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Problem description from the master’s thesis agreement

The purpose of this thesis is to develop a mathematical model and different solution

methods for handling disruptions in operational planning in offshore logistics. The

problem is based on a real setting faced by an oil and gas producing company. A

solution approach for the problem should balance costs associated with offshore

supply and service level at offshore installations. Exact and heuristic solution

approaches will be developed and compared to each other.

Main contents:

1. Description of the problem

2. Presentation of mathematical model

3. Implementation of mathematical model

4. Computational study of the model with realistic data
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Abstract

This thesis considers operational planning and disruption management in the off-

shore supply service in Statoil, the biggest Norwegian oil and gas company. A

significant amount of time is needed for operational planning, and major costs are

caused by disruptions to the planned routes and schedules for the offshore supply

vessels (OSVs) supplying the offshore installations. The disruptions are mainly due

to uncertain and harsh weather conditions, unexpected orders placed by offshore

installations, and uncertain order volumes. A decision tool based on mathemati-

cal models may contribute to reducing the costs and time related to planning and

disruption management in the offshore supply service.

Mathematical models handling disruptions and finding new routes and schedules

for OSVs are presented. The problem is modelled as a pickup and delivery problem

with time limits. Exact solution methods are introduced, and due to the complexity

of the problem, a heuristic is developed to solve realistic instances that the exact

models are not able to solve within a reasonable amount of time.

The problem instances are based on data provided by Statoil. The compu-

tational study compares the solutions of the proposed models. The results from

the computational study show that the heuristic finds optimal solutions for all the

problem instances where optimality can be proven by the exact methods, and has a

stable performance for the other larger instances. The heuristic can form the basis

for a decision support tool that can be utilized in everyday operational planning

and disruption management by Statoil. Applying the heuristic for decision support

can reduce the time spent on planning, and significant cost reductions can be made

in the offshore supply service.





Sammendrag

Denne oppgaven handler om operasjonell planlegging og avvikshåndtering i forbindelse

med betjening av Statoils offshoreinstallasjoner. Operasjonell planlegging krever

mye tid, og avvik fra forsyningsskipenes planlagte ruter medfører store kostnader

i verdikjeden. Avvikene oppstår i hovedsak på grunn av usikre og tidvis utfor-

drende værforhold, uventede ordre fra installasjoner og usikker størrelse på ordre.

Et beslutningsstøtteverktøy som er basert på matematiske modeller kan bidra til å

redusere kostnadene og tidsbruken forbundet med planlegging og avvikshåndtering

knyttet til betjeningen av offshoreinstallasjonene.

Matematiske modeller som håndterer avvik og finner nye ruter for forsyn-

ingsskipene er presentert. Eksakte løsningsmetoder er utviklet, og grunnet kom-

pleksiteten til problemene, presenteres det også en heuristikk som er i stand til å

løse større problemer enn de eksakte modellene klarer innen rimelig tid.

Probleminstansene er basert på data fra Statoil. I oppgavens resultatstudie,

er løsningene til de foreslåtte modellene sammenlignet. Resultatstudiet viser at

heuristikken finner optimal løsning for alle problemene der optimalitet kan bevises

av de eksakte metodene, og at den utover dette har en stabil ytelse for de større

problemene. Heuristikken kan danne grunnlaget for et beslutningsstøtteverktøy

som kan brukes på daglig basis i operasjonell planlegging og avvikshåndtering for

betjening av olje- og gassinstallasjoner offshore. Et slikt verktøy kan redusere tiden

som brukes på planlegging og kostnadene knyttet til betjening av offshoreinstal-

lasjonene.
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Chapter 1

Introduction

Oil and gas production on the Norwegian continental shelf began more than four

decades ago. With the discovery of the field Ekofisk, a series of large findings in the

North Sea was initiated. Increasing knowledge and new technology has gradually

moved production north to the Norwegian Sea and the Barents Sea as well. The

North Sea is still the main production area with a total of 60 active oil and gas

fields. The large oil and gas reserves on the Norwegian continental shelf have turned

Norway into one of the biggest oil and gas producers in the world. The industry has

generated more than NOK 11 000 billion in present value since the first discoveries.

Although there has been a continuous production for over 40 years, it is estimated

that 56% of the total resources have still not been extracted (Regjeringen, 2014).

Even though close to a third of all value creation in Norway still happens in

the petroleum sector, there is an increased focus on cost reduction in the industry,

especially because of the drop in oil prices in the last half of 2014. In the survey

DNV GL (2015), 47% of the respondents, mainly oil and gas operators, suppliers,

and service companies, expect to reduce their headcount in 2015. However, other

measures, such as new improved technology and increased efficiency in production

are preferred, rather than reducing the number of employees.
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CHAPTER 1. INTRODUCTION

Figure 1.1: The floating platform for gas production, Åsgard B, seen from an

offshore supply vessel (OSV). Photo: Nils B. Albjerk, taken during an excursion

on board the OSV Olympic Energy in the Norwegian sea visiting Statoil’s offshore

installations in February 2015.

Oil and gas production does not only generate vast revenues, it also requires

bigger investments than most other industries. This is especially becoming a chal-

lenge as future oil and gas fields are expected to be smaller, the prices to be lower

than the average over the last few years, and the resources less available than in pre-

vious years. At the same time, it is more costly to extract the remaining resources

in existing fields, since the most available reserves have already been utilized. In

other words, the petroleum industry is challenged by the need for more effective

production at less available fields, in addition to necessary cost reductions.

The petroleum industry on the Norwegian continental shelf is regulated by the

government in order to let value creation benefit the society. In this context, the

state owned company Statoil was founded in 1972. Statoil is today the leading

operator on the Norwegian continental shelf, and had a production of 1 927 million

barrels of oil equivalents per day in 2014 (Statoil, 2015a). Like the rest of the

Norwegian petroleum industry, the company is working to reduce costs in their

value chain. This report will focus on efficiency challenges in Statoil’s upstream

supply chain with regard to supplying the offshore installations.

Statoil’s production of oil and gas is performed at both fixed and floating off-

shore installations at fields in the North Sea, the Norwegian Sea, and the Barents

Sea. Activities at offshore installations include drilling, well operations, and mainte-
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Figure 1.2: An offshore supply vessel sailing in harsh weather conditions. Photo:

Karlsson (2013)

nance. Depending on what kind of operations that are performed at an installation,

certain supplies are needed from an onshore supply depot. Each offshore installa-

tion must identify its demand for different supplies in order to keep production,

maintenance, and other activities running.

Supplies are brought to the installations by offshore supply vessels (OSVs),

which are ships especially designed for this purpose. The OSVs are able to transport

containers and other goods on deck, in addition to bulk cargo, which is kept in tanks

below deck. The vessels also carry backload from the installations to the onshore

supply depot. The OSVs are constructed to handle extreme weather conditions,

which they often encounter on the Norwegian continental shelf. An OSV sailing in

harsh weather conditions is shown in Figure 1.2.

Costs related to chartering and operating OSVs are one of the major expenses

in the upstream supply chain. In addition, planning of routes and schedules for

the vessels demands significant amounts of time and effort. The planning activities

are performed at strategic, tactical, and operational level to decide optimal fleet

size, optimal routes and schedules, and necessary adjustments to be made when

unexpected demand is reported or delays occur.

3



CHAPTER 1. INTRODUCTION

This report focuses on operational planning and how disruptions to planned

routes and schedules for OSVs can be handled. Disruptions are mainly due to

adverse weather conditions reducing the ability of OSVs to sail, and making loading

operations at offshore installations difficult. In addition to the weather conditions,

unexpected orders are often reported by installations. These orders are in some

cases a result of unforeseen events, but may also be placed late in the supply process

because of insufficient planning at the offshore installations. Another factor leading

to changes in planned routes and schedules is that the volume of orders is uncertain.

Deciding an optimal fleet, and planning of routes and schedules are done on a

strategic and tactical level, while this report will focus on challenges occurring at

the operational level. The report contributes to the development of decision tools

to be used for OSV planning in an operational setting. The main purpose is to

present how decisions may be based on mathematical models finding routes and

schedules, and reducing the negative effects of delays and unexpected orders. Most

existing literature studying the offshore upstream supply chain presents strategic

and tactical problems, and does not provide solutions for making operational deci-

sions.

In Chapter 2, the background for the problem discussed in this report is pre-

sented. The chapter starts with a description of the upstream supply chain for

offshore oil and gas production, followed by an explanation of some of the planning

processes. In Chapter 3, literature relevant to the problem is discussed, and in

Chapter 4, a detailed problem description is given. In Chapter 5, a mathemati-

cal formulation of the problem is presented. An improved exact solution method,

involving pregeneration of voyages through dynamic programming and a voyage-

based formulation of the problem, is presented in Chapter 6. In Chapter 7, a

variable neighborhood search heuristic is introduced. Chapter 8 contains the com-

putational study, where the problem instances are presented, cost parameters are

chosen, heuristic parameters are tuned, solution methods are compared, and some

of the solutions are analyzed. The report is concluded in Chapter 9.
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Chapter 2

Background

This chapter gives an overview of the offshore logistics operations performed on the

Norwegian continental shelf. In Section 2.1, the upstream supply chain for offshore

oil and gas production is presented, followed by a description of offshore logistics in

Section 2.2. The planning processes needed for a reliable and cost effective offshore

supply service is presented in Section 2.3.

2.1 The upstream supply chain

The main activities in the overall supply chain for petroleum production are shown

in Figure 2.1. As this report focuses on logistics in the upstream supply chain, the

downstream part will not be considered here.

The first step in the upstream supply chain involves exploration of new possible

reserves. By exploring the subsurface through seismic, electromagnetism, gravita-

tion, and magnetism, geophysicists are able to get a detailed understanding of the

structures underneath the surface. Due to the high levels of risk and uncertainty in

development of new oil and gas fields, extensive knowledge about the new reservoirs

is essential for profitable production.

Drilling of wells is the only possible way of guaranteeing the existence of oil and
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CHAPTER 2. BACKGROUND

Figure 2.1: Main activities in the supply chain for offshore petroleum production.

gas in possible reservoirs. Since drilling involves large expenses, big investments

are made to improve the technology used to identify the properties of possible oil

and gas reservoirs before wells are drilled. In addition, there is emphasis on using

drilling technologies that have low environmental impact and that are cost effective.

The importance of finding improved solutions for developing existing fields is in-

creasing as oil and gas reserves become less available. Also, the predicted increased

energy demand in the future requires more efficient extraction of the resources.

Among several oil and gas producing companies, Statoil is the leading operator

on the Norwegian continental shelf (Statoil, 2015a). Offshore oil and gas pro-

duction provide vast monetary values, thus reliable deliveries of supplies critical

to production are necessary. Offshore logistics are further described in the next

section. There are different kinds of offshore installations, such as:

• Production ships

• Floating production platforms

• Storage ships

• Fixed platforms

• Drilling rigs

Wells are drilled using drilling rigs that are leased by Statoil. When a well

is ready for production, a production ship or platform takes over the operations.
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2.2. OFFSHORE LOGISTICS

Figure 2.2: A storage ship for condensate, Åsgard C, seen from an OSV. Photo:

Nils B. Albjerk, February 2015.

The extracted oil and gas are brought to onshore storages. Gas produced on the

Norwegian continental shelf is transported through the world’s largest subsea gas

pipeline network to mainland in Norway, Britain, Germany, Belgium, and France.

The gas is transported directly in the subsea network, while the oil and condensates

are either sent through pipes to storage ships or to the mainland.

The mentioned activities form the basis for many companies producing offshore

installations, equipment and machinery, logistics companies, and companies spe-

cialized on searching for fields and on drilling. To illustrate the size of the petroleum

supplier industry; the annual value of procurements in Statoil was more than NOK

170 billion in 2013 (Statoil, 2014b).

2.2 Offshore logistics

The oil and gas production on offshore installations depends on several types of

supplies. Most of these are provided by OSVs. Statoil has currently 34 fixed and

about 15 floating installations on the Norwegian continental shelf (Statoil, 2015b).

According to Statoil employees, these are serviced by approximately 25 OSVs. The
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CHAPTER 2. BACKGROUND

only way staff or other personnel are transported to offshore installations is by

helicopter. Helicopters are also used to transport goods in case of especially urgent

deliveries. The process of delivering supplies to offshore installations is illustrated

in Figure 2.3.

Due to high activity offshore, there is a continuous flow of demand for materials

and products reported by the installations. The demanded deliveries are either

kept in stock at the onshore supply depot or ordered from external suppliers. All

materials must be properly packed and secured before entering the depot. The

security requirements are strict, and packages from external suppliers must be

repacked at the supply base if the supplier is not approved by the Norwegian Oil

and Gas Association, which is an interest organization for the suppliers on the

Norwegian continental shelf (The Norwegian Oil Gas Association, 2015). At the

supply base, the materials are assigned to OSVs and further prepared for departure.

Because of environmental impacts, Statoil has a goal of getting most deliveries

from suppliers by sea, instead of by road transportation. However, the costs of

hiring equipment needed at the offshore installations are high (often >NOK 500

000/day), and transportation by ship is time consuming. Therefore, most of the

hired equipment is still carried by trucks on mainland.

The so-called hold principle is implemented at the onshore supply depots. This

means that supplies are kept at the depot until short time before they are needed

at the offshore installations. This is a measure towards keeping the amount of

stored goods at installations at a minimal level, as storage capacity is a limited

resource. Statoil is working on having the same principle implemented at their

external suppliers in order to reduce the stock at the onshore supply depots. Even

though Statoil tries to keep the stock levels at the supply bases down, they also need

to have essential mechanical parts at hand at any time. The reason for this is that a

shut down on an installation caused by one single part might cause huge economical

losses (>NOK 200 000/hour). Since the time of delivery from supplier to Statoil

might range from 2-12 months, the depot is required to have huge warehouses. The
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Figure 2.3: The process of supplying offshore installations. Illustration: Statoil

(2015c).

supply base in Kristiansund services nine installations and keeps a stock of 74 000

items worth more than NOK 1 billion. The items in stock are continuously counted

and maintained during the year, ensuring control of the warehouse inventory.

The supplies delivered to the installations are classified by the following types

(Statoil, 2014a):

• Operation materials

• Bulk products

• Oil country tubular goods

• Project materials

• Drilling and well materials

• Maintenance and modification materials

Specialized vessels are used to transport what is known as oil country tubular

goods (OCTG), which is mainly different kinds of tubes used for drilling of wells and

for production. Not all depots supply these kind of products. The bulk products

transported by the OSVs are mostly barite, brine, drill water, and drilling mud

used in the drilling process, in addition to cement for the wells, diesel used as fuel,

methanol for the pipes, and freshwater for personnel (Statoil, 2015d). The bulk

products are transported by OSVs in tanks below deck, pipes are stacked directly

on deck in bundles, while all other supplies are kept in containers of different sizes

on deck, as illustrated in Figure 2.4.
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CHAPTER 2. BACKGROUND

When the OSVs arrive at offshore installations, the demanded products are

loaded onto the installations. Bulk products are transferred from the vessel to the

installation using a pipe, while containers are lifted by a crane on the installation.

On average, approximately 75% of what is brought to the platforms is returned to

the depot as backload in the form of bulk or containers on deck (Statoil, 2015c).

The backload might be empty containers, used equipment going back to the depot

or to external suppliers, drilling fluids, or basic items such as used towels.

Figure 2.4: The deck of an OSV. Personnel are getting cargo ready to be loaded

onto the offshore installation. Photo: Nils B. Albjerk, February 2015.

Everything transported offshore, except bulk and pipes, is transported in con-

tainers of different sizes. This means that the number of containers going out also

has to be brought back. Although outgoing supplies usually are heavier than the

corresponding backload, baskets containing e.g. oil based drill cuttings might be

heavier when returning to the depot because of higher concentration of liquids. At

some installations, water based drill cuttings that can be dumped directly into the

sea are used, giving no backload. All bulk products brought back to the depot

10



2.3. PLANNING PROCESSES IN OFFSHORE LOGISTICS

must be analyzed on the installation and approved by the captain on the vessel.

This is done to prove the content and the origin of the load when the vessel arrives

at the depot. If the mud has a high concentration of e.g. hydrogen sulfide, the

tanks on the vessel might have to be cleaned before the next voyage. In a voyage,

an OSV starts at the onshore supply depot, visits a set of offshore installations in

a given sequence, and sails back to the depot.

When the backload is onboard, the vessels continue to other installations or the

depot. When the vessels arrive at the depot, the backload is transferred onshore,

and the vessels are prepared for their next voyage.

2.3 Planning processes in offshore logistics

In this section, the planning of routes and schedules for OSVs performed at the

strategic, tactical, and operational level in Statoil is described.

At the strategic level, the properties of the OSV fleet are decided. Most OSVs

are chartered on long- or medium-term contracts, that is, for more than 45 days.

The fleet consisting of OSVs chartered for more than 45 days is called the long-term

fleet in the rest of the report. OSVs in the long-term fleet are usually chartered at

lower prices than the average spot market price. A vessel from the spot market is

chartered for one to 45 days. As there are high costs associated with chartering

OSVs, one of the most significant decisions to be made is what type, size, and

number of OSVs the fleet should consist of. This problem is further discussed in

Halvorsen-Weare, Fagerholt, Nonås, and Asbjørnslett (2012). In Statoil, decid-

ing the optimal fleet is based on planning performed by optimization and supply

chain management specialists. Historical data and expected future demand is used

to estimate the necessary number of weekly visits to each offshore installation

and necessary OSV deck capacity for each delivery. Optimal routes and schedules

are then found by minimizing sailing times with respect to resource and capacity

constraints. The necessary number of OSVs needed for the suggested routes and

11



CHAPTER 2. BACKGROUND

schedules determines the fleet size. Additionally, the prices of OSVs from the spot

market have to be compared to the costs of chartering the long-term fleet.

Since exact demand and delays due to weather conditions are impossible to pre-

dict, some measures to increase robustness are added to the mathematical models

when these planning activities are performed. One of these measures is that the

number of visits to installations on a voyage cannot exceed a given number. The

probability of delays increases and the flexibility of being able to handle higher

volumes than expected decreases as the number of visits per voyage increases.

As explained in Halvorsen-Weare et al. (2012), planning of routes for OSVs is

done using a decision support tool based on mathematical models that determines

the optimal weekly schedule for each vessel. The schedules are then continuously

adapted at the onshore supply depots for every two weeks according to updated

demand information. At the onshore supply depot, supplies are received from

external distributors, prepared for shipment, sailing plans for each OSV are deter-

mined, loading of supplies onto OSVs, and unloading of backload from OSVs that

return to the depot are conducted. Each depot serves several offshore installations,

and allocates the available fleet according to the given routes and schedules. In

most cases, routes and schedules need to be adapted due to unexpected demand,

delays and priorities. Priorities are order requests from customers that may lead

to significant costs if they are not serviced.

After the departure of an OSV from the depot, the responsibility for sailing

plans and their necessary adjustments is given to an operational department at

Statoil’s offices in Bergen. This department is using equipment showing real-time

positions of all OSVs, and communicates delays to OSVs and offshore installations,

receives urgent orders, and finds new routes for OSVs according to priorities and de-

lays. Currently, the adjustments made to sailing plans are based on the experience

and judgment of professionals.

A summary of the planning activities with their purpose, methods, and output

is shown in Table 2.1 and further explained in Chapter 4.

12



2.3. PLANNING PROCESSES IN OFFSHORE LOGISTICS

Table 2.1: Summary of the planning processes at strategic, tactical, and operational

level. The focus of this report is on the operational level.
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Chapter 3

Literature

This chapter contains a review of some of the literature relevant to the problem

discussed and to the solution methods used in this report. Since the focus of

the report is on operational planning and disruption management in the offshore

supply service, some papers that consider disruption management in general routing

problems are reviewed first in Section 3.1. Moving closer to the problem, some

studies regarding pickup and delivery problems are reviewed in Section 3.2. Finally,

some research on problems in the offshore supply service is presented in Section

3.3. By reviewing these problems, the most essential areas found in the literature

relevant to the problem discussed in this report are covered.

Several articles and authors have been recommended to the authors by the

supervisors for this report. In addition to these, Scopus searches has been used,

and to some extent Google Scholar. Scopus (Scopus.com, 2015) is considered to be

one of the best databases for academic papers.

3.1 Disruption management

Relatively few studies regarding disruption management in shipping are encoun-

tered, and to the authors’ knowledge there exist no publications on disruption
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management in the offshore supply service. However, thorough research is done

on similar problems in airline and railway transportation. Although there are

significant differences between shipping, airline transportation, and railway trans-

portation, the disruption management problems contain to a large extent the same

challenges and possible recovery actions. This section reviews disruption man-

agement studies from liner shipping, airline passenger transportation, and railway

transportation relevant to the problem discussed in this report.

