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Problem Description

• Discuss previous literature and numerical methods for the modelling of man-

agerial risk-taking in hedge funds.

• Develop a numerical model with both multiple evaluation periods and multiple

high-water mark considerations.

• Analyse and compare di↵erent hedge fund structures with regards to manage-

rial risk-taking and manager-investor risk misalignment.
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Managerial Risk Profile in Hedge Funds with
Multiple High-Water Marks
Numerical Modelling and Fund Structure Analysis

Thomas A. Herud, Eirik F. Rime & Christian F. Scheel1

Abstract

We investigate a hedge fund manager’s risk-taking profile and evaluate how fund

composition and multiple evaluation periods a↵ect risk-levels. The fund composition

refers to the specific characteristics that result from investors entering the fund at

di↵erent points in time, implying various maturities and strike levels for high-water

mark incentive contracts. Multiple evaluation periods is the inclusion of long-term

managerial compensation to the decision process. Using a numerical simulation

framework we compute and analyse the optimal behaviour of a fund manager with

constant relative risk aversion. In existing literature - where the fund is depicted

as one, homogeneous pool of investments, evaluated over a single period - manager

risk-taking fluctuates heavily depending on time to maturity and moneyness of the

manager’s incentive option. By introducing a diversified fund composition as well as

accounting for multiple evaluation periods, the manager’s behaviour is considerably

less extreme, reducing manager-investor risk misalignment. Our results suggests that

the fund composition is relevant to the individual investor, as it potentially a↵ects

the overall risk profile and thereby the value of the investment. Furthermore, our

results prove an interesting study in examining the e�ciency of option-like incentive

contracts in relieving agency problems.

1Submitted for the degree in M.Sc. Industrial Economics and Technology Management, Nor-

wegian University of Science and Technology (NTNU)

June 2015





Sammendrag

I denne oppgaven undersøker vi en hedgefondforvalters risikoprofil og vurderer hvor-

dan fondets sammensetning og forvalters optimeringshorisont p̊avirker risikotak-

ing. Fondets sammensetning refererer til n̊ar investorene entrer fondet, noe som vil

p̊avirke forfallsdato og utgangspris p̊a forvalterens insentivopsjoner. Optimeringsho-

risont refererer til antall evalueringsperioder, hvilket innbefatter at ogs̊a langsiktig

kompensasjon inkluderes i beslutningsprosessen av n̊aværende risikoniv̊a. Ved hjelp

av numerisk simulering beregner og analyserer vi den optimale risikotakningen til

en fondsforvalter med konstant relativ risikoaversjon. I tidligere litteratur, hvor for-

valters kompensasjon er modellert som en enkeltopsjon og vurdert over én periode,

har forvaleren svært varierende risikotakning som er sterkt avhengig av forfallstid

og verdi p̊a opsjonene. Ved å innføre en mer diversifisert fondssammensetning, samt

innføre flere evalueringsperioder, finner vi at forvalters beslutningstaking er langt

mindre ekstrem. Dette bidrar til å redusere avvikene mellom forvalters risikotaking

og investors optimale niv̊a. V̊are resultater tyder dermed p̊a at fondets investorsam-

mensetning er relevant for den enkelte investor, da det p̊avirker fondets overordnede

risikoprofil og dermed verdien av investeringen. Videre er resultatene en interessant

studie av opsjonskontrakters e↵ektivitet.
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1 Introduction

The hedge fund industry does not only manage a considerable amount of capital,

it also has the privilege of bypassing both many regulations and the obligation

of disclosing their investment strategies.1 Understanding how managers react to

incentives and aligning their interests with the investor’s therefore is paramount

from a capital management perspective. The e�ciency of hedge fund contracts

is also relevant to regulators as hedge funds are becoming increasingly accessible.

Furthermore, it is an interesting study of general managerial behaviour, as parallels

can be drawn to remuneration of executives in the corporate world.2

A typical hedge fund contract can be viewed as a principal-agent problem where the

optimal contract aligns the manager’s incentives with investor’s interests. Generally

speaking, hedge funds usually apply two basic mechanisms in an e↵ort to mitigate

principal-agent problems: incentive contracts and ownership structure.3 Contracts

are commonly comprised of an annual management fee equal to a given percentage

of total assets under management, and an incentive fee entitling the manager to a

share of the profits in a given evaluation period. The incentive fee works similarly to

a European call option, where the fund value is the underlying asset, the evaluation

period is the time-to-maturity and a high-water mark (HWM) is the strike price.

This is hence a loss provision contract where the HWM defines a minimum required

return in order to profit from the incentive fee. The overall issue concerning these

contracts is that they potentially induce a hazardous level of risk-taking, largely

o↵set from the investor’s optimal level (Carpenter, 2000; Kouwenberg and Ziemba,

1As Brav et al. (2008, p. 1730) wrote in The Journal of Finance: ”Hedge funds employ highly

incentivised managers who manage large unregulated pools of capital.”
2Agarwal et al. (2009, p. 2221) notes that corporate managerial incentives are ”hard to inter-

pret given significant endogenity”, and that the hedge fund environment serves as an interesting

substitute.
3Other solutions to agency problems such as market forces and government regulations are less

predominant, due to the nature of hedge funds (Ackermann et al. (1999)).

1
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2007; Hodder and Jackwerth, 2007; Asheim, 2014).

In this paper, we explore the dynamics of these incentive contracts, both its struc-

tural components and how these components a↵ect risk-taking and risk misalign-

ment between manager and investors. We do this by building a numerical model

displaying a manager’s optimal risk allocation depending on time to maturity and

fund movement. The central contribution of our work is the development of a model

which incorporates the situation where a manager manages a fund comprised of mul-

tiple investors, implying a number of overlapping incentive contracts. The incentive

fee contract then resembles a portfolio of call options, where each option has its

own strike price dictated by the fund value upon entrance. This is fundamentally

di↵erent from existing research.

Previous work such as Hodder and Jackwerth (2007) and Asheim (2014) model the

fund as if it consisted of only one single investor, modelling the incentive contract

as a single option with one HWM and termination date. The benchmark is merely

conceptualised as an aggregate of all investor benchmarks. Our model on the other

hand, is extended with the purpose of both capturing the possibility and depict-

ing the result of modelling a fund containing multiple incentive contracts, where

investors have entered the fund at di↵erent times and fund values.4 We believe this

is a necessary addition as it provides greater realism and also provides new insights

in hedge fund research. Our hypothesis is that a manager exposed to a diverse set

of incentive contracts will be less prone to excessive risk-taking. Given that the con-

tracts are su�ciently diverse, the optimal risk level for one contract will adversely

a↵ect the prospects of another, forcing the manager to balance out his appetite for

risk to reach a combined optimum for all contracts.

Before going into further details on how we tackle the problem at hand, it is nec-

essary to briefly assess similar works in order to fully grasp the complexity of the

issue. A great deal of hedge fund literature has been concerned with remuneration

structure, where especially the e↵ects of the incentive fee has been under much aca-

demic scrutiny. What is clear from an overall perspective is how divided the results

are. The obvious intuition behind the incentive contracts is that by directly linking

managerial remuneration to fund performance, the fund should perform better. And

since an investment in a hedge fund is essentially a bet on the manager’s skills, the

HWM loss-recovery contract can be seen as a manager’s way to signal his abilities

4We refer to this characteristic as ”fund composition”.
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towards investors.5 However, the fact that the incentive fee is only directly a↵ected

by gains and not losses suggests a potential adverse risk-taking behaviour. After

all, the value of a call-option on future gains is positively correlated with volatility;

a decision variable left entirely to the manager’s discretion. Two natural questions

that are being asked therefore, is i) whether fee structure predicts fund performance,

and ii) in what way di↵erent fund-characteristics a↵ect risk misalignment between

manager and investor. The first question has mainly been investigated through em-

pirical studies and the latter through theoretical models, and results are at best

mixed.

Addressing the first question, empirical studies show conflicting results regarding

the relationship between incentive fee, fund performance and risk-taking, and the

ambiguity persists across industries.6 In the case of hedge funds, asymmetric remu-

neration structure is found to be positively related to performance by several papers.

Ackermann et al. (1999) notes that funds charging higher fees are associated with

better performance, and Liang (1999) that hedge funds provide superior Sharpe ra-

tios with returns positively related to incentive fees with loss-recovery provisions.

On the contrary, Brown and Goetzmann (2001) find that high-fee funds perform

no better than lower-fee funds, and Kouwenberg and Ziemba (2007) concludes that

hedge funds with incentive fees actually have significantly lower mean returns.

These conflicting results are addressed by Agarwal et al. (2009), who suggests

that the fee-rate itself is a deficient proxy for the manager’s exposure to fund re-

turns. This is because pay-performance sensitivity also depends on other fund-

characteristics such as the timing and magnitude of investor capital flows. In other

words, Agarwal et al. (2009) empirically apply the very same notion of a diverse

fund composition as we do in our model, where managerial compensation is best

described as a series of diverse options-like contracts. Introducing a delta to account

for the total managerial compensation to a 1% move in the fund, they conclude that

if measured correctly, greater incentives yield superior performance. This discussion

strongly supports our hypothesis on the relevance of fund composition, and that a

single incentive option not su�ciently emulates reality.

The second question of how di↵erent fund-characteristics a↵ect risk misalignment

between manager and investor, has been explored by several papers applying both

5According to Aragon and Qian (2009) HWM provisions are more common amongst less-

reputable managers in an e↵ort do reduce asymmetric information on managerial quality.
6Analysing venture capital firms, Gompers and Lerner (1999) ”observe no relation between

incentive compensation and performance.”
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numerical and analytical approaches. What is evident from these studies is how sen-

sitive the results are to the choice of framework, assumptions and simplifications.

The issue is to successfully manage the trade-o↵ between reducing complexity and

oversimplifying the problem to a state where it loses touch with reality. The basic

idea of solving the dynamic investment problem of an optimal allocation between a

risky and risk-less asset, was pioneered by Merton (1969). In his case, the investor is

the decision maker. Carpenter (2000) translates this problem to a setting where the

choice of risk-allocation is outsourced to a manager exposed to incentive compen-

sation. As a consequence, the risk-allocation becomes dependent on the moneyness

and time to maturity of the option-like contract, and will therefore vary greatly to

that of an investor. Kouwenberg and Ziemba (2007) provide further extensions to

the field by factoring in management fee and managerial ownership, and crucially

also alter the manager’s preference to risk. While Carpenter (2000) describes the

manager with hyperbolic absolute risk aversion (HARA), Kouwenberg and Ziemba

(2007) applies Prospect Theory developed by Kahneman and Tversky (1979).

These additions, especially with respect to risk-preference, have significant impli-

cations on optimal risk-allocation sensitivity to changes in incentive fees. While

Carpenter (2000) finds that for a fund above HWM, a manager’s response to an in-

creased incentive fee percentage is to reduce fund volatility, Kouwenberg and Ziemba

(2007) concludes with the exact opposite. They also find that a significant ownership

share (above 30%) considerably reduces risk-taking, which is unsurprising consider-

ing this also exposes the manager to a possible downside. However, both papers as

well as Hodder and Jackwerth (2007) and Asheim (2014) agree on the notion that

the incentive fee inflicts adverse behaviour, frequently resulting in risk-misalignment.

This view is challenged by Panageas and Westerfield (2009) and Guasoni and Ob lój

(2013), who both provide analytical solutions in a continuous-time framework with

infinite horizon. They find that managers place a constant portfolio risk, although

Guasoni and Ob lój (2013) concludes that this only applies to managers who are

either risk-neutral or with low aversion to risk.

From the brief discussion above it is apparent that research results vary across the

applied models, and that observed managerial behaviour is highly dependent on

assumptions about reality and modelling methods. In investigating these issues fur-

ther we develop a numerical framework analogous to that of Hodder and Jackwerth

(2007). There are two reasons why we believe that these types of frameworks serves

as a well-suited environment for exploring hedge fund contracts: Firstly, empirical
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data is di�cult to obtain, making theoretical models a more attractive alternative.7

Secondly, as noted by Asheim (2014), analytical solutions require severe simplifi-

cations due to the complexity of the problem, making numerical approaches more

preferable. As an example, the continuous time framework of Panageas and West-

erfield (2009) with perpetually renewed call options on the fund value, does not

su�ciently emulate the reality of a hedge fund with yearly evaluation periods over

a finite number of years.

In section 2 we develop the fundamental model upon which we subsequently include

further additions. Section 3 establishes a base case scenario analogous to previous

literature, and present di↵erent evaluation metrics in order to quantify our results.

In accordance with Hodder and Jackwerth (2007) and Asheim (2014) we find that

when the fund composition only consists of one incentive contract evaluated over a

single optimisation period, the manager exerts extreme risk-taking behaviour often

both far above and below that of an investor. We then extend our model in two

directions. Section 4 introduces and presents the results for a situation with multiple

evaluation periods where the manager is forced to consider the value of continuation.

