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Sammendrag

Denne studien tar for seg predikerbarheten av spotprisen på råolje ved bruk av futurespriser og spot-
prisenes realiserte volatilitet. Prognoser basert på dagens spotpris viser seg å være mer nøyaktige på
kort sikt enn prognoser basert på futurespriser. Over lengre horisonter er futures-baserte prognoser
bedre enn spotpris-prognoser. Både prognoser basert på dagens spotpris og prognoser basert på
futurespriser kan forbedres ved å inkludere realisert volatilitet som forklaringsvariabel. Videre kan
realisert volatilitet predikere endringer i futurespriser. Samlet viser analysen at realisert volatilitet
spiller en viktig rolle ved generering av prognoser for oljepriser.
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Abstract

This paper studies the predictability of the crude oil spot price using futures prices and realized

volatility of spot prices. Over the short-term, the simple no-change forecast works better than

forecasts based on futures prices. Across long-term horizons futures-based forecasts perform

better than the no-change forecast. Both these types of forecasts, the simple no-change forecast

and forecasts based on futures prices, can be improved by incorporating realized volatility as

an additional predictor. Moreover, realized volatility can also predict changes in futures prices.

Altogether, realized volatility plays an important role in forecasting oil prices.
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1 Introduction

Due to the global importance of oil, accurate spot price forecasts are in the interest of numerous
agents, not oil-related businesses exclusively. Intuitively, the futures market should provide an idea
of the expected future spot price. Market participants commonly assume that futures prices include
all available information, thus representing their best available forecast of the spot price. Simple
forecasts based on futures prices are often considered satisfactory. The alternative is developing a
more advanced prediction model, a relatively time-consuming and resource-intensive exercise, not
being guaranteed greater forecast accuracy.

From the early 20th century until the 1970s the price of crude oil was relatively stable. The
nature of oil prices shifted in 1973, when volatility increased dramatically. Since then the volatility
of crude oil prices has been high. The variability of the Brent spot price is illustrated in Figure 1a,
indicating substantial price fluctuations particularly after the establishment of OPEC.

The price of oil is significantly affected by trends in the world economy and geopolitical events.
These features renders the oil price inherently unpredictable. Hamilton (2008) describes the price
of crude oil in the following manner: “It is sometimes argued that if economists really understand
something, they should be able to predict what will happen next. But oil prices are an interesting ex-
ample (stock prices are another) of an economic variable which, if we really understand it, we should
be completely unable to predict.” The predictive content of futures prices, in terms of predicting
unrealized spot prices, is illustrated in Figure 1b. Two-year forward curves are superimposed upon
the historical Brent spot price between 2004 and 2015. This figure shows that market expectations
rarely are right.

As mentioned, the broad extent of factors impacting the crude oil market increases the efforts
of forecasting future prices. Multiplier effects and feedback loops may contribute to further dilute
forecasts. All of these uncertainties will affect the estimates differently, depending on the approach
undertaken. Several different forecasting methodologies exist, the majority resting on various types
of historical time series modelling. These models typically consider price dynamics in the short-run,
that is, 1-2 years ahead.

The following explores different models forecasting the price of crude oil, examining the ex-
planatory power embedded in prices of futures contracts and in realized volatility. The analysis
concentrates on time series modelling, assessing the performance of specific predictors of the Brent
spot price. Ultimately, the purpose is determining the forecast model producing the most accurate
estimates.
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(a)

(b)

Figure 1: (a) Brent price, 1861-2014. (b) Spot price compared to forward curves, 2004-2015.

The analysis addresses some of the key questions that arise in forecasting the price of crude oil.
Does there exist a methodology which is more accurate than the no-change forecast? Is it possible
to extract information from the price of crude oil futures? What other variables may predict future
movements in the oil price? Which model provides the greatest directional accuracy?

This paper makes two main contributions to existing literature. First of all, the analysis extends
the study of Alquist and Kilian (2010) by considering a wider range of spreads and relations which
may be strong predictors of future spot prices. The study increases the number of contracts by
including maturities up to five years. Simultaneously, a larger and more recent data sample spanning
from July 1988 to February 2015 is investigated. In accordance with Alquist and Kilian (2010),
futures prices are found not to improve no-change forecasts across forecast horizons up to one year.
However, for long-term contracts, which were not studied by Alquist and Kilian (2010), the opposite
result is attained. Second, the study also considers the forecasting power of realized volatility and
finds that it is a useful predictor of oil prices. Realized volatility improves forecasts of not only spot
prices, but also returns of futures contracts.

