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Problem description

Regulated transmission system operators, (TSOs), need to anticipate generation capacity

additions and accommodate future growth when building transmission lines.

We study a TSO that maximises social welfare and a power company that maximises

profit, and analyse how the two influence each others’ investment decisions. The TSO

holds an option to invest in a new transmission line, while the power company has installed

some generation capacity but holds an option to expand. We use a real options approach

and account for game theoretic interactions to find the optimal timing and size of the two

investment decisions.
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Executive Summary

Regulated transmission system operators, (TSOs), need to anticipate generation capacity

additions and accommodate future growth when building transmission lines. Given the

last decades’ deregulation of the European power sectors, EU policymakers are facing the

challenge of achieving targets to mitigate climate change since they have relinquished control

of the power sector. This challenge has contributed to an increased need for understanding

how market participants will respond to TSOs’ investment decisions, and how TSOs can

accommodate generation expansion and increase adoption of renewable energy technologies

among power companies.

We study a market consisting of a welfare-maximising TSO and a profit-maximising

power company. The TSO holds an option to invest in a new transmission line, while the

power company has installed some generation capacity but holds an option to expand. The

proposed model captures both the investment strategies of the TSO and the power company

and accounts for the conflicting objectives and game-theoretic interactions of the distinct

agents. Taking a real options approach allows us to study the e↵ect of uncertainty on the

investment strategies and take into account timing as well as sizing flexibility.

We provide insight to TSOs by studying 1) how much welfare a TSO will forgo by

disregarding a power company’s optimal investment decision, 2) the e↵ect of uncertainty on

optimal transmission and generation investment strategies, and 3) the value of managerial

flexibility.

We find that disregarding the power company’s optimal investment decision can have

a large negative impact on social welfare for a TSO. This is because, in most cases, the

TSO will want both agents to invest in a larger capacity than what is optimal for the power

company. This implies that the TSO faces a risk of investing in transmission capacity that

will be left unused by the power company if it does not consider the power company’s optimal

capacity decision. The only time we find that the optimal capacity of the TSO is less than

that of the power company is if the TSO does not have timing flexibility and is forced to

invest at a low demand level. Then, for low uncertainties, the optimal capacity of the TSO

is dominating. Furthermore, we find that if the TSO considers only the power company’s

sizing flexibility and not the flexibility in timing, then it risks investing in a too small

capacity. This is because the power company would optimally want to delay investment,

and invest in a larger capacity than the TSO anticipates it to install if it assumes that the

power company invests at the same time as itself. We furthermore conclude that not only
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does a subsidy of the power company’s investment cost increase the optimal capacity, but

it also triggers earlier investment by the power company. Therefore, a subsidy can be used

as a tool to increase social welfare.

We find that increased demand uncertainty leads to an increase in optimal capacity

and a delay in investment because of the increased value of waiting. Also the welfare loss

from not taking the power company’s optimal investment decision into account increases in

uncertainty.

This paper extends the theoretical real options literature by considering a two-firm set-

ting with di↵erent objectives tackling both timing and capacity choice of the agents. It

provides insight into how the conflicting objectives a↵ect the optimal investment strategy

of the TSO. Therefore, it is a step in the direction of providing better policies to increase

power companies’ adoption of renewable energy technologies.
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Sammendrag

N̊ar systemansvarlig for kraftnettet tar investeringsbeslutninger knyttet til utbygging av

kraftlinjer må den ta hensyn til forventet økning i kraftselskapenes produksjon og legge

til rette for vekst. P̊a bakgrunn av de siste ti̊arenes deregulering av det europeiske kraft-

markedet st̊ar EU ovenfor en utfordring knyttet til å n̊a klimamålene organisasjonen har satt

seg ettersom de ikke lenger kontrollerer kraftproduksjonen. Denne utfordringen har bidratt

til et økt behov for å forst̊a hvordan kraftselskapene reagerer p̊a systemansvarlig sine in-

vesteringsbeslutninger, og hvordan systemansvarlig kan bidra til å øke kraftproduksjonen

samt andelen kraft fra fornybare energikilder.

I denne artikkelen studerer vi et marked som best̊ar av en systemansvarlig med mål om

å maksimere velferd og et profittmaksimeriende kraftselskap. Systemansvarlig har en opsjon

p̊a å bygge ut en kraftlinje, mens kraftselskapet har noe eksisterende produksjonskapasitet

i tillegg til en opsjon p̊a å øke kapasiteten. Modellen vi har utviklet inkluderer b̊ade syste-

mansvarlig og kraftselskapets investeringsbeslutning. Videre tar den hensyn til at aktørene

har motstridende mål og de spillteoretiske aspektene som oppst̊ar p̊a bakgrunn av dette.

En realopsjonstilnærming er valgt, noe som gjør det mulig å studere e↵ekten av usikkerhet

samtidig som vi tar hensyn til at aktørene har fleksibilitet til å bestemme b̊ade tidspunkt

for og størrelse p̊a investeringen sin.

Vi gir systemansvarlig bedre innsikt ved å undersøke 1) hvor mye velferd som vil g̊a

tapt dersom systemansvarlig ser bort fra kraftselskapets frihet til å ta sin egen invester-

ingsbeslutning b̊ade med tanke p̊a tid og kapasitet, 2) hvordan usikkerhet p̊avirker hver

av de to akørenes optimale investeringsstrategier, og 3) verdien av fleksibilitet knyttet til

investeringsbeslutningen for begge aktører.

Vi finner at dersom systemansvarlig ignorerer kraftselskapets frihet til å velge tidspunkt

og størrelse p̊a investeringen sin vil det ha en betydelig negativ innvirkning p̊a velferd.

Dette fordi systemansvarlig som regel vil at kraftselskapet skal investere i en høyere kap-

asitet enn det som er optimalt for kraftselskapet med tanke p̊a profitt. Dermed risikerer

systemansvarlig å investere i kraftlinjekapasitet som ikke vil bli benyttet av kraftselskapet

hvis den ser bort fra kraftselskapets frihet til å bestemme sin egen kapasitet. Unntaket er

n̊ar systemansvarlig ikke kan velge tidspunkt for sin egen investering, men må investere ved

et lavt etterspørselsniv̊a. For lav usikkerhet vil da systemansvarligs optimale kapasitet være

lavere enn den optimale kapasiteten til kraftselskapet. P̊a den annen side finner vi at hvis

systemansvarlig kun tar hensyn til at kraftselskapet har mulighet til å bestemme størrelsen
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p̊a kapasitetsutvidelsen, men ikke at det har mulighet til å utsette investeringen, risikerer

den å bygge en kraftlinje med for lav kapasitet. Det er fordi kraftselskapet optimalt vil

utsette investeringen og investere i en høyere kapasitet enn systemansvarlig forutser hvis

den antar at kraftselskapet investerer p̊a samme tidspunkt som seg selv. Videre konkluderer

vi med at et subsidie av kraftselskapets investeringskostand ikke bare vil føre til at det er

optimalt for kraftselskapet å investere i en høyere kapasitet, men ogs̊a gjøre det optimalt å

investere p̊a et tidligere tidspunkt. Derfor kan et subsidie være et verktøy for å øke velferd.

Vi finner at økt usikkerhet i etterspørsel fører til en økning i optimal kapasitet og utsatt

investering p̊a grunn av økt verdi av å vente. Ogs̊a velferdstapet fra å ikke ta hensyn til

kraftselskapets optimale investeringsbesluting øker med usikkerhet.

Denne artikkelen utvider den teoretiske realopsjonslitteraturen ved å presentre en modell

med to aktører med ulike målsetninger. Den bidrar til innsikt knyttet til hvordan de mot-

stridende målsetningene p̊avirker systemansvarligs optimale investeringsstrategi. Arbeidet

er et skritt p̊a veien mot å kunne utvikle reguleringer som vil bidra til økning av fornybar

energiproduksjon.
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Nomenclature

↵ Drift rate

�
1

Positive root of the quadratic function 1

2

�2�(� � 1) + ↵� � ⇢ = 0

� Marginal investment cost of the power company

⌘ Constant > 0 in inverse demand function

� Marginal investment cost of the TSO

⇢ Exogenous discount rate

� Volatility parameter

⌧P First time the stochastic variable ✓ hits the trigger level, ✓P , i.e., the investment

timing of the power company

⌧T First time the stochastic variable ✓ hits the trigger level, ✓T , i.e., the investment

timing of the TSO

✓P Investment trigger of the power company

✓T Investment trigger of the TSO

K
0

Existing capacity of the power company

KP Capacity expansion of the power company

KT Capacity of the transmission line exceeding K
0
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1 Introduction

Regulated transmission system operators, (TSOs), need to anticipate generation capacity

additions and accommodate future growth when building transmission lines. In practice,

they are responsible for keeping a balance between generation and consumption of power at

every point in time to ensure system stability (Viljanen et al., 2011). A few decades ago, all

European electricity industries were regulated, i.e., vertically integrated monopolies, which

controlled generation, retail, transmission, and distribution functions. However, deregu-

lation of most industries started early in the 1990s. The goal was to create more e�cient

markets by introducing competition (Hyman, 2010). By 2002, 80% of the European electric-

ity market was opened to competition, while Denmark, Finland, Germany, Norway, Sweden,

and the UK had close to fully deregulated markets (Nord Pool Spot, 2015; Strauss-Kahn

and Traca, 2004). However in most countries, transmission is still regulated1.

At the same time, the European Union (EU) has been facing an increasing pressure of

meeting its targets on greenhouse gas emissions, renewable energy, and energy e�ciency. In

2007, the EU’s strategic Energy Technology Plan (SET-plan) was adopted as a response, to

promote research and development (R&D) of renewable energy technologies and to increase

their adoption by the market (Huemer, 2012). But, given the deregulation of energy sectors

in most EU member states, power companies will only adopt renewable energy technolo-

gies if they contribute to their profit-maximising incentives. Thus, when trying to achieve

its targets to mitigate climate changes, the EU policymakers face the challenge of having

committed to achieve certain environmental standards, while at the same time having re-

linquished control of the power sector. Furthermore, since renewable technologies like wind,

hydro, and solar power are typically geographically dispersed, power companies will invest

in such technologies only if there is transmission line capacity available in their geographical

area (Kassakian et al., 2011). Transmission investment decisions, however, are typically

made by regulated welfare-maximising TSOs. These challenges have contributed to an in-

creased need for understanding how market participants will respond to TSOs’ investment

decisions and governmental policies, as the EU can no longer influence the power companies’

investment decisions directly. As of today, most policy-enabling models of the EU energy

1Transmission may be characterized as a natural monopoly (Nelson and Primeaux, 1988). Natural

monopolies often arise when fixed costs represent a fundamental proportion of total costs, and they as

a consequence are more e�cient if operated by a unique player rather than having competitive systems

(Rudnick et al., 1995).
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system overlook that TSOs and power companies have di↵erent objectives, which may lead

to flawed market designs2.

We study a market consisting of one TSO and one power company. The TSO holds an

option to invest in a new transmission line, while the power company has installed some

generation capacity but holds an option to expand. The power company is dependent on

the TSO to invest in grid lines so that it can transmit its power, while the TSO is dependent

on the power company as the amount of power transmitted to the market is equal to the

production of the power plant. We take into account that the two agents have conflicting

objectives as the TSO maximises social welfare while the power company maximises profit.

Furthermore, we introduce uncertainty into the model by assuming that future demand is

stochastic and consider both optimal timing and size of the two investments. The problem

has similarities to a Stackelberg game with the TSO as the leader and the power company

as the follower. However in our case, the agents are dependent on each other instead of

competing on market share. We solve the problem by taking a real options approach that

accounts for game-theoretic interactions. Therewith, we contribute to the theoretical real

options literature as, to our best knowledge, we are the first to consider a two-firm setting

with di↵erent objectives tackling both timing and capacity choice of the agents.

Besides this theoretical contribution, the main goal of the thesis is to provide insights

into optimal transmission investment decisions by studying 1) how much welfare a TSO

will forgo by disregarding a power company’s optimal investment decision, 2) the e↵ect of

uncertainty on optimal transmission and generation investment strategies, and 3) the value

of managerial flexibility.

We find that if the TSO disregards the power company’s optimal investment decision it

can have a large negative impact on social welfare. In most cases, the TSO will want both

agents to invest in a larger capacity than what is optimal for the power company. Therefore,

the TSO faces a risk of investing in transmission capacity that will be left unused by the

power company if it does not consider the power company’s optimal capacity decision. On

the contrary, we find that if the TSO considers only the power company’s sizing flexibility

and not the flexibility in timing, then it risks investing in a too small capacity. This is

because the power company would optimally want to delay investment, and invest in a

2E.g., the MARKAL model does not take into account this aspect (Loulou et al., 2004). As of 2011,

this model was adapted for use in many countries, including the UK, the US, the Netherlands, Sweden,

Australia and Germany (Department of Energy & Climate Change UK, 2011).
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larger capacity than the TSO anticipates it to install if it assumes that the power company

invests at the same time as itself. Furthermore, we conclude that not only does a subsidy

of the power company’s investment cost increase the optimal capacity, but it also triggers

earlier investment by the power company. Therefore, a subsidy can be used as a tool to

increase social welfare.

Moreover, we find that increased demand uncertainty leads to an increase in optimal

capacity and a delay in investment because of the increased value of waiting. Also the

welfare loss from not taking the PC’s optimal investment decision into account increases in

uncertainty.

The study contributes to an improved understanding of how conflicting objectives a↵ect

the optimal investment strategy of both agents, and the social welfare loss that might occur

if TSOs do not anticipate the response of power companies to their investment decisions.

The study is a step in the direction of providing better policies to increase power companies’

adoption of renewable energy technologies.

We proceed in Section 2 by discussing related literature. In Section 3, we first introduce

the assumptions and notation and then formulate the model. In Section 4, the solution

approach used to solve the model is described. In Section 5, the analytical expressions for the

investment thresholds, corresponding optimal capacities, and the resulting value functions

given the possible outcomes of the game are derived. In Section 6, we present numerical

results and highlight the economic insight the model provides. Section 7 concludes the paper

and o↵ers directions for future research. Detailed derivations, proofs of propositions, as well

as analytical solutions to sub-problems that will be introduced in the model section can be

found in the Appendix.

2 Related Literature

A number of existing research papers have been motivated by the deregulation of power

markets and analyse how deregulation a↵ects the market participants’ optimal investment

decisions. Most of the existing papers use either a real options or an optimization approach.

Few real options papers consider both transmission and generation investments simulta-

neously. However, several have studied either transmission planning or generation expansion

planning. Siddiqui and Gupta (2007) analyse the e↵ects of deregulating the transmission

sector by modelling the investment decision of a private investor holding a perpetual op-
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tion to construct a transmission line. Using the real options approach, they find optimal

investment timing and line capacity under uncertain congestion rents. They compare the

cases of limited liability, i.e., the private investor does not incur losses from operating the

transmission line, and unlimited liability. Based on their analysis, they conclude that lim-

ited liability might be an e↵ective policy tool that induces private investors to invest in

transmission lines. Saphores et al. (2004) study a firm that must undergo a costly and

time-consuming regulatory process before investing in a transmission line. They consider

optimal timing of the stepwise investment, and find that the optimal start of the regulatory

review and the project construction depend on the project benefits and the duration of the

regulatory review. Boyle et al. (2006) set out a simple analytical framework for incorporat-

ing real options in transmission investment decisions but do not address directly the issue

of coordination between generation investment and transmission investment. They treat

new generation assets as exogenous, i.e., current and projected transmission investments do

not influence generation investments. Botterud et al. (2005) present a stochastic dynamic

investment model for investments in power generation under both centralised social welfare

and decentralised profit objectives. However, they analyse generation without taking trans-

mission capacity into account. Additional to these papers, we consider the interrelation

between transmission line and generation investments.

Several papers based on optimisation models including game-theoretic aspects conclude

that the interrelation between generation and transmission investments should be consid-

ered. Sauma and Oren (2006) include game-theoretic aspects and evaluate the welfare

implications of transmission investments based on equilibrium models. They take into ac-

count the competitive interaction among generation firms whose decisions in generation

capacity investments and production are a↵ected by both transmission investments and

the congestion management protocols of the TSO. Their analysis shows that both the size

of the welfare gains associated with transmission investments and the location of the best

transmission investments might change when the generation expansion response is taken

into account.

Sauma and Oren (2007) formulate transmission planning as an optimisation problem

using a multistage game-theoretic framework. They consider alternative conflicting objec-

tives and investigate the policy implications of divergent expansion plans resulting from the

planner’s level of anticipation of strategic responses. They assume that there are several com-

peting power companies maximising profit, and a TSO whose objective is to maximise social

4



welfare while satisfying transmission constraints. Their study shows that optimal transmis-

sion expansion plans may be very sensitive to supply and demand parameters. Based on

this observation, they also conclude that interrelation between generation and transmission

investments should be taken into account when evaluating transmission investment projects.

Other optimisation papers have also considered both transmission and generation plan-

ning. One example is Maurovich-Horvat et al. (2015). They compare two markets designs

using two bi-level optimisation models. One model with a welfare-maximising TSO and an-

other one with a profit-maximising merchant investor (MI) making transmission investment

decisions, while generation investments are determined by wind power companies. They find

that social welfare is always higher when the TSO decides transmission investments because

the MI has incentives to boost congestion rents by restricting capacities of the transmission

lines, which also limits investment in wind power by producers.

Baringo and Conejo (2012) also use a bi-level optimisation model and consider both

transmission and generation investments. They however consider a welfare-maximising TSO

at the upper level making both transmission and wind investment decisions. In addition to

them, we take into account that in a deregulated market these investment decisions are

typically made by di↵erent agents with conflicting objectives.

Compared to Sauma and Oren (2006), Sauma and Oren (2007), Maurovich-Horvat et al.

(2015), and Baringo and Conejo (2012), we consider a continuous-time framework and

introduce uncertainty into our model. This allows us to consider the timing of investment

in addition to capacity. However, in our model, we consider only one power company and

not several competing power companies like done in these papers.