Due to the loss-recovery structure of the incentive contracts, this means that poor

performance in the current evaluation period also inflicts future compensation. In

section 5 we develop the central contribution of this paper, by investigating how

a diverse composition of multiple incentive contracts further induce a risk aligning

e↵ect. Both of these extensions are motivated by the belief that they provide greater

realism to the model. Section 6 then synthesises our findings and evaluates di↵erent

contractual parameters such as managerial ownership and fee size. In section 7

we examine the cost of contractual ine�ciencies, and in light of our quantitative

results, we point towards an alternative remuneration structure that could benefit

both manager and investor. Section 8 presents our concluding remarks.

7Brown and Goetzmann (2001): ”absence of regulatory oversight, means that reliable data on

hedge funds are hard to come by, and careful analysis of the conduct and performance of this sector

of the market is di�cult.”



2 Fundamental Modelling

In the following section, the fundamental model setup is described. We begin by

developing the process of the fund movement, before we elaborate on the mechanics

of managerial remuneration and preference to risk. We first develop the model

setup for the most basic case; a single evaluation period with one incentive contract.

In subsequent sections we then develop the extensions of multi-period evaluation

(section 4) and multiple incentive contracts with di↵erent HWMs and maturities

(section 5).

The overall goal of the model is to depict the risk-profile of a hedge fund manager

controlling the assets in a hedge fund. We apply a dynamic programming approach

where the decision taking is discretised utilising a two-dimensional node network

in time and fund values. The fund follows a stochastic process which determines

the distribution of possible fund values. At each point the manager, displaying

a constant relative risk aversion (CRRA) utility function, maximises his expected

utility of remuneration by altering the allocated proportion of risky and riskless

assets. The underlying model setup is based on the work done by Hodder and

Jackwerth (2007), but where our extensions result in significant structural additions.

2.1 Modelling a Hedge Fund

An important attribute of hedge funds is the flexibility in investment options, as

hedge funds are largely unregulated. Hedge funds are allowed to short sell, apply

leverage and invest in derivatives. Our model is simplified with regards to the wide

range of investment possibilities, and the manager’s decision variable is merely a

choice of aggregated leverage rather than specific securities. In order to model the

amount of risk a hedge fund manager is willing to acquire in a given situation, we

limit the hedge fund manager to invest in a risky asset S and risk-free government

6
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bond B. This is a common simplification similar to the original approach of Merton

(1969).

The risk-free asset grows with an annual rate r, yielding a continuous return dB
t

=

rB
t

dt. For the process of the risky asset we turn to the continuous stochastic process

of a geometric Brownian motion (GBM),

dS
t

= µS
t

dt+ �S
t

dW
t

, (2.1.1)

where S is the value of the risky asset, µ is the drift, � is the standard deviation and

W
t

is a Wiener process. The Markov property of the GBM is particularly powerful

as the probability distribution for future values depends only on the current state

without any path dependency. With the assumption of GBM follows the assumption

of returns being lognormally distributed. Considering the risk-seeking behaviour

associated with hedge funds, the existence of fat tails and a significant downside is

predominant. Applying GBM should thus be considered as a strong simplification.1

However, given its mathematical tractability and its wide acceptance in academia,

the use of GBM is considered suitable for the purpose of this paper. We leave it

to further research to account for the special characteristics of hedge fund return

distributions, such as negative skewness and excess kurtosis.

For the numerical values of µ and � we use the Credit Suisse Hedge Fund Index

database. This database reports an average annual return of 8.48% and an annual

standard deviation of 7.11% for the overall hedge fund index.2 The Sharpe ratio is

reported to have a value of 0.81, calculated using a rolling 90 day T-bill rate. The

implied T-bill rate is then 2.72%, which we set to be the risk-free annual return

r. It should be noted that these numbers do not necessarily reflect a realistic risk

measurement, since the Sharpe ratio could overstate fund performance considering

the aforementioned skewness and excess kurtosis of hedge fund return distributions.

There also exist several biases related to hedge fund data reporting that potentially

could a↵ect the parameters.3 In addition, the database does not state the applied

leverage, which directly amplifies return and volatility. Even if a hedge fund were

1”Many hedge fund index return distributions are not normal and exhibit negative skewness

and positive excess kurtosis” (Kat and Brooks, 2001).
2The index is continuously updated with data beginning in January 1994. Stated numbers are

obtained June 2015.
3Reporting biases - survival bias, instant history bias and selection bias - are thoroughly dis-

cussed by existing papers such as Fung and Hsieh (2000).
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obligated to disclose financial statements such as a balance sheet, it would still be

di�cult to determine the realistic level of leverage. This is because leverage, in many

cases, not only consists of outright borrowing but is also comprised of investments in

derivatives and structured notes. However, the Sharpe ratio is still applicable since

it, in accordance with the Capital Allocation Line, is not dependant on leverage.4

Therefore, as long as the ratio between excess return and applied risk is realistic,

our qualitative results will not be a↵ected by the possible inaccuracies in parameter

choice. We apply the reported data as the basis for unlevered parameters.5

The set of investment opportunities results in the total hedge fund portfolio following

the process,

dX
t

= X
t

dS
t

+ (1� )X
t

dB
t

= X
t

(µdt+ �dW
t

) + (1� )X
t

rdt

= [µ+ (1� )r]X
t

dt+ �X
t

dW
t

,

(2.1.2)

where X
t

denotes the fund size at time t.6 The weight allocation invested in the

risky asset is assigned  and will serve as the decision variable for the optimisation

problem.

With the hedge fund being lognormally distributed it is convenient to express the

fund process by the logreturn d(logX
t

). We set F (X
t

) = logX
t

and apply Ito’s

Lemma to find the process of dF ,

dF =
@F

@t
dt+

@F

@X
t

dX
t

+
1

2

@2F

@X2
t

(dX
t

)2,

where the di↵erentials are given by,

@F

@t
= 0 ,

@F

@X
t

=
1

X
t

,
@2F

@X2
t

=
�1

X2
t

.

As (dt)2 = 0, dWdt = 0 and (dW )2 = dt the total di↵erential reduces to,

4Assuming that borrowing at risk-free rate is possible.
5We refer to appendix A.2 for a list of our standard parameters.
6Xt = St and (1� )Xt = Bt.
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dF =
µ+ (1� )rX

t

dt+ �X
t

dW
t

X
t

� 1

2

2�2X2
t

dt

X2
t

= [µ+ (1� )r � 1

2
2�2]dt+ �dW

t

.

(2.1.3)

The Wiener process dW
t

is normally distributed with mean 0 and standard deviationp
dt. We can rewrite dW

t

as
p
dtdZ

t

, where dZ
t

is standard normally distributed

N(0, 1). For a given time step dt the logreturns are thus normally distributed

with mean [µ + (1 � )r � 1
2
2�2]dt and standard deviation �

p
dt. Due to the

concavity of the log function and as a consequence of Jensens’s Inequality, the mean

is corrected with the term �1
2
2�2. Substituting dF for logX

t+dt

� logX
t

we can

derive an equation for the value of the hedge fund at time t+ dt given the value at

time t,

logX
t+dt

� logX
t

= [µ+ (1� )r � 1

2
2�2]dt+ �

p
dtdZ

t

X
t+dt

= X
t

e
[µ+ (1� )r � 1

2
2�2]dt+ �

p
dtdZ

t

.

(2.1.4)

The assumption of a lognormally distributed hedge fund and the corresponding

properties will be used in section 2.4, where the probability of possible fund moves

is derived.

In order to accommodate our numerical framework, the continuous fund movement

needs to be evaluated at discrete points. As previously mentioned, we base our

computations upon a two-dimensional grid of nodes where each node (n, t) represents

a fund value at a given time-step. Each time-step is defined as �t = 1
⌧

with ⌧ being

the total number of portfolio revisions in one evaluation period. In our model,

one evaluation period corresponds to one year. ⌧ is set to 12, implying monthly

portfolio revisions. The size of �t thereby defines the granularity of the network

along the time axis. For the fund size axis we introduce the parameter C denoting

the constant logarithmic change in fund value between two nodes at a given point

in time. This is a convenient approach since it is the log-return that is normally

distributed and not the fund size itself. We also let the fund values be incremented

by the risk-free return as we move forward in time, guaranteeing a risk-free return

when being purely invested in the riskless asset. The logarithmic return achieved

from a given node to a node in the next time step is then,



10

log

✓
X

t+�t, n+j

X
t,n

◆
= r�t+ jC, (2.1.5)

where j determines the number of node-moves up or down. The total value of the

fund can thereby be expressed as

X
t+�t, n+�n

= X
t,n

er�t+ jC. (2.1.6)

2.2 Remuneration of Hedge Fund Managers

The remuneration of hedge fund managers is usually divided into two parts; one

fixed percentage of the total value of the fund, referred to as the management fee,

and a share of the profit above a certain required return, denoted the incentive fee. A

common structure is 2% management fee and 20% incentive fee, labelled as a ”two-

twenty structure”.7 The required return is usually structured as a loss provision

high-water mark (HWM), indicating a threshold based on previous fund value plus

a ”hurdle rate”. The hurdle rate should at least amount to the risk-free rate which

the investor would expect when investing in government bonds, but may also be

based on other benchmarks. While mutual funds seek to produce positive relative

returns, hedge fund managers seek positive absolute returns and have to make up

all previous losses to derive their compensation from the incentive fee. Thus they

are called absolute return managers (Fung and Hsieh, 1997). Figure 2.1 shows how

the HWM increases after every evaluation period unless the fund decreases in value

and naturally remains the same until the loss is recovered. In our model the HWM

is by default set equal to the initial fund value augmented by the risk-free rate.

The remuneration W received from managing the fund for one period can be ex-

pressed as,

W = bX
T

+ cmax(0, X
T

� HWM), (2.2.7)

where X
T

is the value of the fund at maturity T , b is the management fee and c is

7Kouwenberg and Ziemba (2007) notes that a 20% incentive fee is the industry standard, relying

on the Zurich Hedge Fund Universe database (year 1995-2000).
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the incentive fee. The two-twenty structure is applied unless otherwise is stated.

Figure 2.1: The dynamics of a high-water mark

In addition to remuneration it is common for a manager to hold a substantial per-

sonal investment in the fund (Fung and Hsieh, 1999), in this case assigned a share a.

Managerial ownership has in previous literature been highlighted as an e↵ective tool

in order to mitigate risk misalignment.8 The total wealth obtained by the manager

at maturity thereby becomes,

W = aX
T

+ b(1� a)X
T

+ c(1� a)max(0, X
T

� HWM). (2.2.8)

8Kouwenberg and Ziemba (2007) notes that ”with a stake of 10% or less, the manager behaves

extremely risk-seeking as a result of the incentive fee.”



12

2.3 Managerial Preference to Risk and Utility

In order to depict a realistic picture of managerial behaviour, it is essential to success-

fully incorporate a sensible representation of risk preference. After all, the manager

does not merely seek to maximise his wealth, but rather his expected utility. Re-

lying on previous work, we see that the choice of utility-model has the potential to

significantly impact the results. As mentioned in the introduction, Kouwenberg and

Ziemba (2007) for instance show how a loss averse manager’s reaction to increased in-

centive fees is completely opposite to that of a manager with HARA-utility. Asheim

(2014) conducts a thorough discussion on this topic. Extending the work of Hodder

and Jackwerth (2007) he includes a more refined utility model based on Prospect

Theory (PT), and demonstrates how this addition impacts the managers decisions.

Although PT is recognised as a more avante-garde descriptive model for depicting

actual behaviour, we adhere to using CRRA in our model. We admit to the short-

comings this choice implies, however it comes with two significant benefits. Firstly,

it greatly simplifies our computations. This is due to the path dependency that

occurs in PT with the use of reference points, where future utility depends on status

quo. In our dynamic programming approach, status quo depends on future utility,

making PT a ”chicken or the egg problem”. The second benefit of applying CRRA is

that it makes our results more comparable to the majority of previous papers, which

also apply CRRA. We therefore make this compromise for tractability purposes, and

although we aim to conduct a realistic analysis of managerial behaviour, we do not

suggest that the absolute values of risk-taking reflect reality completely. Rather we

aspire to depict and discuss the di↵erences between the original approach and our

novel extension of the model.

Equation 2.3.9 shows the applied CRRA utility where � is the risk aversion coe�-

cient, determining the concavity of the utility curve.

U =
W 1�� � 1

1� �
(2.3.9)

As a general assumption we set both the manager and investor risk aversion to the

value of 4, which is in line with both Asheim (2014) and Hodder and Jackwerth

(2007). However, it is plausible that the risk aversion constant of the manager

could be di↵erent to that of the investor. Examining the e↵ects this may have on

risk-misalignment is therefore a relevant future extension.
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it to further research to examine the e↵ects this may have on risk-misalignment.