Oil price forecasting is an area of study which has been subject to extensive research over
the years. Thus, literature is abundant. The majority of existing literature restricts its scope to
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the short-run. Furthermore, most studies perform historical time series analyses applying Vector
Autoregression (VAR) methodologies (see e.g. Kilian and Murphy (2012)). Numerous studies make
comparisons between historical price evolutions and trends in factors such as economic activity, oil
production, oil inventories, and oil reserves (Baumeister et al., 2013; Pagano and Pisani, 2009; French,
2005). Another strand of literature considers long-term dynamics, invoking fundamentals of supply
and demand in order to determine the future equilibrium price levels (Arezki et al., 2014; Cooper,
2003; Pindyck, 1999). This approach involves modelling oil prices using the fundamental relationship
between price, volume and price elasticity. The relationship between oil reserves, production, and
prices is also important in existing research. Since the subsequent analysis particularly focuses on
the first of these approaches, the literature under consideration mainly involves short- to mid-term
time series analysis, and similar research.

Policy institutions, including several central banks and the International Monetary Fund, com-
monly use the price of NYMEX oil futures as a proxy for the market’s expectation of the spot price of
crude oil (Baumeister and Kilian, 2012; Svensson, 2005; IMF). For this reason, several authors study
whether futures contracts can be considered a good predictor for the spot price. Arezki et al. (2014)
finds that futures contracts do not provide much guidance for medium- and long-term prices, since
the contracts either do not go out far enough or the markets are not deep enough. About 20 years
earlier, Peck (1985) argued that spot and futures prices reflect expectations almost equally. Yet, sev-
eral decades before this paper was published, Working (1942) criticized the view that futures prices
reflect economists’ expectations while spot prices supposedly do not incorporate all expectations.
Hubbard (1986) integrates short-run and long-run approaches to oil price determination, empha-
sizing the two-price structure of the world oil market with coexisting short-term spot prices and
long-term futures prices. Alquist et al. (2013) compares the futures price forecast to the no-change
forecast. This study finds that the no-change forecast of the real price of oil is the predictor with the
lowest mean-squared prediction error (MSPE) at horizons longer than one year, while futures prices
improve forecasts over shorter horizons. Further, evidence is presented that adjusting the no-change
forecast for the real price of oil for expected inflation significantly increases forecast accuracy of the
nominal price of oil at horizons of several years. Another paper which investigates the relationship
between crude oil futures prices and the no-change forecasts in-depth is Alquist and Kilian (2010).
The study suggests that contract prices tend to be less accurate in the MSPE-sense than no-change
forecasts. This result is driven by the oil futures spread, that is, the variability of the futures price
about the spot price. The spread typically declines as uncertainty about future oil supply shortfalls
increases. The following analysis will to a great extent focus on the method introduced by Alquist
and Kilian (2010) and extends this analysis to contracts with longer maturities.

3



Forecasting the Price of Crude Oil

Abosedra and Baghestani (2004) studies crude oil futures prices for maturities up to one year.
They find that futures prices are unbiased forecasts of the spot at all maturities investigated, and
only the 1-month and 12-month contracts outperform the naive (i.e. the no-change) forecast. These
findings are opposed by Moosa and Al-Loughani (1994) which claims that futures prices are neither
unbiased nor efficient forecasts of spot prices. Further, Gülen (1998) finds the posted spot price to
have predictive information only at short horizons, and that futures prices are efficient predictors of
the spot price. Extending to futures contracts on other petroleum products (crude oil, heating oil
and gasoline), Bopp and Lady (1991) compares forecasts of lagged spot prices and futures prices.
Spot prices were found to provide similar forecasting significance as futures prices, but the latter
anticipated seasonal patterns more correctly. In order to forecast the future oil price, today’s spot
price is concluded to perform equally well as the futures price.

The use of futures prices as a predictor is questioned in Knetsch (2007). Specifically, the
assumption of futures prices being an unbiased predictor of oil prices is investigated. The study
evaluates forecasts between one and eleven months ahead, and employs forecast accuracy measures
such as root-mean-square error (RMSE), mean error and correct direction-of-change prediction.
Furthermore, Knetsch (2007) concludes that futures prices should not be used as a direct predictor
due to its lack of predictive power. On the other hand, McCallum and Wu (2005) proves that
important information is present in futures prices, especially when considering the spread between
spot and futures prices. They note, however, the substantial estimation errors produced by both
forecasting methods.

Literature on the link between realized volatility and the oil market is scarce. However, this
relationship has to a greater extent been studied for the stock market. Ammann et al. (2009) docu-
ments a highly significant relation between stock returns and lagged implied volatility. Nevertheless,
they find that lagged historical volatility in contrast do not carry the same informational content
as implied volatility. Similarly, Bollerslev et al. (2009) provides evidence that stock market returns
are predictable by the difference between implied and realized variances, the variance risk premium,
with high (low) premia predicting high (low) future returns. Examining the effect of VIX levels
on stock market index returns, Banerjee et al. (2007) finds a positive relationship, thus confirming
the forecasting power of implied volatility for future returns of stock portfolios. Chevallier and Sévi
(2013) builds on the findings of Bollerslev et al. (2009), establishing the predictability of the variance
risk premium for crude oil returns. Their results indicate strong explanatory power of this factor on
excess returns of oil futures.