The vessel schedule recovery problem, discussed in Brouer, Dirksen, Pisinger,

Plum, and Vaaben (2013), regards disruption management in container liner ship-

ping. Different recovery actions are proposed, such as increasing speed, canceling

deliveries, and swapping port visits. A model considering sailing costs, delays,

and misconnecting cargo is presented, and it is run with data from real life cases.

The results indicate that significant savings can be achieved when recovery actions

are based on mathematical models instead of the experience and judgement of op-

erations managers. In Brouer et al. (2013), only one other paper on disruption

management in shipping is encountered. The authors of the paper claim that such

research is often ordered by liner shipping companies, and that they may avoid

publishing their results due to the competitiveness of the industry. In Kjeldsen

(2012), a mathematical model for simultaneous rescheduling of ships and cargo in

liner shipping is presented. The author mentions poor weather conditions, port

congestion, low port productivity, towage, tidal windows, and several other sources

of disruptions. Suggested recovery actions are among others changing the depar-

ture or arrival time at ports, transshipment of cargo between ports, and speed

adjustments. The problem is modeled as a flow problem restricted by a time and

space network, and is solved by a large neighborhood search heuristic.

The possible measures to handle disruptions in Brouer et al. (2013) are mostly

similar to the ones available in disruption management in offshore supply. However,

both Brouer et al. (2013) and Kjeldsen (2012) consider container liner shipping,

in which there are usually great distances between the ports. The problem of
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supplying offshore installations from an onshore supply depot involves very short

distances compared to the problems discussed above. This implies that a measure

such as increasing speed to reduce delays will be less effective than in liner shipping.

The possibility of chartering additional OSVs from the spot market is an additional

option available in disruption management in offshore supply. Also, the planning

horizons of the liner shipping problems are longer than in the problem discussed in

this report.

A significant amount of research has addressed disruption management in the

airline industry, motivated by the major costs associated with delayed aircraft. Air-

craft recovery problems are similar to disruption management problems in shipping

in several ways. Problems in the airline industry consider aircraft and passengers,

whereas shipping problems consider vessels and cargo, respectively. Both types of

problems are extensions of traditional vehicle routing problems, such as the vehi-

cle routing problem (VRP) and the vehicle routing problem with time windows

(VRPTW). In Dienst, Røpke, and Vaaben (2012), two different models for the

aircraft recovery problem is presented. The problem is represented by two multi-

commodity network flow models. Airline schedule recovery models and algorithms

considering aircraft, crew, and passenger recovery are proposed and demonstrated

in Bratu and Barnhart (2006). The main objective in the paper is to find the

optimal trade-off between airline operating costs and passenger delay costs. The

presented decision model is run with simulated airline operations, and it is shown

that by applying the model, significant reductions in passenger arrival delays can

be achieved without increasing operating costs.

In aircraft recovery problems, there is often no delay at the beginning of each

day, since few aircraft depart at night. The vessels discussed in this report are

however operating 24 hours a day, several days in a row. Thus, it is harder for the

vessels to get back on schedule compared to the aircraft.

In Huisman, Kroon, Lentink, and Vromans (2005), state-of-the-art operations

research models and techniques used in passenger railway transportation are pre-
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sented. As well as strategic, tactical, and operational planning, short-term planning

where disruptions, such as speed reductions due to maintenance, are encountered

are considered in the paper. This is similar to speed reductions due to harsh weather

conditions in the offshore supply service. The authors argue that heuristics should

be applied for real time control since decisions must be made within few minutes.

A mixed integer formulation representing the problem of rescheduling trains in case

of disrupted schedules is presented in Acuna-Agost, Michelon, Feillet, and Gueye

(2011). Due to the difficulty of solving the problem exactly, the authors propose

a limitation of the search space around the non-disrupted schedule by introducing

local-branching-type cuts.

In railway transportation, emphasis is put on avoiding conflicting allocation

of trains on railways and at stations. This may be compared to avoiding vessels

arriving at the same time at offshore installations or at the onshore supply depot.

Railway disruptions are similar to offshore supply disruptions in the sense that

speed reductions might be encountered due to unforeseen events. However, delays

on one train might propagate throughout the network and cause delays for other

trains. The delay of a vessel can only disrupt other vessels’ schedules when arriving

at the same time at the depot or when conflicting arrivals at offshore installations

occur.

3.2 Pickup and delivery problems

In the survey by Berbeglia, Cordeau, Gribkovskaia, and Laporte (2007), a classifi-

cation scheme for static pickup and delivery problems are given. The classification

is done by a three-field scheme; [structure|visits|vehicles]. The structure of the

problems can be many-to-many (M-M), one-to-many-to-one (1-M-1), or one-to-one

(1-1). (M-M) means that the vehicles transport goods from several customers to

several customers. In (1-M-1)-problems, vehicles depart from a central depot to

customers and finish its route back at the depot. Finally (1-1) means transporting
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something from one customer to another. Visits describes the way the pickup and

delivery operations are performed. One can either visit each customer once for

simultaneous pickup and delivery (PD), visit the customers up to two times (P-D),

or the customers might have either a pickup or a delivery (P/D). Finally, the last

field, vehicles, gives the number of vehicles used to handle the transportation of

goods in the problem. Whenever a field is undefined, "-" is used, and "m" is for

problems with multiple vehicles. The problem studied in this report can be classi-

fied as 1-M-1|P-D|m according to the scheme, i.e., a pickup and delivery problem

where all deliveries are transported from a central depot, all pickups are taken back

to the central depot, and multiple vehicles are used. Offshore installations might

be visited up to two times, either conducting pickup and delivery simultaneously

or at different points in time.

In Dell’Amico, Righini, and Salani (2006), the vehicle routing problem with

simultaneous distribution and collection is considered. It is described as reverse

logistics, and relates to environmental concerns for recycling and reuse of goods

and packages. Like the problem discussed in this report, the problem consists of

supplying customers with goods from a central depot, while also collecting the

waste goods and bringing it back to the depot. The problem can be classified as

1-M-1|PD|-. Customers are visited for simultaneous pickup and delivery, and the

problem is different from the one considered in this report, since customers are not

allowed to be visited twice. A branch-and-price solution method is proposed, and

both exact dynamic programming and state space relaxation are used to solve the

pricing subproblem. Suitable branching strategies are chosen for the exact solution

method and for the state space relaxation method. The state space works as a

projection by reducing the dimension of the problem. The paper concludes that

branch-and-price is a viable approach for problem instances of small and medium

size.

In Brønmo, Christiansen, Fagerholt, and Nygreen (2007), a problem that maxi-

mizes profits for a pickup and delivery problem of bulk cargoes in tramp shipping is
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considered. A set partitioning approach and a multi-start local search are presented

and compared. The problem can be classified as M-M|P/D|m, i.e a many-to-many

pickup and delivery problem where each node is either a pickup or a delivery node.

In Korsvik, Fagerholt, and Laporte (2009), the same planning problem as Brønmo

et al. (2007) is solved using a tabu search heuristic. In the search for solutions, they

make it possible to explore infeasible regions of the solution space. The best initial

solutions are used in the tabu search iterations and in the intensification phase.

The tabu search heuristic gives better solutions compared to the multi-start local

search proposed in Brønmo et al. (2007). The problem varies from the one con-

sidered in this report in different ways. It is a many-to-many problem and since

a node is either pickup or delivery, there is no possibility of a node being visited

twice or for simultaneous pickup and delivery.

In Gribkovskaia, Halskau, Laporte, and Vlcek (2007), a mathematical model

for the single vehicle routing problem with pickup and deliveries is introduced. In

this problem, the customers can either be visited twice where pickup and delivery

are performed separately or once where these two operations are combined, and

the vehicle must start at and return to a central depot. Thus, it is classified as

a 1-M-1|P-D|1-problem. It is mentioned that the linear relaxation yields a poor

lower bound and only small instances can be solved to optimality. The model

can however be used to analyze properties and shapes of the optimal solutions.

Also, the concepts of general solutions such as hamiltonian paths, double-paths,

and lasso paths are discussed. Since only small instances can be solved by the

mathematical model, heuristics are introduced. The solution concepts introduced

in the paper are feasible solutions for the model presented in this report as well.

A central depot is also used as in the problem considered in this report, and they

come to the same conclusion as many other papers have; that only small instances

can be solved without the use of heuristics.

The recent study presented in Polat, Kalayci, Kulak, and Günther (2015) con-

siders the VRP with simultaneous pickup and delivery (VRPSPD) with time limits.
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Using the classification by Berbeglia et al. (2007) this problem can be described as

1-M-1|PD|m. The problem described in this report is quite similar to the one in

Polat et al. (2015) except that in the problem considered in this report, it is possi-

ble to visit customers twice. In the problem in Polat et al. (2015) however, each of

the customers has to be served once for both pickup and delivery by a given fleet of

identical vehicles. The vehicles leave the central depot carrying the total amount

they have to deliver, returning with the total amount that was picked up. Total

voyage time is the sum of total travel time and service time at customers. Further-

more, the voyage must be finished before the maximum allowed voyage time, which

also is the case for the problem in this report. An initial solution is constructed

by use of the Clarke Wright savings algorithm, followed by a variable neighbor-

hood search (VNS) to improve the initial solution over several iterations. Finally,

a perturbation mechanism is used to escape local optima. The neighborhoods are

created using four inter-route and four intra-route operators.

The problem discussed in this report is a simultaneous pickup and delivery

problem, and can be related to the work mentioned above. As problem instances

increase in size, it might be difficult to solve large instances of the problem within

reasonable time using an exact method. On an operational planning level, solution

time is an important aspect, and solving the problem using a heuristic might be

the only viable option for all practical purposes.

Using the classification presented in Berbeglia et al. (2007), several of the papers

mentioned above have the same structure and/or visiting sequence as the problem

considered in this report. In Dell’Amico et al. (2006), a similar problem in reverse

logistics is studied, but the authors conclude, as in many other papers, that an

exact solution is only viable for small to medium sized instances. This motivates

the use of heuristics for solving larger problem instances in this report. The most

similar problem to the one discussed in this report is found in Polat et al. (2015),

since it is a simultaneous pickup and delivery problem with time limits on the

vehicles. The problems differ due to the number of times each customer might be
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visited and the possibility of chartering extra vessels. The recent publication, along

with the strong results provided by the proposed heuristic, makes it very relevant

for the work presented in this report.

3.3 Offshore supply

Several papers address ship routing and logistics in the upstream supply chain for

petroleum production. In Halvorsen-Weare et al. (2012), a strategic problem is

discussed, which consists of finding the optimal fleet composition at an onshore

supply depot for servicing a set of offshore installations, and of finding optimal

routes and schedules for OSVs. As opposed to the problem discussed in this report,

only outgoing supplies are considered and not cargo returning to the onshore supply

depot. The authors conclude that a voyage-based solution approach can be used

on real life problems faced by the oil and gas company Statoil.

In Fagerholt and Halvorsen-Weare (2011), the same problem as in Halvorsen-

Weare et al. (2012) is considered. The paper presents two different mathematical

models, first an arc-flow model and then a voyage-based approach of describing the

problem. Time windows representing opening hours at installations are included

in the models. Both model formulations are applied to several real life cases for

Statoil, including up to 14 offshore installations. In both Fagerholt and Halvorsen-

Weare (2011) and Halvorsen-Weare et al. (2012), a ship routing problem similar

to the one discussed in this report is considered. However, both papers regard

strategic decisions, while this report considers the ship routing problem from an

operational point of view. In the strategic problems, the OSV fleet composition is

to be decided, while it is given in the problem discussed in this report.

In Shyshou, Gribkovskaia, Laporte, and Fagerholt (2012), the same problem as

in Fagerholt and Halvorsen-Weare (2011) is studied. They present a large neigh-

borhood search heuristic. The large neighborhood search consists of rearranging a

large portion of the solution and hence exploring greater regions of the solutions
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space. The heuristic uses many procedures to improve the solutions, e.g. remov-

ing and inserting nodes in a route, reducing the number of voyages and vessels,

reducing voyage durations, and performing intra-voyage optimization.

Also in Maisiuk and Gribkovskaia (2014), the problem of deciding the optimal

fleet composition in offshore supply service is addressed. The paper presents a

discrete-event simulation model, where uncertainty in sailing and service duration

is considered. The study verifies an oil company’s decision of having four OSVs on

long-term contracts.

In Sopot and Gribkovskaia (2014), a pickup and delivery problem describing

logistics in the upstream supply chain for offshore oil and gas production is consid-

ered. A mathematical model for a single vehicle ship routing problem with multiple

commodities is presented, where all offshore installations are serviced from a single

depot. Thus, the problem can be classified as 1-M-1|P-D|1, as explained in Section

3.2. The problem is similar to the one considered in this report in its structure,

but it only considers one vessel and allows multiple visits since the solutions is

a non-hamiltonian route. The problem is solved using a metaheuristic, and it is

shown that the algorithm outperforms a commercial optimization solver in speed

and produces solutions of high quality.

In Gribkovskaia, Laporte, and Shlopak (2007) a pickup and delivery problem

consisting of servicing offshore oil and gas platforms in the Norwegian Sea is pre-

sented, where a single vessel is to conduct the entire voyage. The solution is ob-

tained by the use of a tabu search heuristic, since exact solution methods for pickup

and delivery problems are usually limited to small problem instances. Both this

and the problem mentioned above are described as one-to-many-to-one problems

where certain customers can be visited at most once, while others can be visited at

most twice on a voyage. Thus, the appropriate classification for the two problems

is 1-M-1|P-D|1.

Most of the existing research considering logistics in the upstream supply chain

for offshore oil and gas production regard strategic decisions, while this report
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discusses operational planning and challenges related to this. Significant costs are

related to the use of OSVs from the spot market and to disrupted routes and

schedules. These costs may be reduced if operational decisions are supported by

decision tools based on optimization methods. As the authors of several papers

conclude, the pickup and delivery problem is difficult to solve for large problem

instances. Thus, a solution approach applying heuristics may be an appropriate

measure towards increasing the solution speed.
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Chapter 4

Problem description

This chapter contains a detailed description of the problem studied in this report.

A short problem summary is given at the end of the chapter.

The problem studied in this report consists of deciding new routes and schedules

for OSVs, and how disruptions to planned routes and schedules can be handled.

Disruptions can be caused by adverse weather conditions, unexpected orders from

offshore installations, and uncertainty in the volume of orders. As a result of

disruptions, OSVs do often not sail and operate according to the planned routes

and schedules. A decision tool based on optimization methods to support the

operation of vessels may help to reduce the resulting negative effects. It may also

simplify the planning process and lead to faster decision making.

Planned departure time from the onshore supply depot and planned duration of

voyages are given as input to the problem. As mentioned in Section 2.2, a voyage

for an OSV starts at the onshore supply depot, visits a set of offshore installations

in a given sequence, and sails back to the depot. An example with two OSVs, one

voyage for each vessel, and four offshore installations is shown in Figure 4.1.

Chartering and operating OSVs cause major costs in the upstream supply chain

of offshore oil production. Since Statoil usually does not own any OSVs, the vessels
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Figure 4.1: Example voyages for two OSVs and four offshore installations.

are chartered from ship owning companies. Most OSVs supplying offshore instal-

lations are chartered on contracts for more than 45 days. Due to uncertainty in

demand and delays in ongoing operations, OSVs are also chartered from the spot

market on short-term, which is usually more expensive. According to employees in

Statoil, daily chartering costs for OSVs on long- or medium-term contracts typi-

cally lie between NOK 110 000 and NOK 140 000, while daily costs for chartering

vessels from the spot market typically lie between NOK 150 000 and NOK 400 000.

If the long-term fleet can be used more efficiently, and the use of spot market OSVs

can be reduced, significant cost reductions in the upstream supply chain may be

achieved.

It is preferable to utilize the capacity of each OSV to as large extent as possible

in order to minimize the number of vessels needed to serve the offshore installations.

Therefore, planning routes and schedules is done with emphasis on minimizing total

costs for fuel consumption and chartering of OSVs from the spot market. If an OSV

arrives at the onshore supply depot after the planned schedule due to disruptions,

it may affect the departure time of the next planned voyage. In addition, orders

that are postponed due to disruptions to the planned routes and schedules can

affect operations at the offshore installations.

26



Delayed supplies can be critical in the offshore production of oil and gas since

it in a worst-case scenario may lead to a halt in production. This is in general far

more expensive than chartering OSVs from the spot market. The costs of halt in

production is estimated to be around NOK 200 000 per hour, and if Statoil does

not own the rig, rental costs for an idle rig is added to this figure as well. There may

also be repercussions further down the supply chain. For example, if the refinery

at Tjeldbergodden is not supplied with gas from the Heidrun field, they have to

restart their production processes, which can take several days.

The offshore installations are either open for unloading and loading of cargo 24

hours a day or between 0700 and 1900. If an OSV arrives at an offshore installation

when it is closed for loading operations, the vessel will have to wait until the

installation opens the next day or sail to another installation. However, if the

loading operation has started within reasonable time before closing, some overtime

on the installation is accepted to complete the operation. The onshore supply

depot is open for loading operations 24 hours a day in order to serve all associated

offshore installations, but it is still only able to serve a limited number of vessels

per day.

Planned routes and schedules are based on estimated demand from each offshore

installation. An example illustrating a case with seven offshore installations and

three OSVs is shown i Figure 4.2. Both bulk cargo and cargo on deck demand

capacity from the OSVs. However, the installations are often flexible regarding

the amount of bulk products they receive. Thus, the amount of bulk products

delivered to each installation can be adjusted to fit the capacity of the OSVs. On

the contrary, the size of the containers on deck to be delivered cannot be adjusted.

Therefore, the OSV deck capacity is considered to be more limiting for routes and

schedules than the bulk capacity.

The deck capacity is reduced due to zones that must be free of cargo to allow

space for tubes to unload bulk, and there must be space between the cargoes to

allow the deckhands to move freely on the deck.
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Historical data show that deck capacity is usually not the binding resource

constraint when plans are developed at strategic level in Statoil. The plans are

rather limited by the maximum number of visits an OSV can make during a voy-

age. A maximum number of visits is introduced in order to reduce the probability

for deviations from the planned routes and schedules, caused by adverse weather

conditions, unexpected orders, and uncertainty in order volume. However, when

considering operational challenges, deck capacity is considered to be more impor-

tant than the maximum number of visits per voyage. Deck capacity is especially

an issue after a period of extreme weather, where the OSVs have been unable to

sail, and have to make up for unserved orders by utilizing their deck capacity to as

large extent as possible. In addition, more information is available in operational

planning than in strategic planning. Therefore, when routes are actually sailed,

the maximum number of visits may be ignored in order to serve as many orders as

possible, given new information about unexpected orders, weather conditions and

order volume.

Figure 4.2: Possible weekly schedule for three OSVs and seven offshore installations

(A-G). The dark squares illustrate the time needed for loading at the supply depot.

A set of voyages that could be considered in this problem is marked by thick lines.

Planning routes and schedules is complicated by uncertain parameters such

as demand and parameters affected by the weather conditions. Adverse weather
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conditions cause major challenges in the process of supplying offshore installations,

especially during the winter season. Sailing speed of the OSVs is reduced when

waves are higher than 3.5 meters according to Fagerholt and Halvorsen-Weare

(2011). Under extreme weather conditions the vessels may not be able to sail at

all. Loading and unloading operations at the offshore installations are even more

sensitive to weather than the sailing speed. Loading and unloading operations at

offshore installations are only possible until the waves reach a height of around

4-5 meters, or the winds exceed 40 knots, due to limitations on the cranes on the

installations.

The uncertainty of demand depends on what kind of operations the offshore

installations perform. While the supplies needed for regular extraction of oil and

gas is relatively predictable, drilling does more often cause urgent and unexpected

orders from platforms. The volume of the demand is also hard to predict, leading

to unused capacity or rerouting because of full vessels and to OSVs being needed

from the spot market. In case of urgent orders, even helicopters may be used to

supply the offshore installations. Furthermore, transshipment orders can occur

during the voyage of OSVs, meaning rerouting of the vessel to pick up goods at

one installation and deliver it at another installation.

