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Problem formulation
In this thesis, a multistage stochastic optimization model for planning of production
and allocation of sales in the salmon farming industry will be developed. The model
maximizes the expected profit. The objective of the thesis is to provide decision sup-
port regarding when to harvest fish, how to distribute harvested fish between different
product groups, how to allocate sales between contracts and spot sales in different
markets and how to transport products within the production network and to the
market.

The thesis will include the following elements:

- Presentation and discussion of the problem, including a discussion of the relevant
uncertainty parameters

- Formulation and implementation of a stochastic optimization model
- Discussion of the results from a test case
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Summary
In this thesis a multistage stochastic optimization model has been developed for pro-
duction planning and sales allocation within the salmon farming industry. To the
authors knowledge, an optimization model for this problem has not been developed
before.

The background for this thesis is a tactical planning problem spanning production and
sales under uncertainty. The goal is to identify profitable solutions that are sufficiently
flexible in accounting for this uncertainty.

The model is inspired by the work done by Hæreid (2011), but addresses more aspects
of the value chain. The most important innovations in the model is that processed
products and inventory management is included. Furthermore, the scope are extended
to include global operations. Additionally, the model offers a more detailed modeling
of contract and transport decisions. The model also incorporate both market and
product price dependencies.

The model is implemented in two versions: one deterministic and one three-stage
stochastic version. To illustrate how they can be used, the different models are tested
on instances inspired of Marine Harvest’s global production network. The input data
used are however based on publicly available information. To model uncertainty in
salmon price and sea water temperature, different seasonal ARIMA-models are used
to model these uncertain time series. Based on these forecasts, residual scenarios are
generated by using a copula-based scenario generation heuristic.

The developed model acts according to the authors initial assumptions and gives rea-
sonable results compared to how the industry operates as of today. The value of
including stochastic programming constitutes 5 % savings, and tests indicate that the
model holds in-sample stability.
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Sammendrag
I denne masteroppgaven har en multi-stegs stokastisk optimeringsmodell for produk-
sjonsplanlegging og salgsallokering innen lakseoppdrett blitt utviklet. S̊avidt forfat-
terene har kjennskap til, er det aldri tidligere blitt utviklet en optimeringsmodell for
dette problemet.

Bakgrunnen for oppgaven er et taktisk planleggingsproblem som omhandler produk-
sjon og salgsallokering under usikkerhet. Målet med denne modellen er å identifisere
profitable beslutninger som er tilstrekkelig fleksible til å h̊andtere denne usikkerheten.

Modellen er inspirert av arbeidet til Hæreid (2011), men tar for seg en langt større del
av verdikjeden. De viktigste nyvinningene i modellen er at prosesserte produkter og
lagerstyring er inkludert. Videre er omfanget utvidet til å favne global virksomhet. I
tillegg tilbyr modellen en mer detaljert modellering av kontrakter og transportbeslut-
ninger, og lar priser avhenge av hvilket marked handelen gjennomføres i.

Modellen er implementert i to versjoner; en deterministisk og en tre-stegs stokastisk
versjon. For å illustrere hvordan de kan brukes i praksis er modellene blitt testet
p̊a instanser inspirert av the globale produksjonsnettverket til Marine Harvest. Data-
grunnlaget som er brukt er basert p̊a offentlig tilgjengelig informasjon. For å modellere
usikkerhet i pris og vanntemperatur er prognoser utviklet ved hjelp av ulike sesong-
baserte ARIMA-modeller. Basert p̊a prognosene er det generert et sett med scenarier
ved hjelp av et copula-basert scenariogenereringsverktøy.

Modellen som er utviklet oppfører seg som tiltenkt og gir resultater som er fornuftige
sett i sammenheng med bransjen. Verdien av å inkludere usikkerhet er vist å utgjøre
5%, og tester indikerer at modellen innehar in-sample stabilitet.
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Chapter 1

Introduction

Due to rapid growth in the world population, there will be an increased demand for
protein. According to United Nations (2012) the world population is expected to
reach 9,6 billion by 2050. Furthermore, with an estimated 800 million people already
suffering from chronic malnourishment today (FAO, 2014), the need for sustainable
protein sources will become increasingly important in the years to come. Although
70% of the Earth’s surface is covered by water, only 6.5 % of the protein consumed by
humans is produced in this element (Marine Harvest, 2014b). Consequently, there is a
much greater potential for utilizing the aquaculture resources such as farmed Atlantic
salmon (Salmo salar).

While agriculture is activities related to cultivating of soil and animals, aquaculture
deals with production of farm bred marine species (National Geographic, 2015). In
2012, fish trade represented about 10% of total agricultural exports and 1% of world
merchandise trade (FAO, 2014). For the next decade, total production from cap-
ture and aquaculture is expected to exceed the production of beef, pork and poultry
combined (Mathiesen, 2012).

Commercial salmon aquaculture began in late 1960s. Since then, the industry has
experienced extraordinary growth, and the farming of salmonids have dominated the
worldwide market for salmon since 1999 (Marine Harvest, 2014b). Today, salmon
aquaculture is the fastest growing food production system in the world (WWF, 2015),
and the total amount of globally farmed salmon reached 2 040 300 metric tonnes (MT)
in 2013 (Kontali Analyse, 2014). Moreover, the industry has grown to become one of
Norway’s most important industries, and as of today, seafood is Norway’s third largest
export article, only surpassed by Oil and Gas (Regjeringen, 2015).

Production planning in the salmon farming industry poses an interesting modeling
challenge. Due to the rapid shift towards consolidation in the salmon farming industry,

1



Chapter 1. Introduction

where the number of salmon farming companies in Norway is reduced by nearly 70%
since 1994 (Kontali Analyse, 2014), there is believed to be a significant potential with
the use of operations research. As companies grow both in size and geographical
presence, the planning process become increasingly more complex. Consequently, a
need for better decision support tools and portfolio management has arisen, explaining
the background for this thesis.

Key characteristics of the salmon farming industry are uncertainty regarding biomass
development and future prices. Combined with long production cycles, these uncer-
tainties represent a large challenge for the salmon producers. It is therefore essential
to account for this uncertainty during the planning process. Thus, the problem is well
suited for stochastic programming. The purpose of this thesis is to develop a decision
support tool in the form of a multistage stochastic optimization model. The model
seeks to maximize total profits for a global and vertically integrated salmon producer.
Marine Harvest is chosen as the case studied. The scope is limited to the part of the
value chain downstream of the fresh water salmon production.

The thesis is structured as follows. Chapter 2 gives an introduction to the salmon
farming industry, and the value chain, operations and production network of Marine
Harvest are outlined. In Chapter 3, the salmon market, global trade patterns and
price behaviour are discussed in detail. A comprehensive problem description is given
in Chapter 4 before relevant theory to this problem is presented in Chapter 5. In
Chapter 6 relevant aspects to the model are discussed, before the mathematical model
formulation is given in Chapter 7. The case used for testing the model is presented in
Chapter 8, alongside with an explanation of the input data and the scenario generation.
In Chapter 9, a discussion of the results and model application is presented. Finally,
Chapter 10 summarize this thesis, while Chapter 11 points out possible directions for
future work.
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Chapter 2

Salmon aquaculture

In this chapter, the Salmon aquaculture industry is introduced. Section 2.1 gives a
brief description of how salmon aquaculture is defined, and describes its main charac-
teristics. In Section 2.2, each part of the value chain in the salmon farming industry
is presented, while the most important regulations are presented in Section 2.3. Rev-
enues and costs related to the salmon farming industry are briefly discussed in Section
2.4, whereas Marine Harvest’s operations are described in Section 2.5. Uncertainty
and risk related to the value chain operations will be discussed later in Chapter 4.

Throughout this thesis, the phrase salmon implies Atlantic salmon, and aquaculture
is short for Atlantic salmon aquaculture. Companies operating in the salmon farming
industry are referred to as salmon producers. Unless otherwise noted, weights are
given in whole fish equivalents (WFE) and measured in MT. WFE is the weight of the
fish after slaughtering but before gutting (Kontali Analyse, 2007).

2.1 Industry background

Due to biological and climate constraints including seawater temperature require-
ments, Atlantic salmon is almost exclusively farmed in Norway, Chile, Scotland and
Canada, as illustrated by Figure 2.1. These countries jointly represent approximately
95 % of the world supply (Seafish, 2012). Norway is the largest producer in terms
of volume, supplying 56 % of the global demand for farmed salmon in 2013 (Kontali
Analyse, 2014).

The salmon industry is subject to government regulations, and licenses are needed
in order to be granted the right to produce salmonids. The acquisition of a license
often takes years, and in most countries, each license has an upper limit on allowable
biomass in production. The licenses also specifies which region the license is valid for.
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Chapter 2. Salmon aquaculture

Figure 2.1: Main salmon producing regions worldwide.

As regulations differ from country to country, the reader is referred to Section 2.3 for
more detailed descriptions of the regulatory environment of salmon farming.

Approximately 80 % of Atlantic salmon is marketed fresh. Either as fresh head-on
gutted salmon (HOG), steaks, fillets or other elaborated fresh products. A small, but
increasing percentage of the harvested salmon is processed into value-added products
(Marine Harvest, 2014b; Seafish, 2012; Brækkan, 2014). Value added products (VAP),
can be defined as all products that have been secondary processed (Marine Harvest,
2014b). Examples include, but are not limited to, fillets, steaks, smoked and cured
salmon and ready meals.

The largest global market for farmed Atlantic salmon is the EU, followed by the US
and Russia. The compounded annual growth rate (CAGR) for the EU has been ap-
proximately 9 % the last years. Large emerging markets such as Brazil and some
countries in Asia are also starting to embrace salmon, showing a CAGR of approxi-
mately 20 % (Brækkan, 2014). In the same time period, both salmon prices and price
volatility have increased (Øglend and Sikveland, 2008; Øglend, 2013).

Salmon experienced falling prices through most of the 1980s and 1990s caused by
steady improvements in productivity (Øglend, 2013). The real price in 2008 was less
than one-third of the price in the early 1980s. As a result, salmon has become a part
of everyday diets. This have fueled product development as lower prices have made a
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Year 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013E

Volume [MT] 1 205 1 251 1 272 1 396 1 495 1 474 1 456 1 633 1 996 2 040
Change 5% 4% 2% 10% 7% 1% -1% 12% 22% 2%

Table 2.1: Historical worldwide harvest volumes in metric tonnes of Altantic
salmon (Kontali Analyse, 2014).

new array of products affordable for consumers. There seems to be a trend towards an
increased number of value added products which increase the total demand for salmon
(Asche and Bjørndal, 2011, p87).

An overview of different weight conversion ratios for farmed salmon is given in Table
A.1 in Appendix A.

2.2 The Salmon farming value chain

The value chain can be roughly divided into six steps, as presented in Figure 2.2. Note
that not all fish go through step 5. The majority of harvested fish are marketed as
fresh HOG salmon, and are sent directly from the slaughter house to the market. The
total production cycle takes about three years to complete (Marine Harvest, 2014b).

Fertilization
Freshwater
growth 10-
18 months

Saltwater
growth 12-
24 months

Harvesting,
slaughtering
and primary
processing

Secondary
processing

Sales and
distribution

1 2 3 4

5

6

Figure 2.2: The salmon farming value chain.

2.2.1 Fresh water growth

The freshwater phase takes between 10-18 months, depending on growth, lighting
conditions and the weight of the fish when it is deployed in saltwater. Towards the
end of the fresh water phase, the fish goes through a physiological process called
smoltification which makes them capable of surviving in seawater. This process can
take place when the fish weigh from 40-120 grams (FAO, 2015), and the fish are
then called smolt. The producer have the possibility to speed up the growth by light
manipulation thus accelerating the smoltification process with up to 6 months. Light
manipulated smolt are said to be generation S0, while smolt grown through normal
conditions are called generation S1 smolt (FAO, 2015).
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When a fish reaches the smolt stage it must be deployed into salt water within a short
period of time, approximately two weeks, or it will de-smoltificate. This is undesired,
as the desmoltification process is tiresome for the fish, leading to slower growth and a
weakened immune system. Smolt transfer to seawater facilities is usually carried out
in large tanks aboard wellboats, trucks or helicopters (FAO, 2015).

2.2.2 Salt water growth

At the beginning of the salt water phase, smolt are deployed in large sea water cages
at the farming facilities. Each cage may contain from 30 000 fish and up to 200 000
fish (Cermaq, 2015). Seawater sites are chosen based on a number of different factors,
such as suitability with regard to water temperature, salinity, flow and exchange rates,
licensing regulations and proximity to other facilities (FAO, 2015). Two of the most
important criterions is that the waterflow is sufficient to eliminate waste and to supply
well oxygenated water, and that the site is sheltered to minimize escape during bad
weather (Marine Harvest, 2014b).

In Norway, smolt is mainly released into seawater twice a year, in autumn and in spring
(Marine Harvest, 2014b). It is normal that each cage only contains a single generation
of fish (FAO, 2015). Due to biological and climatic reasons, smolt should only be
transferred to sea during the warmer half of the year, namely March to October in
Norway and September to March in Chile (Asche and Bjørndal, 2011).

Growth in the salt water process is dependent upon many factors, such as weight of
the fish, light, feeding and sea water temperature (Asche and Bjørndal, 2011). Light
and feeding may be controlled by the producer. In contrast, the sea water temperature
can not be controlled. The growth rate increases with increasing temperature. The
optimal temperature range for salmon is between 8− 14 ◦C (Marine Harvest, 2014b).
At higher temperatures, growth rates decrease and the mortality rate increases, while
growth rates become very low at temperatures substantially below 3 ◦C (Brækkan,
2014). Mass mortality can occur at temperatures below 0 ◦C.

Production countries in the North experience a cyclic temperature, whereas Chile ex-
perience sea water temperatures consistently higher and more stable (Marine Harvest,
2014b). Note that Chile, due to being located on the southern hemisphere, experience
opposite seasons of Norway, Scotland and Canada.

Most of the growth occurs during the warmer half of the year, both due to higher
sea water temperatures and more daylight. This results in a S-shaped curved for
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2.2. The Salmon farming value chain

the biomass level in Europe having a S-curve, with a low point in May and a peak
in October, while Chile experience more steady biomass levels throughout the year.
Figure 2.3 show the Norwegian biomass development in 2013 and 2014. The availability
of different weight classes for the market also have a seasonal pattern. This is due
to the fact that salmon growth is not a linear function over time and that there is
conducted smolt release (Asche and Bjørndal, 2011). During the summer supply is
notably different than the rest of the year, as the producer go from harvesting fish
belonging to S0s to harvesting fish belonging to S1s, and the large fish, S0s, and the
small fish, S1s, dominate the supply (Marine Harvest, 2014b).
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Figure 2.3: Norwegian biomass development (Marius Gaard, 2015).

2.2.3 Harvest

Harvest is performed continuously throughout the year. This contributes to a stable
supply and predictable operations. Throughout the harvest, it is important to mini-
mize the stress inflicted on the fish, and thereby maximizing product quality (FAO,
2015). The harvest is done by using sweep nets for sorting the fish into separate weight
classes. This is necessary as fish of different weight classes are used for different pur-
poses, and as variations in fish sizes slows down the slaughtering process due a need
for constantly adjust the machinery.
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After the sorting, the fish are pumped from the pens into wellboats for transport to
the slaughtering facilities, which are boats with circulating seawater. Alternatively,
the fish may be slaughtered immediately on the boat and then put on ice.

Most farmed salmon become sexually mature when they reach a weight of about 5-7 kg.
As sexual maturity causes growth to stagnate, and the flesh of the fish to deteriorate
the fish become unsuitable for human consumption (Asche and Guttormsen, 2001).
Hence, sexual maturity puts a limit to how long a farmer can keep the fish in the pens.
However, the timing of the sexual maturity can be manipulated to some degree by use
of techniques such as artificial light (Hansen et al., 1992).

The economic optimal harvest weight is in the area of 4-5 kg (Marine Harvest, 2014b).
However, fish are commonly marketed in the range between 3.5 and 7 kg. The reason
for harvesting before the optimal harvest weight is reached might be poor growth
due to for example cold water or disease, or a need to harvest fish ahead of plan
to be able to fill contracts or take advantage of market opportunities. Reasons for
harvesting fish after target weight is met might be hold ups in the slaughterhouses due
to under capacity, need to balance harvest due to wellboat capacity considerations, or
temporary high salmon prices.

After a site is harvested, the location is fallowed for 2 to 6 months before the next
generation is deployed at the same location (Marine Harvest, 2014b). This is however
done in practice by moving the farm to other locations by using designated tow boats
(Evjemo, J.O., personal communication, 2015).

2.2.4 Slaughtering and primary processing

Slaughtering and primary processing are performed at the same facility. The fish
arrives in large wellboats and are gutted before the fish are graded and packed in
crates filled with ice (FAO, 2015; Cermaq, 2015). The fish are then ready for dispatch
to the customers as a product called fresh HOG salmon, an abbreviation for fresh,
head-on gutted superior salmon.

2.2.5 Secondary processing

Secondary processing includes all value adding beyond primary processing. Examples
include filleting, fillet trimming, portioning, smoking, and the production of ready
meals.
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Globally, HOG salmon constitutes for 75 % of the total value of consumed farmed
salmon (Statistisk Sentralbyr̊a (SSB), 2015b), which implies that most fish are packed
at the slaughterhouses and sold directly to the market. The remaining 25 % of the
farmed salmon are secondary processed. If the secondary processing consist of a rel-
atively simple process, such as filleting, both the primary and secondary processing
may be performed at the slaughter facility.

Secondary processing normally takes place at designated production facilities. Not
all processing facilities can produce all types of value added products. Note that
these facilities are more geographically dispersed than the fish farms and the slaughter
facilities.

Fillets are the largest category of value added salmon products in terms of volume.
Another important category of value added salmon products is smoked salmon (FAO,
2015). The market shares of different VAPs in the EU market are depicted in Figure
2.4. The figure shows that fillets have the largest market share of 47 %, followed by
smoked salmon at 28 %.

Fillet

Smoked

Other

HOG salmon

47%

28%

13%

12%

Figure 2.4: Product market share in the EU (Marine Harvest, 2014b).

2.2.6 Distribution

Smolt are distributed from fresh water facilities to salt water facilities, either by truck,
helicopter or wellboat (Seafish, 2012). From the fish farm, the fish is transported by a
wellboat to the slaughterhouse. From the slaughter house, the goods are transported
directly to the market or via a processing facility, either by truck, boat or air freight
(Cermaq, 2015). An illustration of the distribution network is given in Figure 2.5.

The products are transported in different states depending on durability of the product
and distance to be covered. Among the different transportation states, supercooled is
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Figure 2.5: Illustration of the flow of products through the value chain.

the most common. The product is then cooled to 0 ◦C, reaching a stage in between
fresh and frozen. Supercooling is good for increasing the durability of the fish, while
at the same time maintaining its quality. However, significant volumes are also trans-
ported in a frozen state due to long shipping distances in the global market (Einen
et al., 2002).

Mode of transportation depends on both type of end product and distance to the
markets. For fresh products, the risk of deterioration makes fast delivery imperative.
Fresh products are therefore exclusively transported by air freight in a supercooled
state over long distances. For shorter distances, it may also be possible to use trucks
or boats. As transportation by plane is relatively expensive, frozen products are more
often transported by trucks or ship.

2.3 Regulations

The industry is governed by numerous regulations setting the framework in which the
salmon producers find themselves. The focus in this section is to describe the regu-
lations most relevant to the problem studied in this thesis. Therefore, no exhaustive
presentation of restrictions applying to the salmon farmers will be given. In particular,
restrictions concerning feeding and slaughtering routines and control of fish welfare or
restrictions that apply to the processes upstream of the salt water farming are omitted.

10



2.3. Regulations

2.3.1 Norway

In Norway, the salmon farmers are subject to a relatively extensive set of regulations
aiming at ensuring an ethical and sustainable development in the industry. Legislation
is exercised by the Ministry of Fisheries and Coastal Affairs, the Directorate of Fish-
eries, and The Norwegian Food Safety Authority. The reader is referred to Akvakul-
turdriftsforskriften (2008) for a complete list of the Norwegian regulations concerning
operation of aquaculture facilities in Norway.

Licensing has been practiced in Norway since 1973, the legal framework of which is
described in Laksetildelingsforskriften (2004). A licence is valid within a specified
region, and the licence states an upper limit for the amount of biomass, e.g. the
maximum allowable biomass (MAB) of live fish. In most parts of Norway the biomass
limit per license is 780 metric tonnes, while in the northernmost parts the limit is 900
metric tonnes.

To prevent companies from having disproportionate amounts of market power, Norwe-
gian authorities have decided that no more than 25 % of the available licenses can be
owned by the same industry player. Additionally, if one company were to control more
than 15 % of the total allowable biomass in Norway, this would require a permission
from the Ministry of Fisheries and Coastal Affairs.

The Regulation of Abatement of Sea Lice in Aquaculture Facilities of 2009 specifies
that fallowing must be conducted simultaneously for all facilities within a set of lice
zones (Luseforskriften 2009). The purpose of this regulation is to reduce the occurrence
of sea lice by removing all potential hosts for the parasite.

2.3.2 Scotland

In Scotland, instead of a formal license, a permission from three institutions is required
prior to development of a fish farming site. The producer needs a planning permission
from the local regional council, a marine licence from Marine Scotland and a discharge
license from Scottish Environment Protection Agency (Marine Harvest, 2014b). Li-
cences can be traded and although there are no restriction on number of licences
per company, there is a limit on production quantity assigned by the Competition
Commission Authorities (Marine Harvest, 2014b).

Additionally, for each site there exists a MAB limit which is based on environmen-
tal concerns, meaning that the MAB limit for various sites is non-uniform, varying
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between 100 MT to 2,500 MT depending on site characteristics and its geographic
location (Marine Harvest, 2014b).

2.3.3 Canada

In Canada, both provincial and federal location specific licenses are required to operate
a fish farm site (Marine Harvest, 2014b). Additionally, salmon producers must receive
a License of Operation from the Federal Government. Here, the MAB limit and the
allowed environmental impact of the site are specified. A typical site license will range
in size from 2,000 MT to 5,000 MT of MAB (Marine Harvest, 2014b).

None of the licences can be traded between actors, but must be transferred to a
different operator through a Government Assignment Process. This may be a time
consuming procedure (Marine Harvest, 2014b).

2.3.4 Chile

The Chilean salmon farming industry is regulated by The Fishery and Aquaculture
Law (Alvial et al., 2012). Chile practice licensing based on two authorizations. The
first is an authorization to operate an aquaculture facility. These licences are valid for
an infinite amount of time, and players can trade and rent licences from each other
(Bjørndal, 2002; Marine Harvest, 2014b). The second authorization is for the physical
area, and is restricted both to a specified species and a specified limit of production
or stocking density (Marine Harvest, 2014b).

Except for the licensing practice, few regulations govern the salmon farming industry
in Chile compared to the other salmon producing countries (Bjørndal, 2002).

2.4 Revenues and costs

The revenue stream is generated mainly from sales through bilateral contracts, futures
contracts and sales on the spot market. Other operating revenues may be from sales
of eggs, fish feed and redistribution of smolt and rentals (Norwegian Directorate of
Fisheries, 2014a).

The Norwegian Directorate of Fisheries provide statistics regarding average costs of
producing salmon and rainbow trout. In other producing countries however, official
data is more scarce.
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Table 2.2 presents estimated Norwegian operating costs for 2013. As the table show,
feed is by far the most important cost component, representing 45.4 % of the total
production costs. Miscellaneous operating costs constitute for the second largest part
of the expenses.

Cost component NOK/kg Relative share
Smolt costs 2.19 8,64 %
Feeding cost 11.50 45,41 %
Insurance cost 0.11 0,44 %
Labour cost 1.80 7,10 %
Historic depreciation cost 1.23 4,87 %
Other operating cost 5.58 22,03 %
Net financial cost 0.28 1,10 %
Operational costs 22.69 89,58 %
Slaughtering costs (incl. transportation) 2.64 10,42 %
Total production costs 25.33 100%

Table 2.2: Estimated costs per kilogram fish (WFE) produced in Norway (Norwegian Di-
rectorate of Fisheries, 2014b).

Logistics costs come in addition to the costs listed. With a partial exception of Scot-
land, all producing countries are geared towards export markets. Transportation costs
will therefore have a major impact on a country’s competitiveness (Bjørndal, 2002).
There are also costs related to mortality and disease.

Naturally, costs of production vary depending on geographical location (FAO, 2015).
Bjørndal (2002) compares cost data for Norwegian and Chilean farms and concludes
that Chilean cost levels are similar to or lower than Norway. However, the cost compo-
sition is different; Chilean feed, labour and processing costs are lower, but transporta-
tion costs are higher. Furthermore, industry sources normally indicate that average
production costs in Scotland are 0.1–0.3 euro per kilogram higher than in Norway
(Bjørndal, 2002). Note however that labour cost is a minor part of the total cost as
much of the production is automatized.

2.5 Marine Harvest

Marine Harvest is the largest producer of farmed Atlantic salmon in the world, with
a global market share of approximately 25 % (Marine Harvest, 2011a). Worldwide,
Marine Harvest employ 11 715 people (FTE), and is represented in 23 countries while
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supplying more than 70 markets. In 2014 the company had a turnover of NOK 25.5
billion (Marine Harvest, 2014a), and the corporate headquarter is located in Bergen,
Norway.

In addition to Atlantic salmon, Marine Harvest also farm and cultivate other species.
However, Atlantic salmon is by far the most important species, accounting for 91.7 %
of the groups total revenues in 2014. Also, Marine Harvest almost exclusively produces
salmon of superios quality (91 %) (Marine Harvest, 2014a).

The company controls the whole supply chain, where operations span from fish feed
production through farming, processing, distribution, sales and marketing. Upstream
and downstream integration is used actively as a strategy to stabilize costs, control
product quality, improve efficiency and make the company less exposed to the eco-
nomical cycles of salmon prices (Marine Harvest, 2013).

2.5.1 Salmon farming

Marine Harvest operate salmon farms in Norway, Scotland, Ireland, Chile, Canada and
at the Faeroe Islands. The production sites along with the 2013 harvest volumes are
depicted in Figure 2.6. Figure 2.7 illustrates the harvest volumes of Marine Harvest in
reference to total supply of the respective countries. As seen, Norwegian production
dominate the company’s production, followed by Chile, Scotland and Canada. Pro-
duction in Ireland and the Faroe Islands is notably smaller, representing only 4 % of
Marine Harvest’s total production.

One of the reasons for this geographical diversification is to hedge against location
specific risk and thereby reduce total production costs. Historical numbers show that
this has led to a more stable EBIT over time (Marine Harvest, 2014b, p. 43). Another
factor influencing the choice of location strategy is that Marine Harvest is a global
company, with markets all over the world. By producing in different regions, they also
reduce transportation costs and have the opportunity to deliver fresh fish in a larger
share of the world.

A consequence of Norway being the largest producing country, Norway is divided
into four production regions; Region South, Region Mid, Region West and Region
North. Each of the other farming countries are treated as one producing region (Marine
Harvest, 2014b). Details of Marine Harvest’s production network is displayed in Table
2.3. Notice how the seawater facilities outnumber the processing facilities, with an
overall ratio of approximately 20:1.
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Figure 2.6: Map of Marine Harvest farming facilities with farmed volumes (Marine Harvest,
2014b).
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Marine Harvest production network in Norway
Sea water Processing

Region facilities facilities
Norway - South 27 1
Norway - West 29 1
Norway - Mid 35 1
Norway - North 34 1
Scotland 25 1
Ireland 10 1
Faroe Islands 4 0
Canada 37 2
Chile 53 4

Table 2.3: Marine Harvest’s fish farming network (Marine Har-
vest, 2013; Norge, 2015).

Marine Harvest also operates their own fish feed production facility, located in Norway.
Their feed production started in July 2014, and the company is planning to expand
their fish feed production capacity to deliver up to 80 % of the feed required from
their Norwegian farming operations in the near future (Marine Harvest, 2014b; Marine
Harvest, 2014a).

The costs of producing fish is a frequently used benchmark in determining the efficiency
of salmon farming. For Marine Harvest’s different producing countries these costs
are summarized in Table 2.4. The costs are given for one kilogram of HOG salmon
delivered in box at the processing plant, and they do not include costs such as freight
and marketing for sale. As the table illustrates, Norway is the country where feed has
the highest relative costs, which may explain their investments in a feed producing
facility. One would expect that the salaries in Norway would take a higher share, but
these costs depends on the level of automation in the farming process, whereas Norway
generally has a high degree of automation in their production (Marine Harvest, 2014b).

2.5.2 Secondary processing

Marine Harvest conduct secondary processing of seafood around the world. Their
global network of VAP facilities is illustrated in Figure 2.8. Most of their plants are
either defined as smokehouses, fresh pre-packed plants or frozen plants, although some
facilities serve as hybrid plants (Marine Harvest, 2014b).

As value added products are generally associated with more stable consumer prices,
Marine Harvest’s VAP department is primarily used as a strategic tool to reduce
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Production cost of HOG per country

Norway Canada Scotland Chile
NOK/kg % NOK/kg % NOK/kg % NOK/kg %

Feed 12.40 50.2 % 13.11 41.2 % 13.98 45.6 % 13.19 43.5 %
Primary 2.52 10.2 % 3.25 10.2 % 2.33 7.6 % 2.44 8.0 %
Smolt 2.31 9.4 % 3.02 9.5 % 2.89 9.4 % 3.09 10.2 %
Salary 1.51 6.1 % 3.02 9.5 % 1.68 5.5 % 1.07 3.5 %
Maintenance 0.82 3.3 % 1.33 4.2 % 0.75 2.4 % 1.31 4.3 %
Wellboat 1.02 4.1 % 1.16 3.6 % 2.05 6.7 % 1.72 5.7 %
Depreciation 0.77 3.1 % 1.22 3.8 % 1.03 3.3 % 0.89 2.9 %
Sales 0.56 2.3 % 0.00 0.0 % 0.00 0.0 % 0.00 0.0 %
Mortality 0.15 0.6 % 0.00 0.0 % 0.37 1.2 % 0.65 2.2 %
Other 2.64 10.7 % 5.74 18.0 % 5.59 18.2 % 5.94 19.6 %
Sum 24.70 100.0 % 31.84 100.0 % 30.66 100.0 % 30.29 100.0 %

Table 2.4: Cost of producing HOG salmon in different countries. Costs are given
as NOK/kg and as a percentage share of total production costs (Marine
Harvest, 2014b).

Figure 2.8: Map of Marine Harvest VAP facilities (Marine Harvest, 2014b).
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exposure to spot price movements and net earning volatility (Marine Harvest, 2014a).
In later years Marine Harvest have expressed a goal of moving in the direction of
increased focus on value added products, and the company is working on increasing
its capacity for producing more value added products (Marine Harvest, 2014a, p 38).

In terms of both volume and value, smoked salmon is the most important processed
product supplied by Marine Harvest. Their main markets for smoked salmon are
France, Italy, Germany and Belgium (Marine Harvest, 2014b). In accordance with the
strategy of increased VAP focus, Marine Harvest acquired Morpol between 2012 and
2013. Morpol is a world leading secondary processor of salmon with processing facili-
ties in Poland, United Kingdom and Vietnam. As a result of this acquisition Marine
Harvest became the largest producer of smoked salmon worldwide (Marine Harvest,
2013). Marine Harvest are also in the midst of restructuring their existing VAP facil-
ities. As a consequence of this strategy Marine Harvest reduced their European VAP
entities from 13 to 8 during 2014 (Marine Harvest, 2014a).

2.5.3 Sales and distribution

Marine Harvest divide it’s customers into retailers, industry and distributors and
food service companies. Food service represent customers that prepare and serve the
salmon, such as hotels, cafes and restaurants. The different producing regions tend
to differ in their emphasis on the different costumer groups. Figure A.1 in Appendix
A illustrate the relative share of income that these customer groups represent in each
of their largest producing countries. An additional diagram is included for the VAP
division as this division is treated separately within the organization. Due to the size
of the figure, it is placed in the appendix.

The figure show large differences in customer segment focus. Norway and Scotland
exhibit similar patterns, where the largest volumes are sold to the industry segment.
Retail represent a modest share, and the food service share is almost neglectable.

Both Marine Harvest Canada and Marince Harvest Chile sell most of their production
to other distributors, where Marine Harvest Chile has a production geared towards
value added products. Products that go through secondary processing internally are
mostly sold to retailers and the food service companies.

The sales policy of Marine Harvest is aimed at limiting the exposure to fluctuations in
the salmon price by using contracts. Thus, 20-50 % of their harvest volumes are nor-
mally bound to contracts (Marine Harvest, 2013). The majority of these are long term
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contracts, although futures contracts are used to a limited extent as a risk reduction
tool. The contracts shares are generally higher for value added products. Additionally,
the contract share also varies among the company’s production countries, as evident
from Figure 2.9. The variation in these numbers can be explained from the different
customer segments which the production countries serve.
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Figure 2.9: Marine Harvest’s contract shares by production
country (Marine Harvest, 2014a).

Figure 2.10 depict the geographic distribution of Marine Harvest’s revenues. The Eu-
ropean market clearly dominate, representing 70 % of total income. The second most
important market to Marine Harvest in terms of revenue is the Americas, representing
16 % of total revenues, followed by Asia (9 %) and Russia (3 %). The latter decreased
from 5 % in 2013 because of the imposed trade ban (Marine Harvest, 2014a).
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Figure 2.10: Marine Harvest’s sales revenue distribution by geography
2014 (Marine Harvest, 2014a).

Marine Harvest’s revenues by product mix are displayed in Figure 2.11. HOG salmon
is clearly the most important product in terms of revenue representing 48 % of total
income, while 22 % of total revenue is sold as fresh, elaborated products, which implies
that fresh products represent 70 % of the total income.
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Figure 2.11: Marine Harvest’s revenue distribution by product
group 2013 (Marine Harvest, 2013).
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The global salmon market

As Norway and Chile export salmon to almost 150 countries, salmon is considered
global product (Asche and Bjørndal, 2011, p. 83). However, the supply and demand
patterns varies substantially across different producing countries, both in terms of
volume and product mix. As is common for perishable commodities, the salmon prices
are volatile. Furthermore, the market experience inefficiencies because the industry is
not yet considered mature.

In this chapter, both the supply and the demand side of the salmon market are explored
in further detail. Section 3.1 gives a market overview, while Section 3.2 and Section 3.3
presents the supply and demand side of the market respectively. Next, the salmon price
behavior is discussed in detail in Section 3.4, whereas relevant sales mechanisms are
explained in Section 3.5. For a more thorough introduction to salmon price behaviour,
the reader is referred to Øglend and Sikveland (2008) or Asche and Bjørndal (2011).

3.1 Overview of the global market for farmed salmon

Norway, Chile, UK and Canada dominate the supply of the industry, representing
more than 90 % of the total global supply of farmed salmon. The main markets for
farmed salmon have traditionally been the EU, the U.S. and Japan. The production
volumes of each of these countries and their relative share of the world supply are given
in Table 3.1. The table shows that Norway is the dominating actor with a supply share
of approximately 56 %.

The size of domestic production and domestic consumption of a selected number of
regions globally are illustrated in Figure 3.1, where the arrows indicate patterns that
dominate the global trade of salmon. Note that the need for air freight to some markets
give substantially different market prices (Marine Harvest, 2014b).
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Country Harvest quantity Share of world supply
Norway 1 143 700 MT 56.06 %
Chile 468 200 MT 22.95 %
UK 157 800 MT 7.73 %
Canada 115 100 MT 5.64 %
Faeroe Islands 72 600 MT 3.56 %
USA 20 300 MT 0.99 %
Ireland 10 900 MT 0.53 %
Others 51 700 MT 2.53 %
Total 2 040 300 MT 100.00 %

Table 3.1: Harvest quantities of global farmed Atlantic Salmon 2013 (Kontali Analyse,
2014).

Figure 3.1: Global trade of farmed salmon (Marine Harvest, 2014b).
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A complicating feature of the salmon market is that the salmon producers operate
under different trade agreements. Canada and the USA belong to The North Ameri-
can Free Trade Agreement (NAFTA), Scotland and Ireland belong to the EU, while
Norway has a trade agreement with the EU. This has led to numerous trade conflicts
and periods where some producers have experienced regulated market access (Asche
and Bjørndal, 2011, p136).

An example is the Norwegian production in 1991 where Norwegian salmon farmers
were accused of dumping salmon prices in the US market while receiving government
subsidies. This resulted in an average tariff of 26 % being levied on all Norwegian
salmon entering the US market. Consequently, Norwegian producers were effectively
barred from this market and their market share were partly overtaken by Chilean
producers. It falls outside the scope of this thesis to go into depth in describing and
analyzing trade conflicts and economical politics in the salmon farming industry. How-
ever, the reader should be aware that such trade conflicts and free trade agreements
do exist and thereby affect world trade patterns.

3.2 Salmon supply

Each of the main producing countries have characteristics in terms of export volumes,
major markets and product mix patterns.

3.2.1 Norwegian production

As described in Section 2.1, Norway is the world’s largest salmon producer in terms
of volume. Availability of suitable farming sites, relatively stable seawater tempera-
tures, heavy government investments and good infrastructure are all factors that have
contributed to Norway’s leading position despite high operating costs.