In addition to the energy-specific papers mentioned, a range of other real options papers

are relevant for our work. The theory of real options determines the optimal time to invest in

a given capacity and find that uncertainty generates a value of waiting. Recent contributions

in addition determine the optimal size of the investment (Dangl, 1999; Bøckman et al., 2008;

Hagspiel et al., 2010; Sarkar, 2011; Chronopoulos et al., 2015). A general result obtained is

that when uncertainty increases, firms invest later in a larger capacity. As an example, Dangl

(1999) discusses an investment problem in which a profit-maximising firm has to determine

both optimal investment timing and optimal capacity choice. He finds that uncertainty

in future demand leads to an increase in optimal installed capacity and causes investment

to be delayed. Furthermore, our problem is similar to sequential investment problems like

Kort et al. (2010) and Chronopoulos et al. (2015) but unlike them we consider that the two
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investments undertaken at distinct points in time are made by two di↵erent agents with

conflicting objectives.

Due to the strategic aspect arising in our problem, game-theoretic papers are also relevant

for our work (Huberts et al., 2015; Kamoto and Okawa, 2014; Huisman and Kort, 2014).

Huisman and Kort (2014) extend the literature that considers both timing and capacity by

including competition. They consider both a monopoly and a duopoly case and analyse

timing and capacity decisions simultaneously. They find that the capacity level of a social

planner is twice the level of the monopolist and that both agents invest in a larger capacity

when uncertainty increases. As in Huisman and Kort (2014), we consider two di↵erent

agents. However, compared to Huisman and Kort (2014), the two agents are not competing

on market share. Rather, they are dependent on each other’s investment decision both with

regards to timing and sizing. Still, one can argue that competition arises in the sense that

they have conflicting objectives.

Sinha et al. (2013) consider a similar problem as ours, including a regulating authority

and a mining company. Their objectives are conflicting as the regulating authority strives

to maximise social welfare through higher taxes and pollution reduction, while the mining

company is profit-maximising. This leads to a Stackelberg competition with the regulating

authority as the leader. The leader has a first-mover advantage as it can set a tax structure

that directly a↵ects the follower’s profit and, thus, its investment decision. The problem

is solved as a bi-level optimisation problem. Because of extensions they introduce to the

model, they do not handle the problem using an analytical approach but rather a bilevel

evolutionary algorithm. Our problem di↵ers from Sinha et al.’s (2013) as the TSO’s in-

vestment decision does not directly a↵ect the power company’s profit or investment cost

and, thus, neither the investment decision. The TSO only sets lower and upper bounds

on the power company’s timing and capacity choice, respectively. In addition to Sinha

et al. (2013), we introduce uncertainty into the model and derive analytical solutions for

the optimal investment strategies.

Review of existing literature reveals a gap in the literature within the field of real options.

To the best of our knowledge, we are the first to consider a two-firm setting with di↵erent

objectives solving for optimal investment strategy for both the leader and the follower with

respect to timing and size of investment.
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3 Model Assumptions and Problem Formulation

We consider two decision makers, a TSO and a power company (PC), that serve a market

characterised by uncertain demand. The TSO holds an option to invest in a new trans-

mission line to connect the capacity of the PC to the main grid and has the flexibility to

choose both size and timing of the investment. The PC currently has installed a generation

capacity of size K
0

and holds an option to expand. However, the PC receives no profit

before the TSO undertakes its investment as we assume that there is no transmission ca-

pacity available before the new transmission line is installed3. Assuming existing capacity is

reasonable as renewable energy sources often are located in remote places were the existing

grid is limited and must be replaced in order to meet higher levels of demand. Also, the PC

has timing and sizing flexibility with regards to the possible future expansion. Both invest-

ments are considered to be irreversible as transmission lines and power plants tend to have

low residual values. The problem is similar to a sequential investment problem but with two

di↵erent agents investing at each step. Moreover, the two agents have di↵erent objectives.

The TSO strives to maximise social welfare, while the PC maximises profit. We assume

perfect information implying that the TSO can anticipate the investment decision of the

PC. This adds strategic aspects to the problem, which will influence the TSO’s investment

strategy since we assume that the TSO makes its investment decision before the PC. There-

fore, the problem is similar to a Stackelberg game with the TSO as the leader and the PC

as the follower. However, as transmission capacity complements generation capacity rather

than substituting it (Chao and Wilson, 2012), the considered problem does not have the

same competitive aspects as the traditional Stackelberg model where companies compete

on market share. Instead, each agent’s value is dependent on the other agent’s investment

decision. The PC is dependent on the TSO to invest in grid lines so that it can transmit its

power, while the TSO is dependent on the PC as the amount of power transmitted to the

market is equal to the production of the PC. Still, a competitive aspect arises in the sense

that they have conflicting objectives they both want to achieve.

The power plant and the transmission line serve stochastic demand given by the following

3In reality there would most likely be an old transmission line available to transmit the initial capacity

of the PC before the new transmission line is installed. However, we assume this is not the case as we want

to focus on the investment decision of the TSO. Relaxing this assumption would complicate our already

complex problem.
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inverse demand function4:

P (✓t, K) = ✓t(1� ⌘K), (1)

where ✓t is a stochastic demand shift parameter, ⌘ > 0 is a constant, and K is the capacity

of the power plant. We consider a continuous-time framework where the stochastic demand

shift parameter is assumed to undergo multiplicative geometric Brownian Motion (GBM)

shocks, i.e., {✓t, t � 0} follows a stochastic process of the form:

d✓t = ↵✓tdt+ �✓tdWt, (2)

where ↵ 2 < is the trend parameter or drift, � 2 <
+

is the volatility parameter, and dWt

is an increment of a Wiener process. The current value of the demand parameter is known

to the agents, but future values are uncertain and assumed to be log-normally distributed.

The stochastic demand shift parameter introduces uncertainty into the investment problem.

Furthermore, ⇢ is the exogenously given discount rate. We assume that ⇢ > ↵ as otherwise it

would never be optimal to invest. Then, both agents would prefer to wait forever. Further-

more, we assume that the PC produces up to capacity5, K. As we want to focus on deciding

optimal timing and size of the investments, and already consider a very complex problem,

we refer to Dangl (1999), Sarkar (2009), and Chicu (2012) for further insight into volume

flexibility. For ease of notation, production costs are assumed to be implicitly included in

the investment cost as the results do not qualitatively depend on them. Also, we assume

that the TSO charges the PC no tari↵s for transmitting power. Thus, the continuous profit

flow of the PC is equal to:

⇡(✓t, K) = P (✓t, K)K. (3)

The TSO has to invest in a capacity greater than or equal to K
0

. KT denotes the trans-

mission capacity exceeding K
0

. Using this notation, the total capacity of the transmission

line is equal to K
0

+ KT after the transmission investment is undertaken. Similarly, we

4A multiplicative demand function is chosen, i.e., current and future prices depend on the capacity of the

PC and, therefore, on the investment decision. This implies an upper bound on quantity, being independent

of ✓t, in order to guarantee a positive output price (Boonman and Hagspiel, 2013). See Boonman and

Hagspiel (2013) for a broader discussion on demand functions.
5This assumption is often called the ’market clearance assumption’, and is widely used in the literature,

e.g., in Chod and Rudi (2005), Anand and Girotra (2007), Goyal and Netessine (2007), and Boonman et al.

(2015).
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define KP as the size of the PC’s capacity expansion. Then, the total capacity of the PC is

K
0

before expansion, and K
0

+KP after expansion. As we do not allow for disinvestment,

i.e., reduction of the generation and transmission capacity below K
0

, we require both KP

and KT to be positive.

Similar to Sauma and Oren (2007), Huisman and Kort (2014) or Boonman et al. (2015),

we assume investment costs for both agents to be linear in capacity. Moreover, we assume

that the TSO and the PC face di↵erent marginal investment costs. The total investment

cost, including operating costs for the TSO, is assumed to be �(K
0

+ KT ), while the PC

faces an investment cost, including production costs, of �KP . Note that the PC has already

installed a capacity of K
0

.

As the TSO’s objective is to maximise social welfare, we need to define total surplus.

Like Sauma and Oren (2006) and Maurovich-Horvat et al. (2015), we define total surplus

as the sum of the consumer and producer surplus net of investment costs for both agents.

Regarding investment timing, we distinguish two possible cases. In case 1, the PC invests

later than the TSO, i.e., the investment threshold of the PC, ✓P , is higher than that of the

TSO, ✓T . In case 2 the PC invests at the same time as the TSO. The first case will result

in three regions, see Figure 1. In the first region, both companies are waiting to invest. In

the second region, only the TSO has invested, and an amount of power equal to K
0

is being

generated and transmitted. In the last region, the PC has increased its generation capacity

by KP , which contributes to increased total surplus of the TSO and additional profit for

the PC, respectively. In case 2 we distinguish only two regions, where both agents have

invested in the second region and an amount of power equal to K
0

+KP is being generated

and transmitted, see Figure 2.

Therewith we can formulate the investment problems of the TSO and the PC. First, the

1 2 3
✓t

✓T , K0

+KT ✓P , KP

Both investedBoth waiting

TSO invested

PC waiting

Figure 1: In Region 1, both agents are waiting to invest. In Region 2, the TSO has installed

a transmission line with capacity K
0

+ KT , however, K
0

is the amount of power being

transmitted. In Region 3, the PC has expanded its capacity by KP and generates and

transmits an amount of power equal to K
0

+KP .
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1 2
✓t

✓T ,K0

+KT , KP

Both investedBoth waiting

Figure 2: In Region 1, both agents are waiting to invest. In Region 2, both the TSO and

the PC have invested and an amount of power equal to K
0

+ KP is being generated and

transmitted.

TSO’s investment problem at time zero is equal to the following optimal stopping problem:

sup
⌧T


max
KT

E
 Z 1

s=⌧T

e�⇢sts(✓s, K0

)ds� e�⇢⌧T �(K
0

+KT )+

Z 1

s=⌧P

e�⇢s[ts(✓s, K0

+KT )� ts(✓s, K0

)]ds� e�⇢⌧P �KT

���✓
0

��
, (4)

where ts(.) denotes the continuous part of total surplus, which is equal to the sum of the

continuous parts of the consumer and producer surplus. The first part of Equation (4)

is the present value of the total surplus if the PC produces at capacity K
0

forever. The

second part denotes the present value of the additional total surplus if the PC expands its

capacity to KP = KT at time ⌧P . The inner optimisation problem states that the TSO at

the moment of investment will choose the capacity that maximises the present value of total

surplus given that it can choose the size of the PC’s capacity expansion, i.e., KP = KT .

In reality, the PC has flexibility to decide its optimal capacity but to solve for the optimal

capacity of the TSO, one needs to solve the problem as if the PC will install the TSO’s

optimal capacity. The outer optimisation problem corresponds to the flexibility of choosing

the optimal time to invest in the transmission line.

The solution to the optimal stopping problem is defined by a threshold, ✓⇤T . For ✓t levels

greater than ✓⇤T , we are in the stopping region where it is optimal for the TSO to invest

immediately. For ✓t < ✓⇤T , demand is too low to undertake the investment, and it is optimal

for the TSO to wait. The TSO invests at the moment ✓t hits the optimal investment level,

✓⇤T , the first time. Thus, the optimal investment time, ⌧ ⇤T , is equal to the first time the

stochastic variable ✓ hits the optimal level, ✓⇤T ; ⌧
⇤
T ⌘ min{t : ✓t � ✓⇤T}. The corresponding

optimal capacity is denoted by K⇤
T (✓

⇤
T ).

To find the expression for the total surplus, we start by deriving an expression for the

consumer surplus, see Huisman and Kort (2014) for similar derivations. The instantaneous
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0
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K 1

⌘

P (K)

✓t

Capacity

M
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t
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ce

Inverse demand curve

Figure 3: The consumer surplus is equal to the grey area when the inverse demand curve is

given by P (✓t, K) = ✓t(1� ⌘K) and the total generation capacity of the PC is equal to K.

consumer surplus is given by
R ✓t
P (K)

K(P )dP , which is illustrated by the grey area in Figure

3. K is the total generation capacity of the PC and, therefore, the amount of power being

generated and transmitted to the consumers. Since P (✓t, K) = ✓t(1 � ⌘K), it holds that

K(P ) = 1

⌘
(1 � P

✓t
). This leads to the following expression for the instantaneous consumer

surplus:

cs(✓t, K) =

Z ✓t

✓t(1�⌘K)

1

⌘

✓
1� P

✓t

◆
dP =

1

2
✓tK

2⌘. (5)

Taking into account the three regions where either both are waiting, only the TSO has

invested or both have invested, see Figure 1, the instantaneous consumer surplus (cs) at

time t is given by:

cs(✓t, K) =

8
>><

>>:

0 if t  ⌧T ,
1

2

✓tK2

0

⌘ if ⌧T  t  ⌧P ,
1

2

✓t(K0

+KT )2⌘ if ⌧P  t.

(6)

The instantaneous part of the producer surplus, on the other hand, is equal to the profit

flow of the PC given in Equation (3). At time t it is equal to:

ps(✓t, K) =

8
>><

>>:

0 if t  ⌧T ,

✓t(1� ⌘K
0

)K
0

if ⌧T  t  ⌧P ,

✓t(1� ⌘(K
0

+KT ))(K0

+KT ) if ⌧P  t.

(7)
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Therefore, the instantaneous part of total surplus is equal to:

ts(✓t, K) =

8
>><

>>:

0 if t  ⌧T ,
1

2

✓tK2

0

⌘ + ✓t(1� ⌘K
0

)K
0

if ⌧T  t  ⌧P ,
1

2

✓t(K0

+KT )2⌘ + ✓t(1� ⌘(K
0

+KT ))(K0

+KT ) if ⌧P  t.

(8)

Given the TSO’s investment decision, the PC’s investment problem at time zero is equal

to:

sup
⌧P�⌧T


max

KPKT

E
 Z 1

s=⌧T

e�⇢s⇡(✓s, K0

)ds

+

Z 1

s=⌧P

e�⇢s[⇡(✓s, K0

+KP )� ⇡(✓s, K0

)]ds� e�⇢⌧P �KP

���✓
0

��
, (9)

where ⌧T is the moment in time when the TSO undertakes its investment. The first part

of Equation (9) is the present value of the PC if it produces at capacity K
0

forever. The

second part denotes the present value of the net additional value of the PC if it expands its

capacity by KP at time ⌧P .

The inner optimisation problem corresponds to the flexibility to choose the size of the

capacity expansion that maximises the present value of the PC. It will never be optimal for

the PC to invest in a larger capacity than that of the transmission line, as it will not be

able to transmit the quantity exceeding the transmission line’s capacity to the consumers.

Hence, we have K
0

+ KP  K
0

+ KT , which gives KP  KT . The outer optimisation

problem corresponds to the flexibility to choose the optimal timing of the investment. The

investment timing of the PC is restricted by the TSO’s. As we assume that there is no

capacity available to transmit power, it does not make sense for the PC to expand capacity

before the TSO has installed the new transmission line. Consequently, ⌧P is assumed to be

greater than or equal to ⌧T . The solution to the optimal stopping problem is defined by the

threshold, ✓⇤P . The optimal investment time of the PC, ⌧ ⇤P , is equal to the first time the

stochastic variable ✓t hits the optimal level, ✓⇤P , ⌧
⇤
P ⌘ min{t : ✓t � ✓⇤P}. The corresponding

optimal capacity expansion of the PC is denoted by K⇤
P (✓

⇤
P ).

In the next section, we describe the solution approach before we present the solution to

the problem in Section 5. To gain additional insight into the investment decision of a TSO,

we solve several sub-problems in addition to the full problem where we reduce the agents’

level of flexibility. An overview of each sub-problem’s level of managerial flexibility is given

in Table 1. The following sub-problems have been studied:
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• Sub-problem 1: Both agents face a now-or-never investment decision but have flexibil-

ity to choose the capacity size of investment, K⇤
T and K⇤

P .

• Sub-problem 2: Both agents have flexibility to choose the timing of their own invest-

ment given by the trigger levels ✓⇤T and ✓⇤P , but the TSO decides the size of both

investments, KP = K⇤
T .

• Sub-problem 3: Both agents have flexibility to choose the timing of their own invest-

ment, but the PC decides the size of both investments, KT = K⇤
P .

• Sub-problem 4: Both companies have sizing flexibility, K⇤
T and K⇤

P . The TSO has to

invest at time zero, while the PC can choose optimal timing, given by ✓⇤P .

• Sub-problem 5: Both agents have flexibility to choose sizing, K⇤
T and K⇤

P , respectively,

while the TSO decides timing for both, i.e., ✓P = ✓⇤T

The analytical solutions to the sub-problems are derived in Appendix C.

Timing Sizing

PC TSO PC TSO

Sub-problem 1 ✓
0

✓
0

K⇤
P K⇤

T

Sub-problem 2 ✓⇤P ✓⇤T KP = K⇤
T K⇤

T

Sub-problem 3 ✓⇤P ✓⇤T K⇤
P KT = K⇤

P

Sub-problem 4 ✓⇤P ✓
0

K⇤
P K⇤

T

Sub-problem 5 ✓P = ✓⇤T ✓⇤T K⇤
P K⇤

T

Full problem ✓⇤P ✓⇤T K⇤
P K⇤

T

Table 1: Overview of the sub-problems

4 Solution Approach

Due to the assumption of perfect information, the problem is similar to a two-stage game6.

The TSO makes its investment decision first, whereas the PC can invest at the same time

or later than the TSO. Although the agents choose to invest at the same time, it is assumed

6A game is defined as any situation in which players make strategic decisions, i.e., decisions that take

into account each other’s actions and responses (Pindyck and Rubinfeld, 2009).
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that the TSO is the one that decides first, i.e., the leader, and the PC is the follower. The

game is similar to a Stackelberg game since it is a sequential game with a leader and a

follower. However, it is not a traditional Stackelberg game as the agents do not compete on

quantity.