The demand volume has an impact on the service time for the OSVs. It is

estimated that it is possible to do ten lifts from an OSV to an installation and ten

lifts from an installation to an OSV with a crane per hour. The time needed for

transferring bulk products vary, since heavier products, such as barite, take more

time to send through the tubes than for instance clean water. Different kinds of

bulk are stored in different tanks on board the OSV, and different tubes must be

used to transfer them between the vessel and the installation. This might require

the OSV to change their position at the installation, using more time. It is also

required that all bulk that is delivered from the installation to the OSV is analyzed,

documented, and accepted before loading can begin. If this is not done, the OSV

will not be able to unload the bulk when returning to the depot.
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Changing the crew on an offshore installation is done solely by helicopters and

is a costly operation. If an OSV is conducting loading operations while there is a

helicopter approaching, the OSV’s operation is usually cancelled due to the fact

that the helicopter pilots do not want vessels in the flight approach area. This

might result in rerouting of the OSV for the duration of the helicopter visit. The

exception is if the OSV has started transferring bulk products to or from the

installation, then the loading operation continues.

When delays, unexpected orders, or too high volume of orders occur, there are a

few different options for how to handle them. The goal is to choose the option that

minimizes total costs of OSV chartering, fuel consumption, and costs of negative

effects for production at the offshore installations. The different options are as

follows:

• Omit deliveries: Omitting visits to certain offshore installations may get

the OSV back on schedule for the remaining route in case of delays. However,

worst-case scenario when choosing this option is halt in production at an off-

shore installations because of missing supplies. It is therefore not preferable

to omit any deliveries, unless the supplies have low priority and the conse-

quences are insignificant for production.

• Speed changes: Speeding up OSVs may compensate for delays on a route,

but the applicability of this option is limited since weather conditions may

make it impossible to increase speed. If an increase of sailing speed is pos-

sible, there is still no guarantee that the OSV will reach the next offshore

installation in time, since the sailing distances are relatively short.

• Swap order of visits: Swapping the order in which offshore installations

are visited may be a desirable option in case one delivery is more urgent than

another. On the other hand, the offshore installations prefer to know the

time of deliveries in order to plan their own operations.
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• Utilize slack: The given schedules for the OSVs contain some slack to com-

pensate for uncertainty in the duration of sailing and loading operations. The

slack may be utilized if some delay on the remaining voyage can be allowed.

If there is available capacity on the OSV and it is still at the onshore supply

depot, this option may also be chosen in case of unexpected orders.

• Utilize free fleet capacity: In case of a delayed OSV and available capacity

on another OSV at the onshore supply depot, the latter may be used to supply

one or more of the offshore installations on the next voyage of the delayed

vessel. Utilization of free capacity should also be done in case of unexpected

orders or if the total volume of the orders is too big for one OSV to handle.

• Charter OSV from spot market: If there are no available OSVs in the

current fleet, additional ones may be chartered from the spot market. This

may be costly depending on the spot market price.

The planning horizon for the problem is defined by the duration of the voyages

sailed by the OSVs. Statoil has decided that planned duration of a voyage should

not be longer than two days if the voyage starts at Monday, Tuesday, Wednesday

or Thursday. If the voyage starts on either Friday or Saturday, the duration may

be three days or less. No voyages start on Sundays. When solving the problem, at

most one voyage for each OSV is considered.

Problem summary

The problem in this thesis considers deciding new routes and schedules in an op-

erational planning setting, and how to handle disruptions to current routes and

schedules for OSVs. Changing planned routes and schedules can be done by uti-

lizing the options listed above, or a combination of these. The planned operations

at offshore installations may be affected when the service of OSVs deviate from

the planned schedule. Simultaneously, significant reductions in sailing costs can
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be made by finding new routes for the OSVs, given disrupted sailing plans and

schedules. When solving the problem, the disadvantage of postponing the service

to offshore installations, delaying vessels, and costs related to sailing, loading oper-

ations, and chartering OSVs from the spot market should be balanced. Thus, the

first objective of the problem is to minimize sailing and service costs, and costs of

chartering OSVs from the spot market. The second objective is to minimize the

time OSVs arrive at the onshore supply depot after schedule. Finally, the third

objective is to maintain a sufficient service level for the offshore installations by

servicing as many of the planned orders as possible. The multi-objective problem

is constrained by the deck capacity of OSVs, the available time for OSVs, and the

number of available OSVs in the fleet.
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Mathematical formulation

In this chapter, the mathematical formulation of the problem considered in this

report is presented. The assumptions which the mathematical model is based on

are listed in Section 5.1. Then, in Section 5.2 the notation is introduced, and

finally, an arc-flow formulation is presented in Section 5.3.

5.1 Modeling assumptions

In the following, the assumptions made when developing the mathematical models

are listed. Some assumptions are made to reduce the computational complexity of

the problem, and some are made because of incomplete or uncertain information.

The assumptions are chosen with emphasis on not affecting the applicability of the

solution.

• The problem is modeled as a pickup and delivery problem. The mathematical

models presented in Fagerholt and Halvorsen-Weare (2011) assume that there

will be enough capacity to transport backload from the offshore installations

to the onshore supply depot. Since the problem discussed in this report

is seen from an operational perspective, and backload is about 75% of the
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outgoing supplies on average (Statoil, 2014a), the mathematical models will

take backload into account. The volume of backload varies, and may in some

cases be higher than the outgoing supplies.

• Each delivery and each pickup order will only be served by one vessel. In

theory, demanded cargo that is brought to offshore installations could be split

between several vessels. E.g., if one delivery order consists of two containers,

these could be transported by two different vessels. However, this is in most

real life cases not practical, and therefore it is reasonable to assume that each

order is served by one vessel only.

• It is assumed that each offshore installation will have at most one pickup

and one delivery request. If an installation places several pickup or delivery

orders, these can be combined into one order to fit the model, provided that

the combined order’s size does not exceed the vessel capacity.

• When an unexpected order is reported by an offshore installation, one pickup

and/or one delivery node can be added to the problem instance. If the offshore

installation has already placed an order, it can be sufficient to add the volume

of the new order to the first order. That is, if the OSV that is supposed to

service the first order has not left the onshore supply depot. If the OSV has

left the depot, one pickup and/or one delivery node should be added.

• In practice, the OSVs carry both cargo on deck and bulk cargo below deck.

According to OSV personnel, deck capacity is usually the binding capacity

resource. Therefore, bulk cargo is not considered in the mathematical model.

• Some of the offshore installations considered in the problem are only open

for loading operations during day time. To include this in the mathematical

models, time windows could have been introduced. Some Statoil represen-

tatives argue that the installations should be kept open at night, since this

is less expensive than having to adapt the schedules to the opening hours
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or having OSVs waiting for them to open. Thus, since all installations may

be open 24 hours a day in the future, time windows are not included when

modeling the problem in this report.

• The cost representing a loading operation is only represented by the fuel

consumption while an OSV is waiting by an offshore installation. In real

life, there are also costs related to lifting cargo between the vessel and the

installation, and to staff involved in the loading operations. These costs are

not significant and may be considered as fixed costs, therefore they are not

included in the model.

• The speed of the OSVs is assumed to be constant. In practice, the speed is

highly influenced by weather conditions, and the crew at each OSV is able to

adjust the speed to some extent if their vessel deviates from schedule. Since

the sailing distances for the OSVs are relatively small, this assumption is not

likely to affect the order in which installations are visited, and is therefore not

significant to the solution of the problem. To compensate for this assumption,

the estimated speed and travel times for each vessel can be changed due to

the current weather conditions when the model is solved on real life cases.

• In case the available fleet of OSVs is not sufficient to serve all orders, it is

possible to charter additional vessels from the spot market. If this is needed,

it is assumed that one OSV from the spot market will cover the remaining

orders that the fleet cannot serve. This assumption can easily be avoided

by adding additional variables to the mathematical model and to the set of

available OSVs from the spot market. More than one OSV from the spot

market will not be needed in most real life cases due to the short planning

horizon of the considered problem.

• The costs associated with chartering the long-term fleet is considered as sunk

when developing the mathematical model, since this report considers an op-
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erational problem in which the long-term fleet cannot be changed.

• The costs associated with postponing orders from offshore installations and

with OSVs arriving at the onshore supply depot after schedule are represented

in the mathematical model by adding penalty costs to the objective function.

The penalty cost parameters are estimates based on parameter testing and

advice from Statoil employees.

• In the similar problem discussed in Fagerholt and Halvorsen-Weare (2011)

and Halvorsen-Weare et al. (2012), the number of possible visits made by an

OSV during a voyage is restricted by an upper limit. In strategic planning,

the upper limit is introduced in order to increase the robustness of routes and

schedules, since a high number of visits during a voyage gives high uncertainty

in sailing times. In operational planning, the planned routes and schedules

can be less robust, since more information is available. Therefore, it is not

considered as reasonable to include the upper limit on the number of visits

in a voyage in the mathematical model.

• In order to use the mathematical formulation for voyages that have already

started, the variables representing the already sailed distances can be fixed.

5.2 Notation

The onshore supply depot and the offshore installations are represented by a net-

work of nodes. The set N = {0, ..., n+m} consists of all nodes in the network. The

set NP = {0, ..., n} contains all pickup nodes, where node 0 represents the depot

pickup node. The set ND = {n + 1, ..., n + m} contains all delivery nodes, where

node n+1 represents the depot delivery node. An offshore installation will have an

associated pickup node if transport of backload to the depot is demanded. Similar,

it will have an associated delivery node if delivery of supplies to the installation is

demanded. If offshore installations place urgent orders and the associated pickup
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and/or delivery nodes do not already exist in the network, the additional nodes

are added. If urgent orders are placed and the associated nodes already exist, the

urgent orders are added to the already existing orders. The set V = {1, ..., k + 1}

contains all available OSVs, where the OSV k+ 1 represents the one OSV from the

spot market.

The parameter CS
vij represents the costs associated with sailing from node i

to node j and servicing node j for OSV v. When an OSV is just chartered or

is to be delivered back to the company owning the vessel, additional preparation

and cleaning is needed. The associated cost can be added to CS
(k+1)0i for all i ∈

N \ {n + 1}. OSVs from the spot market are chartered for a number of whole

days, and the daily time charter rate is represented by CTC . The penalty cost

CR
i is associated with postponing the service to a node i. The cost induced by

a postponed pickup or delivery order depends on the importance and urgency of

each order. The penalty cost per hour when an OSV v arrives at the depot after

schedule is denoted by CD
v .

The size of an order for a delivery node i is denoted by the parameter Di. The

size of an order for a pickup node i is denoted by the parameter Pi. The size of

orders is measured in square meters, and Qv is the total deck capacity of OSV v

measured in square meters.

The time (hours) needed for sailing from node i to node j and servicing node

j for OSV v is denoted by Tvij . For all parameters T(k+1)0i, that is, the time

needed for the spot vessel k+ 1 to sail from the supply depot to any installation i,

additional time can be added for preparation and cleaning of the vessel.

The next possible departure time from the depot for OSV v is TMIN
v , and

TMAX
v is the planned arrival time at the depot for the next voyage for OSV v. The

OSV k+1 must be chartered for a whole number of time periods (days), where the

length of a time period is denoted by the parameter H. The parameter τ denotes

the maximum allowed delay for the OSVs in the long-term fleet.
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5.3 Arc-flow model

This section presents the arc-flow formulation, with variables, objective, and con-

straints, and a short model discussion.

The variable xvij equals 1 if OSV v sails from node i to node j, and 0 otherwise.

The support variable yvi equals 1 if OSV v visits node i, and 0 otherwise. If the

order at node i is postponed, the variable ui equals 1, and 0 otherwise. The cargo

load variables lvij equals the load measured in square meters on OSV v when sailing

from node i to node j, and if the arc is not sailed, it equals 0. The number of hours

OSV v arrives at the depot after schedule on the next voyage is represented by tDv .

The number of whole days that the OSV k + 1 from the spot market needs to be

chartered is denoted by tTC .

Objective

min
∑
v∈V

∑
i∈N

∑
j∈N

CS
vijxvij + CTCtTC +

∑
i∈N

CR
i ui +

∑
v∈V\{k+1}

CD
v t

D
v (5.1)

The objective function (5.1) consists of four parts. The first part summarizes

the costs related to sailing and servicing nodes for all OSVs and for all arcs in the

considered voyages. The second part express the variable cost related to chartering

an OSV from the spot market. The third part summarizes the costs associated

with orders that are postponed until a later voyage, and is included to maintain a

sufficient service level at the offshore installations. The fourth part summarizes the

costs related to OSVs in the long-term fleet that return to the onshore supply depot

after planned schedule, and is included to reduce the delay propagating through

consecutive voyages.

Sailing and service constraints∑
i∈N\{0}

xv0i = 1 v ∈ V (5.2)
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∑
i∈N\{n+1}

xvi(n+1) = 1 v ∈ V (5.3)

∑
i∈N\{0}

xvi0 = 0 v ∈ V (5.4)

∑
j∈N

xvji −
∑
j∈N

xvij = 0 v ∈ V, i ∈ N \ {0, n+ 1} (5.5)

yvi −
∑

j∈N\{i}

xvij = 0 v ∈ V, i ∈ N (5.6)

∑
v∈V

yvi + ui = 1 i ∈ N \ {0, n+ 1} (5.7)

Constraints (5.2) and (5.3) ensure that all voyages begin and end at the depot,

respectively. Constraints (5.4) ensure that no arcs end at the depot pickup node.

Constraints (5.5) are the sailing flow conservation constraints, and the support

variables are set by (5.6). Constraints (5.7) ensure that all nodes are either serviced

by an OSV or the order is postponed until a later voyage.

Capacity and cargo flow constraints

lvij ≤ (Qv − Pj)xvij v ∈ V, i ∈ N , j ∈ NP (5.8)

lvij ≤ Qvxvij v ∈ V, i ∈ N , j ∈ ND (5.9)

lvij ≥ Pixvij v ∈ V, i ∈ NP , j ∈ N (5.10)

lvij ≥ Djxvij v ∈ V, i ∈ N , j ∈ ND (5.11)

lvij ≥ (Pi +Dj)xvij v ∈ V, i ∈ NP , j ∈ ND (5.12)

∑
i∈N

lvij + Pjxvjh − lvjh +Qvxvjh ≤ Qv v ∈ V, j ∈ NP , h ∈ N (5.13)

∑
i∈N

lvij −Djxvjh − lvjh +Qvxvjh ≤ Qv v ∈ V, j ∈ ND, h ∈ N (5.14)

∑
j∈ND

Djyvj − lv0i +Qvxv0i ≤ Qv v ∈ V, i ∈ N (5.15)
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lvi(n+1) −
∑

j∈NP

Pjyvj +Qvxvi(n+1) ≤ Qv v ∈ V, i ∈ N (5.16)

Constraints (5.8) and (5.9) ensure that if an arc is sailed by an OSV, then the

load on board should not exceed the capacity of the vessel. Constraints (5.10) -

(5.12) give a lower bound on the load on board depending on whether an OSV

sails from a pickup node, to a delivery node, or both. Constraints (5.13) and (5.14)

are the cargo flow conservation constraints. Since the model does not distinguish

between cargo that is to be delivered to an installation and backload, constraints

(5.15) ensure that the total amount of cargo to be delivered to installations on

a voyage equals the load on board when the OSV leaves the depot. Similarly,

constraints (5.16), together with (5.8) and (5.9), ensure that the load on board,

when the OSV arrives at the depot, equals the total amount of picked up cargo on

a voyage.

Spot market OSV constraint

tTC ≥

∑
i∈N

∑
j∈N

T(k+1)ijx(k+1)ij

 1

H
(5.17)

If the spot market OSV is needed, constraint (5.17) calculates the time it is

used, and rounds up to the nearest whole day.

Time constraints

TMIN
v +

∑
i∈N

∑
j∈N

Tvijxvij − TMAX
v ≤ tDv v ∈ V \ {k + 1} (5.18)

tDv ≤ τ v ∈ V \ {k + 1} (5.19)

Constraints (5.18) set the delay variable, and constraints (5.19) assure that the

delay is no more than τ hours for each OSV in the long-term fleet. The model in

this report does not allow spot vessels to be delayed.
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Subtour eliminating constraints∑
i∈S

∑
j∈S

xvij ≤ |S| − 1 v ∈ V,S ⊂ N , |S| ≥ 2 (5.20)

Constraints (5.20) are the subtour eliminating constraints.

Binary, non-negativity and integer constraints

xvij ∈ {0, 1} v ∈ V, i ∈ N , j ∈ N (5.21)

yvi ∈ {0, 1} v ∈ V, i ∈ N (5.22)

ui ∈ {0, 1} i ∈ N (5.23)

lvij ≥ 0 v ∈ V, i ∈ N , j ∈ N (5.24)

tDv ≥ 0 v ∈ V \ {k + 1} (5.25)

tTC ∈ Z+ (5.26)

Constraints (5.21) - (5.26) are the binary, non-negativity, and integer con-

straints.

The load on deck of an OSV v sailing from node i to node j is denoted lvij . In

order to reduce the number of variables, the load on board an OSV v when leaving

a node i could instead be expressed as lvi. However, the first formulation is chosen,

since it may give a tighter formulation of the problem.

If an OSV v arrives before or after schedule at the onshore supply depot, the

parameter TMIN
v should be adjusted accordingly before the problem containing the

next voyage for OSV v is solved.

Consider a voyage sailed by OSV v containing the two nodes p ∈ NP and

d ∈ ND belonging to the same offshore installation. Assuming that the maximum

load carried by v along the voyage is li∗j∗ on arc (i∗, j∗). Then,
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li∗j∗ =
∑
i∈ΩP

Pi +
∑
i∈ΘD

Di,

where the set ΩP ⊆ NP is the set of pickup nodes visited before j∗, and

ΘD ⊆ ND is the set of delivery nodes visited after i∗. The positions of i∗ and j∗

are denoted by I and J , respectively. N and M indicate the positions of p and d

along the voyage, respectively, with N < M . Let l1 denote the component of li∗j∗

generated by the nodes p and d. Let l2 denote the component of li∗j∗ generated

by p and d if p is placed at position M and d is placed at position N , while the

positions of all the other nodes in the voyage remain unchanged.

Proposition 5.1. l2 ≤ l1, that is, visiting node p before node d never gives a better

solution than visiting d before p.

Proof.

J ≤ N =⇒ p /∈ ΩP ∧ d ∈ ΘD =⇒ l1 = l2 = Dd (5.27)

I ≥ N ∧ J ≤M =⇒ p ∈ ΩP ∧ d ∈ ΘD

=⇒ l1 = Pp +Dd ∧ l2 = 0 (5.28)

I ≥M =⇒ p ∈ ΩP ∧ d /∈ ΘD =⇒ l1 = l2 = Pp (5.29)

The values of l1 and l2 only differ in (5.28), where l2 < l1. Thus, Proposition

5.1 is correct.

All arcs going from the pickup node to the delivery node for the same offshore

installation are removed when implementing the model. This reduces the number

of variables and the number of possible voyages without reducing the possibility of

finding an optimal solution.
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Voyage-based solution method

The arc-flow formulation of the problem presented in the previous chapter is diffi-

cult to solve for problem instances of realistic size using commercial optimization

software. In order to solve real life problem instances, other solution approaches

must be applied. This chapter presents a solution method based on pregenera-

tion of voyages through dynamic programming and a voyage-based formulation of

the problem. The proposed solution method aims at reducing the computational

time needed to find optimal solutions. The voyage-based formulation is presented

in Section 6.1, followed by a description of the dynamic programming approach

applied for pregeneration of voyages in Section 6.2.

A similar voyage-based approach is presented in Fagerholt and Halvorsen-Weare

(2011) and Halvorsen-Weare et al. (2012), where a strategic offshore supply prob-

lem of finding optimal fleet composition is considered. In Halvorsen-Weare et al.

(2012), a full enumeration procedure for voyage generation is described. The ap-

proach presented in this report finds all possible voyages for all OSVs, and removes

all infeasible and dominated voyages. In Halvorsen-Weare et al. (2012), only the

duration is considered when finding the optimal path among a subset of nodes,

while both duration and costs are considered in the dynamic programming ap-
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proach presented here.

A schematic overview of the solution method is shown in Figure 6.1. Input

data based on real life problem instances are used to generate all possible voyages

that are feasible with respect to the available time and the deck capacity for each

vessel. The voyages are generated using dynamic programming. When all possible

voyages are found, the problem is solved using a voyage-based formulation of the

problem. When input parameters change, the input data should be updated, new

voyages should be generated, and the voyage-based model should be run again.

When changing the penalty costs for delayed OSVs and postponed orders, only the

input data for the voyage-based model needs to be updated, and the voyage-based

model can be run again with the same generated set of possible voyages.

Figure 6.1: Schematic overview for the voyage-based solution method.
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6.1 Voyage-based formulation

In this section the voyage-based formulation of the problem is presented, including

the notation that differs from the one used in the arc-flow formulation.

