.
-

=
R

u
n

ti
m

e
li

m
it

re
a
ch

ed
.

130

Chapter 12. Computational study

BT FT CT

T-G[526] 709 5697 6685

T-G[535] 851 2131 12515

T-F[525] 825 5975 27647

T-F[529] 6561 5267 49577

T-F[5211] 2327 11761 90388

T-H[525] 437 1137 7881

T-H[529] 2189 2953 35349

Table 12.8: Number of nodes from testing of the transit time models

Impact of the order split size

A difference between the transit time models and the original models is that the orders in the

transit time models are unsplitable. Thus, the original models are less restricted and allow

more flexibility with regards to the demand flow than the transit time models. However, in

the transit time model, the order split size (OSS) has to be set. This is explained in depth in

Section 8.2. Below we discuss three aspects of the order split size that are especially interesting.

First; the run times clearly decrease when the order split size is enlarged. This is illustrated in

Table 12.9, which shows the relative run time sizes for each model for data inputs with different

order split sizes (1, 2 and 9).

Instance Basic TT Flower TT Chain TT

T-F[529]

T-H[727]

Table 12.9: Relative run times with different order split sizes (OSS) from testing of the transit time

models

131

Chapter 12. Computational study

The second is that if the OSS is set to 1 and the maximum transit times are very high, the

solution space is practically the same in both the original models and the transit time models.

Although the flow variables in theory can be fractional, we have observed that throughout all

testing, the solutions always have integer flow-variables. The disadvantage of setting the OSS=1

is that there will be created many more variables and constraints, which probably will increase

the run time. In other words, there is a trade off between the economical gain of allowing

solutions that need the order split sizes to be small, and the run time gain of larger order split

sizes, i.e. forcing more containers to have the same path.

The third interesting observation is that for the Chain TT model and the Flower TT model on

data instance T-H[727], neither managed to solve to optimality within the run time limit when

the order split size were 1 or 2. However, when it was set to 9, the run times are much less.

For the OSS=9 case, the Flower TT model found an optimal objective value of 198. For the

corresponding data input in the original Flower model, the model did not manage to solve to

optimality within the run time limit, and the best found integer solution’s objective value is

320. In other words, the run time gain of forcing the OSS to be 9 made the Flower TT model

able to find an integer feasible solution within the run time limit that were better than the not

optimal but integer feasible solution the original Flower model found within the same run time

limit. Thus, there can be a run time gain of using the transit time models to force the order

split, which for an input where the run time reaches a run time limit results in an economic

gain as well.

12.3.2 Comparison of solutions

In this section, the solutions from transit time models are explored and presented. Beyond the

tests done for the technical analysis, there are run a some more tests on additional data inputs

in order to explore different properties of the model and prove the different model features.

The impact of the urgency level

An interesting aspect to explore is how the models including transit time respond to different

urgency levels. The urgency levels are presented in Table 10.5. The total costs of the urgency

level test results are shown in Table 12.10. Some especially interesting results are the solutions

the models found for data input T-F[5211], with the three different urgency levels.

As Table 12.10 shows, the Chain TT model did not solve to optimality within the time limit

for T-H[5214] when the urgency level is Moderate and Uncritical, but for Uncritical, the best

integer solutions’ objective value is better than in the other models’ solutions.

For data instance T-F[5211], the models find equal solutions when the urgency level is Uncritical.

132

Chapter 12. Computational study

BT FT CT

T-G[524] U 54 54 53

M 49 49 49

UC 49 49 49

T-H[5214] U * * *

M 425 415 432

UC 346 334 312

T-F[5211] U 116 114 97

M 100 100 91

UC 90 90 90

Table 12.10: Total costs of the three models’ solutions’ with different urgency levels (U(Urgent),

M(Moderate) and UC(Uncritical)). Italic numbers are when the result is not proven optimal but in-

teger feasible. * = No results due to no found integer feasible solution.

These solutions are not are not fulfilling the stricter maximum transit time demands when the

urgency level becomes Moderate, and the models have to find new solutions. Within the new

solution space, Basic TT and Flower TT find solutions that are more expensive than Chain TT’s

solution. Thus, Chain TT has found a route network that comply with the stricter maximum

transit times that neither Flower TT or Basic TT allow. For the highest urgency level, Urgent,

Flower TT and Chain TT each find solutions that are better than Basic TT’s solution. Figure

12.10 shows the route structures of these solutions.

133

Chapter 12. Computational study

Figure 12.10: The three models give different solutions for data instance T-F[5211] with an

urgency level of Urgent. The networks they make are depicted in the figure. The Basic model’s

solution of 116 is the most expensive one, then comes the Flower model’s solution of 114, and

the Chain model’s solution of 97 is the best one.

The Basic model generates three simple routes, while the Flower model generates one three-

looped Flower route and one butterfly route. The Chain model’s solution, which is the best

one, generates a Chain route where both port 2 and port 4 is visited twice, in addition to the

same butterfly route as the Flower model.

These results can indicate that the profitability of using the Flower model or the Chain model

increases when the transit time urgency level is higher. The faster we need a demand to travel

from the origin port to the destination port, the more there is to save on the ability to generate

complex routes, most likely due to the saved time on transhipment between routes.

134

Chapter 12. Computational study

The effect of including transit time

The ability to control the maximum transit times of the orders is the main difference between the

original models and the transit time models. In order to explore the effect on the solution of the

added transit time constraints, the solution from the Flower model for data input F[5211] have

been compared to the transit times from the corresponding transit time data input T-F[5211].

These two inputs have the exact same amount of demand/orders between all OD-pairs. The

difference is that for T-F[5211], the demands are split into orders with a given maximum transit

time. In this example, the urgency level is ”Urgent”. Thus, taking the maximum transit

times from T-F[5211] and comparing these to the actual transit times from the demand paths

generated in the F[5211]-solution shoes which of the orders from the T-F[5211] that would have

been delayed with the solution from the original Flower model. Table 12.11 shows the orders

with the maximum transit time from the Flower TT model, the actual transit time from the

original Flower model and whether or not each order would have been delayed.

Table 12.11 shows that seven of the orders would have been delayed in the Flower model solution

with respect to the urgent transit time demands. Although the data inputs, urgency levels and

transit times in the tests are fictional, this illustrates that the solutions from the original models

might not comply with the transit time demands. The option of setting such a transit time

limit can be useful.

135

Chapter 12. Computational study

Order (o,d,ω) TT max
Actual TT in

the original model
Delivered on time

(1,2,1) 0.80 1.17 7

(2,1,1) 1.00 0.78 X

(2,3,1) 0.29 0.23 X

(2,3,2) 0.33 0.23 X

(2,5,1) 1.10 0.61 X

(2,5,2) 0.77 0.61 X

(2,5,3) 0.88 0.61 X

(2,5,4) 1.10 0.61 X

(3,4,1) 0.50 1.24 7

(3,5,1) 1.14 1.11 X

(3,5,2) 1.42 1.11 X

(4,2,1) 0.34 0.63 7

(4,2,2) 0.39 0.49 7

(4,2,3) 0.49 0.49 7

(4,2,4) 0.34 0.49 7

(5,1,1) 0.80 1.40 7

(5,2,1) 1.10 0.61 X

(5,2,2) 0.77 0.61 X

(5,3,1) 1.14 0.80 X

(5,3,2) 1.42 0.80 X

(5,3,3) 1.00 0.80 X

(5,3,4) 1.14 0.84 X

(5,3,5) 1.42 0.84 X

(5,4,1) 0.51 0.40 X

Table 12.11: Comparison of the actual transit times from the original model and the maximum transit

times from the transit time models

136

Chapter 13

Concluding Remarks

The work done in this report is motivated by the conviction that there exists a huge potential

for operations research in the liner shipping industry.