Given that the TSO has invested, the PC cannot influence the investment strategy

of the TSO but optimises its own timing and capacity based on the observed investment

decision of the TSO. This means that the PC’s investment decision includes no strategic

aspects. However, when the TSO determines its optimal investment strategy, it takes the

PC’s reaction into account. Therefore, the problem is solved backwards. First, we find the

optimal investment decision of the PC given K⇤
T and ✓⇤T . Next, we find the optimal strategy

of the TSO while taking into account the expected response of the PC.

We derive the following remark:

Remark 1 The TSO can only a↵ect the PC’s investment decision in two ways. 1) Set-

ting a lower bound on the PC’s investment timing, ✓⇤T , which will force the PC to delay

expansion of its generation capacity if ✓⇤P is less than ✓⇤T . 2) Setting an upper bound on

capacity, which will a↵ect the PC’s decision if K⇤
T is lower than the optimal capacity expan-

sion of the power plant, K⇤
P .

Neither the PC’s profit nor its investment cost directly depend on the TSO’s investment

strategy, i.e., K⇤
T or ✓⇤T . So, the only way that the TSO can a↵ect the PC is by restricting

the size or the timing of the PC’s investment decision through the size or timing of the

transmission line investment7. Given that the TSO installs K⇤
T when ✓t hits ✓⇤T , the PC

will find its corresponding optimal investment decision8. The PC can choose among one of

the four decisions illustrated in Table 2. Only if decision 1 is optimal will the PC not be

bounded by either capacity or timing since the TSO will optimally invest in a larger capacity

at an earlier point in time than itself. If one of the other three decisions are optimal, then

the TSO’s choice of ✓⇤T and K⇤
T will restrict the optimal decision of the PC.

Due to perfect information, it is the investment strategy of the TSO that eventually

7Compared to Sinha et al. (2013), we face a challenge when solving our problem. In their model, the

profit of the mining company depends directly on the leader’s decision, whereas in our model the PC’s value

is only a↵ected by the TSO’s decision through constraints, i.e., lower and upper bounds.
8Note that the investment thresholds and capacities will from now on be written without a star when

one of the agents is bounded by the optimal investment decision of the other agent.
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Decision 1 Decision 2 Decision 3 Decision 4

✓⇤P > ✓⇤T ✓P = ✓⇤T ✓⇤P > ✓⇤T ✓P = ✓⇤T

K⇤
P < K⇤

T K⇤
P < K⇤

T KP = K⇤
T KP = K⇤

T

Table 2: Overview of possible decisions for the PC given a ✓⇤T and a K⇤
T

determines which of the decisions the PC will choose, i.e., it can manipulate the investment

decision of the PC. Consequently, the TSO will never choose a timing and capacity that

will make it optimal for the PC to choose decision 1 or 2 where the TSO ends up having

overinvested. To install additional capacity, K⇤
T > K⇤

P , will be reasonable only if the TSO

has other ways of utilising the extra capacity, which we assume not to be the case. Thus, it

holds that upon investment KP and KT will be equal and determined by the lower of the

two optimal capacities.

Since the PC’s investment decision does not depend on the TSO’s decision in a direct

way, only through constraints, we choose to solve the problem in two steps. First, we present

the analytical solution to each agent’s investment problem when solved without taking into

account the constraints on capacity. We only consider timing. The reason for including

timing, and not capacity, is that the investment problem of the TSO, given in Equation

(4), depends directly on the investment timing of the PC, ✓P . Therefore, we can take into

account the optimal timing of the PC when solving for the optimal investment strategy of

the TSO. Second, we compare the two agents’ initial optimal capacities to decide which

agent has the power to decide capacity. This decision is based on which one of them has

the lower optimal capacity, i.e., the dominating capacity. Next, we update the other agent’s

investment trigger given that it has to invest in a lower capacity than it initially found

optimal. Either it holds that the PC will delay investment beyond the TSO, or it is optimal

for the PC to invest as soon as the TSO has invested. The possible outcomes of the game

are summarised in Table 3. In outcomes 1 and 2, the TSO’s optimal capacity choice is

dominating, whereas in outcomes 3 and 4, the PC has the power to decide capacity.
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TSO decides capacity PC decides capacity

Outcome 1 Outcome 2 Outcome 3 Outcome 4

✓⇤P > ✓⇤T ✓P = ✓⇤T ✓⇤P > ✓⇤T ✓P = ✓⇤T

KP = K⇤
T KP = K⇤

T KT = K⇤
P KT = K⇤

P

Table 3: Overview of possible outcomes taking all constraints into account

5 Optimal Investment Strategies

In this section, we derive the optimal solution to the investment problems of the TSO

and the PC, respectively. As described in Section 4, we start by presenting the analytical

solutions of the two investment problems disregarding the capacity constraints. Then, we

compare the two optimal capacities to decide which one will be dominating to find the

optimal investment strategies of the two agents.

5.1 Optimal investment strategies disregarding capacity constraints

5.1.1 PC’s investment decision

When we do not take into account constraints on capacity, the PC’s investment problem at

time zero is as follows:

sup
⌧P�⌧T


max
KP

E
 Z 1

s=⌧T

e�⇢s⇡(✓s, K0

)ds+

Z 1

s=⌧P

e�⇢s[⇡(✓s, K0

+KP )�⇡(✓s, K0

)]ds�e�⇢⌧P �KP

���✓
0

��
.

(10)

First, we derive the now-or-never optimal capacity expansion for the PC, denoted by K⇤
P ,

for a fixed t, i.e. the capacity that maximises the additional present value of the PC at time

t:

max
KP

E
 Z 1

s=t

e�⇢s[⇡(✓s, K0

+KP )� ⇡(✓s, K0

)]ds� e�⇢⌧P �KP

���✓t
�
, (11)

which is equal to:

max
KP

 Z 1

s=t

e�⇢sE[⇡(✓s, K0

+KP )� ⇡(✓s, K0

)
��✓t]ds� �KP

�
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= max
KP

 Z 1

s=t

e�⇢s✓te
↵s[(1� ⌘(K

0

+KP ))(K0

+KP )� (1� ⌘K
0

)K
0

]ds� �KP

�

= max
KP


✓t[1� ⌘(K

0

+KP )](K0

+KP )

(⇢� ↵)
� ✓t(1� ⌘K

0

)K
0

(⇢� ↵)
� �KP

�
.

We find the derivative of the expression with respect to KP and set it equal to zero. There-

with, the optimal capacity, K̂⇤
P , is given by:

K̂⇤
P (✓t) =

1

2⌘


1� �(⇢� ↵)

✓t

�
�K

0

. (12)

As the PC cannot decrease the total capacity level since we do not account for disinvestment,

K⇤
P is restricted by the lower bound zero and, therefore, equal to:

K⇤
P (✓t) = max

✓
1

2⌘


1� �(⇢� ↵)

✓t

�
�K

0

, 0

◆
. (13)

After having solved for K⇤
P (✓t), the PC’s investment problem at time zero reduces to:

sup
⌧P�⌧T

E
 Z 1

s=⌧T

e�⇢s⇡(✓s, K0

)ds+

Z 1

s=⌧P

e�⇢s[⇡(✓s, K0

+K⇤
P )� ⇡(✓s, K0

)]ds� e�⇢⌧P �K⇤
P

���✓
0

�
,

(14)

where ⌧P is the time at which the investment in additional generation capacity is undertaken.

Next, we solve the outer optimisation problem following a dynamic programming approach

inspired by Dixit and Pindyck (1994). The solution to the optimal stopping problem is

defined by a threshold, ✓⇤P . For ✓t levels greater than ✓⇤P , we are in the stopping region where

it is optimal for the PC to invest immediately. For ✓t < ✓⇤P , we are in the continuation region

where demand is too low to undertake the investment, and it is optimal to wait for the PC.

The PC invests at the moment ✓t hits the optimal investment level, ✓⇤P , the first time. Thus,

the optimal investment time, ⌧ ⇤P , is equal to the first time the stochastic variable ✓t hits the

optimal level; ⌧ ⇤P ⌘ min{t : ✓t � ✓⇤P}.
Given that the TSO has already invested in a transmission line, the value of the PC can

be described by:

17



F (✓t, K
⇤
P (✓t)) =

8
<

:
A

1

✓�1
t + V

1

(✓t, K0

) if ✓T  ✓t  ✓P ,

V
2

(✓t, K0

+K⇤
P (✓t)) if ✓P  ✓t,

(15)

where �
1

> 1 is the positive root of 1

2

�2�(� � 1) + ↵� � ⇢ = 0. The endogenous constant,

A
1

, and the investment threshold, ✓⇤P , are obtained by employing the boundary condition

stated below as well as the value-matching and smooth-pasting conditions between the two

branches of the value function stated in Equation (15). The value in the continuation region

is derived by finding the solution to the ordinary di↵erential equation (ODE) that stews

from the Bellman equation:

⇢Fdt = E[dF ] + ⇡(✓t, K0

)dt. (16)

After expanding the equation applying Itô’s Lemma, we get the following ODE:

1

2
�2✓2t

d2F

d✓2t
+ ↵✓t

dF

d✓t
� ⇢F + ⇡(✓t, K0

) = 0. (17)

We guess a solution to the ODE of the following form:

F (✓t) = A
1

✓�1
t + A

2

✓�2
t + V

1

(✓t, K0

). (18)

The boundary condition says that the value of the option to invest goes to zero if ✓t goes

to zero. When ✓t goes to zero, it will stay at zero given its stochastic process, see Equation

(2). Applying the boundary condition, we get that A
2

is equal to zero:

lim
✓t!0

F (✓t) = 0 ! A
2

= 0. (19)

Subsequently, we are left with:

F (✓t) = A
1

✓�1
t + V

1

(✓t, K0

). (20)

The first term in this expression is the value of the option to expand capacity at time t,

while the second term, V
1

(✓t, K0

), denotes the present value at time t of generating and

selling an amount of power equal to the initial capacity of K
0

forever;
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V
1

(✓t, K0

) = E
 Z 1

s=t

e�⇢(s�t)⇡(✓s, K0

)ds
���✓t

�
=

✓t(1� ⌘K
0

)K
0

⇢� ↵
. (21)

The value in the stopping region is the net value of the PC at time t if it invests in additional

capacity:

V
2

(✓t, K0

+K⇤
P ) = E

 Z 1

s=t

e�⇢(s�t)⇡(✓s, K0

+K⇤
P (✓t))ds� �K⇤

P (✓t)
���✓t

�

=
✓t(1� ⌘(K

0

+K⇤
P (✓t)))(K0

+K⇤
P (✓t))

⇢� ↵
� �K⇤

P (✓t). (22)

To determine the optimal investment threshold, ✓⇤P , and the value of the endogenous constant

A
1

, we employ the value-matching and smooth-pasting conditions. The detailed derivations

are in Appendix A.1, where we state specifically the value-matching and smooth-pasting

conditions. They give the value of the endogenous constant A
1

;

A
1

=
K⇤

P (✓
⇤
P )(1� ⌘(2K

0

+K⇤
P (✓

⇤
P )))

⇢� ↵

1

�
1

✓̂⇤1��1
P , (23)

and the optimal investment threshold ✓̂⇤P , which is given by the solution to the following

implicit equation:

✓̂⇤P =
�
1

�
1

� 1
(⇢� ↵)

�

1� ⌘(2K
0

+K⇤
P (✓̂

⇤
P ))

. (24)

Taking the timing constraint into account, we get the optimal investment timing of the PC

given that the TSO invests at ✓T :

✓⇤P =

8
<

:
✓̂⇤P if ✓T < ✓̂⇤P ,

✓T if ✓T � ✓̂⇤P .
(25)

In the case whereK⇤
P is equal to zero, generation capacity will never be added, i.e., ✓⇤P (0)=1.

The optimal investment decision of the PC is summarised in the following Proposition:

Proposition 1 The optimal investment decision of the PC, without taking into account ca-

pacity restrictions caused by the TSO’s investment strategy, is to expand generation capacity

by K⇤
P equal to:
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K⇤
P (✓

⇤
P ) = max

✓
1

2⌘


1� �(⇢� ↵)

✓⇤P

�
�K

0

, 0

◆
, (26)

at the moment in time when ✓t first hits ✓⇤P , equal to:

✓⇤P =

8
<

:
✓̂⇤P if ✓⇤T < ✓̂⇤P ,

✓T if ✓⇤T � ✓̂⇤P ,
(27)

where ✓̂⇤P is given by the solution to the following implicit equation:

✓̂⇤P =
�
1

�
1

� 1
(⇢� ↵)

�

1� ⌘(2K
0

+K⇤
P (✓̂

⇤
P ))

, (28)

and ✓T for the PC is exogenously given by the TSO. In the case where K⇤
P is equal to zero,

generation capacity will never be added, i.e., ✓⇤P (0)=1.

5.1.2 TSO’s investment strategy

Next, we derive analytical expressions for the optimal investment trigger and capacity of the

TSO. As discussed in Section 3, we assume that the PC will expand its generation capacity

by KP = K⇤
T when solving the TSO’s investment problem.

The TSO’s investment problem at time zero is equal to:

sup
⌧T

"
max
KT

E
 Z 1

s=⌧T

e�⇢sts(✓s, K0

)ds� e�⇢⌧T �(K
0

+KT )+

Z 1

s=⌧P

e�⇢s[ts(✓s, K0

+KT )� ts(✓s, K0

)]ds� e�⇢⌧P �KT

���✓
0

�#
, (29)

where ts(.) denotes the continuous part of total surplus, see Equation (8).

By introducing the stochastic discount factor9, the investment problem can also be writ-

9

✓
✓0
✓T

◆�1

is the stochastic discount factor from ✓T to ✓0. It holds that:

E
h
e�⇢⌧T

i
=

✓
✓0
✓T

◆�1

, (30)

where ⌧T is the expected first passage time of reaching ✓T . This expression for the stochastic discount factor

is derived in, e.g., Dixit and Pindyck (1994).
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ten as10:

max
✓T

"
max
KT

E
✓

✓
0

✓T

◆�1

TS(✓T , ✓P (KT ), KT )
���✓

0

�#
, (31)

where TS(.) is equal to the present value of the sum of total consumer surplus and producer

surplus at time ⌧T ; TS(✓T , ✓P (KT ), KT ) = CS(✓T , ✓P (KT ), KT ) + PS(✓T , ✓P (KT ), KT ).

First, we derive the total expected consumer surplus (CS) at time t:

E
 Z 1

s=t

e�⇢(s�t)cs(✓s, K0

)ds+

Z 1

s=⌧P

e�⇢(s�t)[cs(✓s, K0

+KT )� cs(✓s, K0

)]ds
���✓t

�
(32)

= E
 Z 1

s=t

e�⇢(s�t)1

2
✓se

↵sK2

0

⌘ds+

Z 1

s=⌧P

e�⇢(s�t)[
1

2
✓se

↵s(K
0

+KT )
2⌘�1

2
✓se

↵sK2

0

⌘]ds
���✓t

�
(33)

=
1

2

⌘K2

0

⇢� ↵
✓t +

1

2

⌘[(K
0

+KT )2 �K2

0

]

⇢� ↵
✓P (KT )E

h
e�⇢(⌧P�t)

i
, (34)

where ✓P (KT ) = ✓⌧P (KT ). Note that ⌧P is a decision variable of the PC and depends on the

size of the PC’s capacity expansion. Substituting for the stochastic discount factor we get

that the total expected consumer surplus, which we will denote by CS(., ., .) in the following,

is equal to:

CS(✓t, ✓P (KT ), KT ) =
1

2

⌘K2

0

⇢� ↵
✓t +

1

2

⌘[(K
0

+KT )2 �K2

0

]

⇢� ↵
✓P (KT )

✓
✓t

✓P (KT )

◆�1

. (35)

As discussed beforehand, we assume that the total expected producer surplus (PS) is equal

to the present value of the PC’s future income minus the PC’s and the TSO’s investment

cost. The total expected producer surplus at time t is given by:

E
 Z 1

s=t

e�⇢(s�t)ps(✓s, K0

)ds� �(K
0

+KT )

+

Z 1

s=⌧P

e�⇢(s�t)[ps(✓s, K0

+KT )� ps(✓s, K0

)]ds� e�⇢⌧P �KT

���✓t
�
. (36)

where ps(.) is the continuous part of the producer surplus, i.e., the profit flow of the PC.

Therefore, the total expected producer surplus, which we will denote by PS(., ., .) in the

10From solving the PC’s investment problem we know that its investment trigger depends on the capacity

it has to install, therefore we write ✓P (KT )
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following, at time t is equal to:

PS(✓t, ✓P (KT ), KT ) =
(1� ⌘K

0

)K
0

⇢� ↵
✓t � �(K

0

+KT )

+
(1� ⌘(K

0

+KT ))(K0

+KT )� (1� ⌘K
0

)K
0

⇢� ↵
✓P (KT )

✓
✓t

✓P (KT )

◆�1

� �KT

✓
✓t

✓P (KT )

◆�1

.

(37)

Taking the sum of the expressions for the total consumer surplus (CS) and the producer

surplus (PS), we find the total expected surplus or social welfare at time t:

TS(✓t, ✓P (KT ), KT ) =


1

2
⌘K2

0

+ (1� ⌘K
0

)K
0

�
✓t

⇢� ↵
� �(K

0

+KT )

+


1

2
⌘[(K

0

+KT )
2�K2

0

]+(1�⌘(K
0

+KT ))(K0

+KT )� (1�⌘K
0

)K
0

�
✓P (KT )

⇢� ↵

✓
✓t

✓P (KT )

◆�1

� �KT

✓
✓t

✓P (KT )

◆�1

. (38)

The first two terms on the right-hand side of Equation (38) can be interpreted as the total

surplus given that the PC does not expand its generation capacity, while the last two terms

can be interpreted as the additional total surplus if the PC increases its capacity byKP = KT

at time ⌧P . From this expression, we obtain insight into the benefits and costs for the TSO

of investing before the PC expands its generation capacity. First, if the existing capacity of

the power plant K
0

is low, then the TSO achieves little social welfare from investing before

the PC expands. Second, low levels of demand, ✓t, gives little benefit from investing before

the PC. Third, if the TSO’s marginal investment cost is high, then a higher demand level

and K
0

is needed for the investment to be undertaken before the PC. On the other hand, if

� is close to zero, then the TSO will invest immediately as long as the price is positive.