The set Rv contains all possible voyages for vessel v, where each voyage r is

feasible with respect to capacity, flow, and time restrictions. If node i is included

in voyage r, the parameter Ari equals 1, and 0 otherwise.

The cost associated with sailing and servicing all nodes in a voyage r for OSV v

is denoted by CS
vr. In order to reduce the number of constraints in the voyage-based

formulation, the time charter costs CTC , in addition to the fixed charter costs, are

added to CS
(k+1)r for all voyages r. Thus, the constraint (5.17) is not needed in the

voyage-based formulation.

The parameter TS
vr denotes the time needed for sailing and servicing all nodes

in a voyage r for OSV v.

The variable xvr equals 1 if OSV v sails voyage r, and 0 otherwise. As in the

arc-flow model, if the order at node i is postponed, the variable ui equals 1, and 0

otherwise. The number of hours OSV v arrives at the depot after planned arrival

time TMAX
v on the next voyage is represented by the variable tDv .

Objective

min
∑
v∈V

∑
r∈Rv

CS
vrxvr +

∑
i∈N

CR
i ui +

∑
v∈V\{k+1}

CD
v t

D
v (6.1)

The objective function (6.1) consists of three parts. The first part summarizes

the costs related to sailing the considered voyages for all OSVs. The second part

summarizes the costs associated with orders that are postponed until a later voyage.

The third part summarizes the costs related to OSVs that return to the onshore

supply depot after planned arrival.
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Sailing and service constraints∑
v∈V

∑
r∈Rv

Arixvr + ui = 1 i ∈ N \ {0, n+ 1} (6.2)

∑
r∈Rv

xvr ≤ 1 v ∈ V (6.3)

Constraints (6.2) ensure that all orders are either serviced by an OSV or post-

poned until a later voyage. Constraints (6.3) ensure that each OSV sails at most

one voyage.

Time constraints

TMIN
v +

∑
r∈Rv

TS
vrxvr − TMAX

v ≤ tDv v ∈ V \ {k + 1} (6.4)

Constraints (6.4) sets the delay variable for each OSV in the long-term fleet.

Binary and non-negativity constraints

xvr ∈ {0, 1} v ∈ V, r ∈ Rv (6.5)

ui ∈ {0, 1} i ∈ N (6.6)

tDv ≥ 0 v ∈ V \ {k + 1} (6.7)

Constraints (6.5) - (6.7) are the binary and non-negativity constraints.

6.2 Voyage generation using dynamic programming

Similar to the approach in Dell’Amico et al. (2006), pregeneration of all feasible

voyages Rv for each OSV v is performed by using dynamic programming. All

voyages are generated for each OSV v through |N | stages, where |N | is the number
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of nodes in the network. The chosen approach applies full enumeration of possible

paths with removal of infeasible and dominated voyages.

6.2.1 Label data

In each stage, new states are created. Each state is represented by a label containing

the following data:

• i - The current node

• R - The predecessor label

• V - The integer number denoting the nodes visited

• C - The sailing and service cost

• T - The sailing and service time

• πD - The deck capacity needed for deliveries and backload

• πP - The deck capacity needed for backload

A complete label is written

S = {i, R, V, C, T, πD, πP }.

Following, the current node i for state S is denoted by i(S). Similar notation is

used for the rest of the label data, that is R(S), V (S), C(S), T (S), πD(S) and

πP (S).

The nodes visited in each state is represented by an integer number V . When

a node i is visited, 2i is added to the number V . That is, node i is visited in S if

V modulo 2i+1 ≥ 2i.

To find the succession of the nodes in a path represented by V for the state S, all

predecessors of S with associated current nodes, are identified.
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The initial stage contains one initial state

S0 = {0, ∅, 20, 0, 0, 0, 0},

which is the state representing an OSV starting at the depot pickup node. The

initial state has no predecessor, which is denoted by ∅.

6.2.2 Label extension

When extending a label along an arc (i(S), j), a new state S′ is created at node

j. The label data are updated as follows:

i(S′) = j (6.8)

R(S′) = S (6.9)

V (S′) = V (S) + 2j (6.10)

C(S′) = C(S) + CS
vi(S)j (6.11)

T (S′) = T (S) + TS
vi(S)j (6.12)

πD(S′) =


max{πD(S) +Dj , π

P (S)}, if j ∈ ND

max{πD(S), πP (S) + Pj}, if j ∈ NP

(6.13)

πP (S′) =


πP (S), if j ∈ ND

πP (S) + Pj , if j ∈ NP

(6.14)

Equations (6.8) and (6.9) update the current node and the predecessor for S′.

The new current node is marked as visited in equation (6.10). The cost and time

data are updated in equations (6.11) and (6.12). The capacity data are updated in

equations (6.13) and (6.14) according to whether node j is a delivery or a pickup

node.

Figure 6.2 illustrates extension of states in a network with four nodes. An

example showing how the capacity data are updated along a path is given in Figure

6.3.
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Figure 6.2: Illustration of label extension with 4 nodes. The paths are denoted by

the subscript of each state S. All paths starts in node 0 and all final states end in

node 2, which are the depot pickup and delivery nodes, respectively.

Let the maximum load on voyage r be carried on arc (i∗, j∗). Then the maxi-

mum load on r is

li∗j∗ =
∑
j∈ΩP

Pj +
∑

j∈ΘD

Dj ,

where ΩP ⊆ NP is the set of pickup nodes already visited and ΘD ⊆ ND is the

set of delivery nodes not yet visited.

When the final state Sf is associated with r, πD(Sf ) equals the maximum load

carried by the OSV during the voyage.

Proposition 6.1.

πD(Sf ) =
∑
j∈ΩP

Pj +
∑

j∈ΘD

Dj ,

that is, πD(Sf ) equals the maximum load carried during voyage r.

Proof.

For each state with current node i,

πD = max{πD +Di, π
P + Pi},
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where Di = 0 if i ∈ NP and Pi = 0 if i ∈ ND. Whenever πD = πP , which implies

that the accumulated pickup so far is greater or equal to the accumulated deliveries

so far,

πD =
∑
j∈ΩP

Pj .

Thus, only the pickups before (i∗, j∗) is considered, and only the deliveries

after (i∗, j∗).

Consider the states S1 and S2 with current nodes i1 and i2, respectively. S1

is the predecessor of S2, and both states are predecessors of Sf . Let ND
f denote

the set of delivery nodes in the path of Sf . Assume that the nodes contained in r

are numbered after the sequence in which they are visited. Then, the load on deck

after visiting node i1 and i2, denoted by li1 and li2 , respectively, is

li1 =
∑

j∈ND
f

Dj −
∑

0≤j≤i1

Dj +
∑

0≤j≤i1

Pj , and (6.15)

li2 =
∑

j∈ND
f

Dj −
∑

0≤j≤i2

Dj +
∑

0≤j≤i2

Pj . (6.16)

Assume that either li1 or li2 is the maximum load on r. The difference in load is

li1 − li2 =
∑

i1<j≤i2

Pj −
∑

i1≤j≤i2

Dj (6.17)

If li1 > li2 , then

πD(S2) = max{πD(S1) +
∑

i1≤j≤i2

Dj , π
P (S1) +

∑
i1<j≤i2

Pj}

= πD(S1) +
∑

i1≤j≤i2

Dj , and

li∗j∗ =
∑

j∈ND
f

Dj −
∑

0≤j≤i1

Dj +
∑

0≤j≤i1

Pj

50



6.2. VOYAGE GENERATION USING DYNAMIC PROGRAMMING

If li2 > li1 , then

πD(S2) = max{πD(S1) +
∑

i1≤j≤i2

Dj , π
P (S1) +

∑
i1<j≤i2

Pj}

= πP (S1) +
∑

i1<j≤i2

Pj , and

li∗j∗ =
∑

j∈ND
f

Dj −
∑

0≤j≤i2

Dj +
∑

0≤j≤i2

Pj

Not depending on which of li1 and li2 is greatest, the maximum load can be

expressed as

li∗j∗ =
∑
j∈ΩP

Pj +
∑

j∈ΘD

Dj = πD(Sf ).

Thus, Proposition 6.1 is correct.

Additional remark; if node i∗ were a delivery node, then the load on board

before visiting i∗ would be greater than li∗j∗ . Thus, i∗ is a pickup node. Similar,

if j∗ were a pickup node, then the load on board after visiting j∗ would be greater

than li∗j∗ . Thus, j∗ is a delivery node.

An extension of state S to state S′ along an arc (i(S), j) is feasible if the

following inequalities hold:

V (S) mod 2j+1 < 2j (6.18)

i(S) 6= n+ 1 (6.19)

V (S) mod 2j
Sibling+1 < 2j

Sibling

, if j ∈ ND and j 6= n+ 1 (6.20)

T (S) + TS
vi(S)j ≤ T

MAX
v + τ − TMIN

v , if j = n+ 1 (6.21)

T (S) + TS
vi(S)j + TS

vj(n+1) ≤ T
MAX
v + τ − TMIN

v , if j 6= n+ 1 (6.22)

max{πD(S) +Dj , π
P (S)} ≤ Qv, if j ∈ ND (6.23)

max{πD(S), πP (S) + Pj} ≤ Qv, if j ∈ NP (6.24)

πP (S) ≤ Qv, if j ∈ ND (6.25)

πP (S) + Pj ≤ Qv, if j ∈ NP (6.26)
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Figure 6.3: Illustration showing how capacity data are updated during label exten-

sion. Requested delivery and backload size is given for each delivery and pickup

node, respectively. The current amount of cargo carried on deck of the OSV is

given for each arc.

If the inequality (6.18) holds, node j is not already visited in the path in state

S. No states having the depot delivery node n + 1 as the current node should be

extended. Thus, if the inequalty (6.19) does not hold, S′ is infeasible. Inequality

(6.20) assures that the pickup node should never be visited before the delivery node

for the same installation. A sibling of a delivery node is defined as the corresponding

pickup node of the installation, if one exists. Likewise, the sibling of a pickup node

is the delivery node of the installation. The sibling node of node i is denoted by

iSibling. As stated in inequality (6.21), the time needed to service the nodes in a

path sailed by OSV v should not exceed the time available to v. As in Chapter 5,

τ is the maximum allowed delay on a voyage. If node j is not the depot delivery

node, there should also be enough time available to sail back to the onshore supply

depot. This is assured by inequality (6.22). The inequalities (6.23) - (6.26) hold

if the load on deck at any point of the path does not exceed the available deck

capacity of the OSV.
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6.2.3 Label domination

At each stage, all states dominated by another state are identified and removed.

Label S1 dominates S2 if all feasible extensions of S2 are feasible for S1, and if

extending S2 to a set of nodes never give a better solution than extending S1 to

the same set of nodes. The label dominance criteria are:

Proposition 6.2. The label S1 dominates S2 if

V (S1) = V (S2), (6.27)

i(S1) = i(S2), (6.28)

C(S1) ≤ C(S2), (6.29)

T (S1) ≤ T (S2), (6.30)

πP (S1) ≤ πP (S2), (6.31)

and πD(S1) ≤ πD(S2). (6.32)

Proof.

Criterion (6.27) assures that S1 and S2 visit the same set of nodes. Also, (6.28)

assures that S1 and S2 end at node

i = i(S1) = i(S2).

Consider the partial path p′ starting at i and ending at the depot delivery node

n + 1. Let p1 and p2 be the complete paths obtained when extending S1 and S2

with p′, respectively. The cost of the (partial) path p is denoted C(p). The costs

associated with sailing and servicing nodes are separable and independent of the

nodes already visited. Therefore,

C(S1) ≤ C(S2) =⇒ C(S1) + C(p′) ≤ C(S2) + C(p′) =⇒ C(p1) ≤ C(p2).

Thus, criterion (6.29) is correct.

Similarly, the time needed for the (partial) path p is denoted T (p). The time

needed for sailing and servicing nodes is separable and independent of the nodes
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already visited. Therefore,

T (S1) ≤ T (S2) =⇒ T (S1) + T (p′) ≤ T (S2) + T (p′) =⇒ T (p1) ≤ T (p2),

and

T (p2) ≤ TMAX
v + τ − TMIN

v =⇒ T (p1) ≤ TMAX
v + τ − TMIN

v

With respect to time, extending S2 never gives a better solution than extending

S1 with the same partial path, and all extensions of S2 are feasible for S1. Thus,

criterion (6.30) is correct.

Let the accumulated backload of the nodes in the (partial) path p be denoted

πP (p). The capacity needed for carrying πP (p′) is independent of the nodes visited

before p′. Therefore,

πP (S1) ≤ πP (S2) =⇒ πP (S1) + πP (p′) ≤ πP (S2) + πP (p′)

=⇒ πP (p1) ≤ πP (p2),

and

πP (p2) ≤ Qv =⇒ πP (p1) ≤ Qv.

With respect to the capacity needed for pickups, all extensions of S2 are feasible

for S1. Thus, criterion (6.31) is correct.

The maximum needed capacity at the (partial) path p is denoted πD(p).

πD(p1) = max{πD(S1) +
∑

j∈ΘD

Dj ,
∑
j∈ΩP

Pj + πD(p′)}

πD(p2) = max{πD(S2) +
∑

j∈ΘD

Dj ,
∑
j∈ΩP

Pj + πD(p′)},

where ΘD is the set of delivery nodes visited in p′, and ΩP is the set of pickup

nodes visited in p1 and p2.

Since,

πD(S1) ≤ πD(S2) =⇒ πD(p1) ≤ πD(p2),
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πD(p2) ≤ Qv =⇒ πD(p1) ≤ Qv.

With respect to the capacity constraints, all extensions of S2 are feasible for S1.

Thus, criterion (6.32) is correct.

All the criteria are proven to be correct, thus Proposition 6.2 is correct.

If i(S1) and i(S2) are the depot delivery node n+1, S1 dominates S2 given only

criteria (6.27) - (6.30). Criteria (6.31) and (6.32) are only needed to make sure

that all feasible extensions of S2 are feasible for S1. However, no final states are

extended, and therefore, criteria (6.31) and (6.32) are not needed when dominating

final state labels.

The sequence in which the dominance criteria are performed is of significance

for the computational time of the algorithm. It is preferable to identify dominated

states as early as possible. Most of the states will not have visited the same set of

nodes, and therefore, the dominance criterion (6.27) is performed first. Similarly,

many of the states will not have the same current node. Consequently, (6.28) is

the second dominance criterion. The sequence of the remaining dominance criteria

(6.29) - (6.32) is not considered as significant to the computational time.

6.2.4 Pseudocode for voyage generation

Algorithm 6.1 shows simplified pseudocode for the generation of voyages. All states

are generated simultaneously for all OSVs. The feasibility of each state is deter-

mined by Algorithm 6.2, which returns a list with an element for each OSV v,

stating whether the state is feasible for v or not. If the state is not feasible for any

of the OSVs, the state is considered infeasible. If the state is feasible for at least

one of the OSVs, the state is considered feasible and is extended or added to the

set of final states for at least one of the OSVs. Each OSV has one associated set

of final states.

For each new state, Algorithm 6.3 checks whether the state dominates any of the

other states in the current stage, and whether the new state is dominated by any
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of the other states. If the new state is dominated by another state, the new state

will not dominate any existing states that are not already dominated. Therefore,

Algorithm 6.3 terminates as soon as a new state is identified as dominated, and

Algorithm 6.1 proceeds.

Algorithm 6.1 Pseudocode for dynamic voyage generation
1: procedure voyageGenerator

2: Create initial state

3: Add initial state to initial stage

4: k = 1

5: while k < |N | do

6: for all states in stage Mk do

7: for all nodes i in N do

8: if i is visited or

the depot delivery node is visited or

(i is a delivery node and the pickup node for the

same installation is visited) then

9: Next iteration

10: else if i is depot delivery node then

11: Create new final state

12: else

13: Create new state

14: end if

15: if the new state is feasible for one or more OSVs

(Algorithm 6.2) then

16: Add the new state to Mk+1

17: Find all states in Mk+1 dominated by the new state

18: or any state dominating the new state (Algorithm 6.3)
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19: end if

20: end for

21: end for

22: k = k + 1

23: Remove all dominated states from Mk

24: Add all new final states to the set of final states for each OSV

25: end while

26: Return all final states

27: end procedure

Algorithm 6.2 Pseudocode for the feasible state procedure
1: procedure feasibleState

2: for all OSVs v do

3: if current node is depot delivery node and

the time used exceeds the time available then

4: State not feasible for OSV v

else if the time used plus the time needed to sail back

to the depot exceeds the time available then

5: State not feasible for OSV v

else if needed delivery capacity > Qv then

6: State not feasible for OSV v

7: else if needed pickup capacity > Qv then

8: State not feasible for OSV v

9: else

10: State feasible for OSV v

11: end if

12: end for

13: Return feasibility for all OSVs

14: end procedure
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Algorithm 6.3 Pseudocode for the state domination procedure
1: procedure dominatedStates(State S, Stage Mk)

2: for all states R in Mk except S do

3: if S and R visit different nodes or

S and R have different current nodes then

4: Next iteration

5: end if

6: if S dominates R and R is not already dominated then

7: Dominate R

8: Next iteration

9: else if R dominates S then

10: Dominate S

11: Return S

12: else

13: Next iteration

14: end if

15: end for

16: Return dominatedstates

17: end procedure
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Chapter 7

A variable neighborhood

search heuristic

As the focus of this report is on operational planning and disruption management,

it is essential that the model used to solve the problem can provide good solutions

within a reasonable amount of time. In several of the papers mentioned in Chapter

3, the authors concluded that exact solution methods can provide optimal solu-

tions within reasonable time for small instances of pickup and delivery problems.

However, the solution time increases exponentially with the problem size. Thus,

larger instances are computationally difficult to solve with exact methods, such as

those presented in Chapter 5 and Chapther 6. Furthermore, computational mem-

ory imposes a restriction on how large instances the voyage-based method is able

to generate all voyages for. For instances that are too large for the exact methods

to handle, an alternative method is needed to provide good solutions in relatively

short time. A variable neighborhood search (VNS) heuristic for solving the prob-

lem is therefore proposed. The outline of this chapter is as follows; in Section 7.1,

the VNS is described at an aggregate level. In Section 7.2, the construction of

initial solutions is explained. In Section 7.3, the criteria for evaluating a solution

59



CHAPTER 7. A VARIABLE NEIGHBORHOOD SEARCH HEURISTIC

and methods for rearranging it are described. In Section 7.4, the local search and

the neighborhood operators are presented. Finally, in Section 7.5, a mechanism for

perturbing the solution is explained.

7.1 Heuristic overview

In this section, an overview of the proposed heuristic is given, which is a vari-

able neighborhood search (VNS) with perturbations. A perturbation consists of

destroying parts of the solution and rebuilding it in order to escape local optima.

Algorithm 7.1 shows, at an aggregate level, how the heuristic works. In this

algorithm, the outer loop controlled by the nmax parameter is referred to as the

rearrangement phase, while the inner loops controlled by the pmax and smax pa-

rameters are referred to as the improvement phase.

First, a construction heuristic is run to construct an initial solution which is

used as input for the VNS heuristic. How this is done is described in detail in

Section 7.2. Then, the rearrangement and improvement of the solution starts. The

number of times the improvement phase is run, is controlled in the rearrangement

phase, which is described in Section 7.3. In the rearrangement phase, the solution

is either rearranged, or accepted based on which criteria that are met in Algorithm

7.3.

Shaking and local search is run to improve the current best found solution in

the improvement phase. Shaking is a way to slightly disturb the current solution

and obtain a new starting point for the local search. This is done by performing a

neighborhood move and using the result as input for the local search. A solution

is an improvement if it has a lower total cost than the current best found solution,

and the constraints regarding deck capacity and total voyage duration are not

violated. In Section 7.4, the shaking and local search are further described. After

the shaking and local search is done, a check is performed to see if an improved

solution can be found by reassigning the voyages between the vessels, since this
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might reduce delays. Then, the solution is changed so that delivery nodes are

visited before pickup nodes belonging to the same installations if they are both

visited consecutively by the same vessel. This is done, since Proposition 5.1 states

that visiting the pickup node before the delivery node for the same installation

never gives a better solution than vice versa. If the shaking and local search fails

to find an improved solution after smax iterations, a perturbation is performed. A

detailed description of the perturbation is given in Section 7.5.