Three extensive mathematical models for the liner shipping network design problem (LS-NDP)

have been developed. The three models have been extended to also take into account transit

time, making it six formulations in total. Besides whether they incorporate transit time, the

six models differ in which route structures they enable.

We take the perspective of a liner shipping company. The objective of all the models is to

minimize costs by designing an efficient network of routes that satisfy all demand. All the

formulations include important features as transhipment, transhipment cost, a weekly frequency

requirement and a heterogeneous fleet vessel.

13.1 Summary and conclusion

One of the key focus areas has been on developing formulations that allows for more flexible

route structures. This is motivated by knowing that a significant number of the routes sailed

by the global liners today would not have been possible to make with the existing models for

the LS-NDP. The first formulation, called the Basic model, only allows simple route networks.

The two other models present different ways of incorporating complex route structures. The

Flower model allows the routes in the network to visit one port in the route multiple times,

while the Chain model incorporates the possibility of a route visiting several ports in the route

twice. There has not been made any compromises in allowing the complex route structures,

and all transhipment costs are calculated correctly.

The three models have been extended to incorporate transit time. These models make it possible

137

Chapter 13. Concluding Remarks

to specify a maximum transit time for each container, and they also allow for different transit

times between the same pair of origin and destination ports.

The complexity of the models is severe, and they also suffer from symmetry issues. Motivated

by this, there has been made a strong effort in order to strengthen the formulations. A number

of symmetry breaking constraints (SBCs) and problem specific valid inequalities are proposed,

and their effect is thoroughly investigated. Several of the strengthening formulations show good

effect and are included in the further computational study.

Technical results show that the Basic model performs substantially better than the models

allowing complex route structures, in terms of run time. In particular, the Chain model spends

a lot of time proving optimality. This finding was not surprising considering that the Flower

and Chain models are based on the formulation of the Basic model, and contain a significantly

larger amount of variables and constraints.

The economical analysis shows that allowing more complex route structures pays off, because

this leads to a better allocation of vessels. Of the instances tested, the Chain model most

often has the best integer solution at cut off time. This is a mitigating factor, considering that

Chain is the by far slowest of the model proving optimality, it is quite fast finding good integer

solutions.

Results from the computational study of the transit time models showed that, as expected,

stricter transit times in general lead to more expensive route networks. However, the most

interesting finding was how the models’ solutions responded differently to more rigid levels of

urgency. It appears that the Basic transit time model is more sensitive to stricter transit time

requirements than the transit time models allowing complex route structures. The advantage

of allowing complex route structure is thus amplified when also considering transit time.

13.2 Further research

For further research we find the repositioning of empty containers especially interesting, and

relevant in light of the work done in this report. The repositioning of empty containers is a

great challenge because of the huge global trade imbalances in the world leads to systematic

accumulation of empty containers in some regions, while other regions that exports more than

it imports will face a shortage of containers. Taking into account the repositioning of empty

containers may alter the optimal route network for the company. This, in combination with the

fact that repositioning of empty containers being a steadily bigger issue, make this seem like an

interesting direction to investigate for further research.

In this paper several strengthening formulations are presented, and many of them show good

138

Chapter 13. Concluding Remarks

effect. However, we still think there is a great potential of enhancing the computational efficiency

of the models. Especially in the transit time models we think there can be much to be gained

from preprocessing of variables.

139

Bibliography

R. Agarwal and Ö. Ergun. ”Ship scheduling and network design for cargo routing in liner

shipping”. Transportation Science, 42:175–196, 2008.

R. Agarwal and Ö. Ergun. ”Network design and allocation mechanisms for carrier alliances in

liner shipping”. Operations Research, 2010.

J. Alvarez. ”Joint routing and deployment of a fleet of container vessels”. Maritime Econom.

Logist., pages 186–208, 2009.

American Association of Port Authorities. ”World port rankings 2012 ”, 2013. URL http:

//aapa.files.cms-plus.com/statistics/world%20port%20rankings%202012.pdf.

R. Asariotis, H. Benamara, H. Finkenbrink, J. Hoffmann, A. Jaimurzina, A. Premti, V. Valen-

tine, and F. Youssef. ”UNCTAD: Review of Maritime Transport 2014”. Review of Maritime

Transport, 2014.

C. Barnhart, N.L. Boland, L.W. Clarke, E.L. Johnson, G.L. Nemhauser, and R.G. Shenoi.

”Flight String Models for Aircraft Fleeting and Routing”. Transportation Science, 32(3):

208–220, 1998.

H.B. Bendall and A.F. Stent. A scheduling model for a high speed containership service: A

hub and spoke short-sea application. International Journal of Maritime Economics, 3(3):

262–277, 2001.

T. B. Boffey, E. D. Edmond, A. I. Hinxman, and C. J. Pursglove. ”Two Approaches to Schedul-

ing Container Ships with an Application to the North Atlantic Route”. The Journal of the

Operational Research Society, 30(5):413–425, 1979.

Berit D. Brouer, J. Fernando Alvarez, Christian E. M. Plum, David Pisinger, and Mikkel M.

Sigurd. ”A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Net-

work Design”. Transportation Science, 48(2):281–312, 2014. doi: 10.1287/trsc.2013.0471.

URL http://dx.doi.org/10.1287/trsc.2013.0471.

P. Cariou. ”Is slow steaming a sustainable mean for reducing liner shipping CO2 emissions?

140

Bibliography

”, 2014. URL http://old.mareforum.com/euromed_presentations_2010/cariou_paper.

pdf.

R. Cheung and C. Chen. ”A Two-Stage Stochastic Network Model and Solution Methods for

the Dynamic Empty Container Allocation Problem”. Transportation Science, 32(2):142–162,

1998.

S.C. Cho and A.N. Perakis. ”Optimal liner fleet routing strategies”. Maritime Policy & Man-

agement, pages 249–259, 1996.

M. Christiansen and B. Nygreen. ”A method for solving ship routing problems with inventory

constraints”. Annals of Operations Research, 81, 1998.

M. Christiansen, K. Fagerholt, and D. Ronen. ”Ship Routing and Scheduling: Status and

Perspectives”. Transportation Science, 38(1):1–18, 2004.

T. Chuang, C. Lin, J. Kung, and M. Lin. ”Planning the route of container ships: A fuzzy

genetic approach”. Expert Systems with Applications, 37(4):2948–2956, 2010.

D. Cieslik. ”Network design problems Network Design Problems”. In CA. Floudas and PM.

Pardalos, editors, ”Encyclopedia of Optimization”, pages 2539–2545. Springer US, 2009.

CNSS. ”Slow steaming to stay ”, 2013. URL http://cleantech.cnss.no/best-practices/

slow-steaming-to-stay.

K. Fagerholt. ”Optimal fleet design in a ship routing problem”. Internat. Transactions Oper.

Res., pages pp. 453–464, 1999.

K. Fagerholt. ”Designing optimal routes in a liner shipping problem”. Maritime Policy Man-

agement, pages 259–268, 2004.

K. Fagerholt and H. Lindstad. ”Optimal policies for maintaining a supply service in the Nor-

wegian Sea”. Omega, 28(3):269–275, 2000.