The EU is by far the most important market for Norwegian salmon representing ap-
proximately 66 % of the total Norwegian exports in 2013 (Kontali Analyse, 2014).
Within the EU, France is the main market for Norwegian salmon, representing about
16 % of the total Norwegian export value, followed by Poland and Denmark with
about 10 % and 8 % respectively (Asche and Bjørndal, 2011). In France, the imported
salmon is used both for domestic consumption and as input in secondary processing,
whereas Poland and Denmark are markets with limited consumption, and the majority
of the imported volume are re-exported to other EU countries (Asche and Bjørndal,
2011).
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Russia has over the past few years grown to become the second most important market
for Norwegian salmon, receiving about 8 % of the exports in 2008 (Asche and Bjørndal,
2011). However, after the introduction of the import embargo in August 2014, direct
Norwegian exports to Russia have depleted.

Fresh HOG

Frozen HOG

Fresh fillet

Frozen fillet

Smoked
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9.7%

5.2%
0.6%

Figure 3.2: Product shares in Norwegian export in 2013 (Kontali Anal-
yse, 2014).

Figure 3.2 presents the product mix of Norwegian exports. Fresh HOG is by far
the most important salmon export article for Norway, representing about 81 % of the
total export volume in 2013. As evident from the figure, secondary processed products
represent only a small fraction of the total export value. Two of the main reasons for
this product mix are considerably higher tariffs on processed products as compared to
unprocessed products and high Norwegian labour costs (Asche and Bjørndal, 2011).

3.2.2 Chilean production

The Chilean salmon industry is concentrated around Puerto Montt and Chiloé Island,
but some production also take place further south. Chile is the single large salmon
producing country where salmon is not a native specie. Nevertheless, several biological
and climatic factors contribute to making Chile well suited for salmon farming with
stable sea water temperatures. The Chilean government has also actively promoted
the development of salmon aquaculture, resulting in more liberal regulations than in
other salmon producing countries (Asche and Bjørndal, 2011).

Chilean export volumes for 2013 are presented by product group in Figure 3.3. Com-
pared to Norway, the share of value added products is substantially higher in Chile
with about 66 % of total exports. This corresponds to the global trend, where value
added products have become increasingly important during the last few years, espe-
cially in the US and the EU (Asche and Bjørndal, 2011).

Due to low domestic consumption approximately 90 % of the Chilean salmon produc-
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Figure 3.3: Product shares in Chilean export in 2013 (Kontali Analyse,
2014).

tion is exported to the US. Other markets such as South-America and Asia have in
later years also emerged as significant (Bjørndal, 2002). As long distances require that
fresh products are transported by air, the Chilean farming industry face challenges in
terms of costs.

Furthermore, the Chilean salmon farming industry is still in the process of recovering
from a serious outbreak of Infectious Salmon Anemia (ISA) in 2007. This disease
outbreak resulted in a significant decline in the production of Atlantic salmon in 2009
and 2010 (Alvial et al., 2012).

3.2.3 Scottish production
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Frozen HOG

Fresh fillet

Frozen fillet
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1.4% 9.0%

Figure 3.4: Product shares in Scottish export in 2013 (Kontali Analyse,
2014).

Scotland have in contrast to other producing countries a large domestic market re-
sulting in exports less than 50 % of the total production. As evident in Figure 3.4
the export is dominated by fresh HOG salmon. The main export market for Scottish
salmon producers is continental Europe, followed by the US. It has proved difficult for
Scottish farmers to compete with Norwegian farmers on price. Consequently, the Scot-
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tish farmers have focused on differentiation with production of higher quality salmon
(Asche and Bjørndal, 2011).

3.2.4 Canadian production
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Figure 3.5: Product shares in Canadian export in 2013 (Kontali Analyse,
2014).

Salmon farming in Canada started in British Columbia and was later developed in
eastern Canada. Today 65 % of Canadian production is located in British Columbia,
while the remaining 35 % is produced in New Brunswick. The US is the main market
for Canadian salmon, followed by the domestic market. Canadian exports per product
group in 2014 is presented in Figure 3.5. As evident by the figure, fresh HOG salmon
dominates the Canadian exports (Kontali Analyse, 2014).

3.3 Main markets for farmed salmon

An integrated market implies that changes in price in one market will affect the prices
in other major markets. Price differences for markets in geographical proximity are
corrected relatively quickly, whereas differences between continents takes longer time
to disappear. In particular, the link between the North American and European
markets is weak because of different main suppliers (Asche and Bjørndal, 2011).

The salmon markets differ by seasonal demand patterns due to different cultures, hol-
iday traditions and culinary preferences, along with differences in price sensitivity and
preferences regarding product mix. These relationships are important to understand,
as they affect the global trade patterns.

Historically the EU, the US and Japan have been the main importers of salmon (Asche,
1997). In later years, Japanese imports have stagnated, whereas Russia have become a
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Figure 3.6: Main salmon importers by volume (Kontali Analyse, 2014).

new important market. This is illustrated in Figure 3.6 where yearly import volumes
in 2014 are depicted. There is also significant development in several emerging markets
such as Brazil, Russia, eastern Europe and Southeast Asia where salmon consumption
has increased significantly since 2000 (Asche and Bjørndal, 2011).

The EU

The EU is the largest market for farmed salmon, where the largest importers within
the EU are France, Germany and the UK. Other significant markets are Spain, Italy,
Denmark and Poland (Asche and Bjørndal, 2011). The EU is not a homogeneous mar-
ket as the individual countries differ in consumption patterns and preferences. Most of
the volumes imported to the EU originate from Norway. However, a substantial share
of the salmon originating in Norway is shipped via a third country, such as Denmark
or Poland due to processing.

The processing industry is large within the EU. Consequently, several countries are
both large importers and exporters with a limited domestic demand. Nine out of
the ten main importers of smoked salmon are European countries, with the exception
being USA (Tradedata.net, 2013). Poland is the world’s leading exporter of smoked
salmon, and exported close to 40 000 MT in 2013 (Tradedata.net, 2013).

The United States

The US is the third largest salmon market globally, and their consumption is increas-
ing. Although the US is the world’s largest producer of wild salmon, the domestic
market is increasingly dominated by imported farmed salmon, with Chile and Canada
as the main suppliers (Asche and Bjørndal, 2011). The import of fillets compared to
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other products has increased rapidly in later years, reaching 57 % of the total im-
ported volume in 2008 (Asche and Bjørndal, 2011). Interestingly, there is a distinct
pattern that most of the imported fish originate from Canada, whereas the value added
products mostly originate from Chile.

Russia

Russia have emerged as an important market for farmed salmon during recent years,
experiencing major growth in the years after 2000. Based on numbers from 2008, 72 %
of imports are fresh salmon, whereas 28 % are frozen products (Asche and Bjørndal,
2011). The share of fresh products have historically been even higher, but for the last
few years, imports of frozen fillets have started to reach significant volumes.

Japan

Japan has historically been an important market for salmon. The country has the
worlds largest per capita salmon consumption, and as domestic production is low,
Japan has become the single largest fish importer in the world (Asche and Bjørndal,
2011). However, both imports and consumption have been stagnant in recent years.

The Japanese market is the most diversified salmon market in the world, with wild
and farmed species competing in the same market. Findings in Asche, Guttormsen,
Sebulonsen, et al. (2005) suggest that the different salmon species are close substitutes
in the market. Consequently, the demand for Atlantic salmon can be affected by
changes in supply of those substitutes. Historically, Japanese salmon consumption
has been subject to strong seasonal patterns, partly because salmon is consumed in
the celebration of different holidays and major social events.

In contrast to the EU and US markets, Japan has neither trade conflicts nor trade
restrictions (Asche, Guttormsen, Sebulonsen, et al., 2005). Moreover, Japan is the
only one of the major markets market in which fish from all the producing regions are
present. In contrast to the US and most countries in Europe, Japan may be considered
a mature market for salmon (Asche and Bjørndal, 2011).

An interesting feature of the Japanese market is that customers here are often willing
to pay an extra large premium for larger fish, as a significant part of imported salmon
is consumed as sashimi, and thus the structure and looks of the flesh is very important
(Thorbeck, S., personal communication, 2015).
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3.4 Salmon Prices

Through the 1980s and 1990s, the salmon prices experienced an steady decrease, before
the salmon prices seem to have leveled out for the last fifteen years. This suggest that
demand and production have reached equilibrium (Øglend, 2013).

Today’s salmon farming industry is characterized by high price volatility (Øglend and
Sikveland, 2008). This poses an important challenge for all actors involved in salmon
production as it is impossible to predict future price development perfectly. However,
having a thorough understanding of the underlying forces for the salmon price is vital
for calculating good price forecasts.

3.4.1 Reference prices and price indexes

Reported HOG prices are normally reported in terms of specific reference prices. The
three reference prices most widely used worldwide are: (1) the NOS/FHL FCA Oslo
price, (2) the Urner Barry FOB Seattle price, (3) and the Urner Barry FCA Miami
price. These prices are based on prices for superior quality fish, and are not reflecting
freight. Furthermore, each reference price refers to one specific product. The FCA
Oslo price refers to the price per kilogram HOG salmon between 4-5 kg packed fresh
in a standard box and delivered in Oslo. The FCA Oslo price represents about two
thirds of the global quantities for Atlantic salmon (Marine Harvest, 2014b; Urner
Barry, 2012), and is thus the single most important reference price used.

Furthermore, NASDAQ (2015a) have their own reference price published for weekly
spot prices for different sized HOG salmon. This index is calculated based on reports
of achieved prices and volumes made by a representative panel of Norwegian salmon
exporters and producers (NASDAQ, 2015a).

Fish Pool ASA (2015) also have a price index calculated on a monthly basis. This
price is merely mentioned because the synthetic Fish Pool Index (FPI) is often used
in financial settlement of all financial forward Fish Pool contracts.

As the different reference prices are calculated in different ways, they must be used
with care. E.g. if the NASDAQ price should be comparable to an achieved selling
price FOB from Oslo it must be adjusted by subtracting general sales and admission
expenses and freight to Oslo and terminal cost (Marine Harvest, 2014b).

29



Chapter 3. The global salmon market

3.4.2 Salmon price volatility

As discussed later in Section 4.3, salmon prices are one of the most important sources
of risk faced by a salmon producer, as salmon prices exhibit large week-to-week fluctu-
ations. As a result, the industry has historically experienced substantial variations in
margins, with periods of low salmon prices leading to frequent bankruptcies (Bergfjord,
2009). This is evident when examining historical data on yearly average operating mar-
gins in Norway, as depicted in Figure 3.7. The cycles in profitability also create trade
tensions, as most of the salmon is produced in a different country from where it is
consumed (Asche and Bjørndal, 2011).

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
−10 %
−5 %

0 %
5 %

10 %
15 %
20 %
25 %
30 %
35 %

0 %

Year

Av
er

ag
e

op
er

at
in

g
m

ar
gi

ns
(%

)

Figure 3.7: Average Norwegian operating margins 1986-2013 (Norwegian Directorate of
Fisheries, 2014b).

There are several drivers of price volatility in the salmon farming industry, the most
important of which being the short term in-elasticity of supply, market imperfections
and the availability of substitutes.

Short term supply in-elasticity

Supply is governed by biomass development which varies with several uncertain fac-
tors, including sea water temperature and disease, as discussed in Section 2.2. As
salmon reach sexual maturity around the same time they reach harvest-ready sizes,
the producer has limited flexibility in the timing of the harvest. As such, short term
supply of fresh salmon is both inelastic and uncertain, i.e. the salmon quantity sup-
plied is to a very small degree affected by a change in the price of salmon (Andersen
et al., 2008). This lack of supply price elasticity explains the periods consisting of
both observed over and under-supply.
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Market imperfections

Because of immature market places for salmon products as well as potentially high
transportation cost between different markets for fresh products, the market prices are
not perfectly correlated. As salmon is largely sold on a bilateral basis either through
long term contracts or spot transactions, the price for each trade is not based on an
index, but agreed upon through negotiations (Thorbeck, S., Helgesen, M., personal
communication, 2015). The transaction costs from trading in one market and selling it
in another may also contribute to imperfect market prices, as the difference in achieved
prices in different markets are observed to be substantial when analyzing historic
market prices (Norwegian Seafood Council, 2015). Fluctuations in exchange rates and
regional differences in taxes, tariffs and transportation costs further complicate the
matter.

Effect of substitute availability

Market integration studies indicate that farmed salmon competes closely with wild
salmon (Asche and Bjørndal, 2011). Although many customers prefer farmed Atlantic
salmon because of quality considerations and the stable supply, other customers such
as the European low price retail chains Lidl and Aldo are somewhat flexible in terms
of salmon species (Thorbeck, S., personal communication, 2015). Consequently, the
prices for farmed Atlantic salmon is also affected by the supply of other salmonoids.

Other drivers of price volatility

For seasonally produced commodities, there is normally a greater price volatility in
the period prior to the production or harvest period and in periods of high prices
(Peterson and Tomek, 2005; Øglend, 2013). This assumption is also valid for salmon
prices. In periods where demand exceeds supply, prices are allowed to persist above
the long term price equilibrium. Emptying of inventories may also lead to producers
being unable to fulfill the excess demand, causing price spikes and thus larger than
average volatility (Øglend and Sikveland, 2008). Additionally, since salmon growth is
highest in the summer and early autumn, the price volatility is also highest in this
part of the year (Øglend, 2013).

3.4.3 Prices in different markets

There are shown to exist systematic differences in price levels between countries
(Larsen and Asche, 2011). These differences can be caused by currency fluctuations
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and differences in transportation costs and taxes from the major supplier regions to
the different markets.

As an example, there are generally higher prices in Japan than in the EU due to higher
transportation costs, as illustrated by Figure 3.8. The high price correlations can be
explained by the fact that efficient currency markets cause producers to be indifferent
as to where they sell their products as long as the prices are equal after a conversion
to a common currency (Asche and Bjørndal, 2011).
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Figure 3.8: Monthly Norwegian export prices of HOG salmon to the EU and Japan
(Norwegian Seafood council, 2014).

The small market differences observed in Figure 3.8, is caused by the producers’ in-
ability to react instantly to changes, and by variations in the quality compositions in
the two markets (Asche and Bjørndal, 2011).

3.4.4 Price of different products

According to Asche and Bjørndal (2011), salmon is not a homogeneous product. Con-
sumers are willing to pay a premium for quality attributes such as geographic origin,
colour and size, where the most important factor is the latter.

The price of fresh HOG salmon

As discussed in Section 2.2, fish of different sizes are regarded as different products by
the customers and thereby obtain different prices. The prices of fish in different weight
classes are in general highly correlated, although Asche, Guttormsen, and Tveter̊as
(2001) and Øglend (2010) conclude that the correlation decrease with increasing weight
difference. This relationship is illustrated by Figure 3.9. As the figure indicates, there
exist a premium on large fish relative to the price of smaller fish. However, seasonal
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shortage in supply of small fish compared to large fish may give an opposite effect for
short time periods. An interesting feature is that there seems to be a relatively stable
pattern in the relative price development of different sized fish.
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Figure 3.9: Prices for different weight classes relative to HOG salmon 4-5
kg, 2008-2014 (NASDAQ, 2014).

Asche and Guttormsen (2001) conclude that the main reason for these patterns is
the biology of the salmon. As growth is uneven over the year and most salmon are
deployed in salt water in spring or autumn, salmon will tend to grow in cohorts. This
relationship causes the price of small fish to be relatively higher in the winter than in
the summer months. Furthermore, to avoid large salmon becoming sexually mature
during autumn, most of the larger fish are sold during summer. This behaviour result
in a limited supply of large fish in autumn, driving the relative price of large fish up
(Asche and Guttormsen, 2001).

The price of frozen HOG salmon

As evident from Figure 3.10, the fresh and frozen HOG salmon has a similar historic
price development, but the price of frozen HOG salmon is less volatile. Furthermore,
as frozen product sales are normally bound by long term contracts, it takes time
to adjust for market volatility in price. This in turn gives a price lag compared to
fluctuations in the fresh HOG salmon price (Marine Harvest, 2011b). According to
Øglend (2010), freezing the fish will in general decrease its market value, as a premium
exists on the willingness to pay for fresh fish, whereas the demand elasticity is higher
for fresh products than for other product groups.

One main advantage of freezing the fish is the longer durability and the flexibility this
may give the salmon producer. Øglend (2010) found that where price shocks for frozen
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Figure 3.10: Weekly average Norwegian export prices for fresh and frozen salmon (Statistisk
Sentralbyr̊a (SSB), 2015a).

products severely affected the price volatility of fresh product, the opposite had no
significant effects on the frozen product price volatility. This supports the hypothesis
that storage can be a buffer to price shocks.

The price of value added products

By producing value added products, the relative costs for the raw material decrease
compared to total production costs. The relation between HOG salmon and the value
added product thereby become weaker (Asche and Bjørndal, 2011). Still, the prices of
fresh HOG salmon and value added products are linked. As most of the VAP types are
more durable than fresh HOGs salmon, processing can be seen as a way of storing it.
This offers flexibility for the producer and the opportunity to control market supply
more independently of the salmon growth cycle. Stocks of the different product groups
are also highly correlated, meaning that arbitrage opportunities potentially exist across
different products for the producers (Øglend, 2010).

Even though value added products are sold at a premium to cover processing costs,
the operating margins are often lower than on fresh fish. According to Marine Harvest
(2013), the prices on value added products tends to be less volatile. This holds for
most value added products except for smoked salmon, see Figure 3.11. As such,
the production of valued added products may be attractive for risk averse salmon
producers.
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Figure 3.11: Monthly average Norwegian export price smoked salmon (Statistisk Sentral-
byr̊a (SSB), 2014).

3.5 Sales mechanisms

Salmon products are sold both through the spot price contracts, futures contracts and
long term contract. NASDAQ (2014) define spot contracts as contracts where prices
and volumes are agreed between buyer and seller either in the week prior to invoicing
or in the week of invoicing. In a futures contract, price is specified in advance, whereas
in long term contracts, different pricing regimes exist. Note that as futures is a purely
financial instrument primarily used for industry actors as an aid to reduce risk (Fish
Pool ASA, 2015), this subject fall outside the scope of this thesis and are thus omitted
from further discussions.

3.5.1 Spot price contracts

Spot transactions are conducted through negotiations or auctions (Aandahl, P.T.,
personal communication, 2015). Either the seller or the buyer contact a potential
business partner to initiate a deal. As such, the spot market for salmon consists of a
set of bilateral contracts with one delivery, and differs from other commodity markets,
such as the markets for oil, electricity and steel. According to (Helgesen, M., personal
communication, 2015), the spot price is only vaguely used in negotiations because of
the structure of the market place and the low price resolution (Helgesen, M., personal
communication, 2015).

Spot contracts are normally used for fresh HOG salmon and to some extent for other
fresh products, such as fresh fillets. According to Helgesen (personal communication,
2015), spot contracts on fresh value added products often have a duration longer than
the ones used for fresh HOG salmon to allow time for processing.

Salmon producers such as Marine Harvest also purchase HOG salmon in the spot
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market to fulfill contract obligations or to be purchased as input to the production
of value added products (Marine Harvest Canada, 2008)(Johannesen, T., personal
communication, 2015). According to Johannesen (personal communication, 2015),
only fresh HOG salmon is purchased by Marine Harvest in the spot market.

3.5.2 Long-term contracts

The time horizon of the long-term contracts used in the salmon farming industry
is typically 3-12 months (Marine Harvest, 2014b; Guillotreau and Jiménez-Toribio,
2011). According to Larsen and Asche (2011), the expected revenues from using fixed
price contracts are neither higher nor lower than the revenues generated through spot
sales. Larsen and Asche (2011) argue that the use of fixed price contracts primarily
change the profile of the revenue flows, and not the long term total revenues.

Contracts are mainly used to reduce risk and transaction costs (Brækkan, 2014). Using
contracts, the producer is guaranteed a minimum order, and the buyer is guaranteed
a minimum supply. Moreover, the use of contracts may reduce price volatility. The
reduced uncertainty in demand and thereby quantity flow for the producer allows for
better production planning and capacity utilization. Furthermore, the costs related
to negotiation and administration, as well as costs of following up the customer ahead
of, during and after delivery, can be reduced when using contracts.

The industry operates with a large number of different contract designs, with varia-
tions in both price and contracted volume. However, little is known about the use of
contracts and the detailed contract designs as this it is considered to be sensitive in-
formation (Larsen and Asche, 2011). As such, empirical knowledge about the contract
schemes used by the industry is limited.

Each contract can contain one or multiple deliveries, and the volume to be delivered
each time can be fixed or flexible. Price can be incorporated through a number of
different arrangement, where the price schemes included in this thesis are fixed price
contracts, adjustable price contracts and partially adjustable price contracts.

One way to determine price in a contract is simply to set a price that will remain fixed
throughout the contract period. Results based on a study conducted in 2006 indicate
that about 25 % of the contracts in use where such fixed price contracts (Larsen and
Asche, 2011).

Another commonly used practice is to specify a contract price which is later adjusted
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according to a predefined agreement. This specific contract states an interval within
the contract price is fixed, with the possibility for adjustment if the spot price is above
or below the predefined interval. One can either agree on a full refund of the difference
outside of this interval, or a relative share of the difference paid to the losing party.
Such contracts are in this thesis referred to as partially adjustable contracts.

Of the different contract designs, fixed price contracts give more control over future
revenue, thereby giving the producer better income predictability. Adjustable price
contracts on the other hand, are more exposed against the spot market, but assures
volume predictability. The last contract type, the partially adjustable contracts will
give a trade off between the income and volume predictability.
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Chapter 4

Problem description
The problem studied in this thesis is a portfolio optimization problem within the
salmon industry. It considers the value chain for a global salmon producer with a high
degree of vertical integration selling it’s products all across the world.

Operations research papers have previously been written on behalf of the salmon farm-
ing value chain. However, to the authors’ knowledge no work have yet been published
on global portfolio optimization within the salmon industry while considering the com-
plete value chain downstream of salt water growth. As the industry is still considered
immature, there is most likely a significant potential in more optimal planning. Con-
sequently, a need for solving the portfolio optimization problem in the salmon farming
industry has been identified.

In this chapter, the problem scope is defined in Section 4.1. Thereafter, main decisions
included in the problem are discussed in Section 4.2. Finally, Section 4.3 present the
main sources of uncertainty and risk faced by a salmon producer.

4.1 Problem scope

The objective of this thesis is to develop a decision support tool in form of an opti-
mization model to be used in management of the salmon farming value chain as an
integrated unit. The optimal decisions must honor contract obligations and respect
government regulations, where the goal is to maximise the profits throughout the
planning horizon.

Coordination of the supply chain is essential because demands in different regions are
not perfectly correlated. Safety inventories, buffer resources and raw material can be
utilized from a global perspective rather than with focus on local capacities and local
demand (Tomasgard and Høeg, 2005), resulting in improved overall performance.
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To help manage the problem, a decision support tool is developed. The output of
this tool is intended for management staff that are in charge of company-wide plans
developed to streamline value chain operations, and should be used to develop plans
and guidelines centrally. These plans should then be distributed downwards in the
company hierarchy, where they will act as a framework for the more detailed oper-
ational plans developed by the local managers. The goal is to make robust, flexible
decisions limiting the effects of any bottlenecks, while at the same time exploiting
market opportunities.

The problem scope is to calculate the optimal harvest, production and inventory levels.
Furthermore, decisions regarding material-flow between the different stages of the value
chain, and sales allocation strategies, i.e. decisions regarding the spot market exposure
and which contracts to enter, are included. According to Schmidt and Wilhelm (2000),
the tactical decisions in a multi-national logistics network include production levels
at all plants, assembly policy, inventory levels and dealing with material-flow between
all stages in the value chain, from suppliers to customers. Given this definition, the
problem studied in this thesis can thus be defined as a tactical problem.

Fresh water
production Farm Slaughter-

house

Processing
plant

Market

HOG
(spot purchase, purchased

in a different market
to fulfill contracts)

Live fish in
well boat

HOG
VAP

HOG
(spot purchase)

Figure 4.1: Illustration of the problem scope.

The focus of this thesis is the supply chain activities downstream of the salt water
growth phase, i.e. harvesting, slaughtering, processing, sales and distribution. In Fig-
ure 4.1, the parts of the value chain included in this problem are highlighted by a red
rectangle. As such, the freshwater production phase where salmon eggs are developed
into smolt will not be addressed. Furthermore, decisions regarding smolt production
and deployment fall outside the scope of this thesis. As discussed in Section 2.2, the
production cycle of smolt has a lead time of approximately a year (Marine Harvest,
2014b). This implies that including decisions regarding smolt ordering aspires for a
planning horizon longer than what is typically used in tactical problems. Moreover,
smolt release is already described in existing literature, see Rynning-Tønnesen and
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Øveraas (2012) and Frøystein and Kure (2013). To the authors’ knowledge, these
models can be used independently to create input to the decision support model de-
veloped with little loss in value.

Because the salmon farmer operate under uncertain conditions, it is important that
both this uncertainty and the dynamics of the decision processes are captured in the
planning process. As new information is revealed regarding uncertain parameters, the
decision maker will adjust his decisions to adapt to the changing environment. To
facilitate the development of robust, flexible solutions and thereby reducing the risk
faced by the salmon producer this thesis takes a stochastic approach to uncertainty.
Although many aspects in the value chain are stochastic in nature, this thesis only
considers uncertainty in price and biomass development as depicted in Figure 4.2.

Farm Slaughter-
house

Processing
plant

Market

Growth
Mortality
Escape

Spot sales prices
Spot purchase prices
Conditions in offered

contracts

Figure 4.2: Illustration of the main sources of uncertainty in the value chain.

4.2 Decisions

In this thesis, decisions are categorized in two ways. Harvesting, production and
transportation decisions, as well as how much to sell and buy in the spot market, are
performed with a relatively high frequency and are therefore referred to as operational
decisions. Decisions regarding which long term contracts to enter are performed less
frequent. Contract decisions are therefore referred to as tactical decisions.

4.2.1 Harvesting and slaughtering

Understanding the drivers of biomass development can potentially have large implica-
tions on profitability. Having more biomass than foreseen due to higher than expected
growth might necessitate unplanned harvest to satisfy maxium allowable biomass
(MAB) restrictions, or to avoid fish reaching sexual maturity. Such unplanned harvest
might result in a need to hire extra well boat capacity and make staff work overtime,
which can prove to be costly. Additionally, unplanned harvest increase exposure to
price risk, as the salmon must be marketed within a limited time window.
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Moreover, higher growth than expected might lead to salmon reaching delivery weight
sooner than planned. This can necessitate contract re-negotiations or the need to
purchase products on the spot market in order to fulfill contracts obligations. Both
outcomes can be costly as re-negotiation might result in a discount, and that buying
products for fulfilling contract obligations may increase purchase costs.

Having a lower biomass than expected, either due to slower growth, escapes or disease,
might have a similar outcome in terms of contract re-negotiations and the need to
purchase products in the spot market. In addition, low biomass levels can lead to
uneven production levels in slaughterhouses and processing facilities. Consequently,
good biomass forecasting procedures are key to maintaining high profitability.

The harvest decision include both what number of fish to harvest from each fish farm,
and what size distribution these fish should have. When making these decisions, both
forecasted future biomass, wellboat capacities and slaughtering capacities must be
taken into consideration.

As the economic optimal harvest weight is in the range of 4-5 kg (Marine Harvest,
2014b), most fish should be harvested in this weight interval. Yet, there are reasons
for deviating from this target. Number of fish and the size harvested might be af-
fected by events outside of the salmon producer’s control, such as poor growth due
to unfavorable weather conditions or diseases, premature sexual maturation, or hold
ups in the value chain. Regulations must be honored, which can cause slaughter prior
to reaching target weight to not surpass the MAB level and maximum allowed lice
levels. Furthermore, there are incentives to have a steady slaughtering of fish in order
to keep operational costs down by fully utilize the available capacity (Johannesen,
P.T., personal communication, 2015), or to spread risk (Asche and Bjørndal, 2011).
Additionally, there are large seasonal variations in demand, meaning that fish outside
target weight might be harvested and slaughtered in order to fulfill peak demand.

As the price of salmon is highly volatile, these decisions are consequently made under
a high degree of uncertainty. Although the time window for when a fish should be
harvested is short, there is some flexibility in timing the harvest. In the vent of low
prices, the producer might hold the salmon a short while and wait for price to change
or sell it immediately (Øglend and Sikveland, 2008), giving the harvest decision a
speculative dimension. This follows by continuation of cultivation being one of the only
possibilities for storing goods with limited durability, such as fresh salmon (Øglend
and Sikveland, 2008). However, delaying harvest comes at a price. The producer have
to pay to keep the fish in the pen, a cost consisting both of extra feed expenses, and
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the alternative cost of having the fish fill up the pen instead of deploying new smolt.

4.2.2 Production and inventory planning

Once harvested and slaughtered, the salmon producer must decide how to utilize the
slaughtered fish. Fish could either be sold as fresh or frozen HOG salmon, or be
processed further into value added products (VAP). As much of the processing is
performed at separate facilities, the volume sent to processing and the volume sent
directly to the market must be decided upon, meaning that the production decision
and the logistical decisions are intertwined.

As discussed, there are limited options in the timing of harvest. When prices are low,
another alternative is then to harvest and slaughter the fish, and then freezing it in
hopes of better prices in the future. As the stock of frozen fish is less dependent on
immediate effects of changes in the live stock, there is improved storage flexibility in
keeping stocks of frozen fish. As such, frozen fish can provide a buffer for stochastic
movements in the live stock. (Øglend, 2010, p 85)

Although the margins for VAP are generally lower than for fresh HOG salmon (Marine
Harvest, 2014b), the prices for VAP are also generally somewhat less volatile, as
discussed in Section 3.4. Combined with the lower degradation rate of such products,
this makes production of VAP interesting, as it offers the producer more flexibility
in terms of when to sell. After processing, the processed products can either be sent
directly to customer, or be stored in inventory for a certain amount of time related to
the product’s durability. If prices are expected to rise in the future, it may be beneficial
to postpone the sale as long as the expected price increase covers the inventory costs.
Conversely, when the prices are high, the salmon producer may find it beneficial to
empty or significantly reduce its inventories.

Øglend and Sikveland (2008) argue that the availability of inventories helps smooth
prices, and that the utilization of inventories today comes at a trade-off of lower inven-
tories tomorrow such that the option of smoothing prices in the future has decreased.
As such, the product-mix can be used as a means to make the company less influenced
by the spot price volatility. This flexibility may give more robust production plans,
which are especially interesting for risk averse producers, as they tend to favor more
stable profits over higher expected profits. Another argument for producing to stock
is to do so in anticipation of the predictable seasonal patterns of demand discussed in
Section 3.4. As a side note, it is worth mentioning that severe quality downgrades may
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increase the allocation to processed products (Aandahl, P.T., personal communication,
2015).

Note that production decisions are restricted by transportation capacities and by the
capacities at processing plants, as well as the inventory capacities.

4.2.3 Sales allocation

For a salmon producer there are several different ways to interact with customers in
the global market. In the problem studied in this thesis, the transactions modelled
are categorized as either spot transactions or contract transactions.

Spot transactions

As defined in Section 3.5, spot transactions are short term contracts agreed upon either
the week prior to invoicing or in the week of invoicing. Although salmon producers
can be considered price-takers in the short run, the salmon producer must decide what
volumes to sell when. As prices differ in different market, another important aspect
of the decision is in which markets to sell the products. Due to the imperfections
in the market price correlations, efficient market allocation can potentially have an
positive impact on the company’s revenue, even though these decisions must be made
under uncertainty. The ability to react fast to price changes in a market could give
the salmon producer a significant advantage. Note that the market allocation is not a
purely financial decision, but is restricted by transportation capacities.

Furthermore, the salmon producer must decide how much fresh HOG salmon to pur-
chase in the spot market at any given time. Often, purchases are used as a mean
to fulfill contract obligations when the internal supply is insufficient to cover the con-
tracted volume. Spot purchases also occur in cases where the current spot price makes
it more economical for the producer to purchase HOG salmon rather than using in-
ternal supply as raw material in the secondary processing. This may either be due
to considerations regarding return on feed or to avoid high transportation costs from
internal production sites to the processing facilities.

Long term contract transactions

Entering contracts is used mainly as a means to mitigate the risks associated with
price, volume or both, as well as to achieve predictability in future sales (Larsen and
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Asche, 2011). The predictability allows for better production planning and capacity
utilization. Conversely, the downside of signing contracts is that because most con-
tracts specifies a volume, the producer might have problems in keeping his contract
obligations in case of poor growth. Furthermore, if large shares of the value chain
capacity is tied up in contracts, this leaves less flexibility when problems or profitable
opportunities arise or disruptions in the value chain occur. Situations where the pro-
ducer finds it challenging to deliver can lead to contract re-negotiations, often resulting
in less favorable pricing agreements. In using contracts where the price is fixed, there
is also a risk of selling at a price lower than the spot price, thus missing out on extra
revenue.

Which contracts to enter is arguably one of the most important decisions facing a
salmon producer. The decision is two-faceted:

1. The producer must decide what proportion of total production should be tied
up in contracts.

2. The producer must decide what types of contracts to aim for in negotiations.

As discussed in Section 3.5, the industry operates with several different types of con-
tracts, differing both in how price and volume are established, the frequency of the
deliveries and the time horizon of the agreement. Additionally, the producer should
consider the network aspect of the contracts, e.g. how many customers he wants to
engage contracts with, meaning if he wants to opt for fewer high-volume contracts,
many low-volume contracts or something in-between.

The problem studied in this thesis includes three different contract types. They are
all based on fixed volume agreements, but differ in how the price is established, and
thereby in how they affect risk profile and predictability. Fixed price contracts give full
predictability in terms of income, but you run the risk of missing out on income if spot
price rises during the contract period. Adjustable price contracts expose the firm to the
spot market volatility, thus giving less predictability. In using such contracts you will
not be forced to sell at a price significantly lower than the spot price, but conversely
the opportunity to sell at a price significantly higher than the spot price is lost as
well. Partially adjustable price contracts, which is the last contract type included,
give some predictability and lower price risk than the adjustable price contracts.
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4.2.4 Logistics

The salmon producer has to continuously make a large number of decisions regarding
logistics. All of the decisions previously discussed set the frame for, and are at the
same time restricted by the logistics decisions. For example, harvest and slaughter
decisions decide what volume of fish must be transported from a farm to a nearby
slaughtering facility with the use of a wellboat. Furthermore, spot sales and contract
volumes dictate which volume of a specified product that must arrive in each market
at any given time.

The producer normally hire transport capacity from an external logistics provider. It
is common for the provider to specify a minimum price the producer must pay for
a specified time period regardless of how much of their services are used. Thus, to
minimize costs the producer should seek to always use at least the amount of capacity
corresponding to this minimum price.

The agreement could also specify an upper limit to the capacity that can be provided.
If this capacity is surpassed, the producer would have to turn to the market and nego-
tiate an agreement with an additional logistics provider. Due to increased transaction
costs and a high probability of having to pay a premium price when conducting last
minute negotiations, the producer have to weigh the benefit of the additional capacity
against the added cost.

Deciding upon which transportation mode to use depends upon several factors:

1. The chosen transportation mode must be feasible across the distance. For ex-
ample, ship freight is not possible between two inland locations.

2. The chosen transportation mode(s) must bring the product to the market in time
before it is degraded. Thus, in most cases the number of eligible transportation
modes is limited due to long transportation time.

3. Cost considerations. The cheapest choices are generally ship freight or trans-
portation by trucks, whereas air freight is significantly more costly.

Consequently, there will be a trade-off between transportation costs and how fast
the product must be delivered, which depends on how fast the product deteriorates.
Therefore, air freight might be necessary to get the product to it’s destination fast
enough, even though it is the more expensive option.
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4.3 Main sources of problem related risk

The main types of risk for the salmon producer are presented in Table 4.1, where
production risk and price risk are the two types of risk a salmon producers primarily
face (Øglend and Sikveland, 2008). In general, production risk influence the amount
produced with a given input factor combination, and price risk influence the revenue
one will obtain from the quantity produced (Just and Pope, 1978). Additionally, the
salmon producer also face institutional risk primarily related to government regulations
and risk related to changing customer behaviour.

Production risk Financial risk Institutional risk Other

Growth rates Price volatility Changes in industry
regulations

Changing customer
preferences

Disease Currency fluctuations Availability of licenses
Premature sexual
maturity

Increased cost of
input factors

Changes in tariffs and
trade agreements

Escape

Table 4.1: Main risks faced by a salmon producer.

4.3.1 Production risk

The production risk salmon producers face is mainly due to uncertain output as a
result of uncertain biomass development. Furthermore, the salmon producers also
face production risk related to the primary and secondary processing of the fish, such
as uncertain production costs and unstability in the production system. The main
drivers of uncertainty in biomass development are growth uncertainty and uncertainty
regarding loss of fish, see Table 4.2.

Drivers of production uncertainty
Growth uncertainty Loss of fish

Variation in growth rates Escape
Water temperature Young fish mortality
Fish health Mortality caused by disease
Lightning conditions
Feed

Table 4.2: Drivers of production uncertainty.
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Growth uncertainty

Growth uncertainty can be divided into the uncertainty caused by varying growth
rates among fish of the same weight class, and uncertainty in overall growth due to
uncertain growth conditions. An estimated proportion of 3-4% of the stock is classified
as ”loser fish”, defined as fish that for unknown reasons do not keep up with the rest
of the stock in terms of growth rates and quality (Kyst og havbruk 2009).