Algorithm 7.1 Pseudocode for the VNS heuristic
1: procedure VNS

2: Construct an initial solution (Algorithm 7.2)

3: for n = 0 to nmax do

4: Do a solution check and rearrange (Algorithm 7.3)

5: for p = 0 to pmax do

6: for s = 0 to smax do

7: run shaking (Algorithm 7.4) and local search (Algorithm 7.5)

8: Reassign voyages and change sibling order

9: if the new solution is better than the best found solution then

10: Update the best found solution

11: p← 0

12: s← 0

13: end if

14: end for

15: perturbate the best found solution (Algorithm 7.6)

16: end for
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17: if the new solution is better than the best found solution then

18: Update the best found solution

19: end if

20: end for

21: Return the best found solution

22: end procedure

7.2 Initial solution

In Algorithm 7.2, pseudocode of the procedure for finding the initial solution for the

VNS heuristic is presented. As in the multi-start local search heuristic presented

in Brønmo et al. (2007), the procedure for constructing an initial solution is based

on finding several solutions and picking the best one as the initial solution.

The following is done imax/2 number of times to create one new solution each

time. The algorithm starts by making sure all vessels have the depot pickup and

delivery node as their start and end node, respectively. Then, a random vessel

and a random delivery node is picked. The vessel might be an OSV in the current

fleet or a spot vessel. The delivery node is added to the vessel’s route if it gives

a feasible solution. In a feasible solution, the vessel capacity and time restrictions

are not violated. Then, the delivery node’s sibling, if one exists, is added after the

mentioned node if it also gives a feasible solution. As mentioned in Section 6.2.2,

sibling nodes are defined as a pickup node and a delivery node belonging to the

same installation. This is continued until the all delivery nodes are added, i.e. the

delivery nodes list is empty, or no nodes are added because of infeasibility for m

iterations. Then, the remainders in the pickup node list are added in the same way.

If there exist nodes which are not added to the solution, these are added to the

solution’s postponed nodes list. Afterwards, the same procedure is repeated imax/2

number of times, but this time nodes are only added to OSVs in the long-term

fleet, not the spot vessel. This is done to help the heuristic find solutions where the
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spot vessel is not used, since this might be the solution with lowest cost, especially

for instances with no disruptions.

Thus, in Algorithm 7.2, imax solutions are created and every solution is saved in

a list L. In the end of Algorithm 7.2, L is iterated, and the solution with lowest cost

is returned. This approach is quite similar to how the initial solution in the tabu

search heuristic in Korsvik et al. (2009) is constructed. Here, cargoes are assigned

to randomly selected vessels, but unlike in Algorithm 7.2, the vessel capacity and

time constraints may be violated.

Algorithm 7.2 Pseudocode for constructing an initial solution
1: procedure Initial solution

2: L is a list of initial solutions

3: counter = 0

4: for i = 0 to imax/2 do

5: Create a new solution and add the depot in the start and end of to every

vessel’s voyage.

6: while delivery nodes list is not empty and counter < m do

7: Add a random delivery node to a random vessel’s voyage

and remove it from the delivery nodes list if it gives a feasible

solution. Then, also add the node’s sibling to the vessel’s voyage

and remove it from the pickup nodes list if it gives a feasible solution.

If no nodes are added, increase counter by 1.

8: end while

9: counter = 0

10: while pickup nodes list is not empty and counter < m do

11: Add a random pickup node to a random vessel’s voyage and remove

it from the pickup nodes list if it results in a feasible solution.

If no node is added increase counter by 1.

12: end while
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13: if some nodes are not added to any vessel’s voyage then

14: Add these nodes to the solution’s postponed nodes list.

15: end if

16: Add solution to L

17: end for

18: Repeat line 3-17, but this time only add nodes to OSVs on long term

contract.

19: Find the solution with lowest cost in L, including the cost of postponing

nodes, and return this solution.

20: end procedure

7.3 Check and rearrange

Postponing orders is a possible option for reducing the delay on a vessel’s return

time to the onshore depot. Delays might propagate in the weekly schedule and

cause significant costs for Statoil. Furthermore, in the cases of increased loads, it

might not be possible to service all installations within the planning period due

to capacity restrictions on the vessels, and some orders might be postponed. The

rearranging of a solution is based on which criteria the solution fulfills. If there are

delays, the following two possibilities exist:

• Placing two sibling nodes that were separated, together. Siblings are

separated if they are placed on different vessels or if one of them is postponed.

If the siblings are visited on the same voyage, but not subsequently, they

are not considered as separated. If the heuristic has not tried to move a

separated node before, according to a tabu list, it is moved to its sibling.

This is done until all the separated siblings have been tried to be reunited.

This rearrangement is denoted sibling reunion in Algorithm 7.3.

• A sibling node pair can be moved to another vessel. This is done by

checking all voyages and finding the node that is furthest away from all other
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nodes in its voyage. That node is moved along with its sibling, regardless of

where the sibling is located. They are moved to a voyage that is not the one

where the node furthest away was located. The voyage chosen is where the

distance from the sibling pair to all other nodes in that voyage is the shortest.

A tabu list is used to keep track of which nodes have been tried to be moved,

so no nodes are being moved more than one time. This rearrangement is

denoted Move sibling pairs in Algorithm 7.3.

If the solution contains postponed nodes, the following two possibilities exists

• Exchanging a node that is postponed with a node that is currently

in a voyage. This is done by finding the non-postponed node with the

highest load, and exchanging its place with the postponed node with the

lowest load. Since a node with high load is replaced by a node with low load

the total load of the voyage can be reduced. This can open for the possibility

of reinserting more postponed nodes with low loads to the voyages later. This

might lead to fewer postponed nodes, which in this model will most likely

result in a lower objective value. This is tried until 0.4 x nmax unsuccessful

exchanges have taken place, and a tabu list is used to not exchange the same

nodes more than one time. This rearrangement is denoted Drop and reinsert

in Algorithm 7.3.

• Reinserting a postponed node. All positions in all voyages are tried,

and the best position that is also feasible, is chosen. This rearrangement is

denoted reinsert in Algorithm 7.3. If no feasible position is found, no more

reinserting is done, and the heuristic finishes. Also here, a tabu list is used

to ensure that all nodes are being tried reinserted exactly one time.

If the solution is neither delayed nor has any postponed nodes, the improvement

phase of Algorithm 7.1 is run three times, this is ensured in line 21 in Algorithm

7.3. Here, the criteria for which rearrangement that is chosen is also shown.
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Algorithm 7.3 Pseudocode for checking and rearranging a solution
1: procedure Solution check and rearrange

2: if n > 0 and the best found solution has delay then

3: Do sibling reunion

4: if all nodes has been tried in sibling reunion then

5: Move sibling pairs a maximum of nmax/2 times

6: end if

7: else if n > 0 and any nodes are postponed in the best found solution then

8: Drop and reinsert

9: if an improved solution is found then

10: n← 1

11: else if an improvement is not found after 0.4 x nmax attempts then

12: Try to reinsert a postponed node if it is not in the tabu list, and add

it to the tabu list if one is found.

13: if n = nmax and all nodes have not been tried reinserted then

14: n← n− 1

15: end if

16: if no node can be feasibly reinserted then

17: return the best found solution

18: end if

19: end if

20: else

21: nmax ← 2

22: end if

23: end procedure
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7.4 Shaking and local search

The shaking and local search use a VNS structure by changing the neighborhood

operator used to explore the solution space. The use of shaking to generate new

starting points for the local search was chosen due to the similar implementation

described in Polat et al. (2015), which gave high quality solutions for a VRP with

simultaneous pickup and delivery. The shaking decides a search direction, and the

solutions obtained by the shaking are further evaluated using a local search in order

to explore new promising neighborhoods of the current solution.

Since a local optima for one neighborhood structure might not be optimal for

another neighborhood structure, a larger part of the solution space is searched

before a local optima is reached, than what would have been explored with a

single neighborhood structure. When a local optima is reached with respect to all

neighborhoods defined, the solution is perturbed.

The implementation described in this report employs nine neighborhood struc-

tures - four intra-route operators that move nodes within a given route, and five

inter-route operators that move nodes between two different routes. In the fol-

lowing, move and operator are used interchangeably when referring to the neigh-

borhood structures described below. The pseudocode for the shaking is given in

Algorithm 7.4, and the neighborhood structures employed are shown in Figure 7.1

and subsequently explained below. Many of the moves described are the same as

the ones described in Caseau and Laburthe (1999), Brønmo et al. (2007), Korsvik

et al. (2009), and Polat et al. (2015). The implementation of the moves described

in this report uses a large degree of randomness in the selection of which vessels,

nodes, and positions that are used in each move.

The intra-route operators used are 2-opt, 3-opt, swap and insert :

• The 2-opt move takes two random nodes from a voyage, removes one edge

from each of these that are not neighboring edges, reconnects the graph, and

switches the direction of visit of the intermediate nodes. In Figure 7.1a), the
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edges (1,2) and (4,5) are deleted and replaced with (1,4) and (2,5). Note that

the direction of visits for nodes 2 through 4 are reversed.

• 3-opt is similar to the 2-opt, but instead three random nodes are selected, one

edge is removed from each node (again, the edges are not neighboring), and

the graph is reconnected. The intermediate nodes between two of the chosen

nodes has their direction of visit reversed. In Figure 7.1b) the edges (0,1),

(2,3) and (5,6) are deleted and replaced with (0,5), (3,1) and (2,6). Similar

to the 2-opt case, the direction of visit for nodes 3 through 5 are reversed.

• Swap takes two random nodes in a voyage, and swaps their location in the

sequence of visits. In Figure 7.1c), nodes 3 and 4 are swapped.

• The insert operator takes a random node, removes it from a voyage, and

inserts it in another random place in the same voyage. In Figure 7.1d), node

4 is inserted between nodes 1 and 2.

The inter-route operators are exchange, cross, shift, replace and the operator

the authors have called sibling mover.

• Exchange takes a random number m of sequential nodes from one voyage

and exchanges them with n nodes from another voyage, which is randomly

chosen to be either m or m-1. In Figure 7.1e), m is set to 2 and n to 1, and

nodes 1 and 2 from the first voyage is exchanged with node 7 node from the

second voyage.

• The cross operator works by deleting the edges between two consecutive nodes

in two different voyages, and reconnecting the voyages with each other. In

Figure 7.1f), edges (2,3) and (5,6) are deleted and replaced with (2,6) and

(5,3)

• Shift removes a random node from a voyage, and inserts it into a random

location in another voyage. In Figure 7.1g), node 1 is taken from the first
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voyage and inserted between nodes 5 and 6 in the second voyage.

• Replace takes one node randomly from two different voyages and exchanges

their locations. In Figure 7.1h), nodes 1 and 6 are exchanged.

• Sibling mover does the same as the sibling mover explained in Section 7.3

only with a few modifications. One of the differences is that a random vessel

is chosen instead of investigating all vessels. The node furthest away from

the other nodes within this vessel’s voyage is chosen as the node to be moved.

As in Section 7.3 the node’s sibling is also moved (if it exists) regardless of

which vessel it is currently serviced by. The reinsering of the sibling pair is

conducted the same way as in Section 7.3. Sibling mover is not included in

Figure 7.1 since it can be seen as a sophisticated Shift (possibly shifting two

nodes instead of one). Even though almost the same procedure is done in

Algorithm 7.3, the authors think it is such an important move that it also

should be done in the shaking and local search. One important thing to

notice is that Sibling mover is only done if some of the vessels in the initial

solution are delayed. This is because Sibling mover uses the sailing times to

decide which node to move, and this is most applicable for instances where

the vessels are delayed.

The neighborhood moves described above (except sibling mover) are done in two

different manners depending on whether the move is performed by an intra-route

or an inter-route operator. For intra-route moves it is done by selecting a random

vessel and performing the move corresponding to the neighborhood structure. For

inter-route moves, two different vessels are randomly selected and the move is

performed on the voyages of the two vessels.

The aim of the shaking is as mentioned earlier to provide a search direction

and thus obtain a new starting point for a local search, and help escape some of

the local optima. This operation is similar to that described in Polat et al. (2015)

since the shaking is integrated with the local search.
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Figure 7.1: Neighborhood structures used in shaking and local search. Left: intra-

route operators. Right: inter-route operators.
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Algorithm 7.4 Pseudocode for the shaking
1: procedure Shaking

2: for k = 0 to kmax do

3: Find a solution in the kth neighborhood of the current solution using

an inter-route or intra-route operator

4: if the new solution is better than the best found solution then

5: Update the best found solution

6: k ← 0

7: else

8: run local search (Algorithm 7.5)

9: if the new solution from Algorithm 7.5 is better than the best found

in this run then

10: Update the best found solution

11: k ← 0

12: end if

13: end if

14: end for

15: Return the best found solution

16: end procedure

First in the shaking in Algorithm 7.4, a solution in one of the k neighborhoods of

the current solution is found by use of one of the neighborhood operator described

above. The neighborhood operators are numbered from zero to eight, e.g. if k = 5,

the neighborhood operator numbered five is chosen. If the neighborhood operator

that was tried in the shaking step results in an improved solution, the move is

performed, the best found solution is updated, and the shaking starts with its

first operator again. If the move is non-improving, the move is still performed,

and a local search, described in Algorithm 7.5, is run on the solution obtained

by performing the move. This is done to further explore the neighborhood for

71



CHAPTER 7. A VARIABLE NEIGHBORHOOD SEARCH HEURISTIC

promising solutions. The solution returned from the local search is checked against

the best found solution in the shaking, and if the moves from the local search are

improving, the moves are performed, the best found solution is updated, and the

shaking restarts from its first operator. Otherwise, the shaking continues with its

next operator.

The local search uses the same neighborhood operators in the same order as

the shaking, but the local search never starts from the first operator if an improved

solution is found. The local search employs the moves sequentially, updates the

solution after an improving move is performed, and returns the best solution it

finds.

Algorithm 7.5 Pseudocode for the local search
1: procedure LocalSearch

2: for m = 0 to mmax do

3: Find a solution in the mth neighborhood of the current solution using

an inter-route or intra-route operator

4: if the new solution is better than the best found solution

then

5: Update the best found solution

6: end if

7: end for

8: Return the best found solution

9: end procedure

7.5 Perturbation - destroy and repair

The shaking and local search might get stuck in a local optima. To escape a local

optima, a perturbation of the current solution is needed. A methodology which is

based on the ejection chain described in Subramanian, Drummond, Bentes, Ochi,

and Farias (2010) is therefore proposed. Pseudocode for the perturbation is given
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in Algorithm 7.6.

The ejection chain works by selecting a random node from the first vessel in the

solution, if it has any nodes other than the depot nodes. If the sibling of the chosen

node is on the same vessel, it is also selected. The node(s) are then removed from

the chosen vessel, and inserted into the next vessel in the solution. Sibling nodes

are moved together since they in most real life cases would be visited at the same

time. The procedure continues with the remaining vessels, and for the last vessel

in the solution, any removed nodes are inserted into the first vessel. The ejection

chain is illustrated in Figure 7.2.

This procedure can result in infeasible solutions since the voyage duration and

capacity constraints are not checked in the perturbation. However, it might give the

opportunity of exploring new areas of the search space that have not previously

been visited. It is important to ensure that the degree of the solution that is

destroyed is not too low or too high. A low ratio might not cause large enough

parts of the solution to be changed, resulting in unexplored areas of the solution

space not being searched. A high ratio might cause the solution to change so much

that the model end up re-optimizing instead of improving. Algorithm 7.6 ensures

that parts of the solution are changed, but the main structure is not altered.

Figure 7.2: Illustration of how the ejection chain works.
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Algorithm 7.6 Pseudocode for the perturbation
1: procedure Ejection chain

2: for i = 0, i ≤number of vessels do

3: if vessel i contains nodes other than depot then

4: Remove a random node from the vessel

5: if the sibling is on the same vessel then

6: Remove the sibling from the vessel

7: end if

8: else

9: Continue to next vessel

10: end if

11: if i is the last vessel in the list then

12: Insert the removed node(s) into the first vessel

13: else

14: Insert the removed node(s) into vessel i+ 1

15: end if

16: end for

17: end procedure
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Chapter 8

Computational study

In this chapter, the computational study performed with the arc-flow model, the

voyage-based model, and the heuristic is presented. First, the test instances and

parameter values relevant to these solution methods are described in Section 8.1.

In Section 8.2, a summary of the penalty cost and parameter testing is given. A

comparison of the solution methods is given in Section 8.3. In Section 8.4, detailed

examples of solutions found by the heuristic are examined.

The tests are conducted on a computer running Windows 7 with an Intel i7-

3770 3.40 GHz CPU and 16 GB of RAM. All Java code is run in Eclipse Luna

(Eclipse.org, 2015) with Java Development Kit 1.7.0. The exact models are im-

plemented in Xpress-IVE 1.24.04 with Xpress-Mosel 3.6.0 and solved with Xpress-

Optimizer 21.01.04 (Fico.com, 2015).

8.1 Test instances

The test instances are based on data supplied by Statoil. Each test instance consists

of an onshore supply depot and a set of offshore installations. The pickup and

delivery requests placed by the offshore installations are represented as pickup and

delivery nodes in each of the test instances. The depot is also represented by two
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nodes, one pickup node where the vessels pick up the offshore installations’ demand

when the voyage starts, and one delivery node where the vessels return with the

backload from the installations in the end of the voyage.

As of today, each of the onshore supply depots services up to 13 offshore in-

stallations, i.e. 28 nodes including the depot. The model is tested with various

instances with a small number of installations and close to the current maximum

number of installations. After a planned reorganization of the offshore supply ser-

vice in Statoil, one onshore supply depot (Mongstad) will serve up to 26 offshore

installations (i.e. 54 nodes). Therefore, larger instances are presented and tested

to see how the heuristic handles more nodes than what is realistic today.

In the problem instances tested, the planning horizon has a duration of two to

three days. All offshore installations are not always scheduled to be serviced within

this planning horizon. Therefore, some of the problem instances of realistic size do

not include all installations associated with a given onshore supply depot.

The parameters used in the test instances are:

• The OSV fleet size, which is varying between two and six OSVs, includ-

ing the spot vessel, depending on the onshore supply depot and how many

installations that are to be serviced.

• The daily cost of chartering an OSV from the spot market, is calcu-

lated by finding the average spot market price, which is NOK 275 000/day.

The spot market prices are estimates provided by Statoil, and should be

adjusted to current prices when the model is used in real life.

• The fixed charter cost, which is the cost associated with preparing a newly

chartered spot vessel or a spot vessel that is to be delivered back to the

company owning the vessel. Some bulk cargo requires preparation of tanks

before it is brought to installations. When a spot vessel is to be returned,

the tanks must be cleaned to remove the remains of bulk materials. Based

on estimates provided by Statoil, the cost is set at NOK 45 320.
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• The cost for postponing the ordered service to a node. Each order has

a priority that reflects how expensive it is to postpone. Higher priority results

in higher postpone costs. For the instances tested, 20% of the installations

are assumed to have high priority, while the rest of the installations have

normal priority. This penalty cost is further discussed in Section 8.2.

• The hourly cost of an OSV arriving at the onshore supply depot

after its schedule. This penalty cost is also further discussed in Section

8.2.

• The amount of deck capacity per order, which is drawn from a truncated

normal distribution with a mean of 100m2 per order for outgoing supplies and

80m2 for backload. The standard deviation is 50 m2 and 40 m2, respectively.

The minimum and maximum values of the truncation is 1 m2 and 250 m2,

respectively.

• The deck capacity for each OSV, which is set at 1 000 m2 for all vessels

based on information provided by Statoil.

• The time needed for sailing between and servicing nodes. The time

needed is calculated with a sailing speed of ten knots, known as the environ-

mental speed of the vessels. The planned service time for each node varies

between one and three hours.

• The costs of sailing between and servicing nodes. The costs are cal-

culated by assuming a fuel consumption of 12 m3 per day at environmental

speed with the costs of marine gas oil at NOK 10 071 per m3. The fuel

consumption is assumed to be 6 m3 per day when the vessels service instal-

lations or are docked at the onshore supply depot, which is also included in

the calculations. All numbers used here are provided by Statoil.

• The planned departure and arrival times at the depot. The available

time for each vessel is 72 hours or less in the cases without disruptions. The
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solutions to the instances without disruptions are used to define the time

limits for the instances with disruptions in order to see the delays caused by

the disruptions. The available time for the spot vessel is 72 hours both in the

cases with and without disruptions.

In the following sections, several parameters are tuned, and the different models

are compared. The sets of test instances used for testing are described below:

• In the first part of Section 8.2, a summary of the tests conducted to de-

cide the postpone and delay cost parameters used in the input data is given.

The parameters are tested for the three supply depots Mongstad, Florø, and

Ågotnes, which service 13, 13, and 12 installations, respectively. The in-

stances have close to the maximum number of installations serviced from the

depots today, and are shown in Table 8.1.