The rest of the paper is organized as follows. Section 2 introduces specifications of oil futures
contracts and provides a data description. Section 3 evaluates forecasting models for the spot price of
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oil. Section 4 considers models using realized volatility to predict changes in futures prices. Section
5 concludes.

2 Data

Futures contracts represent indicators of market expectations for the future spot price of oil. These
contracts are financial instruments that lock in a price at a predetermined future date at which to
buy or sell a fixed quantity of the commodity. The NYMEX light sweet crude (WTI) contract is the
most liquid and largest volume market for crude oil trading (CME Group, 2015-04-13). However,
since the Brent oil has increasingly become the benchmark among market actors, and also due to
the logistical issues related to Cushing, OH, the delivery hub of WTI, the Brent crude contracts are
analyzed in this study.

Focus will be on futures traded on the NYMEX (The New York Mercantile Exchange) with
monthly price data retrieved from EcoWin. The datasets are constructed from the historical futures
chain of each month. Hence, the aggregate of the individual futures chains comprises a time series
of monthly futures prices for every contract. The analysis deals with monthly data for oil returns
because returns at higher frequencies are too noisy (see e.g. Baumeister and Kilian (2012) or Alquist
and Kilian (2010)). The data sample for the first position (the 1-month contract) starts in July 1988
and extends to February 2015 (∼7040 trading days). Contracts of longer maturity are less liquid,
with the samples becoming gradually available between July 1988 and March 2006. The contract
maturities range up to five years, with maturities exceeding one year becoming available from 2005
onwards. The contract types specifying physical, as opposed to financial, delivery are analyzed here.

Trading of the futures contracts ends one business day prior to the termination of the Brent
futures contract, that is, two business days before the fifteenth calendar day prior to the first day
of the delivery month, as long as the fifteenth calendar day is not a holiday or weekend in London.
If the fifteenth calendar day is a holiday or weekend in London, trading shall end three business
days prior to the last business day preceding the fifteenth calendar day (CME Group, 2015-03-06).
Monthly spot price data are obtained from EcoWin and refer to the price of Brent crude oil available
for delivery at Sullom Voe, Scotland. Figure 2 plots the daily prices of crude oil futures contracts
for the 1-month, 1-year, and 5-year maturities, along with the spot price starting 24 February 2006.

Figure 3 shows daily trading volume of futures contracts with maturities up to three years.
Clearly, the markets for contracts of longer maturities are still relatively illiquid. The low trading
volume of long-term contracts may imply that forecasts based on longer maturity contracts risk a
higher degree of uncertainty.
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Figure 2: Historical prices of the Brent spot and Brent futures contracts over the period February
2006 – February 2015.

(a) 1-month futures contract (b) 3-month futures contract (c) 6-month futures contract

(d) 1-year futures contract (e) 2-year futures contract (f) 3-year futures contract

Figure 3: Trading volume of NYMEX crude oil futures contracts for maturities between one month
and three years. The 4-year and 5-year contracts are exempt due to few data points. Note the
different scales on axes.
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This paper utilizes the realized volatility of Brent prices. Daily spot price returns of the preced-
ing month provide spot-based estimates of realized volatility. Likewise, realized volatility of futures
is constructed from the daily returns of the respective contract over the preceding month. The
estimator of realized volatility at time t is defined as in equation (i).

RVt =

n∑
i=1

r2i , (i)

where ri are daily returns and n is the number of trading days of the preceding month. Thus, the
sum of ex-ante daily squared returns provides the estimates for realized volatility of spot prices and
eight different futures contracts.

3 Spot Price Forecasting

This section examines different methods of forecasting the spot price of crude oil. First, the predictive
power of futures prices is investigated. Next, the analysis considers an expansion of the models to
include realized volatility as an explanatory variable.

3.1 Predictive Power of Futures Prices

The futures price of oil is often considered a proxy for the expected price of oil in the future. Some
also believe futures contracts are better predictors than econometric forecasts, especially contracts
that are actively traded. The notion that the futures price might be the optimal forecast for the spot
price is a by-product of the financial market efficiency hypothesis: the requirement that the average
forecasting error is zero is consistent with both efficiency in financial markets and the unbiasedness
property of the forecast (Pagano and Pisani, 2009).

A price forecasting model is presented where eighteen unique relations explaining the future
spot price of crude oil are tested using an OLS regression model. The performance of each model
is tested by calculating prediction accuracy measures used in literature, such as root-mean-square
error (Knetsch, 2007; Inoue and Kilian, 2006) and bias (Alquist and Kilian, 2010). Comparisons
of the relations to the no-change model are based on the DM-test of Diebold and Mariano (2002),
providing statistical significance levels for the error estimation. The sign test given by the success
ratio indicates the directional accuracy of the forecasts.

Alquist and Kilian (2010) compares the no-change forecast for the 1-month, 6-month, 9-month
and 12-month forecasting horizon with forecasts based on futures prices. They conclude that the no-
change forecast outperforms the rest. This section builds upon Alquist and Kilian (2010), extending
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the analysis by three new models, (7)-(9), given in the equation set below. In addition, the models
are extended to include contracts of longer maturities and a larger sample size. The added contracts
include maturities of two, three, four and five years, while the data samples are extended until
February 2015.