Overall growth is governed by water temperature, lighting conditions, type and amount
of feed supplied and fish health. There are several important biological parameters
affecting salmon health, including disease, water oxygen concentration, salinity, pH,
ammonia and carbon dioxide content. As feed and lightning conditions can be con-
trolled and the factors affecting health are usually acceptable, sea temperature and
disease are the main source of growth uncertainty in salmon farming (Torgersen et al.,
2008). Generally, the warmer the water, the higher the fish growth. However, upon
reaching a temperature of approximately 17◦C, growth decreases, and higher tempera-
tures can eventually lead to mortality. Diseases such as Sea Lice and Pancreas Disease
affect growth negatively due to reduced fish appetite, and can at worst be fatal.

The water temperature at the farming facilities are exposed to both local and oceanic
influence. At deep sea temperatures follow a relatively certain seasonal pattern, but
near shore where marine farms are located, water temperature is much more unpre-
dictable. Here, the temperature depends upon local weather conditions and on the
exchange between coastal waters and the fjords. Figure 4.3 displays monthly mean
temperatures for a Norwegian salmon farm for the years 1998 to 2006, showing con-
siderable variation. Also worth noting is the fact that the variation is larger in periods
with relatively higher water temperatures, e.g. in the period from June to September.

Average monthly seawater temperatures in each of the main production countries are
displayed in Figure 4.4. Naturally, sea water temperatures in different countries follow
different patterns. Due to the geographical closeness Norway and Scotland follow a
similar pattern, with temperatures around 7 ◦C in winter and 13 ◦C in summer. The
Canadian temperatures follow the same seasonal patten, but are more stable. Chilean
temperatures follow an opposite pattern due to opposite seasons on the southern hemi-
sphere, with temperatures around 14 in winter and 10 in summer.
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Figure 4.3: Monthly average sea temperatures for a Norwegian salmon farm (Na-
tional Oceanic and Atmospheric Administration, 2015).
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Figure 4.4: Monthly average sea temperatures for different producing regions
around the world (National Oceanic and Atmospheric Administration,
2015).
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Loss of fish

Loss of fish can be divided into escape and mortality. Reports by fish farming com-
panies to the Norwegian Directorate of Fisheries indicate that escapes are heavily
dominated by structural failures of equipment due to e.g. storms, while operational
related-failure, escapes due to external factors and escapes from land-based facilities
make up lesser proportions (Jensen, Dempster, et al., 2010). Typically, the structural
failures are caused by tears in equipment due to storms or propeller damage, or escapes
of small fish through nets. Large escapes, defined as incidents where more than 10 000
fish escape represent only 19% of all escapes, but amount to 91% of all escaped fish in
terms of volume (Jensen, Lader, et al., 2012). Figure 4.5 displays the recorded num-
ber of fish escaped in Norway, showing a great variation in the number of escaped fish
indicating that escape is a source of uncertainty to the salmon farmer. Note that the
numbers for 2013 and 2014 are preliminary. However, as escapes represent less than
1% of the total production loss, other factors will be the main drivers of production
uncertainty. The total loss of fish in the Norwegian salmon industry is estimated to
be 16.3% in 2014 (Mattilsynet, 2014).
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Figure 4.5: Reported number of escaped fish in Norway
(Norwegian Directorate of Fisheries, 2014c).

Mortality can be divided into mortality caused by disease, and young fish mortality
due to deformities, injuries from transportation and handling, or difficulties in regards
to transitioning to salt water. The latter is the most important cause of mortality
- 80% of deaths occur before the fish reach 0.5 kg (Rynning-Tønnesen and Øveraas,
2012). Additionally, there is the natural mortality rate, meaning mortality during the
growth phase not caused by disease. This is relatively steady, and as such its impact
on the biomass development is regarded less important.
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Mass mortality, such as in ISA crisis in Chile in 2008, might however have a severe
effect. Mass mortality is caused by infectious diseases such as Pancreatic Disease
(PD), Infectious Pancreatic Necrosis (IPN), Infectious Salmon Anemia (ISA) and Gill
Disease (GD), and the outbreaks of such diseases is therefore an important source of
uncertainty for the salmon farmer.

Additionally, diseases affect biomass development by inducing premature slaughtering
to avoid the disease to spread. For instance, lice outbreaks may force the producer to
fallow certain sites. Less severe diseases can cause loss of fish appetite and thereby
slower growth. The main causes of salmon mortality as experienced by the Irish
salmon farming industry in 1988 to 1992 are depicted in Table 4.3, showing PD to be
the dominant cause.

Cause of mortality % of total mortality
Pancreas Disease 51.3
Transfer 15.8
Unknown 12.9
Vibriosis 10.8
Algal blooms 6.6
Furunculosis 2.6

Table 4.3: Causes of mortality in Irish salmon farming 1988-
1992 (Wheatley et al., 1995, p200).

4.3.2 Financial risk

As the salmon market is a highly volatile market, price uncertainty will greatly affect
the optimal production and sales plans, and thereby the expected profit. To maximize
profits, it is optimal for the producer to produce and sell more in periods with high
prices and less in periods with low prices. This leads to low capacity utilization and
low efficiency.

The costs of price volatility are transferred to the entire value chain. Volatile demand
in the different stages in the value chain can create huge Bullwhip effects, causing
overall supply chain efficiency to decrease further. Moreover, as the first-hand prices
fluctuate and the retail prices are relative stable, many intermediary agents in the
value chain, such as fish processors, can experience substantial variability of capacity
utilization and profits (Øglend and Sikveland, 2008).

Changes in the price of input factors, such as fish feed, egg, smolt and electricity
increases the risk related to salmon production. If factor cost rises quickly and large
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parts of future production is locked to fixed price contracts, margins will diminish.

With financial risk being a global problem, currency fluctuations can significantly
change cost structure and revenue streams of the producer, and the net effect of such
fluctuations can potentially become quite significant. However, it is possible to miti-
gate much of this risk by currency hedging, and long term raw material and electricity
contracts. The use of such instruments differs between the salmon producers, and may
also introduce other risk factors such as hold-ups in the contractual relationship.

4.3.3 Institutional and other risk

In addition to the risks already discussed, the salmon producers face the vague, but
potential risk from changes in regulations and other institutional risks. For instance,
availability of licenses or new governmental impositions regarding lice treatment may
transform the operating conditions. Such uncertainty may also adversely affect the
willingness to future investments, although this topic is outside of the scope of this
thesis.

Furthermore, changes in tariffs and trade agreements, including anti-dumping legisla-
tion poses potential market allocation challenges, such as the recent trade imports of
some or all of the Norwegian fish to Russia (Dahl et al., 2014) and China (Mathisen,
2015). However, as the salmon market is a global market, different market channels
or substitute markets may arise, as evident after the Russian trade restrictions im-
posed in 2014 (Roaldseth and Flatset, 2015). Furthermore, the effect of removal of
one market channel will be less severe for large global industry actors such as Marine
Harvest.

A long term risk is the effects of changing consumer preferences and market trends,
potentially changing both the size and configuration of the total demand for salmon
products. Public perception of the sustainability and environmental impact of the
salmon farming industry can affect demand in a positive or negative direction. How-
ever, how to treat such qualitative risks is regarded as outside the scope of this thesis.
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Overview of relevant theory

This chapter contains a brief overview over relevant theory for this thesis, and is meant
to serve as a framework for later discussions. The chapter provides the reader with an
overview of important terms and concepts that may contribute to understanding the
model presented in later chapters. However, it is assumed that the reader is familiar
with basic principles from operations research and mathematical programming. A
short introduction to stochastic programming and stochastic modeling is given in
Section 5.1. Section 5.2 gives an overview of relevant theory on forecasting and how
it may be used in conjunction with scenario generation.

5.1 Representing uncertainty

Uncertainty is present in the vast majority of real life decisions. Whether it is supply
or demand, revenues or costs, technology or production, uncertainty is a factor that
must be accounted for. In operations research there are two dominating modeling ap-
proaches to deal with uncertainty, namely the deterministic approach and the stochas-
tic approach, while stochastic programming was first introduced by George Dantzig in
the 1950s. In general, deterministic models are often chosen due to their simplicity,
even when these models poorly describes the reality. However, when uncertainty plays
an important role in the problems, deterministic models may fail to give an adequate
description of the reality, and a model that takes the stochasticity into account may
be necessary. While deterministic programming is the most common method used in
early operations research, stochastic programming has increased in popularity during
recent years due to technology development and increased computing power (Kaut
and Wallace, 2007). For a more thorough introduction to stochastic programming
in general, the reader is referred to Kall and Wallace (1994) or Birge and Louveaux
(2011).

53



Chapter 5. Overview of relevant theory

5.1.1 Introduction to stochastic programming

The simplest approach to model uncertainty is by using a deterministic problem for-
mulation. Then, it is assumed that everything possible outcome of the future is known
with certainty. Uncertainty are then not included explicitly, but rather represented
implicit by replacing all uncertain variables by their expected values. When all uncer-
tain variables in the problem are replaced by their expected values, one obtain what is
called the expected value problem or mean value problem. Then the solution is known
as the expected value (EV) solution.

A sensitivity analysis can be used to test the model robustness by varying the uncertain
parameters and inspecting the resulting changes in the optimal solution. Alternatively,
a scenario analysis can be conducted. In a scenario analysis, a set of scenarios are
created and solved individually by using the expected values of each scenario. The
decision maker can then generate different scenarios based on his or her’s knowledge
in order to find the best solution.

An alternative to the implicit representation of uncertainty from an deterministic ap-
proach is to explicitly model uncertainty. In stochastic programming, this is done
by structuring the model in a way that emphasize when decisions are made and ac-
count for what information is currently available to the decision maker. In Figure 5.1,
the uncertainty is represented by ω, which influence the decision on y. All decision
variables x are not subject to uncertainty and are thereby treated deterministically.

Decision on
x

Decision on
y

ω

t

Figure 5.1: Realization of the uncertain variable ω
which influence the decision on y.

As the uncertain variables in stochastic programming represent all possible outcomes,
one fundamental assumption in stochastic programming is that the probability distri-
bution of the uncertain variables is either known or can be estimated. Together, the
uncertain variables and their probability distributions form the basis of how uncer-
tainty in possible future realizations are constructed. Therefore, the stochastic method
is most efficient when the future can be described with a discrete distribution. If the
distributions are continuous, one have to discretize the set of possible outcomes. In
most cases, this will be a simplification of reality, making the model less accurate.
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When working with a stochastic problem, it is important to know the difference be-
tween three important terms, namely time period, stage, and scenario. A time period
relates to the time passing in the decision process, e.g. a day, a week or a month.
A stage can consist of one or more time periods, and is a point in time where new,
useful information is revealed (Kall and Wallace, 1994). As it is only meaningful to
make new decisions when new, relevant information become evident, stages are also
the points in time when decisions are made. A scenario is a possible outcome of the
problem during all time periods in the planning horizon. With T time periods and ξt

is a vector describing what happens in time period t (i.e. a realization of ξt), Kall and
Wallace (1994) defines a scenario as s = {ξs0, ξs1, . . . , ξsT } which represent one possible
future. As scenarios are meant to describe the possible outcomes of the uncertain
variables a set of scenarios are often represented by a scenario tree. A scenario tree
illustrate in which time period or state the uncertain variable is realized. Higle (2005)
defines a scenario tree as a structured representation of the stochastic elements in a
problem and how they may evolve over time during the problem’s planning horizon.
See Figure 5.2 for a illustration of how the three mentioned terms are connected.

By introducing stages this gives an opportunity to adapt a solution to a specific out-
come observed, by either exploiting other opportunities or mitigating negative effects
of the realization of observed uncertainty. Problems presented in a such way are often
called recourse problems. In recourse models, the main idea is to utilize all information
revealed prior to when decisions have to be taken. Recourse models seeks to postpone
decisions as long as possible, thereby adding value by making more informed decisions.
The opportunity to adapt a solution to the specific outcome observed are therefore
often referred to by the term recourse. Recourse models are therefore always presented
as models in which there are two or more stages.

Scenario trees

Before recourse formulations are presented, it may be useful to have a clear under-
standing of why the three terms presented are of importance. This becomes clear
when introducing the concept of scenario trees. The main advantage with the scenario
tree is that it may contribute to a better understanding of the structure of a recourse
problem. The probability of the occurrence of each outcome is also often included in
the tree (Pflug and Pichler, 2014b).

Figure 5.2 represent a simple scenario tree with 6 time periods, 3 stages and 4 scenarios.
The circles represent nodes. Each node represents a possible state of the problem where
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a decision can be made, and thus, in every node values for the uncertain variables are
given. The nodes within a time period represent all the possible states the problem can
be in at that time. In the figure, nodes belonging to the same time period are located
vertically above one another. The single node in the first time period is referred to as
the root node, and represents the initial state. The nodes in the last time period are
called leaf nodes. A complete path from the root node to any leaf node represent a
scenario.

Scenario 4

Scenario 3

Scenario 2

Scenario 1

Stage1 Stage2 Stage3

Periods
1 2 3 4 5 6

Figure 5.2: Scenario tree.

Uncertainty is resolved twice, represented by the stippled vertical lines. Each time
there are two possible realizations of the random variable, resulting in branching the
tree structure. Therefore, the problem illustrated has three stages. The first stage
consists of one period, the second consists of two, whereas the last consist of three
periods. In each stage, all uncertainty in the stage is resolved in the first time period.
The remaining time periods in that stage can therefore be considered deterministic.

In practice, decisions are only made when new relevant information becomes available,
or in other words, in nodes that are the result of a branching (Midthun, 2007). This
implies that decisions regarding time period 3 are made in time period 2, and decisions
regarding time period 5 and 6 are made in time period 4.

Two-stage recourse programs

The most widely applied and studied stochastic programming model are the two-stage
linear recourse program. The recourse model traces its roots back to Dantzig (1955)
and Beale (1955). In such programs, the decision process is divided into two stages. In
the first stage, the decision maker has to commit to a decision before any information
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relevant to the uncertainties becomes available. After making the first stage decision,
a random event revealing information relevant to the uncertainties occur. This event
most likely affect the outcome of the first-stage decision. A recourse decision can then
be taken in the second stage, adjusting the first stage decisions according to the new
information.

The solution to a two-stage linear program with recourse consist of a single first stage
decision, often denoted x, followed by a set of recourse decisions defining the opti-
mal strategy given every possible outcome of the random variables, often denoted y

(Philpott, 2011). While x is referred to as the here-and-now-decision, y is referred to
as the recourse decision. Because the optimal solution only gives one value for the
first stage decision, x must be chosen so that it allows flexibility to handle all possible
scenarios, using each scenario’s probability as weighting. This is why a stochastic
model is willing to pay for flexibility, while a deterministic model is not.Note that the
stochastic valuation methods in the following sections are based on a maximization
problem.

The first stage problem can be formulated as equations (5.1) - (5.3) and the second
stage problem can be formulated as in equations (5.4) - (5.6). The second stage
problem may also be referred to as the subproblem or recourse problem (Higle, 2005).

max Z = cx+ E[h(x, ω̃)] (5.1)

Ax = b (5.2)

x ≥ 0 (5.3)

h(x, ω) = max gωyω (5.4)

Wωyω ≤ rω − Tωx, ω ∈ Ω (5.5)

yω ≥ 0, ω ∈ Ω (5.6)

The uncertainty is represented by ω̃ in equation (5.1). In the second stage, equation
(5.4), the uncertainty ω̃ in interpreted as a deterministic scenario. The variable ω̃ is
a discrete random variable with probability distribution independent of the decision
vector x, and has probability pω = P (ω̃ = ω) for each scenario ω in the set of scenarios
Ω. The objective function of the first stage decisions takes uncertainty into account by
the term E[h(x, ω̃)]. This term represent the expected value of the recourse decision,
and is referred to as the value function or recourse function (Birge and Louveaux,
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2011).

The formulation in equations (5.1) - (5.4) is generally referred to as an implicit repre-
sentation of the stochastic problem (Birge and Louveaux, 2011). The formulation is
also known as node formulation or compact form.

An alternative formulation widely used is the explicit formulation, also called an ex-
tensive formulation or scenario formulation (Higle, 2005). This formulation is given
in equations (5.7) - (5.10).

max Z =
∑
ω∈Ω

pω(cxω + gωyω) (5.7)

Tωx+Wωyω ≤ rω, ω ∈ Ω (5.8)

xω − x = 0, ω ∈ Ω (5.9)

xω, yω ≥ 0, ω ∈ Ω (5.10)

In this formulation the here-and-now-decision from equation (5.1) is made scenario
specific in xω, while constraints (5.9), which are known as non-anticipativity con-
straints, ensure that decisions honor the information structure of the problem (Higle,
2005). The objective function is also reformulated, such that it now maximizes the
expected value of the second stage decision directly with respect to the probability,
pω = P{ω̃ = ω}, of each scenario ω ∈ Ω. There is also extra constraints added,
see constraints (5.9). The non-anticipativity constraints force the decisions taken in
different scenarios to be consistent with the information available in each stage by
forcing the here-and-now-decision (first stage decision) to take the same value in all
scenarios. Thus it is not necessary to separate the first stage and second stage (re-
course) decisions as in the implicit formulation. Note that constraints (5.9) are just
one of numerous ways in which non-anticipativity constraints can be formulated. See
Figure 5.3 for a illustration of how the non-anticipativity constraints acts compared
to the structure in Figure 5.2.

Multi-stage recourse programs

The multi-stage recourse problem represents a planning situation where new infor-
mation is revealed at several points during the planning horizon and decisions have
to be made continuously based on the available information (Higle, 2005). The ex-
plicit formulation of the two-stage recourse problem previously presented can easily
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Stage 1 Stage 2 Stage 3

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Periods
1 2 3 4 5 6

Figure 5.3: Scenario tree with non-anticipativity constraints.

be generalized to a multi-stage model:

max Z =
∑
ω∈Ω

pω
∑
t∈T

cxtω (5.11)

t∑
j=1

Atjω x
j
ω ≤ btω, t ∈ T, ω ∈ Ω (5.12)

xtω − xtn = 0, t ∈ T (n), ω ∈ Ω(n), n ∈ N (5.13)

xtω ≥ 0, t ∈ T, ω ∈ Ω (5.14)

In this formulation, the first-stage and recourse decisions are no longer separated by dif-
ferent variable names. Instead, xtn represent the decision made in period t. N denotes
the set of non-anticipative decisions. As for the two stage extensive formulation, the
non-anticipativity constraints (5.13) are used to enforce the right relationship between
decisions and information structure. Constraints (5.13) ensure that each decision xtω

in time period t ∈ T (n) are equal in all scenarios ω ∈ Ω(n).

5.1.2 Evaluation and valuation of recourse models

Even though most real decision problems are subject to uncertainty, it is not guaran-
teed that an inclusion of uncertainty in the models is always beneficial. The deter-
ministic models have the important advantage of being easier to understand and use
compared to a stochastic model. The deterministic models also require fewer variables,
which makes the implementation easier and reduces the solution times.
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Therefore, it is useful to have tools for evaluating whether using a stochastic model is
necessary or if it is sufficient to use a deterministic model. Evaluation of stochastic
models may be especially valuable when the models are used continuously while the
computational burden is high (Wallace, 2003). Two methods for valuating the stochas-
tic models are presented, that is the expected value of perfect information (EVPI) and
the value of stochastic solution (VSS). In order to explain how they are calculated,
some notation must be introduced.

To explain these measures, some terminology must be introduced. When the all ran-
dom variables in the problem are replaced by their expected values, one obtains the
expected value problem or mean value problem. The solution of such a problem is
known as the expected value (EV) solution. The expected value of using the EV so-
lution when uncertainty is included is known as EEV, and will be explained in more
detail below.

The recourse problem (RP), also known as the here-and-now solution, is the optimal
solution to the recourse problem. Figure 5.5 illustrates the relationship between the
different terms used in this section. Finally, the expected value of the set of opti-
mal solutions for all scenarios is referred to as the wait-and-see solution (WS). WS
represents the expected solution if all uncertainty is resolved, and is thus a theoretic
measure only, giving an upper bound for the objective value. If a explicit formula-
tion is used, the WS-model can be constructed by removing the non-anticipativity
requirements from the RP model. The solution of the WS model is what would be the
optimal strategy given the occurrence of each scenario. In other words, the WS-model
gives a set of optimal solutions given a specific scenario, and not one single solution
that should be implemented as the RP gives.

For all recourse problems where the objective is maximized, the following property
holds true:

EEV ≤ RP ≤WS (5.15)

Expected value of perfect information (EVPI)

The EVPI is defined by Birge and Louveaux (2011) as a measure of the maximum
amount a decision maker would be willing to pay in return for complete and accurate
information about the future, thereby removing all uncertainty.

In real-world business decisions there is rarely an option to remove all uncertainty.
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However, the EVPI provide a benchmark about the value of taking actions to reduce
uncertainty. Thus, the EVPI gives an indication of whether it is worth making an
effort to reduce the uncertainty present in the problem, for instance by investing in
more advanced forecasting and decision support tools. The higher the EVPI, the more
the decision maker stands to gain by reducing uncertainty. Conversely, if the expenses
by collecting information exceed the EVPI, it is unnecessary to make an effort to
reduce the uncertainty (Forsberg and Guttormsen, 2006). EVPI can thus be thought
of as an expected improvement in the solution when perfect information is available,
compared to being uncertain about the future (Kall and Wallace, 1994).

Mathematically, EVPI is calculated as the difference between the objective function
value of the wait-and-see solution and the solution of the recourse problem, shown in
equation (5.16) with the notation used by Birge and Louveaux (2011).

EV PI = WS −RP (5.16)

Value of stochastic solution (VSS)

The difference in objective value from solving the same problem by using both the
stochastic and the deterministic approach is called the VSS. The VSS is calculated by
comparing the RP solution with the EEV solution, as shown in equation (5.17).

V SS = RP − EEV (5.17)

The solution of a recourse problem will always have a objective value better than or
equal to the one from a deterministic model of the same problem, meaning VSS is
always non-negative (Birge and Louveaux, 2011). Because a deterministic model does
not take advantage of information about the probability distribution of the random
variables, the VSS is often largest for problems where the probability distributions are
non-symmetric (Birge and Louveaux, 2011).

Value of the stochastic solution in a multi-stage model

The EEV is calculated in different ways depending on the problem structure. EEV for
a two-stage problem is found by first solving the deterministic expected value problem
and obtaining the EV solution. Then, the first stage decisions are fixed to the values
from the EV solution. The EEV is the expected value of all WS solutions of the model
with fixed first stage decisions.

61



Chapter 5. Overview of relevant theory

When calculating the EEV for multi-stage problems, the calculations become more
intricate as one encounter an issue regarding which variables to fixate. Since the WS
model is not restricted by non-anticipativity constraints and each scenario is solved as
if they are independent, fixing the first stage solutions may result in a negative VSS
since the first stage solution in the EV problem performs better than the solution of
the RP (Escudero et al., 2007). Therefore, the EEV has to be redefined for a multi-
stage problem in order give a meaningful VSS. Escudero et al. (2007) suggest two
approaches to how this can be done.

First approach: The value of the stochastic solution in stage and time period t

As already mentioned, the problem of using VSS as for the two-stage stochastic prob-
lem in a multi-stage stochastic model is the lack of non-anticipativity constraints.
Escudero et al. (2007) propose a solution to this problem by introducing the EEVs as
an alternative to the EEV used in two-stage stochastic models. Instead of inserting
the EV solution into the WS problem, the EEVs is calculated by inserting the EV
solution into the recourse problem, RP, as given by equations (5.11)-(5.14). In this
way the non-anticipativity constraints are handled by fixing the decision variables up
to stage s to the solution of the expected value problem (the EV solution). The sub-
script s the EEV has adopted denotes the current stage. Note that Escudero et al.
(2007) uses t for both stages and time periods due to that all examples and scenario
trees in the paper have an equal number of time periods and stages. However, in this
thesis the notation and equations are modified to fit a multi-stage RP with more time
periods than stages which is common in a stochastic model.

EEVs =


RP model, equations (5.11)-(5.14)

s.t. xtw = x̄t, t ∈ T (s− 1), ω ∈ Ω.

Here, x̄t are the optimal values obtained by solving the expected value problem. The
set of scenarios, ω ∈ Ω, is defined as before. The EEVs are only defined for t ∈ T (s−1),
because the decision variables are only locked for all time periods in all stages prior
to stage s. By also defining EEVs for s = 1, the EEV1 equals the RP model and
solution.

As for the EEVs, the measure VSS also adopts the same subscript s. The value of the
stochastic solution, V V Ss, is then defined as

V SSs = RP − EEVs (5.18)
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A relation that may make the difference between EEV, EEVs and RP easier to un-
derstand is the fact that EEVs+1 ≤ EEVs,∀t = 1, . . . , T − 1. Meaning that V SSs
is a measure of the cost of ignoring uncertainty until stage s in the decision making
process. It can be seen as the performance of the deterministic model by using average
values for the stochastic parameters for all stages up to stage s.

Second approach: The dynamic value of the stochastic solution

In the second approach Escudero et al. (2007) focus on finding a more realistic value
for the EV solution. This is done by redefining the concept of the expected value
problem. Instead of using the scenario tree which is introduced in preceding sections,
Escudero et al. (2007) divides the scenario tree into sub-trees and are thereby able
to solve a set of expected value problem for each sub-tree, hence the term dynamic.
The scenario tree are also redefined to consist of scenario groups indexed by g, where
time periods within each stage are grouped together into one node. Consequently,
scenarios that has the same realizations of the uncertain parameters up to that stage
are grouped together, and the corresponding expected value problem is indexed by the
scenario group index, EVg. G denotes the set of scenario groups g, and Gs denotes the
set of scenario groups in stage s. The set of scenarios that belong to scenario group g
are also indexed by the same subscript, Ωg. The notation Escudero et al. (2007) use
are illustrated in Figure 5.4. Note that π defines the immediate predecessor of each
node, and that the scenario groups are descendant scenarios of the specific node g.

The approach can be described as an iterative procedure where the expected value
problem are solved for each scenario group consecutively, starting with the scenario
group representing the root node. The optimal solution is denoted by ZgEV , and the
solution obtained by solving the expected value problems for the set of scenario groups
in a given stage is referred to as the dynamic solution of the expected value problem.
After solving the fist stage EVg, the optimal first-stage decisions are fixated for all
succeeding sub-trees before the procedure is repeated successively, with continuous
locking the decisions from the ancestor scenario groups.

This leads to the definition of the EDEVs, which is the expected result in stage s of
using the dynamic solution of the expected value problem, as the expected value of
the optimal values of the EVg problems, with g ∈ Gs. This is expressed as

EDEVs =
∑
g∈Gs

pgZ
g
EV , t ∈ T (5.19)

where ZgEV is the optimal value for the model EVg and pg represents the likelihood of

63



Chapter 5. Overview of relevant theory

1

4

9
17

16

8 15

3 7
14

13

2

6 12

5
11

10

Ω = Ω1 = {10, 11, . . . , 17}; Ω2 = {10, 11, 12}

G = {1, 2, 3, . . . , 17}

G2 = {2, 3, 4}; t(5) = 3

S = {1, 2, 3}, S = 3, T = {1, 2, 3, 4}, T = 4

π(9) = 4, π(14) = 7

Figure 5.4: Illustration of how Escudero defines his notation in valuating a multi-stage
model (Escudero et al., 2007).

the scenario group g, which is obtained as pg =
∑
ω∈Ωg pω. This is the same probability

for each scenario as in equation (5.11).

The dynamic value of the stochastic solution, V SSD, is then defined as the value of
ignoring uncertainty throughout the planning period

V SSD = RP − EDEVs (5.20)

The relationship between the EVPI and the VSS is illustrated in Figure 5.5.

Objective
value

EEV RP WS

VSS EVPI

Figure 5.5: Illustration of the relationship between VSS and EVPI
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5.2 Forecasting and scenario generation

If uncertainty is present in the reality one wants to model, good forecasts and scenarios
are directly linked to the quality of the results the model gives (Kaut and Wallace,
2007), and bad scenarios can ruin an otherwise flawless model. It is not straightforward
to describe all the possible outcomes of nature, but by approximating the probability
distributions of the stochastic parameters as discrete distributions, i.e. lists of real-
izations (scenarios), and their probabilities one may get good estimates (Kaut, 2014).
The aforementioned example by Higle and Wallace (2003) highlights the importance
of forecasting to be able to give an as good representation of the future as possible,
and forecasts are frequently used as a basis for scenario generation in stochastic pro-
gramming, where the scenarios intend to describe the possible deviations from the
forecasts (Midthun et al., 2009).

Dependent of problem and solution methods there are different methods for generating
good scenarios. Ideally one would use a high number of scenarios to increase the quality
of the result of the model, but to be able to solve the model within reasonable time
there is often a trade off between the number of scenarios and solution time. While
this section focus on the most relevant methods for the problem studied in this thesis,
the reader is referred to Kaut and Wallace (2007) and Dupačová et al. (2000) for an
overview of different scenario generation methods from the literature.

5.2.1 Introduction to scenario generation

Dependent of problem and solution methods there are different methods for generating
good scenarios. Kaut and Wallace (2003a) divide the most important pure scenario
generation methods in five groups; (1) conditional sampling, either by direct sampling
from the distribution or indirectly sampling the process by calculating the samples
using an explicit formula, (2) sampling from specified marginals and correlations,
where the user specifies the marginal distributions and correlation matrix, (3) moment
matching, and construction of the unknown distribution and marginals by using known
moments, (4) path-based methods, where complete paths are generated to form a fan
which is then clustered together in all-but-the-last period to transform the fan to a
scenario tree, and (5) optimal discretization, where one tries to find an approximation
of the stochastic process that minimizes an error in the objective function. There
are also other scenario generation methods described in the literature, see e.g. Kaut
(2014) and Dupačová et al. (2000). Kaut (2014) presents a method which generates
scenarios by using copulas instead of correlations.
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Sampling

The most common method for scenario generation is conditional sampling (Kaut and
Wallace, 2003a). This method is based on sampling a number of values either directly
from the distribution of the stochastic process at every node or by calculating the
samples by the use of an explicit formula and thereby indirectly sampling the process.
The method has the advantage of being easy to use, but the disadvantage of being re-
stricted by sampling of only one univariate random variable. By combining separately
sampled marginals one may sample a random vector, resulting in a tree that grows
exponentially with the random vector’s dimension.

Moment matching

When working with stochastic programming the scenarios are often drawn from a
distribution with known statistical properties. However, if one do not know the dis-
tribution functions of the marginals, their moments may be good descriptors for the
distributions. The degree of moments to a distribution are infinite, but often the four
first are used to describe the distribution, the mean, variance, skewness and kurtosis.
Together with the correlation matrix and other statistical properties, these may be
used to construct a discrete distribution of scenarios which combined satisfy the same
properties.

The procedures for generating scenarios are rather different, and the main reason for
choosing between the different methods depends on the available information about
the distribution the scenario tree should be made from. If the distribution functions
of the marginals are unknown, moment matching is the preferred method. In mo-
ment matching the marginals are described by their different moments, that is mean,
variance, skewness, kurtosis and higher order moments. According to Kaut and Wal-
lace (2003a) it is often sufficient to match the mean, variance and correlations in
mean-variance models, while most optimization models require more moments since
matching of the right properties is an important issue in moment-matching methods.
However, Kaut and Wallace (2003a) have experienced that the first four moments of-
ten gives a good enough description of the marginals, and to the authors’ knowledge
this is the most common approach.

Høyland, Kaut, et al. (2003) have developed an algorithm that uses moment-matching
to produce a discrete joint distribution consistent with specified values for the first four
marginal moments and correlations. The main reason for developing the algorithm was
because scenario generation may be one of the most challenging and time consuming
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parts of stochastic programming. In large problems, where there is a need for many
scenarios in terms of many asset classes, early developed scenario generation methods
are often the bottleneck in portfolio optimization, e.g. the method used in Høyland
and Wallace (2001) (Høyland, Kaut, et al., 2003). This algorithm also forms the basis
for the scenario generation method used in this thesis.

However, this algorithm itself do not produce complete scenarios, but residual term
scenarios from the moments that describe the distribution of the time series one want
to generate future scenarios from.

Copula based scenario generation

To generate scenarios from e.g. elliptical distributions such as the Normal distributions
or the Student’s t-distribution, correlations may be sufficient. However, to model
asymmetric dependence the method might fail. This is also investigated by Kaut and
Wallace (2011), and their work confirms that correlations can lead to sub-optimal
solutions to a stochastic model (Kaut, 2014). If the reader is unfamiliar with the term
copula, Kaut (2014) describes a copula as a joint cumulative distribution function
for a multivariate random vector in which the marginal probability distribution of
each variable is uniform. Kaut (2014) also shows that a multivariate CDF is fully
determined by the marginal CDFs and the copula, and that a copula is a full description
of the dependence between the margins.

Kaut and Wallace (2007) suggest a two-step procedure for generating scenarios by
using copulas; (1) generate scenarios for the desired copula, (2) transform the mar-
gins using the inverse CDFs to get scenarios that have both the correct copula and
marginal distributions. The second step is trivial if the marginal CDFs are continuous
functions. Since a copula is a multivariate distribution with standard uniform mar-
gins, the margins of the scenario-distribution will constitute a sample from the same
uniform distribution. Therefore, transformation of the margins by using the inverse
CDFs result in scenarios that have both the correct copula and marginal distributions
(Kaut, 2014). As the only available method for the first step have been sampling,
there is difficult to represent the future with acceptable quality taking into account
the high requirement on number of scenarios from sampling methods. As a conse-
quence, Kaut (2014) has developed an heuristic that achieve a comparable quality in
the solutions with fewer scenarios. For a bivariate case there is actually a MIP-model
which is able to find exact residuals for the scenarios. However, to handle multivariate
scenario generation methods, and faster scenario generation for bivariate distribution,
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the heuristic proves to give scenarios of high quality in very short time, read > 1000
in approximately 6 seconds when 45 bivariate copulas are matched.

5.2.2 Forecasting

The salmon industry is characterized by large seasonal variations, e.g. with regards
to water temperatures and price variations due to variations in the supply. Because of
this, the authors will further explain models that handles seasonality in another way
than e.g. exponential smoothing. Even if one can adjust models such as exponential
smoothing to incorporate seasonality in the data by using seasonal factors for each
sample, this is considered a weaker approach to get the best prognosis. Autoregres-
sive integrated moving average models (ARIMA) on the other side aims to describe
autocorrelations in the data (Hyndman and Athanasopoulos, 2015).

Autoregressive (AR) models

Regression analysis is a statistical process used to estimate the relationship between
variables. In multiple regression models, a linear combination of predictors are used
to forecast the variable of interest. In an AR-model model the forecast of the variable
of interest is expressed as a linear combination of past variables, and this is where the
difference between regular regression models and autoregression models lies. Namely,
the term autoregression indicates that it is a regression of the variable itself (Hyndman
and Athanasopoulos, 2015). Consequently, an AR-model is a representation of some
random time varying process which is linearly dependent of its own previous values.
This is one useful way to represent time varying processes found in e.g. nature or
economics. The AR-model represent the process Zt with regress to the value of Z in
past values plus a random shock (Wei, 2006). The random shock is often considered
as white noise drawn from a normal distribution with zero mean, and finite variance,
N (0, σ2). Equation (5.21) shows how the AR-model looks like.

Zt = µ+
p∑
i=1

φiZt−i + εt, t ∈ T (5.21)

where µ is a constant, ϕ1, . . . , ϕp are the parameters of the model and εt is the white
noise process, εt ∼ N (0, σ2).
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Moving average (MA) models

The MA-model model is another useful representation of the time varying random
process Zt. Rather than using past variable values to forecast the variable of interest,
the model use past forecast errors (Hyndman and Athanasopoulos, 2015), εt. The
MA-model expresses Zt as a linear combination of a sequence of uncorrelated random
variables (Wei, 2006). The moving average representation can be seen in equation
(5.22).

Zt = µ+ εt +
q∑
i=1

ψiεt−i (5.22)

where µ is a constant, ψt, . . . , ψt−q are the parameters of the model, and εt, . . . , εt−q

is the white noise error terms, εt ∼ N (0, σ2).

As one can see, in the autoregressive model the shock affects the value of the evolving
variable infinitely into the future. In the moving average model the shock only affects
the value of the evolving variable q periods into the future. The shock is also propa-
gated to the future values of the variables directly, while in the autoregressive model
the shock affects future values of the evolving variable indirectly.

Autoregressive integrated moving average (ARIMA) models

As shown in preceding sections, a stationary process can be represented either in an
autoregressive form or in a moving average form. Both of these formulations contain
a high number of variables that needs to be estimated, which is a problem that arise
in either representation. Even for a finite-order autoregressive model or finite-order
moving average model a high-order model is needed to get a good approximation.
The high number of parameters will in general reduce the efficiency of the estimation.
This can be improved by combining the AR-model and MA-model into a useful mixed
autoregressive moving average process (ARMA).