• A summary of the heuristic parameter tuning is given in the remainder of

Section 8.2. To find different parameters for instances of different sizes, one

small, one medium, and one large instance are used, as shown in Table 8.2.

• In Section 8.3, the performance of the proposed solution methods are com-

pared. Since there are limitations on the exact models regarding the size

of instances they are able to solve within reasonable time, several small in-

stances are tested in order to compare the performance of the exact methods

and the heuristic. In addition, larger instances are tested to see how the

heuristic performs on today’s maximum number of nodes and future possible

planning cases. The instances used in Section 8.3 are shown in Table 8.3.

In Tables 8.1-8.3, the size of the instances are specified. The small (S), medium

(M), and large (L) classification is used to set the value of different parameters in

Section 8.2. The classification is set based on the number of nodes in the instance.

In addition to the non-disrupted test instances, the models are tested with the

following kinds of disruptions:
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• Reduced sailing speed due to adverse weather conditions. This is done by

reducing the speed of each vessel from ten to five knots, and thus, increasing

the sailing time. The increase in sailing time will also affect the sailing costs.

The ID for these instances will have a superscript "S" for speed, such asMS
22.

• High order volumes, which often is the case after periods where adverse

weather conditions have made offshore supply impossible or too costly. This

is done by setting the demand and backload amount to the triple of the size

used in the non-disrupted case to ensure that deck capacity becomes a binding

constraint. The ID for these instances will have a superscript "L" for load,

such as ML
22.

The reason for this choice of disruptions is that both speed reduction and higher

demand and backload will affect the solution enough to test the model’s behavior

regarding delay and postponing. Instances with IDs without superscript are non-

disrupted. Disruption with an extra order (node) would only delay a vessel a couple

of hours and is thus not tested in this report. It is though tested for one instance

in Section 8.3, that is Å19. This instance is similar to Å18, only one extra delivery

node is added. It is included because it is the largest instance without deck capacity

as a binding resource that could be solved using the voyage-based solution method.

ID Depot # Nodes Size # OSVs

M22 Mongstad 22 M 3

F24 Florø 24 M 3

Å26 Ågotnes 26 M 4

Table 8.1: Instances used to test the delay cost and the postpone cost in Section

8.2. #OSVs includes one spot vessel.
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ID Depot # Nodes Size # OSVs

M12 Mongstad 12 S 2

F24 Florø 24 M 3

M42 Mongstad 42 L 5

Table 8.2: Instances used to tune heuristic parameters in Section 8.2. #OSVs

includes one spot vessel.

ID Depot # Nodes Size # OSVs

M10 Mongstad 10 S 2

M12 Mongstad 12 S 2

Å14 Ågotnes 14 S 2

F16 Florø 16 S 2

Å18 Ågotnes 18 M 3

M22 Mongstad 22 M 3

F24 Florø 24 M 3

Å26 Ågotnes 26 M 4

M42 Mongstad 42 L 5

M54 Mongstad 54 L 6

Table 8.3: Instances used to compare models in Section 8.3. #OSVs includes one

spot vessel.

8.2 Penalty cost testing and heuristic parameter

summary

This section gives a brief summary of the parameter values chosen for the input

data and for the heuristic. Detailed results from the tests conducted are given in

Appendix B. The parameters that are set in this section are as follows:
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• CD
v - the delay cost.

• CR
i - the postpone cost.

• pmax - the maximum number of perturbations.

• smax - the maximum number of shakings.

• nmax - the maximum number of times a solution is checked and rearranged.

• imax - the number of initial solutions.

• The order in which the neighborhood move operators described in Section

7.4 are performed.

In this section, the instances described in Table 8.1 are used to test the delay

and postpone costs, while the instances described in Table 8.2 are used to test the

remaining parameters.

The instances used to test the postpone and delay costs were chosen since they

service close to the maximum amount of installations serviced by the onshore depots

at the time of writing. In addition, different depots are used to ensure that the

costs are not tailored to a single depot. The authors have defined acceptable and

unacceptable solutions when testing these two parameters, and the definitions can

be found in Appendix B.1. Solutions that were deemed acceptable by the authors

were found for high values of the two parameters, with postpone costs at NOK 200

000 for orders with normal priority and delay costs at NOK 50 000. For orders

with higher priority the postpone costs are higher, details for this can found in

Appendix B.1. These values are used for the remaining testing described in this

report. It is important to note that these costs are fictional and only meant to

illustrate that there are negative effects related to postponing orders and arriving

at the depot after the planned schedule. They do not reflect any actual costs that

occur in case of postponements or delays.

81



CHAPTER 8. COMPUTATIONAL STUDY

The parameters pmax and smax that control the number of perturbations and

shakings, respectively, were tuned simultaneously. This was done because these

two parameters both affect how many times perturbation, and shaking and local

search is run, and therefore affect each other and the heuristic’s ability to find

good solutions. They are calculated as pmax = dp x Ne and smax = s x N , where

p ∈ {0.5, 1, 2} and s ∈ {5, 10, 20} and N is the number of nodes in the problem.

When the instances described in Table 8.2 were tested, the small instancesM12 were

not sensitive to the different values. To ensure a low run time, the smallest values

for the parameters p = 0.5 and s = 5 were chosen. For the medium and large

instances, high values for the parameters gave the best results. High parameter

values means that the heuristic tries the different moves more times, and therefore

has a better chance of finding good solutions. Thus, for the medium and large

instances, p = 2 and s = 20 were chosen.

When testing the nmax parameter, the values obtained for pmax and smax

above were used. The nmax parameter controls the number of times a solu-

tion is checked and rearranged, and is calculated as nmax = dn x (N/2)e, where

n ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} and N is the number of nodes in the problem.

Again, the small instances were not sensitive to the different values tested, so

n = 0.1 was chosen for these instances. For the remaining instances, high values

again gave the best results, but as n reached 0.5 and higher, the differences in

the objective values obtained were marginal. The run times of the medium sized

instances did not increase much after this point was reached, so the highest value

of n = 0.7 was chosen for these instances. The large instances however, had a

much higher run time, and the value at the point where the good solutions were

obtained, n = 0.5 was chosen.

The structure of the initial solution provided can affect the quality of the so-

lution proposed by the heuristic. The construction heuristic has a large degree of

randomness, and the best one of the imax constructed solutions is given as input

to the heuristic. If few solutions are constructed, the heuristic might not get a
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good starting point, resulting in a poor solution. As with the previous parameters,

the small instances were not sensitive to this parameter either. The lowest value

imax = 5 000 was therefore chosen. With increased problem size, there also exists

a higher number of possible initial solutions, and the medium and large instances

gave better results with high imax values. For the medium instances, imax = 50 000

was chosen, and imax = 100 000 was chosen for the large instances.

In Section 7.4, the different neighborhood move operators were presented. The

order in which these moves are performed can affect the final solution and the

time used by the heuristic, based on what kind of operations they do and their

computational time. The authors have only tested four different orders for the

operators, since testing all possible orders would mean up to 9! possibilities. The

list of the orders tested is given in Appendix B.2.4. Since the problem considers

operational planning and disruption management, low run times are important,

and the authors therefore chose to use the computationally cheapest moves first

in all the tested orders. For example, when alternating between inter-route moves

and intra-route moves, the computationally cheapest inter-route move would be

followed by the cheapest intra-route move, and so on. Testing showed that Order

1, which performs the computationally cheapest moves first, gave good solutions

for the tested instances. The order of the operators in this case is insert, swap,

shift, replace, 2-opt, 3-opt, cross, exchange, and sibling mover. This order alternates

between inter-route and intra-route moves. What this means, is that the heuristic

alternates between moving nodes between two or more vessels, and rearranging

nodes internally on one vessel. This results in nodes being tried in a large number

of positions on several vessels.

In Table 8.4, the parameter values chosen for the different instances are summa-

rized. These values are used in the small, medium, and large instances in Section

8.3. It is worth noting that this will not give the best possible result for all in-

stances, but it would not be practical to choose different parameters for each single

instance.
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Instance type pmax smax n init Order

S 0.5 5 0.1 5 000 1

M 2 20 0.7 50 000 1

L 2 20 0.5 100 000 1

Table 8.4: Summary of the heuristic parameters chosen for the small, medium, and

large instances. The Order decides the order in which the neighborhood operators

are performed as described in Appendix B.2.4

8.3 Comparison of solution methods

In this section, the performance of the arc-flow formulation, the voyage-based so-

lution approach, and the VNS heuristic are compared and discussed. First, the

results from testing the problem instances where optimal solutions were found are

presented. Then, the results from testing larger problem instances using the heuris-

tic solution approach are shown and discussed. The problem instances used when

comparing the three solution approaches, presented in Table 8.3, are also tested

with disruptions. In Table 8.5, the objective values are presented for the voyage-

based solution approach. The same values are found using the arc-flow model if

optimality is proved. If the arc-flow model did not find optimality, the optimal-

ity gap is shown. The optimality gap is the gap between the best found solution

and the best lower bound. For the heuristic, the average gap from the best found

objective for ten runs is presented. The average gap is calculated as

Avg. gap =
Average objective − Best found objective

Best found objective
x 100%

In Table 8.5, the Best found objective is the optimal solution found by the voyage

based model, and in Table 8.6, it is the best found objective obtained with the

heuristic in the ten runs for the instance. The time used by the voyage-based

solution approach is the sum of the time used to generate voyages in Eclipse (Java)

and the solution time used by Xpress.
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Using commercial optimization software to solve the arc-flow formulation, op-

timal solutions are found for problem instances with up to 16 nodes, one regular

OSV, and one spot vessel. In order to reduce the number of constraints, sub-

tour eliminating constraints are added iteratively when the arc-flow model is run.

Whenever an optimal solution, which may not be feasible, is found or the maximum

time limit for an iteration is reached, a new iteration is initiated if the best current

solution contains subtours. If a feasible solution is found when the time limit is

reached, a new iteration is not initiated. The maximum time limit for an iteration

is set to one hour. The results indicate that disruptions, such as speed reduction

and increased order sizes, increase the computational time for solving the arc-flow

formulation.

When the voyage-based solution approach is applied, the optimal solution is

found for problem instances with up to 19 nodes, two regular OSVs and one spot

vessel. I.e., optimal solutions are only proved for instances classified as small and

some classified as medium in this report, and these instances are listed in Table

8.5. In general, the computational time increases as the number of possible voy-

ages increases. Therefore, the computational time for the voyage-based solution

approach is shorter when fewer voyages are feasible due to increased order sizes.

For some of the smallest problem instances, the voyage-based solution approach

has a marginally lower computational time than the heuristic, seen in Table 8.5.

However, since the computational time for the exact solution methods increases

exponentially with the size of the problem instances, the heuristic is considerably

faster for all realistic problem instances. As can be seen from Table 8.5, the average

gap for the heuristic is 0.00% for all the instances where optimality is proven, i.e., it

finds optimal solution in all ten runs. One can see that the average run time for the

heuristic increases greatly for the Å18 instances compared to the other instances in

Table 8.5. This is due to the classification of size, seen in Table 8.3. Medium and

small sized instances have different parameters and this is reflected in the average

run time. As explained in Section 8.1, the Å19 instance is included because this
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Arc-flow Voyage Heuristic

ID

Opt. obj.

[NOK]

Opt.

gap Time[s] Time[s]

Avg.

gap

AT[s]

M10 128 151 0.0% 0.1 0.13 0.0% 0.07

MS
10 903 615 0.0% 7.2 0.06 0.0% 0.07

ML
10 512 233 0.0% 3.0 0.03 0.0% 0.07

M12 138 185 0.0% 0.4 0.51 0.0% 0.08

MS
12 960 445 68.9% 3 602 0.38 0.0% 0.12

ML
12 920 344 0.0% 709 0.04 0.0% 0.09

Å14 179 089 0.0% 0.6 13.1 0.0% 0.12

ÅS
14 1 159 259 63.3% 18 004 13.0 0.0% 0.16

ÅL
14 1 084 404 38.7% 7308 0.56 0.0% 0.15

F16 179 569 0.0% 0.4 529.3 0.0% 0.18

FS
16 1 152 666 77.0% 14 403 553.4 0.0% 0.27

FL
16 766 866 46.4% 104 643 101.3 0.0% 0.16

Å18 319 480 69.6% 57 621 17 822 0.0% 9.83

ÅS
18 1 877 761 94.8% 64 826 9 727 0.0% 29.56

ÅL
18 321 544 68.6% 7 203 1 222 0.0% 11.18

Å19 3 253 95 70.9% 144 039 103 147 0.0% 13.39

Table 8.5: Comparison of the three solution methods. For the arc-flow model the

optimality gap (Opt. gap) is presented and for the heuristic, the average gap (Avg.

gap) from the optimal objective value (Opt. obj.) found with the voyage based

model is shown. For the heuristic, the average time (AT) in seconds over ten runs

is presented.
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is the largest instance without disruptions where the optimal solution is found by

using the voyage-based solution approach. Since increased order sizes reduce the

number of feasible voyages, the optimal solution was also found for the instance

ML
22. However, this result is not included in Table 8.3, since the optimal solution

is not found for the corresponding instance without disruptions. The voyage-based

solution approach could solve even larger instances if the loads were increased

enough.

In Table 8.6, the results from testing the heuristic on the large and remaining

medium instances are presented. Here, the heuristic is also run ten times to obtain

the average values in the table.

From Table 8.5, it is clear that little time is used by the heuristic compared to

the exact methods as the problem instances increase in size. As mentioned earlier,

the run times of the voyage-based model and the arc-flow model increase expo-

nentially. In an operational planning setting, the exact methods are not sufficient

due to the run time. From the results presented in Table 8.5 and Table 8.6, it

can be concluded that the heuristic finds optimal solutions for all instances where

optimality is proven, and has a stable performance for both realistic sized problems

and problems that are larger than what is encountered in real life today. Thus,

one can see the advantage of using the heuristic for solving problems in a real life

setting and use it as a decision tool on a day to day basis.

It is worth noting that as the problem instances increase in size, so does the run

time of the heuristic, shown in Tables 8.5 and 8.6, due to the number of nodes and

the parameters presented in Section 8.2. This is especially notable in the cases that

have disruptions. The reason for this, is that the parameters used by the heuristic is

dependent on the number of nodes. Among these, the most time consuming is the

nmax parameter which controls the rearranging of the solution and reinserting of

nodes. A non-disrupted case is not affected by this parameter since it by definition

should not postpone any nodes. Hence for the large instances, a major increase

in run time is seen for disrupted cases compared to the non-disrupted. This is
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ID Avg. obj. [NOK] Avg. gap AT[s]

M22 303 055 0.00% 18.0

MS
22 1 530 637 0.00% 27.1

ML
22 996 884 0.00% 18.2

F24 339 799 0.00% 23.0

FS
24 1 680 057 0.00% 37.2

FL
24 1 248 255 0.57% 58.9

Å26 472 186 0.03% 39.9

ÅS
26 2 623 016 1.01% 142.3

ÅL
26 1 443 983 0.01% 43.8

M42 582 094 0.02% 195.2

MS
42 2 739 763 1.73% 394.0

ML
42 1 946 880 2.73% 265.8

M54 721 346 0.55% 367.5

MS
54 3 216 599 0.70% 1 616

ML
54 2 083 701 3.19% 1 686

Table 8.6: Results from testing the heuristic with medium and large instances.

Average objective values (Avg. obj.), average gaps (Avg. gap) over the best found

solution, and average run time (AT) are listed.

especially noticeable for the M54 cases. The parameters were not tuned for this

instance, so despite that it is classified as a large instance, lowering for example the

nmax value can result in lower run times, but could also result in poorer solutions.

Even though the heuristic uses over 26 minutes to finish the largest instances with

disruptions, the best final solution is usually found earlier. Figure 8.1 shows a

plot of the objective values found throughout the run time of the heuristic for the

instance ML
54. Here, one can see that the last improvement for a run is usually

found after approximately 800 seconds, with some exceptions. This means that
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the operator of the model might stop the heuristic after this amount of time and

still expect an acceptable solution. The figure shows that two solutions have an

objective value approximately NOK 200 000 higher than the others. This is due

to one extra postponement of a node in the two cases. The average objective and

run time for the instance is illustrated with a red line in the figure.

Figure 8.1: Run time and objective value for ten runs of ML
54 using the VNS

heuristic.

Table 8.6 shows that ÅS
26 is the smallest instance with an average gap higher

than 1%. When the penalty costs, CD
v and CR

i , were decided, acceptable solutions

were found for this instance using the parameters CD
v =50 000 and CR

i =200 000.

The solutions had some delay and used the spot vessel and all three OSVs in the

long-term fleet. However, when further inspecting all the solutions generated for

the instance in this section, the heuristic finds solutions where the spot vessel is

fully utilized for 72 hours and only one of the OSVs in the long-term fleet is used,

which would be categorized as an unacceptable solution. The objective values for

the two kinds of solutions are almost the same, sometimes even better for the

unacceptable solutions. Since no orders are postponed, CR
i does not affect the

solution, but one might consider increasing CD
v in order to utilize the OSV fleet
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more efficient. One might wonder why it is less expensive to fully utilize the spot

vessel instead of using the other available OSVs. One answer to this is the fact

that the spot vessel has a 72 hour planning period and can sail longer distances

than the OSVs in the long-term fleet, which can only sail for 40-45 hours in this

instance before delay penalty costs are induced.

It is not only the run times that increase with the problem instance sizes.

For the large disrupted cases, there is a noticeable gap between the best found

objective and the average objective, whereas the gaps for the non-disrupted cases

are below 1%. When the heuristic has to make a decision between postponing

orders to ensure that the return time of the vessel is within the schedule and

delaying vessels to ensure that all installations are serviced, more solutions exist

than in the non-disrupted cases. Thus, there is also a higher risk that the heuristic

gets stuck in local optima, which explains why there is a higher gap from the best

found objective in these instances. The nmax parameter decides how many times

the solution is to be rearranged and how many times reinsertion is tried, and one

cannot guarantee that all possibilities are tried. Thus the same solution might not

be obtained every time. The number of initial solutions generated can be increased

since some randomization is used to generate initial solutions, but this will also

affect the run time if imax is too high. The high number of possible solutions that

exists is one of the reasons why the exact solution methods are not able to solve

the large instances.

As can be seen in Table 8.6 the highest average gaps for the heuristic are found

for the large instances with disruption. When inspecting the solutions one can see

that this is due to the different number of nodes that are postponed. Since the

vessel capacity in these cases are fully utilized for both the OSVs in the regular fleet

and the spot vessel, some nodes have to be postponed. Table 8.7 and Table 8.8

show a comparison of the objective values for the best and worst solutions found

by the heuristic in the ML
42 and MS

42 instance, respectively. Here, best means the

solution with lowest cost.
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Best solution Worst solution Difference

Objective value 1 895 169 2 101 525 206 356

Travel and service cost 1 295 169 1 301 525 6 356

Postpone cost 600 000 800 000 200 000

Delay cost - - -

Table 8.7: Comparison of the best and worst objective values for theML
42 instance.

All numbers are in NOK and the difference is the value of the worst solution minus

the best solution.

Best solution Worst solution Difference

Objective function 2 693 127 2 790 399 97 272

Travel and service cost 1 893 127 1 904 399 11 272

Postpone cost - - -

Delay cost 800 000 886 000 86 000

Table 8.8: Comparison of the best and worst objective values for theMS
42 instance.

All numbers are in NOK and the difference is the value of the worst solution minus

the best solution.

Table 8.7 and Table 8.8 show that the main difference between the objective

values are the postpone and delay costs. As mentioned earlier, these are fictional

costs and do not affect how the perturbation, shaking, and local search perform,

since these procedures are only run on the solution after which nodes that are to be

postponed is decided. When only considering the travel and service costs, and not

the postpone and delay costs in the results for all ten solutions of theML
42 instance,

the average gap would only be 0.90%. This shows that the perturbation, shaking,

and local search procedures perform very well even for the largest instances.

To increase the usability of the heuristic in practical settings, a tool generating

graphical representations of the voyages found by the heuristic has been developed.
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One illustration of a solution obtained with the heuristic for all instances described

in this section, are given in Appendix D.

8.4 Analysis of suggested solutions

In the following sections, some of the solutions obtained by the presented heuristic

are analysed and their applicability in real life situations is discussed. As shown in

Section 8.3, the arc-flow model and the voyage-based solution approach have too

high solution times to be practical for operational planning. Therefore, they are

not considered in the following sections.

8.4.1 Detailed example on disruption handling

In this section, two of the small problem instances are presented to illustrate the use

of the heuristic. First the ML
12 instance is discussed briefly and then the solutions

found for the M10 and ML
10 instances are discussed in detail.