Let Et[St+h|t] represent the expected future spot price h periods ahead. Thus, Ŝt+h|t is the
estimated future spot price at date t+ h, conditional on information available at time t. Denote by
F

(h)
t the current time t nominal price of futures contracts that mature in h months, while St denotes

the current spot price of oil. The maturities, h, range from one month to five years. In line with
Alquist and Kilian (2010), the equation set includes the following forecasting models:

Ŝt+h|t = St, h = 1, 3, 6, 12, 24, 36, 48, 60 (1)

Ŝt+h|t = F
(h)
t , h = 1, 3, 6, 12, 24, 36, 48, 60 (2)

Ŝt+h|t = St(1 + α̂ + β̂ ln(F
(h)
t /St)), h = 1, 3, 6, 12, 24, 36, 48, 60 (3)

Ŝt+h|t = St(1 + β̂ ln(F
(h)
t /St)), h = 1, 3, 6, 12, 24, 36, 48, 60 (4)

Ŝt+h|t = St(1 + α̂+ ln(F
(h)
t /St)), h = 1, 3, 6, 12, 24, 36, 48, 60 (5)

Ŝt+h|t = St(1 + ln(F
(h)
t /St)), h = 1, 3, 6, 12, 24, 36, 48, 60 (6)

In addition, the following extension is made:

Ŝt+h|t = α̂ + β̂ F
(h)
t + γ̂ St, h = 1, 3, 6, 12, 24, 36, 48, 60 (7)

Ŝt+h|t = α̂ + β̂ ln(F
(h)
t /St), h = 1, 3, 6, 12, 24, 36, 48, 60 (8)
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Ŝt+h|t = α̂ + γ̂ St, h = 1, 3, 6, 12, 24, 36, 48, 60 (9)

The first model considered is the no-change forecast, equation (1). The analysis also examines
models based on the price of oil futures, first by testing the futures price as a direct predictor of
the spot price, see (2). Next, equations (3)-(6) represent a more relaxed set of models. Similarly,
equations (7) and (8) state that the future spot price is represented by the sum of a constant, α̂,
and a slope term multiplied by the explanatory variable. Finally, equation (9) serves as a relaxed
version of the no-change model.

Table 1 presents in-sample coefficient estimates from the regression model, covering the whole
sample. The most liquid contracts, that is, the 1-month, 3-month and the 6-month contracts,
are presented in this table. Apparently, not every coefficient is statistically significant, still, these
estimates are good compared to alternative models tested. Particularly equations (7)-(9) generate
significant results, indicating that these are reliable models. The regression results are adjusted by
the Newey-West procedure for autocorrelation and heteroskedasticity (Newey and West, 1986). The
Akaike Information Criterion (AIC) is also reported in Table 1. Given a set of candidate models for
the data, the preferred model is the one with the minimum AIC value (Alexander, 2009).

For the purpose of comparing forecasts, the root-mean-square errors (RMSE) are calculated for
all eight contracts. The simple no-change forecast is specified as a benchmark model. The RMSE of
a prediction is given by the square root of the mean of the squared deviations (Knetsch, 2007), as
presented in equation (ii). The bias is another error measure which is defined as the average amount
by which the true value, St+h, exceeds the prediction, see equation (iii). All p-values refer to pairwise
DM-tests where the null hypothesis is a zero difference in forecasting errors between the no-change
benchmark and the forecast. The DM-test indicates whether the difference in errors is significantly
different from zero. The success ratio is defined as the fraction of forecasts that correctly predict the
sign of change in the price of crude oil. Hence, the success ratio gives an indication of the directional
accuracy of the predictions.

RMSE =

√√√√ n∑
t=1

(Ŝt+h|t − St+h)2

n
(ii)

Bias =

n∑
t=1

(St+h − Ŝt+h|t)

n
(iii)
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Panel A of Table 2 presents the RMSE for the relations described above. Generally, the differ-
ences in RMSE appear relatively small for all equations. The no-change forecast performs best in
the short-run, while forecasts based on futures (or a combination of the no-change and futures) are
better for longer horizons. Including maturities exceeding 12-months reveals that the no-change fore-
cast is outperformed by futures models over longer forecast horizons. Most of these results are also
statistically significant. Partially different from the findings of Alquist and Kilian (2010), the results
suggest that the no-change forecasts over the 1-month and 3-month horizons generate lower RMSE
than forecasts using futures contracts as input. For longer forecasting horizons futures contracts, or
models combining futures contracts and the no-change forecast, emerge as better predictors of the
future spot price of crude oil. Nevertheless, in accordance with Alquist and Kilian (2010), the RMSE
measure indicates that none of the models provide better forecasts than the simple no-change model
for horizons up to three months. At horizons ranging from 12 to 36 months, the predictive power
of futures models is better than the no-change model, with equation (7) generating the smallest
errors. Equation (8) produces the smallest RMSE for the 4-year contract, while relation (7) again is
the most accurate forecast for the 5-year maturity. Regarding horizons exceeding one year, models
applying futures prices as input are significantly better compared with the no-change forecast. Note
that as maturities increase, the liquidity of contracts generally decrease. Overall, less restrictive
models (e.g. comparing equation (7) with equation (2)) produce better forecasts.