If ✓P increases, then the total surplus less the investment cost is higher at time ⌧P .

However, when the PC delays investment, the present value of the net additional surplus

also diminishes as it is discounted more.

After finding the expression for the total surplus, the TSO’s investment problem at time

zero can be rewritten. Note that we from now on consider the PC’s optimal investment
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timing, ✓⇤P (KT ). Then the investment problem is equal to:

max
✓T

"
max
KT

✓
✓
0

✓T

◆�1
"

1

2
⌘K2

0

+ (1� ⌘K
0

)K
0

�
✓T

⇢� ↵
� �(K

0

+KT )

+


1

2
⌘[(K

0

+KT )
2�K2

0

]+(1�⌘(K
0

+KT ))(K0

+KT )� (1�⌘K
0

)K
0

�
✓⇤P (KT )

⇢� ↵

✓
✓T

✓⇤P (KT )

◆�1

� �KT

✓
✓T

✓⇤P (KT )

◆�1
##

. (39)

We continue by solving the inner investment problem and maximise the expression for

the total surplus with respect to KT to find the now-or-never optimal K⇤
T for a given time

t. When doing this, we need to anticipate the PC’s investment timing response if it has to

invest in a generation capacity of size K⇤
T . We take into account that the PC maximises

profit and that its optimal investment time depends on the size of its capacity expansion.

As the optimal timing of investment for the PC, see Equation (28), is increasing in capacity;

@✓⇤P (KT )

@KT

=
�
1

�
1

� 1
(⇢� ↵)

�⌘K2

T

[(1� ⌘(K
0

+KT ))(K0

+KT )� (1� ⌘K
0

)K
0

]2
> 0, (40)

the larger capacity the TSO forces the PC to invest in, the longer it will wait with under-

taking the capacity expansion. In other words, the TSO will have to consider the trade-o↵

between a large capacity and the PC delaying investment.

Next, we solve the inner extremum by finding the derivative of Equation (38) with respect

to KT and setting it equal to zero. Note that before finding the derivative, we substitute

for ✓⇤P (KT ) into Equation (38). Then, we get the following implicit equation for K̂⇤
T :

��+


��[2⌘K̂⇤

T (⌘K0

(� � 2)� � + 1) + (2⌘K
0

� 1)(2⌘K
0

(� � 2)� � + 1])

2(� � 1)(⌘K̂⇤
T + 2⌘K

0

� 1)2
+

�

� � 1
���

2

�
⇤


(� � 1)✓t(⌘K̂⇤

T + 2⌘K
0

� 1)

��(↵� ⇢)

�
= 0. (41)

As we require the TSO to at least be able to distribute an amount of power equal to the

current capacity of the PC, K
0

, the optimal K⇤
T is equal to:

K⇤
T (✓t) = max

�
K̂⇤

T (✓t), 0
�
. (42)

After having solved for K⇤
T , the outer extremum of the TSO’s investment problem is equal
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to:

max
✓T

✓
✓
0

✓T

◆�1
"

1

2
⌘K2

0

+ (1� ⌘K
0

)K
0

�
✓T

⇢� ↵
� �(K

0

+K⇤
T (✓T ))

+


1

2
⌘[(K

0

+K⇤
T (✓T ))

2 �K2

0

] + (1� ⌘(K
0

+K⇤
T (✓T )))(K0

+K⇤
T (✓T ))� (1� ⌘K

0

)K
0

�
⇤

✓⇤P (K
⇤
T (✓T ))

⇢� ↵

✓
✓T

✓⇤P (K
⇤
T (✓T ))

◆�1

� �K⇤
T (✓T )

✓
✓T

✓⇤P (K
⇤
T (✓T ))

◆�1
#
. (43)

We proceed by following a dynamic programming approach to solve the optimal stopping

problem and find ✓⇤T . The value for the TSO, F , at time t is equal to:

F (✓t, K
⇤
T (✓t), ✓

⇤
P (K

⇤
T (✓t))) =

8
<

:
B

1

✓�1
t if ✓t  ✓T ,

TS(✓t, K⇤
T (✓t), ✓

⇤
P (K

⇤
T (✓t))) if ✓T  ✓t.

(44)

The value in the continuation region is equal the value of the option to invest in the trans-

mission line, while the value in the stopping region is equal to the value of the total surplus

given that investment has occurred. The value in the continuation region is derived by find-

ing the solution to the ordinary di↵erential equation (ODE) that stews from the Bellman

equation:

⇢Fdt = E[dF ]. (45)

After expanding the equation applying Itô’s Lemma, we get the following ODE:

1

2
�2✓2t

d2F

d✓2t
+ ↵✓t

dF

d✓t
� ⇢F = 0. (46)

We guess a solution of the following form:

F (✓t) = B
1

✓�1
t +B

2

✓�2
t , (47)

and apply the boundary condition to find that B
2

is equal to zero:

lim
✓t!0

F (✓t) = 0 ! B
2

= 0. (48)

Given that the PC invests after the TSO, the net value of the total surplus at time t is given

by Equation (38).
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To determine the optimal investment threshold, ✓⇤T , and the value of the endogenous

constant B
1

, we employ the value-matching and smooth-pasting conditions. The detailed

derivations are in Appendix A.2, where we state specifically the value-matching and smooth-

pasting conditions. We find that:

B
1

=


K

0

� 1

2
⌘K2

0

�
✓⇤1��1
T

�
1

(⇢� ↵)
+


K⇤

T (✓
⇤
T )(1� ⌘(K

0

� 1

2
K⇤

T (✓
⇤
T )))

�
✓⇤P (K

⇤
T )

⇤1��1

⇢� ↵

� �K⇤
T (✓

⇤
T )✓

⇤
P (K

⇤
T )

⇤��1 , (49)

and that the optimal investment threshold of the TSO is given by the solution to the

following implicit equation:

✓⇤T =
�
1

�
1

� 1
(⇢� ↵)

�(K
0

+K⇤
T (✓

⇤
T ))

K
0

(1� 1

2

⌘K
0

)
. (50)

After finding the optimal investment strategy of the TSO, the optimal investment trigger

of the PC, ✓⇤P (K
⇤
T ), is equal to Equation (28) but with K⇤

T instead of K⇤
P :

✓⇤P (K
⇤
T ) =

�
1

�
1

� 1
(⇢� ↵)

�K⇤
T

1� ⌘(2K
0

+K⇤
T )

. (51)

In the case whereK⇤
T is equal to zero, generation capacity will never be added, i.e., ✓⇤P (0)=1.

When finding K⇤
T , the TSO takes into account the optimal investment threshold of the

PC given that it has to invest in K⇤
T . ✓

⇤
P (K

⇤
T ) needs to be larger than ✓⇤T (K

⇤
T ) for the analyt-

ical solutions above to be valid. If this is not the case, then we assume the corner solution

✓P = ✓⇤T to be optimal, see Figure 2. However, then we need to derive the TSO’s optimal

investment problem given that it decides capacity and timing for both.

Corner solution: ✓P = ✓⇤T

In this case, the PC does not hold an option to decide either capacity or timing and will

have to follow the TSO’s investment strategy. Therefore, we need to solve only the TSO’s

investment problem, given that they both invest at the same time, which at time zero is

equal to::

sup
⌧T

"
max
KT

E
 Z 1

s=⌧T

e�⇢sts(✓s, K0

+KT )ds� e�⇢⌧T �(K
0

+KT )� e�⇢⌧T �(KT )
���✓

0

�#
. (52)
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The total expected surplus at time t is given by:

TS(✓t, KT ) =


1

2
⌘(K

0

+KT )
2+(1�⌘(K

0

+KT ))(K0

+KT )

�
✓t

⇢� ↵
��(K

0

+KT )��KT . (53)

Taking the derivative of Equation (53) with respect to KT and setting it equal to zero, we

find the now-or-never optimal capacity, K⇤
T , given that we do not allow for disinvestment:

K⇤
T (✓t) = max

✓
1

⌘


1� (� + �)(⇢� ↵)

✓t

�
�K

0

, 0

◆
. (54)

We proceed by following a dynamic programming approach to solve the optimal stopping

problem. The value for the TSO, F , at time t is equal to:

F (✓t, K
⇤
T (✓t)) =

8
<

:
B

1

✓�1
t if ✓t  ✓T ,

TS(✓t, K⇤
T (✓t)) if ✓T  ✓t,

(55)

where the value in the continuation region is derived by finding the solution to the ordinary

di↵erential equation (ODE) that stews from the Bellman equation:

⇢Fdt = E[dF ]. (56)

Standard calculations similar to those in the two preceding cases are performed, which lead

to the value function stated in Equation (55).

To determine the optimal investment threshold, ✓⇤T , and the value of the endogenous

constant B
1

, we employ the value-matching and smooth-pasting conditions. The detailed

derivations are in Appendix A.3, where we specifically state the value-matching and smooth-

pasting conditions. We find that:

B
1

=


(K

0

+K⇤
T (✓

⇤
T ))(1�

1

2
⌘(K

0

+K⇤
T (✓

⇤
T )))

�
✓⇤1��1
T

�
1

(⇢� ↵)
, (57)

and ✓⇤T is given by the solution to the following implicit equation:

✓⇤T =
�
1

�
1

� 1
(⇢� ↵)

�(K
0

+K⇤
T (✓

⇤
T )) + �K⇤

T (✓
⇤
T )

(K
0

+K⇤
T (✓

⇤
T ))(1� 1

2

⌘(K
0

+K⇤
T (✓

⇤
T )))

. (58)

The optimal investment strategy of the TSO is summarised in the following Proposition:
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Proposition 2 The optimal investment strategy of the TSO, assuming that the PC has to

expand capacity by KP = K⇤
T , is to invest in a transmission capacity of K

0

+ K⇤
T . K⇤

T is

equal to:

K⇤
T (✓

⇤
T ) = max

�
K̂⇤

T (✓
⇤
T ), 0

�
, (59)

where K̂⇤
T (✓

⇤
T ) is given by the following implicit equation:

��+


��[2⌘K̂⇤

T (⌘K0

(� � 2)� � + 1) + (2⌘K
0

� 1)(2⌘K
0

(� � 2)� � + 1])

2(� � 1)(⌘K̂⇤
T + 2⌘K

0

� 1)2
+

�

� � 1
���

2

�
⇤


(� � 1)✓⇤T (⌘K̂

⇤
T + 2⌘K

0

� 1)

��(↵� ⇢)

�
= 0. (60)

The optimal investment time is the moment in time when ✓t reaches ✓⇤T , which is given by

the solution to the following implicit equation:

✓⇤T =
�
1

�
1

� 1
(⇢� ↵)

�(K
0

+K⇤
T (✓

⇤
T ))

K
0

(1� 1

2

⌘K
0

)
. (61)

The PC would then expand capacity when ✓t reaches ✓⇤P (K
⇤
T ) given that it had no flexibility

to choose the size of its investment:

✓⇤P (K
⇤
T ) =

�
1

�
1

� 1
(⇢� ↵)

�K⇤
T

1� ⌘(2K
0

+K⇤
T )

. (62)

In the case where K⇤
T is equal to zero, generation capacity will never be added, i.e., ✓⇤P (0)=1.

However, if this solution is not valid, i.e., ✓⇤P (K
⇤
T ) < ✓⇤T (K

⇤
T ), then we assume the corner

solution ✓P = ✓⇤T to be optimal. The optimal investment strategy of the TSO, given that both

agents invest at the same time, is to invest in a capacity of:

K⇤
T (✓

⇤
T ) = max

✓
1

⌘


1� (� + �)(⇢� ↵)

✓⇤T

�
�K

0

, 0

◆
, (63)

at the moment in time when ✓t hits ✓⇤T , which is given by the solution to the following implicit

equation:

✓⇤T =
�
1

�
1

� 1
(⇢� ↵)

�(K
0

+K⇤
T (✓

⇤
T )) + �K⇤

T (✓
⇤
T )

(K
0

+K⇤
T (✓

⇤
T ))(1� 1

2

⌘(K
0

+K⇤
T (✓
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T )))

. (64)
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5.2 Optimal investment strategies when considering constraints

on capacities

We continue by taking into account the capacity constraints. First, we present optimal

strategies for both agents if the TSO’s capacity is dominating, i.e., K⇤
T  K⇤

P , and continue

with the outcomes where the PC’s optimal capacity is dominating, i.e., K⇤
P < K⇤

T , see Table

3. We also compare the total value for the PC and the TSO corresponding to each possible

outcome. We take into account that we cannot compare the two agents’ values at their

investment thresholds, because we would compare situations at di↵erent moments in time

as their investment thresholds can be di↵erent. Therefore, we compare all values at the

current level, ✓
0

, considered su�ciently small so that the optimal investment triggers will

be larger than ✓
0

.

5.2.1 Optimal investment strategies when the capacity of the TSO is dominat-

ing

If K⇤
T  K⇤

P is the solution to the investment problems in Section 5.1, then the TSO’s

capacity, K⇤
T , will be the dominating capacity. The TSO will invest in K⇤

T at ✓⇤T , and it can

therewith force the PC to invest in a smaller capacity than it found optimal, i.e., KP = K⇤
T .

Therefore, we find a new optimal trigger ✓⇤P for the PC. In the case where ✓⇤P (K
⇤
T ) > ✓⇤T (K

⇤
T ),

this is the same ✓⇤P (K
⇤
T ) as the TSO expected for the PC in Section 5.1.2. However when

we get that ✓⇤P (K
⇤
T ) < ✓⇤T (K

⇤
T ), we assume the corner solution ✓P = ✓⇤T to be optimal, i.e., it

is optimal for the PC to invest as soon as the TSO has invested. Note that the two possible

outcomes when K⇤
T is the dominating capacity corresponds to outcomes 1 and 2 in Table 3.

We get the following Proposition:

Proposition 3 The optimal investment strategies of the two agents, given that the TSO’s

capacity is dominating, are given in Table 4. Two possible outcomes might occur. Either

they invest at the same time or the PC delays investment beyond the investment time of the

TSO.

28



Optimal investment strategies given that the TSO’s optimal capacity is dominating

K⇤
T  K⇤

P

KP = K⇤
T

O
u
tc
om

e
1

✓⇤P > ✓⇤T

TSO’s optimal strategy:

K⇤
T = max

�
K̂⇤

T (✓
⇤
T ), 0

�
, where K̂⇤

T (✓
⇤
T ) is given by the

following implicit equation:
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TSO’s optimal strategy:

K⇤
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✓
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◆

✓⇤T = �1

�1�1
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T (✓⇤T ))(1� 1

2⌘(K0+K⇤
T (✓⇤T )))

PC’s optimal decision:

KP = K⇤
T

✓P = ✓⇤T

Table 4: Overview of optimal investment strategies if K⇤
T  K⇤

P corresponding to outcomes

1 and 2

If the PC invests after the TSO, then the resulting value at time zero for each agent is

equal to11:

VTSO(✓
⇤
T , ✓

⇤
P , K

⇤
T ) =

✓
✓
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+K⇤
T )� (1�⌘K
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�
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✓⇤P (K
⇤
T )

◆�1

� �K⇤
T

✓
✓⇤T

✓⇤P (K
⇤
T )

◆�1
�
, (65)

11Note, in all value functions in this and the following section we have refrained from writing the capacity’s

dependency on the optimal investment trigger for readability.
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(66)

Note that when stating the value functions throughout this paper, the first term within

the dependency bracket corresponds to the investment threshold of the TSO. The second

corresponds to the investment threshold for the PC, while the last term corresponds to the

capacity the agents install.

If it is optimal for the PC to invest at the same time as the TSO, i.e., ✓P (K⇤
T ) = ✓⇤T (K

⇤
T ),

then the value functions simplify to:
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In the case whereK⇤
T is equal to zero, generation capacity will never be added, i.e., ✓⇤P (0)=1.

The value for the TSO and the PC are equal to:

VTSO(✓
⇤
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and:

VPC(✓
⇤
T ,1, 0) =
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◆�1
h
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i ✓⇤T
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, (70)

respectively.

5.2.2 Optimal investment strategies when the capacity of the PC is dominating

On the other hand, if K⇤
P < K⇤

T is the solution to the investment problems in Section 5.1,

K⇤
P will be the dominating capacity. The TSO will invest in K⇤

P and find a new optimal

investment trigger ✓⇤T based on K⇤
P , which is equal to:
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If ✓⇤T (K
⇤
P ) is lower than ✓⇤P (K

⇤
P ), then this will be the optimal investment strategy.