Even though an optimal solution is proved found, it is not necessarily an accept-

able solution, as discussed in Section 8.2 and Appendix B.1. The reason for this is

that the penalty cost parameters CD
v and CR

i are set to find acceptable solutions for

medium sized instances. E.g. for the ML
12 instance four nodes are postponed and

the spot vessel is not used in the optimal solution. This would be categorized as

an unacceptable solution. Here, one might think that using the spot vessel would

be a better solution instead of postponing 40% of the orders, but this is due to the

trade-off between the cost of hiring a spot vessel and the cost of postponing nodes.

The optimal solution for the ML
12 instance is illustrated in Figure D.6. In a real

life setting, there will often be different preferences regarding how many postponed

orders and how much delay that are acceptable. This can depend on the situation

or the operator of the model. In these cases, the postpone and delay costs can be

adjusted in order to obtain the preferred solutions.

Figure 8.2 shows the solution when the heuristic is used for operational planning
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when there are no disruptions in the M10 instance. Figure 8.3, on the other hand,

shows the solution for the disrupted case ML
10. Here, the deliveries and backloads

are tripled in size, which may occur if the installations have not been visited for

some time due to e.g. bad weather. The solutions to both the instance with

and the instance without disruptions are considered acceptable, and are presented

to illustrate the model’s capability of performing both operational planning and

disruption management.

In the problems illustrated in Figure 8.2 and Figure 8.3, there are a total of ten

pickup and delivery nodes. The figures however, only show five nodes corresponding

to each installation, since there is one pickup and one delivery node located at the

same installation in this example. The arcs that start and end in the same node

depict visits to the delivery node and then the pickup node for the same installation.

In the disrupted example, no nodes were postponed, but Figure 8.3 shows that

the solution suggests the use of a spot vessel. The cargoes on the arcs represent

how much of the deck capacity that is in use between the different nodes. The

vessels in this problem have a deck capacity of 1000 m2. When OSV1 starts from

the supply base (FMO), 975 m2 of its deck capacity is used, making it impossible

to visit the installation TRC which has a demand of 516 m2. Thus, in this solution,

a spot vessel must be chartered in order to service all the installations. In real life,

one might consider dropping some demand or backload at each installation in order

to service all the installations with one OSV, but this is not a possibility for the

model presented in this report.

The voyage sailed by OSV1 in Figure 8.2 has a total cost of 128 151 NOK and

takes 36 hours to complete. Since the greatest part of the distance sailed by an OSV

is from the depot to the offshore installations and not between the installations,

the time used by the spot vessel in Figure 8.3 is 21 hours even though it only visits

one installation. In this case, OSV1 uses 32 hours and the total cost for using both

OSV1 and the spot vessel is 512 233 NOK, which indicates how expensive it is to

use a spot vessel.
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Figure 8.2: Optimal solution found forM10 with one OSV and no disruptions. The

circles represent offshore installations, e.g. OSB is short for Oseberg B, the square

is the supply depot (Mongstad), and the arcs are the voyages sailed by the vessels.

Figure 8.3: Optimal solution found for ML
10. The spot vessel is used to handle the

extra amount of cargo. The circles represent offshore installations, e.g. OSB is

short for Oseberg B, the square is the supply depot (Mongstad), and the arcs are

the voyages sailed by the vessels.
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8.4.2 Comparison of a real life voyage and the suggested

solution

In this section, a schedule which is carried out in real life is compared to the corre-

sponding solution suggested by the heuristic. The comparison is made to illustrate

that the heuristic provides reasonable results, and that it may help reducing the

time spent on operational planning. The costs and the times needed to carry out

the schedules are not fully comparable, since the presented model does not consider

all issues encountered in real life.

Since the sailing speed may change during a voyage, the actual schedule is

adjusted to be more comparable to the suggested solution, which assumes a sailing

speed of ten knots during the whole voyage. The actual times needed to service

the offshore installations are used when creating the problem instances solved by

the heuristic. The voyages sailed in real life are illustrated in Figure 8.4, and the

solution suggested by the heuristic is shown in Figure 8.5. Using the notation

introduced in Section 8.1, the considered instance is denoted F26, since the depot

is Florø and the instance contains a total of 26 nodes including the depot.

When comparing the Figures 8.4 and 8.5, it is quite clear that the distances

sailed by the vessels are shorter in the solution suggested by the heuristic than in

the voyages which were actually sailed. The sailing times and costs for the two

schedules are summarized in Table 8.9. The heuristic solved this problem in less

than 30 seconds. An operational planner would most likely use significantly more

time to schedule these voyages. The results indicate that savings with respect

to both costs and sailing time can be made with the schedule suggested by the

heuristic. The time saved can make the next voyages in the planning period depart

earlier and possibly have time to visit more installations than planned. However,

the presented model does not consider opening hours, crew changes, and visits by

helicopters at the offshore installations. Since the operational planners must make

such considerations in real life, schedules that are optimal according to the model
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Figure 8.4: Actual voyages sailed in real life by two OSVs visiting 12 offshore

installations.

Figure 8.5: Suggested solution by the heuristic based on the real life case in Table

8.4.
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presented in this report may not be possible to carry out in practice. Thus, when

applying the heuristic for decision support in real life, the planners should adapt

the solutions in order to handle the issues that the model does not consider. It

is difficult to compare the results from the model with a real life case. However,

Table 8.9 shows that the heuristic gives reasonable solutions given its limitations.

Actual schedule Time [hh:mm] Cost [NOK]

Voyage 1 39:35 142 919

Voyage 2 30:40 135 477

Total 70:15 278 396

Suggested schedule

Voyage 1 33:07 134 169

Voyage 2 27:04 119 048

Total 60:11 253 217

Difference

Voyage 1 06:28 8 750

Voyage 2 03:36 16 430

Total 10:04 25 179

Table 8.9: Comparison of actual and suggested schedule, with 12 offshore installa-

tions and two OSVs.

8.4.3 Planning with large numbers of installations

In this section, the operational planning of routes and schedules when a large num-

ber of installations is involved is discussed. As of today, maximum 13 offshore

installations are serviced by a single supply depot. However, as mentioned, Statoil

is planning to reduce the number of onshore depots. This implies that the remain-

ing depots will service more installations than they do today. For instance, the

Mongstad supply base will service as many as 26 installations. This will increase
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the complexity of the planning of routes and schedules, and increases the moti-

vation for using decision tools based on mathematical models in the operational

planning.

In Figure 8.6, the solution of a problem instance with 42 nodes and increased

order sizes for demand and backload is illustrated. The solution suggests using five

OSVs (including one spot vessel) to service the installations, and postponing three

of the 40 orders. The heuristic finds this solution within five minutes, whereas far

more time would probably have been spent on manual planning due to the large

amount of orders and vessels to be coordinated. When disruptions occur, it is

important to take action quickly. A decision tool based on the presented heuristic

can in short time provide the planners with a good solution, which can be further

improved by their experience and knowledge. Thus, the time needed for planning

routes can be greatly reduced, especially when a large number of installations is

considered. In addition, better routes might be achieved, resulting in reduced costs

in the offshore supply service.
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Figure 8.6: Suggested solution for the problem instance ML
42 illustrating the com-

plexity of planning when a large number of installations is to be serviced. Three

orders are postponed and a spot vessel is used.

99



CHAPTER 8. COMPUTATIONAL STUDY

100



Chapter 9

Concluding remarks

This report has discussed operational planning and disruption management in Sta-

toil’s offshore supply service. As of today, operational planning is based on the

judgement and experience of professionals. The planning processes are time con-

suming and costly, and a decision tool based on mathematical models can provide

significant savings.

The considered problem consists of offshore supply vessels (OSVs) delivering

supplies to offshore installations from an onshore supply depot. In addition, the

OSVs carry backload from the installations to the depot. The problem was modeled

as a pickup and delivery problem with time limits for departure and arrival at the

depot. The OSVs are either chartered on long-term contracts, or chartered from

the spot market.

Both an arc-flow formulation and a voyage-based formulation representing the

problem have been presented. Dynamic programming was applied for pregeneration

of voyages in the voyage-based solution approach. Optimal solutions were found

for instances with up to 19 nodes. For most problem instances of realistic size,

optimal solutions could not be proven due to issues related to computational time

and memory. Thus, the exact solution methods are not sufficient for decision
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support in real life.

A variable neighborhood search (VNS) heuristic was developed in order to find

solutions for all realistic problem instances. The heuristic was able to find optimal

solution every time for all instances where optimality was proven by the exact

solution methods. This shows that the heuristic produces high quality solutions,

and it is reasonable to assume that the solutions for the instances of realistic sizes

are optimal or close to optimal. The heuristic was tested for problem instances

with up to 54 nodes. For all tested problem instances, the heuristic found solutions

within reasonable time.

Using the proposed VNS heuristic for decision support, Statoil might reduce

the time spent on operational planning and disruption management in their off-

shore supply service. In addition, better routes and schedules can be found, and

significant savings may be achieved.

In future research, the modeled problem may be extended in several ways.

Introducing time windows for opening hours and/or planned service from OSVs at

offshore installations, could improve the service level for the offshore installations.

Also, by using time windows, conflicting arrivals at the installations and the supply

depot can be avoided. This could make the model more applicable in real life.

In addition, the presented model only considers cargo carried on deck, while an

extension of the model could include capacity restrictions on bulk cargo as well.

This would require the model to take the different kinds of bulk cargo into account,

since the bulk products cannot be mixed and the vessels only contains a limited

number of tanks. Also, some kinds of bulk cargo can only be carried by certain

OSVs.
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Appendix A

Compact mathematical

formulations

A.1 Arc-flow formulation

Sets

N N = {0, ..., n+m} Set of all nodes (node 0 and

node n+1 is depot pickup and

delivery node, respectively)

NP NP = {0, ..., n} Set of all pickup nodes

ND ND = {n+ 1, ..., n+m} Set of all delivery nodes

V V = {1, ..., k + 1} Set of all available OSVs (OSV

k+1 is an OSV from the spot

market)
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Parameters

CS
vij v ∈ V, i ∈ N , j ∈ N Costs associated with sailing

from node i to node j and

servicing node j for OSV v

CTC Daily time charter cost for

the OSV from the spot market

CR
i i ∈ N Penalty cost for postponing

service to a node i

CD
v v ∈ V \ {k + 1} Penalty cost per hour of

delayed arrival at the onshore

supply depot for an OSV v

Di i ∈ ND Cargo to be delivered

measured in deck capacity at

node i

Pi i ∈ NP Cargo to be picked up

measured in deck capacity at

node i

Qv v ∈ V Deck capacity for OSV v

Tvij v ∈ V, i ∈ N , j ∈ N Time needed for OSV v to sail

from node i to node j and

service node j

TMIN
v v ∈ V Planned next departure time

from depot for OSV v

TMAX
v v ∈ V Planned arrival time at depot

for the next voyage for OSV v
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H Length of a time charter period

for the OSV from the spot

market

τ Maximum allowed delay for

OSVs in the long-term fleet

Variables

xvij v ∈ V, i ∈ N , j ∈ N 1 if OSV v sails from node i to

node j on a voyage, otherwise 0

yvi v ∈ V, i ∈ N 1 if OSV v visits node i on a

voyage, otherwise 0

ui i ∈ N 1 if the order at node i is

postponed, otherwise 0

lvij v ∈ V, i ∈ N , j ∈ N Load on board OSV v when

sailing from node i to node j

tDv v ∈ V \ {k + 1} Total delay for OSV v (hours)

tTC Number of days that the OSV

from the spot market is

chartered

Objective

min
∑
v∈V

∑
i∈N

∑
j∈N

CS
vijxvij + CTCtTC +

∑
i∈N

CR
i ui +

∑
v∈V\{k+1}

CD
v t

D
v (A.1)
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Constraints∑
i∈N\{0}

xv0i = 1 v ∈ V (A.2)

∑
i∈N\{n+1}

xvi(n+1) = 1 v ∈ V (A.3)

∑
i∈N\{0}

xvi0 = 0 v ∈ V (A.4)

∑
j∈N

xvji −
∑
j∈N

xvij = 0 v ∈ V, i ∈ N \ {0, n+ 1} (A.5)

yvi −
∑

j∈N\{i}

xvij = 0 v ∈ V, i ∈ N (A.6)

∑
v∈V

yvi + ui = 1 i ∈ N \ {0, n+ 1} (A.7)

lvij ≤ (Qv − Pj)xvij v ∈ V, i ∈ N , j ∈ NP (A.8)

lvij ≤ Qvxvij v ∈ V, i ∈ N , j ∈ ND (A.9)

lvij ≥ Pixvij v ∈ V, i ∈ NP , j ∈ N (A.10)

lvij ≥ Djxvij v ∈ V, i ∈ N , j ∈ ND (A.11)

lvij ≥ (Pi +Dj)xvij v ∈ V, i ∈ NP , j ∈ ND (A.12)

∑
i∈N

lvij + Pjxvjh − lvjh +Qvxvjh ≤ Qv v ∈ V, j ∈ NP , h ∈ N (A.13)

∑
i∈N

lvij −Djxvjh − lvjh +Qvxvjh ≤ Qv v ∈ V, j ∈ ND, h ∈ N (A.14)

∑
j∈ND

Djyvj − lv0i +Qvxv0i ≤ Qv v ∈ V, i ∈ N (A.15)

lvi(n+1) −
∑

j∈NP
Pjyvj +Qvxvi(n+1) ≤ Qv v ∈ V, i ∈ N (A.16)

tTC ≥

∑
i∈N

∑
j∈N

T(k+1)ijx(k+1)ij

 1

H
(A.17)
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TMIN
v +

∑
i∈N

∑
j∈N

Tvijxvij − TMAX
v ≤ tDv v ∈ V \ {k + 1} (A.18)

tDv ≤ τ v ∈ V \ {k + 1} (A.19)∑
i∈S

∑
j∈S

xvij ≤ |S| − 1 v ∈ V,S ⊂ N , |S| ≥ 2 (A.20)

xvij ∈ {0, 1} v ∈ V, i ∈ N , j ∈ N (A.21)

yvi ∈ {0, 1} v ∈ V, i ∈ N (A.22)

ui ∈ {0, 1} i ∈ N (A.23)

lvij ≥ 0 v ∈ V, i ∈ N , j ∈ N (A.24)

tDv ≥ 0 v ∈ V \ {k + 1} (A.25)

tTC ∈ Z+ (A.26)

A.2 Voyage-based formulation

Sets

N N = {0, ..., n+m} Set of all nodes

V V = {1, ..., k + 1} Set of all available OSVs (OSV m+ 1

is the OSV from the spot market)

Rv Set of all possible voyages for OSV v

Parameters

CS
vr v ∈ V, r ∈ Rv Costs associated with sailing voyage

r for OSV v

CR
i i ∈ N Cost for postponing service to

node i
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CD
v v ∈ V \ {k + 1} Cost per hour of delayed arrival at the

onshore supply depot for OSV v

Ari r ∈ Rv, v ∈ V, i ∈ N 1 if node i is visited on voyage r,

otherwise 0

TMIN
v v ∈ V Planned next departure time from depot

for OSV v

TMAX
v v ∈ V Planned last arrival time at depot for

for the next voyage for OSV v

τ Maximum allowed delay for OSVs in

the long-term fleet

Variables

xvr v ∈ V, r ∈ Rv 1 if OSV v sails voyage r,

otherwise 0

ui i ∈ N 1 if the order at node i is postponed,

otherwise 0

tDv v ∈ V \ {k + 1} Total delay for OSV v (hours)

Objective

min
∑
v∈V

∑
r∈Rv

CS
vrxvr +

∑
i∈N

CR
i ui +

∑
v∈V\{k+1}

CDtDv (A.27)
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Constraints∑
v∈V

∑
r∈Rv

Arixvr + ui = 1 i ∈ N \ {0, n+ 1} (A.28)

∑
r∈Rv

xvr ≤ 1 v ∈ V (A.29)

TMIN
v +

∑
r∈Rv

TS
vrxvr − TMAX

v ≤ tDv v ∈ V \ {k + 1} (A.30)

xvr ∈ {0, 1} v ∈ V, r ∈ Rv (A.31)

ui ∈ {0, 1} i ∈ N (A.32)

tDv ≥ 0 v ∈ V \ {k + 1} (A.33)
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Appendix B

Parameter testing

This appendix contains the results from testing the effect of varying the postpone

costs and delay costs, and the tuning of input parameters on the heuristic. A

summary of the results is found in Section 8.2.

B.1 Analysis of penalty cost values

In this section, the focus is on finding the best possible values for:

• CD
v - The cost per hour when OSV v arrives at the depot after schedule.

• CR
i - The cost associated with postponing the service to node i.

The penalty cost CD
v should be adjusted according to the negative effects of OSV v

being delayed. This cost may vary depending on the weekday and the next planned

voyage for the OSV. Planners applying the model in a real life case should adjust

the parameter according to the current situation. For instance, if the spot charter

rates are low, it may be preferable to charter an additional OSV from the spot

market rather than allowing delays. To encourage such solutions, the planners can

set a high value for CD
v . The same might be done if the vessels have tight schedules

after the current planning period and it is preferable to avoid delays.
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In real life, the parameter value of CR
i depends on the priority of the order i. If

an order with low priority is postponed, it has less negative effects on operations at

offshore installations than if an order with high priority is postponed. The money

value for e.g. a small mechanical part needed on an installation might be low, but

the importance might be high, and thus, the priority is correspondingly high. For

the test instances considered in this section, 80% of the nodes have normal priority

and 20% have high priority, with corresponding values for CR
i . When using the

models in real life cases there will be more than two possible priorities, and the

cost of postponing an order should be adjusted according to these. For the Å19

instance, where one extra delivery node is introduced, the priority is set extra high

since the node represents an important order.

In this section, the authors have chosen to test instances from three different

onshore supply depots, namely Mongstad, Ågotnes, and Florø. This is done to

ensure that the parameter values are not tailored for a single depot. Since the

distances from one depot to the installations it services might be very different

compared to another depot, the sailing cost will vary. I.e., the penalty costs will

have different impact on the solutions for the three depots. The parameters are

only tested on instances where disruptions are introduced. The reason for this is

that in the non-disrupted cases, no delays or postponed orders occur.

How the parameter values fit the model is evaluated by whether the solutions

to the modeled problem would be reasonable in real life scenarios or not. That

is, the solutions utilize the available capacity in the long-term fleet rather than

allowing significant delays, postponing several orders, and chartering additional

vessels from the spot market. The solutions should keep the costs associated with

sailing, servicing installations, and chartering OSVs low, without letting the vessels

deviate too far from schedule.

To test the penalty cost parameters, six instances with disruptions are used.

The two disruption types are given in Section 8.1, and the three sets of depots,

nodes, and vessels are described in Table 8.1, giving a total of six instances.
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It is challenging to find one value for each of the parameters to be used for all

instances considered in this report. It is also difficult to evaluate whether a solution

is acceptable or not. The criteria applied when evaluating solution quality in this

report are as follows:

• The solution should not charter a spot vessel if the OSVs in the long-term

fleet are not all fully utilized.

• Several nodes should be postponed or the OSVs in the long-term fleet should

be significantly delayed before the spot vessel is to be used.

• Nodes should only be postponed if all vessels’ deck capacity is fully utilized

or visiting the node means that a vessel will be considerably delayed.

With respect to the criteria listed above, the solutions are either ranked as

acceptable or unacceptable. Different values for CD
v and CR

i are tested. The value

interval, the upper limit, and the lower limit are set by qualitative analysis. The

values are then further tested and the solutions explored. In Table B.1, the results

from the testing of CD
v and CR

i are shown. The colors indicate whether the solutions

are acceptable, unacceptable, or not tested.

Table B.1: Ratings of solutions with different penalty values. CR
i is the postpone

cost in NOK 1000.
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When evaluating the solutions, an average delay of more than 12 hours per OSV

is considered as unacceptable. Most acceptable solutions are found for high delay

costs (NOK 50 000), as seen in Table B.1. Low delay costs cause in most cases

solutions where the vessels are more than 12 hours delayed, on average, and where

the possibility of chartering an additional OSV from the spot market is not utilized.

Acceptable solutions are obtained for all tested instances with CD
v = NOK 50 000.

Delay costs above CD
v = NOK 50 000 are not tested for any of the instances, since

there is little or no delay in the solutions.

As one can see in Table B.1, low postpone costs gives unacceptable solutions in

most cases. When the postpone cost is low, the model suggests to postpone more

nodes than what is reasonable. In general, high postpone costs (NOK 200 000-250

000) gives the best solutions. Considering that a high service level for the offshore

installations is preferred, this is a reasonable result.