The process one wants to forecast is often non-stationary, and to account for non-
stationarity one often uses what is called the generalization of the ARMA-model. The
generalization of the ARMA-model is expressed as an ARIMA. The ARIMA-model
reduces the non-stationary time series to a stationary time series by taking a proper
degree of differencing (Wei, 2006). This relates to Step 1 in the scenario generation
procedure already presented.

The ARIMA-model, equation (5.23), consist of the autoregressive representation, a
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differencing part, and the moving average representation.

Z ′t = c+ φ1Z
′
t−1 + · · ·+ φpZ

′
t−p + ψ1εt−1 + · · ·+ ψqεt−q + εt (5.23)

where Z ′t is the differenced series, Z ′t = Zt − Zt−1. This is called an ARIMA(p,d,q)
model, where p is the order of the autoregressive part, d is the degree of first differ-
encing involved and q is the order of the moving average part.

Seasonal autoregressive integrated moving average models

So far only the non-seasonal ARIMA-models are presented. However, ARIMA-models
are also able to model a wide range of seasonal data by adding seasonal terms to the
non-seasonal ARIMA-model just presented. The seasonal terms are very similar to
the non-seasonal components of the ARIMA-model, but as for non-stationarity the
seasonal periods needs to be differenced. The removal of seasonality is exemplified for
an ARIMA(1, 1, 1)× (1, 1, 1)12 model data in equation (5.24). Note that the subscript
12 refers to the lenght of the seasonal period and that equation (5.24) uses what is
called a backshift operator, B. The reason for using this backshift operator is its
ease of use when combining differences, as the operator can be treated using ordinary
algebraic rules. This is not to be confused with an operator in the strict mathematical
sense. As easily illustrated by Hyndman and Athanasopoulos (2015), it is much easier
to work with the backshift operator when one starts combining components to form
more complicated models, such as ARIMA(p,d,q) models. This is also exemplified in
the project thesis by Denstad and Ulsund (2015). The backshift operator B is often
called a lag operator in the literature, commonly denoted L.

(1 − φ1B)︸ ︷︷ ︸
Non-Seasonal

AR(1)

Seasonal
AR(1)︷ ︸︸ ︷

(1 − Φ1B
12) (1 −B)︸ ︷︷ ︸

Non-Seasonal
difference

Seasonal
difference︷ ︸︸ ︷

(1 −B12)Zt = (1 + ψ1B)︸ ︷︷ ︸
Non-Seasonal

MA(1)

Seasonal
MA(1)︷ ︸︸ ︷

(1 + Ψ1B
12) εt (5.24)

As one can see the seasonal terms are just simply multiplied with the non-seasonal
terms.

Model identification and forecasting method

In forecasting, one aims to find the forecasting model that in the best way possible
approximates the underlying process one wishes to forecast, such as demand or price.
One must therefore analyze the data foundation on which the forecast is based, and
through testing find the model best suited.

Note that often there is a need for transformations on the forecasted time series in
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order to e.g. stabilize variance in the time series. One method for variance stabilizing
is the power transformation introduced by Box and Cox (1964), another commonly
used variance stabilizing method is the logarithmic transformation (Hyndman and
Athanasopoulos, 2015).

The Box-Jenkins method, named after George E.P. Box and Gwilym M. Jenkins (Box,
Jenkins, et al., 2008), is one method widely used for model identification when fore-
casting is necessary. The Box-Jenkins method finds the best fit of a time-series model
based on past values of the time series one wants to forecast. The original Box-Jenkins
methodology is a three-stage iterative process consisting of the following steps:

1. Identification and selection of an appropriate model
• Detecting stationarity and seasonality
• Identifying p and q

2. Estimation of parameters
• Non-linear estimation problem
• Almost exclusively done by software

3. Model diagnostics
• Model validation
• Repeat the process if results are not satisfactory

The model identifies candidate forecasting models based on the values of the time series
one wants to forecast, and can thereby be used to select the most suitable forecasting
model by comparison of results attained from the different models suggested. This
relates to Step 2 and 3 in the scenario generation procedure where the forecasting of
the time series is the last part of Step 3 where the model found by the Box-Jenkins
method is used. Note that such forecasting is almost exclusively performed using
statistical software suitable for forecasting. For a more detailed description of the
Box-Jenkins methodology, the reader is referred to the project thesis by (Denstad
and Ulsund, 2015). Denstad and Ulsund (2015) also describe more in detail how the
suggested models from the Box-Jenkins methodology can be validated.

5.2.3 Scenario generation by combining a time series model
with the residual term scenarios

The methodology for scenario generation which is used in this thesis are a modi-
fied version of the methodology used by Schütz and Tomasgard (2011), Schütz et al.
(2009a), and Rynning-Tønnesen and Øveraas (2012) which is based on the currently
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unpublished work of Nowak and Tomasgard (2007).

1. Ensure stationarity and remove seasonality in the time series.
2. Identify candidate time series models.
3. Select the best model and forecast the time series with historical data as input.
4. Create residual term scenarios from preferred scenarios generation method.
5. Combining the time series model with the residual term scenarios.

Steps 1 through 3 are related to the forecasting of the time series, described in Section
5.2.2. The scenario generation in Step 4 depends on the time series one wants to fore-
cast, its properties and to some extent the decision makers knowledge and preference
on scenario generation procedure. After a scenario generation method is chosen, the
residual term scenarios are added to the forecasting model, step 5, in the time period
the decision maker faces uncertainty. For an illustration of the procedure from step 3
to 5, see Figure 5.6. Note that the notation is the same as in Section 5.2.2. It should
also be noted that Figure 5.6 uses an stationary, nonseasonal AR-model for the time
series forecast.
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ẑst+j =



µ+
N∑
i=1

φizt+j−i + εt + ε
s
t+1, j = 1

µ+
j−1∑
i=1

φiẑ
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Figure 5.6: Procedure of scenario generation by combining the forecasted time series with
the scenario tree obtained from the moment-matching procedure. The scenario
tree for the prediction error forms the split in the resulting scenario tree used
in the stochastic model.
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Chapter 6

Model Introduction
Based on the problem described in Chapter 4, a stochastic optimization model has
been developed. Before presenting the mathematical model in the following chapter,
the model fundamentals will be explained. Section 6.1 presents a discussion about the
planning horizon, before the chosen representation of time and the information struc-
ture is given in Section 6.2. Next, a conceptual representation of the model is presented
in Section 6.3, while Section 6.4 give a description of the modeled network. Section
6.5 give an overview over the most relevant assumptions and simplifications, before
modeling choices are explained in Section 6.6. Finally, possible model applications are
outlined in Section 6.7.

6.1 Planning horizon and proposed time resolution

When deciding the length of the planning horizon, it is important that the length
of the planning horizon is sufficiently long to avoid making sub-optimal short term
decisions. On the other hand, models with long planning horizons quickly explode in
size, especially when uncertainty is included. Furthermore, the forecasts used will also
be increasingly less accurate, which will affect the added value of a longer planning
horizon negatively. Based on this, planning horizons around a year seem reasonable
as this will capture the seasonal cycles.

To be able to properly model the problem studied in this thesis, time is discretized
over the length of the planning horizon, denoted |T |. The model is developed with
a time resolution of one week or less in mind. Note that using longer time periods,
for instance a month, will make several of the simplifications and assumptions in this
thesis invalid. The user should be aware how the time resolution affects the solution
and must take this into account when analyzing the results.

The model is developed with the intent of being implemented in a rolling horizon
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environment, implying that the model is run with updated information on a regular
basis. A new run may be performed every time new information become available,
when important decisions have to be made, or when a fixed number of time periods
have passed (Swamidass, 2000). As Marine Harvest operate with planning cycles of
6 weeks (Johannesen, T., personal communication, 2015), this implies that running
the model every 6th week should be sufficient. The model could also be run after
irregular incidents, such as mass death due to disease or the introduction of new trade
regulations.

6.2 Representation of time and information struc-
ture

The effects of all decisions are modeled as occurring immediately. For example when
the decisions regarding harvest volumes are made, it is assumed that the harvest
happen instantaneously and the time associated with sorting, harvesting, starving,
slaughtering and processing is thus neglected. This can be partially remedied by adding
average processing and administration times at each location into the transportation
times. The scheduling problem that is present when planning the processing of the
fish is also omitted, as this is outside the scope of this model. Note that the terms
harvesting and slaughtering are used interchangeably throughout the rest of this thesis.

Scenario 2

Scenario 1

Stage1 Stage2

1st stage

decisions

New info
revealed

2nd stage

decisions

Time

Figure 6.1: Illustration of the relation between decision-making and when is information
revealed.
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During the planning horizon, new information will become available. Specifically, in-
formation about weather conditions, disease outbreaks, prices and trends are revealed.
When new information is obtained, the forecasts of future biomass and market devel-
opment can be adjusted. In a stochastic programming model, this is modeled by
including split nodes in the scenario tree. Information relevant to the future decisions
is revealed immediately after the decisions represented by the split node have been
made, as illustrated by Figure 6.1.

Because time is discretized and all decisions are taken in the beginning of each time
period, production cannot begin and sales cannot be conducted in the middle of a time
period. This is simplified into rounding the transportation time to the nearest integer.
An alternative method could have been to distribute a share of the transport volume
to the nearest floored time period and the remaining share to the nearest ceiled time
period.

6.3 Conceptual model

To ease the understanding of the mathematical representation of the model, a concep-
tual model is presented in Table 6.1.

Maximize Profits
Subject to Biomass development constraints

Harvesting constraints
Mass balance constraints
Inventory constraints
Capacity constraints
Contract fulfillment constraints

Table 6.1: Conceptual model

6.3.1 Model objective

The objective of the model is to maximize expected profits. As discussed by Hæreid
(2011), using profit maximization as the objective bears great resemblance to maxi-
mizing biomass output. However, profit maximization has the advantage of also taking
future price development into consideration.
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6.3.2 Decisions

Due to varying frequency in the decision making, the decisions included in the model
are are divided into two subsets, see Table 6.2. The tactical decisions will only be
carried out at the beginning of the planning horizon, and are thus modeled as first
stage decisions, whereas the operational decisions are carried out every time period

Tactical decisions Operational decisions
Which contracts to enter Harvest volumes

Production volumes
Inventory management
Spot purchase and sales volumes
Logistics

Table 6.2: Classification of decisions included in the model

The only tactical decision included in the model is the choice of which new contracts to
enter. To make the model more oriented towards production planning, medium term
slaughter and production plans could also have been included. According to Johan-
nesen, Vinnes and Sværen (personal communication, 2015), Marine Harvest operate
with 6-week slaughter and production plans. As such, the model could have been
extended by including such operational plans as first stage decisions and punishing
deviations from these plans. However, since this thesis focuses on the interaction with
the market, the operational aspect of the problem is considered as outside the scope.

The tactical decisions give the frame within which the operational decisions are made.
The common denominator for the operational decisions is that they are aimed toward
using the harvested fish in the most profitable way possible while at the same time
fulfilling signed contracts.

The operational decisions presented in Table 6.2 are mostly self-explanatory but are
described to elucidate where and when these decisions are valid. The harvest vol-
ume decisions involves deciding the number of fish of each weight class that is to be
harvested at each site, while production volumes are decisions regarding production
volume of each processed product at each processing plant. The inventory manage-
ment decisions are included to control the inventory balances, as well as how much
that should be taken out of the inventories. Spot purchase volumes are decision about
the spot purchase volume of each HOG weight class, whereas spot sales volumes means
deciding what volume to sell of each product in each market. Finally, logistics means
deciding about transportation volumes and by which transportation mode these vol-
umes should be transported. All operational decisions are made every time period.
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Furthermore, there are no explicit incentives for the model to keep a steady production
level. This might lead to large and rapid changes in the production volumes, leading
to solutions not suitable for real operational plans. This could have been enforced by
including constraints for both minimum and maximum production or constraints for
maximum allowed relative change from one time period to the next. Another option
could have been to include a penalty for unused capacity in the objective function.
This is however not included in the model presented in this thesis.

6.4 Network and mass flow description

Figure 6.2: Conceptual illustration of the model network

The value chain is modeled as a set of arc flows within a node network. A set of arcs
connects the nodes into a multi-commodity arc flow network, as there are multiple
product that may flow between each node pair. The set of nodes, N , are divided
into subsets of farming nodes, NF , slaughterhouse nodes, N S , processing nodes, NP

and market nodes, NM . Additionally, the sets Di and Oi, which are the sets of ori-
gins and destinations for node i, are included to control the structure of the network.
As illustrated in Figure 6.2, the fish farming nodes, F, are exclusively connected to
slaughterhouse nodes, S, while the slaughter nodes are connected both to the process-
ing nodes, P, and the market nodes, M. Note that each node in the schematic network
presented below represents a set of nodes. Furthermore, it is important to stress the
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distinction between the two different main uses of fresh HOG salmon:

1. HOG salmon as a singular product, marketed directly to a customer of Marine
Harvest,

2. HOG salmon as raw material, used as input in secondary processing.

A separate arc is defined for each product that could flow between each node pair
and for each transportation mode. While some slaughterhouses perform certain types
of secondary processing, all products other than fresh HOG salmon are defined as
secondary processed products to keep the model structure as simple as possible. As
such, if salmon can be both slaughtered and processed at the same facility, this physical
facility is represented as both a slaughter node and a processing node with both
transportation cost and transportation time between them set to zero.

Fish marketed as fresh HOG salmon is sent directly from a slaughter node to a market
node, whereas fish used as raw material in secondary processing are sent from the
slaughter node to a processing node. As illustrated, processed products enter the in-
ventory before being transported to market. A more thorough discussion on inventory
modeling is found in Section 6.6.6.

Note that the market node, M, is connected to itself as well as to the processing node,
P. This is because fresh HOG salmon purchased in the spot market can either be
sold directly in the same market or in a different market or used as input into the
processing of secondary processed products when it is economically beneficial.

The different products may be transported in different ways, depending on factors
such as perishability and if the fish should be frozen or fresh. Consequently, each arc
also defines the transportation mode that the product is transported by as illustrated
in Figure 6.3 where as subset of all possible arcs between a node pair are shown. Note
that only wellboats are used between farming and slaughter nodes.

6.5 Important assumptions and simplifications

The profit maximization problem modeled can be said to be a combination of a produc-
tion planning problem, including production scheduling and inventory management,
a transportation planning problem and a market allocation problem, implying a need
for an overwhelming degree of details if to be modeled accurately. Therefore, several
assumptions and simplifications have been when developing a mathematical model for
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Figure 6.3: Illustration of how product flow and transportation modes are integrated.

the problem studied in this thesis. Assumptions and simplifications have also been
made where necessary due to limited access to relevant information about industry
specifics.

6.5.1 Uncertainty

In this model, biomass development and prices are included as the uncertain parame-
ters. Biomass development is modeled by two separate sets of uncertain parameters,
one representing growth and another representing the survival rate of the fish. As the
development is highly dependent upon the fish size and on local conditions, both pa-
rameters are given per fish size and per farm. To be able to accurately model the price
relations observed, they are modeled as separate for each product and each market.

6.5.2 Smolt release

As a result of excluding the decisions regarding the freshwater growth of the fish, a
smolt release plan spanning the whole planning horizon is given as input. An alter-
native could have been to let smolt release volumes be decisions within the model.
However, the long production cycle of smolt results in lead times of approximately a
year, meaning smolt ordered within the planning horizon would not arrive until after
the planning horizon has finished. Including such decisions would thus be of limited
value.
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6.5.3 Harvesting and slaughtering

As harvest is included as a decision in the model, it will find an efficient solution when
considering the trade off between harvesting around the economical optimal weight in
terms of return on feed and harvesting when market conditions are favourable.

To ensure that this trade off is modeled as realistically as possible, a caring cost is
included in the objective function. This represent the cost of withholding fish from
harvest and thus having to care for it for an additional time period. The caring cost
consist mostly of feeding costs. As fish of different sizes need different amounts of feed,
the cost is differentiated on fish weight.

To limit the model size, the set of weight classes are divided into two subsets. The
smallest weight classes belong to the subset of weight classes deemed un-harvestable,
and harvest of such fish is not allowed by the model. As fish in practice is never
slaughtered before reaching a minimum weight of one kilogram, and sales of fish of
1-2 kg represent only a very minor portion of total sales, this mot severely affect the
model.

All fixed costs related to farming, such as labour costs, electricity and depreciation, are
excluded from the model as they do not affect the optimal decisions. Costs affiliated
with harvesting and slaughtering, including costs of sorting and transportation of the
fish, are also excluded based on the same argument. Furthermore, the handling of
the fish at each location is not explicitly modeled. Consequently, the processing times
normally associated with sorting, harvesting, transporting, starving and slaughtering
are neglected in the model. Perfect sorting of fish is assumed possible, although the
reader should also be aware of the practical limits in sorting the fish. The harvest is
therefore conducted within a wide weight interval.

As discussed earlier, the salmon industry is subject to regulations regarding fallowing.
However, according to (Evjemo, J.O., personal communication, 2015), fallowing is
rarely performed by emptying the farms of fish. Rather, the farms are towed to other
locations outside of the fallowing region. Because of this and the relatively short
planning horizon and the global scope of the model, fallowing is excluded from the
model.
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6.5.4 Secondary processing

Maximum processing capacities are given for each product, and slaughtering capacities
are given for each slaughtering facility. As such, it is implicitly assumed that the
equipment is so specialized that no cross-use of machinery is allowed, i.e. excess
capacity for producing one product cannot be utilised to produce another product. It
would be possible to extend the model by introducing a set of machine types, and a set
of products that can be produced at each machine type, with constraints controlling
that only one product is produced at a time. Then, capacity could be given per
machine type. However, as this is a higher level model developed to provide decision
support for the senior management, such details are omitted. It is assumed that there
are no minimum production volume requirements for any of the processing facilities.

6.5.5 Spot prices and spot transactions

Asheim et al. (2011) conclude that the price of farmed salmon has a limited effect on
supplied quantity, giving a highly inelastic short-run supply, and that the biomass and
seasonal factors are the main determinants of shifts in salmon supply in the short term.
Based on this and the fact that Marine Harvest is only one of multiple suppliers, it
is assumed that price is independent of Marine Harvest’s supply. As Marine Harvest
is the worlds largest salmon producer, this assumption cannot be regarded as fully
realistic. However, as long as the model does not give extreme production levels, the
levels supplied are assumed to have no effect on the current market situation. Further,
it is assumed that Marine Harvest will never have a supply surpassing the total demand
of the market. Consequently, the demand in the spot market is modeled as infinite.

As long as quality is maintained, weight is the most important factor in pricing.
Consequently, weight is the only salmon characteristic included in the model, omitting
other characteristics such as place of origin. Other factors, such as place of origin, are
assumed to have no effect on the price obtained. As discussed in Chapter 3, salmon
achieve different prices in different geographical markets. Each product is therefore
modeled as having a separate price in each market in each time period.

The producer has the option of buying HOG from the spot market. In order to
reduce arbitrage opportunities and to model the transaction costs affiliated with spot
purchases, the price for selling and buying in the spot market are modeled as two
different prices, where the price for buying exceeds the price obtained when selling.
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6.5.6 Long-term contracts

It is usually the customer that approaches the producer with an offer, not the other way
around (Thorbeck, S., personal communication, 2015). Consequently, all contracts are
modeled as being initiated by the customer. As discussed by Hæreid (2011), contracts
in the model can be interpreted in one of two ways. The set of contracts modeled can
be seen as a representation of the contracts offered by potential customers. Another
angle is to see the contracts included in the solution as a tool for guiding contract
negotiations, in that they provide valuable insight in what contract characteristics
that have the best potential for generating profits for the company.

The user will not have complete knowledge ahead of time about the contract charac-
teristics. Nevertheless, all contract characteristics except for price are modeled deter-
ministically to limit the model complexity.

Contracts are modeled as only being offered in the first stage. As the model should
be implemented in a rolling horizon environment, the first stage contract decisions
are thus the most important decisions in the model. Finally, including the contract
decisions in the first stage gives the model more of a tactical approach.

If a contract is entered, the full amount must be delivered in the time period(s) specified
in the contract. This is a simplification, as it is often possible to re-negotiate a contract
during its proceeding. For instance, delaying the delivery time or deviating from the
HOG weight class specified in the contract are often accepted by the counter-party
if delivery problems arises (Helgesen, M., personal communication, 2015). As such,
some of the contracts may not be entered because of infeasible terms in one or more
scenarios, even though the contract price is beneficial. This flexibility could have been
included in model, but is regarded as unnecessary when considering the little available
information about contracts.

Another factor to consider is the aforementioned variety of creative contract designs
that often occur in the salmon farming industry. In this model, the following contract
schemes are considered:

• Fixed price contracts
• Adjustable price contracts
• Partly adjustable price contracts

In fixed price contracts, the price remains fixed throughout the contract duration, while
the seller and buyer initially agree on a price that can later be adjusted according to the
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spot price level. The price will then be adjusted by a relative share of the difference
agreed upon in the contract terms. For instance, the buyer and seller could agree
upon a price of 30 NOK/kg. If the realized spot price becomes 50 NOK/kg and the
adjustment factor is 0.5, the buyer would end up paying 40 NOK/kg.

Partly adjustable contracts are similar to adjustable price contracts in terms of the
price being adjusted according to the spot price. The only difference is that no ad-
justment is made if the differential is within a predefined interval given. The buyer
and seller could for example agree that the price would only should be adjusted for
the difference exceeding 5 NOK. If the same prices and the same adjustment factor
are used, the buyer would now pay 30 + ((50− 30)− 5) · 0.5 = 37.5 NOK/kg.

This comparison and the following adjustment is modeled as taking place simultaneous
to contract delivery. In contracts involving multiple deliveries, the price will adjusted
for each delivery. Furthermore, there are assumed that there are only one product
and one included in every contract. This may however limit the contract flexibility
somewhat, as the buyer may accept substitutes if there is limited supply of the product
included in the model.

As will be discussed in further detail in Section 6.6, the model assumes a risk neutral
producer. Consequently, neither volume only contracts or futures are included in
the model formulation. Furthermore, a set of initial contracts are included as initial
conditions. As this is not a decision, but a requirement, the revenue from initial
contracts are not included in the objective function.

6.6 Modeling choices

When developing the model presented in this thesis, several modeling choices have
beeen made. These choices will be discussed in the following section.

6.6.1 Risk aversion

When the profits are maximized in the objective function, the producer is implicitly
assumed risk neutral. However, Marine Harvest can be assumed risk averse, as they
have a large focus on selling much of its production through contracts, and are also
investing in the production of value added products, which are known to have less mar-
gins, but also less volatility than fresh HOG salmon (Marine Harvest, 2014a; Marine
Harvest, 2013).

85



Chapter 6. Model Introduction

The risk avertion could then be implemented with the use of multi-objective program-
ming. Multi-objective programming has proven useful when a problem is characterized
by the presence of many conflicting objectives (Marler and Arora, 2004). Denstad and
Ulsund (2015) presents a problem where such multi-objective solution methods shows
to be useful. Their objective was to maximize short term profits while at the same
time minimizing risk of losing customers through maximizing customer satisfaction.
The same methods could have been implemented for the problem faced in this thesis
by including an risk minimizing objective in a multi-objective objective function. The
reader is referred to Marler and Arora (2004) and Denstad and Ulsund (2015) for a
detailed description of different multi-objective solution methods.

Contracts can for example be a useful measure when considering different measures
for risk aversion. However, there are the literature proposes better risk measures than
such crude measures, whee value at risk is one of them. Value at risk (VaR), is a single
statistical measure of possible portfolio losses (Linsmeier and Pearson, 2000). VaR is
thus a measure of losses resulting from normal market movements, and is simply a way
to describe the magnitude of likely losses in a portfolio by aggregating all of the risks
into a single number (Linsmeier and Pearson, 2000). However, minimization of VaR
is not straightforward (Rockafellar and Uryasev, 2000). An inclusion of VaR would
therefore most likely incorporate a separate optimization model which would require
a different approach than the one used in this thesis.

Any option including risk aversion would increase the complexity of the model. Fur-
thermore, it is important to give correct values of target levels, premiums and punish-
ments in order to obtain a realistic representation of the reality. If these are not scaled
correctly, it will severely affect the solution quality. Thus, modeling risk aversion de-
mand more from the user. Because risk aversion is not included in this thesis, the
model solution should be used as one of several input in the decision process, where
other factors should include qualitative considerations as well as risk considerations.
Not including risk aversion will affect the model solution, as the model will not put
any extra value on risk reduction measures.

6.6.2 Biomass development

In order to describe the biomass development, the growth model developed by Hæreid
(2011) is included in the complete model. Below, the characteristics of this growth
model are explained.
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Classification of fish

The industry classifies fish using a set of characteristics such as quality, age, weight,
vaccines, feed type etc. Of these characteristics, weight is the only characteristic
included in the model that differentiate the fish.

In order to avoid modeling individual fish, weight is discretizised. As such, live fish
are modeled as belonging to a farming weight class v in the set of farming weight
classes V. Note that each weight class v represents a weight interval, so that the fish
belonging to v is all fish with a weights that fall within this interval. In the model
however, each weight class is defined by one specific weight, denoted Gv, representing
the average weight of all fish belonging to weight class v. Consequently, the weight
interval represented by a weight class v is given by an upper bound calculated as
Gv+1+Gv

2 and a lower bound calculated as Gv+Gv−1
2 . By classifying each individual

fish as part of a farming weight class v with a defined weight, the modeling of the
biomass and its growth is greatly simplified.

Hæreid (2011) shows that the discretization into weight classes must be sufficiently
fine to get acceptable accuracy for the model. If the weight classes consist of a too
large weight interval, fish can get stuck in one weight class without ever growing
out of it. Consequently, it is important to choose sufficiently narrow intervals wen
implementing the model. For a more detailed discussion of considerations regarding
effects of different weight interval sizes, the reader is referred to Hæreid (2011).

When the fish is slaughtered and later marketed, such a fine discretization of weight
is no longer necessary. To establish a connection between the way weight is treated
in the farms and in the market, fish is classified in two ways. As soon as the fish is
slaughtered, the fish is considered as part of a HOG weight class p that belongs to the
set of HOG weight classes, PHOG. All farming weight classes included in HOG weight
class p, are defined by the set VHp .

Salt water growth

When modeling the biomass development, it is important to capture the uncertainty
in future biomass that comes from the factors presented in Section 2.2. Consequently,
growth is modeled as stochastic. The formulation is heavily inspired by a growth
model developed by Hæreid (2011).

In short, growth is modeled by moving the fish between weight classes, so that a fish
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advance from one class to a larger weight class as time passes. The growth in kilograms
of a fish in a specified weight class is given by a stochastic parameter. The rate at
which a fish grow depend upon the size, i.e. the weight class of the fish. Growth is
also dependent upon location specific factors such as sea water temperature and light
conditions, and these conditions vary with time. Therefore, the variable representing
growth is defined for all combinations of weight classes v, farms f , time periods t and
scenarios s, and is denoted σvits.

The number of fish in weight class v at the beginning of time period t in farm f in
scenario s is given by the variable qvits. At the beginning of each period, the number
of fish belonging to each fish class is updated based on growth, mortality and escape
during the previous time period. Mortality and escape are modeled jointly by the
random variable εvits, representing the survival rate for a fish in fish class v in farm
i in period t in scenario s. To get the number of fish currently in weight class v,
the number of smolt of weight class v released is added and the number harvested is
subtracted.

Calculating the weight of a fish at the beginning of time period t is done by adding
the growth during period t− 1, given by σvits, to the initial weight of the fish in time
period t−1, given by Gv. The new weight of the fish will fall between the characteristic
weight of two weight classes, as represented below. Therefore, additional calculations
must be made in order to rightly distribute the fish into new fish classes.

Gv ≤ (Gv + σvits) ≤ Gv̄

If the fish of weight class v at the end of a time period t has a weight falling between
the weight characterising weight class v and v̄, this is handled by distributing a share
of the fish into v̄, and another share into v. Given the growth, the distribution shares
for fish starting out as fish class v in period t are calculated in the following way:

αvvits = Gv̄ − (Gv + σvis)
Gv̄ −Gv

αvv̄its =
(Gv + σvits)−Gv

Gv̄ −Gv

The calculations of the distribution shares are part of the pre-processing. They are
therefore not included as restrictions in the model, but are presented here to facilitate
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understanding of the basis on which the model operate.

Upon working on this thesis, an error in how the these shares were calculated was
discovered in the work of Hæreid (2011), where the shares were flipped in the original
formulation. It is worth noting that this may have been a significant contributor to the
detailed weight discretization advocated by (Hæreid, 2011). This matter is however
not investigated further, as it is regarded as outside of the scope of this thesis.

Figure 6.4: Illustration of the growth model

In reality, fish growth rates vary both across and within weight classes. In the model,
the variation in growth within a weight class is ignored. All fish in a weight class v
are assumed to grow at the same rate, making the weight of each fish in v identical
and equal to Gv.

As qvits represent the number of individual fish, updating the value of qvits is in reality
an integer-programming problem. To avoid the complexity involved with integer con-
straints, the variables qvits are allowed to take on real values. Due to the magnitude
of the number of the fish, this is a reasonable simplification.

Finally, the number of fish distributed into weight class v after belonging to weight
class v the in t − 1 is calculated by first multiplying the number of fish in v at the
beginning of t − 1 by the survival rate ζvits, representing the share of fish left after
adjusting for mortality and escape. Then, this number is multiplied by the distribution
share αvv̄fts to finally obtain the number of fish distributed into weight class v as a
result of growth in time period t− 1.

Biomass level

The total biomass available is tightly related to the salt water growth described above.
However, additional factors affect the biomass level. Sumnmarized, the number of fish
belonging to weight class v at farm i at the beginning of any given time period t,
denoted qvits, is determined by three factors:

1. The number of fish distributed into weight class v as a result of growth in time
period t− 1 adjusted for the survival rate
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2. The number of fish of weight class v harvested in period t

3. The number of smolt of weight class v released in period t

6.6.3 Logistics

As this is a model which purpose is to generate guidelines for an entire corporation,
there is no need for modeling individual vehicles. As such there is assumed that there
will be available vehicles upon request. Transportation capacities and times are given
for each transportation mode, where their values represent the average capacities and
times for each node. Note that these transport capacities and times will be measures
of low quality if the implemented network is too crude by aggressively combining a
large set of individual facilities into one region. This should be taken into account
when analyzing the solution, as using average values can give unrealistic solutions.

The salmon producer normally pay for transportation to the customer. Transportation
costs are therefore included in the model objective. The producer do not normally
own the transportation vessels, but rather hires capacity from a specialised logistics
company (Helgesen, M., Aandahl, P.T., personal communication, 2015). As such, the
producer often have to commit to use a certain minimum amount of transportation
capacity to get a fair deal with a logistics operator. To model this relation, a punishing
term for using too little capacity is included in the objective function. This punishment
is meant to represent the economic sanctions presented in the contract as well as the
loss of goodwill from the logistics company. Due to lack of information of the signed
logistic contracts, it is assumed that the company will have one contract per mode so
that the penalty term will be mode specific.

Additionally, it is possible to hire extra capacity in peak periods. Consequently, a sur-
plus variable is introduced representing the amount of extra capacity hired in one time
period. Hiring extra capacity at short notice will induce extra costs, both in terms of
transaction costs and because external suppliers are expected to act opportunistically
by demanding prices surpassing the marginal costs incurred by using capacity hired
through long term contracts. Thus, transportation costs are set higher for the extra
capacity than when using internal capacity for the same mode and distance.

Transportation capacities are defined per arc per transport mode. This means it is
implicitly assumed that all vessels are able to transport all types of products. Fur-
thermore, there is known to be a relatively predictable seasonal patterns in volumes
traded in the salmon industry. This indicates that the salmon producer may have
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long-term contracts with varying available capacity throughout the year, and as such,
the available capacity is modeled as time dependent.

To simplify the model formulation and limit the amount of input data needed, no
shipments underway in the beginning of the planning horizon are included in the
model formulation. This may give some unrealistic starting effects, as the model
would need some time periods to adjust to normal production. However, this is not
included because of the lack of data.

6.6.4 Product age and durability

As salmon products are perishable, it is important to include the age of the products in
the model formulation, especially since different products deteriorate at different rates.
However, accurately keeping track of the age of different batches implies introducing a
very large set of age variables, which implies a much more complex model. Instead, age
is treated implicitly by exploiting the structure of the node flow network and through
the introduction of artificial inventories.

As all fresh HOG salmon is sent directly from the slaughter node to the market node,
ensuring that no expired products are sent to the market can be easily done by only
including feasible arcs in terms of transportation time. Processed products on the
other hand, cannot be treated in a similar fashion as they flow across two separate
arcs. This is because it is the sum of the time to transport the raw material to the pro-
cessing facility, the time spent at the processing facility and the time to transport the
finished product to the market that must be below a certain limit. Consequently, the
product can travel along two arcs that themselves are feasible, while the combination
is infeasible. This concept is illustrated below in Figure 6.5:

In Figure 6.5, the F represents a farming node, P represents a processing node and M
represents a market node and all arcs included in the figure are individually feasible
in terms of transportation time. However, since the time it takes to travel each arc
can vary from a matter of hours and up to over a week, the combination of two slow
transportation modes from F to M might result in a total time in transit exceeding
the durability of the product for fresh processed products such as fresh fillets. As an
example, it will only be feasible to choose boat (arc c) between F and P if airfreight
(arc d) is chosen for the latter part.

To ensure feasibility in such a formulation, one option would be to include precedence
constraints. However, since this will introduce a relatively large extra set of constraints,
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Figure 6.5: Illustration used to highlight the challenge of modeling age of processed prod-
ucts.

a reformulation into a path flow formulation for this part of the model is chosen instead.

Furthermore, as the durability varies greatly between the different processed products,
from days for perishable products such as fresh fillets, to months for the more durable
processed products, such as smoked salmon and frozen salmon products, the impor-
tance of controlling the age varies between the different products. Thus, processed
products are divided into the two subset perishable processed products and durable
processed products, where the path flow reformulation is only performed on the former
product group.

Both these modeling choices are explained in further detail below.

1. Perishable and durable products

Perishable products are fresh processed products, such as fresh fillets, that have about
the same durability as fresh HOG salmon. Durable processed products on the other
hand are all non-fresh processed products, such as frozen, cured or smoked products.
The rationale behind dividing processed products further into perishable and durable
is that these products groups differ in two significant ways.

Firstly, upon beginning the production process of perishable products it is already
decided where and when this product should be sold (Helgesen, M., personal com-
munication, 2015). Because of the short durability it is therefore assumed that there
exist no stock of such products beyond a temporary stock of products sent out the
production day or shortly thereafter. Durable products on the other hand are often
produced to stock, and the inventory are sometimes used as a mean to delay sales
when prices are low in hope of better prices in the future (Aandahl, P.T., personal
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Figure 6.6: Mass flow with paths for perishable processed products and spot purchase.

communication, 2015).

Secondly, durability is dependent upon different stages in the production cycle for
the two different sets of products. For durable processed products it is assumed that
production date determines the durability, whereas the slaughter date determines the
durability for perishable processed products. Hence, the durability of durable pro-
cessed products are controlled by the inclusion of artificial inventories, which will be
explained in further detail in Section 6.6.6, whereas the transportation time to the
processing facility is disregarded.

2. Path flow formulation for perishable products

For perishable processed products, a path flow formulation is used to control the total
time that passes from time of slaughter to delivery. By only including paths that have
a feasible total transport time, durability of these products is ensured without adding
any age constraints. While it may be unconventional to combine an arc flow and a
path flow formulation in one model, this is regarded as the best way to control the
age of perishable processed products without increasing the number of variables and
constraints excessively.

Each path specify a path from acquiring the raw material and to selling the finished
product in the market place. Here, two sets of paths are defined, one from slaughter
to market and one form market to market. Both go through a processing node and
both include two individual transportation modes for each of the two arcs in the path.

These two sets of paths are illustrated in Figure 6.6, where the first set of paths are
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illustrated by the lower red arc. The latter set of paths are included so that also
HOG purchased in the market can be utilized to produce both perishable and durable
processed products. This path flow formulation exploits the strict structure of the
network, where all paths consists of exactly three nodes and two modes. As such,
the number of possible paths is SP ∗ PM + 2MP , which is significantly less than
the number of possible paths in the complete network. This structure can also be
exploited when generating feasible paths, as the algorithm only need to combine two
and two arcs.

6.6.5 Modeling production

In this problem, the production of processed products can be modeled as a set of
splitting processes based on the idea presented by Schütz et al. (2009b), where they
represent the value chain as a sequence of production processes rather than a network
of production facilities. Here, a distinction is made between combining and splitting
processes, where the latter is the relevant process for the problem studied in this thesis.

Generally, a HOG weight class can be used as input for more than one product, and
a product can be produced using one of several HOG weight classes. This can be
illustrated by an example involving 3 raw material products and 3 finished products.
Let raw material 1 be HOG of 2-3 kg, raw material 2 be HOG of 3-4 kg, and raw
material 3 be HOG of 4-5 kg. Then, let product 1 be 50 g fillets, product 2 be 100 g
fillets and product 3 be 200 g fillets. Let’s assume that a 50 g fillet can be produced
using either 2-3 kg or 3-4 kg HOG, 100 g fillets can be produced using any HOG size,
and that the 200 g fillets can only be produced using the largest HOG size.