2.4 Utility Optimisation Procedure

The aim of the model is to determine the risk allocation that maximises the hedge

fund manager’s expected utility for every given node in our two-dimensional node

network. With manager wealth being calculated at maturity, we incrementally build

a matrix of expected utilities and corresponding optimal risk allocation 
t,n

based

on subsequent nodes. First, the wealth obtained in the terminal nodes is calculated

using equation 2.2.8,

W
n

= aX
T,n

+ b(1� a)X
T,n

+ c(1� a)max(0, X
T,n

� HWM). (2.4.10)

The corresponding terminal utility is calculated using equation 2.3.9,

U
n

=
(W

n

)1�� � 1

1� �
. (2.4.11)

We then calculate the expected utility for each node in the preceding time step

T � �t using the terminal utilities,

E[U
t,n

]

8
>>>><

>>>>:

JX

j=�J

p
j,

U
n+j

if t = T � �t

JX

j=�J

p
j,

E[U
t+�t,n+j

] if t < T � �t

(2.4.12)

where J determines the search span and p
j,

is the probability of reaching j nodes

up or down from n with a given kappa-choice. By altering  the manager changes

the probability distribution of the fund move and consequently the expected utility

in each node, thus enabling him to obtain the optimal risk allocation. As we step

backwards in time we repeat the procedure of calculating expected utilities and

optimal risk-allocations until the model reaches t = 0. We assume that the portfolio

can be revised without incurred transaction costs. Figure 2.2 depicts the recursive

expected utility calculation.
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With regards to our numerical approach we apply a binary search algorithm in or-

der to approximate a continuous -choice. This allows us to increase the number of

kappas significantly compared to previous papers without compromising computa-

tional run-time. Instead of computing the expected utility for each , the algorithm

iteratively cuts the set of kappas in half by eliminating the part towards which the

utility is decreasing.9 We model with kappas from 0 to 20 with 0.01 as step size.

Figure 2.2: Determining optimal  and utility in a node

The choice of span-width and step size C is made by considering the probability

distribution of the returns within one time-step, compromising between computa-

tional run-time, granularity and coverage of the total sample space. We find that

with 36 up and down moves and a C value of 0.0064 the model accounts for 98% or

more of the sample space for kappas lower than 6.10 In order to obtain the proba-

bilities p
j,

of the possible up and down moves in our discrete framework, we apply

the discretised process of the log-returns derived in equation 2.1.3. For a given risk

9This works because the relation between utility and  is strictly concave with no local maxima.
10See Appendix A.2 for the calculation of the value of C.
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proportion  and a time-step of �t, the log-return of the hedge fund is drawn from

the normal distribution,

N(µ
,�t

, �
,�t

) = N((µ+ r(1� )� 1

2
2�2)�t, �

p
�t). (2.4.13)

We observe that the mean and standard deviation are dependent on �t, but in-

dependent of the current state X
t

and time t. This simplifies our computations,

allowing us to arrange the probability distribution as a look-up table which can

be applied throughout the network. The probability of a given fund-move is ap-

proximated by computing the normal density of the move and multiplying it by a

normalising constant, ensuring that the probabilities sum to one.

p
j,

=

1p
2⇡�

,�t

e
�
1

2

✓
r�t+ jC � µ

,�t

�
,�t

◆2

36X

j=�36

1p
2⇡�

,�t

e
�
1

2

✓
r�t+ jC � µ

,�t

�
,�t

◆2 (2.4.14)

Any discretisation of a continuous distribution will be inaccurate to some degree.

This is due to the limitation of the span of possible outcomes and the granularity of

fund size increments. In our model this inaccuracy only becomes evident for small

and large values of . In the range 0 <   0.2 the volatility of the fund is so small

that the likelihood of moving up or down becomes insignificant. In other words, the

e↵ect of increased leverage is nonexistent. For very large -choices (10 and upwards)

the probability distribution becomes unrealistically flat, as the probabilities will be

spread evenly over the 73 possible moves.

2.5 Boundary Conditions

Because the expected utilities are calculated based on nodes above and below the

current position, we need to apply certain conditions at the boundaries of the grid.

In nodes close to the upper and lower boundaries, the utility calculation is based on

nodes located outside the grid, thus requiring some alternative method of calculation.
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Lower boundary

As the incentive fee is a very important part of the remuneration for the manager,

a poorly managed fund with its incentive fees considerably out of the money will

face the threat of liquidation, allowing the manager to start afresh.11 Some existing

work opens for both exogenous and endogenous liquidation of the fund, such as Lan

et al. (2012). The exogenous liquidation represents automatic termination of the

fund due to poor performance. The investors will simply retract their money if the

fund value crosses a specified liquidation boundary. Hodder and Jackwerth (2007)

shows how this exogenous boundary condition can be combined with an endogenous

American-style shutdown option, giving the manager the possibility of liquidating

the fund whenever this is more profitable than continuation.

We restrain to only using an exogenous liquidation boundary where the fund is

terminated at values lower than 50% of the initial fund value. This is in line with

the initial exogenous boundary set by Hodder and Jackwerth (2007), however we

allow the fund to move below the boundary in the final step. In the case of fund

liquidation, the manager receives a management fee corresponding to the time period

preceding liquidation, including his own share of the fund:

W lower
t,n

= aX
t,n

+ b
t

T
(1� a)X

t,n

. (2.5.15)

Another approach is that the manager neither collects incentive nor management fee

after stochastic liquidation, as stated by Lan et al. (2012). The expected utilities

are calculated as before, with each utility being multiplied by the probability of

achieving it.

Upper boundary

While there is an intuitive rationale behind the lower boundary liquidation, the

upper boundary is simply needed to limit the number of calculations. In our model,

the number of nodes to the upper boundary is, in a trade-o↵ between run-time and

accuracy, set to 108 nodes above the HWM, which represents a 106% increase from

the initial fund value. The wealth calculated in these nodes are set to be equal to

the wealth received had the fund been terminated in the given node, rewarding full

incentive and management fee,

11Although it may impair the manager’s ability to attract new investors, fund liquidation is a

real possibility in the world of hedge funds (Baquero et al., 2005) with performance as ”a significant

driver of liquidation”(Getmansky et al., 2004).
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W upper
t,n

= aX
t,n

+ b(1� a)X
t,n

+ c(1� a)(X
t,n

� HWM). (2.5.16)



3 Observing and Measuring Risk-

misalignment

In order to e↵ectively analyse how fund structure and contractual parameters a↵ect

risk misalignment in our model, we first need to establish a reasonable method

of comparison. We develop the following three metrics: First is the expected

kappa-di↵erence between manager and optimal investor choice, providing informa-

tion about the expected misalignment of an evaluation period. Second is the cer-

tainty equivalent for the investor, indicating the gain from a given setup. The third

measure is the certainty equivalent for the manager, solely incurring from managerial

remuneration.

Before elaborating on these metrics, it is useful to develop some motivation to why

they are needed. This is best done through displaying how deviating managerial risk

taking potentially could be from the level preferred by an investor. Attaining the

optimal solution for an investor is fairly straight-forward: Given that the investor

has the same preference to risk as the manager, his optimal risk allocation would

be identical to that of a manager who owns the entire fund himself. Or expressed

di↵erently, we find how the manager would behave had he managed his own wealth

rather than being incentivised by a contractual agreement. In our model setup

this simply entails setting the managerial ownership share a to 1 in equation 2.4.10

and removing the liquidation boundary. This is analogous to the asset allocation

problem of Merton (1969) with the closed form solution,

⇤ =
µ� r

��2
, (3.0.1)

resulting in a constant level of risk depending on expected return, volatility and risk

aversion. Applying our parameters in the formula, we find ⇤ = 2.84. Our model

yields a constant value of 2.83, depicted in figure 3.1. The reason why our model

18
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does not display the exact value of 2.84 is because of the inherent inaccuracies in the

model, such as the lower and upper boundary and the discretisation of probabilities.
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Figure 3.1: Merton flat, 100% managerial ownership

Turning back to the case where the fund is managed on behalf of the investor,

the picture is radically changed. When applying our model in its most basic form,

including a single 2/20 incentive contract, zero managerial ownership share and

discontinuing the fund at the end of the period, we observe severe risk-misalignment.

This provides a suitable illustration of the potential agency problems facing the

investors. We refer to this scenario as the ”base case”; an extreme situation which

we can use as a reference point in evaluating the further extensions introduced in

the model.



20

Option Ridge

Last Minute Bet

Merton Flat

Lock In

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

5

10

0

2

4

6

8

Fund Value

Time

K
ap

p
a

Figure 3.2: Base case, single period, single contract

As is evident in figure 3.2, the risk-taking is highly sensitive to the state of the

option-like incentive contract, depending on both option moneyness and remaining

time to remuneration. Located directly below the HWM is the option ridge where

the manager seizes the opportunity to increase the probability of the incentive fee

finishing in the money. As the end of the period closes in, we observe the increasing

convexity along the ridge, culminating in a last minute bet right before termination.

Farther below the HWM the e↵ect of the incentive option diminishes as the prospect

of moving into the money deteriorates, and close to maturity the risk levels resembles

that of a Merton constant. We observe that the risk quickly reduces to zero as the

liquidation boundary approaches in order to avoid fund closure. This is in line with

the single period results of Hodder and Jackwerth (2007).

Papers such as Carpenter (2000), modelling without liquidation boundary and man-

agerial ownership, observe rapid increase in risk-taking as the fund value decreases

towards zero. This as the manager has no incentive to reduce the risk. Basak et al.

(2007) also model without liquidation boundary but with an implicit managerial

ownership, and observe risk-taking moving towards the Merton constant. This is

because the impact of the incentive fee diminishes compared to the loss of his own

share as the fund value moves substantially below the HWM.
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Above the HWM, we observe that the manager quickly reduces the risk to a level

significantly below the Merton constant in order to lock in his accrued earnings. Too

low levels of risk is potentially just as undesirable as excessive risk-taking, since this

means missing out on profits for the investor. The lock-in e↵ect could in fact a↵ect

the expected utility of the investor more gravely than the risk peak. This as the

probability of being located just above the HWM is higher than being located just

below. In our default model setup the HWM is, as explained, set equal to the initial

fund value augmented by the risk-free rate. With the hedge fund having a drift

equal to the risk-free rate or higher, depending on the kappa-choice, the probability

of being in a state located in the lock-in area is high. Changing the hurdle rate of

the HWM will thus a↵ect the results to some degree, which we investigate further

in section 6.3. The reader should note that the lock-in e↵ect will be an important

determinant of the risk-misalignment in the results presented.

Comparing figure 3.1 to 3.2, it is easy to make a compelling case on the severity of

risk misalignment in hedge funds. However, the realism of the scenario is question-

able, and an inclusion of a more diversified fund composition evaluated over multiple

periods would suggest a reduction in the misalignment. Even though it is possible

to conclude simply by observation how di↵erent setups and additions to the model

a↵ect the risk-taking, it is useful to develop some metrics to quantify the actual

di↵erences and implications. In the following we run through the three metrics we

apply for measuring the deviations from the optimal case.

3.1 Expected Kappa-di↵erence

To begin with we want to find a metric that displays the overall misalignment in

risk-taking. Asheim (2014) develops a metric of an average di↵erence in -choice

from the optimal. It can be argued that this average value is overly naive since

the di↵erence in each node (t, n) is not weighted by the probability of ever reaching

that state. We therefore develop a metric that determines the expected kappa-

di↵erence experienced in the initial node. As we have 12 portfolio revisions during

one evaluation period, we have to find the expected kappa-di↵erence for each revision

t. We determine the expected kappa-di↵erences in a similar manner to how we

calculate the expected utility of the manager. The absolute kappa-di↵erence |
t,n

�
⇤| is first calculated for every node in a revision step. Then we recursively determine

the expected kappa-di↵erence E[�
t

] for time step t, using the probabilities derived

from the actual kappa-choices of a given setup, and moving backwards to the initial
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node. When this procedure is done for all revision steps, we are able to determine

the total expected kappa-di↵erence,

E[�] =
1

⌧

⌧X

t=1

E[�
t

]. (3.1.2)

Even though the expected kappa-di↵erence gives a relevant measure on risk-misalignment

it is di�cult to relate to in absolute terms. However, it is a simple method for ob-

serving the changes in misalignment across di↵erent scenarios.

3.2 Certainty Equivalents for Manager and In-

vestor

With the kappa-di↵erence we measure the total risk misalignment for a given sce-

nario, however we do not know what this really implies for the two parties. We

therefore include a metric of certainty equivalents in order to measure actual payo↵

from a set of -choices. To determine the certainty equivalent we begin by deter-

mining the expected utility for the investor and the manager. We recursively run

through the node network calculating expected utilities based on the terminal values

and the specific -choice pattern, using equation 2.4.12. The expected utility is then

found in the node located at the initial fund value, E[U0]. The approach is similar

for both investor and manager except the terminal utilities for the investor is based

on investor wealth instead of managerial remuneration.1 The optimal utility for the

investor is calculated by using the Merton constant ⇤, while all other values are cal-

culated applying the specific -pattern determined by the manager while optimising

utility of his own total remuneration.

The concept of utility is not immediately comprehensible, as the calculated number

does not provide much information other than observing the change in utility. We

therefore monetise the expected utility to its certainty equivalent. This is simply

done by inverting the CRRA-utility function and obtaining the according wealth.