K. Fagerholt, T.A.V. Johnsen, and H Lindstad. ”Fleet deployment in liner shipping: a case

study”. Maritime Policy & Management, 36(5):397–409, 2009.

T. D. Heaver and D. Uyeno. ”Planning and scheduling for efficiency in liner shipping”. Maritime

Policy & Management, 14:109–125, 1987.

A. Imai, K. Shintani, and S. Papadimitriou. ”Multi-port vs. Hub-and-Spoke port calls by

containerships”. Transportation Research Part E: Logistics and Transportation Review, 45

(5):740 – 757, 2009.

IHS Global Insight. ”Valuation of the liner shipping industry - Economic contribution and Liner

141

Bibliography

Industry Operations”, 2009. URL http://www.worldshipping.org/pdf/Liner_Industry_

Valuation_Study.pdf.

A.N. Jaramillo and D.I. Perakis. ”Fleet deployment optimization for liner shipping part 2.

Implementation and results.”. Maritime Policy Management, pages 235–262, 1991.

D. S. Johnson, J. K. Lenstra, and A. H. G. Rinnooy Kan. ”The complexity of the network

design problem”. Networks, 8(4):279–285, 1978.

M.G. Karlaftis, K. Kepaptsoglou, and E. Sambracos. ”Containership routing with time deadlines

and simultaneous deliveries and pick-ups ”. Transportation Research Part E: Logistics and

Transportation Review, 45(1):210 – 221, 2009.

C.V. Karsten, D. Pisinger, S. Ropke, and B.D Brouer. The time constrained multi-commodity

network flow problem and its application to liner shipping network design. Transportation

Research Part E: Logistics and Transportation Review, 76(0):122 – 138, 2015.

K.H. Kjeldsen. ”Classification of Ship Routing and Scheduling Problems in Liner Shipping”.

INFOR: Information Systems and Operational Research, 49(2):139–152, 2011.

B. Korte and J. Vygen. Network design problems. In ”Combinatorial Optimization”, volume 21

of Algorithms and Combinatorics 21, pages 467–500. Springer Berlin Heidelberg, 2006. doi:

10.1007/3-540-29297-7 20.

F. Kydland. ”Simulation of Liner Operations”. 1969.

D.E. Lane, T.D. Heaver, and D. Uyeno. ”Planning and scheduling for efficiency in liner ship-

ping”. Maritime Policy Management, 1987.

S.A. Lawrence. ”International sea transport: the years ahead”. Lexington Books Lexington,

Mass, 1972.

Maersk. Ae10-roundtrip, 2014a. URL http://www.maerskline.com/~/media/maersk-line/

Countries/int/Routenet/pdfs/asia-europe/ae10-roundtrip.pdf.

Maersk. ”Containers and containerization ”, 2014b. URL http://www.maersk.com/en/

industries/transport#containers.

Q. Meng and T. Wang. ”A scenario-based dynamic programming model for multi-period liner

ship fleet planning”. Transportation Research Part E: Logistics and Transportation Review,

47(4):401–413, July 2011.

Q. Meng, T. Wang, and S. Wang. ”Short-term liner ship fleet planning with container trans-

shipment and uncertain container shipment demand”. Eur. J. Oper. Res., 223(1):96–105,

2012.

142

Bibliography

Q. Meng, S. Wang, H. Andersson, and K. Thun. ”Containership Routing and Scheduling in

Liner Shipping: Overview and Future Research Directions”. Transportation Science, 48(2):

265–280, 2014.

M. C. Moura, M. V. Pato, and A. C. Paixa. ”Ship assignment with hub and spoke constraints”.

Maritime Policy & Management, 29(2):135–150, 2002.

T.E. Notteboom. ”The Time Factor in Liner Shipping Services”. Maritime Economics and

Logistics, 8(1):19–39, 2006.

T.E. Notteboom and J. Rodrigue. ”Containerisation, box logistics and global supply chains:

The integration of ports and liner shipping networks”. Maritime Economics & Logistics, 10

(1):152–174, 2008.

B. Nygreen, M. Christiansen, K. Haugen, T. Bjørkvoll, and Ø. Kristiansen. ”Modeling Nor-

wegian petroleum production and transportation”. Annals of Operations Research, 82(0):

251–268, 1998. ISSN 0254-5330.

C.A. Olson, E.E. Sorenson, and W.J. Sullivan. ”Medium-range scheduling for a freighter fleet”.

Operations research, 17:565–582, 1969.

A.N. Perakis and D.I. Jaramillo. ”Fleet deployment optimization for liner shipping part 1.

Background, problem formulation and solution approaches”. Maritime Policy Management,

pages 183–200, 1991.

R. Pesenti. ”Hierarchical resource planning for shipping companies ”. European Journal of

Operational Research, 86(1):91 – 102, 1995.

B.J. Powell and D.I. Perakis. ”Fleet deployment optimization for liner shipping: An integer

programming model”. Maritime Policy & Management, 24(2):183–192, 1997.

H.N. Psaraftis. ”Foreword to the focused issue on maritime transportation”. Transportation

Science, 1999.

H.N. Psaraftis and C.A. Kontovas. “Ship Emissions, Costs and their Tradeoffs”. Advances in

Maritime Logistics and Supply Chain Systems, 2010.

K. Rana and R. G. Vickson. ”Routing Container Ships Using Lagrangean Relaxation and

Decomposition”. Transportation Science, 25(3), 1991.

L.B. Reinhardt and D. Pisinger. ”A branch and cut algorithm for the container shipping network

design problem”. Flexible Services Manufacturing Journal, pages 349–374, 2011.

L.B. Reinhardt, B. Kallehauge, A. Nørrelund, and A. Olsen. ”Network design models for

143

Bibliography

container shipping”. Technical report, Technical report, Centre for Traffic and Transport,

Technical University of Denmark, 2007.

D. Rönen. ”Cargo ships routing and scheduling: Survey of models and problems ”. European

Journal of Operational Research, 12(2):119 – 126, 1983.

E. Sambracos, J.A. Paravantis, C.D. Tarantilis, and C.T. Kiranoudis. ”Dispatching of small

containers via coastal freight liners: The case of the Aegean Sea”. European Journal of

Operational Research, pages 365–381, 2004.

V. Schmid. ”Hybrid large neighborhood search for the bus rapid transit route design problem”.

European Journal of Operational Research, 238(2):427–437, 2014.

K. Shintani, A. Imai, E. Nishimura, and S. Papadimitriou. ”The container shipping network de-

sign problem with empty container repositioning”. Transportation Research Part E: Logistics

and Transportation Review, 43(1):39 – 59, 2007. ISSN 1366-5545.

M.M. Sigurd, N.L. Ulstein, B. Nygreen, and D.M. Ryan. ”Ship Scheduling with Recurring

Visits and Visit Separation Requirements”. In Column Generation, pages 225–245. Springer

US, 2007.

D.P. Song and P.M. Panayides. ”A conceptual application of cooperative game theory to liner

shipping strategic alliances”. Maritime Policy Management, 2002.

S. Ting and G. Tzeng. ”Ship scheduling and service network integration for liner shipping

companies and strategic alliances”. Journal of the Eastern Asia Society for Transportation

Studies, 5, 2003.

J. Vesterager. ”Alphaliner: Verdens havne er ikke klar til gigantskibe”. Shippingwatch, 2012.

URL http://shippingwatch.dk/Havne/article4943407.ece.