A challenge that arises in formulating the mass balance in the traditional is that
several of the variables in the example above would have been counted in more than
one constraint. To resolve this challenge, a set of production processes B is introduced.
Each production process defines an input product, p, and an output product, q, where
p is a HOG weight class, and q is a processed product.

A production process is defined by both the input and the output of the process. For
example, producing 50 g smoked salmon portions using 3-4 kg HOG as raw material
would be defined as one production process, whereas producing the same 50 g portions
of smoked salmon using a 4-5 kg HOG as raw material would be defined as a separate
production process.

For illustration, the set of processes B in the example above would consist of the
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following processes:

B1 : 2− 3 kg→ 50 g fillet B2 : 2− 3 kg→ 100 g fillet

B3 : 3− 4 kg→ 50 g fillet B4 : 3− 4 kg→ 100 g fillet

B5 : 4− 5 kg→ 100 g fillet B6 : 4− 5 kg→ 200 g fillet

Furthermore, the sets Bpq and Up is introduced. The former is a subset of B represent-
ing all production processes where p is input and q is output. The latter represents
a reversed Bill of Materials of product p, meaning all products q that can be made
using p as input. Then, the following set can be calculated:

BHOG 2-3 : {process 1, process 2}, UHOG 2-3 : {50 g fillet, 100 g fillet}

BHOG 3-4 : {process 3, process 4}, UHOG 3-4 : {50 g fillet, 100 g fillet}

BHOG 4-5 : {process 5, process 6}, UHOG 4-5 : {100 g fillet, 200 g fillet}

By combining these sets, the challenge described is handled. Let yqb be a decision
variable representing the production volume of a product q produced by use of process
b. Then, the sum ∑

q∈Up

∑
b∈Bpq

yqb p ∈ PHOG (6.1)

will represent the total volume of a raw material p used in the production.

6.6.6 Inventory

As previously discussed, a clear distinction between perishable and durable processed
products is made in this thesis because of the different importance of controlling the
durability for the two product groups. However, it is still important to control how long
the product spend in the inventory. The proposed solution to this problem is to divide
the physical inventory into a set of artificial inventories where each artificial inventory
represents a time interval, for example products between one and two months old.
The artificial inventories do not need to be of equal length. A finer time discretization
can therefore be used for time intervals of extra importance, for instance close to the
product’s expiry date.

For each time period, the oldest product batches in each artificial inventory are moved
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Figure 6.7: Illustration of the artificial inventories.

to the next artificial inventory, as illustrated in Figure 6.7. Here, ia represent the ath

artificial inventory, where i1 consists of the products with the lowest age. The products
can either remain in the same artificial inventory, be sent to the next artificial inventory
or sent to the market. As such, the product volume in each artificial inventory can
be calculated as the sum of the remaining share from the previous time period and
the share sent from previous artificial inventory, minus the volume sent to the market.
Note that the produced volume of each product is defined to always enter the first
artificial inventory and that products can be sent to the market from all artificial
inventories, although a market arc is only included for the last artificial inventory in
the figure.

To update the inventory levels, an inventory distribution share Baa is introduced,
which defines the share of artificial inventory a that is moved to artificial inventory
a from one time period to the next. As artificial inventory lengths shorter than the
length of one time period will not improve the accuracy of the model, the complete
matrix of inventory distributions, B, can be explicitly defined as follows:

B =


1− |t|T1

|t|
T1

0 . . . 0
0 1− |t|T2

|t|
T2

. . . 0
...

...
... . . . ...

0 0 0 . . . 1− |t|Tn



Here, |t| represents the length of the time period and Ta represents the length of the
age interval for artificial inventory a. Thus, the diagonal represents the inventory share
that remains in each artificial inventory from one time period and to the next, whereas
the off-diagonal represents the inventory share that is moved to the next artificial
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inventory. With an artificial inventory length of 4 weeks, the remaining share and
moved share becomes 0.75 and 0.25 respectively. Note that this formulation implicitly
disposes expired products because |t|Tn is not included anywhere in the matrix.

An important advantage of this formulation is that the durability requirements can
be implicitly controlled by only defining a feasible set of artificial inventories for each
product and only allowing feasible combinations of market flows and artificial inven-
tories. As such, arcs with a high travel time cannot be defined for the last artificial
inventories. Further, because of different storing requirements, where some products
are stored chilled whereas others are stored frozen, there is an individual set of feasible
artificial inventories for each product.

In this formulation, explicit durability constraints are traded in exchange for a larger
set of inventory constraints and a larger set of flow variables from the processing
locations. How large the penalty becomes depends upon the number of artificial
inventories included and the number of feasible combinations of artificial inventories
and flow variables to the market.

Note that since this model does not differentiate on quality, the model is indifferent to
when the products reaches the markets as long as it is within the time requirements
set by the decision-maker. Furthermore, as of the authors’ knowledge, there is no
empirical evidence that suggest this to be an important factor in setting the price,
given that the product reaches the market within a reasonable time frame. However,
the model will implicitly try to avoid to use the last artificial inventory as this will
automatically dispose a share of the products. This might be somewhat unrealistic if
the last artificial inventory spans a large time interval, but can be remedied with the
use of a shorter time interval for the last artificial inventory. Furthermore, by including
individual end values for each artificial and each product, the effect of stocking up a
lot of old products at the end of the planning horizon can be avoided.

6.6.7 End of horizon boundary conditions

Measures should be taken to control the end of horizon behaviour of the model. If no
such incentives or restrictions were included, the optimal solution would always be to
harvest all biomass and sell all products in inventory in the final time period.

There are in principle three ways to handle this. One option is to require a certain
biomass and inventory level after in the last period, another is to set a desired end
level and include punishment terms in the objective function for deviations. A last
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option is to price the biomass and inventory that is left at the end of the last period
at a given value.

Alternative 1: Setting minimum levels

By requiring a minimum volume, one get the benefit of full control. The downside of
this approach is that there will be no incentives to maintain higher levels of biomass
and inventory than the ones specified, so that all optimal solutions will have these
exact levels. Furthermore, in the specific case of modeling the salmon farming value
chain minimum restrictions on biomass could lead to infeasibilities, for instance in the
event of mass death due to a disease outbreak.

Alternative 2: Setting target levels

The benefit of setting a desired end level and including a punishment term for deviating
from this in the objective is that one maintain some control while restricting only
the model’s flexibility through a punishment in the objective function. The degree
of aggregation will also affect flexibility. As such, control is maintained. Here, long
term plans could be used as end values. Finding the optimal weight on the punishment
might however prove a challenge. If the punishment is set too high, the model flexibility
diminishes, up to the point where the solution always include the exact desired level.
If the punishment is set too low, the end of horizon behaviour is too loosely controlled
and one might experience extreme solutions in the last time period. Another downside
of this approach is that you lose the realistic representation of the economic trade off
made by the producer at the end of the planning horizon.

Alternative 3: Including expected salmon and inventory value in the ob-
jective function

By altering the objective function by including the expected future value of salmon and
inventory withheld in the last period, one explicitly includes the opportunity cost from
leaving the fish and products. This method has the advantage of not restricting the
flexibility of the model, and have been widely applied in stochastic models for water
power planning, see for instance (Hveding, 1968; Steinsbø, 2008; Stage and Larsson,
1961). The approach models the economic trade off made by the producer in a more
realistic way than the previous two. The producer wishes to withhold biomass if the
expected salmon value at some point in the future exceeds the differential between the
salmon value today and the cost of keeping the fish alive until that time. This trade
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off is illustrated in Figure 6.8. For inventory, the rationale is the same, except the
inventory cost then trades places with the cost of keeping fish alive.

The drawback of the model is that calculating the pricing of the withheld products
is not straightforward, and might require considerable computational efforts. In com-
parison, when stating a final level using the required volume approach, it is often
easier and more intuitive than to find the correct value. It might be natural to require
the final reservoir level to equal either some historical mean for the date in question,
or some level forecasted by a separate model, such as a strategic salmon production
model.

Figure 6.8: Illustration of the economic rationale of withholding biomass

Selection of alternative

Based on the discussion presented, the expected salmon value approach was chosen, as
this approach gives a good representation of the economic trade-off facing the producer
while not limiting model flexibility.

For the objective value to be a more realistic representation of the financial perfor-
mance of the organization, there should be an adjustment for the expected values of
the initial biomass and inventory levels. However, the goal is not for the objective
value to be an accurate measure of financial performance, and as are constant values
such an adjustment would not affect the solution. Consequently, no such adjustment
is made.

6.7 Model applications

By running the model regularly, the producer should be able to achieve multiple
benefits:
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• Identify the most beneficial contract structures, and thereby uncover insight
intowhich contracts to enter

• Identify parts of the value chain with under- or over-capacity
• Indicate to what degree the transportation policy is beneficial in terms of what

transportation modes to use by comparing transportation mode mix in the model
solution and in practice

• Disruption management, for example in situations similar to the Chile ISA crisis
of 2008 or the Russian trade ban of 2014

Although the model is developed with a global, vertically integrated company in mind,
less integrated companies controlling only part of the value chain could also benefit
from the model. As discussed in Section 4.1, the model solution is meant to be used
as decision support in making centralized production and sales plans at a senior level.

The model can also be adapted to perform various tests. An example would be to
relax a set of restrictions such as capacity restrictions to perform cost/benefit analy-
ses regarding future capacity investments. Another example is to run the model when
relaxing all constraints regarding government regulations. Then, numeric values repre-
senting the potential profit gains if these restrictions were changed or lifted completely
could be obtained.

The stochastic approach is demanding in terms of data, but as enterprise resource
planning (ERP) systems and other software collecting and storing data are becoming
more and more commonplace, much of the data needed are already available. It is
required that the company has data on biomass volumes and inventory levels available.
As producers need to keep track of the biomass development and volumes in inventory
for other purposes, this should not pose a challenge. In addition, data on internal
production and transportation times and costs and capacities are also required.
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Model formulation
In this chapter, the general mathematical model is presented. All sets, indices, con-
stants and variables used in to describe the mathematical model are defined in Section
7.1. A presentation of the objective function is given in Section 7.2, whereas all con-
straints are described in Section 7.3. As all constraint apply to all scenarios s, the
reader should be aware that the index s is omitted from the objective function and
the constraints due to a relative high number of indices in most variables and to ease
reading.

7.1 Definitions

Sets are denoted by capital, calligraphic letters with corresponding indexes and de-
terministic data are capitalized. Decision variables are denoted in lower case Latin
letters, while Greek letters are used to denote stochastic data. All volumes refer to
weight given in kilograms, while prices and costs are per kilogram.

7.1.1 Sets and indices

Time and scenarios

T - Set of time periods t
S - Set of scenarios s
K - Set of split nodes k in the scenario tree
Sk - Set of scenarios passing through split node k

Nodes and transportation

R - Set of farming regions r
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N - Set of all network nodes i, j
NF - Set of farming nodes i, NF ⊂ N
NF
r - Set of farming nodes in farming region r, NF

r ⊂ NF

NP - Set of processing nodes i, NP ⊂ N
NP
p - Set of processing nodes that can produce product p, NP

p ⊂ NP

N S - Set of slaughtering nodes i, N S ⊂ N
NM - Set of market nodes i, NM ⊂ N
M - Set of transportation modes m
F - Set of paths f used for modelling transportation of perishable fresh

products
Fi - Set of paths that include node i, Fi ⊂ F
Fijm - Set of paths that travel along arc (i, j) by transportation mode m,

Fijm ⊂ F
Oi - Set of origins for node i, Oi ⊂ N
Di - Set of destinations for node i, Di ⊂ N
OFi - Set of paths originating in node i
DFi - Set of paths arriving in node i

Products and inventory

V - Set of fish weight classes v
VH - Set of fish weight classes v that are allowed to be harvested, VH ⊂ V
VHp - Set of fish weight classes included in HOG weight class p, VHp ⊂ VH

P - Set of all products p, q
PHOG - Set of all fresh HOG weight classes p, PHOG ⊂ P
PP - Set of all perishable processed products p, PP ⊂ P
PDUR - Set of all durable processed products p, PDUR ⊂ P
L - Set of inventory types l
PLl - Set of products that can be stored in inventory type l, PLl ⊂ PDUR

A - Set of all artificial inventories a, differentiated by different product
age intervals

APp - Set of artificial inventories related to product p, APp ⊂ A
B - Set of all production processes b
Bpq - Set of all production processes having HOG class p as input and

processed product q as output, Bpq ⊂ B
Up - Set of all processed products q that can be produced using HOG

weight class p as raw material
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Contracts

C - Set of contracts offered during the planning horizon
CF - Set of fixed price contracts, CF ⊂ C
CA - Set of adjustable contracts, CA ⊂ C
CPA - Set of partly adjustable contracts, CPA ⊂ C
CTc - Set of time periods in which a delivery to contract c is made
Cpit - Set of contracts involving product p and market i, having a delivery

in time perid t, Cpit ⊂ C, t ⊂ CTc

7.1.2 Deterministic data

Initial conditions

B0
vi - Initial biomass given by number of fish of farming weight class v at

farm i

I0
pia - Initial inventory of product p in artificial inventory a at processing

facility i
Epit - Total volume of product p to be delivered in market i in period t

according to current contract obligations
Rvit - Number of smolt of farming weight class v to be released at farm i

at the beginning of time period t

Capacities, times and costs

NF
i - Maximum allowable biomass at farming node i

NR
r - Maximum allowable biomass in farming region r

SCAPi - Slaughtering capacity of slaughterhouse i, measured in number of fish
per time period

CCv - Caring cost of keeping one kg of fish of farm weight class v one more
time period

CPp - Cost of producing one kilogram of processed product group p

CTARpij - Tariff for product p transported from node i to node j
CIli - Cost of keeping one kilogram of processed product in inventory type

l for one time period at processing node i
CTijm - Transportation cost from node i to node j using transportation mode

m
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CFpf - Combined transportation and tariff costs when transporting product
p across path f

ICAPil - Inventory capacity of inventory type l at processing facility i
PCAPpi - Processing capacity; maximum number of kilograms of processed

product p that can be produced at processing facility i per time pe-
riod

TTijm - Transportation time from node i to node j using transportation mode
m

TFf - Transportation time from stating point to processing node in path f
TCAPijmt - Maximum transportation capacity from node i to node j using trans-

portation mode m in time period t

TLIMm - Minimum transportation capacity using transportation mode m per
time period the producer is committed to

Contracts

Qc - Volume to be delivered to fulfill contract c at each delivery
Uc - Price of contract c
ACc - Adjustment factor: The factor with which the relevant price differ-

ence is multiplied by when adjusting the price of contract c
Fc - Adjustment limit: The value in NOK the spot price and contract

price for contract c must differ for the contract price to be adjusted,
c ∈ CA

MC
c - Market in contract c

PCc - Product in contract c

Punishment parameters

KTMAX
m - Punishment term per kilogram transported using transportation

mode m after surpassing the maximum capacity m
KTMIN
m - Punishment term per kilogram the transported volume using trans-

portation mode m falls short of the minimum use of m the producer
is bound by

Parameters used to control end of horizon effects

V Bv - Expected future value of one fish of farming weight class v
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V Pv - Expected future value of one kilogram of processed product p

Other parameters

πs - Probability for scenario s
Qk - The time period corresponding to split node k
Gv - Weight of fish belonging to weight class v
LS - Slaughtering yield, defined as the weight of a slaughtered fish in per-

centage of a live fish
LPb - Process yield, defined as the volume of processed product q produced

using process b given as a percentage of the volume of raw material
p going into the process

Baa - Share of artificial inventory a that is moved to artificial inventory a
from one time period to the next

7.1.3 Stochastic data

σvits - Growth in kilograms for fish of farming weight class v at farm i in
time period t and scenario s

ζvits - Survival rate for fish in weight class v at farm i in time period t and
scenario s

αvvits - Share of fish in weight class v that has grown to become part of class
v due to their growth at farm i in time period t and scenario s (v ≤ v)

ρSpits - Spot sales price for product p in market i in time period t and scenario
s

ρBpits - Spot purchase price for HOG salmon of class p in market i in time
period t in scenario s

ρCc - Contract price for contract c when the contract is made available

7.1.4 Variables

Helping variables

qvits - Number of fish belonging to fish weight class v at farm i in time
period t in scenario s

ipitas - Volume of product p stocked in artificial inventory a at processing
node i at the end of time period t in scenario s
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ocs - Revenue generated form contract c in scenario s
aMAX
ijmts - Number of kilograms the volume of products transported by trans-

portation mode m in time period t in scenario s that falls short of
the minimum commitment to using m

aMIN
mts - Number of kilograms of products transported by transportation mode

m in time period t in scenario s surpassing the maximum capacity of
m

zCcpit - Volume of product p sold trough contract c in market i in period t

Decision variables

hvits - Number of fish harvested in HOG weight class v and harvested at
farm i in time period t in scenario s

xLIV E
pijtt̄s

- Volume of live fish belonging to HOG weight class p sent from farming
node i to slaughter node j in time period t, with arrival in time period
t̄ (t ≤ t̄)

xHOG
pijmtt̄s

- Volume of fresh HOG of weight class p ∈ PHOG sent from node i to
node j by transportation mode m in time period t in scenario s, with
arrival in time period t̄ (t ≤ t̄)

xRAW
pijmtt̄s

- Volume of fresh HOG dedicated to be used as raw material for durable
products, sent from slaughter node i to processing node j in time
period t using transport mode m, with arrival in time period t̄ (t ≤ t̄)

xDUR
pijmtt̄as

- Volume of durable processed product p from artificial inventory a

that is transported from processing facility i to market j by mode m
in time period t in scenario s, with arrival in time period t̄ (t ≤ t̄)

rP
pbftt̄s

- Volume of perishable product p produced by using process b that is
transported through path f in time period t in scenario s, with arrival
in time period t̄ (t ≤ t̄)

yDURpbits - Volume of durable product p ∈ PD produced using process b at pro-
cessing facility i in scenario s

zSpits - Volume of product p sold in spot market i in time period t in scenario
s

zBpits - Volume of product p bought in spot market i in timer period t in
scenario s

δCc - Binary variable, 1 if a contract c is entered, 0 otherwise
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7.1.5 Variable description

Figure 7.1: Variable illustration.

For a better understanding of the relationship between the variables, the reader is
referred to Figure 7.1. Here, all flow variables are denoted x, except for the path
flows of perishable processed products that are denoted rP

pbftt̄
. Note that a processing

facility in reality is included in path drawn from S to M. As the fish is transported in
several different states, the flow variables are given a superscript according to the state
in which the fish is transported. As such, the flow of live fish to the slaughter node is
denoted xLIV E

pijtt̄
, whereas flow of fresh HOG salmon to and from the market and flow

of fish to secondary processing are referred to as xHOG
pijmtt̄

and xRAW
pijmtt̄

, respectively. The
flow variables do mostly follow the same structure. Note however that

• the raw material flow variable xLIV E
ijtt̄s

do not have a transportation mode index,
as all transport between farm nodes and slaughter nodes is conducted by well
boat

• the durable product flow variable xDUR
pijmtt̄as

do have an additional index a repre-
senting the artificial inventory the product is drawn from

• the flow variable rP
pftt̄s

does not have neither node nor transportation mode
indexes, as both are defined by the path itself

• the production volume variable yDURpits is only defined for the durable products.
The production volume of perishable products is implicitly defined by the path
flow volumes.

Furthermore, other decision variables are included in Figure 7.1 at their respective
nodes to illustrate their relationship to the flow variables. Note however that zCcpit
are included instead of δc, as zCcpit represents the volume sold through contracts, even
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though this volume is explicitly defined by the value of δc. Also note that these two
variables do not have any s index, as all contract decisions are defined as first stage
decisions. The alternative would have been to use a set of constraints to force δc to
be equal over all scenarios. However, initial tests indicated that such a formulation
would give a small penalty in solution time, so the explicit formulation were chosen.

As a consequence of modeling the decisions as instantaneous, the biomass variable
qvits represent the biomass at farm i after the smolt release and harvest of period t is
conducted. This relationship is illustrated by Figure 7.2.

Figure 7.2: Time line for decisions and variables regarding biomass.

In contrast, the inventory variable ipitas represent the outgoing inventory of time
period t, as illustrated in Figure 7.3.

Figure 7.3: Time line for decisions and variables regarding inventory.

7.2 Objective function

The model objective is to maximize expected total profits from the value chain over
the planning horizon. A conceptual representation of the model is presented below.
Here, the first three terms represent all market transactions, both from spot sale,
spot purchase and sale through long-term contracts. The next four terms represent
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operational costs included in the model, whereas end of horizon effects and penalties
are included in the last terms.

Max Z = Contract revenues + Spot revenues− Spot purchase costs

− Transportation costs− Caring costs− Processing costs− Inventory costs

+ End of horizon effects + Penalty term

Before the full objective term is presented, each term will be briefly addressed to give
the reader a clear understanding of the models objective function. A short discussion
on modeling choices made when formulating the objective and their potential conse-
quences follows. Note that as all objective terms are summed over all scenarios s, this
sum and the scenario specific probability are omitted in the explanations below.

7.2.1 Contract revenues

Contract revenues =
∑
c∈C

oc

The total revenues generated through long term contracts are calculated by adding
the contract generated from a contract c, oc, for all contracts.

7.2.2 Spot revenues

Spot revenues =
∑
p∈P

∑
i∈NM

∑
t∈T

ρSpitz
S
pit

The spot revenues term calculates the total revenue generated from selling different
products in the spot marked by multiplying the spot sales price, ρSpit, and the volume
sold in each market i, zSpit.

7.2.3 Spot purchase costs

Spot purchase costs =
∑

p∈PHOG

∑
i∈NM

∑
t∈T

ρBpitz
B
pit
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The spot purchases term calculates the costs of spot purchases, where zBpit is the
purchase volume and ρPpits is the spot purchase price. The spot prices differ by both
HOG salmon weight class and market region, as explained in Section 3.4.

7.2.4 Transportation costs

Transportation costs =

∑
p∈P\PP

∑
i∈N

∑
j∈Di

∑
m∈M

∑
t∈T

∑
t̄≥t

(CTijm + CTARpij )

xHOGpijmtt̄ + xRAWpijmtt̄ +
∑
a∈Ap

xDURpijmtt̄a


+
∑
p∈PP

∑
f∈F

∑
t∈T

∑
t̄≥t

CFpfr
P
pftt̄

The transportation costs are mainly included in order to differentiate which mode
to use. Otherwise, the fastest transportation mode would always be preferred. The
taxation costs are included in order to make the problem more realistic, as tolls and
tariffs in some cases heavily influence trade patterns in the industry as discussed in
Section 3.2 and Section 3.4.

The transportation costs term calculates the combined costs of transportation and
tariffs between each node pair (i, j) by multiplying the total volume transported and
the sum of the transportation cost and tariff factor per kilogram. As tariff rates
differ in regards to what type of product is transported, the rates are defined for each
product p. The transportation cost is also differentiated by transportation modes m,
as faster shipping alternatives are generally more expensive than slower ones. The
shipping rates are assumed to be constant. Note that TCpf if the total cost for using
path f .

7.2.5 Caring costs

Caring costs =
∑
v∈VH

∑
i∈NP

∑
t∈T

GvC
C
v qvit

The caring costs term represent the costs associated with caring for the fish one addi-
tional time period, consisting mainly of feeding costs. Here, the total caring costs are
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calculated by multiplying the cost of caring CCv , and the number of live fish qvit. Note
that caring costs are only included for harvestable fish classes. The reason for this
is that the fish must reach a harvestable weight before it is included in any decision-
making, i.e. whether it should be harvested now or not.

7.2.6 Processing costs

Processing costs =
∑
p∈PD

∑
i∈NP

∑
t∈T

CPp y
DUR
pit +

∑
p∈PP

∑
b∈B

∑
i∈NP

∑
f∈Fi

∑
t∈T

∑
t̄≥t

CPp r
P
pbftt̄

The processing cost term represent the marginal costs of transforming HOG into sec-
ondary processed products. Here, CPp is the marginal cost of producing one more
kilo of product p, whereas xP

pbftt̄
and yDURpit represent the volume of perishable and

non-perishable processed products produced at each processing location, respectively.
As for caring costs, only variable costs are included, assuming that all fixed costs
will incur irrespective of the product-mix. The marginal cost is also assumed to be
constant.

7.2.7 Inventory costs

Inventory costs =
∑
l∈L

∑
p∈PL

l

∑
i∈NP

∑
t∈T

∑
a∈Ap

CIl ipita

The term representing the inventory costs are calculated by multiplying the cost of
storing one kilo of product in inventory type l for one time period, CIl , and the volume
of each product p stored at each processing location, ipita. The primary function of
including inventory costs is to emphasize that storing ties up working capital and also
incur discernible costs (Michalski, 2008).

7.2.8 End of horizon effects

End of horizon effects =
∑
v∈V

∑
i∈NF

V Bv Gvqvi|T | +
∑
p∈PD

∑
i∈NP

∑
a∈Ap

V Pp ipi|T |a

A term that controls the end of horizon effects are included in the objective function
to avoid strange model behavior, as discussed in Section 6.6.7. The expected future
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value of the biomass at the end of the planning horizon (ESV) and the expected value
of the products in outgoing inventory (EPV). Note that |T | represent the last time
period in the planning horizon.

7.2.9 Penalty terms

Penalty terms =
∑
m∈M

∑
t∈T

KTMAX
m aTMAX

mt +
∑
m∈M

∑
t∈T

KTMIN
m aTMIN

mt

The penalty terms are included to give incentives for a leveled use of transportation
capacity. The first term gives a punishment for surpassing the maximum transport
capacity by multiplying the cost of additional capacity KTMAX by the additional
capacity used aTMAX

mt . The second term represent a punishment for using too little
capacity by multiplying the punishment term KTMIN

m by aTMIN
mt .

7.2.10 Full objective function

maxZ =
∑
s∈S

πs

{∑
c∈C

ocs +
∑
t∈T

[∑
p∈P

∑
i∈NM

ρSpitsz
S
pits −

∑
p∈PHOG

∑
i∈NM

ρBpitsz
B
pits

−
∑
i∈N

∑
j∈Di

∑
m∈M

∑
t∈T

∑
t̄≥t

(CTijm + CTAXpij )

 ∑
p∈PHOG

(xHOGpijmtt̄s + xRAWpijmtt̄s) +
∑
p∈PD

∑
a∈Ap

xDURpijmtt̄as


−
∑
p∈PP

∑
b∈B

∑
f∈F

∑
t∈T

∑
t̄≥t

(TCf + CPp )rPpbftt̄s −
∑
p∈PD

∑
b∈B

∑
i∈NP

∑
t∈T

CPp y
DUR
pbits

−
∑
l∈L

∑
p∈PL

l

∑
i∈NP

∑
t∈T

∑
a∈Ap

CIl ipitas −
∑
v∈V

∑
i∈NP

∑
t∈T

∑
s∈S

CCv qvits

−
∑
m∈M

(
KTMAX
m aTMAX

mts +KTMIN
m aTMIN

mts

) ]

+
∑
v∈V

∑
i∈NF

V Bv Gvqvi|T |s +
∑
p∈PD

∑
i∈NP

∑
a∈Ap

V Pp ipi|T |as

}

Although the objective function aims to maximize the profits it is important to note
that the expression is in fact not an accurate expression of expected future profits,
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as the objective function only includes cost elements relevant to the decision making
process. Consequently, no fixed costs are included in the model objective as fixed costs
would not affect the solution in any way. Furthermore, all costs up until the point
where the fish is ready to leave the slaughter node are omitted, except for the caring
cost. As all fish have to be slaughtered prior to selling, these costs would also not
affect the solution.

As a simplification, the time value of money is ignored in the objective. This will result
in solutions that are indifferent to when in the planning horizon income is generated,
as opposed to a model where net present value or a similar measure was maximized
which would favour income today over income at the end of the horizon. However,
with a planning horizon of one year, this difference is virtually negligible.

7.3 Constraints

The production and sale of HOG salmon and salmon based products are limited by the
biomass development, production, inventory and transportation capacities, durability
requirements and market properties. Below, a mathematical representation of these
relations are presented.

7.3.1 Biomass development constraints

Initial biomass

qvi1 + hvi1 = B0
vi v ∈ V, i ∈ NF . (7.1)

The biomass in the first time period, qvi1, is set equal to initial biomass, B0
vi, as there

is no intial harvest. This is ensured by Constraints (7.1).

Growth

qvit−
∑
v≤v

αvvi(t−1)ζvi(t−1)qvi(t−1) +hvit = Rvit v ∈ V, i ∈ NF , t ∈ T \{1}. (7.2)

Furthermore, Constraints (7.2) keep track of the development in biomass from one
period to the next using the methodology described in Section 6.6.2. The number of
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fish at farming location i in farming weight class v in the beginning of time period
t, qvit, is calculated as the sum of all fish growing into farming weight class v during
previous time period added with the smolt release into farming weight class v and
subtracted with the number of fish harvested from farming weight class v at that
location. The number of fish that have grown into farming weight class v, is calculated
as the sum of all fish growing into farming weight class v from farming weight classes
smaller than or equal to v, denoted v, adjusted by the survival rate from the previous
time period, ζvi(t−1). This also includes the number of fish that remain in farming
weight class v from the previous time period. Note that Constraints (7.2) are not
defined for the first time period, as the initial biomass is defined by (7.1).

7.3.2 Harvesting and slaughtering constraints

Maximum allowable biomass

∑
v∈V

Gvqvit ≤ QFi i ∈ NF , t ∈ T , (7.3)

∑
v∈V

∑
i∈NRr

Gvqvit ≤ QRr r ∈ R, t ∈ T . (7.4)

Because of the regulations described in Section 2.3, the salmon producer must obtain
licenses in the regions it wants to operate, each with a defined upper limit for biomass.
As such, the maximum allowable biomass MAB at each farming location and within
each farming region are limited by Constraints (7.3) and Constraints (7.4) respectively.
Here, the current licences held by the salmon producer and region regulations within
each country determines the scalar values on the parametersQFi andQRr . Note that not
all producing countries have both farm and regional regulations, so Constraints (7.3)
and Constraints (7.4) will not be defined for all farms and regions when implemented
on a real network.

Slaughter capacity

∑
v∈VH

∑
j∈Oi

Gvhvjitt̄ ≤ SCAPi i ∈ NS , t ∈ T . (7.5)

Constraints (7.5) ensure that the volume sent to each slaughtering location i cannot
exceed the slaughtering capacity per time period, SCAPi , measured in kilograms. As

114



7.3. Constraints

one farming location may send its products to several slaughtering locations, Con-
straints (7.5) must be summed over all farming locations allowed to deliver fish to
that slaughtering location.

Note that the available biomass gives an upper limit to the harvest volume hvit.
However, due to the relation between the biomass variable qvit and the harvest volume
hvit given by Constraints (7.2) combined with the non-negativity constraints ensure
that the harvest volume can never exceed the biomass available.

7.3.3 Mass balance constraints

The mass balance constraints presented in this section ensures correct mass flow be-
haviour in the network. As these depends on which node they are valid for, the
constraints are divided into groups based on which part of the network they are valid
for.

Mass balances at farming nodes

∑
v∈VHp

∑
i∈NF

Gvhvit −
∑
j∈Di

∑
t̄≥t

xLIV Epijtt̄ = 0 p ∈ PHOG, i ∈ NF , t ∈ T . (7.6)

Constraints (7.6) ensure that the mass balances for each farming node i and sales
weight class p are satisfied in each time period t, i.e. the total volume of fish of
farming weight class v belonging to sales weight class p, VHp , harvested at farm i

equals the total volume of product p sent from farm i to all slaughter nodes j using
all transportation modes m arriving in any time period t̄ ≥ t.

In the growth model, the fish is treated as numbers of fish in each weight class. In all
other parts of the model only volumes of fish are considered, so Constraints (7.6) are
also used to translate number of fish into a volume of fish in each sales weight class p
by multiplying the number of fish harvested and the average weight of each farming
weight class v, Gv.
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Mass balances at slaughtering nodes

∑
j∈Oi

∑
t≤t

LSxLIV Epjitt −
∑

j∈{Di∩NP }

∑
m∈M

∑
t̄≥t

xRAWpijmtt̄ −
∑

j∈{Di∩NM}

∑
m∈M

∑
t̄≥t

xHOGpijmtt̄

−
∑
q∈Up

∑
b∈Bpq

∑
f∈OF

i

∑
t̄≥t

1
Lb
rqbftt̄ = 0 p ∈ PHOG, i ∈ NS , t ∈ T (7.7)

Constraints (7.7) ensure mass balance in the slaughter nodes. The volume flowing into
the node equals the sum of HOG sent from all farms belonging to the set of origin
nodes Oi to the slaughter node i arriving in time period t. Due to the weight loss
related to the slaughter process, the incoming volume is divided by the slaughter yield
factor LS . This sum should equal the volume flowing out of the node, namely the flow
of HOG to the markets, the flow of HOG used as raw material for durable products
xRAW
pijmtt̄

, and the flow of HOG used as raw material for perishable products rqbftt̄. Note
that the latter flow is adjusted for the weight loss connected to the transformation from
HOG to perishable products when using production process b by multiplying with the
production yield factor LPb .

Mass balances at processing nodes

∑
j∈Oi

∑
m∈M

∑
t≤t

xRAWpjimtt −
∑
q∈Up

∑
b∈Bpq

1
LPb

yDURqbit = 0 p ∈ PHOG, i ∈ NP , t ∈ T .

(7.8)

Constraints (7.8) ensure mass balance in the processing nodes. The volume of a HOG
weight class p arriving in a processing node at time t must equal the sum of all durable
products produced using p as raw material. Here, the flow of raw material, xRAW

pijmtt̄
, is

the sum of the flows from both the slaughtering nodes and HOG salmon purchased in
the market to be used as input into the production of VAP. That volume is calculated
by adding the production volume of all durable products q produced by a process Bpq,
where Bpq is defined as the set of processes where HOG weight class p is used as raw
material for production of durable product q.

In order to adjust for the weight loss of the production process, the production volume
is divided by the production yield factor Lb, thereby adjusting for weight loss due to
for example removal of the skin, bones, head and tail. Here, it is assumed that all
raw material arriving in the beginning of a time period is processed in the same time
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period. Note that as perishable processed products are sent to the markets through
separate paths, production constraints for such products are be omitted.

Mass balance in market nodes - sales

∑
j∈Oi

∑
m∈M

∑
t≤t

xHOGpjimtt −
∑
c∈Cpit

zCcpit − zSpit − Epit = 0 p ∈ PHOG i ∈ NM , t ∈ T ,

(7.9)∑
f∈DF

i

∑
binB

∑
t≤t

rPpbftt −
∑
c∈Cpit

zCcpit − zSpit − Epit = 0 p ∈ PP , i ∈ NM , t ∈ T .

(7.10)∑
j∈Oi

∑
m∈M

∑
t≤t

∑
a∈Ap

xDURpjimtta −
∑
c∈Cpit

zCcpit − zSpit − Epit = 0 p ∈ PD, i ∈ NM , t ∈ T

(7.11)

The total volume of a product p arriving in market i in time period t equals the sum
of the volume of product p sold in market i in time period t through spot transactions,
zSpit, and contracts, zCcpit. The sales constraints are specified for each of the different
product categories in Constraints (7.9) - (7.11) representing the sales of fresh HOG
salmon, perishable products and durable products respectively.

Mass balance market nodes - spot purchases

zBpit −
∑

j∈{Di∪NM}

∑
m∈M

∑
t̄≥t

xHOGpijmtt̄ +
∑

j∈{Di∪NP }

∑
m∈M

∑
t̄≥t

xRAWpijmtt̄

+
∑
f∈OF

i

∑
q∈Up

∑
b∈Bpq

∑
t̄≥t

1
LPq

rqbftt̄ = 0 p ∈ PHOG, i ∈ NM , t ∈ T . (7.12)

Further, Constraints (7.12) control the spot purchases and ensure that the bought
volumes are distributed correctly. The volume bought in one market node can be sent
to another, or the same, market node to be sold on the spot market, it can be sent
to a processing node where it is used as raw material in the production of durable
products, or it can be sent via a processing node to a market node using a path, being
transformed to a perishable product on the way.
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7.3.4 Inventory constraints

As inventory model based on the discussion in Section 6.6 is presented below.

Initial inventory

ipi1a = I0
pia −

∑
t̄≥1

xDURpijm1t̄a p ∈ PD, i ∈ NP , a ∈ APp (7.13)

Constraints (7.13) ensure correct initial inventory levels at each processing location i

for the artificial inventories of each durable processed product p in the beginning of
the first time period.

Inventory balance

ipit1 −B11ipi(t−1)1 − yDURpi(t−1) +
∑
j∈Di

∑
m∈M

∑
t̄≥(t−1)

xDURpijm(t−1)t̄1 = 0

p ∈ PD, i ∈ NP , t ∈ T \ {1}, (7.14)

ipita −
∑
a≤a

Baaipi(t−1)a +
∑
j∈Di

∑
m∈M

∑
t̄≥(t−1)

xDURpijm(t−1)t̄a = 0

p ∈ PD, i ∈ NP , t ∈ T \ {1}, a ∈ APp \ {1}. (7.15)

Constraints (7.14) and Constraints (7.15) ensure that the inventory levels at the end
of each time period are updated throughout the planning horizon. The inventory level
of product p in artificial inventory a going leaving time period t, ipita, is calculated
as the sum of the inventory volumes from the previous time period that are moved to
artificial inventory a, including the share that remains, subtracted by the volume sent
to the market. For the first artificial inventory of product p, the production volume
from the previous time period is also added.