The bias estimates are displayed in panel A of Table 3. The overweight of positive values
suggests that the realized spot price is higher than the forecasted spot price in the majority of cases.
This is analogous to Alquist and Kilian (2010) which presents small negative bias results solely for
the 1-month contract, all others being positive with absolute values similar to those presented here.
The futures model given by equation (5) is the best predictor of future spot prices for forecasting
across horizons of 1-month, 3-months, 1-year, 2-years, and 3-years, according to the bias estimates.
The bias implies that the most accurate forecast with regards to the 6-month maturity is provided
by relation (3). Over the 4-year and 5-year horizon the bias is minimized by applying equation
(7). Hence, regarding the bias measure of forecasting errors, it can be concluded that the simple
no-change forecast underperforms relative to models incorporating both the no-change and futures
forecasts. Alquist and Kilian (2010) finds that the no-change model generates the smallest bias
across the 6-month and 12-month horizons, while for the 1-month and 3-month contracts they reach
the same conclusion as above.

The success ratio measures the directional accuracy of forecasts. It represents an indicator of
the extent to which the forecasting models are able to predict the direction of change, taking a value
between zero and one. Panel A of Table 4 presents the success ratio for the different models and
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maturities. The greatest performance in terms of directional accuracy is provided by the futures
forecast (2) and the relationship given by equation (6), for all horizons except the 5-year maturity.
Concerning the 5-year contract, equation (8) provides the best prediction of the direction of future
price changes. The differences among models are somewhat greater relative to Alquist and Kilian
(2010), but the absolute values for corresponding models and horizons are consistent with the findings
of Table 2.

Models combining the futures and no-change forecasts demonstrate the best performance as
predictors of future spot prices. These results represent both similarities and differences relative
to previous research. Alquist and Kilian (2010) finds that the no-change forecast tends to be the
most accurate forecasting method. Other studies have found futures-based forecasts to provide
better forecasts at horizons of 3-, 6- and 12-months (Chernenko et al., 2004). Nevertheless, more
consistent with the findings presented here, McCallum and Wu (2005) finds that spread regressions,
i.e. models incorporating both the futures and the no-change forecast, have lower MSPE than the
simple no-change forecast at short horizons.

The no-change forecast tends to be relatively accurate for horizons up to twelve months. This
is consistent with existing literature and the view among agents in the oil market. As stated in
the introduction, Hamilton (2008) suggests that oil prices are completely unpredictable. Although
presenting different results, the no-change model being favoured by Alquist and Kilian (2010), Cher-
nenko et al. (2004) favouring the futures model, and the spread regression being favoured by Mc-
Callum and Wu (2005), these studies do not contradict each other nor the findings above. The
divergence in forecast accuracy can mainly be explained by differences in the sample period. The
estimates presented in this section are based on a larger sample size compared to the mentioned
studies. Oil price predictability is also affected by a range of factors and the tie to the spot price
of oil is, to put it mildly, complicated (Zagaglia, 2010). Thus, the connection between the oil price
and macroeconomic determinants is important to bear in mind.

Although futures prices bring a lot to the table, the value of the futures price as a predictor
of the expected future spot price may be disputed. As suggested by the historical futures chains
superimposed upon the historical spot prices in Figure 1b, futures prices are highly questionable
as a direct predictor of future crude oil spot prices. One might argue that the simple no-change
forecast in several cases provides a satisfactory forecast of the expected spot prices compared to
more complicated models. Nonetheless, spreads combining the futures and no-change forecasts
emerge from this analysis as strong predictors of the future spot price.

Various explanatory variables for the price of crude oil have been considered in this study,
some by inspiration from existing literature while others are proposed by authors. In addition to
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considering spot and futures prices at different lags, the predictive features of U.S. oil inventories
(French, 2005), implied volatility of Brent futures options, skewness of Brent spot prices (analogous
to the electricity analysis of Haugom and Ullrich (2012)), and realized volatility of Brent spot prices
have become subject to study. Realized volatility of the oil futures market is for example used
to predict future volatility in Martens and Zein (2004). Due to more significant results, realized
volatility is chosen as the variable in focus for the continuing analysis.