We then express the certainty equivalents as a return on the initial investor fund

share X0(1� a),

1Investor wealth is simply the investor’s share of the terminal fund value XT subtracted man-

agerial remuneration.
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⇧
inv

=
(E[U ]

inv

(1� �) + 1)�(1��) �X0(1� a)

X0(1� a)
(3.2.3)

⇧
mng

=
(E[U ]

mng

(1� �) + 1)�(1��)

X0(1� a)
. (3.2.4)

Table 3.1 displays the three misalignment metrics presented above for the optimal

Merton flat and the ”base case”. We observe that there is a fairly large di↵erence in

certainty equivalents for the investor, indicating the adverse e↵ects of a misaligned

incentive contract. For the manager, we observe that the base case is clearly prefer-

able to the the Merton case.

Scenario E[�] ⇧
inv

⇧
mng

Merton flat 0 7.40% 2.72%

Base case 1.613 4.57% 3.09%

Table 3.1: Misalignment in ”base case”



4 Multi-period Evaluation

From the results in section 3 we observe the convex relationship between risk and

time to maturity, where risk seeking behaviour increases to extreme levels as the

evaluation period closes in.1 With a fund value slightly below HWM, the manager

will seize the opportunity to increase volatility and thereby his chances of ending

his option in the money. From a realistic point of view, modelling risk-taking with a

single evaluation period is clearly a crude simplification as it is very unlikely that the

manager does not su↵er any downside from poor results other than missing out on

short-term remuneration. First of all, hedge funds usually endure for more than one

evaluation period, forcing the manager to also consider the value of continuation.

The loss recovery structure of the HWM e↵ectively inflicts remuneration in periods

following subpar performance. Secondly, an underperforming manager would su↵er

social and professional costs, a↵ecting his track record and chances of raising capital

for future funds. In the following section we extend our model with regards to the

first remark mentioned above - including the value of continuation to the optimi-

sation process - and display the dampening e↵ects this implies. We also perform

a brief discussion of managerial myopia with the purpose of establishing a realistic

perceived value of future payouts.

4.1 Model Extensions

In order to incorporate multi-period evaluation, structural additions to the model

are required. We introduce a multi-period model based on the one introduced by

1Seeing the incentive option as an European call, this convexity translates to the option

’gamma’.
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Hodder and Jackwerth (2007).2 The greatest challenge is the path dependency

that occurs due to the HWM mechanism, with the expected value of continuation

depending on preceding fund performance. If the hedge fund finishes below the

HWM, the manager will begin the next period out of the money. The expected

utility will thus be negatively a↵ected as the loss has to be recovered before earning

the incentive fee (see figure 2.1). When finishing above the HWM, the subsequent

period is assigned a new HWM corresponding to the increased fund value. We will

shortly return to how this problem is solved.

The model incorporates P number of evaluation periods. We begin the multi-period

in the same way as before, starting at the terminal nodes in the last period P

and recursively moving backwards. Running period P is then similar to a single

period case, as there are no subsequent periods to account for. In principle, the

expected utility found at the beginning of period P , E[U0,n], will represent the value

of continuing from the preceding period P � 1, E[UCon

n

]. In order for the manager

to account for both periods in the decision process of P � 1, the terminal utility in

P � 1 is augmented by the value of continuation. Due to the concave property of

the utility function, the utilities cannot simply be added together. Thus we convert

the continuation value into wealth WCon

n

, and then add it to the terminal wealth of

period P � 1 before the sum is converted back to utility,

UP�1
n

=
(W

n

+WCon

n

)1�� � 1

1� �
. (4.1.1)

UP�1
n

then represents the augmented terminal utility of period P�1 for a given fund

value n. The process of augmenting the value of continuation to the preceding period

is repeated until reaching P = 0. There are, however, two complicating factors which

need to be taken into consideration. First, we have to factor in whether period P �1

finishes above or below HWM, as this will clearly a↵ect the value of continuing for

another period. Second, the value of continuation needs to be adjusted by a realistic

discount rate.

Finishing below HWM

When finishing period P � 1 at or below the HWM, the HWM remains at the

initial level. For the terminal nodes in P � 1 below HWM, the value of continua-

tion is conversely calculated using the expected utility of starting period P at the

2We refer to appendix A.5 for an explanation of why this approach is applied in favor of a

traditional dynamic programming approach
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corresponding fund value. This concept is illustrated in figure 4.1.

Figure 4.1: Continuation utilities

Finishing above HWM

When finishing period P � 1 above the HWM, the calculations are somewhat more

complex. Since the HWM is reset when finishing above benchmark, a naive pro-

cedure would be to simply apply the expected utility at HWM in period P as the

value of continuation, since this corresponds to the value of managing the fund for

another period (also illustrated in figure 4.1). However, this is an inaccurate ap-

proximation since finishing above HWM implies that the fund has been growing,

and the value of managing a larger fund is obviously more profitable. Instead, we

use the expected utility of starting period P at the HWM as a basis on which we

adjust for the increase in fund value.

In order to find the marginal utility of managing a larger fund, we estimate the

delta of the option-like contract, namely the percentage increase in the manager’s
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certainty equivalent given an increase in the assets under management.3 We do this

by iteratively running period P for initial fund values, and corresponding HWMs,

equal to the possible fund values above the original HWM. For each run the certainty

equivalent in the node located at the new HWM is reported as a multiple of the

original.

Figure 4.2 shows the resulting compounded change in the certainty equivalent in the

initial node given the di↵erent initial fund sizes.
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Figure 4.2: Percentage increase in certainty equivalent given fund size increase

We take use of these percentage changes to calculate the adjusted value of continuing

into period P above the HWM node H,

WCon

n

= WCon

H (1 +K
n

) if n > H (4.1.2)

where K is the percentage change between starting with the initial fund value and

a value of n nodes above.

3This delta corresponds to that of Agarwal et al. (2009). As explained in their paper, the

managerial option delta di↵ers somewhat from the theoretical definition of an option delta in that

it incorporates the delta of the manager’s co-investment and managerial fee in addition to the

option element of one or multiple contracts.
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Discounting future remuneration

We have now found approximates to the certainty equivalent of continuing to period

P for all possible ending states in period P � 1. As the continuation value is based

on wealth obtained one year ahead, we discount the certainty equivalent by a rate

R to obtain the present value. The discount rate R should reflect the time-value

of managerial remuneration and the uncertainty reflected in the fund. In addition,

the illiquid attribute of hedge funds, both in terms of their investment strategies

and lockup period on investor assets, suggests an additional illiquidity discount.4

As discount values for hedge funds are di�cult to obtain, we use the private equity

industry as a proxy as is shares many characteristics to the hedge fund industry, such

as compensation structure, lockup periods and risky investment strategies. Gompers

and Lerner (1999) apply a 20% discount rate on the incentive compensation when

evaluating venture capital firms. When surveying private equity firms, Gompers

et al. (2014) find the typical target on rate of return to be between 20 and 25%.

We apply a discount rate of 25% throughout the paper. This is considered as a

relatively high value, implying conservative estimates for the value of continuation.

A robustness analysis of discount rates is included in appendix A.4.

Auxiliary assumptions

The purpose of the multi-period model is to include the utility of future remuneration

in the process of deciding the optimal risk-allocation. With regards to the fund

process and managerial ownership, there is a slight distinction between whether the

managerial remuneration received in each period is deducted from the fund value

or reinvested. When reinvesting the remuneration, the managerial ownership share

will increase slightly for each evaluation period. For simplicity, we assume that

the manager remuneration is not reinvested, nor is the payment withdrawn from

the investors’ fund shares but rather conceptualised as an external payment. In

this way the managerial ownership share remains constant through all evaluation

periods, and we avoid having to adjust the total fund size for repeated payments.

4.2 E↵ect of Multiple Periods

When running our model with default parameters of 0% ownership and R = 20%

we find results presented in figure 4.3, displaying how the risk peaks decline for each

future period included. When analysing the results we are interested in the first

4Agarwal et al. (2009) notes a mean (median) lockup period of 0.8 (1.0) years.
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period (P = 1), where the manager has the number of included periods in front

of him. Table 4.1 synthesises these results by displaying the incurred reduction in

misalignment from the base case in section 3. To assure the results of including

di↵erent number of periods are comparable, we compute the manager and investor

certainty equivalent for the first period only, and not as an aggregate of all future

periods. The certainty equivalent can thus be interpreted as the expected periodical

return.
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Figure 4.3: Option ridges, 1-10 periods

As can be seen from figure 4.3 and 4.4, accounting for the value of continuation

clearly has a dampening e↵ect on risk-taking. Comparing figure 4.4 to figure 3.2 we

see that most of the excessive risk-taking is removed, and that the last minute bet is

almost completely removed. Similarly, the lock-in e↵ect is less apparent. However,

since the HWM is reset for fund values above the current HWM and not for those

below, multi-period evaluation predominantly dampens the last minute bet. This

because potential losses would have to be recovered in subsequent periods.

With prolonged optimisation horizon the convexity of the incentive option decreases.

This is also true for options that are either substantially in our out of the money.

Consequently, as Hodder and Jackwerth (2007) notes, options maturing in future

years will have current managerial behaviour e↵ects roughly analogous to additional

ownership share, dampening risk in previous periods. Figure 4.3 shows that for

the first added periods, the risk-peaks are considerably lowered before the pattern
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Figure 4.4: Multi period modelling, 10 periods

converges, in this case after including a number of 10 evaluation periods.5 However,

the convergence rate and risk-level in the first period depends on the assigned value

of future periods, in part determined by R.

It is evident from table 4.1 that as risk-misalignment decreases, the investor experi-

ences a gain in certainty equivalents at the expense of the manager.

Scenario E[�] ⇧
inv

⇧
mng

Merton flat 0 7.40% 2.72%

Base case 1.6132 4.57% 3.09%

2 periods 1.3826 5.40% 3.05%

5 periods 1.1086 6.19% 2.95%

10 periods 0.9747 6.51% 2.89%

Table 4.1: Misalignment in multi-period evaluation

5Adding further periods therefore has insignificant e↵ect.
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4.3 Considering Myopia

The realism of considering multiple evaluation periods is subject to managerial my-

opia. Myopically optimising managers will disregard the value of continuation, in

our case analogous to the short-term single-period case presented in section 3. The

opposite view is the perpetual approach applied by Panageas and Westerfield (2009)

and Guasoni and Ob lój (2013). With an infinite optimisation horizon the ’gamma’

of the incentive option diminishes, resulting in constant risk-taking. These two

opposing approaches each form the extremity of how a manager’s view of future

remuneration can be modelled. However, they both seem rather unrealistic, sug-

gesting a middle ground is to be found. An example of this is Goetzmann et al.’s

(2003) valuation of the incentive option who, for what they regard as reasonable

parameters, find that the present value of future fees for the manager could be as

high as 33% of the amount invested. Hodder and Jackwerth (2007) also suggest

that the manager is likely to consider the value of continuation, but that it takes

a horizon of decades for the risk-taking to approach the constant risky allocation,

indicating the unlikeliness of a perpetual approach.

Turning to the academic research of myopic behaviour in general, the results are

quite di↵erent from how short term behaviour is displayed in hedge fund literature.

Benartzi and Thaler (1993); Thaler et al. (1997); Gneezy and Potters (1997) among

others investigate how myopia is linked to loss-aversion, where frequent portfolio

evaluation leads to less risk-taking due to a greater sensitivity to losses. In other

words, longer time perspective actually makes risk seem more attractive. We ac-

knowledge that there is a gap between the studies of behavioural economics and

cognitive bias towards risk, and our more rational framework of utility maximisa-

tion. The ambition of this paper is not to bridge every aspect of risk-taking, but

we conclude this brief discussion with the caveat that the multi-period framework

not necessarily portrays a complete picture of human preference towards long-term

wealth.



5 Multiple Incentive Contracts

We now turn to the main contribution of our paper - modelling a fund comprised

by multiple incentive contracts. All previous research on incentive option modelling

(Asheim, 2014; Hodder and Jackwerth, 2007; Goetzmann et al., 2003; Carpenter,

2000) model a fund as if it consisted of one investor, implying that the incentive

fee is a single option with one HWM and termination date. This is a simplify-

ing measure where the benchmark is conceptualised as an aggregate of all investor

benchmarks. In terms of building a comprehensible and feasible model, this is a

natural simplification to make. However, we believe it may be overly simplistic

as potentially important aspects of the contractual scheme could be overlooked, as

well as a single option could exaggerate pay-performance sensitivity and the level

of induced risk-taking. Agarwal et al. (2009) present a similar argument in their

empirical study of the incentive fee’s ability to predict performance, stating that fee

rate not fully captures managerial sensitivity to fund movements. This because two

hedge fund managers with equal incentive fee rates may experience di↵erent incen-

tives depending on the timing and magnitude of investors’ capital flows and other

contractual features. Agarwal et al. is the first to account for these properties when

studying hedge funds empirically. To our knowledge, these innovations have not

been incorporated in any previous numerical approach, hence the following results

will provide new insight.