Inventory capacity

∑
p∈PL

l

∑
a∈APp

ipita ≤ ICAPil i ∈ NP , l ∈ L, t ∈ T . (7.16)

For each processing facility i, the inventory cannot exceed the inventory capacities.
This is ensured by Constraints (7.16). As the different products require different
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inventory types, for example refrigerated storage and freezer, the capacities are per
inventory type l. Here, it is assumed that each product cannot be stored in more
than exactly one storage type, otherwise one variable will be present in two or more
inventory capacity constraints simultaneously. Note that the inventory capacity is per
kg, whereas in reality the space occupied per kilogram product might differ significantly
amongst products. As such, the inventory capacity will also be dependent upon other
factors, such as number of products and shape and volume of the product. An easy
modification to remedy this problem is to also include factors that represent the relative
space occupied for each product.

7.3.5 Production and distribution constraints

Processing capacity

∑
b∈B

∑
f∈Fi

∑
t̄≥t

rpbftt̄ ≤ PCAPpi p ∈ PP , i ∈ NP , t ∈ T | t = t− TFf , t ≥ TFf (7.17)

yDURpit ≤ PCAPpi p ∈ PD, i ∈ NP , t ∈ T . (7.18)

Similarly to each slaughtering location, all processing locations will have an upper
limit of production per time period. This is ensured by Constraints (7.17) and Con-
straints (7.18) for perishable and durable processed products respectively. Note that
because perishable processed products are sent through separate paths that starts in a
slaughtering node and ends in a market node, the time period in which the production
occurs are defined as t+ TFf .

This formulation assumes that the production capacity is given per product p. Because
of little available information about how the processing facilities used in the salmon
industry are organized, these constraints are kept as simple as possible, assuming no
relation between the production of different products. As the production capacity of
one product is assumed to be independent of the production capacities of all other
products, it is assumed that all products have separate production lines and no com-
mon machine usage. If machines are shared between products, it is possible to include
shared capacities or constraints that ensure the correct relationships, depending upon
the configuration of each individual facility.
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Transportation capacities

∑
p∈P

∑
t≤t

∑
t̄≥t

(
xLIV Epijmtt̄ + xHOGpijmtt̄ + xRAWpijmtt̄ +

∑
a∈APp

xDURpijmtt̄a +
∑
b∈B

∑
f∈Fijm

rpbftt̄

)

−aMAX
ijmt ≤ TCAPijmt i ∈ N , j ∈ Di, m ∈M, t ∈ T . (7.19)

The transportation capacities within the network are controlled by Constraints (7.19),
which control both the wellboat capacities and shipping capacities.

As discussed in Section 6.6, an option to surpass the maximum transport capacity
by paying a penalty KT

m is included. This penalty represents the transaction costs
involved in re-negotiation and the added costs of short term agreements on small
volumes.∑

p∈P

∑
i∈N

∑
j∈Di

∑
t≤t

∑
t̄≥t

(
xHOGpijmtt̄ + xRAWpijmtt̄ +

∑
a∈APp

xDURpijmtt̄a +
∑
b∈B

∑
f∈F

rpbftt̄

)

+ aMIN
mt ≥ TLIMm m ∈M, t ∈ T . (7.20)

The commitment of using a minimum capacity demanded by the logistics firms are
controlled by Constraints (7.20). The penalty is per time periods in order to give
incentives for leveling the transport volumes throughout the planning horizon. Note
the difference between Constraints (7.19) and (7.20), where the former are given locally,
whereas the latter are given globally.

7.3.6 Contract fulfillment

zccpit −Qcδc = 0 c ∈ C | p = PCc , i = MC
c t ∈ CTc (7.21)

All signed contracts must be fulfilled, which is ensured by Constraints (7.21) Note that
as Qc represent the volume to be delivered at each delivery in contract c, it is assumed
that the total volume is uniformly distributed for multiple delivery contracts. Also
note that all offered contracts are assumed to be fulfilled within the plnaning horizon.
As δc is a first stage decision, no scenario index is included above.
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7.3.7 Contract revenues

As described in Section 3.5, the industry operates with several different types of con-
tracts, each of which must be modeled differently. The set of all contracts, C, is
therefore divided into subsets, where CF represents all fixed price contracts. Further-
more, the set CPA includes all contracts where the price is adjusted in relation to
the realised spot price at delivery and CA includes all contracts where the price is
adjusted in relation to the realised spot price only if the price difference exceeds a pre
defined limit. Common for all contract types is that the contract price is stochastic,
while other contract characteristics are deterministic. Furthermore, all contracts only
include one product, specified by PCc , and all deliveries to fulfill that contract is made
in one market, specified by MC

c . However, contracts can include either one or several
deliveries, where the set CTc define the set of time periods in which delivery to contract
c must be made.

Revenue of fixed price contracts

In a simple fixed price contract c, the buyer and the seller agree upon trading a fixed
volume, Qc, of a specified product, PCc , for a fixed price per kilogram, ρCc . The product
is to be delivered at the beginning of a specified time period t in a specified market,
m.

Qcρcδ
C
c = oc c ∈ CF . (7.22)

The binary variable δCc is equal to 1 if the contract is entered, and equal to 0 if it is
not. Thus, the contract revenue is calculated by multiplying δCc by the contract price
Uc with the contract volume Qc. Note that this also holds for fixed price contracts
with multiple deliveries as the price is flat for the entire contract period and Qc is the
total volume agreed to be delivered in contract c.

Revenue of adjustable price contracts

The second type of contracts modeled is a contract in which the product p, volume
Qc and delivery time t and place j is still fixed, but where the price can change in the
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time between signing and fulfilling the contract.∑
t∈CTc

Qc
(
ρCc +ACc (ρSpit − ρCc )

)
δCc = oc c ∈ CA (7.23)

∑
t∈CTc

Qc

(
ρCc −ACc (ρCc − ρSpit − Fc)+ +ACc (ρSpit − ρCc − Fc)+

)
= oc

c ∈ CPA | i = MC
c (7.24)

Two methods of adjusting the price of a contract is included in the model. Both
methods seek to limit the gap between achieved contract price and the comparable
spot price. The revenue generated from adjustable price contracts for each of these
two methods are calculated by (7.23) and (7.24).

The first method is the simplest. Here, a price per kilogram Uc is agreed upon when
entering the contract. Come delivery in a later time period t, this price is adjusted by
adding the difference between the contract price Uc and the realised spot price for the
relevant product p in the relevant market i, ρSpit, times a contract-specific adjustment
constant Ac.

In the second method of adjusting the contract price the adjustment is made in the
same manner, but the price is only adjusted if the difference between the initial contract
price and the realised spot price is greater than an agreed upon value measured in
NOK.

7.3.8 Non-anticipativity

The non-anticipativity Constraints (7.25) enforce the relationship between stages, pe-
riods and scenarios in the scenario tree. This is done by forcing decisions in a period
t in a node k to be equal for all scenarios s passing through that node. The set Sk
denotes the set of scenarios passing through the split node k, while Qk is the time
period corresponding to node k. |Sk| is the size of Sk.
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1
|Sk|

∑
s∈Sk

(qvits′ , hvits′ , xLIV Epijtt̄s′ , x
HOG
pijmtt̄s′ , x

RAW
pijmtt̄s′ , rpbftt̄s′ , x

DUR
pijmtt̄as′ ,

yDURpbits′ , ipitas′ , z
B
pits′ , z

S
pits′ , z

C
cpits′ , δ

C
cs′) =

(qvits, hvits, xLIV Epijtt̄s , x
HOG
pijmtt̄s, x

RAW
pijmtt̄s, rpbftt̄s, x

DUR
pijmtt̄as,

yDURpbits , ipitas, z
B
pits, z

S
pits, z

C
cpits, ) (7.25)

v ∈ V, p ∈ P, i ∈ N , j ∈ Di, f ∈ F , t ∈ T , t̄ ∈ T , k ∈ K s ∈ S

7.3.9 Variable constraints

qvits ≥ 0 v ∈ V, i ∈ NF , t ∈ T , s ∈ S (7.26)

ipitas ≥ 0 p ∈ P, i ∈ NP , t ∈ T , a ∈ A, s ∈ S (7.27)

ocs ≥ 0 c ∈ C, s ∈ S (7.28)

aTMAX
mts ≥ 0 m ∈M, t ∈ T , s ∈ S (7.29)

aTMIN
mts ≥ 0 m ∈M, t ∈ T , s ∈ S (7.30)

hvits ≥ 0 v ∈ V, i ∈ NF , t ∈ T , s ∈ S (7.31)

xLIV Eijtt̄s ≥ 0 i ∈ N , j ∈ Di, t ∈ T , t̄ ∈ T , s ∈ S | t ≤ t̄ (7.32)

xHOGpijmtt̄s ≥ 0 p ∈ PHOG, i ∈ N , j ∈ Di, m ∈M, t ∈ T , t̄ ∈ T , s ∈ S | t ≤ t̄
(7.33)

xRAWpijmtt̄s ≥ 0 p ∈ PHOG, i ∈ N , j ∈ Di, m ∈M, t ∈ T , t̄ ∈ T , s ∈ S | t ≤ t̄
(7.34)

rpbftt̄s ≥ 0 p ∈ PP , b ∈ B, f ∈ F , t ∈ T , t̄ ∈ T , s ∈ S | t ≤ t̄ (7.35)
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xDURpbijmtt̄as ≥ 0 p ∈ PD, b ∈ B, i ∈ N , j ∈ N , m ∈M, t ∈ T , t̄ ∈ T ,

a ∈ Ap, s ∈ S | t ≤ t̄ (7.36)

yDURpbits ≥ 0 p ∈ PP , i ∈ NP , t ∈ T , s ∈ S (7.37)

zBpits ≥ 0 p ∈ PHOG, i ∈ NM , t ∈ T , s ∈ S (7.38)

zSpits ≥ 0 p ∈ P, i ∈ NM , t ∈ T , s ∈ S (7.39)

zCcpits ≥ 0 c ∈ C, p ∈ P, i ∈ NM , t ∈ CTc , s ∈ S (7.40)

δCc ∈ {0, 1} c ∈ C. (7.41)
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Model implementation
The mathematical model presented in Chapter 7 was implemented in two versions, one
deterministic and one stochastic. Both models are written in Mosel and implemented
in FICOr Xpress v.7.8.0. The tests were performed at a computational cluster owned
by the Department of Industrial Economics and Technology Management at NTNU.
Most tests were performed on nodes from rack 2 or 3, with 2xAMD Opteron 2431 2,4
GHz CPU and 24.0 GB of installed RAM memory. The implemented model with 100
scenarios was run at rack 5, with HP BL686 G7, 4 x AMD Opteron 6274 2,2 GHz
CPU and 128 Gb of installed RAM memory.

In order to model the problem as a stochastic linear program that is computationally
tractable with acceptable solution times, some assumptions and simplifications have
been made. Assumptions and simplifications are also made where necessary due to
limited access to relevant information about industry specifics such as production costs
and capacities. Based on the discussion in Section 6.1, planning horizon chosen is one
year with a time resolution of one week.

This chapter starts by a short overview over the most important problem specific
assumptions and simplifications presented in Section 8.1. In Section 8.2, the case
study is presented. Case specific problem reduction efforts are described in Section
8.3, whereas Section 8.4 elaborates how uncertainty is represented in terms of scenarios.
Finally, Section 8.5 explains how the input data is generated.

8.1 Problem specific assumptions and simplifications

The most important assumptions and simplifications made when the model is imple-
mented are summarized below.

Location aggregation

125



Chapter 8. Model implementation

For the problem to be computationally solvable, sets of nearby locations are
aggregated into regions which acts as single facility. This is described in further
detail in Section 8.2.1.

Farm similarity
Due to geographical closeness, it is reasonable to assume that the farms be-
longing to the same slaughter region have similar growth and mortality rates.
Consequently, these farms share growth and mortality scenarios.

Survival rates
As no detailed data have been available regarding historical mortality or escape
in Marine Harvest’s operations, the survival rate at all farms have been set
deterministic equal to 1.

Maximum Allowable Biomass and fallowing
As the implemented network consists of large farming regions and not individual
farms, MAB and fallowing constraints are not implemented, as they would not
be meaningful when running the model on a user case with such a high level of
farm aggregation.

Transportation capacities
As no data is available on the details of Marine Harvest’s agreements with
their logistics provider, maximum capacities implemented are based on qual-
ified guesses. In consequence, no punishments for using too little capacity is
implemented. Furthermore, no option to purchase extra capacity is included in
the implementation.

Transportation times
Exact transport times are gathered in the pre-processing. However, in the imple-
mentation, these transportation times are rounded, so that goods transported
by a mode taking less than 0.5 time periods are modeled as arriving instantly,
and goods transported by a mode taking 0.5 time periods or more are modeled
as arriving the following time period.

Production processes
As the product groups implemented are generalized, all harvested fish sizes are
allowed as input into all value added products.

Spot purchase prices
The spot purchase price is modelled by a fixed mark up on the corresponding
spot sales price.

Tariffes
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As it has not been possible to attain a complete set of tariffs for all products
between all countries included in the model, the tariff factor have been omitted
in the implementation.

8.2 Case study
The implemented model is tested on a case study representing Marine Harvest’s global
value chain. For testing purposes, details in the case study are adjusted to construct
a set of instances. However, the most important features, such as the structure of the
network, remain unchanged throughout.

8.2.1 Network
As the number of facilities Marine Harvest operate is massive, there is a need for ag-
gregation. Consequently, each node in the implemented network represent all facilities
within the specified region. Biomass, capacities and inventory levels are aggregated
for the physical facilities belonging to each node, and the nodes included are listed in
Table 8.1. The implemented network is presented in Table D.1 in Appendix D.

Slaughterhouses Processing regions Markets
Norway North Poland EU
Norway Mid France Russia
Norway West Italy North America
Norway South Belgium South America
Scotland Germany Japan
Ireland/Faroe Islands US Asia excl. Japan
Canada Chile
Chile China

Hong Kong

Table 8.1: Nodes in the implemented network.

As a general rule, each country in which Marine Harvest conducts salmon farming is
represented by two farming regions and one slaughter region. However, some excep-
tions are made. Marine Harvest’s production in Norway vastly exceeds the numbers
of other countries. Marine Harvest itself divides the country in four, and Norway is
therefore implemented as four separate regions. Each Norwegian region also has a
slaughter node and two farming nodes. Note that because of the geographical prox-
imity, Norway North and Mid, as well as Norway West and South, are allowed to use
each others slaughtering locations depending upon where capacity is available. This
correspond with Marine Harvest’s practice of today (Johannessen, T., Vinnes, K. and
Sværen, U., personal communication, 2015). Furthermore, the production in Faroe
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Figure 8.1: Comparison of Marine Harvest’s farming network and imple-
mented farming regions.
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Islands and Ireland is significantly smaller compared to the other countries, and no
farming or slaughter nodes are included for these countries.

Figure 8.2: Comparison of Marine Harvest’s processing network and im-
plemented processing regions.

Based on available information about Marine Harvest’s production network, 10 pro-
cessing facilities are included Marine Harvest (2014b), Marine Harvest (2013), Marine
Harvest (2012), and Marine Harvest (2011b)(Johannessen, T., personal communica-
tion, 2015). In practice there are significantly fewer processing facilities than there are
slaughter houses. However, slaughtering is a standardized process, whereas processing
facilities tend to be specialized and hence only able to produce a subset of products.
It is therefore included a higher number of processing nodes in the network to give the
model enough flexibility in producing all types of processed products.

The selection of which markets to use is based on the following considerations: (1) First
and foremost, they must represent a demand high enough to say something meaningful
about the price differences between the markets. Preferably, the market sizes should
also be relatively even. (2) Enough information must be available in order to generate
a data set that includes that market. (3) The trade-off between making a computa-
tionally tractable model and the desired degree of detail are considered.

With this in mind, the six markets presented in Section 8.3.1 were chosen. This
corresponds well with the divisions Marine Harvest use themselves. An exception
is made for America, where Marine Harvest refer to Americas as one trading region,
whereas the America is treated as two regions in the model, North and South America.
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Figure 8.3: Comparison of main markets for salmon and implemented
markets, including market sizes.

This is done to be able to model traveling times and costs more accurately.

A comparison of Marine Harvest’s farming and processing operations and the im-
plemented network is illustrated by Figure 8.1 and Figure 8.2. Figure 8.3 visualize
the main global markets and their respective sizes and compare it to the markets in-
cluded in the model. In all of the mentioned figures, nodes included are highlighted in
red, while regions that are part of the real network but excluded from the model are
depicted in grey.

8.2.2 Product groups and transportation modes
82 farming weight classes are used to keep track of the weight of the fish in the salt
water growth phase. As smaller weight intervals are necessary for modeling growth
of smaller fish, the sizes of the farming weight classes are not uniform. The relation
between the farming weight classes and the HOG sales weight classes implemented is
illustrated in Figure 8.4. Note that sales weight class 0 represent the farming weight
classes that are defined as unharvestable in the model, representing fish in the weight
interval 0.01-1.99 kg.

In total, nine product groups are included in the user case, five of which are different
sized fresh HOG and four of which are processed products, see Table 8.2. These
product groups are chosen to best represent the total product mix based on historical
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Sales weight classes

Farming weight classes

Figure 8.4: Illustration of the relation between the farming weight classes
v and HOG sales weight classes p.

values of traded volumes of different products.

HOG VAP
2-3 kg Frozen HOG salmon
3-4 kg Fresh fillets
4-5 kg Frozen fillets
5-6 kg Smoked salmon
6-7 kg

Table 8.2: Product groups included in the user case.

As discussed in Chapter 3, fresh HOG salmon of different weight classes are used
for different purposes, forming the rationale behind dividing fresh HOG salmon into
several weight classes. The included sales weight classes have a resolution of one kilo-
gram. This is because providers of statistical data on salmon spot prices, such as
NASDAQ and SSB, record their prices according to these intervals. The processed
product groups are chosen based on available data on the Marine Harvest trade vol-
umes of different products, see Figure 2.11. Here, all frozen HOG salmon weight
classes are aggregated into one single product group. Fillets include all fillet sizes,
with and without additional differentiation such as seasoning and marinades. The
smoked salmon-category includes all types of smoked salmon, such as whole, smoked
portions, cuts and toppings. Consequently, other elaborated products such as cured
salmon and ready meals are not included. As this is a very heterogeneous group of
products, it would be hard to calculate meaningful production costs and sales prices.
Additionally, the existing data for these products is insufficient.

For transportation it is chosen three different modes; truck, boat and airplane. The
transportation modes are not further differentiated within each mode, e.g. in terms
of speed, size or ability to transport chilled versus frozen goods, as this would add
complexity without contribute to better problem insight.
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8.3 Problem reduction
Solving a stochastic model is time consuming, and for the model to be of practical use
it must have an acceptable solution time. It is therefore of great importance to take
measures to reduce the problem size without too much loss of details.

8.3.1 Network reduction
Because of the problem structure, the network size can be considerably reduced. As
there is a clear structure on how the products flows through the network, a set of
directed arcs should be used. Furthermore, as many arcs are never used in a practical
setting because of travel time considerations, while others are only used for small
volumes, it is possible reduce the network size down to a size that is practically solvable.
As an example, all transport between the European production sites and American
markets are excluded because the small volumes that are actually sent.

Figure 8.5: Example of a partial transportation network within the value chain for two
markets in Europe.

Furthermore, not all remaining arcs are defined for all transportation modes because
of the same reasons, especially travel time considerations. In addition, many modes
cannot be used because of the physical design of the network. Boat can for example
not be used to transport products from the processing facility in Poland and to the
Russian market, as depicted in Figure 8.5. Here, a set of possible transportation modes
m in one part of the network is shown as an illustrative example.

Paths are included only if the total path time is below a one time period, i.e. a
week, where 6 hours was added to represent handling, production and inbound and
outbound logistics. The limit were set so that the products can reach the market within
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a reasonable time frame when considering the durability of fresh fillet. Furthermore,
the maximum cost path cost was set to 20 NOK/kg.

8.3.2 Variable reduction
As each flow-variable xpijmtt̄s defines both which product that is transported across
the distance ij and the transportation mode used, some combinations of indexes are
impossible. Variables with such combinations of indexes are thus not included in the
model. As these variables would never be included in a feasible solution, not including
them reduces the computational effort without affecting the solution.

8.3.3 Simplifications of the model formulation

Figure 8.6: Illustration of the implemented network.

As all HOG weight classes p are allowed to be used as input for all processed products
q, there is no longer a need to differentiate the flow from the distribution node to the
processing node on HOG weight class. Keeping track of the total volume is sufficient,
which makes it possible to reduce the problem size further by the inclusion of two
dummy nodes. The new network with the dummy nodes depicted as D are shown
in Figure 8.6. With this reformulation of the network, a total of more than 92 000
variables per scenario, or 80 % of the relevant variables, can be excluded from the
problem in exchange for 676 new constraints and variables per scenario.

The inclusion of one dummy node for each slaughter node and each market node gives
the model the flexibility to differentiate on HOG weight classes in the mass balances,
while at the same time avoids to send five separate volumes of raw material to the
processing nodes, one for each HOG sales weight class. Let N SD be the set of dummy
nodes assigned to the slaughter nodes. Then, (7.7) and (7.8) can be modified into
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Constraints (8.1) - (8.3):∑
j∈Oi

∑
t≤t

LSxLIV Epjitt −
∑
j∈Di

∑
m∈M

∑
t̄≥t

xHOGpijmtt̄ = 0 p ∈ PHOG, i ∈ NS , t ∈ T , (8.1)

∑
p∈PHOG

∑
j∈{Oi∪NS}

xHOGpjit −
∑
q∈PP

∑
f∈Fi

∑
t̄≥t

1
LPq

rqftt̄ −
∑

j∈{Di∪NP }

∑
m∈M

∑
t̄≥t

xRAWijmtt̄ = 0

i ∈ ND, t ∈ T , (8.2)

∑
j∈Oi

∑
m∈M

∑
t≤t

xRAWjimtt −
∑

p∈PDUR

1
LPb

yDURpit = 0 i ∈ NP , t ∈ T . (8.3)

Now, let NMD be the set of dummy nodes assigned to the market nodes. Constraints
(7.12) can then be modified into Constraints (8.4) - (8.5):

zBpit −
∑
j∈Di

∑
m∈M

∑
t̄≥t

xHOGpijmtt̄ = 0 p ∈ PHOG, i ∈ NM , t ∈ T , (8.4)

∑
p∈PHOG

∑
j∈{Oi∪NM}

xHOGpjit −
∑

j∈{Di∪NP }

∑
m∈M

∑
t̄≥t

xRAWpijmtt̄ −
∑
f∈OF

i

∑
q∈PP

∑
t̄≥t

1
LPq

rqftt̄ = 0

i ∈ NDM , t ∈ T . (8.5)

Note that in addition the constraint adjustments above, xHOG
pijmtt̄

is defined for two new
sets of arc, i.e. from the slaughter nodes and market nodes and to their respective
dummy nodes. Also note that since no transportation mode is physically used to the
dummy nodes and the travel time will always be zero, the mode index is and one time
index are omitted for xHOGpijt Constraints (8.2) and (8.5).

8.4 Representing uncertainty
In stochastic programming, it is important to choose a scenario generation method that
is able to quickly find scenarios that constitute a good fit of the uncertainty modeled.
Because of the sparse available historical data, there is a need for data manipulation in
order to get data in the right resolution while at the same time keeping the dependence
between the stochastic variables. Based on this, the copula-based heuristic developed
by Kaut (2014) is chosen as scenario generation method. Sampling and other methods
discussed in Section 5.2 are rejected mostly due to the need for known probability
distributions and complementary historical data sets.
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To generate the scenarios, the authors have used a modified version of the already
mentioned procedure used by Schütz and Tomasgard (2011), Schütz et al. (2009a),
and Rynning-Tønnesen and Øveraas (2012). All parameter estimation for the time
series models are done in the statistical software R. The historical data for the temper-
atures used as input to the scenario generation procedure are weekly averages based on
daily sea water temperatures gathered from National Oceanic and Atmospheric Ad-
ministration (2015). Product price scenarios are generated from weekly historical spot
prices provided by Norwegian Seafood Council (2015) and NASDAQ (2015b) from the
years 2010-2014.

Another option for generating forecasts for price and temperature could have been to
use historical data directly. The main advantage of using historic data to represent the
future is that this is an easy and fast method which require minimal pre-processing
of the data. However, the main drawback is that this is considered to give a bad
representation of the future. The method also restricts the possibility to make as
many scenarios that are needed to give a good representation of future uncertainty
while accounting for market correlations and non-seasonal trends.

8.4.1 Forecasting
The first step of scenario generation is to build a good forecasting model which is
used as a basis. Initially one have to ensure stationarity and remove seasonality in the
time series. However, before one starts with the removal of trend and seasonality, it is
advisable to inspect the time series to acquire as much knowledge as possible of the time
series a priori. By plotting the time series one usually get a good idea about whether
the series actually contains a trend or seasonality. Non-constant variances, and other
non-normal and non-stationary phenomena may also be discovered by inspection.

Inspection also plays an important part in postulating a possible data transformation of
the time series. Differencing is, together with variance-stabilizing transformation, one
of the most commonly used transformations in time series analysis. Note that variance
stabilizing transformations such as power transformations require non-negative values,
and as differencing may create negative values, the variance stabilizing transformations
should always be applied before taking differences (Wei, 2006).

8.4.2 Variance stabilizing transformation of the time series
Øglend and Sikveland (2008) have shown that salmon prices often are heteroskedastic,
where heteroscedasticity means uneven variance in the time series. Several statistical
tests are developed to test for the null hypotesis of homoscedasticity, which tests if
all random variables in a time series have finite variance (Wei, 2006). One of these
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tests, the F-test, are used to investigate if the variance in the time series are equal
to the variance of a Normal distribution with the same mean and standard deviation
as the time series (Härdle and Simar, 2003). These tests indicated that the variance
is equal to the variance of the corresponding Normal distribution. However, because
this is a rather weak approach to test for heteroscedasticity (Tjelmeland, H., personal
communication, 2015), a variance stabilizing technique are applied to the time series.

Two of the most used variance-stabilizing transformations is the logarithmic trans-
form and the Box-Cox. In this thesis the Box-Cox transformation is used to stabilize
variance, and the log-likelihood plot for finding optimal transformation parameter for
HOG salmon in weight class 4-5 kg is presented in Figure 8.7a. The Box-Cox trans-
formation combines a logarithmic transformation with a power transformation based
on maximum likelihood estimation and is described in equation (8.6).

BC(Zt, λ) =


Zλt −1
λ if λ 6= 0

lnZt if λ = 0
(8.6)

As a time series analysis is unchanged by linear transformations, equation (8.6) and
equation (8.7) are equivalent.

BC(Zt, λ) =

Zλt if λ 6= 0

lnZt if λ = 0
(8.7)

For validating the variance stabilizing transformation it is common to apply the Box-
Cox test once more on the transformed series. As Figure 8.7b shows, the trans-
formation parameter, λ, for transform HOG salmon prices then equals to one and no
further transformation is needed. Note that the spot price time series for HOG salmon
in weight class 4-5 kg, together with the temperatures for Norway Mid, are used as
examples throughout the rest of this section.

8.4.3 Removal of non-stationarity
To detect non-stationarity there are several methods, of which the easiest method is
to inspect the ACF and PACF plot for the time series. If the ACF decays very slowly
and the sample PACF cuts off after the first lag, this is an indication of the need
for differencing (Wei, 2006). The ACF and PACF for HOG salmon 4-5 kg historical
prices and Norway Mid temperatures are presented in Figure 8.8. As a result of Wei
(2006)’s deduction, Figure 8.8a and Figure 8.8b which shows the ACF and PACF plots
for HOG salmon 4-5 kg indicate that the price series should be differenced. For the
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Figure 8.7: The figure shows the log-Likelihood function for HOG salmon in sales weight
class 4-5 kg.

temperatures series, Figure 8.8c indicates a decaying ACF. However, as there is no
clear cut off for the PACF in Figure 8.8d it can not be said that the temperature series
should be differenced.

The Augmented Dickey Fuller (ADF) test for stationarity proposed by Dickey and
Fuller (1979) is another, complimentary method for identifying non-stationarity. The
test indicates whether the null hypothesis, H0, of non-stationarity should be rejected
in favor of the alternative hypothesis, H1, of stationarity in the mean. The ADF-tests
of the two time series used as examples in this Section are presented in Table 8.3.
These tests confirms the assumption that non-stationary differencing are only needed
for the HOG salmon 4-5 kg price series, and that the temperatures of Norway Mid are
stationary in the mean. On further inspection, the same holds true for all price and
temperature time series.

Series Statistic 5% critical value p-value Reject H0 at 5%?
HOG 4-5 kg -0.7224 -2.89 0.9671 No
Norway Mid -4.5417 -2.89 ≤ 0.01 Yes

Table 8.3: Augmented Dickey-Fuller test for HOG salmon 4-5 kg spot price and
Norway Mid temperatures.

8.4.4 Identification of time series model
After the time series are properly differenced, the ACF and PACF may again be
useful in determining candidate time series models. This manual interpretation of
such mathematical tools may in many cases be very useful, and sometimes enough.
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Figure 8.8: ACF and PACF for HOG salmon 4-5 kg and Norway Mid temperature time
series.
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However, there are two well known criterions which is often used in determining the
order for the right time series model; the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC). The AIC, named after Hirotugu Akaike, was
introduced by Akaike (1973) and Akaike (1974), and is a measure of the relative quality
of a statistical model for a given set of data. The AIC offers a relative estimate of the
information lost in the process that generates a set of data, and by doing so it deals
with the trade off between the goodness of fit of the model and the model’s complexity.
The BIC is closely related to the AIC, but were developed by Akaike after Shibata
(1976) showed that the AIC tends to overestimate the order of the autoregression
(Wei, 2006; Akaike, 1978; Akaike, 1979). In identifying candidate time series model,
both of these criterions have been used, in addition to inspection of the ACFs and
PACFs.

The ACF and PACF plots can be used to determine the order of an ARMA(p, q),
ARIMA(p, d, q) or ARIMA(p, d, q)×(P,D,Q)m, (seasonal ARIMA). In doing so, there
is a set of characteristics that may help. These are summarized in Table 8.4. The
subscript m in the last model represent the seasonal period, as will it throughout the
rest of this chapter.

Process ACF PACF
AR(p) Tails off as exponential decay

or damped sine wave
Cuts off after lag p

MA(q) Cuts off after lag q Tails off as exponential decay
or damped sine wave

ARMA(p, q) Tails off after lag (q − p) Tails off after lag (p− q)

Table 8.4: Characteristics of theoretical ACF and PACF for stationary processes
(Wei, 2006).

If the ACF is positive at the seasonal period, the analyst should consider adding an
seasonal autoregressive term in the model. If the ACF is negative at the seasonal
period, one should consider adding a seasonal moving average term (Nau, 2015). The
seasonal term may be identified as necessary by looking for a significant partial auto
correlation when the lag equals the length of the seasonal data in the PACF plot.

The ACF and PACF plots for the differenced Norway Mid temperatures are pre-
sented in Figure 8.9a and 8.9b respectively. Figure 8.9b clearly shows that the PACF
cuts off after lag 1. Furthermore, the ACF in Figure 8.9a is negative for the sea-
sonal period of 52, which indicates that the temperature should be forecasted with
an ARIMA(1, 0, 0) × (0, 1, 1)52 model. By same analogous the ACF and PACF for
HOG salmon 4-5 kg indicates that an ARIMA(0, 1, 1)× (0, 1, 1)52 model is suited for
forecasting the spot price for HOG salmon in weight class 4-5 kg. Both the AIC and
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BIC have been used to confirm the validity of these models, and the same procedure
is used for the six other temperature forecasts.
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Figure 8.9: ACF and PACF for the seasonally differenced Norway South temperature time
series.

The seasonal moving average model which is used for HOG salmon 4-5 kg was first
introduced by Box and Jenkins to represent international air travel data, and has
since been found to be very useful for representing a variety of seasonal time series
(Wei, 2006). Note that this model also may be referred to as a seasonal exponential
smoothing model.

Based on the findings of Øglend and Sikveland (2008) of heteroscedasticity in the time
series for salmon prices, one could argue to use time series models that incorporate this
heteroscedasticity, such as e.g autoregressive conditional heteroscedasticity (ARCH) or
generalized autoregressive conditional heteroscedasticity (GARCH) models. However,
because of the applied variance stabilizing techniques such as the Box-Cox transfor-
mation of the time series, and that it is somewhat uncertain if the time series actually
used in this thesis holds heteroscedasticity, ARIMA-models are chosen to forecast the
time series.

For the eight additional spot price forecasts, the point estimate from HOG salmon 4-5
kg is used as a co-variate in each of the other spot price forecasting models. HOG
salmon 4-5 kg is chosen due to being the product that are most frequent traded in
terms of volume, in addition to being used in the production of other VAPs. HOG
salmon 4-5 kg prices has also high correlations with the other prices, and are therefore
experienced as a good reference price time series.

A co-variate is alternatively explained as an independent variable. More specifically, a
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co-variate is used as a secondary variable that may affect the relationship between the
dependent variable and other independent variables of primary interest. Equation (8.8)
illustrates how a co-variate is included in an ARIMA(p, d, q)× (P,D,Q)m-model. As
the reader may recall from Equation (5.24) in Section 5.2, the only difference from the
ARIMA(p, d, q)× (P,D,Q)m-model is that the ARIMAX(p, d, q)× (P,D,Q)m-model
in Equation (8.8) have adopted the autoregressive term βXt where β is the parameter
for the co-variate regression, and Xt is the co-variate. Not that the compact notation
in Equation (8.8) is the same as the most frequent notation used in literature for the
well-known Box-Jenkins multiplicative seasonal ARIMA-model.

φp(B)ΦP (Bs)(1−B)d(1−Bs)D(Zt − βXt) = ψq(B)ΨQ(Bs)εt (8.8)

Here, d is the order of ordinary differencing, D is the order of seasonal differencing
and β is the exogenous variable’s Xt coefficient. The other terms, including the model
parameters, are merely a more compact notation replacing the following equations:

φp(B) = 1− φ1B − φ2B
2 − · · · − φpBp, (AR)

ψq(B) = 1− ψ1B − ψ2B
2 − · · · − ψqBq, (MA)

ΦP (Bs) = 1− Φ1B
s − Φ2B

2s − · · · − ΦPBPs, (SAR)

ΨQ(Bs) = 1−Ψ1B
s −Ψ2B

2s − · · · −ΨQB
Qs, (SMA).

For an ARIMAX(0, 1, 1) × (0, 1, 1)52 model, which is used in the spot price forecasts
in this thesis, the equation becomes:

Zt =Zt−1 + Zt−52 − Zt−53

+ βXt − βXt−1 − βXt−52 + βXt−53

+ εt + ψ1εt−1 + Ψ1εt−52 + ψ1Ψ1εt−53

(8.9)

Despite high correlations in the temperatures for regions on the Northern hemisphere,
the authors have chosen not to include an exogenous variable as a co-variate in the
forecasting-models for the temperatures for each region. As discussed in Section 4.3.1,
the sea temperature at the fish farms depends heavily on local weather conditions and
on the exchange between coastal waters and fjords. Thus, local influence dominate
the short-term temperature-fluctuatuions.
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8.4.5 Scenario generation method
To generate the scenario residuals, the authors have used have used the copula based
scenario generation heuristic developed by Kaut (2014), where the residuals are gener-
ated from historical values for each time series to be forecasted. The binaries and the
source code for the scenario generation procedure is public available on Michal Kaut’s
webpage (Michal Kaut, 2015), as well as the coherent paper by Kaut (2014).

To generate the scenarios, the residuals generated by the copula-based heuristic are
added to the forecasting model’s equation in the time period of the split, see Figure
5.6 in Section 5.2. For an general ARIMA(p, d, q) × (P,D,Q)m this is illustrated in
Equation (8.10).

φp(B)ΦP (Bs)(1−B)d(1−Bs)D(Zt − βXt) = ψq(B)ΨQ(Bs)εt + εts (8.10)

The residual term, εts, will affect the resulting future forecasts in different ways de-
pending on the time series historical values and the estimated parameters for the
forecasting model. If the time series is stationary, the scenarios will converge. How
fast one may expect the scenarios to converge depends on the values of the AR and
MA parameters, and the number of AR and MA terms in the model. If the series
are non-stationary it is difficult to give a qualified answer to how the behaviour of
the time series prediction. However, if the non-stationary time series are forecasted
with an AR-model, the confidence interval for the possible scenarios will converge.
For a MA-model, the scenario residuals are expected to affect the forecasted scenarios
q periods after the split is done, regardless of the time series are stationary or non-
stationary. Furthermore, if the forecasting model involves a seasonal MA term and the
forecast is longer than the seasonal period, m, of the time series, the first predicted
values may affect the time series forecast Q periods into the next season as well.