3.2 Predictive Power of Realized Volatility

Several of the models studied in section 3.1 indicate strong explanatory power, yielding low forecast
errors and good directional accuracy. The following section expands the analysis conducted above
by including the historical realized volatility of crude oil spot prices. The following nine equations
are studied, all of which incorporate realized volatility as an explanatory variable:

Ŝt+h|t = St + δ̂ RVt, h = 1, 3, 6, 12, 24, 36, 48, 60 (10)

Ŝt+h|t = F
(h)
t + δ̂ RVt, h = 1, 3, 6, 12, 24, 36, 48, 60 (11)

Ŝt+h|t = St(1 + α̂ + β̂ ln(F
(h)
t /St)) + δ̂ RVt, h = 1, 3, 6, 12, 24, 36, 48, 60 (12)

Ŝt+h|t = St(1 + β̂ ln(F
(h)
t /St)) + δ̂ RVt, h = 1, 3, 6, 12, 24, 36, 48, 60 (13)

Ŝt+h|t = St(1 + α̂+ ln(F
(h)
t /St)) + δ̂ RVt, h = 1, 3, 6, 12, 24, 36, 48, 60 (14)

Ŝt+h|t = St(1 + ln(F
(h)
t /St)) + δ̂ RVt, h = 1, 3, 6, 12, 24, 36, 48, 60 (15)

Ŝt+h|t = α̂ + β̂ F
(h)
t + γ̂ St + δ̂ RVt, h = 1, 3, 6, 12, 24, 36, 48, 60 (16)
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Ŝt+h|t = α̂ + β̂ ln(F
(h)
t /St) + δ̂ RVt, h = 1, 3, 6, 12, 24, 36, 48, 60 (17)

Ŝt+h|t = α̂ + γ̂ St + δ̂ RVt, h = 1, 3, 6, 12, 24, 36, 48, 60 (18)

The equations given above, (10)-(18), are identical to equations (1)-(9) presented in section 3.1,
only differing in that an extra term is added; the realized volatility of the Brent spot price. The
explanatory features of realized volatility are investigated in order to determine whether this factor
can enhance forecasting models.

As mentioned in section 3.1, other variables are also included in the forecasting models, such
as inventories, by inspiration from Pagano and Pisani (2009) which uses utilized capacity in U.S.
manufacturing as an explanatory variable and Chevallier (2013) which considers inventories as a
predictor of futures returns. However, inventories do not improve the results. The explanatory
power of implied volatility of Brent options futures has been tested in the models, examining the
CBOE Crude Oil Volatility Index (OVX) ETF, but the results favour the use of realized volatility.
Another benefit from using realized volatility as opposed to implied volatility is that this does not
restrict the data sample size, as OVX index data is only available from 2007. Adding the skewness
of spot prices to the models have also been tested by means of improving forecasts. Still, the value
of skewness as a predictor for future spot prices has proved insignificant. For the sake of brevity,
these results are not reported in this paper.

In-sample estimates for the 1-month, 3-month and 6-month contracts over the entire sample are
presented in Table 5. As mentioned, the term δ̂RVt is added to the equations given in section 3.1.
Similar to Table 1, the estimates suggest that not all coefficients are statistically significant. Among
the models yielding significant coefficients are equation (16), (17) and (18), that is, the most flexible
models. The AIC is also provided in Table 5, where the criterion suggests that the best model fit is
obtained from relation (16) and (18) for the most liquid contracts.

Table 2 illustrates the results from adjusting the models in section 3.1. The RMSE for relations
(10)-(18) are shown in panel B of Table 2. A dagger (†) indicates significant improvement in RMSE
by including historical realized volatility in the relations describing future spot prices. Thus, daggers
specify that adding realized volatility as an explanatory variable reduces forecast errors. Considering
horizons beyond six months, forecasts are improved by adding realized volatility to the majority of
models, with a notable number of error reductions being significant. Examining equations (7)-(9)
reveal that adding historical realized volatility to these models unambiguously improve the forecasts
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for all horizons. Equation (18) provides the lowest error for horizons up to one year. Across the two
year and five year horizon, equation (16) generates the lowest errors. Finally, model (17) is favored
over long-term horizons of three and four years.

As illustrated by Table 2, models incorporating realized volatility typically perform better.
Similar to the findings of section 3.1, models combining futures and no-change forecasts over a given
horizon generate the smallest errors. Generally, the simple no-change model is outperformed by
these more advanced models. The less restrictive models given by (16)-(18) provide better forecasts
than most of the remaining models.

Bias estimates are presented in panel B of Table 3, suggesting that the prediction is higher
than the realized spot price for the overweight of models at horizons of four and five years. For
maturities over the short- and medium-term the realized spot price is on average higher than the
estimated forecast. Comparing the bias estimates to the RMSE, similar conclusions can be drawn;
models combining no-change and futures forecasts generally perform better. Nevertheless, the simple
no-change forecast is actually preferred across the 5-year horizon. In accordance with the discussion
above, realized volatility in most cases contributes to the models by reducing the absolute bias. This
implies that the forecasted estimates of models applying information from realized volatility are
closer to the realized price compared to models not utilizing this information. The bias estimates do
not point out a single best model among equations (10)-(18), as the model generating the minimum
bias varies over different horizons. However, equation (16) performs relatively well across all horizons.
Indeed, Table 2 confirms significant reductions in RMSE by this model.