On the contrary, if ✓⇤P (K
⇤
P ) < ✓⇤T (K

⇤
P ), then we assume the corner solution ✓P = ✓⇤T to

be optimal. Subsequently, the TSO will have the power to decide timing and the PC the

power to decide capacity. In this case, we need to solve the PC’s investment problem given

that it only has sizing flexibility and the TSO’s optimal stopping problem given that both

agents invest at the same time in K⇤
P . The investment problem of the PC at time zero is

then equal to:

max
KP

E
 Z 1

s=⌧T

e�⇢s⇡(✓s, K0

+KP )ds� e�⇢⌧P �KP

���✓
0

�
, (72)

while the investment problem of the TSO at time zero is equal to:

sup
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E
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+KP )ds� e�⇢⌧T �(K
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+KP )� e�⇢⌧T �KP

���✓
0

�
. (73)

See Appendix B.3 for the derivation of the solution to these investment problems. The

optimal investment strategy of the TSO given that they both invest at the same time, is to

invest in a capacity of KT = K⇤
P , where K⇤

P is equal to:

K⇤
P (✓

⇤
T ) = max

✓
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Furthermore, the optimal investment threshold of the TSO, ✓⇤T , is given by the solution to

the following implicit equation:
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= 0. (75)

We get the following Proposition:

Proposition 4 The optimal investment strategies of the two agents, given that the PC’s

capacity is dominating, are given in Table 5. Two possible outcomes might occur. Either

they invest at the same time or the PC delays investment beyond the investment time of the

TSO.
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Optimal investment strategies given that the PC’s optimal capacity is dominating

K⇤
P < K⇤

T

KT = K⇤
P

O
u
tc
om

e
3

✓⇤P > ✓⇤T

TSO’s optimal strategy:

KT = K⇤
P

✓⇤T = �1

�1�1

(⇢� ↵)
�(K0+K⇤

P (✓⇤P ))

K0(1� 1
2⌘K0)

PC’s optimal decision:

K⇤
P = max

✓
1

2⌘


1� �(⇢�↵)

✓⇤P

�
�K

0

, 0

◆

✓⇤P = �1

�1�1

(⇢� ↵) �
1�⌘(2K0+K⇤

P (✓⇤P ))

O
u
tc
om

e
4

✓P = ✓⇤T

TSO’s optimal strategy:
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✓⇤T is given by the following implicit equation:
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Table 5: Overview of optimal investment strategies if K⇤
P < K⇤

T corresponding to outcomes

3 and 4

Note that the two possible outcomes when K⇤
P is the dominating capacity corresponds to

outcomes 3 and 4 in Table 3.

If the PC invests after the TSO, then the resulting value at time zero for each agent is

equal to:
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If it is optimal for the PC to invest at the same time as the TSO, i.e., ✓P (K⇤
P ) = ✓⇤T (K

⇤
P ),

then the value functions simplify to:
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In the case where K⇤
P is equal to zero and generation capacity will never be added, i.e.,

✓⇤P (0)=1. The value for the TSO and the PC are equal to:
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and:
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respectively.

6 Results

In this section, we will present a numerical analysis in order to illustrate the analytical

results and to gain additional insights12. The following parameter values are used as a

base case: ⇢ = 0.03, ↵ = 0.015, ⌘ = 0.01, � = 0.15, K
0

= 100, � = 100, and � = 40. The

marginal investment cost of the TSO is chosen to be lower than that of the PC as for example

Baringo and Conejo (2012) argue that the marginal investment cost of transmission facilities

12All numerical results are obtained using the software program MATLAB R2014a.
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is comparatively much lower than the marginal investment cost of wind power plants13. In

the end of the analysis, we will vary �, the marginal investment cost of the PC, to analyse

how the decision of the PC is a↵ected by its marginal investment cost.

When building renewable power plants in remote areas, often a small plant is already

installed while it has to undergo a large expansion to be connected to the main grid. For

this reason, K
0

is chosen to be relatively low compared to the values of K⇤
T and K⇤

P . When

comparing value functions, the value of each agent at investment has to be discounted back

to the current demand level14, which is set equal to ✓
0

= 1.

We start by presenting economic results from the sub-problems before we proceed with

numerical analysis of the full model. We are not studying a specific case example, therefore

the model parameters are not calibrated on a real data set. The goal is to provide more

general economic insight into the optimal investment decision of a TSO. Throughout the

analysis, the focus is on providing insights with respect to 1) how much welfare a TSO will

forgo by disregarding the PC’s optimal investment decision, 2) the e↵ect of uncertainty on

optimal transmission and generation investment strategies, and 3) the value of managerial

flexibility. In addition, we perform a sensitivity analysis with respect to the PC’s marginal

investment cost, �, in order to gain insight into how a subsidy of the PC’s investment cost

can a↵ect its optimal capacity choice, K⇤
P , as well as its optimal investment threshold, ✓⇤P ,

and hence social welfare.

6.1 Welfare loss from not having power to decide the PC’s capac-

ity

In Norway, we see that the TSO, Statnett, tries to influence PCs’ capacity choice by setting

a minimum capacity that the PCs have commit to install for the TSO to build specific

transmission lines15. The motivation behind the following analysis is to reveal how much

13The marginal investment cost of the TSO depends on several factors like the voltage, thickness and

length of the power lines, while the marginal investment cost of the PC, among other things, depends on

the type of power plant. Therefore the di↵erence between the two marginal investment costs will vary from

project to project. However, when consulting the Norwegian TSO, Statnett, their general impression is that

marginal transmission investment costs are considerably lower than marginal generation investment costs.
14As the optimal investment timing of the two agents might di↵er, the value functions need to be dis-

counted to the same point in time in order to be comparable.
15Currently, Statnett considers building transmission lines from Trollheim to Snillfjord and Namsos to

Storheia but it requires a group of PCs to commit to install a total generation capacity of 1000 MW
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generation capacity the TSO will want the PC to commit to install, and the welfare loss

from not being able to do so. In this section, we first study the welfare loss when the agents

do not have timing flexibility, i.e., they have to make now-or-never investment decisions.

Next, we extend the analysis by providing both agents with timing flexibility.

6.1.1 Without timing flexibility

First, we investigate how the optimal capacities of a TSO and a PC di↵er due to their

di↵erent objectives when both agents face a now-or-never investment decision, i.e., sub-

problem 1. The solution to the sub-problem and the corresponding derivations can be

found in Appendix C.1.

If the PC can choose the optimal size of its generation expansion, it will be equal to:
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And, if the TSO can decide its own capacity exceeding K
0

and the generation capacity of

the PC, they will be equal to:
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Comparing these results, we find that the TSO’s total optimal capacity is twice the total

optimal capacity of the PC minus a correction term and equal to:

K
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T = 2(K
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+K⇤
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�(⇢� ↵)

✓
0

. (84)

The following Proposition states the condition for when the capacity of the TSO will be

larger than that of the PC if they both invest at time zero.

Proposition 5 If both agents invest immediately at time zero, then the total optimal ca-

pacity of the TSO will be larger than the total optimal capacity of the PC if the following

condition holds:
1

⌘

�(⇢� ↵)

✓
0

< K
0

+K⇤
P , (85)

before it will start building. See http://www.norwea.no/nyhetsarkiv/visning-nyheter/ett-av-prosjektene-i-

snillfjord-vraket.aspx?PID=1145Action=1,http://www.tu.no/kraft/2015/03/09/nve-statnett-krav-i-strid-

med-energiloven
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which is equivalent to:
✓
0

⇢� ↵
> 2� + �. (86)

In this case, the flexibility of sizing will be of no value for the TSO.

The result is similar to the result of Huisman and Kort (2014) who consider one firm that

can undertake an investment to enter a market where there is no firm active. They compare

the optimal capacity level of the firm given a social welfare and a profit objective and find

that the optimal capacity level given a welfare objective is twice the level of a monopolist.

The di↵erence of Huisman and Kort (2014) to this paper is that they compare the optimal

capacity for a single firm optimising either social welfare or profit, while we consider two

firms in the same model. We find that the optimal capacity for the TSO is twice the optimal

capacity of the PC minus a correction term. The reason is that when both agents operate in

the same market, we need to include both investment costs when calculating total surplus.

If we considered only one agent, we would get the same result as in Huisman and Kort

(2014).

If we use the base case parameters, then we get the numerical results shown in Figure

4. When the demand level, ✓
0

, is very low, then the size of the optimal capacity expansion

of the PC is higher than that of the TSO. The TSO will not want to invest at this demand

Figure 4: Optimal capacities as functions of

✓
0

for the base case parameters in the case

of now-or-never investments.
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level, i.e., K⇤
T (✓0) = 0. For higher demand levels, the TSO’s optimal capacity exceeding K

0

is more than twice the optimal capacity expansion of the PC. Thus, the TSO will want the

PC to commit to install a capacity that is considerably larger than the one the PC finds

optimal.

The producer surplus is both positively and negatively a↵ected by a capacity increase.

The amount of power generated increases, but the price per unit decreases and the total

investment cost increases. On the contrary, the consumer surplus is strictly increasing in

capacity. Thus, the total surplus is growing at a higher rate than the producer surplus when

capacity is increasing. The objective of the PC only takes into account a part of the total

producer surplus, which is the continuous profit flow and the investment cost of the PC.

The objective of the TSO, on the other hand, includes the consumer surplus in addition to

the total producer surplus. Therefore, as the PC does not take into account the consumer

surplus when finding its optimal capacity, it is expected that the TSO has a larger optimal

capacity.

If the TSO has to accept the PC’s optimal capacity, the social welfare achieved will

be considerably lower than if it could make the PC to commit to install a capacity of

KP = K⇤
T . The welfare loss for the TSO from not having the power to decide the size of

the PC’s capacity expansion, expressed in percentage, is equal to:

Welfare loss =
VTSO(✓0, ✓0, K⇤

T )� VTSO(✓0, ✓0,min(K⇤
T , K

⇤
P ))

VTSO(✓0, ✓0, K⇤
T )

. (87)

Figure 5 illustrates that the percentage welfare loss is increasing in the demand level ✓
0

. This

is because the di↵erence between the two agents’ optimal capacities, K⇤
T �K⇤

P , is increasing.

The percentage welfare loss increases strongly for low values of ✓
0

while more moderately

for higher values. For demand levels above ✓
0

= 10, the welfare loss from not being able

to make the PC commit to install K⇤
T is higher than 20%. The result can explain why in

practice TSOs try to force PCs to commit to install a minimum capacity before building

a transmission line. In the next section, we will extend this analysis by including timing

flexibility for both agents.

6.1.2 With timing flexibility

Here, we extend the model from Section 6.1.1 by providing both agents with timing flexibil-

ity. We compare sub-problem 2 and 3 where in sub-problem 2 the PC decides capacity for
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Figure 5: Percentage welfare loss from not

having the power to force the PC to invest

in K⇤
T in the case of now-or-never invest-

ments for the base case parameters.

both agents, while in sub-problem 3 the TSO decides. Note that the derivations and optimal

investment strategies corresponding to these sub-problems can be found in Appendix C.2

and C.3.

With the parameters from the base case, we get the numerical results shown in Figure 6.

The TSO will want the PC to commit to install a capacity that is significantly larger than

the capacity the PC will want to install, i.e., K⇤
T > K⇤

P . Given that ✓⇤P (K) > ✓⇤T (K), which

is the case here, both investment thresholds are strictly increasing in K, see Proposition 6.

Proposition 6 Given that ✓⇤P (K) > ✓⇤T (K), the investment threshold of the PC and the

TSO, respectively, are strictly increasing in K as:

@✓⇤P (K)

@K
=

�
1

�
1

� 1
(⇢� ↵)

�⌘

(1� ⌘(2K
0

+K))2
> 0, (88)

and:
@✓⇤T (K)

@K
=

�
1

�
1

� 1
(⇢� ↵)

�
1

2

⌘K2

0

+ (1� ⌘K
0

)K
0

> 0. (89)

Therefore, the investment triggers ✓⇤T and ✓⇤P will be higher if both agents have to invest in

a capacity of size K⇤
T , compared to if both have to invest in K⇤

P . Thus, it is optimal for the

TSO to make the PC commit to install a larger capacity at a later point in time than what

is optimal for the PC.
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Figure 6: Optimal capacities (left) and optimal investment thresholds (right) for the TSO

and the PC as functions of � for the base case parameters.

Furthermore, we find that the PC will invest later than the TSO in both cases, see Figure

6. The condition for when the PC’s investment trigger will be higher than that of the TSO,

given that they have to invest in the same capacity, is given in Proposition 7.

Proposition 7 If both agents have to invest in the same capacity, then the PC will delay

investment beyond the investment threshold of the TSO as long as:

�

�
>

(K
0

+K)(1� ⌘(2K
0

+K))

K
0

(1� 1

2

⌘K
0

)
. (90)

If this condition is satisfied, the flexibility to choose timing, i.e., the ability to wait for

more information, is of value for the PC and it will choose to delay investment beyond the

moment in time the when the TSO invests.

Furthermore, Figure 6 shows that the optimal capacities and the investment triggers are

increasing in uncertainty. This can be shown analytically for the investment triggers and

the optimal capacity of the PC given that ✓⇤P (K) > ✓⇤T (K), see Proposition 8. However, the

implicit expression for K⇤
T forces us to bend towards numerical analysis to show the e↵ect

of uncertainty on the TSO’s optimal investment trigger. Extensive numerical analyses lead

to the result that the TSO’s optimal capacity is also increasing in uncertainty. That both

optimal investment triggers and capacities are increasing in uncertainty is consistent with

existing real options literature. However, to our best knowledge, we are the first ones to

confirm that this also holds for a model that includes two firms with di↵erent objectives.
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Proposition 8 Given that ✓⇤P (K) > ✓⇤T (K) the following holds:

d✓⇤T
d�

> 0, (91)

d✓⇤P
d�

> 0, (92)

dK⇤
P

d�
> 0. (93)

The percentage welfare loss if the TSO cannot make the PC commit to install a capacity

of KP = K⇤
T when both agents have timing flexibility and K⇤

P is the dominating capacity is

equal to:

Welfare loss =
VTSO(✓⇤T (K

⇤
T ), ✓

⇤
P (K

⇤
T ), K

⇤
T )� VTSO(✓⇤T (K

⇤
P ), ✓

⇤
P (K

⇤
P ), K

⇤
P )

VTSO(✓⇤T (K
⇤
T ), ✓

⇤
P (K

⇤
T ), K

⇤
T )

. (94)

The numerical result is shown in Figure 7. When uncertainty is very low, the welfare loss is

only around 2 � 3%. However, when uncertainty increases the loss increases to more than

10%. Therefore when uncertainty in future demand is high, it is even more important for

TSOs to make PCs commit to install a certain capacity than when uncertainty is low.

Figure 7: Percentage welfare loss from not

being able to decide the PC’s capacity as a

function of � for the base case parameters.
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6.2 Welfare loss from disregarding the PC’s flexibility to choose

capacity

Based on the large di↵erences between the two agents’ optimal capacities revealed in the last

section, the TSO will face a welfare loss if it disregards the PC’s flexibility to choose capacity,

and rather assumes that the PC will install a generation capacity equal to the capacity of

the transmission line. In this section, we study the welfare loss when both agents do not

have timing flexibility, i.e., face a now-or-never investment decision, and when both agents

have timing flexibility.

6.2.1 Without timing flexibility

The numerical results shown in Figure 4 show that if both agents invest at time zero and

the TSO disregards that the PC has flexibility to decide its own capacity, then the TSO

will overinvest by choosing to invest in K
0

+ K⇤
T in case K⇤

T > K⇤
P . Then a transmission

capacity of K⇤
T �K⇤

P will be left unused. The TSO will pay for a transmission capacity of

K
0

+K⇤
T , but the rest of the producer surplus as well as the consumer surplus will depend

on the generation capacity of the PC, i.e., the amount of power that is being generated

and transmitted. Therefore, if the TSO disregards the investment decision of the PC, the

present value of the total surplus is equal to the following expression16:

VTSO(✓0, ✓0, K) =
h1

2
⌘(K

0

+min(K⇤
P , K

⇤
T ))

2 + (1� ⌘(K
0

+min(K⇤
P , K

⇤
T )))(K0

+min(K⇤
P , K

⇤
T ))

i ✓
0

⇢� ↵

� �(K
0

+K⇤
T )� �min(K⇤

P , K
⇤
T )

�
. (95)

This will yield a lower social welfare than if the TSO instead anticipated the PC’s opti-

mal investment decision and invested in KT = K⇤
P . The welfare obtained from anticipat-

ing the PC’s decision and investing in the lower of the two optimal capacities is equal to

VTSO(✓0, ✓0,min(K⇤
T , K

⇤
P )).

Therewith, the welfare loss from not taking the PC’s optimal investment decision into

account expressed in percentage is equal to:

Welfare loss =
VTSO(✓0, ✓0,min(K⇤

T , K
⇤
P ))� VTSO(✓0, ✓0, K)

VTSO(✓0, ✓0,min(K⇤
T , K

⇤
P ))

. (96)

16K is used in the dependency bracket as the two agents install di↵erent capacities.
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As shown in Figure 8, the absolute value of the welfare loss is strictly increasing in ✓
0

when

K⇤
P < K⇤

T . However, the loss expressed in percentage is decreasing in ✓
0

. This is because the

loss from having overinvested, �(K⇤
T �K⇤

P ), constitutes a diminishing part of the welfare the

TSO could have achieved if it instead anticipated the PC’s decision, i.e., the denominator

in Equation (96), when ✓
0

increases.
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Figure 8: Absolute welfare loss (left) and percentage welfare loss (right) if the TSO does

not take into account that the PC has flexibility to decide capacity as a function of ✓
0

for

the base case parameters in the case of now-or-never investments.

6.2.2 With timing flexibility

Here, we extend the model from Section 6.2.1 by providing both agents with timing flexi-

bility. As in Section 6.1.2, we compare sub-problems 2 and 3 where in sub-problem 2 the

PC decides capacity for both agents, while in sub-problem 3 the TSO decides.

Figure 6 shows that it is optimal for the TSO that both agents invest in a larger capacity

at a later point in time than what is optimal for the PC. Consequently, if the TSO wrongly

assumes that the PC will install a generation capacity equal to the optimal capacity of the

transmission line exceeding K
0

, i.e., KP = K⇤
T , the TSO will install a capacity of K⇤

T as

shown in Figure 6, and invest at ✓⇤T (K
⇤
T ). The TSO will then expect the PC to wait until

✓⇤P (K
⇤
T ) and invest in K⇤

T (✓
⇤
T ). However, the PC will obtain a higher value by investing

immediately after the TSO, i.e., ✓P = ✓⇤T , in a capacity of size K⇤
P (✓

⇤
T ) as shown in Figure 9.

Therefore, if the TSO disregards that the PC can choose its own optimal capacity size ,
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Figure 9: Optimal capacities (left) and value of the PC (right) as functions of � for the base

case parameters when including timing flexibility for both agents.

the present value of the total surplus is equal to the following expression17:

VTSO(✓
⇤
T , ✓

⇤
T , K) =

✓
✓
0

✓⇤T

◆�1
h1

2
⌘(K

0

+min(K⇤
T , K

⇤
P ))

2

+(1�⌘(K
0

+min(K⇤
T , K

⇤
P )))(K0

+min(K⇤
T , K

⇤
P ))

i ✓⇤T
⇢� ↵

��(K
0

+K⇤
T )��min(K⇤

T , K
⇤
P )

�
.