For the Norway Mid temperatures, which are forecasted with an ARIMA(1, 0, 0) ×
(0, 1, 1)52-model, the temperature scenarios converge with time, see Figure 8.10. This
coincide with the series expected behaviour, as the time series are found stationary
in the mean and as an autoregressive term is used in the forecasting model. As
already mentioned, how fast the series converge depend on both the order of the
autoregressive term and the value of the parameters in the forecasting model. The
different parameters that are fitted over historical temperature data are given in Table
8.5. For the spot prices, which are forecasted with an seasonal moving average model,
the scenarios do not converge. However, the residual term added in the split affects
the solution for one time period, making the time series either converge or diverge
to or from the deterministic forecast respectively. How large this step is depends on
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Temperature coefficients
Region λ AR(1) SAR(1)

Norway North 0.2222 0.7509 -0.6452
Norway Mid 0 0.7043 -0.8106
Norway West 0.6667 0.7519 -0.9997
Norway South 0.7071 0.6536 -0.6434
Scotland 0.4242 0.7678 -0.9902
Canada -0.4242 0.8135 -0.9977
Chile -0.8282 0.6484 -0.9991

Table 8.5: Coefficients for the Box-Cox transformation parame-
ter, AR-term and seasonal AR-term for each region’s
temperature model.

the moving average parameter. As Table 8.6 show, the moving average parameter for
smoked salmon is rather large, meaning the spot prices for smoked salmon have only a
small spread between the different scenarios as soon as one time period after the first
split.

Price coefficients
Product λ MA(1) SMA(1) Xreg

HOG 2-3 kg 0.5858 -0.2213 -0.7069 0.9018
HOG 3-4 kg 0.7878 -0.18227 -0.9996 0.9859
HOG 4-5 kg 0.7474 -0.23782 -0.6569 0
HOG 5-6 kg 0.5454 0.310378 -0.3315 0.9816
HOG 6-7 kg 0.5454 0.111327 -0.6212 0.9581
Fresh fillet 1.5556 -0.2993 -0.7485 0.3085
Frozen HOG 0.6667 -0.5044 -0.4312 -0.0147
Frozen fillet 1.7171 -0.6054 -0.9999 -0.0302
Smoked 0 -0.8698 -0.6365 0.2118

Table 8.6: Coefficients for the Box-Cox transformation parameter,
MA-term, seasonal MA-term and the exogenous variable
parameter for each product price model.

Figure 8.11 illustrates the scenario tree for HOG salmon in weight class 4-5 kg, where
the same splits as in Figure 8.10 are applied. The splits that are used in the illus-
trative scenarios trees are only chosen to give a clear picture of how the scenario tree
evolves through time. As later discussed in Chapter 9, the model was run with larger
combinations of splits, and consequently the scenario trees used in the computational
studies are more detailed for most of the instances. For illustrative purposes, it is
chosen to present the scenarios with a 5-split in the first period, and a 3-split in the
sixth.
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Figure 8.10: Temperature scenarios generated for Mid Norway with split in time period 1
and 6. Note that the temperatures are forecasted with an autoregressive model
which differs from the moving average model used for spot price forecasts in
Figure 8.11. The most conspicuous difference is that the temperature scenarios
converge back to the forecast, while the price scenarios do not converge.
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Figure 8.11: Spot price scenarios generated for HOG salmon in weight class 4-5 kg with
split in time period 1 and 6. The scenarios have the same splits as in Figure
8.10. The difference is however is that the spot prices are forecasted with an
seasonal moving average model. HOG salmon 4-5 kg is also the exogenous
variable used as a covariate in the other forecasts of salmon spot prices.
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8.4.6 Market prices
Due to lack of price data differentiated both on product and market, it was not pos-
sible to create market specific price scenarios. Consequently, the market prices were
implemented by use of mark ups and mark downs for each market compared to the
Norwegian market. The Norwegian market was used as a reference market, and mark
ups and mark downs were based on historical data for Norwegian HOG export prices
to different countries. Market prices were generated using weighted averages, and
extrapolated to all product groups.

To induce the less than perfect correlation between the market prices seen in empirical
studies, an error term was added to this marked up price. The error terms were
generated in the same way as the scenario residuals by using Kaut (2014)’s copula
scenario heuristic. In addition, by generating a total of 52 residual mark ups and downs
for each price series, this method ensured that dependencies between the different
product’s price series were kept throughout the time horizon.

8.4.7 Scenario tree structure
A scenario tree is characterized by the total number of scenarios, the number of stages,
placement of the split nodes and the bushiness of the tree, meaning the number of
branches at each split (Pflug and Pichler, 2014a). The number of scenarios in a
stochastic model will have an considerable impact both for the solution time of the
model and for the solution itself. The structure of a scenario tree can also affect the
solution. For instance, a comparatively longer deterministic period prior to the first
split may give the model more time to adjust for uncertainty in later time periods.
Therefore, the scenario tree structure must be chosen with care.

Having a large number of scenarios will also in most cases give a more realistic rep-
resentation of the uncertainties. The drawback is that a large number of scenarios
lead to an rapid increase in problem size, and thereby increases the solution time of
the model. The number of scenarios should therefore be chosen as a trade-off between
solution time and solution quality obtained.

In some applications, the structure of the scenario tree in terms of number of stages
might be given by the problem structure itself. King and Wallace (2012) divide stochas-
tic models into inherent two-stage models, also referred to as invest-and-use models,
and inherently multistage models, also referred to as operational models. Models that
are inherently two-stage are based on problems where there first is a major long-term
decision, whereas the rest of the horizon represent use of the investment. In contrast,
inherent multistage models incorporate only stages of the same type. In such models,
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stages model the flow of information rather than a divsion between investment and
use.

A two-stage scenario tree is easier to implement, both in terms of input data generation
and coding of the model itself. Furthermore, two-stage models are more intuitive to
use and analyze for a decision maker which is inexperienced in stochastic optimization.
Conducting model evaluation by calculating the VSS is also more straight forward for
a two-stage model, as the calculation of EEV become more complex in multistage
problems. Furthermore, two-stage problems may either have the same number of
realizations and higher bushiness or the same bushiness and a significantly smaller
problem size than most multistage models. However, the two-stage model solution is
generally too optimistic compared to a multistage model, as larger parts of the model is
deterministic. On the other hand, the process of generating input data for multistage
models are often much more complex. From the definitions above it is evident that
the model presented in this thesis fall into the category of inherent multistage models,
and should thus be modeled accordingly

After having decided upon the number of stages, the placement of the split nodes
should be carefully chosen. Generally they should be placed where new information
become available. In this problem, new information regarding both temperatures and
prices become available on a daily basis. Splitting every time period would lead to an
incredibly large tree resulting in the model only being able to solve very small problem
instances. Consequently, one must choose a subset of time periods to split on. One
could argue that the most rational placement would be before important decisions are
made, or in periods with especially high uncertainty.

The decisions with the largest long-term impact in this problem are the contract
decisions, and it should therefore be a split immediately after the contract decision
on entering a contract have been made. As demand peak around Christmas, one
could further argue that prices in December will impact total profits more than prices
at other times of the year. By following this logic, a split should be placed a short
time before the Christmas rush. However, this particular model is developed to be
used as a rolling horizon model, and thus the early periods decisions are by far the
most important ones. As a consequence, a detailed modeling of these decision takes
precedence. Also recall that everything happening beyond time period six in the
model is only included to model end effects. Marine Harvest also operate with a six
week planning cycle (Johannessen, Vinnes and Sværen, peronal communication, 2015),
splits are therefore placed in period 1 and 6. One could argue that the decision maker
to some degree have insight into what the price and temperature development will
be the coming six weeks, and that the splits should rather be placed in period 6 and
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12. However, by placing the contact decisions in the first time period a split in the
immediate period fall natural and, as discussed, thus giving the model a more tactical
slant.

The final decision regarding the scenario tree structure is to chose a reasonable total
number of scenarios. According to Michal Kaut (personal communication, 2015), one
cannot expect a tree with good statistical properties if one have fewer branches than the
number of stochastic parameters in each split. In this problem the number of stochastic
parameters is 16 (9 prices, 7 temperatures), meaning a tree should preferably contain
at least 256 scenarios. However, such a tree would have a solution time making the
model unsuited for any practical applications (100 scenarios take approx. 3.5 days to
solve for this problem). Based on this trade-off between solution time and statistical
validity, the choice fell on a tree containing 40 scenarios.

8.5 Input data
As the input data highly affects the model solution, it is important to be aware of the
sources of these data and how they have been manipulated.

8.5.1 Initial conditions
For each location, the initial biomass, i.e. the initial number of fish in each weight
class v is given as input to the model. As no numbers of live stock for Marine Harvest
is publicly available, this input is estimated based on other available numbers. In
order to get harvest values comparable to the values for Marine Harvest, their annual
harvest numbers per farming region (Marine Harvest, 2010; Marine Harvest, 2011b;
Marine Harvest, 2012; Marine Harvest, 2013) were chosen as the basis for estimating
the initial biomass levels. Then, the biomass were distributed to the different farming
weight classes relative harvest volumes presented in (Marine Harvest, 2014b).

The smolt release plan in Norway is based on the numbers from The Directorate
of Fisheries (2015) adjusted by the market share of Marine Harvest (0.25) (Marine
Harvest, 2011a). These numbers are then extrapolated to the other regions based on
the relative harvest volumes per farming region. As a simplification, only smolt of
sizes 100 g, 150 g and 250 g are deployed, where a random smolt size is chosen for
each smolt deployment. Additionally, as the smolt release values are per month, each
smolt deployment is performed in a random week within that month.

Last, initial inventory levels are generated randomly based on historic production.
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8.5.2 Contracts
As no data has been available regarding Marine Harvest’s historical contract arrange-
ments, the set of available contracts is generated by randomly choosing contract type,
product, market and the set of delivery time periods for each contract. Note that no
consumer preferences in different products are included. 20 initial contracts and 300
new contracts are used as input. The volumes per delivery are based on the capacity
of a trailer, which is about 20 MT (Aandahl, P.T., personal communication, 2015).
Here, most deliveries are set to the capacity of one trailer, while some are also set
higher.

According to Larsen and Asche (2011), contract sales give on average the same revenues
as spot sales. As such, the contract prices used as input are based on the average
forecasted price for each product in each market and a random markup between 2 and
7 NOK/kg.

8.5.3 Growth
The growth model is implemented by use of a modified version of salmon food producer
Skretting’s growth matrix. This matrix gives the weekly growth in grams for a salmon
belonging to a specified weight class given an average sea water temperature during
that period. Note that the growth of the largest weight class is zero. This is done to
ensure that fish does not grow out of the distribution.

8.5.4 End of horizon
The expected valuation of biomass and inventory is meant to represent the net future
profits of the biomass and inventory, meaning the expected profits attained when
selling the fish or processed products less the expected sales and administrative costs
and other costs related to growing the fish and getting it to the customer. For biomass,
the expected salmon value would additionally have to be adjusted for the expected
caring, harvest and slaughter costs, whereas the expected product value would have
to be adjusted for expected inventory costs.

The expected value before adjusting for the costs of withholding could either be given
based on historical values obtained prior to the beginning of the planning horizon, or
be based, fully or in part, on the prices realized during the planning horizon. On the
other hand, Øglend and Sikveland (2008) argue that the high price volatility of salmon
makes recent historical prices less influential on future prices. A final alternative is
therefore to base the expected salmon value on the spot price immediately prior to
running the model.
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Based on the foregoing discussion, the use of historical averages is considered to be the
best approach, and consequently this is the method implemented. To give the model
incentives to reduce the volume of old products at the end of the planning horizon,
the oldest artificial inventories are given an incrementally smaller value.

8.5.5 Constants
The values of the constants used in the model were estimated in the following way:

Caring costs
The caring costs are based on the numbers used in the work of Hæreid (2011).

Yield ratios
The slaughtering loss ratio used is 0.84, based on numbers found in Marine
Harvest Industry Handbook 2014 and Salmon World (Kontali Analyse, 2014;
Marine Harvest, 2014b). The processing yield of frozen whole fish is set to 1,
as fresh and frozen HOG will weight the same. The processing yield for fillets
is based on numbers found in Marine Harvest (2014b), and processing yield for
smoked salmon is calculated based on volumes of input and output given in
Marine Harvest (2013).

Production costs
Production costs are not available directly as they are regarded sensitive. As a
result they are estimated from known profit margins and figures in the Marine
Harvest annual report (Marine Harvest, 2014a).

Inventory costs
Inventory costs are based on numbers provided in Shaw and Muir (1987).

Production capacities
Production capacities are estimated based on available information on total
yearly sales volumes that are assumed to be distributed evenly among the pro-
duction regions modeled.

Transportation times and costs
Transportation times and transportation costs are calculated based on numbers
provided by World Freight Rates (2015) and times found by the use of Google
Maps’ distance and direction API.

Spot purchase mark-up
Based on scaling of the model, the spot purchase mark-up is set to 6 NOK.
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8.5.6 Input data generation
To easily generate different sets of scenarios dependent on the decision makers pref-
erence, an Excel-script is developed where the user may set the time period of the
split and number of branches in each split. As such, the model can be easily be
adopted to the level of available information and the desired degree of uncertainty.
The Excel-script is found in Appendix E, which describe the electronic attachments
to this thesis.

A large set of input data were also generated automatically by the use of Python

scripts. This included most of the sets and matrices that were unchanged, such as the
origin and destination sets, the contract sets and contract parameters and the path
sets and path parameters

8.5.7 Testing of the input data
The models were initially tested on small instances for verification purposes, before
moving on to larger, more realistic data sets. These tests are explained in further
detail in Appendix C.
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Computational study
The model studied in this thesis was implemented as a deterministic and three-stage
model. The three-stage version were tested on different scenario trees. In the following
chapter, results and main findings from the tests performed on the different models
are presented and discussed.

After verifying correct model behaviour, several tests were performed on larger in-
stances meant to give a realistic representation of reality. The analysis performed can
be grouped into four types:

1. Realism comparison
2. Stability testing
3. Sensitivity analysis
4. Case study

This chapter starts with an analysis of the sources of errors in Section 9.1, before the
stochastic method is evaluated in Section 9.2. Next, the solutions from the base case
are analyzed in Section 9.3, where the solution is compared to the actual numbers for
Marine Harvest in 2014. Section 9.4 and 9.5 presents results of the stability testing
and sensitivity analysis of key parameters, whereas a case study that analyses the
effects of a trade ban to Russia is presented in Section 9.6. Considerations around the
solution time and a discussion as how to improve the performance of the implemented
model is evaluated in Section 9.7.

9.1 Sources of error
Before presenting the results and analysis, a general note of caution must be given
regarding the model solution. As the data set is exclusively based on publicly available
numbers, several parameters are unknown to the authors of this thesis. Accordingly,
many key parameters are therefore approximated with the use of the publicly available
figures as described in Chapter 8.

Most notably, these numbers includes the internal production costs, transportation
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costs and all capacities, as well as financial figures such as the contract mark up,
the spot purchase mark up and the values of ESV and EPV. Furthermore, all initial
conditions, the smolt release plan and the set of available contracts are generated
randomly with levels that are set to represent a real problem. It is important to
be aware of these limitations when analyzing the solution, as deviations from the
real numbers may change the results slightly in either direction. This fact will affect
the validity of the results obtained, although the results still indicates that there are
some areas that can be exploited by Marine Harvest to improve their profit margin.
Consequently, most of the following analysis will focus on reality testing and why the
model deviate from the reality.

No risk aversion

A consequence of disregarding the additional value of trading through contracts and
selling VAP, and assuming risk neutrality, will most probably affect the solution. As
the model acts risk neutral and no means for reducing the volatility in the income are
included, the model is expected to act too opportunistic if used in the industry. For
the results presented in this chapter, the share of processed products are thus expected
to be lower than the real numbers. Furthermore, as the model is not run in a rolling
horizon environment and contracts can only be entered in the first time period, the
contract share cannot be compared to the real contract share. However, the analysis
can give some indications as to a preferred contract design.

No mortality

Several of the simplifications made will to some extent have large implications for
the solution and objective value. As no mortality or loss of fish is included, the
solution will be somewhat optimistic. The VSS will thus be lower than it would if
mortality scenarios were included. Both the sales allocation and product-mix will
likely be affected by the simplification of unlimited demand. Factor costs such as
caring costs, production costs and inventory costs are nor differentiated on location.
Consequently, the model solution will not reflect effects such as the Chilean exports
having a comparatively higher share of VAP due to cheaper labor.

Scenario generation

Another important factor is that the optimal solution is highly dependent on the price
scenarios generated. Although considerable efforts have been made to generate a good
ARIMA-model, there are some precautions that must be taken. Firstly, the lack of
consistent price data may affect the results adversely. This is because two separate
time series from Norwegian Seafood Council (2015) and NASDAQ (2015b) are used as
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input, as they were the only available price data with the desired detailing level. This
implies that the price relationships may not reflect the actual historic prices achieved
by Marine Harvest.

The price forecasts used as input are also shown to be too optimistic when comparing
with actual price data for 2014 NASDAQ (2015b). This is because of a significant rise
in the historic prices towards the end of 2013, as depicted in Figure 9.1. This effect is
especially evident for the frozen HOG price, as the price gap between fresh and frozen
HOG was historically high at the end of 2013. This is highlighted in Figure 9.1
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Figure 9.1: Historic product prices in 2013 for all fresh HOG salmon weight classes and all
processed product categories included in the model.

In general, when using seasonal ARIMA-models the average level in the forecast will
be mostly dependent upon the last historic value unless a trend is included or there
is a strong seasonality in the data. As a trend was omitted because of the high price
volatility, and the historic seasonal pattern is quite weak, a forecast hovering around
the end values for 2013 was anticipated. When not implemented in a rolling horizon
environment, the effect of the wrong forecast becomes quite large.

As all prices are based on Norwegian salmon prices with a markup adjustment, some
markets may have unrealistically high prices. However, the use of a copula-based sam-
pling method implies that the relationships between the markups and the distribution
of the markups in each market should correspond well with the historical values.

No tariffs

As a consequence of excluding tariffs, the global trade patterns are expected to shift
somewhat compared to actual numbers. As Canada and the USA belong to NAFTA,
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and Scotland and Ireland belong to the EU, trade within these regions is expected to
be lower in the model solution than in real life. Furthermore, as Russia has relatively
high tariffs of 10 % (Eurasiatx - Eurasian market news, 2015), the trade with Russia
is also expected to be to optimistic. This effect will be further amplified by the high
rail tariffs in Russia making transport from the coast to the inland market costly (The
Moscow Times, 2014). This cost is not intercepted in the model. The exclusion of
tariffs can also affect product-mix, as primary and secondary processed products are
taxed differently.

Temperature forecasting

The temperature scenarios are based on daily sea temperatures from National Oceanic
and Atmospheric Administration (2015). National Oceanic and Atmospheric Adminis-
tration (2015) uses 8-km resolution Global SST Observations to generate a composite
gridded-image of the sea surface temperatures (SST) on a daily global scale. The
temperatures are afterwards derived from this image, which is naturally subject to
variable quality. The temperatures are also the skin sea surface temperatures, and
may not represent the actual water temperature at the depths where the fish reside.
As surface temperatures are probably higher, this could result in somewhat optimistic
growth in the model. However, this time series was chosen as there are few alternative
data sources of weekly temperatures.

One alternative could be to use Fiskeri- og Havbruksnæringens Landsforening (2015)
for Norwegian sea temperatures. However, these temperatures are only given on a
monthly basis, and would therefore give to few observations for fitting a forecasting
model of high quality.

9.2 Evaluation of the stochastic method
As the problem is inherently multistage by nature, the performance of two three-stage
implementations of the model is evaluated. The performance of the stochastic models
can be described by using the concepts introduced in Section 5.1. For each model
the RP, WS and expected value of expected solution (EEV) are calculated. The WS
is calculated by relaxing all non-anticipativity constraints, and thus giving the model
the freedom to solve each scenario deterministic. For the three-stage model, the EEV
is calculated with the use of the second approach presented by Escudero et al. (2007)
described in Section 5.1. This approach is chosen because of its higher degree of
accuracy, albeit it is more time consuming to implement.

In Table 9.1, the EV, EEV, RP and WS solutions for two different instances are

154



9.2. Evaluation of the stochastic method

listed, whereas EVPI and VSS are presented in Table 9.2. Both instances are three-
stage models with splits in time period 1 and 6. The first instance has 15 scenarios
with bushiness (5,3), while the second has 40 scenarios with bushiness (8,5). The
latter is also used as the base case for the rest of the results.

Model Nr of scenarios EV EEV RP WS
Three-stage 15 16 275.9 15 645.3 16 297.0 16 305.9
Three-stage 40 15 971.0 15 435.5 16 338.1 16 338.0

Table 9.1: Comparison of RP and EV solutions [mill. NOK].

In both instances, the WS solution is greater than the RP solution, which in turn is
greater than the EDEV solution. This coheres with property (5.15), and is true for
all recourse problems. Furthermore, both the EVPI and the VSS is lower for the 15
scenario instance than for the 40 scenario instance. This result is as expected, because
more scenarios give a larger number of realizations of the future, which in turn give
more value to the use of stochastic programming. The explanation for this, is that
when including more scenarios, the fixation of decisions in the EDEV will have a more
severe adverse effect on the objective value. Also note that the RP solution is higher
when adding more scenarios, as will be explained in further detail below in Section
9.2.1.

Model Nr of scenarios VSS VSS % EVPI EVPI %
Three-stage 15 651 700 000 3.9989 % 8 900 000 0.0546 %
Three-stage 40 892 580 000 5.4665 % 9 900 000 0.0606 %

Table 9.2: VSS and EVPI for three different model runs.

As Table 9.2 show, the EVPI is quite small for both instances. In these cases, the
scenarios converge or partially converge and most decisions are performed each time
period. As such, there seems to be less value of perfect information, since the scenario
tree has a smaller span and the model has a lot of adjustability.

However, the VSS is significant for both instances, at approximately 4.0 % and 5.5 %
respectively. This indicate that the effect of adding stochasticity in the planning pro-
cess for Marine Harvest has a significant value, although the added complexity severely
affects the solution time, as discussed in Section 9.7. The possible increase in profits
must be considered against the added computational effort and the need for increased
knowledge among the model users when deciding whether to use a deterministic or
stochastic model.
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9.2.1 The effects of different scenario tree structures

Model Nr of scenarios Profits [mill. NOK] Diff
Four stage 45 16 399.7 71.6
Three stage 100 16 414.2 86.1
Three stage 40 16 328.1 31.1
Three stage 15 16 297.0 61.5
Two stage 40 16 235.5 264.5
Deterministic 1 15 971.0

Table 9.3: Profits for different model instances, sorted highest to lowest.

As evident from Table 9.3, the solution to the RP problem seems to increase with
both the number of stages and the number of scenarios included. Consequently, the
inclusion of more scenarios seems to give the model more flexibility and thus more
potential to adjust its production to earn relatively more in the high price scenarios
compared to the relative loss in the low price scenarios. This may be a result of the
bushiness chosen, as the increase in bushiness may give more probability for the sce-
nario generator to also include some outliers. When analyzing the residuals used, this
fact is especially prominent when looking at the matrix with three residuals for each
price and temperature, where the spreads between the largest and smallest residuals
are much lower as compared to the other branch matrices.

Furthermore, the share of spot sales relative to the contract share is increasing when
adding more scenarios or adding more stages in the scenario tree. This seems to be
a result of how the model postpones uncertain decisions when possible, as contract
signings limits its flexibility in later time periods.

When considering the results above and the problem properties, where most decisions
are taken every time period, the chosen scenario generation method may not been
given the desired statistical properties. Usually, splits in the scenario tree are used
as a mean to model specific stages in the planning period where new information
is observed, or there are important events where the uncertainty in future outcomes
should be taken into account. In this problem, the first six weeks were considered as
the most important, and thus splits in week 1 and week 6 were implemented. However,
when considering the results, there may have been better to model the uncertainty
with a different scenario generation method. One alternative could be to simulate a
large set of possible outcomes with the statistical properties of the historical data and
then use a scenario reduction technique to get a realistic tree size (Tjelmeland, H.,
personal communication, 2015).
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9.3 Base case analysis
The three-stage model described in Section 8.4 is used as a base case throughout
this thesis. The base case solution is compared to actual numbers from the industry
and Marine Harvest to test the realism of the model solution. When conducting
this comparison, it is crucial to keep in mind the sources of error expected to cause
deviations discussed in Section 9.1. Note also that only the base case is analyzed in
this section, most results obtained here are similar in other runs.

9.3.1 Key figures
Table 9.4 summarize some key numbers and compare them to relevant values found
on the Marine Harvest’s annual report (Marine Harvest, 2014a). A percentage value
giving the base case solution values relative to the real values is also included. Note
that because of different calculation methods, the numbers for the base case solution
cannot be directly compared to the numbers presented in the annual report.

Key Figures 2014 [MNOK] Base case MH %
Volume harvested (GWE), tonnes 369 121 418 873 88%
Average price achieved (NOK/kg) 61.9 57.3 108%
Spot revenue 21 288 15 351 139%
Contract revenue 1 554 8 634 18%
Transportation costs -459 -1 922 24%
Inventory costs -0.55 - -
Caring costs -2 791 -4 751 59%
Spot purchase costs -266 - -
Processing costs -1 450 - -
Change in biomass value -1 395 477 -292%
Change in inventory value -125 650 -19%
Objective value/EBITDA 16 328 5 220 313%

Table 9.4: Key figures comparison of the base case solution and similar figures reported by
Marine Harvest in 2014 (Marine Harvest, 2014a).

As Marine Harvest report their harvest volumes in gutted weight equivalent (GWE),
the model solution is transformed from whole fish equivalent (WFE) to GWE for
comparison purposes, whereas harvest volumes in the rest of the chapter are reported
in WFE. Also note that the biomass and inventory values are presented as the change
in value and not the absolute end value for easier interpretation.

The objective value is 16.3 billion NOK, compared to a reported EBITDA of 5.2
billion NOK. As discussed in Section 7.2, several large cost objects are excluded from
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the objective function in the model, and these two values are therefore not comparable.
The revenues is on the other hand easier to compare, and as evident from the average
price achieved, the total revenues from the base case seems comparable to the actual
revenues. However, as will be discussed in further detail below in Section 9.3.3, there
are several differences between these two values.

Below, a visual representation of the distribution of the costs and revenues are given
in Figure 9.2a and Figure 9.2b. A notable difference between model solution and real
numbers is that the contract share in the model solution is only 7 %, compared to a
reported 36 %. This is however not surprising, as contracts are modeled as a first stage
decision. For a more realistic comparison of the contract share, the model should be
run with a rolling horizon of six weeks, where contract decisions are included as first
stage decisions in every run. Note that exclusion of the revenue generated from initial
contracts also affect the result below.
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(a) Revenues

Transportation

Inventory

Caring

Production

Spot purchase
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56%

29%
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Figure 9.2: Revenues and costs generated in the base case solution

Furthermore, the real operating expenses and net changes in assets are also deviating
significantly from the base case solution. When comparing the figures reported in
Table 9.4, the absolute values of the transportation costs and caring costs both seems
a bit low. Moreover, the share that goes to transportation seems unrealistically low,
as well as the fact that where the model is getting rid of its assets, Marine Harvest
is increasing both its live stock and product stock. Note that for some of the figures
presented in Table 9.4, comparative values were not obtained.

In the following sections, a more detailed analysis of the values obtained from the base
case will be given. The focus will be on explaining the deviations from the real values,
as well as giving suggestions to how Marine Harvest may be able to improve their
operational performance where relevant.
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9.3.2 Production
Total volume harvested in the base case solution is 439 430 MT WFE, corresponding
to 369 121 MT GWE. Compared to the reported volume from the annual report, this
is 49 752 GWE tonnes lower, which represents a gap of about 12 %. This indicates
that the estimated initial biomass may be a bit low, especially when considering that
the model is using more biomass than what it is producing, whereas Marine Harvest
is increasing its total biomass volume according to the annual report (Marine Harvest,
2014a).

Biomass development

In Figure 9.3, the biomass development is plotted. As evident from the figure, the
biomass development is quite stable. When comparing the modeled biomass develop-
ment to the figures presented in ”Salmon Farming Industry Handbook 2014” (Marine
Harvest, 2014b, p. 64), the S-shaped curve for biomass development presented there
is not replicated by the model.
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Figure 9.3: Total biomass in the base case solution

This may be an effect of several factors, one of the most probable of which being that
the estimated smolt releases may deviate significantly from the actual smolt releases
by Marine Harvest in 2014. The numbers used as input in the model are based on the
smolt release numbers for Norway and extrapolated to the rest of the world, and do
consequently not take country specific factors into account. In addition, the exclusion
of fallowing may also give a more stable biomass development.

No harvest in the first time period may contribute to the small increase in the biomass
at the beginning of the planning horizon. The decrease in the end of the year have
a more realistic explanation, as it is caused by the price peak in December. Also,
note that if implemented within a rolling horizon framework, the optimal biomass
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development will most probably differ from the one in Figure 9.3.

Harvest per country

As illustrated by Figure 9.4, the harvest volume broken down per country seem to
be quite realistic. The only exception being Canada, which has 61 % more harvest
than what the reported value for 2014. There are two main reasons for this deviation.
Firstly, only air freight is implemented as a viable transportation option for fresh
HOG salmon from Chile and to the US market, whereas boat and truck can be used
for transport fresh HOG salmon from Canada to the same market. Since the cost
difference is very high, estimated to about 10-15 NOK/kg, and the quality of the
fish is assumed equal, the model finds it more attractive to harvest relatively more
in Canada. Since all costs are assumed equal and the forecasted prices in the US are
based on prices for Norwegian salmon with a random markdown, the model have found
the US market as a more attractive market than what it is in reality (Marine Harvest,
2014a).
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Figure 9.4: Comparison of harvest volumes pr slaughter region for Marine Harvest

9.3.3 Market transactions
The total revenues presented in Table 9.4 seems comparable to the revenues achieved
by Marine Harvest for 2014, as the average price achieved were 61.9 NOK/kg compared
to 57.3 NOK/kg for Marine Harvest. However, where Marine Harvest in reality has
such a high price achievement because of a larger share of sales through processed
products, the model obtains a higher price achievement because of the high average
price for fresh HOG salmon. According to Marine Harvest, the average reference prices
were 39.42 NOK/kg, 27,06 NOK/kg and 19.66 NOK/kg for FCA Oslo, Urner Barry
Miami 2-3 pound and Urner Barry Seattle 10-12 pound respectively (Marine Harvest,
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2014a). Furthermore, Marine Harvest had an average price achievement of 102 % in
2014. When comparing these reference prices to the average forecasted price for HOG
of 57.4 NOK/kg, it is evident that the forecast was too optimistic. This is a result of
the high price in the end of 2013, as discussed in Section 9.1.

Contract sales

In the base case, close to a third of the contracts are signed (94 out of 300). As the
model is risk neutral, contracts entered must at least have an expected value equal
to the expected value of selling the same product in the same market and in the
same time periods at the spot market. Consequently, the contracts signed in the base
case solution is increasing the profit, whereas contracts in reality are used as a risk
reduction tool.

The number of contracts initially offered were distributed evenly between the three
different contract types offered. In Figure 9.5, the relative distribution between the
three different contract types are shown. As evident from the figure, fixed price con-
tracts and partially adjustable price contracts are entered twice as often as adjustable
price contracts. If assuming that the three different contract types have the same
average markup on expectation, the results below indicate that partially adjustable
contracts seem like the least preferable contract type. Which contract type that is the
most preferable is however hard to quantify from the results presented in Figure 9.5.

Fixed price

Adjustable price

Partially adjustable price

39%

21%

40%

Figure 9.5: Signed contracts.

The reason for the clear preference for the two least flexible contracts seems to be
the effects of included a markup for contract sales. The purpose of the markup is
to assure that contracts are signed. However since this markup is always positive,
the probability for losing some profits is higher than the probability for gaining extra
profits if an adjustable price contract is entered. As such, a risk measure should be
included instead of the markup if one wants to analyze which contract scheme that is
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the most effective.

Spot sales

Figure 9.6b illustrates the total spot sales volume per time period. Contract sales
volumes are excluded as they are not optional as soon as the contract is signed, and
thus can obscure the pattern resulting from price changes. As evident from comparing
the average spot prices for the different products to the forecasted prices, the sales
volume closely follows the price development. However, the volatility in the sales
volumes are much higher than the price volatility, as the model tries to exhaust even
the slightest price differences. The characteristic sales volume peak immediately prior
to Christmas discussed in Section 3.4 is clearly visible. Note that the low sales volumes
in the first five time periods are a natural result of no volume in production or any
volume flows in the transportation network in the beginning of the planning horizon.

Product mix

Figure 9.7a depict the product mix in the base case solution. As a reference, Figure
9.7b is included to illustrate the actual product mix reported in Marine Harvest’s
annual report (Marine Harvest, 2014a). The largest product volume is sold as fresh
HOG salmon in both instances. However, the reported share of processed products are
much higher in the annual report than in the model solution. This difference is largely
a result of much lower fillet sales. Where fresh fillets are the second largest category
with 24 % of the total sales according to the annual report, they only contribute to 1 %
in the base case solution. There can be several explanation to this deviation where no
risk aversion are the two most evident. A likely explanation is that a risk neutral model
such as the model presented in this thesis will be indifferent to the price volatility of
the products produced. Consequently, processed products with lower volatility at the
expense of lower operating margin, such as salmon fillets (Marine Harvest, 2013), will
be less preferred by the model. The model would rather try to maximize the profit by
producing most of the product that have the highest expected profit, i.e. fresh HOG
salmon.

As for the reasons why there is a much higher sale of frozen fillets, this seems to be a
result of the relatively higher price volatility in the forecast and the added flexibility
from allowing storage. Because the forecasted price of frozen fillets has more variation
than the forecasted price for fresh fillets, frozen fillets have higher peaks that the
exploits. Furthermore, as evident in Figure 9.12 which plot the inventory volumes,
the model also utilizes the ability to stock up on products and sell them in time periods
with price peaks.
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(a) Average spot prices for all scenarios in the 40 scenario base case.
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(b) Spot sale volumes per time period in base case solution.

Figure 9.6: Spot price and spot sale volumes in base case solution.
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Figure 9.7: Comparison between sales volumes from model solution and
actual sales volumes in 2014.
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Figure 9.8: Relative market sales from base case compared to the average
values for Marine Harvest (Marine Harvest, 2014b).
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Sales per market

How the sales volumes are distributed amongst the markets in the base case solution is
illustrated by Figure 9.8 and Figure 9.9. From Figure 9.8, it seems like the distribution
between the markets are on the base case solution is comparable to the average values
obtained in ”Industry Handbook 2014” (Marine Harvest, 2014b). However, the sales
in Russia are significantly higher in the base case solution than the reported figures
for Marine Harvest, where sales to Russia were only 3 % (5 % in 2013) (Marine
Harvest, 2014a). This can be explained in part by the trade ban imposed by Russia
blocking Norwegian exports. As such, a more probable explanation is that tariffs are
not included in the model implementation. As the implemented transportation cost
from Norway to Russia does not differ significantly to the cost to Europe, the higher
prices in some periods implies that this will be an attractive market. If however
Russia operate with higher import tariffs than Europe, this will make the market less
profitable, so that more of the volume will probably be rerouted to Europe instead.
Note that the numbers in ”Industry Handbook 2014” are representative numbers based
on historic averages, whereas the rest of the numbers used for comparison are based
the performance of the base case.
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Figure 9.9: Base case sales volumes per market.

As for the share of processed product per market, this varies from 4 % the Asian
markets and up to 36 % for North America. However, because of the aforementioned
lack of suitable data for prices per product in each market, these differences are most
probably random effects. The only exception is the high share of processed products
sold in North America, which is a result of a nearly exclusive sale of Chilean salmon
through processed products. If fresh HOG salmon is sold in the North American
market, it must be transported by air freight, which in most instances give a much lower
profit margin than to produce processed products and ship them to Norh America by
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boat.

Sales distribution of fresh HOG salmon

Another interesting analysis is the weight distribution of the harvested fish. In Figure
9.10, the weight distribution in the model solution is compared to the general distri-
bution of Norwegian harvest presented in Marine Harvest (2014b). The distribution
shows a similar pattern as the actual distribution, with a relatively symmetric dis-
tribution around the 4-5 kg HOG salmon. However, the model solution suggest that
there is more optimal to harvest a relatively larger harvest share of the smaller fish
sizes from 2 to 4 kg, compared to the industry averages. This result is also supported
by the solutions obtained in another master thesis written by Rynning-Tønnesen and
Øveraas (2012), which showed a significant increase in the objective value when also
smaller fish sizes were allowed to be harvested. This suggest that the premium paid on
larger fish is not worth the extra cost of breeding the fish until it reaches the larger fish
sizes. Furthermore, as higher caring cost will probably result in increased profitability
for smaller fish sizes, and the reported caring cost from the solution of the base case
is lower than the figure reported in the annual report (Marine Harvest, 2014a), the
profitability for lower fish sizes may be even better.
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Figure 9.10: Comparison of harvest volumes pr HOG weight class.

Spot purchases

Looking at the spot purchases, most purchases amount to either 20 or 40 MT. This
is seen as an indication of spot purchases being used as a means to fulfill contract
obligations. A contract volume for each delivery is 20 or 40 MT for all contracts.
Also, there are proven to exist arbitrage opportunities in the implemented network
between Japan and Asia in a few time periods. As such, the transportation capacity
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is binding in the corresponding time periods.