5.1 Model Extensions

We extend our model with the purpose of capturing the characteristics of a fund

containing what we denote as multiple ”pools” of investments. According to Lemke

(2004), hedge funds often allow for additions or withdrawals by their investors on

a monthly or quarterly basis. At each possible entry point, several investors may

enter the fund, collectively making up an investment pool and a new incentive option

32
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maturing one evaluation period later. This implies that managerial remuneration

now is subject to a more diversified composition of overlapping incentive contracts,

resembling a portfolio of call options with individual strike prices. This increases the

complexity of the utility optimisation procedure as each investment pool will have

di↵erent HWMs depending on the fund value upon entrance, as well as di↵erent

maturity dates. We model each setup as a steady-state situation with no inflow

or outflow of net capital. Figure 5.1 depicts the mechanisms of multiple HWMs in

greater detail.

Figure 5.1: The dynamics of a high-water mark for two investment pools

The addition of multiple investment pools is incorporated in the model by running

a number of parallel processes given by the number of investment pools I. Each

process follows an equivalent procedure as with a single investment pool, beginning

at the terminal nodes working backwards. The remuneration wealth obtained from

managing the fund share of investment pool i is modelled redefining equation 2.2.7,

W
i,n

= aw
i

X
Ti,n + b(1� a)w

i

X
Ti,n + c(1� a)max(0, w

i

X
Ti,n � w

i

HWM
i

), (5.1.1)
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where w
i

is the fund share of pool i andX
Ti,n is the value of the fund at the respective

remuneration date. The model combines the remuneration of the current period and

the value of continuation in accordance with the multi-period perspective developed

in the previous section,

U
i,n

=
(W

i,n

+WCon

i,n

)1�� � 1

1� �
. (5.1.2)

With the notion that the manager chooses one overall risk level for the entire fund,

the optimal  is found considering the utility derived from managing all investment

pools. For a given kappa, we first calculate the expected utility of each investment

pool,

E [U
i,,t,n

] =
20X

j=�20

p
,j

E(U
i,t+�t,n+j

), (5.1.3)

but in order to sum the expected utilities they have to be converted to certainty

equivalents,

WCeq

i,,t,n

= (E[U
i,,t,n

](1� �) + 1)
1

1�� . (5.1.4)

Finally, for a given time and fund state, the optimal kappa is the one which maxi-

mizes the utility of the summed certainty equivalents,

E [U
,t,n

] =

⇣P
i2I W

Ceq

i,,t,n

⌘1��

� 1

1� �
. (5.1.5)

In the specific case of one single investment pool, we observe that the model reduces

to the base case, where there is only one maturity and HWM to account for.

As the model moves backward in the node network, a matrix containing the opti-

mal -choices is incrementally being built. The expected utility derived from each

individual investment pool is assigned to separate matrices, to be used in the pre-

ceding step (t� �t). Figure 5.2 depicts the modelling of the multiple investors and

incorporation of continuation utilities.
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Figure 5.2: Multiple investors with overlapping evaluation periods

As for ⇧
inv

and ⇧
mng

we calculate these values based on the investment pool that

matures at the last time-step of the period, with HWM corresponding to initial fund

value. Since the certainty equivalents are expressed relative to the given investor’s

fund share, the results are comparable across di↵erent setups.

5.2 E↵ect of Di↵erent Maturities

In the following subsections we investigate the e↵ects of di↵erent fund compositions.

We begin by introducing a fund where the investment pools have entered the fund

at di↵erent points in time but with equal HWMs and fund shares, resulting in a

strip of overlapping incentive contracts along the time-axis. Figure 5.3 implements

these characteristics, displaying the results of including two investment pools in a

single period perspective.
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Figure 5.3: Two contracts, di↵erent maturities, single period

Adding an investment pool clearly has a dampening e↵ect on the risk-taking, as the

first peak is significantly reduced compared to the last. This shows the manager’s

tendency to even out the risk when investment pools of di↵erent termination overlap.

The extreme risk-seeking behaviour close to maturity of one contract is o↵set by

contracts further from maturity. This reluctance to compromise the prospects of

future earnings is analogous to the e↵ect of multiple evaluation periods seen in

section 4. Table 5.1 shows the improvements in our misalignment measures when

including di↵erent number of investment pools. The results from the base case is

also included as a reference. As opposed to figure 5.3, where we for illustration

purposes display the e↵ects in a single period perspective, table 5.1 utilises the

converged setup of 10 evaluation periods. The numbers for the one-pool scenario

thus corresponds to the ten-period scenario in table 4.1. As found in table 5.1 the

risk misalignment decreases as investment pools are added. We do however observe

that reductions are slight due to the dampening e↵ects already inherent from the

multi-period extension. Unless otherwise is stated, further results from setups with

multiple investment pools include 10 evaluation periods.
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Scenario E[�] ⇧
inv

⇧
mng

Merton flat 0 7.40% 2.72%

Base case 1.6132 4.57% 3.09%

1 pool 0.9747 6.51% 2.89%

2 pools 0.9666 6.53% 2.87%

4 pools 0.9598 6.55% 2.87%

6 pools 0.9595 6.55% 2.87%

Table 5.1: Misalignment, multiple contracts, 10 periods

5.3 E↵ect of Di↵erent Investment Pool Sizes

In the case above, the pools were of equal size and evenly distributed, but the sizes of

the investment pools will most likely di↵er. For the manager this will naturally mean

that large options are assigned greater weight when deciding the risk-allocation. The

interesting question is therefore how investors, and predominantly the smaller ones,

could be adversely a↵ected by the presence of larger investors.
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Figure 5.4: Two contracts, di↵erent maturities, di↵erent pool sizes, single period
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Creating a scenario where an investor with 10% share enters the fund half a period

after the remaining 90%, then illustrates the potential increase in misalignment for

smaller investors. Figure 5.4 shows the first peak has increased from that of figure

5.3 since 90% of the fund matures at this date. Calculating the loss in certainty

equivalents for the small investor, we find that in a single period case the 10%

investor loses 0.15 percentage points as opposed to a 50/50 case. In other words,

although the overall risk-peaks are lowered with multiple pools, the misalignment

is unevenly distributed amongst the investors depending on fluctuations in size.

Our 10/90% scenario is admittedly an unlikely and artificial construct, but it still

shows that the overall dampening e↵ect of multiple contracts involves some degree

of ambiguity.

5.4 E↵ect of Di↵erent HWMs

So far, we have only looked at contractual variations along the time-axis, keeping

the HWMs equal in order to isolate the e↵ects. We now let the investment pools

enter at di↵erent points in time in a fund that either increases or decreases in fund

value, implying a strip of incentive contracts with di↵erent HWMs.
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Figure 5.5: Four contracts, di↵erent maturities, increasing HWMs, single period
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Figure 5.6: Four contracts, di↵erent maturities, decreasing HWMs, single period

We see from figure 5.5 and 5.6 that spread out HWMs will decrease the risk peaks and

distribute risk more evenly across the fund value-axis. The diversity in moneyness

for the di↵erent options counteracts the convexity of the option ridge for each single

option, making the overall risk-taking less sensitive to fund size. This is true for both

consecutive increasing and decreasing HWMs. For illustration purposes the graphs

display the inclusion of four investment pools. As six investment pools yields slightly

better results, these are presented in table 5.2. Table 5.3 contains information on

the specific level of each HWM, indicating fund size upon entry.

An increasing HWM structure is a potential consequence of a fund in a persisting

positive trend, a situation that is not unlikely. From table 5.2 we see that the

resulting risk-misalignment for this situation is worse than for the constant and

decreasing HWM scenarios. The manager is deep in the money for most of the

option contracts and therefore prefers to lock in the profit, rather than risk losing

the profit or in worst case su↵er fund liquidation. Even though the fund has been

on a positive trend, the investment pools will still retract their money if the fund

drops 50% from the initial fund value of the current period. As earlier mentioned the

lock-in area may a↵ect the risk-misalignment to a great extent, as the risk is reduced

to a level much lower than the optimal Merton level. With increasing HWMs the

presence of the lock-in area is increased.
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In our decreasing HWM scenario the manager is deep out of the money for most

of the option contracts, which results in a relatively low expected remuneration

from the incentive fees. In our model, the risk of fund liquidation is not increased

compared to the two other situations as the liquidation boundary is absolute and

all HWMs are above the initial fund value of the current period. When the e↵ect of

the option element diminishes and the probability of liquidation is low, the manager

tends to adjust the risk to a level close to the Merton constant. These considerations

results in the relatively low expected kappa-di↵erence and high investor certainty

equivalent for the decreasing HWMs scenario.

Scenario E[�] ⇧
inv

⇧
mng

Merton flat 0 7.40% 2.72%

Base case 1.6132 4.57% 3.09%

6 pools, 10 periods, constant HWMs 0.9595 6.55% 2.87%

6 pools, 10 periods, decreasing HWMs 0.4135 7.21% 2.78%

6 pools, 10 periods increasing HWMs 1.1688 6.20% 2.78%

Table 5.2: Misalignment, multiple contracts across HWMs

Maturity 1st 2nd 3rd 4th 5th 6th

Decreasing HWM 1.72 1.55 1.40 1.26 1.14 1.03

Increasing HWM 0.59 0.66 0.73 0.82 0.92 1.03

Table 5.3: Decreasing and increasing HWMs

In these examples we have simply introduced new contracts at specific points in

time at HWMs of our own choosing. This approach is somewhat unsophisticated

in that we merely state arbitrary fund values for where the new contracts enter the

fund, and evaluate the setup in a steady-state perspective. Calculating the overall

value of a diverse fund composition proves to be very complex since the composition

continuously changes depending on the flow of investors and a fluctuating fund value.

However, we believe the results are still powerful in that we are able to display the

direct implications of a contractual scheme where investors are assigned di↵erent

HWMs and maturities.
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5.5 Considerations and Common Practice

While we incorporate the above additions under the assumption that it provides

valuable insight, we do not present any empirical evidence that hedge fund man-

agers actually operate by issuing separate contracts. We merely view the situation

from a technical perspective and base our assumptions upon how overlapping in-

centive contracts should be treated mathematically. Agarwal et al.’s (2009) work

strongly supports our notion of capital flows and individually assigned incentive con-

tracts, approaching the problem in a similar fashion. Brown and Goetzmann (2001)

however, asks the same question but argues that investors entering midyear after

a loss for the first half will apply previous year’s high-water mark. They correctly

acknowledge that this will benefit the midyear investor at the expense of current

investors, and note that this imbalance can be reduced by the use of ”equalising

shares”. Whether practitioners apply individual contracts or a rely on pragmatic

simplifications, will probably vary between funds and depend on how often investors

are allowed to enter the fund and redeem their investments � Arguably, the issue

could be avoided by only raising and redeeming capital at predetermined dates,

thereby issuing identical contracts on all capital.

Regardless of common practice, our results are still valid in that they illustrate the

investor benefits of issuing separate incentive contracts. The main attribute of a

diverse incentive option portfolio is its innate dampening e↵ect on risk fluctuations.

Secondly, individual contracts will increase the predictability of incurred fees, as

opposed to the less sophisticated procedure described above where some investors

could experience adverse treatment. Thirdly, it facilitates a more flexible capital

flow, removing the contractual constraint of raising and redeeming capital at specific

dates.1 These considerations with the support of the above results, therefore suggests

that practitioners as well as academics should not be indi↵erent to how individual

incentive contracts are constructed. For investors specifically, the advantage of being

in a fund comprised of diverse contracts is apparent.

1Investors could, however, still be prone to lock-up periods as a result of illiquid fund positions.



6 Evaluating Contractual Param-

eters

In the previous sections we have focused on how the implementation of diverse fund

composition and multi-period evaluation a↵ects risk-taking, keeping all other fund

parameters constant.1 In previous literature, however, much attention has been

devoted to the adverse e↵ect of fee size and the application of ownership share as

the main tool for mitigating misalignment. It is therefore interesting to evaluate

these parameters within the confines of our model. Specifically, we analyse the sen-

sitivity of misalignment to these parameters for di↵erent model setups. We believe

this exercise will provide further validation of our findings in that we will observe

less sensitivity to changes in fee and ownership structure due to the risk aligning

characteristics included in the model.

6.1 Sensitivity to Remuneration Structure

In the framework of our new extensions, we would like to find to what degree changes

in the di↵erent rates a↵ect the contractual misalignment. Carpenter (2000), Asheim

(2014) and Kouwenberg and Ziemba (2007) preform similar analyses of how the

overall risk profile evolves as a function of incentive fee size. As discussed in section

2.3 this is due to the application of di↵erent utility functions. For a manager with

loss-aversion, Asheim and Kouwenberg and Ziemba finds that increased incentive

fee increases the total volatility in the fund. Carpenter finds the opposite for a

manager with HARA-utility. However, what direction the overall risk level moves

is in itself not very informative, as it does not necessarily correlate with the change

in misalignment. Rather, the move in risk should be considered relative to the

1Incentive fee = 20%, managerial fee = 2%, ownership share = 0%.
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Figure 6.1: Sensitivity to incentive fee size for di↵erent setups

optimal Merton constant. Since the risk level for HARA and, in our case, CRRA-

utility often lies beneath the optimal, an increase in risk could therefore imply a

decrease in misalignment. We therefore rely on our previously developed metric of

expected kappa-di↵erence and find that although specific risk levels may move in

di↵erent directions from that displayed in a loss-averse context, the misalignment is

always reduced when lowering the incentive fee. This is consistent with Asheim and

Kouwenberg and Ziemba.