T. Walsh. ”symmetry breaking constraints: Recent results ”. 2012.

S. Wang, Q. Meng, and Z. Sun. ”Container routing in liner shipping”. Transportation Research

Part E: Logistics and Transportation Review, 49(1):1 – 7, 2013.

L.A. Wolsey. ”Integer Programming”. Wiley Series in Discrete Mathematics and Opti-

mization. Wiley, 1998. ISBN 9780471283669. URL http://books.google.no/books?id=

x7RvQgAACAAJ.

World Shipping Council. ”A coordinated voice for the liner shipping industry ”, 2014a. URL

http://www.worldshipping.org/.

World Shipping Council. ”A coordinated voice for the liner shipping industry”, 2014b. URL

http://www.worldshipping.org/about-the-industry/global-trade/trade-routes.

144

Bibliography

S. Yan, C. Chen, and S. Lin. ”Ship scheduling and container shipment planning for liners in

short-term operations”. Journal of marine science and technology, 14(4):417–435, 2009.

145

Appendix A

Complete mathematical models

A.1 Variables, parameters and sets

Variables in alphabetical order

akr - The number of vessels of ship type k sailing route r

bik - The number of times port i is visited by ship type k each week

cijodkr - 1 if the net flow in port i of demand (o,d) associated with route r

is non-positive, 0 otherwise. (Original models)

cijodωkr - 1 if the net flow in port i of order (o,d, ω) associated with ship type k

and route r is non-positive, 0 otherwise. (TT models)

dir - 1 if port i is set to depot in route r, 0 otherwise.

eFir/e
L
ir - 1 if port i is in the first/last loop (nir=1/nir=lr), 0 otherwise

fijodkr - Flow of the demand (o,d) transported by a vessel of type k on arc (i,j)

in route r (Original models)

fijodωkr - 1 if order (o,d,ω) is transported by a vessel of type k on arc (i,j) in route r,

0 otherwise (TT models)

gNijr/g
S
ijr - 1 if port i’s loop/order number is greater than port j’s, 0 otherwise

hijr - 1 if port i and port j are in the same loop (nir = njr), 0 otherwise

lr - The number of loops in route r

mir - 1 if port i has multiple arcs (i.e. a butterhub) in route r, 0 otherwise

nir - The loop number of a port i in route r

oijr - Difference between port i and port j’s loop number max{nir-njr,0}

146

Appendix A. Complete mathematical models

pNijr - 1 if i and j are in neighbouring loops and port i’s loop is sailed before

port j’s loop

pRijr - 1 if both port i and port j are visited in route r, 0 otherwise.

pSijr - 1 if port i is in the last loop (eLir=1) and port j is in the first loop (eFjr=1)

qimodr - The positive pairwise difference between out-flow and in-flow of demand (o, d)

in neighbouring loops in butterfly route r (Original models)

qimodωr - The positive pairwise difference between out-flow and in-flow of order (o, d, ω)

in neighbouring loops in butterfly route r (TT models)

rir - 1 if port i is visited in route r, 0 otherwise.

sir - Artificial variable that represents a port i’s order in route r,

counted from the depot.

tiodr - The amount of demand (o,d) that is transhipped in port i in route r

(Original models)

tiodωr - The amount of demand (o,d,ω) is transhipped to route r in port i

(TT models)

tIiodr - Internal transhipment of demand (o, d) in butterhub i of butterfly route r,

(Original models)

tIiodωr - Internal transhipment of order (o, d, ω) in butterhub i of butterfly route r

(TT models)

tEiodr - External transhipment of demand (o, d) in port i of route r (Original models)

tEiodωr - External transhipment of order (o, d, ω) in port i of route r (TT models)

xijkr - 1 if a vessel of type k is used on arc (i,j) by route r, 0 otherwise

ykr - 1 if a vessel of type k is used on route r, 0 otherwise

147

Appendix A. Complete mathematical models

Parameters in alphabetical order

CP
ik - Visiting cost (per visit) at port i for ship type k i ∈ P, k ∈ K

CS
k - Sailing cost per week for ship type k k ∈ K

CT
i - Transhipment cost per unit of demand (o, d) port i i ∈ P

Dod - Weekly demand from port o to port d (o, d) ∈ D
DB

odω - 1 if there is demand of order ω from port o to port d, (o, d, ω) ∈ O
0 otherwise

DQ
odω - Weekly quantity (in TEU) of order (o,d,ω) (o, d, ω) ∈ O

L - Max route length (NM)

Mk - Number of vessels of ship type k in fleet k ∈ K
N - Number of ports

Sk - Capacity of ship type k k ∈ K
Tij - Distance (in NM) on arc (i,j) (i,j) ∈ A
Tijk = Tij/Vk. Sailing time on arc (i,j) for ship type k (i,j) ∈ A, k ∈ K
T T
odω - Transit time requirement (in weeks) for order (o,d,ω) (o, d, ω) ∈ O
Vk - Velocity (NM/Weeks) of ship type k k ∈ K
W - Max route time (Weeks)

Sets in alphabetical order

A - Arcs, (i,j) i, j ∈ P
D - Demands, (o,d) o, d ∈ P
K - Ship types, k

N - Nodes, i,j i, j ∈ {1..2N}
Ω - The set of possible order indices per O-D pair, ω

O - Orders, (o,d,ω) o, d ∈ P, ω ∈ Ω

P - Ports, i,j

R - Routes, r r ∈ {1..
∑
k∈K

Mk}, k ∈ K

148

Appendix A. Complete mathematical models

A.2 Basic model

Sets and indices
P - Ports, i,j

A - Arcs, (i,j) i, j ∈ P
D - Demands, (o,d) o, d ∈ P
K - Ship types, k

R - Routes, r r ∈ {1..
∑
k∈K

Mk}, k ∈ K

Parameters

Dod - Weekly demand from port o to port d (o, d) ∈ D
CT
i - Transhipment cost per unit port i i ∈ P

CP
ik - Visiting cost (per visit) at port i for ship type k i ∈ P, k ∈ K

CS
k - Sailing cost per week for ship type k k ∈ K

Vk - Velocity (NM/Weeks) of ship type k k ∈ K
Tij - Distance (in NM) on arc (i,j) (i, j) ∈ A
Tijk = Tij/Vk. Sailing time on arc (i,j) for ship type k (i, j) ∈ A, k ∈ K
Sk - Capacity of ship type k k ∈ K
Mk - Number of vessels of ship type k in fleet k ∈ K
N - Number of ports

L - Max route length (NM)

W - Max route time (Weeks)

Variables

xijkr - 1 if a vessel of type k is used on arc (i,j) by route r, 0 otherwise

ykr - 1 if a vessel of type k is used on route r, 0 otherwise

fijodkr - Flow of the demand (o,d) transported by a vessel of type k on arc (i,j) in route r

tiodr - The amount of demand (o,d) that is transhipped in port i in route r

akr - The number of vessels of ship type k sailing route r

bik - The number of times port i is visited by ship type k each week

Objective function

minimize
∑
k∈K

∑
r∈R

CS
k · akr +

∑
i∈P

∑
r∈R

CT
i · tiodr +

∑
i∈P

∑
k∈K

CP
ik · bik (A.1)

149

Appendix A. Complete mathematical models

Constraints

∑
k∈K

ykr ≤ 1, r ∈ R (A.2)