Significantly reduced error terms, attained through utilizing the explanatory power of realized
volatility, should have an equivalent impact on the success ratio. Panel B of Table 4 indicates mixed
results regarding improvements in directional accuracy, relative to the findings presented in panel
A. Actually, incorporating realized volatility reduces the success ratio for some models, adopting a
1-month perspective. The same applies to the simple futures model (11) at all maturities except the
5-year horizon. Realized volatility enhances success ratios when forecasting over the medium- and
long-term, relative to equivalent models in panel A of Table 4. Considering horizons of one year and
above, the model specified by equation (15) stands out by providing superior directional accuracy at
more than 80%. The extended futures model (11) provides a higher degree of accuracy in predicting
the direction of future price changes, compared to the extended no-change model (10), across the
short- to medium-term. In general, all models display improving success ratios as maturities increase.

To summarize, there is reason to conclude that predictive information is present in the historical
realized volatility of Brent spot prices. To the authors’ best knowledge, this finding on the predictive
power of realized volatility is unique and complements existing literature. A direct comparison
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between the models in existing research and corresponding models incorporating realized volatility
suggests that this extension leads to improved forecasts of the crude oil spot price.

4 Realized Volatility as a Predictor of Futures Returns

Oil futures contracts are typically financial contracts, therefore, this section follows the standard
finance literature and turns away from price forecasting and focus instead on predicting the relative
movements of futures prices. That is, the analysis considers returns by holding futures contracts of
various maturities. Realized volatility is also used by Martens and Zein (2004), although to predict
future volatility. Further, Chevallier (2013) uses returns of futures contracts as the dependent
variable, this being analyzed with U.S. oil stocks as one of the explanatory variables.

The left hand side of the equations modelled is now the futures return in the next time step,
r̂
F

(h)

t+h|t
, rather than the future spot price as in the previous section. The return variable is calculated

as the log-difference between the monthly prices. In an efficient market the futures price should be
unpredictable, as opposed to the somewhat predictable spot price, illustrated by the results in section
3. The spot price is likely to be less efficient as transaction costs reduce arbitrage opportunities in
the physical market. The futures market is expected to be more efficient since these contracts are
both financially and physically settled. Speculation and financial trading may help stabilize futures
prices and contribute to an efficient market. Another view is that speculation by financial investors
drives futures prices more than spot prices, the latter being more driven by fundamentals, although
Singleton (2013) finds that financial activities through holding futures contracts tend to move the
spot price away from fundamental values. The consecutive analysis will explore if this intuition is
valid.

Forecasting accuracy will be assessed using the RMSE-measure applied in section 3. Significance
levels still refer to the pairwise DM-test, providing an indication whether the error improvements
are significantly different from zero. The null hypothesis states that the difference in forecasting
errors between the zero-return benchmark, (19), and the estimated forecast is zero.

Denote by r̂
F

(h)

t+h|t
the estimated return at time t by holding a futures contract with delivery in h

months. RVt,spot denotes the realized volatility of the Brent spot price, while RV (h)
t,futures denotes the

realized volatility of the respective futures contract price. The equation set includes the following
forecasting models:

r̂
F

(h)

t+h|t
= 0, h = 1, 3, 6, 12, 24, 36, 48, 60 (19)
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r̂
F

(h)

t+h|t
= β̂ RVt,spot, h = 1, 3, 6, 12, 24, 36, 48, 60 (20)

r̂
F

(h)

t+h|t
= γ̂ RV

(h)
t,futures, h = 1, 3, 6, 12, 24, 36, 48, 60 (21)

r̂
F

(h)

t+h|t
= α̂ + β̂ RVt,spot, h = 1, 3, 6, 12, 24, 36, 48, 60 (22)

r̂
F

(h)

t+h|t
= α̂ + γ̂ RV

(h)
t,futures, h = 1, 3, 6, 12, 24, 36, 48, 60 (23)

r̂
F

(h)

t+h|t
= α̂ + β̂ RVt,spot + γ̂ RV

(h)
t,futures, h = 1, 3, 6, 12, 24, 36, 48, 60 (24)

The first model studied is the zero-return benchmark. Further, the analysis considers two
relatively rigid models, equations (20) and (21), stating that historical realized volatility directly
predicts contract returns, scaled by a slope term. Equations (22) and (23) represent a more relaxed
set of models. Equation (24) is a multivariate model, applying the realized volatility of both spot
and futures prices as regressors. This is not expected to be a better performing model, the purpose
rather being to determine which factor (realized volatility based on spot prices or based on futures
prices) is the most relevant. Hence, the models under assessment are, in addition to the zero-return
benchmark, five unique relations applying realized volatility as a predictor of futures returns.