In figure 6.1 we show how the expected kappa-di↵erence is positively correlated

with incentive fee size, and how the sensitivity changes depending on the model.

We observe that for model scenarios that already are inherently less misaligned, the

sensitivity towards movements in incentive fee is less. This is not surprising, being

that the incentive fee is the chief cause of misalignment, however it shows that

our previous results are robust across fee structure. This analysis also confirms the

notion of Agarwal et al. (2009) that the mere size of the incentive fee is an incomplete

measure of manager pay-performance sensitivity, and thereby his applied risk-taking.

The management fee is less controversial than the incentive fee, being that it does not

have an option-like structure and therefore should not be a cause of misalignment.

In fact, Asheim (2014) shows how the management fee has an innate dampening

e↵ect. This is because the payo↵ is linearly dependent on the total fund size and

therefore also exposes the manager to losses. Figure 6.2 shows this very clearly.



44

0 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 4.5% 5.0%
0

0.5

1

1.5

2

2.5

3

Management Fee

E
xp

ec
te
d
K
ap

pa
D
i↵
er
en
ce

1 pool, 1 period
1 pool, 5 periods
1 pool, 10 periods
6 pools, 10 periods
6 pools, 10 period, decreasing HWMs
6 pools, 10 period, increasing HWMs

Figure 6.2: Sensitivity to management fee size for di↵erent setups

Not only does increased management fee reduce misalignment, the fee itself is an

essential component in order to reap the benefits of multiple periods and incentive

contracts. We observe that the sensitivity towards management fee is highest for

values below 1%, and that multiple evaluation periods boosts the e↵ect of the fee

since it is also included in the value of continuation.

6.2 Sensitivity to Managerial Ownership

Until this point we have kept the managerial ownership a equal to zero in order to

isolate other dampening e↵ects. In this section we discuss the e↵ects of managerial

ownership in light of our di↵erent model extensions. The subject of managerial

ownership in hedge funds is thoroughly discussed in existing literature and often

considered a vital part of the contractual agreement.2 Kouwenberg and Ziemba

(2007) finds that with a an ownership share of 30% and above the manager acts

very similar to the case of 100% ownership, and with 10% and less the adverse

e↵ects of the incentive fee becomes the dominant factor. Asheim (2014) confirms,

2Hodder and Jackwerth (2007) propose that a ownership of 10% or more is plausible for medium

sized hedge funds. But for large hedge fund, holding assets of billion of dollars, the managerial

ownership would likely be smaller, but still non-trivial.
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in his single period model, managerial ownership to be a strong risk alignment tool,

and that the e↵ect is immediately significant at 3% ownership and above. However

Asheim also notes that the significance of the managerial ownership is decreasing

with longer horizons.
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Figure 6.3: Sensitivity to ownership share for di↵erent setups

Figure 6.3 displays the expected kappa-di↵erence sensitivity to ownership share for

di↵erent scenarios. For the single period, single investor case the risk aligning impact

of the managerial ownership is clearly evident. In line with Kouwenberg and Ziemba

(2007), we find that with 30% ownership and above the manager acts closely to the

case of 100% ownership. What is very interesting is how the impact of the managerial

ownership decreases as other risk aligning characteristics are introduced, which is

opposite from what we observed with the management fee. There are two reasons for

this. First and foremost, as we include more periods the managerial remuneration

represents a relatively larger part of his future expected wealth. Secondly, the wealth

the manager derives from his own co-investment in the fund is in our multiple period

model set as a payout in the very last period of evaluation. In our opinion this is a

realistic assumption as the manager will have to lock up his own investment for the

lifetime of the fund. As we discount the utility of continuation for each period with

a discount rate of 25%, the impact of the managerial ownership diminishes as more

periods are included to the evaluation. Appendix A.4 includes a sensitivity table

for discount rates in a setup with 10% ownership share. This table shows that our
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results are fairly robust within the realistic span of 15% to 25% discount rate.

6.3 Sensitivity to Hurdle Rate

To our knowledge, the e↵ect of increasing the hurdle rate as a means to relieve mis-

alignment has not been thoroughly analysed in previous numerical research. Since

the hurdle rate defines the strike level of the incentive fee relative to the initial fund

value, an increase will directly reduce the value of the option-like contract. It may

therefore seem redundant to investigate the misalignment sensitivity to a hurdle

rate increase as it in essence is analogous to lowering the incentive fee. However,

considering the prevalence of the incentive fee as industry standard, proposing a

higher hurdle rate could prove more feasible in reality. This is also a compelling

argument because it would favour superior managers, increasingly enabling them to

signal their abilities.
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Figure 6.4: Sensitivity to hurdle rate for di↵erent setups

Figure 6.4 displays a brief analysis of adjusting the hurdle rate as a multiple of the

risk-free rate. We observe a parallel shift in the sensitivity curves when increasing

the number of periods, indicating that the benefit of increasing the hurdle rate is

constant in absolute terms regardless of evaluation periods. On a general basis the
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increase in hurdle rate reduces the expected kappa-di↵erence, as the e↵ect of the

incentive fee diminishes as options move out of the money. For the setup with

overlapping incentive contracts, the sensitivity to the hurdle rate is generally lower.

Since dividing the fund into multiple contracts reduces managerial sensitivity to

the aggregated contractual scheme, changing the character of each contract has less

e↵ect than for a single-investor setup. For the setup with increasing HWMs, the

hurdle rate increase has insignificant impact as the manager is deep in the money

for most of the options. The risk aligning e↵ect from the hurdle rate increase on the

highest HWM is o↵set by the lower HWMs moving closer to the current fund value,

leaving the manager less in the money for these options.

Tabular results, including changes in certainty equivalents, for all sensitivity assess-

ments in section 6 are included in the appendix A.3.



7 Cost of Contractual Ine�ciency

Throughout the paper we have shown how di↵erent fund structures a↵ect the investor-

manager risk misalignment and consequently their expected payo↵. Clearly, there

are ways to model both extreme and more moderate scenarios of adverse risk-

allocations, but the solution to the problem is not yet apparent. So far, our re-

sults clearly indicate that the investor will to some extent su↵er from contractual

ine�ciency unless the option-like structure of the contract is removed altogether.

The question is either whether these ine�ciencies can be justified by superior fund

performance or if the contract can be modified in a way that benefits both investor

and manager. We investigate the latter by synthesising our previous results and

displaying how wealth is transferred between manager and investor.

7.1 Transferring Wealth from Manager to Investor

In section 4 we found that increasing the number of evaluation periods reduces risk-

misalignment. As a consequence, increasing evaluation periods can also be used as

a proxy for evaluating the e↵ect of increased alignment on manager and investor

expected payo↵, without creating noise by altering contractual parameters.

Figure 7.1 has two key takeaways: First, when solely decreasing misalignment with-

out changing anything else, the investor benefits at the manager’s expense. Second,

the marginal benefit for the investor is much greater than the marginal loss for the

manager, implying a reduction in deadweight loss in the contract. We see both ⇧
inv

and ⇧
mng

converge towards their respective earnings ⇧⇤
inv

and ⇧⇤
mng

given that the

manager chooses the Merton constant in every evaluation decision.

We define the di↵erence between ⇧
inv

and ⇧⇤
inv

as the contractual ine�ciency,
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Figure 7.1: Risk misalignement e↵ects on investor and manager certainty equivalents

�⇧
inv

= ⇧
inv

� ⇧⇤
inv

, (7.1.1)

where �⇧
inv

then indicates what the contract costs and how much excess return

the manager would be expected to generate in order to justify his fee structure.

The investor then simply accepts that the contract is flawed and bets on superior

manager skill. Table 7.1 summarises the contractual ine�ciency for the di↵erent

scenarios.1 Naturally, the most costly scenarios are those that are most misaligned.

Scenario �⇧
inv

1 pool, 1 period -2.82 %

1 pool, 5 periods -1.21 %

1 pool, 10 periods -0.89 %

6 pools, 10 periods -0.85 %

6 pools, 10 periods, decreasing HWM -0.19 %

6 pools, 10 periods, increasing HWM -1.19 %

Table 7.1: Cost of contractual ine�ciencies

1With the standard setup of 20% incentive fee, 2% management fee and zero managerial own-

ership.



50

7.2 Searching for the Optimal Contract

As can be seen from previous results, a reduction in misalignment by itself solely

benefits the investor. The reason for this is twofold: Firstly, reduced misalignment

by default means that the solution moves from managerial optimum in the base

case and towards investor optimum of Merton. Secondly, so far this reduction in

misalignment has not been induced by anything that directly benefits the manager,

such as for instance increase in management fee. This raises the question of whether

there exists a setup where both manager and investor are better o↵.

As argued by Asheim (2014), the trivial solution to the misalignment problem is

to remove the incentive fee option completely, however as he mentions, the fee has

become an industry standard. Increasing management fee or managerial ownership

in the fund is therefore perhaps a more realistic approach. In section 6.2 we show

that by including more evaluation periods and investment pools, the risk aligning

e↵ect of the managerial ownership quickly diminishes, hence indicating that this

measure is possibly not as e↵ective as previous literature has suggested. This leaves

us with the option of changing the managerial remuneration contract in order to

counteract and optimise the investor-manager risk misalignment.

When looking at an increasing management fee as depicted in figure 7.2, we find that

in the lowest regions of management fee, the certainty equivalents of the investor

increase with increasing fees. The reason for this is the improved risk-alignment the

fee produces. At a certain point, the increase turns net negative for the investor as

the fee represents a larger marginal cost than the gain from increased alignment.

For the incentive fee (figure 7.3), we find certainty equivalents to be monotonically

decreasing for the investor as incentive fees increase - not only is the incentive fee

expensive, it paradoxically also induces adverse performance.
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Figure 7.3: Certainty equivalents of investor by change in incentive fee

From observing 7.2 and 7.3, we see that the 2/20 structure cannot be optimal for the

investor. Lowering both management fee and incentive fee could potentially increase

investor’s earnings, but would simultaneously produce a remuneration structure no

manager would be willing to accept. Instead we search for a contract that keeps

the managers certainty equivalents at the same level or higher, making the manager

theoretically indi↵erent to the new structure while still benefiting the investor.
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Incentive Fee

0 % 5 % 10 % 15 % 20 % 25 % 30 %

0.0 % ⇧
inv

11.50 % 4.47 % 3.91 % 3.61 % 3.41 % 3.24 % 3.13 %

⇧
mng

0.00 % 0.02 % 0.02 % 0.02 % 0.02 % 0.02 % 0.02 %

0.5 % ⇧
inv

10.95 % 9.54 % 8.26 % 7.30 % 6.54 % 5.91 % 5.38 %

⇧
mng

0.56 % 0.72 % 0.77 % 0.81 % 0.84 % 0.86 % 0.87 %

1.0 % ⇧
inv

10.39 % 9.53 % 8.55 % 7.68 % 6.92 % 6.25 % 5.66 %

⇧
mng

1.12 % 1.34 % 1.44 % 1.50 % 1.55 % 1.59 % 1.62 %

1.5 % ⇧
inv

9.84 % 9.15 % 8.33 % 7.55 % 6.83 % 6.16 % 5.56 %

⇧
mng

1.67 % 1.93 % 2.06 % 2.15 % 2.22 % 2.28 % 2.32 %

2.0 % ⇧
inv

9.28 % 8.68 % 7.96 % 7.23 % 6.55 % 5.90 % 5.29 %

⇧
mng

2.23 % 2.52 % 2.67 % 2.78 % 2.87 % 2.94 % 3.00 %

M
an

ag
em

en
t
F
ee 2.5 % ⇧

inv

8.72 % 8.17 % 7.50 % 6.83 % 6.17 % 5.53 % 4.93 %

⇧
mng

2.79 % 3.09 % 3.27 % 3.40 % 3.50 % 3.59 % 3.66 %

3.0 % ⇧
inv

8.16 % 7.64 % 7.02 % 6.38 % 5.74 % 5.12 % 4.52 %

⇧
mng

3.35 % 3.66 % 3.86 % 4.01 % 4.13 % 4.22 % 4.31 %

3.5 % ⇧
inv

7.61 % 7.10 % 6.51 % 5.89 % 5.27 % 4.66 % 4.07 %

⇧
mng

3.90 % 4.23 % 4.45 % 4.61 % 4.74 % 4.85 % 4.94 %

4.0 % ⇧
inv

7.05 % 6.55 % 5.98 % 5.39 % 4.78 % 4.18 % 3.59 %

⇧
mng

4.46 % 4.80 % 5.03 % 5.20 % 5.35 % 5.47 % 5.57 %

4.5 % ⇧
inv

6.49 % 6.00 % 5.45 % 4.87 % 4.28 % 3.69 % 3.10 %

⇧
mng

5.02 % 5.37 % 5.61 % 5.79 % 5.95 % 6.08 % 6.19 %

5.0 % ⇧
inv

5.93 % 5.45 % 4.91 % 4.34 % 3.76 % 3.18 % 2.60 %

⇧
mng

5.58 % 5.93 % 6.18 % 6.38 % 6.54 % 6.68 % 6.80 %

Optimal contract Better or indi↵erent for both investor and manager Standard contract

Table 7.2: Certainty equivalents for investor and manager for di↵erent remuneration

structure.