Testing shows that CR
i = NOK 200 000 for orders with normal priority gives

the best solutions. However, this value gives an unacceptable solution for instance

ÅL
26 for CD

v = NOK 50 000 or lower. There is no delay, but several nodes are

postponed. Increasing the postpone cost for orders with normal priority to CR
i =

NOK 250 000 gives an acceptable solution for the instance. Postpone costs above

CR
i = NOK 200 000 are not tested for any of the other instances since at most one

order was suggested postponed in the solutions.

The test results show that different penalty cost values give different solution

quality for the tested instances. When applied to real life cases, the user of the

model should adjust the penalty costs to the current situation, that is, according

to the depot, the number of nodes, current spot charter price etc. In the rest of

this report, the following parameter values are used:

• CD
v = 50 000 NOK/hour

• CR
i = 200 000 NOK/order (Normal priority)

• CR
i = 300 000 NOK/order (High priority)
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• CR
i = 400 000 NOK/order (Extra order, as in Å19)

B.2 Heuristic parameter testing

In this section, the results from tuning the parameters used by the heuristic de-

scribed in Chapter 7 are presented. Four major parameters affect the quality of

the solutions :

• nmax - the maximum number of times the solution is checked and rearranged.

• pmax - the maximum number of perturbations that can be done without an

improving solution.

• smax - the maximum number of shakings that can be done without an im-

proving solution.

• imax - the number of initial solutions created.

Since both pmax and smax affect how the perturbation, and shaking and local search

perform, they are tuned simultaneously, and the results are presented in Appendix

B.2.1. The parameter nmax defines the outer loop as described in Algorithm 7.1,

and despite the fact that it determines how many times pmax and smax are run,

it does not in itself affect how the perturbation, and shaking and local search are

performed. For this reason, nmax is tuned after pmax and smax, and the results are

presented in Appendix B.2.2.

In addition to these three parameters, the number of initial solutions generated

can also affect the quality of the solutions obtained. The results from testing the

number of initial solutions are showed in Appendix B.2.3. Furthermore, the order

of the neighborhood operators introduced in Section 7.4 can affect the solutions

and the speed at which they are achieved, and the results from the order testing

are presented in Appendix B.2.4.
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In order to make the parameters applicable for both regular operational plan-

ning and disruption management, the instances used in the tuning are both non-

disrupted and disrupted cases. In the following, the intervals for which the param-

eters are tested are found through qualitative analysis.

B.2.1 Perturbation and shaking parameters

The tests conducted with the heuristic in the remainder of this chapter are pre-

sented as an average over ten runs of the heuristic. Instead of showing the average

objective value, the gap from the best found objective for the instance is shown,

calculated as

Avg. gap = Average objective − Best found objective
Best found objective x 100%

In the following tables, AT indicates the average time in seconds it took to

run the instances. The green cells mark the solutions with the parameter values

the authors deemed the best for each instance. The M12 cases are not presented

in this section, since tests showed that they were not sensitive to the parameters.

Optimal solutions for these instances were obtained every time. Thus, for the small

instances in this report, the lowest setting of pmax = 0.5 x N and smax = 5 x N

was chosen, which results in the lowest run time. Here, N is the number of nodes

in the instance.

The results from the Florø (F24) instances are shown in Table B.2. Since the

average gap over the best found objective decreases when the values of pmax and

smax increase, the stability of the heuristic improves. This is because increased

parameter values result in the heuristic trying the moves a larger number of times,

and therefore has a better chance of finding good solutions. The only instance that

has a gap for all the tested values is FL
24, and for this instance, the average gap

from the best known objective is lowest when pmax = 2 x N and smax = 20 x N .

For this reason, these parameter values are chosen for the medium sized instances.

The results from the Mongstad (M42) instances are shown in Table B.3. As with
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pmax = 0.5 x N pmax = 1 x N pmax = 2 x N

ID s Avg. gap AT[s] Avg. gap AT[s] Avg. gap AT[s]

F24

5 0.03% 2.9 0.05% 4.7 0.00% 7.3

10 0.03% 4.4 0.01% 8.1 0.00% 13.1

20 0.00% 8.0 0.00% 13.8 0.00% 23.4

FS
24

5 0.00% 4.6 0.00% 6.9 0.00% 11.4

10 0.00% 6.9 0.00% 11.6 0.00% 21.5

20 0.00% 12.5 0.00% 20.1 0.00% 40.8

FL
24

5 0.59% 3.6 0.41% 6.4 0.50% 11.4

10 0.60% 6.0 0.51% 10.5 0.37% 21.8

20 0.41% 11.2 0.42% 22.1 0.32% 44.6

Table B.2: Testing of pmax and smax = s x N values on the Florø instances with

N = 24 nodes. Average gap (Avg. gap) over best found objective for the instances

are shown, along with average run time in seconds (AT).

the Florø instances in Table B.2, the average gap over the best found objective

decreases as the values of pmax and smax increase. It is worth noting that the

average gaps are larger for the M42 instances than for the F24 instances which

had minor gaps, and the M12 instances which had no gaps. One reason for this

is that the M42 instance has more nodes, and therefore more possible solutions to

check than the smaller instances have. The M42 instance has a depot that service

more installations than any of Statoil’s onshore depots do at the time this report

is written.

It is also clear that the non-disrupted case has a much more stable and better

performance than the disrupted cases, illustrated by the lower average gaps from

the best found objective in Table B.3. This is mainly due to the fact that the routes

in the non-disrupted cases are not delayed, does not have any postponed nodes,
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pmax = 0.5 x N pmax = 1 x N pmax = 2 x N

ID s Avg. gap AT[s] Avg. gap AT[s] Avg. gap AT[s]

M42

5 0.36% 20.4 0.27% 33.1 0.27% 66.4

10 0.08% 36.3 0.06% 61.0 0.06% 112.5

20 0.03% 67.7 0.04% 100.7 0.01% 232.5

MS
42

5 8.37% 28.5 7.02% 55.4 3.21% 126.1

10 5.02% 55.8 2.98% 113.3 2.54% 254.7

20 4.69% 108.6 2.22% 199.1 1.96% 480.8

ML
42

5 5.71% 37.4 4.51% 82.0 4.12% 137.7

10 4.64% 74.4 3.93% 138.9 3.78% 291.3

20 4.16% 148.8 3.60% 269.2 3.48% 526.5

Table B.3: Testing of pmax and smax = s x N values with Mongstad instances

where N = 42 nodes. Average gap (Avg. gap) over best found objective for the

instances are shown, along with average run time in seconds (AT).

and does not use the spot vessel. Thus, it is fewer possible solutions that can be

explored by the heuristic, leading it to find the same good solutions more often.

On the contrary, the disrupted cases have to deal with postponements, delays,

and the use of a spot vessel. This leads to a large amount of different solutions

being checked by the heuristic. For example, it must be considered whether a

vessel should be delayed by a given number of hours, or whether a node should

be postponed to ensure that the return time to the depot according to schedule is

adhered. This is controlled by the delay and postpone penalty costs, which are set

to guide the heuristic towards good solutions, but could be changed by an operator

using the model.

Better results might be achieved with higher values of pmax and smax, but this

would also increase the run time, which should be low in operational planning and
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disruption management. The lowest average gaps are found when pmax = 2 x N

and smax = 20 x N for all three instances, and are therefore the values chosen for

the large sized instances.

B.2.2 Rearrange parameter

The nmax parameter represents the maximum number of times the solution is

checked and rearranged. When the parameter is tuned, the best values found for

pmax and smax in the previous section are used. The nmax value is calculated as

follows

nmax = dn x (N/2)e

where n is in the interval [0.1, 0.7] and N is the number of nodes in the problem

instance. The nmax values and the corresponding average gaps (Avg. gap) and

average times (AT), explained in Appendix B.2.1, are given in Table B.4 and Table

B.5 for the disrupted cases of F24 and M42 respectively. The non-disrupted cases

are not used to tune nmax since this parameter is set equal to three in Algorithm

7.3 for these cases. Thus, the initial value of nmax does not affect the performance

or the run time for the non-disrupted cases.

The M12 cases are not presented in this section, since they were not sensitive

to this parameter. Thus, the value resulting in the lowest run time, nmax =

d0.1 x (N/2)e, is chosen for the small instances in this report.

For the FS
24 instance results shown in Table B.4, there is no change in the

average gaps as the nmax value increases, only in the run times. The results

for the FL
24 instance however, show that as the nmax value increases, the average

gaps decrease. Despite increased run times as the nmax value increases, the value

nmax = 9 provides the best results. Thus, the value n = 0.7 is chosen for the

medium instances.

The results from the disrupted M42 instances are shown in Table B.5. As with

the F24 cases, the average gaps over the best found objective decrease as the nmax
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FS
24 FL

24

n nmax Avg. gap AT[s] Avg. gap AT[s]

0.1 2 0.00% 27.1 0.64% 16.9

0.2 3 0.00% 39.7 0.54% 25.2

0.3 4 0.00% 38.5 0.52% 38.6

0.4 5 0.00% 37.8 0.45% 44.8

0.5 6 0.00% 39.7 0.26% 62.6

0.6 8 0.00% 38.6 0.18% 63.6

0.7 9 0.00% 39.9 0.08% 83.4

Table B.4: Testing of nmax = dn x (N/2)e values on the Florø cases where N =

24 nodes. Average gap (Avg. gap) over best found objective for the instances are

shown, along with average run time in seconds (AT).

MS
42 ML

42

n nmax Avg. gap AT[s] Avg. gap AT[s]

0.1 3 4.80% 143.6 11.81% 107.4

0.2 5 4.12% 287.1 8.59% 261.9

0.3 7 2.09% 368.0 2.88% 476.4

0.4 9 0.80% 487.7 2.80% 516.7

0.5 11 0.73% 538.1 2.76% 528.0

0.6 13 0.70% 665.7 2.67% 628.1

0.7 15 0.78% 654.6 2.55% 769.0

Table B.5: Testing of nmax = dn x (N/2)e values on the Mongstad instances where

N = 42 nodes. Average gap (Avg. gap) over best found objective for the instances

are shown, along with average run time in seconds (AT).
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value increases, indicating that the stability increases with the parameter value.

The MS
42 instance has an average gap below 0.8% for nmax values of nine and

higher, and thus all of these values give stable solutions. It is worth noting that

the ML
42 instance has a very high gap when the nmax value is low. This is because

several attempts on dropping and reinserting of nodes are needed before a good

solution is obtained for this instance. When the nmax value is seven or higher,

the solutions obtained for ML
42 are more stable. A nmax value of 11 gives a stable

solution for both MS
42 and ML

42, while keeping the run time at a reasonable level.

This leads to a n = 0.5 being chosen for the large instances.

B.2.3 Number of initial solutions

As explained in Section 7.2 the initial solution in Algorithm 7.2 is found by com-

paring imax number of generated solutions. In this section the results from testing

the heuristic for a number of different imax values are presented. The five values

that are tested for imax are in the interval [5000, 100 000], and the heuristic is

run ten times for every considered value. One small, medium and large instance

with and without disruptions are tested, and these are shown in Table 8.2. To find

the best possible imax for every instance, the average gap and the average time,

explained in Appendix B.2.1, are found.

When the testing of the M12 cases was conducted, it showed that the average

gap was equal zero for every case of imax. This was also the case for F24 and

FS
24. For FL

24 the maximum average gap was 0.15%. The authors finds this gap

negligible, and M12 and F24 is therefore not further discussed in this section. For

the small instances imax is set to 5 000, and 50 000 for medium instances based on

the average run time.

As in the previous sections, the results for theM42 instance with no disruption,

are good for every value of imax. When it comes toM42 with triple load and reduced

speed, the average gap goes from 4% to 2.2% for imax = 5 000 and imax = 100 000,
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respectively. This is the case for both disrupted instances and is caused by poor

initial solutions when imax is low. The reason why the heuristic is more unstable for

the disrupted cases is discussed in Appendix B.2.1. On a general basis, the average

gap decreased when imax increased. Since Algorithm 7.2 uses some randomization,

it is obvious that higher imax will on average result in better initial solutions than

lower values. When it comes to the total run time, this was not affected greatly

by the number of initial solutions that was generated. In the MS
42 and ML

42 cases,

the generation of the initial solutions took around five seconds, and is thus only a

fraction of the total run time (250-600 seconds). Based on the results presented

above, imax is set to 100 000 for large instances.

B.2.4 Move operator order

In the Algorithms 7.4 and 7.5, the shaking and local search for the VNS are de-

scribed. In both algorithms, eight neighborhood operators are used. If the initial

solution provided has any delays, a ninth operator, the sibling mover operator, is

also used. In this section, the results from testing different orders of the operators

in which they were performed are presented. Since the operators being performed

first, are performed more often, the authors chose the computationally cheapest

operators to be performed first if possible. For example, when alternate inter-route

and intra-route moves are tested, the cheapest inter-route move is followed by the

cheapest intra-route move and so forth. The same orders are used for both the

shaking and local search in the Algorithms 7.4 and 7.5. Four different orders were

tested, and are subsequently described below.

• Order 1(computationally cheapest first) : insert, swap, shift, replace, 2-opt,

3-opt, cross, exchange, sibling mover.

• Order 2(first intra-route moves, then inter-route moves) : insert, swap, 2-

opt, 3-opt, shift, replace, cross, exchange, sibling mover.
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• Order 3(first inter-route moves, then intra-route moves) : shift, replace,

cross, exchange, sibling mover, insert, swap, 2-opt, 3-opt.

• Order 4(Alternate between inter-route and intra-route moves) : shift, insert,

replace, swap, cross, 2-opt, exchange, 3-opt, sibling mover.

The testing was limited to these four combinations, since all possible combina-

tions would mean testing up to 9! different orders, based on the problem instance.

The first order is chosen because performing all the cheapest operators first might

result in low run times. Order 3 is chosen because it first tries to move nodes

between vessels, and then move nodes internally on each vessel. Order 2 is chosen

to see if doing the opposite of Order 3 has any effects. Finally, Order 4 is chosen

to test the effect of alternately moving nodes between vessels and internally on

vessels.

As in the testing of pmax, smax, nmax and imax, the M12 instances were not

sensitive to the different order of neighborhood operators, and are therefore not

discussed further.

The tests showed that the non-disrupted cases were very little sensitive to the

different orders, both with respect to run time and average gap over best found

objective. It also became clear that as the problem instance size increased, so did

the average gap, and naturally the run time since this is affected by the number of

nodes. The highest gaps at up to 5% were found when testing the MS
42 and ML

42

instances. However, the heuristic’s performance was stable for most of the orders.

The order that was deemed by the authors to give the best results for the F24 and

M42 instances (with and without disruptions), was Order 1. Order 1 is therefore

chosen as the standard operator order for all instances.

Order 1 alternates between inter-route and intra-route moves. What this means,

is that the heuristic alternates between moving nodes between two or more vessel,

and rearranging nodes internally on one vessel. This results in nodes being tried

in a large number of positions on several vessels.
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Appendix C

Code and test instances

All programmed code and test instances are provided as a zipped archive contain-

ing:

1. The arc-flow folder which contains

• Xpress-Mosel file for the arc-flow model.

• Data files for the problem instances in Table 8.5.

2. The voyage-based folder which contains

• Xpress-Mosel file for the voyage-based model.

• Data files to use in Xpress-Mosel for the problem instances in Table 8.5

generated in Java.

3. The heuristic folder which contains

• A Java workspace that contains code and data files for the voyage gen-

eration and the VNS heuristic.

• Results from ten runs of the VNS heuristic for each problem instance in

Table 8.5 and Table 8.6.

• Text file with results explanation.
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Appendix D

Solution figures

In this appendix, one solution for each instance, presented in Table 8.5 and Table

8.6, is illustrated using the map drawer that the authors have implemented in Java.

The map drawer is based on the JXMapViewer2 project by Steiger (2015), and uses

the results from the heuristic. The structure of the figure label is as follows:

• ID: [Instance ID]

• Spot: ["Yes" if spot vessel is used, "No" otherwise]

• Delay: [The total number of hours the vessels in the solution are delayed]

• Postponed: [Total number of nodes that are postponed]

• Objective: [The objective value for the solution]

• Run time: [The run time for the heuristic]
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Figure D.1: ID: M10, Spot: No , Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 128 151, Run time: 0.25 seconds.

Figure D.2: ID: MS
10, Spot: Yes , Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 903 615, Run time: 0.12 seconds.
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Figure D.3: ID: ML
10, Spot: Yes, Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 512 233, Run time: 0.089 seconds.

Figure D.4: ID: M12, Spot: No, Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 138 185, Run time: 0.13 seconds.
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Figure D.5: ID: MS
12, Spot: No, Delay: 15 hours, Postponed: 0 nodes, Objective:

NOK 960 445, Run time: 0.17 seconds.

Figure D.6: ID: ML
12, Spot: No, Delay: 0 hours, Postponed: 4 nodes, Objective:

NOK 920 344, Run time: 0.13 seconds.
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Figure D.7: ID: Å14, Spot: No, Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 179 089, Run time: 0.26 seconds.

Figure D.8: ID: ÅS
14, Spot: Yes, Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 1 159 260, Run time: 0.19 seconds.
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Figure D.9: ID: ÅL
14, Spot: Yes, Delay: 0 hours, Postponed: 1 node, Objective:

NOK 1 084 405, Run time: 0.18 seconds.

Figure D.10: ID: F16, Spot: No, Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 179 569, Run time: 0.20 seconds.

138



Figure D.11: ID: FS
16, Spot: Yes, Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 1 152 666, Run time: 0.29 seconds.

Figure D.12: ID: FL
16, Spot: No, Delay: 0 hours, Postponed: 3 nodes, Objective:

NOK 766 866, Run time: 0.19 seconds.
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Figure D.13: ID: Å18, Spot: No, Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 319 480, Run time: 10.3 seconds.

Figure D.14: ID: ÅS
18, Spot: Yes, Delay: 10 hours, Postponed: 0 nodes, Objective:

NOK 1 877 761, Run time: 29.5 seconds.
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Figure D.15: ID: ÅL
18 , Spot: No, Delay: 0.3 hours, Postponed: 0 nodes, Objective:

NOK 321 544, Run time: 10.8 seconds.

Figure D.16: ID: Å19, Spot: No, Delay: 0.3 hours, Postponed: 0 nodes, Objective:

NOK 325 395, Run time: 16.1 seconds.
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Figure D.17: ID: M22, Spot: No, Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 303 055, Run time: 18.4 seconds.

Figure D.18: ID:MS
22, Spot: Yes, Delay: 0.3 hours, Postponed: 0 nodes, Objective:

NOK 1 530 637, Run time: 28.7 seconds.
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Figure D.19: ID: ML
22, Spot: Yes, Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 996 884, Run time: 18.4 seconds.

Figure D.20: ID: F24, Spot: No, Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 339 799, Run time: 21.5 seconds.
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Figure D.21: ID: FS
24, Spot: Yes, Delay: 3 hours, Postponed: 0 nodes, Objective:

NOK 1 680 057, Run time: 34.4 seconds.

Figure D.22: ID: FL
24, Spot: Yes, Delay: 0 hours, Postponed: 1 node, Objective:

NOK 1 243 614, Run time: 59.5 seconds.
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Figure D.23: ID: Å26, Spot: No, Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 472 051, Run time: 38.9 seconds.

Figure D.24: ID: ÅS
26, Spot: Yes, Delay: 20 hours, Postponed: 0 nodes, Objective:

NOK 2 604 435, Run time: 140.5 seconds.
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Figure D.25: ID: ÅL
26, Spot: No, Delay: 0 hours, Postponed: 5 nodes, Objective:

NOK 1 443 778, Run time: 95.8 seconds.

Figure D.26: ID: M42, Spot: No, Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 581 993, Run time: 182.2 seconds.
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Figure D.27: ID: MS
42, Spot: Yes, Delay: 16 hours, Postponed: 0 nodes, Objective:

NOK 2 687 896, Run time: 357.5 seconds.

Figure D.28: ID: ML
42, Spot: Yes, Delay: 0 hours, Postponed: 3 nodes, Objective:

NOK 1 907 804, Run time: 485.4 seconds.
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Figure D.29: ID: M54, Spot: No, Delay: 0 hours, Postponed: 0 nodes, Objective:

NOK 720 577, Run time: 483.8 seconds.

Figure D.30: ID: MS
54, Spot: Yes, Delay: 22 hours, Postponed: 0 nodes, Objective:

NOK 3 216 515, Run time: 1438 seconds.
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Figure D.31: ID: ML
54, Spot: Yes, Delay: 0 hours, Postponed: 3 nodes, Objective:

NOK 2 037 586, Run time: 1602 seconds.
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