∑
i∈P

∑
j∈P

Tij · xijkr ≤ Lykr, k ∈ K, r ∈ R (A.3)

∑
i∈P

∑
j∈P

Tijk · xijkr ≤Wykr, k ∈ K, r ∈ R (A.4)

∑
i∈P

∑
j∈P

xijkr − ykr ≥ 0, k ∈ K, r ∈ R (A.5)

∑
i∈P

∑
k∈K

∑
r∈R

(fijodkr − fjiodkr) = 0, j ∈ P, (o, d) ∈ D, j 6= o, j 6= d, (A.6)

∑
j∈P

∑
k∈K

∑
r∈R

fojodkr = Dod, (o, d) ∈ D, (A.7)

∑
i∈P

∑
k∈K

∑
r∈R

fidodkr = Dod, (o, d) ∈ D, (A.8)

∑
i∈P

xijkr −
∑
i∈P

xjikr = 0, j ∈ P, k ∈ K, r ∈ R (A.9)

tiodr ≥
∑
j∈P

∑
k∈K

(fijodkr − fjiodkr), i ∈ P, i 6= o, i 6= d, (o, d) ∈ D, r ∈ R (A.10)

tiodr ·
∑
j∈P

∑
k∈K

(fijodkr − fjiodkr ≥ 0), i ∈ P, (o, d) ∈ D, r ∈ R (A.11)

150

Appendix A. Complete mathematical models

∑
r∈R

akr ≤ Nk, k ∈ K (A.12)

akr ≥
∑
i∈P

∑
j∈P

Tijk · xijkr, k ∈ K, r ∈ R (A.13)

∑
(o,d)∈D

fijodkr ≤ Sk · xijkr, (i, j) ∈ A, k ∈ K, r ∈ R (A.14)

bjk =
∑
i∈P

∑
r∈R

xijkr, j ∈ P, k ∈ K (A.15)

SEC, r ∈ R (A.16)

Binary, non-negativity and integrality constraints

xijkr, ykr ∈ {0, 1}, i, j ∈ P, k ∈ K, r ∈ R (A.17)

fijodkr, tiodr, akr, bjk ≥ 0, i, j ∈ P, (o, d) ∈ D, k ∈ K, r ∈ R (A.18)

akr, bjk integer, j ∈ P, k ∈ K, r ∈ R (A.19)

A.2.1 Subtour elimination

Additional variables

rir - 1 if port i is visited in route r, 0 otherwise.

dir - 1 if port i is set to depot in route r, 0 otherwise.

sir - Variable that represents port i’s sequence number in route r, counted from the depot.

Additional constraints

151

Appendix A. Complete mathematical models

(
∑
j∈P

∑
k∈K

xijkr) · (1− rir) = 0, i ∈ P, r ∈ R (A.20)

∑
i∈P

dir = 1, r ∈ R (A.21)

sjr − sir + (N − 1) · (1−
∑
k∈K

xijkr + djr) ≥ 1, i ∈ P, j ∈ P, r ∈ R (A.22)

dir +
1

N − 1
· sir ≤ 1, i ∈ P, r ∈ R (A.23)

sjr − (N − 1)(2−
∑
j∈P

∑
k∈K

xijkr − dir) ≤ 1, i ∈ P, j ∈ P, r ∈ R (A.24)

rir, dir ∈ {0, 1}, i, j ∈ P, r ∈ R (A.25)

sir ≥ 0, integer i ∈ P, r ∈ R (A.26)

A.2.2 Linearizations

Constraints (A.11) can be linearized by substituting them by constraints (A.27-A.29):

Introduce the dummy variable cijodkr:

cijodkr - 1 if the net flow in port i of demand (o,d) associated with route r

is non-positive, 0 otherwise.

∑
k∈K

(fijodkr − fjiodkr) +Dod · cijodkr ≥ 0, i ∈ P, r ∈ R (A.27)

152

Appendix A. Complete mathematical models

Dod · (1− cijodkr)− tiodr ≥ 0, i ∈ P, r ∈ R (A.28)

cijodkr ∈ {0, 1}, i, j ∈ P, (o, d) ∈ D, k ∈ K, r ∈ R (A.29)

∑
j∈P

∑
k∈K

xijkr − rir ≤ 0, i ∈ P, r ∈ R (A.30)

∑
j∈P

∑
k∈K

xijkr − rir ≥ 0, i ∈ P, r ∈ R (A.31)

153

Appendix A. Complete mathematical models

A.3 Flower model

Below are all modifications and additions needed from the Basic model to obtain the Flower

model.

Modified variables

tIiodr - Internal transhipment of demand (o, d) in butterhub i of butterfly route r

tEiodr - External transhipment of demand (o, d) in port i of route r

Variable tiodr from the Basic model is substituted by tIiodr + tEiodr.

Modified objective function

minimize
∑
k∈K

∑
r∈R

CS
k · akr +

∑
i∈P

∑
r∈R

CT
i · (tEiodr + tIiodr) +

∑
i∈P

∑
k∈K

CP
ik · bik (A.32)

Modified constraints∑
j∈P

∑
k∈K

xijkr − 2(N − 1) · rir ≤ 0, i ∈ P, r ∈ R (A.33)

Constraints replace constraints A.20 from the Basic model.

Additional variables

mir - 1 if port i has multiple arcs (i.e. is a butterhub) in route r, 0 otherwise

nir - The loop number of port i in route r

lr - The number of loops in route r

eFir/e
L
ir - 1 if port i is in the first/last loop (nir=1/nir=lr), 0 otherwise

gNijr/g
S
ijr - 1 if port i’s loop/order number is greater than port j’s, 0 otherwise

hijr - 1 if port i and port j are in the same loop (nir = njr), 0 otherwise

oijr - Difference between port i and port j’s loop number (nir-njr)

pSijr - 1 if port i is in the last loop (eLir=1) and port j is in the first loop (eFjr=1)

pNijr - 1 if port i and j are in neighbouring loops and port i’s loop is sailed before port j’s loop

qimodr - The positive pairwise difference between out-flow and in-flow of demand (o, d)

in neighbouring loops in butterfly route r

154

Appendix A. Complete mathematical models

Construction of the additional variables

∑
j∈P

∑
k∈K

xijkr − (N − 1) ·mir ≤ 1, i ∈ P, r ∈ R (A.34)

∑
j∈P

∑
k∈K

xijkr − 2 ·mir ≥ 0, i ∈ P, r ∈ R (A.35)

mir − dir ≤ 0, i ∈ P, r ∈ R (A.36)

lr ≤
∑
j∈P

∑
k∈K

xijkr + (N − 1)(1− dir), i ∈ P, r ∈ R (A.37)

nir − (N − 1)(1− dir) ≤ 0, i ∈ P, r ∈ R (A.38)

nir − njr − (N − 1)(1−
∑
k∈K

(xijkr + xjikr) + 2dir + 2djr) ≤ 0, i, j ∈ P, r ∈ R (A.39)

|(N − 1)(sir − sjr) + nir − njr| ≥ 1, i, j ∈ P, r ∈ R (A.40)

sir + dir + (1− ykr) ≥ 1, i ∈ P, r ∈ R (A.41)

nir ≤ lr, i ∈ P, r ∈ R (A.42)

nir − 2(1− eFir − dir) ≥ 0 i ∈ P, r ∈ R (A.43)