As can be found in table 7.2, we discover an optimal solution for the investor in

the area between 2.5% to 3% management fee and 0% incentive fee, or in the area

between 0% and 5% incentive fee and 2.5% management fee. Moving towards such

a fee structure could in fact increase investor payo↵ with 2 percentage points in

certainty equivalents. This solution surpasses that of the previous Merton optimum

due to a significant lower fee payment. As mentioned, removing or dramatically re-

ducing the incentive fee is perhaps an unrealistic solution. However from our results

above, we find that even a moderate decrease to 15% incentive fee compensated

by an increase to 2.5% management fee leaves both investor and manager with a

larger return. Although the absolute values of these results are subject to numerous
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assumptions, we believe the pattern displayed from this analysis is powerful, sug-

gesting that a contract solely based on management fee could remove contractual

ine�ciency and still benefit both parties.

It should however be emphasised that our model does not incorporate possible ad-

verse side e↵ects of reducing the incentive fee. Given that the fee somehow directly

induced improved decision-making through increased manager motivation etc., this

is not captured by our model. Furthermore, di�culties may arise for managers

to su�ciently signal their skills if reducing incentive fees. Investors could perceive

funds with lower incentive fees than the industry standard as a sign of inferiority.

An alternative might be to simultaneously signal superior performance by increasing

the hurdle rate, as mentioned in section 6.3.



8 Concluding Remarks

Our work should be viewed as an extension of the previous hedge fund literature

that aspires to realistically model a manager’s behaviour when compensated by a

loss-provision incentive contract. The quantitative results are best understood as

a measure of misalignment between the investor’s optimal risk allocation, and the

solution the manager chooses on investor’s behalf. This misalignment could there-

fore be interpreted as the total cost of the contract, including cost of fees and the

indirect alternative cost of adverse decision making. Furthermore, since this mis-

alignment is obtained numerically, it is naturally dependent on a range of parameters

and assumed contractual features. By constructing di↵erent scenarios, we illustrate

and quantify how several realistic model extensions contribute in dampening the

fluctuating risk-taking.

Although we do not suggest that previous research’s concern of adverse risk-taking

is unwarranted, our results imply that they may be somewhat exaggerated. We do

admittedly confirm that there is a strong potential for adverse risk-misalignment

inherent in the option-like compensation structure. However, by including a fairly

uncontroversial number of five continuation periods at a relatively high discount rate

of 25%, the misalignment in terms of certainty equivalents is more than halved. Con-

sequently, there exists many ways to realistically reduce the displayed misalignment

just by improving the model.

In this respect, we discover that the fund composition is highly relevant, and that

diverse incentive contracts have an o↵setting e↵ect on each other, dampening the

overall variations in risk. The implications of this is twofold: Firstly, viewing man-

agerial pay-performance sensitivity to one single incentive option should be con-

sidered by academia as an oversimplification. Secondly, the benefits of assigning

individual contracts, with maturities and benchmarks depending upon entry point,

should be recognised by practitioners. Successfully incorporating a diverse portfolio

of incentive options has the potential to relieve agency problems while still entitling

54
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the manager to a share of the profits. Investors should therefore not be indi↵erent

to how they could benefit from each others presence, given that the fund issues sep-

arate contracts. We believe these results represent a solid foundation upon which

future research should be conducted.

In a broader perspective it is clear that issuing options in order to increase perfor-

mance comes at a price. Not only are they costly in that they directly redistributes

wealth from investor to the manager, we also find potentially large incurred costs of

the investor-manager risk misalignment. Put bluntly, the investor could end up pay-

ing extra for adverse performance. Previous literature highlights ownership share as

an e↵ective countermeasure, however we find its impact to diminish when account-

ing for long-term remuneration. Little suggests that the ine�ciencies of the contract

can be fully eradicated without completely removing the unsymmetrical incentive

compensation. One would assume that doing so would seriously inflict managerial

payo↵, but in our model we find a potential for a Pareto improvement, where both

manager and investor benefit from reduced misalignment. The reason for this is

that when increasing contractual alignment, the marginal benefit for the investor

is greater than the marginal loss of the manager, leaving a total surplus. By then

increasing the management fee, some of the investor’s gain is used to compensate

for the manager’s loss in incentive fee.

It should be noted that since our framework is very simplified with regards to man-

agerial decision variables, our model may overlook positive implications of issuing

greater incentives on performance. It could be argued that the incentive fee for

instance induces motivation or attracts more skillful managers, resulting in higher

expected returns - an e↵ect not captured in our model. Therefore, although re-

moving the fee has a profound positive e↵ect in our model, there may exist adverse

implications that is not covered by our framework. On the other hand, the con-

ventional contract structure in the industry seems to rely more on industry habit

and good faith rather than being solely based on scientific research. Goetzmann

et al. (2003) even notes that the prevalence of the incentive contract might just be

an accident of history, and that investing with a hedge fund manager would only

appear to be rational given a large, positive risk-adjusted return. It therefore seems

that a well performing manager is simply entitled to charge a large incentive fee,

and that it is not the fee itself that makes him perform well.

Future research should in our opinion continue to challenge the status quo of hedge

fund contracts, and in a broader perspective investigate whether option-like incen-

tives really is an e↵ective tool for relieving agency problems. More specifically, we
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suggest three extensions that could elevate the understanding of the field. First, we

believe our investigation on fund composition shows great potential, and that fu-

ture research should empirically study how contracts are issued and the implication

on performance. This topic should also be further explored numerically, possibly

with the purpose of thoroughly valuating the benefits of diverse incentive contracts.

Second, the subject of utility maximisation for both investor and manager has only

been superficially discussed in this paper. Preference to risk and possible di↵erences

between managers and investors are factors that could alter the results. Finally,

further studies should consider whether there exists relevant decision variables or

indirect parameters other than applied risk, that are sensitive to performance based

incentives. This would provide further insight to whether option-like contracts also

could portray aligning characteristics, or if they are in fact inherently unsuited in

relieving agency problems.



A Appendix

A.1 Notation

Table A.1: Notation

N - Set of nodes

I - Set of investment pools

T - Set of evaluations in evaluation period

n 2 N - Node n

i 2 I - Investment pool i

t 2 T - Time t

X
t,n

- Fund value at time t and node n

W
i,n

- Terminal manager wealth in node n relating to investment pool i

U
i,n

- Terminal manager utility in node n relating to investment pool i

WCon

i,n

- Continuation wealth in node n relating to investment pool i

WCeq

i,n

- Certainty equivalent in node n relating to investment pool i

⇧ - Certainty equivalent as a share of the initial investment

HWM
i

- High water mark for investment pool i

w
i

- Fund share of investment pool i

 - Share of risky asset in portfolio
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A.2 Parameters

Table A.2: Standard parameters

Standard Parameters

Model Setup

Time to maturity T 1 year

Revisions in one period ⌧ 12

Time step �t 1
⌧

= 0.0833

Initial fund value X0 1

Liquidation boundary  0.5

Log X step C
log( 1

0.5 )

108
= 0.0064

Risk allocation, kappa  [0: 0.01 :20]

Return and standard devation

Risky asset, annual return µ 0.0848

Risky asset, annual volatility � 0.0711

Risk free, annual return r 0.0272

Discount rate R 25%

Manager remuneration

Managerial ownership a 0

Management fee, annual rate b 2%

Incentive fee c 20%

CRRA Utility function

Risk aversion coe�cient � 4
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A.3 Results

E[�] ⇧
inv

⇧
man

Merton 0 7.40 % 2.72 %

Base case (1 pool 1 period) 1.613 4.57 % 3.09 %

1 pool 2 periods 1.383 5.40 % 3.05 %

1 pool 3 periods 1.249 5.80 % 3.01 %

1 pool 4 periods 1.164 6.03 % 2.97 %

1 pool 5 periods 1.109 6.18 % 2.95 %

1 pool 6 periods 1.069 6.29 % 2.93 %

1 pool 7 periods 1.036 6.37 % 2.92 %

1 pool 8 periods 1.012 6.43 % 2.91 %

1 pool 9 periods 0.991 6.47 % 2.90 %

1 pool 10 periods 0.975 6.51 % 2.89 %

2 pools 10 periods 0.967 6.53 % 2.87 %

3 pools 10 periods 0.962 6.54 % 2.87 %

4 pools 10 periods 0.960 6.55 % 2.87 %

6 pools 10 periods 0.960 6.55 % 2.87 %

2 pools 10 periods, 10/90% 0.963 6.54 % 2.87 %

6 pools 10 periods, decreasing HWMs 0.413 7.21 % 2.78 %

6 pools 10 periods, increasing HWMs 1.169 6.20 % 2.78 %

Table A.3: Table of results for standard parameters

A.3.1 Changing Management Fee

E[�] 0 % 0.50 % 1.00 % 1.50 % 2.00 % 2.50 % 3.00 % 3.50 % 4.00 % 4.50 % 5.00 %

1 pool, 1 period 2.695 2.170 1.923 1.748 1.613 1.504 1.413 1.334 1.266 1.206 1.152

1 pool, 5 period 2.730 1.822 1.479 1.263 1.109 0.992 0.898 0.822 0.758 0.704 0.657

1 pool, 10 period 2.743 1.684 1.334 1.122 0.975 0.865 0.779 0.710 0.653 0.605 0.565

6 pool, 10 period 2.645 1.679 1.323 1.108 0.960 0.850 0.764 0.695 0.638 0.591 0.550

6 pool, 10 period, decreasing HWM 2.546 0.820 0.588 0.480 0.413 0.368 0.334 0.308 0.287 0.270 0.256

6 pools, 10 period, increasing HWM 2.247 1.752 1.489 1.307 1.169 1.059 0.970 0.895 0.832 0.776 0.728

Table A.4: Expected kappa-di↵erence, 20% incentive fee, changing management fee
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⇧
inv

0 % 0.50 % 1.00 % 1.50 % 2.00 % 2.50 % 3.00 % 3.50 % 4.00 % 4.50 % 5.00 %

1 pool, 1 period 3.24 % 4.60 % 4.81 % 4.76 % 4.57 % 4.30 % 3.98 % 3.62 % 3.22 % 2.80 % 2.37 %

1 pool, 5 period 3.18 % 6.03 % 6.44 % 6.41 % 6.18 % 5.85 % 5.46 % 5.03 % 4.56 % 4.08 % 3.59 %

1 pool, 10 period 3.13 % 6.51 % 6.88 % 6.79 % 6.51 % 6.13 % 5.70 % 5.24 % 4.75 % 4.25 % 3.74 %

6 pools, 10 period 3.41 % 6.54 % 6.92 % 6.83 % 6.55 % 6.17 % 5.74 % 5.27 % 4.78 % 4.28 % 3.76 %

6 pools, 10 period, decreasing HWM 3.68 % 8.34 % 8.13 % 7.70 % 7.21 % 6.70 % 6.16 % 5.63 % 5.08 % 4.53 % 3.99 %

6 pools, 10 period, increasing HWM 5.16 % 6.34 % 6.54 % 6.45 % 6.20 % 5.87 % 5.48 % 5.05 % 4.59 % 4.11 % 3.62 %

Merton (w/ fees) 9.63 % 9.07 % 8.51 % 7.96 % 7.40 % 6.84 % 6.28 % 5.72 % 5.17 % 4.61 % 4.05 %

Table A.5: Investor certainty equivalent, 20% incentive fee, changing management

fee

⇧
mng

0 % 0.50 % 1.00 % 1.50 % 2.00 % 2.50 % 3.00 % 3.50 % 4.00 % 4.50 % 5.00 %

1 pool, 1 period 0.04 % 1.00 % 1.75 % 2.43 % 3.09 % 3.72 % 4.35 % 4.96 % 5.56 % 6.16 % 6.76 %

1 pool, 5 period 0.03 % 0.90 % 1.62 % 2.30 % 2.95 % 3.58 % 4.20 % 4.81 % 5.42 % 6.02 % 6.61 %

1 pool, 10 period 0.02 % 0.85 % 1.57 % 2.24 % 2.89 % 3.52 % 4.14 % 4.76 % 5.36 % 5.96 % 6.56 %