(97)

However, if it anticipates that the PC will invest in a lower capacity, the resulting total

surplus will be equal to VTSO(✓⇤T , ✓
⇤
P ,min(K⇤

P , K
⇤
T )). Therewith, the welfare loss for the

TSO from not anticipating the investment decision of the PC, expressed in percentage, is

equal to:

Welfare loss =
VTSO(✓⇤T , ✓

⇤
P ,min(K⇤

P , K
⇤
T ))� VTSO(✓⇤T , ✓

⇤
T , K)

VTSO(✓⇤T , ✓
⇤
P ,min(K⇤

P , K
⇤
T ))

. (98)

As shown in Figure 10, the absolute welfare loss for the TSO from not taking into account

that the PC can choose its optimal capacity is increasing in uncertainty. Furthermore, the

percentage welfare loss is between 3 and 5% for the levels of uncertainty considered. When

there is no uncertainty the TSO will invest when ✓t hits ✓⇤T = 6, which can be seen from

Figure 6. Then the welfare loss from not anticipating the PC’s investment decision is around

5%. Comparing this number to the case where both agents face a now-or-never investment

decision, we see that the welfare loss from not anticipating the PC’s investment decision

17K is used in the dependency bracket as the two agents install di↵erent capacities.
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is higher, and around 11%, for an initial demand level of ✓
0

= 6. This suggests that the

welfare loss from not anticipating the PC’s decision is lower when both agents have timing

flexibility. This is because the di↵erence in the two agents’ optimal capacities is larger when

they both have to invest at time zero, than when the PC can delay its investment beyond

the investment time of the TSO. The reason for this is that the PC’s optimal capacity is

increasing in the demand level, see Proposition 9. Therefore, when it delays investment, it

will invest in a larger capacity closer to the optimal capacity of the TSO, compared to if it

had to invest at time zero.

Proposition 9 The optimal capacity of the PC is strictly increasing in the demand level

upon investment:
dK⇤

P

d✓t
=

1

2⌘

�(⇢� ↵)

✓2t
> 0. (99)

Figure 10: Absolute welfare loss (left) and percentage welfare loss (right) if the TSO does

not take into account that the PC has flexibility to decide capacity as a function of � for

the base case parameters with timing flexibility for both agents.

6.3 Welfare loss from the TSO not having timing flexibility

Flexibility in timing is valuable for the TSO due to two reasons. 1) The option value from

being able to choose its optimal investment timing rather than having to make a now-

or-never investment decision, and 2) the strategic value from being able to postpone the

investment timing of the PC through its own investment timing. Since K⇤
P is increasing

in ✓P , see Proposition 9, the PC will invest in a larger capacity if it is forced to delay
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investment. However, when the TSO has to make a now-or-never decision, it can only a↵ect

the PC’s investment decision through its own capacity choice. The optimal triggers and

capacities for sub-problem 4, which is described here, are given in Appendix C.4.

Using the base case parameters, we get the numerical results shown in Figure 11 for a

current demand level of ✓
0

= 3. This demand level is chosen because at ✓
0

< 3 K⇤
T = 0, i.e.,

it is not optimal for the TSO to invest in a larger capacity than K
0

, and consequently, the

PC will never expand its generation capacity. Figure 11 shows that the TSO will be able to

a↵ect the PC’s investment decision through its capacity choice when uncertainty is relatively

low, i.e., the PC will be forced to invest in a lower capacity than it finds optimal, KP = K⇤
T ,

and will therefore invest at an earlier point in time than it would find optimal if it could

transmit an amount of power equal to K⇤
P . On the other hand, K⇤

P will be dominating when

Figure 11: Optimal capacities (left) and optimal investment thresholds for the PC (right)

when the TSO does not have timing flexibility as functions of � for the base case parameters

and ✓
0

= 3.

uncertainty is high, and then the TSO will not be able to a↵ect the PC’s decision through

its capacity choice. For all uncertainties, the PC will choose to delay investment compared

to the TSO that has to invest immediately at ✓
0

= 3. This is because the current demand

level is too low for it to be optimal for the PC to expand generation capacity. Moreover, the

value of waiting to get more information increases for the PC when uncertainty increases.

The welfare loss due to the inability for the TSO to choose its own investment time is
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defined as18:

Welfare loss =
VTSO(✓⇤T , ✓

⇤
P ,min(K⇤

T , K
⇤
P ))� VTSO(✓0, ✓⇤P ,min(K⇤

T , K
⇤
P )

VTSO(✓⇤T , ✓
⇤
P ,min(K⇤

T , K
⇤
P ))

, (100)

which is equal to the percentage di↵erence between the welfare from solving the full problem,

where both agents have timing and sizing flexibility, and the welfare when the TSO cannot

decide timing and has to make a now-or-never investment decision.

By varying the value of ✓
0

, we reveal how the welfare loss changes depending on the

current demand level. The results are shown in Figure 12. We find that the welfare loss

Figure 12: Percentage welfare loss when the

TSO does not have timing flexibility as a

function of the current demand level, ✓
0

, for

the base case parameters.

with regards to ✓
0

is largest if the TSO is forced to invest when the value of ✓
0

is very

low. For ✓
0

< 3, K⇤
T = 0 and the welfare loss is very high as the PC will never expand its

generation capacity, i.e. ✓⇤P (0) = 1. Furthermore, for low demand levels above ✓
0

= 3, the

TSO can only justify to install a small capacity. For ✓
0

= 8.3 the welfare loss is equal to

zero as it would be optimal for the TSO to invest immediately at this demand level if it

had timing flexibility. The welfare loss first decreases steeply for low values of ✓
0

, while it

increases for high values at a more moderate rate. This is because for low demand levels,

the TSO loses both the real option value of postponing investment and the strategic value

of being able to a↵ect the PC’s investment decision thorough its timing choice. For higher

18Here, we have refrained from writing the triggers’ dependency on min(K⇤
T ,K

⇤
P ) for readability.
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demand levels the TSO is forced to invest at a sup-optimal point in time, since it optimally

would invest earlier. However, the TSO will be able to get the strategic value from making

the PC delay investment and hence invest in a larger capacity. The strategic e↵ect will

mitigate the welfare loss from having to invest at a sub-optimal time.

The results show that when the TSO does not have timing flexibility, it can lead to a

significant loss in social welfare compared to when it does have this flexibility.

6.4 Welfare loss from disregarding the PC’s flexibility to choose

timing

In Appendix C.5, the optimal investment strategies for sub-problem 5 where both agents

have sizing flexibility, but only the TSO has timing flexibility is presented. In this sub-

problem, it is assumed that the PC will invest at the same time as the TSO. Following

the optimal investment strategy from solving this problem and ignoring that the PC has

timing flexibility, will only be optimal for the TSO if the optimal investment trigger of the

PC, ✓⇤P , is not larger than that of the TSO, ✓⇤T . For parameter sets where the inequality

in Proposition 7 holds, the PC will delay its investment beyond the investment time of the

TSO if the expansion has to be of size K, i.e., ✓⇤P (K) > ✓⇤T (K). Consequently, in these cases

the TSO will su↵er a welfare loss from not taking into account that the PC can choose to

delay investment.

We define the percentage welfare loss from not considering the PC’s timing flexibility

as19:

Welfare loss =
VTSO(✓⇤T , ✓

⇤
P ,min(K⇤

T , K
⇤
P ))� VTSO(✓⇤T , ✓

⇤
T ,min(K⇤

T , K
⇤
P )

VTSO(✓⇤T , ✓
⇤
P ,min(K⇤

T , K
⇤
P ))

, (101)

which is the di↵erence between the welfare achieved following the optimal strategy from the

full model and the welfare achieved when the TSO follows its optimal investment strategy

from sub-problem 5 while the PC actually chooses to delay investment and invest at ✓⇤P > ✓⇤T .

For the parameters in the base case, the inequality in Proposition 7 does hold, i.e., the

PC will want to delay investment compared to the TSO. Hence there will be a welfare loss

from assuming that the PC invests at the same time as the TSO. The numerical results are

shown in Figure 13 and 1420.

19Also here we have refrained from writing the triggers’ dependency on min(K⇤
T ,K

⇤
P ) for readability.

20K⇤
T is not included in the graphs because it in both cases will be higher than K⇤

P , i.e., K⇤
P is the

dominating capacity.
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Figure 13: Comparison of optimal capacities for the PC (left) and the optimal investment

thresholds for the PC and the TSO (right) as functions of � for the base case parameters

when the TSO considers the PC’s timing flexibility and when it does not.

Figure 14: Percentage welfare loss from as-

suming that the PC invests at the same time

as the TSO while it actually delays invest-

ment as a function of � for the base case

parameters.

The numerical results show that the TSO will underinvest if it does not take into account

that the PC can delay investment. Since the capacity is increasing in the demand level, see

Proposition 9, the PC will want to invest in a larger capacity given that it delays investment

compared to if it has to invest at the same time as the TSO. When the TSO invests in

K⇤
P (✓

⇤
T ), it sets an upper bound for the PC and prevents it from investing in its own optimal
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capacity, K⇤
P (✓

⇤
P ), which is higher. This leads to a loss in social welfare compared to if it

anticipates that the PC will want to delay investment and invest in a larger capacity. From

Figure 14, we see that the loss is decreasing in uncertainty. This is because the di↵erence

in the two optimal capacities is decreasing in uncertainty, as illustrated in Figure 13. When

the di↵erence between the capacity the TSO assumes the PC will install and the capacity

the PC will optimally install decreases, the welfare loss from wrongly assuming that the PC

will invest at the same time also decreases. Note that the welfare loss for the TSO from

disregarding the PC’s flexibility to choose its own timing is never above 2 % and hence

is lower than the welfare loss from disregarding that the PC can choose its own capacity,

which is between 3 and 5%.

6.5 Results of the full model

The numerical results from solving the full model where both agents have timing and sizing

flexibility are shown in Figure 15 for the base case parameters. We see that the TSO,

if it has the power to decide, will want to invest in a larger capacity at a later point in

time than the PC. But since the PC’s capacity will be dominating, the TSO anticipates

this capacity choice and invests in the same capacity. Furthermore, the TSO will find its

Figure 15: Optimal capacities (left) and the optimal investment threshold of the PC and

the initial and final optimal investment thresholds for the TSO (right) when both agents

have timing and sizing flexibility as functions of � for the base case parameters.

optimal investment timing based on the PC’s capacity choice, K⇤
P . Since ✓

⇤
T (K

⇤
P ) < ✓⇤P (K

⇤
P ),

the TSO will choose to invest earlier than the PC as shown in Figure 15. When investing

49



before the PC, the TSO gains welfare from the existing generation capacity, K
0

, before the

PC undertakes its expansion.

Figure 16: Social welfare and the value of

the PC as functions of � for the base case

parameters.

As Dixit (1993), Dangl (1999) and Chronopoulos et al. (2015), we find that both the

size and the investment thresholds are increasing in uncertainty as can be seen from the

numerical results and Proposition 8. High uncertainty leads to a high value of waiting. This

delays investment with the implication that at the moment of investment the market has

grown enough to invest in a larger capacity. Figure 16 shows the welfare for the TSO and

the profit of the PC as functions of uncertainty. Both are increasing in uncertainty. It is

not possible to show analytically that the values are always increasing in uncertainty as it

depends on the parameter values and optimal values of the variables.

The numerical analysis of the full model with the base case parameters, shows that the

PC will not be bounded by the TSO on timing or capacity, see Outcome 3 in Table 3.

Rather the TSO must adapt to the PC’s decision, which is sub-optimal for the TSO. Hence,

it will be beneficial for the TSO if it can make the PC commit to install KP = K⇤
T to avoid

that the PC invests in a capacity that is lower than what is optimal from a social welfare

perspective. In the next section, we analyse how the results from the full model changes

when we introduce a subsidy of the PC’s investment cost.
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6.6 Welfare gain from a subsidy of the PC’s investment cost

The numerical analysis of the full model suggests that given the base case parameters,

the PC has the dominating capacity and hence the power to decide the size of the TSO’s

investment. The TSO can choose to delay investment to make the PC invest later in a larger

capacity but, given the base case parameters, this is sub-optimal for the TSO. Therefore,

the TSO will seek to influence the PC to make it invest in a larger capacity to increase

social welfare. One way to give the PC an economic incentive to invest in a larger capacity

is through a subsidy of some of the PC’s investment costs. In the left panel of Figure 17,

we compare the optimal capacity of the PC in the case of no subsidy with the case where

50 % of the PC’s investment cost is subsidised by an external party, i.e., � = 50.
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Figure 17: Optimal capacities in the case of no subsidy, � = 100, and a 50 % subsidy, � = 50

(left) and the percentage gain in welfare from a 50 % subsidy (right) as functions of �.

We find that when � is reduced by 50%, the PC invests in a larger capacity. This will result

in a higher social welfare. Since we assume that the subsidy is paid by an external party,

the gain in total surplus from providing a subsidy, expressed in percentage, is defined as21:

Welfare gain =
VTSO,with subsidy

� VTSO,without subsidy

VTSO,without subsidy

. (102)

The percentage gain from providing a subsidy is shown in the right panel of Figure 17.

The welfare gain is decreasing in uncertainty. This is because the di↵erence between the

21If the subsidy was not paid by an external party, then the cost of the subsidy should have been included

when calculating total surplus to find whether the subsidy provided a net increase in social welfare or not.
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capacity the PC will install with and without the subsidy is decreasing in uncertainty. This

can be seen from the left panel of Figure 17. The analysis shows that a subsidy of the PC’s

investment cost increases the optimal capacity of the PC and hence social welfare.

In Figure 18, we extend the analysis by studying how the optimal capacities and thresh-

olds change with di↵erent subsidy levels22. We find that an increasing subsidy level not
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Figure 18: Optimal capacity (left) and the optimal investment threshold (right) for a subsidy

between 40 and 100% for the base case parameters.

only increases the optimal capacity expansion of the PC, it also triggers earlier investment.

When more than 40% of the PC’s investment cost is subsidised by an external party, it

becomes optimal for the PC to invest as soon as the TSO has invested instead of waiting.

Therefore, the investment timing of the PC is equal the TSO’s as shown in the right panel

of Figure 18. Also, the TSOs investment timing is decreasing with increasing subsidy level

as the investment cost of the PC, which the TSO takes into account when finding the in-

vestment trigger that maximise social welfare, decreases. Hence, not only does a subsidy of

more than 40% of the PC’s investment cost increase the optimal capacity, it also triggers

earlier investment by the PC than in the case of no subsidy.

Last, we evaluate how the percentage gain in welfare from a subsidy varies with the size

of the subsidy as shown in Figure 19. The gain in welfare is increasing when the subsidy

increases. We conclude that a subsidy might be a tool to make the PC invest in a larger

capacity at an earlier point in time to increase total surplus.

22We find that K⇤
P is the dominating capacity for all levels of subsidy. Therefore, K⇤

T is not included in

the graph.
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Figure 19: The percentage gain in welfare

from a subsidy between 40 and 100% for the

base case parameters.

7 Conclusion

This paper extends the theoretical real options literature by considering a two-firm setting

with di↵erent objectives. In particular, we determine the optimal timing and sizing strategy

of a welfare-maximising TSO taking into account the optimal timing and sizing decision of

a profit-maximising PC.

We find that disregarding the PC’s optimal investment decision can have a large negative

impact on social welfare for a TSO. This is because, in most cases, the TSO will want both

agents to invest in a larger capacity than what is optimal for the PC. This implies that the

TSO faces a risk of investing in transmission capacity that will be left unused by the PC

if it does not consider the PCs’ optimal capacity decision. The only time we find that the

optimal capacity of the TSO is less than that of the PC is if the TSO does not have timing

flexibility and is forced to invest at a low demand level. Then, for low uncertainties, the

optimal capacity of the TSO is dominating. Furthermore, we find that if the TSO considers

only the PC’s sizing flexibility and not the flexibility in timing, then it risks investing in a

too small capacity. This is because the PC would optimally want to delay investment, and,

therefore, invest in a larger capacity than the TSO anticipates it to install if it assumes that

the PC invests at the same time as itself.

We find that increased demand uncertainty leads to an increase in optimal capacity and

a delay in investment because of the increased value of waiting. This is similar to what has
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been shown in previous real options literature with respect to timing and sizing. Also the

welfare loss from not taking the PC’s optimal investment decision into account increases in

uncertainty.

We find that not only does a subsidy of the PC’s investment cost increase the optimal

capacity, but it also triggers earlier investment by the PC. Therefore, a subsidy can be

used as a tool to increase social welfare. The analysis can be a starting point for a more

comprehensive study to find the optimal subsidy level given that the cost of the subsidy is

taken into account in the calculation of the total surplus. Furthermore, one could analyse

the e↵ect of providing a subsidy only above a certain capacity level. A similar approach

to Boomsma et al. (2012) could also be incorporated into the model to study how di↵erent

support schemes a↵ect the optimal investment decision of the PC, and thereby the optimal

strategy of the TSO.

The model could be extended by introducing volume flexibility, i.e., relax the assumption

that the PC produces up to capacity. It would be interesting to study as it might cause the

PC to invest in a larger capacity and hence shift the current power structure from the PC

having the dominating capacity, in most cases, to the TSO. However, this extension would

likewise be at the expense of being able to obtain an analytical solution.