155

Appendix A. Complete mathematical models

nir − (N − 1)(1− eFir) ≤ 1 i ∈ P, r ∈ R (A.44)

eFir − nir ≤ 0 i ∈ P, r ∈ R (A.45)

eLir − nir + lr ≥ 1 i ∈ P, r ∈ R (A.46)

nir − lr + (N − 1)(1− eLir) ≥ 0 i ∈ P, r ∈ R (A.47)

nir − njr − (N − 1)gNijr ≤ 0, i, j ∈ P, r ∈ R (A.48)

nir − njr + (N − 1)(1− gNijr) ≥ 1, i, j ∈ P, r ∈ R (A.49)

sir − sjr − (N − 1)gSijr ≤ 0 i, j ∈ P, r ∈ R (A.50)

sir − sjr + (N − 1)(1− gSijr) ≥ 1 i, j ∈ P, r ∈ R (A.51)

gNijr + gNjir + hijr = 1 i, j ∈ P, r ∈ R (A.52)

oijr − nir + njr + (N − 1)(1− gNijr) ≥ 0, i, j ∈ P, r ∈ R (A.53)

oijr − nir + njr − (N − 1)(1− gNijr) ≤ 0, i, j ∈ P, r ∈ R (A.54)

156

Appendix A. Complete mathematical models

oijr − (N − 1)(1− gNjir) ≤ 0, i, j ∈ P, r ∈ R (A.55)

oijr − (N − 1)(1− hijr) ≤ 0, i, j ∈ P, r ∈ R (A.56)

oijr + ojir + (N − 1)hijr ≥ 1, i, j ∈ P, r ∈ R (A.57)

eLir + eFjr − 2pSijr ≤ 1, i, j ∈ P, r ∈ R (A.58)

eLir + eFjr − 2pSijr ≥ 0, i, j ∈ P, r ∈ R (A.59)

pSijr − pNijr ≤ 0, i, j ∈ P, r ∈ R (A.60)

ojir + 2gNijr + 2hijr + pNijr + 2dir + 2djr ≥ 2, i, j ∈ P, r ∈ R (A.61)

oijr + ojir − (N − 1)(1− pNijr + pSijr) ≤ 1, i, j ∈ P, r ∈ R (A.62)

pNijr + hijr ≤ 1, i, j ∈ P, r ∈ R (A.63)

qimodr ≥
∑
k∈K

(fjmodkr − fijodkr −Dod(4−mjr − pNijr − xijkr − xjmkr), (i, j), (j,m) ∈ A, r ∈ R

(A.64)

tIjodr ≥
∑
i∈P

∑
m∈P

qimodr − tEjodr, j ∈ P, (o, d) ∈ D, r ∈ R (A.65)

157

Appendix A. Complete mathematical models

Binary, non-negativity and integrality constraints

mir, e
F
ir, e

L
ir, g

N
ijr, g

S
ijr, hijr, p

S
ijr, p

N
ijr ∈ {0, 1}, i, j ∈ P, r ∈ R (A.66)

nir, oir, lr, qimodr ≥ 0, integer i,m ∈ P, (o, d) ∈ D, r ∈ R (A.67)

158

Appendix A. Complete mathematical models

A.4 Chain model

Below are all modifications and additions needed from the Basic model to obtain the Chain

model.

Additions and changes in sets and indices

N - Nodes, i,j i, j ∈ {1..2N}

Additions and changes in parameters

• The distance between port i and its twin port i+N is 0, i.e. Ti,i+N = Ti+N,i = 0.

• The distance between twin port i+N and twin port j+N is equal to the distance between

port i and j, i.e. Ti+N,j+N = Tij .

• The transhipment cost of twin port i+N is equal to the transhipment cost of port i, i.e.

CT
i+N = CT

i . The same applies for the visiting cost.

Modified Constraints

bik =
∑

j∈P,j 6=i+N,

∑
r∈R

xijkr, i ∈ P, k ∈ K (A.68)

∑
i∈N

∑
k∈K

∑
r∈R

(fijodkr + fi+N,jodkr − fjiodkr − fj,i+N,odkr) = 0,

j ∈ N , (o, d) ∈ D, j 6= o, j 6= d, j ≤ N
(A.69)

∑
j∈P,j 6=o,j 6=o+N

∑
k∈K

∑
r∈R

(fojodkr + fo+N,jodkr) = Dod, (o, d) ∈ D, (A.70)

∑
i∈P

∑
k∈K

∑
r∈R

(fidodkr + fi,d+N,odkr) = Dod, (o, d) ∈ D, (A.71)

159

Appendix A. Complete mathematical models

A.5 Basic transit time model

Below are all modifications and additions needed from the Basic model to obtain the Basic

transit time model.

Additions and changes in sets and indices

Ω - The set of possible order indices per O-D pair, ω

O - Orders, (o,d,ω) o, d ∈ P, ω ∈ Ω

Additions and changes in parameters

DB
odω - 1 if there is demand of order ω from port o to port d, (o, d, ω) ∈ O

0 otherwise

DQ
odω - Weekly quantity (in TEU) of order (o,d,ω) (o, d, ω) ∈ O

T T
odω - Transit time requirement (in weeks) for order (o,d,ω) (o, d, ω) ∈ O

Modified variables

fijodωkr - 1 if order (o,d,ω) is transported by a vessel of type k on arc (i,j) in route r,

0 otherwise

tiodωr - 1 if order (o,d,ω) is transhipped to route r in port i, 0 otherwise

Additional constraints

∑
i∈P

∑
j∈P

∑
k∈K

∑
r∈R

(2 · Tijk · fijodωkr + tiodωr) ≤ 2 · T T
odω, (o, d, ω) ∈ O (A.72)

160

Appendix A. Complete mathematical models

A.6 Flower transit time model

Below are all modifications and additions needed from the Basic transit time model to obtain

the Flower transit time model. The additions and modifications needed from the Basic model

to obtain the Flower model that are not affected by the transit time extension, are not included.

Modified variables

tIiodωr - Internal transhipment of order (o, d, ω) in butterhub i of butterfly route r

tEiodωr - External transhipment of order (o, d, ω) in port i of route r

cijodωkr - 1 if the net flow in port i of order (o,d, ω) associated with ship type k and route r

is non-positive, 0 otherwise.

qimodωr - The positive pairwise difference between out-flow and in-flow of order (o, d, ω)

in neighbouring loops in butterfly route r

Modified constraints

∑
i∈P

∑
j∈P

∑
k∈K

∑
r∈R

(2 · Tijk · fijodωkr + tIiodωr + tEiodωr) ≤ 2 · T T
odω, (o, d, ω) ∈ O (A.73)

Additional constraints

qimodωr ≥
∑
k∈K

(Dodω(fjmodωkr − fijodωkr)−Dodω(4−mjr − pNijr − xijkr − xjmkr),

(i, j), (j,m) ∈ A, r ∈ R
(A.74)

tEiodωr ≥
∑
j∈P

∑
k∈K

Dodω(fijodkr − fjiodkr), i ∈ P, i 6= o, i 6= d, (o, d, ω) ∈ O, r ∈ R (A.75)

tIiodωr ≥
∑
j∈P

∑
m∈P

qjmodωr −Dodω(1− dir)− tEiodωr, i ∈ P, (o, d, ω) ∈ O, r ∈ R (A.76)

161

Appendix A. Complete mathematical models

A.7 Chain transit time model

Below are all modifications and additions needed from the Basic transit time model to obtain

the Chain transit time model. The additions and modifications needed from the Basic model

to obtain the Chain model that are not affected by the transit time extension, are not included.