6 pools, 10 period 0.02 % 0.84 % 1.55 % 2.22 % 2.87 % 3.50 % 4.13 % 4.74 % 5.35 % 5.95 % 6.54 %

6 pools, 10 period, decreasing HWM 0.03 % 0.76 % 1.45 % 2.12 % 2.78 % 3.41 % 4.04 % 4.66 % 5.27 % 5.88 % 6.48 %

6 pools, 10 period, increasing HWM 0.02 % 0.75 % 1.45 % 2.12 % 2.78 % 3.41 % 4.04 % 4.66 % 5.27 % 5.87 % 6.48 %

Table A.6: Manager certainty equivalent, 20% incentive fee, changing management

fee

A.3.2 Changing Incentive Fee

E[�] 0 % 5.00 % 10.00 % 15.00 % 20.00 % 25.00 % 30.00 %

1 pool, 1 period 0.000 0.918 1.266 1.472 1.613 1.719 1.801

1 pool, 5 period 0.047 0.448 0.758 0.958 1.109 1.228 1.327

1 pool, 10 period 0.075 0.407 0.653 0.834 0.975 1.089 1.183

6 pools, 10 period 0.067 0.394 0.638 0.818 0.960 1.074 1.170

6 pools, 10 period, decreasing HWM 0.092 0.203 0.287 0.355 0.413 0.464 0.509

6 pools, 10 period, increasing HWM 0.024 0.534 0.832 1.028 1.169 1.276 1.362

Table A.7: Expected kappa-di↵erence, 2% management fee, changing incentive fee

⇧
inv

0 % 5.00 % 10.00 % 15.00 % 20.00 % 25.00 % 30.00 %

1 pool, 1 period 9.30 % 7.66 % 6.34 % 5.35 % 4.57 % 3.93 % 3.39 %

1 pool, 5 period 9.29 % 8.62 % 7.74 % 6.93 % 6.18 % 5.51 % 4.90 %

1 pool, 10 period 9.28 % 8.66 % 7.93 % 7.20 % 6.51 % 5.86 % 5.25 %

6 pools, 10 period 9.28 % 8.68 % 7.96 % 7.23 % 6.55 % 5.90 % 5.29 %

6 pools, 10 period, decreasing HWM 9.28 % 8.80 % 8.29 % 7.76 % 7.21 % 6.66 % 6.10 %

6 pools, 10 period, increasing HWM 9.29 % 8.53 % 7.67 % 6.89 % 6.20 % 5.59 % 5.03 %

Merton (w/ fees) 9.30 % 8.85 % 8.38 % 7.89 % 7.40 % 6.89 % 6.36 %

Table A.8: Investor certainty equivalent, 2% management fee, changing incentive

fee
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⇧
man

0 % 5.00 % 10.00 % 15.00 % 20.00 % 25.00 % 30.00 %

1 pool, 1 period 2.23 % 2.56 % 2.78 % 2.95 % 3.09 % 3.21 % 3.31 %

1 pool, 5 period 2.23 % 2.53 % 2.71 % 2.84 % 2.95 % 3.04 % 3.12 %

1 pool, 10 period 2.23 % 2.52 % 2.68 % 2.80 % 2.89 % 2.97 % 3.03 %

6 pools, 10 period 2.23 % 2.52 % 2.67 % 2.78 % 2.87 % 2.94 % 3.00 %

6 pools, 10 period, decreasing HWM 2.23 % 2.50 % 2.64 % 2.72 % 2.78 % 2.82 % 2.85 %

6 pools, 10 period, increasing HWM 2.23 % 2.50 % 2.63 % 2.72 % 2.78 % 2.82 % 2.85 %

Table A.9: Manager certainty equivalent, 2% management fee, changing incentive

fee

A.3.3 Changing Ownership Share

E[�] 0 % 5.00 % 10.00 % 15.00 % 20.00 % 25.00 % 30.00 %

1 pool, 1 period 1.613 0.964 0.692 0.531 0.423 0.343 0.284

1 pool, 5 period 1.109 0.971 0.860 0.772 0.699 0.639 0.589

1 pool, 10 period 0.975 0.933 0.896 0.860 0.826 0.796 0.768

6 pools, 10 period 0.960 0.909 0.865 0.825 0.788 0.756 0.726

6 pools, 10 period, decreasing HWM 0.413 0.467 0.479 0.478 0.471 0.463 0.454

6 pools, 10 period, increasing HWM 1.169 1.090 1.032 0.982 0.938 0.899 0.864

Table A.10: Expected kappa-di↵erence, 20% incentive fee, 2% management fee,

changing ownership share

⇧
inv

0 % 5.00 % 10.00 % 15.00 % 20.00 % 25.00 % 30.00 %

1 pool, 1 period 4.57 % 6.06 % 6.56 % 6.82 % 6.98 % 7.08 % 7.16 %

1 pool, 5 period 6.18 % 6.47 % 6.66 % 6.79 % 6.89 % 6.97 % 7.03 %

1 pool, 10 period 6.51 % 6.59 % 6.65 % 6.71 % 6.76 % 6.81 % 6.85 %

6 pools, 10 period 6.55 % 6.64 % 6.72 % 6.78 % 6.83 % 6.88 % 6.92 %

6 pools, 10 period, decreasing HWM 7.21 % 7.19 % 7.18 % 7.19 % 7.19 % 7.20 % 7.21 %

6 pools, 10 period, increasing HWM 6.20 % 6.36 % 6.47 % 6.56 % 6.63 % 6.70 % 6.75 %

Merton (w/ fees) 7.40 % 7.40 % 7.40 % 7.40 % 7.40 % 7.40 % 7.40 %

Table A.11: Investor certainty equivalent, 20% incentive fee, 2% management fee,

changing ownership share
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⇧
man

0 % 5 % 10 % 15 % 20 % 25 % 30 %

1 pool, 1 period 3.09 % 2.96 % 2.89 % 2.84 % 2.82 % 2.80 % 2.78 %

1 pool, 5 period 2.95 % 2.91 % 2.89 % 2.87 % 2.86 % 2.84 % 2.83 %

1 pool, 10 period 2.89 % 2.88 % 2.87 % 2.86 % 2.85 % 2.84 % 2.84 %

6 pools, 10 period 2.87 % 2.86 % 2.85 % 2.84 % 2.83 % 2.82 % 2.82 %

6 pools, 10 period, decreasing HWM 2.78 % 2.78 % 2.78 % 2.78 % 2.78 % 2.77 % 2.77 %

6 pools, 10 period, increasing HWM 2.78 % 2.78 % 2.79 % 2.79 % 2.79 % 2.79 % 2.79 %

Table A.12: Manager certainty equivalent, 20% incentive fee, 2% management fee,

changing ownership share

A.3.4 Changing Hurdle Rate

E[�] r 1.5r 2r 2.5r 3r 3.5r 4r 4.5r 5r

1 pool, 1 period 1.613 1.525 1.444 1.369 1.301 1.238 1.183 1.132 1.101

1 pool, 5 period 1.109 1.001 0.904 0.817 0.739 0.672 0.613 0.562 0.521

1 pool, 10 period 0.975 0.883 0.800 0.727 0.662 0.604 0.554 0.508 0.469

6 pools, 10 period 0.960 0.905 0.853 0.804 0.757 0.712 0.669 0.629 0.591

6 pools, 10 period, decreasing HWM 0.413 0.380 0.349 0.320 0.293 0.269 0.249 0.229 0.212

6 pools, 10 period, increasing HWM 1.169 1.165 1.160 1.154 1.148 1.141 1.135 1.127 1.118

Table A.13: Expected kappa-di↵erence, 20% incentive fee, 2% management fee,

changing hurdle rate

⇧
inv

r 1.5r 2r 2.5r 3r 3.5r 4r 4.5r 5r

1 pool, 1 period 4.57 % 4.93 % 5.26 % 5.55 % 5.82 % 6.07 % 6.29 % 6.49 % 6.68 %

1 pool, 5 period 6.18 % 6.53 % 6.82 % 7.07 % 7.28 % 7.46 % 7.62 % 7.76 % 7.87 %

1 pool, 10 period 6.51 % 6.80 % 7.06 % 7.27 % 7.46 % 7.62 % 7.75 % 7.88 % 8.00 %

6 pools, 10 period 6.55 % 6.80 % 7.03 % 7.24 % 7.44 % 7.61 % 7.77 % 7.92 % 8.06 %

6 pools, 10 period, decreasing HWM 7.21 % 7.39 % 7.56 % 7.71 % 7.86 % 7.99 % 8.11 % 8.22 % 8.33 %

6 pools, 10 period, increasing HWM 6.20 % 6.39 % 6.57 % 6.73 % 6.89 % 7.03 % 7.17 % 7.29 % 7.40 %

Merton (w/ fees) 7.40 % 7.54 % 7.68 % 7.81 % 7.93 % 8.05 % 8.16 % 8.27 % 8.36 %

Table A.14: Investor certainty equivalent, 20% incentive fee, 2% management fee,

changing hurdle rate

⇧
mng

r 1.5r 2r 2.5r 3r 3.5r 4r 4.5r 5r

1 pool, 1 period 2.89 % 2.81 % 2.75 % 2.69 % 2.64 % 2.60 % 2.57 % 2.53 % 2.50 %

1 pool, 5 period 2.95 % 2.87 % 2.80 % 2.74 % 2.68 % 2.64 % 2.60 % 2.56 % 2.53 %

1 pool, 10 period 2.89 % 2.81 % 2.75 % 2.69 % 2.64 % 2.60 % 2.57 % 2.53 % 2.50 %

6 pools, 10 period 2.87 % 2.80 % 2.74 % 2.68 % 2.64 % 2.59 % 2.56 % 2.52 % 2.49 %

6 pools, 10 period, decreasing HWM 2.78 % 2.72 % 2.67 % 2.63 % 2.59 % 2.55 % 2.52 % 2.49 % 2.46 %

6 pools, 10 period, increasing HWM 2.78 % 2.70 % 2.64 % 2.58 % 2.53 % 2.49 % 2.45 % 2.41 % 2.38 %

Table A.15: Manager certainty equivalent, 20% incentive fee, 2% management fee,

changing hurdle rate
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A.4 Robustness of Discount Rate

R 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 %

E[�] 0.794 0.845 0.892 0.935 0.975 1.010 1.042 1.070

⇧
inv

6.85 % 6.77 % 6.68 % 6.59 % 6.51 % 6.42 % 6.34 % 6.27 %

⇧
mng

2.80 % 2.83 % 2.85 % 2.87 % 2.89 % 2.91 % 2.92 % 2.94 %

Table A.16: How discount rate a↵ect metrics (1 pool, 10 periods)

R 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 %

E[�] 0.785 0.838 0.884 0.924 0.960 0.992 1.020 1.046

⇧
inv

6.87 % 6.78 % 6.70 % 6.62 % 6.55 % 6.47 % 6.40 % 6.33 %

⇧
mng

2.81 % 2.82 % 2.84 % 2.86 % 2.87 % 2.88 % 2.90 % 2.91 %

Table A.17: How discount rate a↵ect metrics (6 pools, 10 periods)

R 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 %

E[�] 0.639 0.700 0.759 0.814 0.865 0.911 0.954 0.991

⇧
inv

7.03 % 6.95 % 6.85 % 6.75 % 6.65 % 6.55 % 6.45 % 6.36 %

⇧
mng

2.77 % 2.80 % 2.82 % 2.84 % 2.87 % 2.89 % 2.91 % 2.92 %

Table A.18: How discount rate a↵ect metrics (1 pool, 10 periods, 10% manager

ownership)

R 5 % 10 % 15 % 20 % 25 % 30 % 35 % 40 %

E[�] 0.639 0.700 0.759 0.814 0.865 0.911 0.954 0.991

⇧
inv

7.05 % 6.97 % 6.89 % 6.81 % 6.72 % 6.63 % 6.54 % 6.45 %

⇧
mng

2.77 % 2.79 % 2.81 % 2.83 % 2.85 % 2.86 % 2.88 % 2.89 %

Table A.19: How discount rate a↵ect metrics (6 pools, 10 periods, 10% manager

ownership)

A.5 Elaboration on Multi-period Modelling

Due to the path dependency that occurs with the high-water mark mechanism we

introduce a multi-period model similar to that of Hodder and Jackwerth (2007). If
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we were to model multi-periods with a traditional recursive dynamic programming

method, the model could easily become too complex to run as the number of periods

included increase. Each period would have to be run for all possible HWMs and

initial fund values. The number of possible states at entry of a period is given by,

M

✓
N +

1�M

2

◆
, (A.5.1)

whereN andM are the total number of possible fund values and HWMs respectively.

This run-time multiple is linearly increasing with the number of periods, but as

explained in section 5 we also include multiple investment pools to the model. The

multiple is then raised to the power of investment pools added, which makes the

traditional dynamic programming approach unsuitable for our purpose. With our

approach this run-time multiple (A.5.1) is reduced to one. The trade-o↵ is the

inaccuracies that incur when approximating the continuation values.
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