Finally, it would be interesting to apply the model in a case study. Then, it would

be necessary to do an empirical analysis to find more realistic parameters for both agents’

investment cost, variable and fixed production costs, drift and discount rates. One could

expect the two companies to have di↵erent discount rates. Also the price process for the

considered market should be evaluated to reveal if it really follows a GBM or if it is mean-

reverting.
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Appendix

A Detailed derivations

A.1 Derivation of and solution to the VM and SP conditions in

Section 5.1.1

To determine the investment threshold ✓⇤P and the endogenous constant A
1

, we employ the

value-matching and smooth-pasting conditions:

A
1

✓⇤�1
P + V

1

(✓⇤P , K0

) = V
2

(✓⇤P , K0

+K⇤
P (✓

⇤
P )), (A.1)
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. (A.2)

Note that K⇤
P depends on ✓⇤P . However, after maximising the present value of the PC after

investment, V
2

(✓⇤P , K0

+K⇤
P (✓

⇤
P )), with respect to KP , for a given value of the demand shift

parameter at the time of investment, ✓t, by the envelope theorem we have that @V2
@K⇤

P
= 0.

The smooth-pasting condition reduces to:
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The smooth-pasting condition gives the value of the endogenous constant A
1

:

A
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Substituting the expression for A
1

into the value-matching condition and solving for ✓⇤P , we
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get that the optimal investment threshold is given by the solution to the following implicit

equation:

✓̂⇤P =
�
1

�
1

� 1
(⇢� ↵)

�

1� ⌘(2K
0

+K⇤
P (✓̂

⇤
P ))

. (A.5)

A.2 Derivation of and solution to the VM and SP conditions in

Section 5.1.2

To determine the optimal investment threshold ✓⇤T and the value of the endogenous constant

B
1

, we employ the value-matching and smooth-pasting conditions. First, the value-matching

condition is given by:

B
1

✓⇤�1
T = TS(✓⇤T , K

⇤
T (✓

⇤
T ), ✓

⇤
P (K

⇤
T (✓

⇤
T )). (A.6)

If we substitute for ✓⇤P (K
⇤
T ) into the expression for the total surplus, then we can write the

value-matching condition as:

B
1

✓⇤�1
T = TS(✓⇤T , K

⇤
T (✓

⇤
T )). (A.7)

When deriving the smooth-pasting condition, one has to take into account that K⇤
T depends

on ✓T . Therefore, when deriving the smooth-pasting condition we get:
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However, after maximising the total surplus (TS), where we have substituted the optimal

✓⇤P (KT ), with respect to KT , by the envelope theorem we have that @TS
@KT

= 0, see Equation

(41). Therefore, the smooth-pasting condition reduces to:

B
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The smooth-pasting condition gives:
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Substituting the expression for B
1

into the value-matching condition and solving for ✓⇤T , we

get that the optimal investment threshold is given by the solution to the following implicit

equation:
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A.3 Derivation of and solution to the VM and SP conditions cor-

responding to the corner solution in Section 5.1.2

To determine the indi↵erence level ✓⇤T and the value of the endogenous constant B
1

, we em-

ploy the value-matching and smooth-pasting conditions. First, the value-matching condition

is given by:

B
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T )). (A.12)

where the total expected surplus is equal to:
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Next, when deriving the smooth-pasting condition, one has to take into account that K⇤
T

depends on ✓T . We get:

B
1

�
1

✓⇤�1�1

T =
@TS

@✓t

����
✓t=✓⇤T

+
@TS

@KT

@K⇤
T

@✓t

����
✓t=✓⇤T

. (A.14)

However, after maximising the total surplus (TS) with respect to KT we have that @TS
@KT

= 0

and the smooth-pasting condition reduces to:
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By solving the value-matching and smooth pasting conditions we find the following expres-

sion for B
1

:
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The optimal investment threshold is given by the solution to the following implicit equation:
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B Proofs of Propositions

B.1 Proof of Proposition 1

The proof is given in Section 5.1.1.

B.2 Proof of Proposition 2

The proof is given in Section 5.1.2.

B.3 Proof of Proposition 3

The proof is given in Section 5.1.2.

B.4 Proof of Proposition 4

The proof of the optimal investment strategies in the region where ✓⇤T (K
⇤
P ) < ✓⇤P (K

⇤
P ) is

given in Section 5.1.1 and 5.2.2. However here we derive the proof of the optimal investment

strategies when we assume that the corner solution ✓P (K⇤
P ) = ✓⇤T (K

⇤
P ) is optimal.

In this case, the PC holds only the option to decide capacity, not timing, and will have

to follow the TSO’s investment timing strategy. The investment problem of the PC at time

zero is equal to:
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KP
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The optimal K⇤
P is given by the same expression as in Section 5.1.1, except that it depends

on ✓⇤T in this case, therefore, K⇤
P is given by:

K⇤
P (✓

⇤
T ) = max

✓
1

2⌘


1� �(⇢� ↵)

✓⇤T

�
�K

0

, 0

◆
. (B.2)

To find the TSO’s optimal investment time, we need to solve its optimal stopping problem.
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At time zero it is equal to:
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We follow a dynamic programming approach to solve the optimal stopping problem. The

value for the TSO, F , at time t is equal to:

F (✓t, K
⇤
T (✓t)) =

8
<

:
B

1

✓�1
t if ✓t  ✓T ,

TS(✓t, K⇤
P (✓t)) if ✓T  ✓t,

(B.4)

where the value in the continuation region is derived by finding the solution to the ordinary

di↵erential equation (ODE) that stews from the Bellman equation:

⇢Fdt = E[dF ]. (B.5)

Standard calculations similar to those in Section 5.1.1 and 5.1.2 are performed, which lead

to the value function stated in Equation (B.4).

In order to find the TSO’s optimal investment time, we need to determine the optimal

investment threshold, ✓⇤T , and the value of the endogenous constant B
1

by employing the

value-matching and smooth-pasting conditions. First, the value-matching condition is given

by:
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where the total expected surplus at time ⌧ ⇤T , given that both invest at the same time, is

equal to:
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Next, when deriving the smooth-pasting condition, one has to take into account that K⇤
P

depends on ✓T . We get:
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As K⇤
P is chosen to maximise profit not total surplus, we do not have that dTS

dKP
= 0 as in

the previous cases, but that d⇡
dKP

= 0, thus the smooth-pasting condition does not reduce in

this case. The smooth pasting condition gives:

B
1

=
1

�
1


(K

0

+K⇤
P (✓

⇤
T )(1� 1

2

⌘(K
0

+K⇤
P (✓

⇤
T )))

⇢� ↵
+
h1� ⌘(K

0

+K⇤
P (✓

⇤
T ))

⇢� ↵
✓⇤T � � � �

i
⇤

1

2⌘

�(⇢� ↵)

✓⇤2T

�
✓⇤1��1
T . (B.9)

Substituting the expression for B
1

into the value-matching condition, we get the following

implicit equation for the optimal investment level, ✓⇤T :

�
1

� 1

�
1

(K
0

+K⇤
P (✓

⇤
T )(1� 1

2

⌘(K
0

+K⇤
P (✓

⇤
T )))

⇢� ↵
✓⇤2T

�

�(K

0

+K⇤
P (✓

⇤
T )) + �K⇤

P (✓
⇤
T ) +

�(1� ⌘(K
0

+K⇤
P (✓

⇤
T ))

2⌘�
1

�
✓⇤T +

�(� + �)(⇢� ↵)

2⌘�
1

= 0.

(B.10)

B.5 Proof of Proposition 5

We find that if both agents invest at time zero, the total optimal capacity of the TSO will

be larger than the total optimal capacity of the PC if:

1

⌘

�(⇢� ↵)

✓
0

< K
0

+K⇤
P . (B.11)

By substituting K⇤
P , given in Equation (82), into the equation above, we find that in order

for K⇤
T to be larger than K⇤

P Equation (86) must hold.

B.6 Proof of Proposition 6

Given that ✓⇤P (K) > ✓⇤T (K) the following holds:

@✓⇤P (K)

@K
=

�
1

�
1

� 1
(⇢� ↵)

�⌘

(1� ⌘(2K
0

+K))2
> 0, (B.12)

and:
@✓⇤T (K)

@K
=

�
1

�
1

� 1
(⇢� ↵)

�
1

2

⌘K2

0

+ (1� ⌘K
0

)K
0

> 0. (B.13)

Note that (1 � ⌘K
0

) > 0 has to hold due to the upper bound on capacity given by the

inverse demand function, see Equation(1).
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B.7 Proof of Proposition 7

In the case where the two agents invest in the same capacity, K, and the PC invests after

the TSO we have the following investment triggers for the two agents:

✓⇤T (K) =
�
1

�
1

� 1
(⇢� ↵)

�(K
0

+K)

K
0

(1� 1

2

⌘K
0

)
, (B.14)

✓⇤P (K) =
�
1

�
1

� 1
(⇢� ↵)

�

1� ⌘(2K
0

+K)
. (B.15)

By solving the inequality ✓⇤P (K) > ✓⇤T (K), we can derive an expression for when the PC will

delay investment beyond the investment threshold of the TSO. The relation is equal to:

�

�
>

(K
0

+K)(1� ⌘(2K
0

+K))

K
0

(1� 1

2

⌘K
0

)
. (B.16)

.

B.8 Proof of Proposition 8

Given that the PC invests after the TSO we have the following investment triggers for the

two agents:

✓⇤T (K) =
�
1

�
1

� 1
(⇢� ↵)

�(K
0

+K)

K
0

(1� 1

2

⌘K
0

)
(B.17)

✓⇤P (K) =
�
1

�
1

� 1
(⇢� ↵)

�

1� ⌘(2K
0

+K)
(B.18)

First, ✓⇤T (K) is evaluated. The total derivative of ✓T with respect to � is equal to:

d✓⇤T
d�

=
@✓⇤T
@�

+
@✓⇤T
@�

@�

@�
. (B.19)

From Equation (B.17), we have that
@✓⇤T
@�

= 0. Furthermore;

@✓⇤T
@�

=
�1

(�
1

� 1)2
(⇢� ↵)

�(K
0

+K)

K
0

(1� 1

2

⌘K
0

)
< 0. (B.20)

Also @�
@�

< 0. The proof can be found in Dixit and Pindyck (1994). Therewith, we have

that:
d✓⇤T
d�

> 0. (B.21)
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Next, ✓⇤P (K) is evaluated. The total derivative of ✓P with respect to � is equal to:

d✓⇤P
d�

=
@✓⇤P
@�

+
@✓⇤P
@�

@�

@�
> 0, (B.22)

From Equation (B.18), we have that
@✓⇤P
@�

= 0. Furthermore;

@✓⇤P
@�

=
�1

(�
1

� 1)2
(⇢� ↵)

�

1� ⌘(2K
0

+K)
< 0. (B.23)

Therewith, we have that:
d✓⇤P
d�

> 0. (B.24)

It is also possible to show that the optimal capacity of the PC is increasing in uncer-

tainty. This holds independent of whether it has to invest at its own or the TSO’s optimal

investment threshold.

K⇤
P (✓t) = max

✓
1

2⌘


1� �(⇢� ↵)

✓t

�
�K

0

, 0

◆
. (B.25)

First we have that:
dK⇤

P (✓
⇤
P )

d�
=

@K⇤
P

@�
+

@K⇤
P

@✓⇤P

@✓⇤P
@�

. (B.26)

From Equation (B.25), we see that
@K⇤

P
@�

= 0. Furthermore, from Equation (B.24) we have

that
@✓⇤P
@�

> 0. Also:
@K⇤

P

@✓P
=

1

2⌘

�(⇢� ↵)

✓2P
> 0. (B.27)

Therewith, we have that:
dK⇤

P (✓
⇤
P )

d�
> 0, (B.28)

Similarly we have that:
dK⇤

P (✓
⇤
T )

d�
=

@K⇤
P

@�
+

@K⇤
P

@✓⇤T

@✓⇤P
@�

> 0, (B.29)

since
d✓⇤T
d�

> 0.

B.9 Proof of Proposition 9

The proof is given in Section 6.3.
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C Analytical Solutions to the Sub-Problems

C.1 Sub-problem 1: Optimal capacity for each agent when they

both have to invest at time zero

C.1.1 PC’s investment problem

When the PC only has sizing flexibility, and has to invest at time zero, its now-or-never

investment problem is equal to:

max
KP

E
 Z 1

s=0

e�⇢s⇡(✓s, K0

+KP )ds� �KP

���✓
0

�
. (C.1)

The solution to this problem is equal to Equation (13) but with ✓
0

instead of ✓t:

K⇤
P (✓0) = max

✓
1

2⌘


1� �(⇢� ↵)

✓
0

�
�K

0

, 0

◆
. (C.2)

C.1.2 TSO’s investment problem

When also the PC has to invest at the zero, the TSO’s now-or-never investment problem is

equal to:

max
KT

E
 Z 1

s=0

e�⇢sts(✓s;K0

+KT )ds� �(K
0

+KT )� �KT

���✓
0

�
, (C.3)

or equivalently:

max
KT

E

TS(✓

0

;K
0

+KT )
���✓

0

�
, (C.4)

where total surplus is defined as the sum of the consumer surplus and the producer surplus.

Building on the theory in Section 3, the present value of the total expected consumer

surplus (CS) at time zero is equal to:

CS(✓
0

;K
0

+KT ) = E
 Z 1

s=0

e�⇢s1

2
✓s(K0

+KT )
2⌘ds

���✓
0

�
=

✓
0

(K
0

+KT )2⌘

2(⇢� ↵)
. (C.5)

As discussed under assumptions, the total expected producer surplus (PS) is equal to the

expected present value of the PC’s future income minus the PC’s and the TSO’s investment

cost. At time zero we have:

PS(✓
0

;K
0

+KT ) =
✓
0

(1� ⌘(K
0

+KT ))(K0

+KT )

⇢� ↵
� �KT � �(K

0

+KT ). (C.6)
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The total expected surplus at time zero, TS(✓
0

;K
0

+KT ), is then equal to:

TS(✓
0

;K
0

+KT ) = CS(✓
0

, K
0

+KT ) + PS(✓
0

;K
0

+KT )

=
✓
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(K
0

+KT )(2� ⌘(K
0

+KT ))

2(⇢� ↵)
� �KT � �(K

0

+KT ). (C.7)

Next, we solve the TSO’s investment problem to obtain K⇤
T :

max
KT


TS(✓

0

;K
0

+KT )

�
(C.8)

d

dKT


✓
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(K
0

+KT )(2� ⌘(K
0

+KT )

2(⇢� ↵)
� �KT � �(K

0

+KT )

�
= 0 (C.9)

✓
0

2(⇢� ↵)

⇥
� ⌘K

0

+ 2� ⌘K
0

� 2⌘KT

⇤
� � � � = 0 (C.10)

Then the optimal K̂⇤
T is equal to:

K̂⇤
T (✓0) =

1

⌘


1� (� + �)(⇢� ↵)

✓
0

�
�K

0

. (C.11)

However, we require the TSO to at least be able to distribute an amount of power equal to

the current capacity of the PC, K
0

. Therefore, K⇤
T is given by:

K⇤
T (✓0) = max

✓
1

⌘


1� (� + �)(⇢� ↵)

✓
0

�
�K

0

, 0

◆
. (C.12)

C.1.3 Optimal investment strategies

The optimal investment strategies of the two agents depend on the lower of the two agents’

optimal capacities. If both agents invest in the dominating capacity, i.e., the lower optimal

capacity, the resulting social welfare for the TSO will be:

VTSO(✓0, ✓0,min(K⇤
T , K

⇤
P )) =

h1
2
⌘(K
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+min(K⇤
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⇤
P ))
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0

+min(K⇤
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⇤
P )))(K0
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⇤
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i ✓
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� �(K
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⇤
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⇤
P ). (C.13)
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And the value of the PC:

VPC(✓0, ✓0,min(K⇤
T , K

⇤
P )) =

h
(1� ⌘(K
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⇤
P )))(K0
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⇤
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⇤
P ). (C.14)

C.2 Sub-problem 2: Both decide timing, while the TSO decides

capacity, KP = K⇤
T

C.2.1 PC’s investment problem

When the PC only has timing flexibility, its investment problem at time zero is equal to:

sup
⌧P�⌧T

E
 Z 1

s=⌧T

e�⇢s⇡(✓s, K0

)ds+

Z 1

s=⌧P

e�⇢s[⇡(✓s, K0

+K⇤
T )� ⇡(✓s, K0

)]ds� e�⇢⌧P �K⇤
T

���✓
0

�
,

(C.15)

where K⇤
T is the optimal capacity of the TSO. The solution to this optimal stopping problem

is equal to the solution derived in Section 5.1.1, i.e., Equation (23) and (24), but with K⇤
T

instead of K⇤
P :

A
1

=
K⇤

T (1� ⌘(2K
0

+K⇤
T ))

⇢� ↵

1

�
1

✓̂⇤1��1
P , (C.16)

and:

✓̂⇤P =
�
1

�
1

� 1
(⇢� ↵)

�

1� ⌘(2K
0

+K⇤
T )

. (C.17)

Taking the timing constraint into account, we get that the optimal investment timing of

the PC given the TSO’s investment time is equal to:

✓⇤P =

8
<

:
✓̂⇤P if ✓T < ✓̂⇤P ,

✓T if ✓T � ✓̂⇤P .
(C.18)

In the case whereK⇤
T is equal to zero, generation capacity will never be added, i.e., ✓⇤P (0)=1.
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C.2.2 TSO’s investment problem

The TSO’s investment problem at time zero, given that it has both sizing and timing

flexibility, is equal to:

sup
⌧T

"
max
KT

E
 Z 1

s=⌧T

e�⇢sts(✓s;K0

)ds� e�⇢⌧T �(K
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���✓
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�#
. (C.19)

The solution to this problem is equal to the solution derived in Section 5.1.2. The optimal

capacity, K⇤
T , after having substituted for ✓⇤P (K

⇤
T ) is equal to:

K⇤
T (✓t) = max

�
K̂⇤

T (✓t), 0
�
, (C.20)

where K̂⇤
T (✓t) is given by the solution to the following implicit equation:
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The value of the endogenous constant B
1

is equal to:

B
1

=


K

0

� 1

2
⌘K2

0

�
✓⇤1��1
T

�
1

(⇢� ↵)
+


K⇤

T (✓
⇤
T )(1� ⌘(K

0

� 1

2
K⇤

T (✓
⇤
T )))

�
✓⇤P (K

⇤
T )

⇤1��1

⇢� ↵

� �K⇤
T (✓

⇤
T )✓

⇤
P (K

⇤
T )

⇤��1 , (C.22)

while the optimal investment threshold ✓⇤T is given by the solution to the following implicit

equation:

✓⇤T =
�
1

�
1

� 1
(⇢� ↵)

�(K
0

+K⇤
T (✓

⇤
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K
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. (C.23)

The PC will then expand capacity when ✓t hits ✓⇤P (K
⇤
T ) given that it has no flexibility to

choose the size of its investment:

✓⇤P (K
⇤
T ) =

�
1

�
1

� 1
(⇢� ↵)

�K⇤
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. (C.24)
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However, if this solution is not valid, i.e., ✓P (K⇤
T ) < ✓⇤T (K

⇤
T ), we assume the corner solution

✓P = ✓⇤T to be optimal. The optimal investment strategy of the TSO given that they both

invest at the same time, is to invest in a capacity of:
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, (C.25)

at the moment in time when ✓t hits ✓⇤T given by the solution to the following implicit

equation:
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The value of the endogenous constant B
1

is equal to:
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C.2.3 Optimal investment strategies

The optimal investment strategies for Sub-problem 2 are summarised in Table C.1.