Modified constraints

2 · Tijk · (
∑
i∈P

∑
j∈P

∑
k∈K

∑
r∈R

fijodωkr +
∑

i∈N∩P̄

∑
j∈N∩P̄

∑
k∈K

∑
r∈R

fijodωkr) +
∑
i∈N

∑
r∈R

tiodωr) ≤ 2 · T T
odω,

(o, d, ω) ∈ O
(A.77)

162

Appendix B

Computational results

163

Appendix B. Computational results

B.1 Testing of symmetry breaking constraints

B.1.1 Basic

Run time (in seconds)

of demands

(# ship types = 2 in all runs)

of ports Model 5 7 9

B[] 9.04 8.82 43.21

B[R1] 9.99 14.60 34.76

5 B[R1+S] 13.34 21.20 32.13

B[R2] 11.18 23.01 23.29

B[R2+S] 14.16 17.29 33.97

B[S] 10.12 23.35 27.27

B[] 15.70 50.32 157.23

B[R1] 19.68 61.14 233.60

7 B[R1+S] 38.37 87.25 230.96

B[R2] 35.61 103.826 530.05

B[R2+S] 52.74 94.766 193.52

B[S] 16.64 53.86 467.80

B[] 2142.08 3242.70 6973.49

B[R1] 2883.68 7339.31 *

9 B[R1+S] 547.54 3502.59 *

B[R2] 1165.54 7857.28 *

B[R2+S] 738.64 3079.85 4317.74

B[S] 3635.27 * *

Table B.1: The table shows the results of the symmetry testing of the Basic model. The combination

of SBCs with the lowest, second lowest and third lowest run time on a given instance is marked with

shades of green. The squares marked with an * did not find the optimal solution within the cut off time

of 10000 seconds.

164

Appendix B. Computational results

B.1.2 Flower

Results symmetry testing Flower

Instance Model with SBCs # of nodes Run time (in seconds) Gap

G[525] F[] 5191 70.37 -

F[L] 5319 84.24 -

G[527] F[] 20075 134.62 -

F[L] 35495 181.16 -

G[529] F[] 20519 283.74 -

F[L] 25341 265.01 -

G[725] F[] 8347 219.44 -

F[L] 1509 145.14 -

G[727] F[] 377 151.03 -

F[L] 3119 257.10 -

G[729] F[] 14541 1113.73 -

F[L] 7081 800.17 -

G[925] F[] 65935 4127.09 -

F[L] 60523 2690.03 -

G[927] F[] 68454 10000* 11.42%

F[L] 59891 10000* 2.40%

G[929] F[] 37334 10000* 41.58%

F[L] 31840 10000* 47.73%

Table B.2: Results of the symmetry testing of the Flower model. The least # of nodes, lowest run time

and gap on a certain instance is colored in green. The cut off time was 10’000 on all runs. The run times

on the instances that were not solved to optimality are marked with an *.

165

Appendix B. Computational results

B.1.3 Chain

Results symmetry testing Chain

Instance Model # of nodes Run time (in seconds)

C[] 26107 102.35

C[T] 24107 99.28

G[524] C[O] 27429 203.28

C[U] 24569 144.71

C[TO] 21829 109.79

C[TOU] 13587 161.93

C[] 8229 56.24

C[T] 22467 138.83

G[525] C[O] 24931 210.53

C[U] 25063 178.06

C[TO] 32055 484.59

C[TOU] 35307 257.57

C[] 18043 255.35

C[T] 20257 321.78

G[526] C[O] 22507 344.69

C[U] 5011 128.22

C[TO] 22270 414.51

C[TOU] 32075 4953.04

C[] 50143 373.81

C[T] 59501 749.99

G[527] C[O] 29641 450.81

C[U] 41645 1193.01

C[TO] 14319 366.20

C[TOU] 22933 488.13

C[] 62847 626.93

C[T] 75145 646.86

G[529] C[O] 74729 2071.80

C[U] 68427 2365.48

C[TO] 27237 295.77

C[TOU] 43207 1433.04

C[] 333971 2470.23

C[T] 646151 9263.77

G[5211] C[O] 163081 4361.85

C[U] 325589 9726.02

C[TO] 173641 5846.82

C[TOU] 191895 8421.3

C[] 443821 21987.60

C[T] 208725 5557.69

G[5215] C[O] 91887 5550.06

C[U] 136935 7033.79

C[TO] 55786 1792.29

C[TOU] 92569 7627.48

C[] 93858 959.90

C[T] 91590 973.52

G[725] C[O] 74366 976.46

C[U] 46615 440.56

C[TO] 37719 430.07

C[TOU] 41181 1269.38

C[] 9567 1144.88

C[T] 15411 2656.19

G[728] C[O] 10985 3101.29

C[U] 10985 3101.29

C[TOU] 7129 2436.99

C[TOU] 3685 3456.85

Table B.3: Results of the symmetry testing of the Chain model. The least # of nodes and lowest

run time on a certain instance is colored in green. The cut off time was 30’000 on all runs, all

instances were solved to optimality within the cut off time.

166

Appendix B. Computational results

B.2 Testing of valid inequalities

167

Appendix B. Computational results

B.2.1 Xpress preprocessing

(a) LP objective values of B[X] and B[]

(b) LP objective values of B[DX] and B[D]

(c) LP objective values of B[FX] and B[F]

(d) LP objective values of B[IRX] and B[IR]

(e) LP objective values of B[CX] and B[C]

Figure B.1: Xpress preprocessing’s impact on LP objective values. Figures B.1a to B.1e show

how much the LP objective values on 45 instances improve in the Basic model by enabling Xpress

preprocessing, in combination with the problem specific valid inequalities.

168

Appendix B. Computational results

(a) # of nodes of B[X] and B[]

(b) # of nodes of B[DX] and B[D]

(c) # of nodes of B[FX] and B[F]

(d) # of nodes of B[IRX] and B[IR]

(e) # of nodes of B[CX] and B[C]

Figure B.2: Xpress preprocessing’s impact on number of nodes. Figures B.8a to B.2e show how

the number of nodes decrease in the Basic model by enabling Xpress preprocessing, in combination with

the problem specific valid inequalities.

169

Appendix B. Computational results

(a) Run times of B[X] and B[]

(b) Run times of B[DX] and B[D]

(c) Run times of B[FX] and B[F]

(d) Run times of B[IRX] and B[IR]

(e) Run times of B[CX] and B[C]

Figure B.3: Xpress preprocessing’s impact on run times. Figures B.3a to B.3e show how the run

times decrease in the Basic model by enabling Xpress preprocessing, in combination with the problem

specific valid inequalities.
170

Appendix B. Computational results

B.2.2 Integer rounding: Choosing the best α-values

B[CX] B[C]

G[434] G[435] G735 Average G[434] G[435] G[735] Average

Alt 1

LP 1 2 1 1.3 1 1 1 1

#n 2 2 2 2 2 2 1 1.7

R.t. 3 2 2 2.3 3 2 2 2.3

Average 2 2 1.7 1.9 2 1.7 1.3 1.7

Alt 2

LP 2 1 2 1.7 1 1 1 1

#n 1 1 3 1.7 1 1 2 1.3

R.t. 1 1 1 1 1 1 3 1.7

Average 1.3 1 2 1.4 1 1 2 1.3

Alt 3

LP 1 2 1 1.3 1 1 1 1

#n 2 2 1 1.7 2 2 1 1.7

R.t. 2 3 3 2.7 2 3 1 2

Average 1.7 2.3 1.7 1.9 1.7 2 1 1.6

Table B.4: Analysis of LP solution (LP), the number of nodes (#n) and the run time (R.t.) with different

α values for the CM + IR-valid inequalities. In alternative 1 α1 is set to 1.001, while alternative 2 has

α1 and α2 set to 2.001, while alternative 3 has α1, α2 and α3 set to 3.001. The rankings are made

comparing each instance for a cut/α-combination, where the best one(s) has/have been ranked as 1,

the second as 2 etc. There are calculated different averages for each alternative and cut combination:

Over the different parameters for each instance, over different instances for each parameters and also

the average of these two averages. This information have been used to analyse emphasizing either an

instance size, a parameter or the α-alternative and cut-combination as a whole.