9.3.4 Logistics
Figure 9.11 represent the relative use of the different transportation modes included in
the model. As expected, boat is the most widely used mode, followed by truck. Only
a minor portion of the total volume transported, 4 %, is transported by air freight.
Although no transportation data for Marine Harvest were available, the use of air
freight seems a bit low, as this is the only way to transport fresh HOG salmon to
Asia from Europe. However, this seems to be a result of the large price difference in
using air freight compared to boat or truck. Since Canada is able to supply the Asian
market with fresh products by boat, it is not surprising that it is mostly Canada that
supplies the Asian markets, whereas only a small volume is transported from Norway
to Asia. Because of this, there seems like a premium on Norwegian salmon should be
implemented.

Truck
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Plane

28%

68%

4%

Figure 9.11: Volume transported by the different transportation modes
included.

9.3.5 Inventory and end of horizon
The inventory profile of the different durable product groups included in the model are
illustrated in Figure 9.12, where three interesting patterns are evident. The inventory
of frozen HOG salmon steadily decreases throughout the planning horizon until it is
empty and remains at zero for the remaining time horizon. This implies that the
EPV values for frozen HOG salmon is too low as it is better to utilize the inventory
in production instead of keeping stock at then end of the planning horizon. The
production of frozen HOG is also very low because of the relatively low forecasted
price.

Furthermore, the inventory profile of smoked salmon clearly show how the model uses
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Figure 9.12: Inventory profiles per product group.

the inventory to maximize the utilization of the Christmas price peak. This seems
reasonable as smoked salmon has the highest relative increase in its December price.

Another interesting fact is that the outgoing inventory of frozen fillets is much higher
than the ingoing inventory, as well as it is emptied two times during the planning
horizon. The reduction in the inventory in the middle of the planning horizon seems
to align well with the forecasted price peak for frozen fillet. As frozen fillets are the
only product that has a higher end value than ingoing value there are some indications
that the EPV of frozen fillet is set comparably higher than the other values.

As for the ESV values they seems to be set at a reasonable level as the decrease in the
biomass is 3.4 %. This is an indication that the end of horizon term in the objective
function that controls biomass works as intended.

When comparing the effect of the values set for ESV and EPV it seems like where
the ESV work as intended, the EPV have some contradicting effects. As both the
inventory of smoked and of frozen HOG is reduced or even emptied at the end of
the planning horizon these two values seem to be set too low. On the other hand,
the model stock up on frozen fillet indicating that this value is set too high. In total
the outgoing inventory is reduced by 27.4 % compared to the ingoing inventory. This
model behavior indicates that controlling the end of horizon effects with the use of
end values is tricky as they should somehow be set relative to the price forecast. On
the other hand, if the user puts too much effort into deciding the ”correct” outgoing
volumes, the model could have just as well introduced a set of constraints to force
the end biomass to the preferred values. However, if the user has a good method to
decide ”correct” end values and the user values more flexible end effects this should
be the preferred method. In addition, as the model should be run in a rolling horizon
environment the end values will never be used.
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9.4 Stability testing
Stability testing may be used to evaluate the scenario generation method which is
used. A model is said to be stable if several different scenario trees, generated using
the same method and input, yields approximately the same optimal solution value
in the optimization model (Kaut and Wallace, 2007). A stability test may thus be
viewed as a robustness test of the model regarding how it is affected by the scenario
generation method.

There are two main types of stability, in-sample stability and out-of-sample stability.
A requirement for being a good scenario generation method is that different scenario
trees should give approximately the same objective value from the stochastic model as
in reality (Kaut and Wallace, 2003b). This is also the requirement for being considered
a out of sample stable scenario generation method. The problem with this type of
stability is that it must be possible to evaluate the objective function. Unfortunately,
this may prove to be difficult, but the true objective function can be approximated by
the value of the objective function obtained when using a very large scenario tree.

An in-sample stability test investigates how the discretization of the random variables
in the scenario tree affects the value of the objective function. It can thus be said to be
a test of the robustness of the discretization process, and must not be confused with
being a measure of model quality (King and Wallace, 2012). A scenario generation
method is said to be in-sample stable if several scenario trees generated from the same
scenario generation procedure gives approximately the same optimal objective function
values (Kaut and Wallace, 2003b).

King and Wallace (2012) describes two approaches to test for in-sample stability.
Choosing between these two depends on whether the scenario generation procedure
is random or deterministic. If a deterministic procedure is used several times with
the exact same input, it will produce the same scenario tree each time. Conversely, a
random procedure will not produce the same tree each time.

The copula based method by Kaut (2014) are actually an deterministic method as
the residuals can be found by an MIP-model. However, the implemented heuristic by
Kaut (2014) has random elements so that the procedure is considered to be random.
The model is tested for in-sample stability by running the heuristic several times on
the same input data which generated several different trees.

10 different trees were generated, and the optimal objective values are presented in
Table 9.13. The numbers indicate only very small differences in the objective values,
the largest one being 700 000 NOK, representing a mere 4 ‰of total objective value.
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This indicate that the scenario generation method which is used in this thesis can be
considered to hold in-sample stability.
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Figure 9.13: Comparison of optimal objective values from different runs.

Out-of-sample stability testing is omitted as the computational platform available,
Solstorm, does not readily allow automation for solving a large number of second-
stage problems. Furthermore, the solution time per second stage problem is relatively
long (about 600 seconds), meaning testing for out-of sample stability would be a time
consuming process. In any regard, an approximation of a more real objective value
would imply using the scenarios generation heuristic to generate a much larger tree.
This would then be a quite inaccurate referance point as the smaller trees would have
been generated by the same heuristic.

9.5 Sensitivity analysis
Sensitivity analysis in mathematical programming is conducted to investigate how
parameter changes impact the solution. The analysis conducted in this thesis focus
on changes in capacities and markup values.

9.5.1 Markups
In the results presented so far, contract mark ups are fixed. To study the impact of this
markup tests were conducted by running the model with both increased and reduced
markups by 2 NOK. The objective function value from these runs are compared to the
base case in Table 9.5. There were also conducted a similar sensitivity analysis for the
spot purchase mark ups. These finding are presented in Table 9.6.

It is evident that the model is relatively stable regarding contract markups. The
number of contracts signed is the same in all three runs. As expected, the objective
function value increase when the mark up increase, and decrease when the mark up
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Change Objective function Contracts
in mark-up value [mill. NOK] signed

+ 2 NOK 16 328.7 94
0 NOK 16 328.0 94

- 2 NOK 16 327.5 94

Table 9.5: Sensitivity to contract mark up changes.

decreases. However, as most of the revenue come from spot sales, the relative change
in the objective function value is very small, making out less than 1 ‰of the total
value in both instances.

Change in Objective function Spot purchase
markup value [mill. NOK] cost [mill. NOK]

+ 2 NOK 16 322.9 88.5
0 NOK 16 328.0 266.3

- 2 NOK 16 341.7 612.0

Table 9.6: Sensitivity to purchase mark up changes.

Some of the same patterns are evident when analyzing the spot purchase markup.
The spot purchase cost represent only a minor part of the objective function, and
the optimal objective function value is insignificantly affected. However, the spot
purchase cost is highly affected. When the mark up increase, the total spot purchase
cost decrease to less than one third of the base case costs. This indicate that the model
find alternative sales allocations that do not invoke the need for spot purchases.

When the markup is decreased the spot purchase more than double. This will most
likely be an effect of two reasons. The first is that cheaper spot purchases may induce
spot purchases as more attractive to fulfill contract obligations. This is also supported
by the fact that more contracts are entered when the spot purchase markup decrease.
The other reason is because there exists arbitrage opportunities in the implemented
network. As there are already proven to be arbitrage opportunities between Japan
and Asia, this behavior is expected. As such, it is not surprising that the objective
values increases significantly.

9.5.2 Capacities
To test the model sensitivity to capacity changes, several runs were conducted where
the capacity of one type of resource was increased by 50 % in each instance. Figure
9.14 compares the objective function values of the different runs in which capacities
were altered.
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Figure 9.14: Comparison of objective function values after relaxing transport capacity con-
straints.

By increasing the transport capacities, the objective value increase by 2.52 %. How-
ever, an increase of slaughter capacity result in an even larger increase of 3.58 %. This
indicate that the slaughter capacity are a bottleneck in the value chain to a larger
degree than the transportation capacity. On the contrary, increasing processing ca-
pacity result in a mere 200 000 NOK increase in the objective function value which
is considered to be insignificant. As the VAP share of the product mix in the model
solution is smaller than in the actual production volumes from Marine Harvest’s pro-
duction is rarely conducted at maximum capacity. A 50 % increase of all capacities
gives an objective value 8.48 % better than the base case, which is not surprisingly
much better than the other increased capacities.

An interesting finding is that the relative share of truck as transportation increase
with increased capacities, and the share of volume transported by airfreight decrease.
This indicate that the use of the different modes are dictated from the available trans-
portation rather that time considerations. This is most probably due to the fact that
all transport which takes up to 3.5 days being rounded to zero in the model. As truck
and boat are feasible for most distances, the model has higher freedom in terms of
choosing the cheapest transportation alternative.

Another interesting finding is that an increase in the slaughter capacity resulted in a
20 % increase in harvest volumes. This may indicate that higher slaughter capacities
would be reasonable if this also were true in reality. However, most likely is this just
a result of the model having unlimited demand.
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9.6 Case study - Trade ban
A special instance was designed to simulate the trade ban of Russia of 2014. To do
so, all arcs connecting Norway and Russia were omitted from the network, whereas all
other aspects of the model was kept equal to the base case. In analyzing the results,
one sees that the share of VAPs of total sales increase. Smoked salmon increase from
11 % to 14 %, frozen HOG and frozen fillet increase from 5 % to 7 %, and the share of
fresh fillets doubled from 1 % to 2 %. In other words, hindering trade between Norway
and Russia result in a product mix more similar to the one observed in 2014 where
the VAP share of sold products was larger than in the base case solution. As VAPs
production increase, so does the transportation costs. This is a result of the need to
transport the salmon through the VAPs processing nodes.

Sales in Russia are affected by an reduction of approximately 80 %. Most of the sales
volume is re-distributed to Europe, and smaller portions go to Japan and the rest of
Asia. The total harvest volume also decreased by 22 000 MT. Another interesting
observations is that the production volumes at different processing locations shifts.
Poland dominates in the base case, whereas Poland’s relative share has diminished in
this instance and the share of Chile and the US increased. In an economic sense this
is also natural as cross Atlantic transportation is expensive.

9.7 Solution time considerations
The solution time of some test instances are presented in Table 9.7. The 15 scenario
instance is solved in approximately 2 hours, which must be said to be acceptable.
Especially when this solution time is compared to the solution time for the base case
of about 11 hrs. Furthermore, the 100 scenarios model had a solution time of close to
3.5 days, while a model with aggregated time periods and 40 scenarios had a solution
time of about 3 hrs.

Model Nr of scenarios Solution time [s] Solution time [h]
Deterministic 1 100.95 0.03
Two stage 40 26779.4 7.44
Three stage 15 7309.15 2.03
Three stage 40 39806.9 11.06
Three stage 100 296201.0 82.28
Three stage - Agg. 40 10867 1.91

Table 9.7: Solution times of different model instances.

The table clearly shows the compromise between statistical tractability and solution
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time when implementing a stochastic model. According to Kaut (personal communi-
cation, 2015), the number of residuals used in each split should at least be the same
as the number of individual variables if one wants to retain most of the statistical
properties between the different variables. Consequently, if one wants to have a sce-
nario tree with a good representation of the reality, one should use the 100 scenario
tree that has a bushiness of (10,10). However, because of the high solution time, such
a large tree is not usable in practice. Consequently, a model with a smaller tree or
model with aggregated time periods, such as the one explained below, would be used
in practice.

9.7.1 Model with aggregated time periods
For rolling horizon models, a common mean to reduce solution time while still main-
taining model detail is to aggregate the time periods in the less important parts of the
planning horizon. By doing so the model size decreases dramatically while the more
important periods of the planning horizon are still modeled in detail. However, there
is a risk of getting solutions that deviate significantly from solutions attained without
such aggregation as a result of the loss of details.

A test instance using aggregated time periods was implemented to analyze the gains
and drawbacks by doing so on this particular problem. The time periods from time
period 13 and onwards were aggregated, so that the first three months had a weekly
discretization of time, whereas each time period represented one month for the rest of
the horizon.

The solution time of the instance with aggregated time periods was reduced by 82.7 %
compared to the base case. However, when comparing the solution of both runs for the
first six weeks, these were found to deviate significantly from one another. Harvest
and sales volumes were consistently larger in the aggregated version. Furthermore,
the product mix deviated and the share of signed contracts decreased. This is most
probably a result of the model’s inability to give a correct representation of the de-
pendencies between the time periods when they are too aggregated. This preliminary
test thus indicate that aggregating time periods result in adverse effects that makes
this approach unsuitable for this problem. The authors of this thesis regards that a
better approach is to reduce the number of scenarios used.
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Concluding remarks
Understanding the uncertainty present in salmon farming is an important part of
successfully planning operations. In this thesis, stochastic programming is used as a
tool for including the uncertainty in a problem formulation. The scope of the model is
a global production planning and sales allocations problem, spanning the whole value
chain. To the authors’ knowledge, this is the first model published within this area of
research. The resulting multistage stochastic model considers both the uncertainty in
biomass development and future salmon prices, and provides salmon producers with
a tool that can aid them in making profitable decisions regarding harvest, production
and sales.

A simplified version of the model is applied to the global network of Marine Harvest to
illustrate how the model can be implemented and used. Discrete scenarios representing
the uncertainty have been generated using seasonal ARIMA models and a copula-based
scenario generation heuristic developed by Kaut (2014). Tests of the implemented
model was run on a computational cluster due to its size. The results of these tests
are analyzed to show how a quantitative assessment of the gains from implementing a
stochastic solution can be performed.

The evaluation of the stochastic model indicate that the value of the stochastic solution
is significant at 5 %. Tests also indicate in-sample stability of the scenario generation
procedure, and that the model is relatively in-sensitive to changes in markup values.
Furthermore, given the capacities implemented in this problem, calculations show that
profits might be increased by close to 4 % by increasing the slaughtering capacity by
50 %. On a general note, the quality of the solution is highly dependent on the input
data quality. As such, the results should be analyzed with care and the model should
be implemented with a more realistic data set before making any general conclusions.
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Future research
Reduction of solution time and making the model and data more realistic have been
identified as the main challenges for future work. As the actual solution time of the
model is very high, improvements in solution should get more attention. The authors
of this thesis regard that a reformulation of the problem, such as Bender’s method
should be investigated. Because of the large size of the problem, it may be beneficial
to solve the problem as a set of paralell subproblems.

The growth model in the optimization model is based on a growth table from Skretting,
which is only dependent on temperature and fish weight. As fish growth is dependent
upon several factors, it would be interesting to improve this model so that other
parameters were also taken into account, such as lighting conditions, as well as the
inclusion of realistic mortality and escape scenarios.

As the model developed assumes risk neutrality, a degree of risk aversion should be
included,for instance by implementing some form of value at risk model with the
use of multi-objective optimization. For a discussion about different multi objective
optimization techniques, see Denstad and Ulsund (2015).

Earlier research has shown that generalized autoregressive conditional heteroscedastic
model (GARCH) models more accurately describes the stochastic volatility observed
in the salmon price (Øglend, 2010), and these forecasting methods should therefore be
investigated in further detail. In addition, other scenario generation methods could
be applied to generate a more realistic representation of the future. As an example,
Monte Carlo simulation could be used to generate a large set of scenarios before a
scenario reduction technique is applied.
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Appendix A

Tables
Product Weight conversion factor
Live fish 100 %
Loss of blood/starving 7 %
Harvest weight - Round bled fish (WFE) 93 %
Head on, gutted (HOG) 84 %
Head off, gutted 77 %
Fillet, skin on 56 - 64 %
Fillet, skin off 47 - 56 %

Table A.1: Weight conversion factors (Marine Harvest, 2014b).
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Appendix A. Tables
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Figure A.1: Distribution of Marine Harvest’s products and VAP from different markets
(Marine Harvest, 2014b).
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Appendix B

Mathematical formulation

B.1 Sets and indices

B.1.1 Time and scenarios

T - Set of time periods t
S - Set of scenarios s
K - Set of split nodes k in the scenario tree
Sk - Set of scenarios passing through split node k

B.1.2 Nodes and transportation

R - Set of farming regions r
N - Set of all network nodes i, j
NF - Set of farming nodes i, NF ⊂ N
NF
r - Set of farming nodes in farming region r, NF

r ⊂ NF

NP - Set of processing nodes i, NP ⊂ N
NP
p - Set of processing nodes that can produce product p, NP

p ⊂ NP

N S - Set of slaughtering nodes i, N S ⊂ N
NM - Set of market nodes i, NM ⊂ N
M - Set of transportation modes m
F - Set of paths f used for modelling transportation of perishable fresh products
Fi - Set of paths that include node i, Fi ⊂ F
Fijm - Set of paths that travel along arc (i, j) by transportation mode m, Fijm ⊂ F
Oi - Set of origins for node i, Oi ⊂ N
Di - Set of destinations for node i, Di ⊂ N
OFi - Set of paths originating in node i
DFi - Set of paths arriving in node i
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Appendix B. Mathematical formulation

B.1.3 Products and inventory

V - Set of fish weight classes v
VH - Set of fish weight classes v that are allowed to be harvested, VH ⊂ V
VHp - Set of fish weight classes included in HOG weight class p, VHp ⊂ VH

P - Set of all products p, q
PHOG - Set of all fresh HOG weight classes p, PHOG ⊂ P
PP - Set of all perishable processed products p, PP ⊂ P
PDUR - Set of all durable processed products p, PDUR ⊂ P
L - Set of inventory types l
PLl - Set of products that can be stored in inventory type l, PLl ⊂ PDUR

A - Set of all artificial inventories a, differentiated by different product age intervals
APp - Set of artificial inventories related to product p, APp ⊂ A
B - Set of all production processes b
Bpq - Set of all production processes having HOG class p as input and processed

product q as output, Bpq ⊂ B
Up - Set of all processed products q that can be produced using HOG weight class

p as raw material

B.1.4 Contracts

C - Set of contracts offered during the planning horizon
CF - Set of fixed price contracts, CF ⊂ C
CA - Set of adjustable contracts, CA ⊂ C
CPA - Set of partly adjustable contracts, CPA ⊂ C
CTc - Set of time periods in which a delivery to contract c is made
Cpit - Set of contracts involving product p and market i, having a delivery in time

perid t, Cpit ⊂ C, t ⊂ CTc

B.2 Deterministic data

B.2.1 Initial conditions

B0
vi - Initial biomass given by number of fish of farming weight class v at farm i

I0
pia - Initial inventory of product p in artificial inventory a at processing facility i
Epit - Total volume of product p to be delivered in market i in period t according to

current contract obligations
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B.2. Deterministic data

Rvit - Number of smolt of farming weight class v to be released at farm i at the
beginning of time period t

B.2.2 Capacities, times and costs

NF
i - Maximum allowable biomass at farming node i

NR
r - Maximum allowable biomass in farming region r

SCAPi - Slaughtering capacity of slaughterhouse i, measured in number of fish per time
period

CCv - Caring cost of keeping one kg of fish of farm weight class v one more time
period

CPp - Cost of producing one kilogram of processed product group p

CTARpij - Tariff for product p transported from node i to node j
CIli - Cost of keeping one kilogram of processed product in inventory type l for one

time period at processing node i
CTijm - Transportation cost from node i to node j using transportation mode m
CFpf - Combined transportation and tariff costs when transporting product p across

path f

ICAPil - Inventory capacity of inventory type l at processing facility i
PCAPpi - Processing capacity; maximum number of kilograms of processed product p

that can be produced at processing facility i per time period
TTijm - Transportation time from node i to node j using transportation mode m
TFf - Transportation time from stating point to processing node in path f

TCAPijmt - Maximum transportation capacity from node i to node j using transportation
mode m in time period t

TLIMm - Minimum transportation capacity using transportation modem per time period
the producer is committed to

B.2.3 Contracts

Qc - Volume to be delivered to fulfill contract c at each delivery
Uc - Price of contract c
ACc - Adjustment factor: The factor with which the relevant price difference is mul-

tiplied by when adjusting the price of contract c
Fc - Adjustment limit: The value in NOK the spot price and contract price for

contract c must differ for the contract price to be adjusted, c ∈ CA

MC
c - Market in contract c

PCc - Product in contract c
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Appendix B. Mathematical formulation

B.2.4 Punishment parameters

KTMAX
m - Punishment term per kilogram transported using transportation mode m after

surpassing the maximum capacity m
KTMIN
m - Punishment term per kilogram the transported volume using transportation

mode m falls short of the minimum use of m the producer is bound by

B.2.5 Parameters used to control end of horizon effects

V Bv - Expected future value of one fish of farming weight class v
V Pv - Expected future value of one kilogram of processed product p

B.2.6 Other parameters

πs - Probability for scenario s
Qk - The time period corresponding to split node k
Gv - Weight of fish belonging to weight class v
LS - Slaughtering yield, defined as the weight of a slaughtered fish in percentage of

a live fish
LPb - Process yield, defined as the volume of processed product q produced using

process b given as a percentage of the volume of raw material p going into the
process

Baa - Share of artificial inventory a that is moved to artificial inventory a from one
time period to the next

B.3 Stochastic data

σvits - Growth in kilograms for fish of farming weight class v at farm i in time period
t and scenario s

ζvits - Survival rate for fish in weight class v at farm i in time period t and scenario s
αvvits - Share of fish in weight class v that has grown to become part of class v due to

their growth at farm i in time period t and scenario s (v ≤ v)
ρSpits - Spot sales price for product p in market i in time period t and scenario s
ρBpits - Spot purchase price for HOG salmon of class p in market i in time period t in

scenario s
ρCc - Contract price for contract c when the contract is made available
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B.4. Variables

B.4 Variables

B.4.1 Helping variables

qvits - Number of fish belonging to fish weight class v at farm i in time
period t in scenario s

ipitas - Volume of product p stocked in artificial inventory a at processing
node i at the end of time period t in scenario s

ocs - Revenue generated form contract c in scenario s
aMAX
ijmts - Number of kilograms the volume of products transported by trans-

portation mode m in time period t in scenario s that falls short of
the minimum commitment to using m

aMIN
mts - Number of kilograms of products transported by transportation mode

m in time period t in scenario s surpassing the maximum capacity of
m

zCcpit - Volume of product p sold trough contract c in market i in period t

B.4.2 Decision variables

hvits - Number of fish harvested in HOG weight class v and harvested at
farm i in time period t in scenario s

xLIV E
pijtt̄s

- Volume of live fish belonging to HOG weight class p sent from farming
node i to slaughter node j in time period t, with arrival in time period
t̄ (t ≤ t̄)

xHOG
pijmtt̄s

- Volume of fresh HOG of weight class p ∈ PHOG sent from node i to
node j by transportation mode m in time period t in scenario s, with
arrival in time period t̄ (t ≤ t̄)

xRAW
pijmtt̄s

- Volume of fresh HOG dedicated to be used as raw material for durable
products, sent from slaughter node i to processing node j in time
period t using transport mode m, with arrival in time period t̄ (t ≤ t̄)

xDUR
pijmtt̄as

- Volume of durable processed product p from artificial inventory a

that is transported from processing facility i to market j by mode m
in time period t in scenario s, with arrival in time period t̄ (t ≤ t̄)

rP
pbftt̄s

- Volume of perishable product p produced by using process b that is
transported through path f in time period t in scenario s, with arrival
in time period t̄ (t ≤ t̄)

yDURpbits - Volume of durable product p ∈ PD produced using process b at pro-
cessing facility i in scenario s
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Appendix B. Mathematical formulation

zSpits - Volume of product p sold in spot market i in time period t in scenario
s

zBpits - Volume of product p bought in spot market i in timer period t in
scenario s

δCc - Binary variable, 1 if a contract c is entered, 0 otherwise

B.5 Full objective function

maxZ =
∑
s∈S

πs

{∑
c∈C

ocs +
∑
t∈T

[∑
p∈P

∑
i∈NM

ρSpitsz
S
pits −

∑
p∈PHOG

∑
i∈NM

ρBpitsz
B
pits

−
∑
i∈N

∑
j∈Di

∑
m∈M

∑
t∈T

∑
t̄≥t

(CTijm + CTAXpij )

 ∑
p∈PHOG

(xHOGpijmtt̄s + xRAWpijmtt̄s) +
∑
p∈PD

∑
a∈Ap

xDURpijmtt̄as


−
∑
p∈PP

∑
b∈B

∑
f∈F

∑
t∈T

∑
t̄≥t

(TCf + CPp )rPpbftt̄s −
∑
p∈PD

∑
b∈B

∑
i∈NP

∑
t∈T

CPp y
DUR
pbits

−
∑
l∈L

∑
p∈PL

l

∑
i∈NP

∑
t∈T

∑
a∈Ap

CIl ipitas −
∑
v∈V

∑
i∈NP

∑
t∈T

∑
s∈S

CCv qvits

−
∑
m∈M

(
KTMAX
m aTMAX

mts +KTMIN
m aTMIN

mts

) ]

+
∑
v∈V

∑
i∈NF

V Bv Gvqvi|T |s +
∑
p∈PD

∑
i∈NP

∑
a∈Ap

V Pp ipi|T |as

}

B.6 Constraints

qvi1 + hvi1 = B0
vi v ∈ V, i ∈ NF . (B.1)

qvit−
∑
v≤v

αvvi(t−1)ζvi(t−1)qvi(t−1) +hvit = Rvit v ∈ V, i ∈ NF , t ∈ T \{1}. (B.2)

∑
v∈V

Gvqvit ≤ QFi i ∈ NF , t ∈ T , (B.3)

∑
v∈V

∑
i∈NRr

Gvqvit ≤ QRr r ∈ R, t ∈ T . (B.4)
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B.6. Constraints

∑
v∈VH

∑
j∈Oi

Gvhvjitt̄ ≤ SCAPi i ∈ NS , t ∈ T . (B.5)

∑
v∈VHp

∑
i∈NF

Gvhvit −
∑
j∈Di

∑
t̄≥t

xLIV Epijtt̄ = 0 p ∈ PHOG, i ∈ NF , t ∈ T . (B.6)

∑
j∈Oi

∑
t≤t

LSxLIV Epjitt −
∑

j∈{Di∩NP }

∑
m∈M

∑
t̄≥t

xRAWpijmtt̄ −
∑

j∈{Di∩NM}

∑
m∈M

∑
t̄≥t

xHOGpijmtt̄

−
∑
q∈Up

∑
b∈Bpq

∑
f∈OF

i

∑
t̄≥t

1
Lb
rqbftt̄ = 0 p ∈ PHOG, i ∈ NS , t ∈ T (B.7)

∑
j∈Oi

∑
m∈M

∑
t≤t

xHOGpjimtt −
∑
c∈Cpit

zCcpit − zSpit − Epit = 0 p ∈ PHOG i ∈ NM , t ∈ T ,

(B.8)∑
f∈DF

i

∑
binB

∑
t≤t

rPpbftt −
∑
c∈Cpit

zCcpit − zSpit − Epit = 0 p ∈ PP , i ∈ NM , t ∈ T .

(B.9)∑
j∈Oi

∑
m∈M

∑
t≤t

∑
a∈Ap

xDURpjimtta −
∑
c∈Cpit

zCcpit − zSpit − Epit = 0 p ∈ PD, i ∈ NM , t ∈ T

(B.10)

zBpit −
∑

j∈{Di∪NM}

∑
m∈M

∑
t̄≥t

xHOGpijmtt̄ +
∑

j∈{Di∪NP }

∑
m∈M

∑
t̄≥t

xRAWpijmtt̄

+
∑
f∈OF

i

∑
q∈Up

∑
b∈Bpq

∑
t̄≥t

1
LPq

rqbftt̄ = 0 p ∈ PHOG, i ∈ NM , t ∈ T . (B.11)

ipi1a = I0
pia −

∑
t̄≥1

xDURpijm1t̄a p ∈ PD, i ∈ NP , a ∈ APp (B.12)
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Appendix B. Mathematical formulation

ipit1 −B11ipi(t−1)1 − yDURpi(t−1) +
∑
j∈Di

∑
m∈M

∑
t̄≥(t−1)

xDURpijm(t−1)t̄1 = 0

p ∈ PD, i ∈ NP , t ∈ T \ {1}, (B.13)

ipita −
∑
a≤a

Baaipi(t−1)a +
∑
j∈Di

∑
m∈M

∑
t̄≥(t−1)

xDURpijm(t−1)t̄a = 0

p ∈ PD, i ∈ NP , t ∈ T \ {1}, a ∈ APp \ {1}. (B.14)

Inventory capacity

∑
p∈PL

l

∑
a∈APp

ipita ≤ ICAPil i ∈ NP , l ∈ L, t ∈ T . (B.15)

∑
b∈B

∑
f∈Fi

∑
t̄≥t

rpbftt̄ ≤ PCAPpi p ∈ PP , i ∈ NP , t ∈ T | t = t− TFf , t ≥ TFf (B.16)

yDURpit ≤ PCAPpi p ∈ PD, i ∈ NP , t ∈ T . (B.17)

∑
p∈P

∑
t≤t

∑
t̄≥t

(
xLIV Epijmtt̄ + xHOGpijmtt̄ + xRAWpijmtt̄ +

∑
a∈APp

xDURpijmtt̄a +
∑
b∈B

∑
f∈Fijm

rpbftt̄

)

−aMAX
ijmt ≤ TCAPijmt i ∈ N , j ∈ Di, m ∈M, t ∈ T . (B.18)

∑
p∈P

∑
i∈N

∑
j∈Di

∑
t≤t

∑
t̄≥t

(
xHOGpijmtt̄ + xRAWpijmtt̄ +

∑
a∈APp

xDURpijmtt̄a +
∑
b∈B

∑
f∈F

rpbftt̄

)

+ aMIN
mt ≥ TLIMm m ∈M, t ∈ T . (B.19)

Qcρcδ
C
c = oc c ∈ CF . (B.20)
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B.6. Constraints

Revenue of adjustable price contracts

∑
t∈CTc

Qc
(
ρCc +ACc (ρSpit − ρCc )

)
δCc = oc c ∈ CA (B.21)

∑
t∈CTc

Qc

(
ρCc −ACc (ρCc − ρSpit − Fc)+ +ACc (ρSpit − ρCc − Fc)+

)
= oc

c ∈ CPA | i = MC
c (B.22)

zccpit −Qcδc = 0 c ∈ C | p = PCc , i = MC
c t ∈ CTc (B.23)

1
|Sk|

∑
s∈Sk

(qvits′ , hvits′ , xLIV Epijtt̄s′ , x
HOG
pijmtt̄s′ , x

RAW
pijmtt̄s′ , rpbftt̄s′ , x

DUR
pijmtt̄as′ ,

yDURpbits′ , ipitas′ , z
B
pits′ , z

S
pits′ , z

C
cpits′ , δ

C
cs′) =

(qvits, hvits, xLIV Epijtt̄s , x
HOG
pijmtt̄s, x

RAW
pijmtt̄s, rpbftt̄s, x

DUR
pijmtt̄as,

yDURpbits , ipitas, z
B
pits, z

S
pits, z

C
cpits, ) (B.24)

v ∈ V, p ∈ P, i ∈ N , j ∈ Di, f ∈ F , t ∈ T , t̄ ∈ T , k ∈ K s ∈ S

qvits ≥ 0 v ∈ V, i ∈ NF , t ∈ T , s ∈ S (B.25)

ipitas ≥ 0 p ∈ P, i ∈ NP , t ∈ T , a ∈ A, s ∈ S (B.26)

ocs ≥ 0 c ∈ C, s ∈ S (B.27)

aTMAX
mts ≥ 0 m ∈M, t ∈ T , s ∈ S (B.28)

aTMIN
mts ≥ 0 m ∈M, t ∈ T , s ∈ S (B.29)

hvits ≥ 0 v ∈ V, i ∈ NF , t ∈ T , s ∈ S (B.30)

xLIV Eijtt̄s ≥ 0 i ∈ N , j ∈ Di, t ∈ T , t̄ ∈ T , s ∈ S | t ≤ t̄ (B.31)

(B.32)
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Appendix B. Mathematical formulation

xHOGpijmtt̄s ≥ 0 p ∈ PHOG, i ∈ N , j ∈ Di, m ∈M, t ∈ T , t̄ ∈ T , s ∈ S | t ≤ t̄
(B.33)

xRAWpijmtt̄s ≥ 0 p ∈ PHOG, i ∈ N , j ∈ Di, m ∈M, t ∈ T , t̄ ∈ T , s ∈ S | t ≤ t̄
(B.34)

rpbftt̄s ≥ 0 p ∈ PP , b ∈ B, f ∈ F , t ∈ T , t̄ ∈ T , s ∈ S | t ≤ t̄ (B.35)

xDURpbijmtt̄as ≥ 0 p ∈ PD, b ∈ B, i ∈ N , j ∈ N , m ∈M, t ∈ T , t̄ ∈ T ,

a ∈ Ap, s ∈ S | t ≤ t̄ (B.36)

yDURpbits ≥ 0 p ∈ PP , i ∈ NP , t ∈ T , s ∈ S (B.37)

zBpits ≥ 0 p ∈ PHOG, i ∈ NM , t ∈ T , s ∈ S (B.38)

zSpits ≥ 0 p ∈ P, i ∈ NM , t ∈ T , s ∈ S (B.39)

zCcpits ≥ 0 c ∈ C, p ∈ P, i ∈ NM , t ∈ CTc , s ∈ S (B.40)

δCc ∈ {0, 1} c ∈ C. (B.41)
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Appendix C

Tests
Initial tests conducted to validate the model and investigate certain parameters be-
haviour are presented in Table C.1.
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Appendix C. Tests
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Appendix D

Full network
Table D.1 shows the implemented network for the problem studied in this thesis.
Distribution nodes are excluded from the table as these are only in the mathematical
formulation due to the need for both path and arc flow formulations. The table also
reflect the most important parts of Marine Harvest’s global network.
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Appendix D. Full network

P
rocessing

region
M

arket
P

oland
G

erm
any

U
K

France
Spain

U
S

C
hile

C
hina

Japan
E

U
R

ussia
N

orth
A

m
erica

South
A

m
erica

Japan
A

sia
ex.

Japan

Slaughter
region

N
orw

ay
N

orth
1

1
1

1
N

orw
ay

-
M

id
1

1
1

1
N

orw
ay

-
W

est
1

1
1

1
N

orw
ay

-
South

1
1

1
1

Scotland
1

1
1

1
C

anada
1

1
1

C
hile

1
1

1
1

1

D
istribution

N
orw

ay
-

N
orth

1
1

1
1

1
1

N
orw

ay
-

M
id

1
1

1
1

1
1

N
orw

ay
-

W
est

1
1

1
1

1
1

N
orw

ay
-

South
1

Scotland
1

C
anada

1
1

C
hile

1
1

P
rocessing

region

P
oland

1
1

1
1

G
erm

any
1

1
1

1
U

K
1

1
1

1
France

1
1

1
1

Spain
1

1
1

1
U

S
1

1
1

C
hile

1
1

1
1

C
hina

1
1

Japan
1

1

M
arket

E
U

1
1

1
1

1
1

1
R

ussia
1

1
N

orth
A

m
erica

1
1

1
1

South
A

m
eria

1
1

1
1

1
1

Japan
1

1
1

1
A

sia
ex.

Japan
1

1
1

1

T
able

D
.1:

Fullim
plem

ented
netw

ork

206



Appendix E

Electronic attachments

E.1 Excel-scripts
Scenariogeneration.xlsm

This is an Excel workbook which is based on numerous functions written in
Visual Basic. The script generate all scenarios used in the stochastic model
by calculating the used ARIMA-models

ScenariogenerationAggregated.xlsm

This script is equal to Scenariogeneration.xlsm except that this script gen-
erate the aggregated scenarios by using Visual Basic to forecast the fitted
ARIMA-models

MasterData.xlsm

This is an Excel workbook which contains all constants and parameters used
in the models implemented in Mosel

E.2 Text-files
MasterConstants.txt

All constant parameters needed for the problem studied in this thesis.

InputMaster.txt

All data needed for the stochastic programming. A *.txt file was needed in
order to run the implemented model on the computational cluster
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Appendix E. Electronic attachments

E.3 Mosel-scripts
ConvertData.mos

Merely a Mosel script which read all data from MasterData.xlsx and
Scenariogeneration.xlsm and writes the data to the InputMaster.txt-file
to use as input to the Mosel-model which is evaluated on the computational
cluster Solstorm

MasterModelBaseCase.mos

This is the implementation of the Mosel script used to solve all base case in-
stances on all scenario tree sizes. The script reads the InputMaster.txt-file
which contain all input parameters

MasterModelAggregated.mos

This is the aggregated implementation of the Mosel script used to solve the
aggregated model instance

E.4 EDEV - Dynamic solution of stochastic solution
The same files are also attached for calculating the EDEVs, (expected result in stage
s of using the dynamic solution of the expected value problem) for uncertainty in-
troduced in a three stage model. The first and second stage decisions are taking the
optimal values of the deterministic solution from the previous stage.
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