If the PC invests after the TSO, the resulting value at time zero for each agent is equal

to:

VTSO(✓
⇤
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(C.29)
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Optimal investment strategies Sub-problem 2

K⇤
T

✓⇤P > ✓⇤T

TSO’s optimal strategy:

K⇤
T = max

�
K̂⇤

T (✓
⇤
T ), 0

�
, where K̂⇤

T (✓
⇤
T ) is given by the following

implicit equation:
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T (✓⇤T )))

PC’s optimal decision:

KP = K⇤
T

✓P = ✓⇤T

Table C.1: Overview of optimal investment strategies for Sub-problem 2

If it is optimal for the PC to invest at the same time as the TSO, i.e., ✓P (K⇤
T ) = ✓⇤T (K

⇤
T ),

the value functions simplify to:
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In the case where K⇤
T is equal to zero and generation capacity will never be added, i.e.,
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✓⇤P (0)=1, the value for the TSO and the PC are equal to:
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and:
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T ,1, 0) =

✓
✓
0

✓⇤T

◆�1
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respectively.

C.3 Sub-problem 3: Both decide timing, while the PC decides

capacity, KT = K⇤
P

C.3.1 PC’s investment problem

When the PC has flexibility to decide both timing and capacity, its investment problem at

time zero can be summarised as below:

sup
⌧P�⌧T


max
KP

E
 Z 1

s=⌧T

e�⇢s⇡(✓s, K0

)ds

+

Z 1

s=⌧P

e�⇢s[⇡(✓s, K0

+KP )� ⇡(✓s, K0

)]ds� e�⇢⌧P �KP

���✓
0

��
. (C.34)

The solution to this problem is equal to the one derived in Section 5.1.1. The optimal

decision is to expand generation capacity with K⇤
P equal to:

K⇤
P (✓

⇤
P ) = max

✓
1

2⌘


1� �(⇢� ↵)

✓⇤P

�
�K

0

, 0

◆
, (C.35)

at the moment in time when ✓t first hits ✓⇤P , equal to:

✓⇤P =

8
<

:
✓̂⇤P if ✓<T ✓̂

⇤
P ,

✓T if ✓⇤T � ✓̂⇤P ,
(C.36)

where ✓T is the moment in time when the TSO invests in the transmission line and ✓⇤P is

given by the solution to the following implicit equation:

✓̂⇤P =
�
1

�
1

� 1
(⇢� ↵)

�

1� ⌘(2K
0

+K⇤
P (✓

⇤
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. (C.37)
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In the case whereK⇤
P is equal to zero, generation capacity will never be added, i.e., ✓⇤P (0)=1.

The value of the endogenous constant A
1

is equal to:

A
1

=
K⇤

P (✓
⇤
P )(1� ⌘(2K
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+K⇤
P (✓
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✓̂⇤1��1
P . (C.38)

C.3.2 TSO’s investment problem

The TSO’s investment problem at time zero, when it holds only the option to decide the

timing of investment, is equal to:

sup
⌧T

E
 Z 1

s=⌧T

e�⇢sts(✓s;K0

)ds� e�⇢⌧T �(K
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���✓
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�
. (C.39)

The solution to this problem is equal to Equations (49) and (50) derived in Section 5.1.2,

but with K⇤
P instead of K⇤

T :

B
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� 1

2
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while ✓⇤T is given by the solution to the following implicit equation:

✓⇤T =
�
1

�
1

� 1
(⇢� ↵)

�(K
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+K⇤
P (✓
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0
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0
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The only way the TSO can a↵ect the investment decision of the PC, within this set-up, is

by investing later than what is optimal for the PC, and force it to delay its investment. If

the PC would like to invest earlier than the TSO, it will have to wait and the TSOs optimal

investment time will be dominating. In this case, the PC only holds the option to decide

capacity not timing and will have to follow the TSO’s investment timing strategy.

Then the optimal K⇤
P will depend on ✓⇤T and be given by:

K⇤
P (✓

⇤
T ) = max

✓
1

2⌘


1� �(⇢� ↵)

✓⇤T

�
�K

0

, 0

◆
. (C.42)

73



To find the TSO’s optimal investment time given that they invest at the same time, we need

to solve the following optimal stopping problem:

sup
⌧T

E
 Z 1

s=⌧T

e�⇢sts(✓s;K0

+K⇤
P )ds� e�⇢⌧T �(K
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�
. (C.43)

This solution to this problem is derived in Section B.4 where we get:
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Substituting the expression for B
1

into the value-matching condition, we get the following

implicit equation for the optimal investment level, ✓⇤T :
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(C.45)

C.3.3 Optimal investment strategies

The optimal investment strategies for Sub-problem 3 are summarised in Table C.2.

If the PC invests after the TSO, the resulting value at time zero for each agent is equal

to:

VTSO(✓
⇤
T , ✓

⇤
P , K
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(C.47)
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Optimal investment strategies Sub-problem 3

K⇤
P

✓⇤P > ✓⇤T

TSO’s optimal strategy:

KT = K⇤
P
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�1�1
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TSO’s optimal strategy:
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✓⇤T is given by the following implicit equation:
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PC’s optimal decision:
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✓P = ✓⇤T

Table C.2: Overview of optimal investment strategies for Sub-problem 3

If, however, it is optimal for the PC to invest at the same time as the TSO, i.e., ✓P (K⇤
P ) =

✓⇤T (K
⇤
P ), the value functions simplify to:
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In the case where K⇤
P is equal to zero and generation capacity will never be added, i.e.,

✓⇤P (0)=1, the value for the TSO and the PC are equal to:

VTSO(✓
⇤
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✓
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and:
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respectively.

C.4 Sub-problem 4: Both decide capacity and PC decides timing

while TSO has to invest at time zero

C.4.1 PC’s investment problem

When the PC has timing and sizing flexibility while the TSO has to invest at time zero, the

investment problem of the PC is equal to:

sup
⌧P�0


max
KP

E
 Z 1

s=0

e�⇢s⇡(✓s, K0

)ds

+
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As in Sub-problem 3, the solution to this problem is equal to the one derived in Section

5.1.1. The optimal decision is to expand generation capacity with K⇤
P equal to:
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⇤
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at the moment in time when ✓t first hits ✓⇤P , equal to:
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8
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(C.54)

where ✓̂⇤P is given by the solution to the following implicit equation:

✓̂⇤P =
�
1

�
1

� 1
(⇢� ↵)

�

1� ⌘(2K
0

+K⇤
P (✓

⇤
P ))
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In the case whereK⇤
P is equal to zero, generation capacity will never be added, i.e., ✓⇤P (0)=1.

The optimal value of the endogenous constant A
1

is equal to:

A
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C.4.2 TSO’s investment problem

The TSO’s investment problem now only includes the flexibility to decide on capacity. At

time zero the investment problem is equal to:

max
KT

E
 Z 1

s=0

e�⇢sts(✓s;K0

)ds� �(K
0

+KT )

+

Z 1
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���✓
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�
. (C.57)

The only way the TSO can influence the PC’s investment decision in this case is by investing

in a capacity which is smaller than the PC’s optimal capacity. Making it invest in a smaller

capacity than it finds optimal, will not only a↵ect the size of the PC’s investment, but also

force it to invest earlier as its investment threshold is decreasing in capacity. We assume that

the TSO has the power to a↵ect the PC’s investment decision. Then we need to substitute

the expression for ✓⇤P (KT ) into the total surplus expression, before we maximise it with

respect to KT . We get the same expression for K⇤
T , Equation (59), as in Section 5.1.2. K⇤

T

is equal to:

K⇤
T (✓0) = max

�
K̂⇤

T (✓0), 0
�
, (C.58)

where K̂⇤
T (✓0) is given by the following implicit equation:
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C.4.3 Optimal investment strategies

To find the optimal investment strategies after taking capacity constraints in to account,

we need to compare K⇤
T and K⇤

P to determine which one of them will be dominating. If

K⇤
T > K⇤

P , the PC will expand its capacity with K⇤
P when ✓t reaches ✓⇤P (K

⇤
P ), and the TSO

will have to accept the PC’s optimal investment strategy and that it has no power to a↵ect

it. However, if K⇤
T < K⇤

P the PC will have to accept the optimal capacity of the TSO, and

choose it’s optimal investment time based on K⇤
T , ✓

⇤
P (K

⇤
T ). This optimal investment time

will be the same as the TSO took into account when it found its optimal K⇤
T . The optimal

investment strategies when K⇤
T is the dominating capacity is summarised in Table C.3 while
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the optimal investment strategies when K⇤
P is the dominating capacity is summarised in

Table C.4.

Optimal investment strategies Sub-problem 4

K⇤
T < K⇤

P

KP = K⇤
T

✓⇤P > ✓
0

TSO’s optimal strategy:

K⇤
T = max

�
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T (✓0), 0
�
, where K̂⇤

T (✓0) is given by the following

implicit equation:
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◆
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PC’s optimal decision:

KP = K⇤
T

✓P = ✓
0

Table C.3: Overview of optimal investment strategies for Sub-problem 4 if K⇤
T is the domi-

nating capacity

Given the dominating capacity, min(K⇤
T , K

⇤
P ), and the resulting investment threshold

for the PC, the social welfare at time zero will be equal to:
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(C.60)
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Optimal investment strategies Sub-problem 4

K⇤
P  K⇤

T

KT = K⇤
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TSO’s optimal strategy:
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Table C.4: Overview of optimal investment strategies for Sub-problem 4 if K⇤
P is the domi-

nating capacity

and the value for the PC at time zero will be equal to:
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In the special case where K⇤
T or K⇤

P is equal to zero, the PC will never expand its capacity

above K
0

, the present value for the TSO and the PC, given that the TSO invests in K
0

at

time ✓⇤T , is equal to:
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C.5 Sub-problem 5: Both have sizing flexibility, while the TSO

decides timing

C.5.1 PC’s investment problem

When the PC only has sizing flexibility, and has to follow the TSO’s timing decision, the

investment problem of the PC at time zero is equal to:

max
KP

E
 Z 1

s=⌧T

e�⇢s⇡(✓s, K0

+KP )ds� e�⇢⌧P �KP

���✓
0

�
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The solution to this problem is equal to Equation (13) but with ✓⇤T instead of ✓t:
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C.5.2 TSO’s investment problem

When the PC has to invest at the same time as the TSO, the TSO’s investment problem at

time zero is equal to:

sup
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E
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If both invest at ✓t, the total expected surplus at time t is given by:
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�
✓t

⇢� ↵
� �(K

0

+KT )� �KT .

(C.67)

The solution to the inner maximisation problem is equal to the one in Sub-problem 1, see

Appendix C.1 but with but with ✓t instead of ✓
0

:

K⇤
T (✓t) = max

✓
1

⌘


1� (� + �)(⇢� ↵)

✓t

�
�K

0

, 0

◆
. (C.68)

After having solved for K⇤
T , the TSO’s investment problem reduces to:

sup
⌧T

E
 Z 1

s=⌧T

e�⇢sts(✓s;K0

+K⇤
T )ds� �(K

0

+K⇤
T )� �K⇤

T

���✓
0

�
. (C.69)
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We proceed by following a dynamic programming approach to solve the optimal stopping

problem and find ✓⇤T . The value for the TSO at time t is equal to:

F (✓t, K
⇤
T (✓t)) =

8
<

:
B

1

✓�1
t if ✓t  ✓T ,

TS(✓t, K⇤
T (✓t)) if ✓T  ✓t.

(C.70)

The value in the continuation region is equal to the value of the option to invest in the

transmission line, while the value in the stopping region is equal to the value of the total

surplus given that they both have invested. The value in the continuation region is derived

by finding the solution to the ordinary di↵erential equation (ODE) that stews from the

Bellman equation:

⇢Fdt = E[dF ]. (C.71)

Standard calculations similar to those in Section 5.1.1 and 5.1.2 are performed, which lead

to the value function stated in Equation (C.70).

The second branch is equal to:

TS(✓t, K
⇤
T (✓t)) =


1

2
⌘(K

0

+K⇤
T (✓t))

2 + (1� ⌘(K
0

+K⇤
T (✓t)))(K0

+K⇤
T (✓t))

�
✓t

⇢� ↵

� �(K
0

+K⇤
T (✓t))� �K⇤

T (✓t). (C.72)

To determine the investment threshold ✓⇤T and the value of the endogenous constant B
1

,

we employ the value-matching and smooth-pasting conditions. First, the value-matching

condition is given by:

B
1

✓⇤�1
T = TS(✓⇤T , KT (✓

⇤
T )). (C.73)

When deriving the smooth-pasting condition, we have to take into account that K⇤
T depends

on ✓T . We get:

B
1

�
1

✓⇤�1�1

T =
@TS

@✓t

����
✓t=✓⇤T

+
@TS

@KT

@K⇤
T

@✓t

����
✓t=✓⇤T

. (C.74)

However after maximising the total surplus (TS) with respect toKT , we have by the envelope

theorem that @TS
@KT

= 0. Therefore the smooth-pasting condition reduces to:

B
1

�
1

✓⇤�1�1

T =
@TS

@✓t

����
✓t=✓⇤T

. (C.75)
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The smooth-pasting condition gives:

B
1

=


(K

0

+K⇤
T (✓

⇤
T ))

h
1� 1

2
⌘(K

0

+K⇤
T (✓

⇤
T ))

i� ✓⇤1��1
T

�
1

(⇢� ↵)
. (C.76)

Substituting the expression for B
1

into the value-matching condition and solving for ✓⇤T , we

get that ✓T is given by the solution to the following implicit equation:

✓⇤T =
�
1

�
1

� 1
(⇢� ↵)

�(K
0

+K⇤
T (✓

⇤
T )) + �K⇤

T (✓
⇤
T )

(K
0

+K⇤
T (✓

⇤
T ))[1� 1

2

⌘(K
0

+K⇤
T (✓

⇤
T ))]

(C.77)

C.5.3 Optimal investment strategies

The final optimal investment strategy depends on which agent that has the lowest optimal

capacity. If K⇤
P is larger than K⇤

T , the TSO will decide the timing and the size of both

investments. However, if the opposite holds, that K⇤
T is larger than K⇤

P , the PC decides

the size of both investments, while the TSO decides the timing. The optimal investment

strategies when K⇤
T is the dominating capacity is summarised in Table C.5 while the optimal

investment strategies when K⇤
P is the dominating capacity is summarised in Table C.6.

Optimal investment strategies Sub-problem 5

K⇤
T < K⇤

P

KP = K⇤
T ✓P = ✓⇤T

TSO’s optimal strategy:

K⇤
T = max

✓
1

⌘


1� (�+�)(⇢�↵)

✓⇤T

�
�K

0

, 0

◆

✓⇤T = �1

�1�1

(⇢� ↵)
�(K0+K⇤

T (✓⇤T ))+�K⇤
T (✓⇤T )

(K0+K⇤
T (✓⇤T ))[1� 1

2⌘(K0+K⇤
T (✓⇤T ))]

PC’s optimal decision:

KP = K⇤
T

✓P = ✓⇤T

Table C.5: Overview of optimal investment strategies for Sub-problem 5 if K⇤
P is the domi-

nating capacity
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Optimal investment strategies Sub-problem 5

K⇤
P  K⇤

T

KT = K⇤
P ✓P = ✓⇤T

TSO’s optimal strategy:

KT = K⇤
P

✓⇤T = �1

�1�1

(⇢� ↵)
�(K0+K⇤

P (✓⇤T ))+�K⇤
P (✓⇤T )

(K0+K⇤
P (✓⇤T ))[1� 1

2⌘(K0+K⇤
P (✓⇤T ))]

PC’s optimal decision:

K⇤
P = max

✓
1

2⌘


1� �(⇢�↵)

✓⇤T

�
�K

0

, 0

◆

✓P = ✓⇤T

Table C.6: Overview of optimal investment strategies for Sub-problem 5 if K⇤
T is the domi-

nating capacity

The resulting social welfare for the TSO will be:

VTSO(✓
⇤
T , ✓

⇤
T ,min(K⇤
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P )) =
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⇤
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And the value of the PC:

VPC(✓
⇤
T , ✓

⇤
T ,min(K⇤

T , K
⇤
P )) =
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(C.79)

If K⇤
T or K⇤

P is equal to zero, the PC will never expand its capacity above K
0

, then the

present value for the TSO and the PC, given that the TSO invests in K
0

at time ✓⇤T , is equal

to:

VTSO(✓
⇤
T ,1, 0) =

✓
✓
0

✓⇤T

◆�1
h1

2
⌘K2

0

+ (1� ⌘K
0
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0
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� �K
0

�
, (C.80)

VPC(✓
⇤
T ,1, 0) =

✓
✓
0

✓⇤T

◆�1
h
(1� ⌘K

0
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0

i ✓⇤T
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. (C.81)
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