171

Appendix B. Computational results

B[IRX] B[IR]

G[434] G[435] G[735] Average 4 5 7 Average

Alt 1

LP 2 2 2 2 1 2 2 1.7

#n 2 2 2 2 1 2 1 1.3

R.t. 3 3 1 2.3 1 3 1 1.7

Average 2.3 2.3 1.7 2.1 1 2.3 1.3 1.6

Alt 2

LP 1 1 1 1 1 1 1 1

#n 1 1 1 1 2 1 2 1.7

R.t. 1 2 2 1.7 3 2 3 2.7

Average 1 1.3 1.3 1.2 2 1.3 2 1.8

Alt 3

LP 1 1 1 1 1 1 1 1

#n 1 1 1 1 2 1 2 1.7

R.t. 2 1 3 2 2 1 2 1.7

Average 1.3 1 1.7 1.3 1.7 1 1.7 1.4

Table B.5: The table shows the results from runs of the D/C + IR-valid inequalities with different

alpha-values. In alternative 1 α1 is set to 1.001, while alternative 2 has α1 and α2 set to 2.001,

while alternative 3 has α1, α2 and α3 set to 3.001. The rankings are made comparing each

instance for a cut/α-combination, where the best one(s) has/have been ranked as 1, the second

as 2 etc. There are calculated different averages for each alternative and cut combination: Over

the different parameters for each instance, over different instances for each parameters and also

the average of these two averages. This information have been used to analyse emphasizing

either an instance size, a parameter or the α-alternative and cut-combination as a whole.

172

Appendix B. Computational results

B.2.3 Capacity miles

(a) LP objective values of B[CX] and B[X]

(b) LP objective values of B[C] and B[]

Figure B.4: Capacity miles’ impact on LP objective values. Figures B.4a and ?? show how the

LP objective values on 45 instances vary when the CM valid inequalities are included and not in the

Basic model.

(a) # of nodes of B[IRX] and B[X]

(b) # of nodes of B[IR] and B[]

Figure B.5: Capacity miles’ impact on number of nodes. Figures B.5a and B.5b show how the

number of nodes on 45 instances vary when the CM- valid inequalities are included and not in the Basic

model.

173

Appendix B. Computational results

(a) Run times of B[FX] and B[X]

(b) Run times of B[F] and B[]

Figure B.6: Capacity miles’ impact on run times. Figures B.6a and B.6b show how the number of

nodes on 45 instances vary when the CM- valid inequalities are included and not in the Basic model.

B.2.4 D/C valid inequalities

(a) LP objective values of B[DX] and B[X]

(b) LP objective values of B[D] and B[]

Figure B.7: D/C valid inequalities’ impact on LP objective values. Figures B.7a and B.7b show

how the LP objective values on 45 instances vary when the D/C valid inequalities are included and not

in the Basic model. The blue line is when Xpress preprocessing is enabled, and the red line is when it is

turned off.

174

Appendix B. Computational results

(a) # of nodes of B[X] and B[]

(b) # of nodes of B[DX] and B[D]

Figure B.8: D/C valid inequalities’ impact on number of nodes. Figures B.7a and B.7b show

how the number of nodes on 45 instances vary when the D/C valid inequalities are included and not in

the Basic model. The blue line is when Xpress preprocessing is enabled, and the red line is when it is

turned off.

(a) Run times of B[X] and B[]

(b) Run times of B[DX] and B[D]

Figure B.9: D/C valid inequalities’ impact on run times. Figures B.9a and B.9b show how the

number of nodes on 45 instances vary when the D/C valid inequalities are included and not in the Basic

model. The blue line is when Xpress preprocessing is enabled, and the red line is when it is turned off.

175

Appendix B. Computational results

B.2.5 Flow valid inequalities

(a) LP objective values of B[FX] and B[X]

(b) LP objective values of B[F] and B[]

Figure B.10: D/C flow-valid inequalities’ impact on LP objective values. Figures B.10a and

B.10b show how the LP objective values on 45 instances vary when the D/C flow-valid inequalities are

included and not in the Basic model.

(a) # of nodes of B[FX] and B[X]

(b) # of nodes of B[F] and B[]

Figure B.11: D/C flow-valid inequalities’ impact on number of nodes. Figures B.11a and B.11b

show how the number of nodes on 45 instances vary when the D/C flow- valid inequalities are included

and not in the Basic model.

176

Appendix B. Computational results

(a) Run times of B[FX] and B[X]

(b) Run times of B[F] and B[]

Figure B.12: D/C valid inequalities’ impact on run times. Figures B.12a and B.12b show how the

number of nodes on 45 instances vary when the D/C flow- valid inequalities are included and not in the

Basic model.

B.2.6 Demand/capacity with integer rounding

(a) LP objective values of B[IRX] and B[X]

(b) LP objective values of B[IR] and B[]

Figure B.13: D/C IR-valid inequalities’ impact on LP objective values. Figures B.13a and

B.13b show how the LP objective values on 45 instances vary when the D/C IR- valid inequalities are

included and not in the Basic model.

177

Appendix B. Computational results

(a) # of nodes of B[IRX] and B[X]

(b) # of nodes of B[IR] and B[]

Figure B.14: D/C IR-valid inequalities’ impact on number of nodes. Figures B.11a and B.11b

show how the number of nodes on 45 instances vary when the D/C IR- valid inequalities are included

and not in the Basic model.

(a) Run times of B[FX] and B[X]

(b) Run times of B[F] and B[]

Figure B.15: D/C IR valid inequalities’ impact on run times. Figures B.15a and B.15b show how

the number of nodes on 45 instances vary when the D/C IR- valid inequalities are included and not in

the Basic model.

178

Appendix B. Computational results

Comparison of the LP objective values of the model variant

Figure B.16: The LP objective values of the models with Xpress-valid inequalities (B[X], B[DX],

B[FX], B[IRX] and B[CX]).

Instance categorization

of ports Small Medium Large

4 G[424]-G[427]

5 G[524]-G[527]

of shiptypes= 2 6 - G[625]-G[627]

7 G[724]-G[727]

8 G[824] G[825]-G[827]

9 G[924]-G[926]

10 G[1024]

4 G[434]-G[435] G[436]-G[437]

5 G[534] G[535]-G[537]

of shiptypes= 3 6 G[634]-G[637]

7 G[734]-G[737]

8

Table B.6: Instance categorization

179

Appendix C

Attachments

Included as a ZIP file can be found:

1. Mosel code for the Basic model, Flower model, Chain model, Basic model with transit

time, Flower model with transit time and Chain model with transit time.

2. The data instances used for the technical computational study

180