Table 6 shows in-sample estimates, spanning the entire sample size, for the return models
applying realized volatility. The least liquid contracts, i.e. the 4-year and 5-year contracts, are
omitted in this table. These estimates reveal that, the more relaxed models, (22)-(24), in general
perform well across all horizons. Particularly, models (22) and (24) demonstrate the most significant
in-sample estimates. The Newey-West procedure for autocorrelation and heteroskedasticity is used
to adjust significance levels. In-sample parameters suggest that, in terms of regression significance,
models (23) and (22) are favoured for horizons up to and above six months, respectively. The
minimum AIC indicates the preferred model, suggesting that model (23) is preferred over horizons
shorter than one year. Across horizons of one year and longer the AIC signals that equation (22)
outperforms the rest. The estimated slope parameters are negative, implying that higher realized
volatility leads to lower returns.
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Table 7 provides the root-mean-square errors for the eight separate maturities being subject
to analysis. The RMSE represents forecasting errors in predicting the crude oil futures returns by
applying realized volatility. Significantly improved error terms relative to the zero-return benchmark,
(19), are indicated by asterisks. In general, the error decreases with increasing maturity for all
models. A possible explanation for this is that long-term futures prices tend to move less than the
more volatile spot and short-term futures prices.

The empirical findings suggest that models incorporating realized volatility based on futures
prices, (21) and (23), constitute the most valuable predictors. That is, equation (23) proves good
predictive features for contracts up to six months. The model applying spot-based realized volatility,
(22), outperforms the remaining models at the 1-year horizon. Across horizons beyond one year,
equation (21) provides the most accurate forecasts. These are significantly better than those gener-
ated by the zero-return model for the 2-year, 3-year and 4-year horizons. The differences between
the spot- and the futures-based models are marginal, the latter performing slightly better over all
horizons except for the 5-year maturity. The multivariate model (24) displays the smallest forecast
improvement upon the zero-return benchmark. Note that the limitation induced by low liquidity for
contracts of longer maturities is also present in this analysis.

Forecasting the returns of futures contracts, relative to forecasting spot prices, amounts to
more useful purposes. This is due to the fact that the crude oil spot is limited to physical trading,
while futures contracts are specified with both physical and financial settlement. The results of this
section, along with the findings of section 3, imply that realized volatility indeed contain information
that may enhance forecasts in the oil market.

Summarizing the findings of this section, there is reason to conclude that realized volatility
improves forecasts of unrealized futures returns, in the same way as it improves spot price forecasts.
Moreover, the challenges associated with trading the spot make futures trading most relevant for
financial investors. The finding that the realized volatility is able to explain a proportion of Brent
crude oil returns is new, and supplements that offered by oil-specific and financial predictor variables.

Oil prices typically respond to factors affecting the market, e.g. geopolitical events and extreme
weather. Normally, crude oil prices increase in response to events causing supply disruptions, in-
creased supply uncertainty, or uncertainty about future demand. Therefore, the realized volatility
over the preceding month, as assessed in this paper, may explain market expectations of future spot
prices and thus help improve forecasts. Note however that the effects of the market factors discussed
here generally are relatively short-lived. Prices tend to revert back in the long-run. Previous research
have found both realized and implied volatility to have predictive power; Chevallier and Sévi (2013)
finds that the variance risk premium explains oil futures prices, while Haugom et al. (2014) finds
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implied volatility to improve forecasts of future volatility. The findings presented above indicate that
realized volatility performs better than implied volatility, with respect to improving forecast errors.
These results may be explained by the smaller sample of data available for implied volatility, since
OVX index data are unavailable until 2007. Hence, the results from the two volatility measures are
not directly comparable.

Since realized volatility exhibits significant predictive power for both the spot and the futures
market, the results presented in this study are relevant for market participants in both these markets.
Financial actors, as well as other actors such as oil producers that need to store and trade oil
physically in addition to perform financial trading, may find these results interesting and worth
further notice.

5 Conclusion

This paper presents a total of 24 multi-period models predicting future spot prices and futures
returns in the crude oil market. Recognizing the limitations of oil price forecasts based on futures
prices, we explore the predictive power of realized volatility and looks at different models for oil price
forecasting. Complementing existing literature, this study establishes the use of realized volatility
as a predictor of movements in both the spot and the futures market.

The analysis shows that the no-change forecasts are better than futures-based forecasts in the
short-run, while futures-based forecasts are better over longer horizons. In the search for oil price
predictors which can reduce forecast errors, we find realized volatility in the Brent crude oil market
an interesting variable to investigate. This study provides evidence that realized volatility contains
predictive information which may significantly improve forecasts of the future spot price compared
to forecasts based on futures prices alone.

A parallel statement to the spot price analysis can be drawn for futures returns. There are
possibilities of predicting futures returns by utilizing historical realized volatility. Significant ex-
planatory power is indicated across all horizons. This increases the robustness of the initial finding
that realized volatility contains predictive information.

Further research should extend the analysis to a larger sample, since some of the contracts
investigated in this paper only recently became available. There are also possibilities of making
several modifications to the model framework. Continuing the study on alternative explanatory
variables can as well be an interesting follow-up.
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