


Figure 5: Optimal slope matrix for discharge from the bottom reservoir M1
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a low head during the profitable winter months, while M3 stops its filling period with a negative
spike around period 25.

After adding the head value term in the objective function, and iterating until convergence, a
different pattern emerges. Now M6 maintains an almost maximal head through the three first
months, while M3 completes filling up without interruption. This is evidence that the LDR model
is able to take non-linearities into account if handled correctly, and makes it more usable. A planner
would be able to trust more in a policy that takes head variations into account, modelling the reality
more closely.

7.3 Water values

Another iterative procedure, namely the water value calculation, also seems to provide sensible
results. This is important if considering to use output from the model in shorter term scheduling
models. As seen in Figure 8, the water value curves look reasonable. In periods when inflow is high,
an extra unit of water is worth less than in periods where inflow is low. Similarly, when the price is
high in the winter, and the reservoirs are slowly emptying, additional water is valuable. Here, the
point value of the water at the mean reservoir levels is shown, but the water value at each reservoir
is actually a multidimensional function of reservoir levels at all reservoirs in the whole system.

7.4 The problem with linearity

One of the areas where the LDR model seemingly produces irrational results is in the relationship
between power generation and pumping. In several time periods the model suggests both pumping
and generating power at the same reservoir. Given a constant price throughout the period, and that
pumping consumes more power than discharging generates, this is not something a real production
planner would do.

As seen in Figure 9, the result is natural when considering how LDR are defined. The uncertain
parameters can go below their expected values, in which case a positive slope will lead to decisions
that are below their nominal levels. For this to still be feasible, the decisions need to have inter-
cepts above their lower bounds. The consequence of this, is that if there is a time period where
both pumping and power generation have slopes, then both needs intercepts as well. Often it is a
good idea to have non-zero slopes for both these decisions, in order to fully exploit scenarios with
extreme prices or inflows. In this case, the symmetry of reactions gives a situation where almost
any realization of the uncertainty will give rise to both pumping and power generation in the same
time period. If the LDR model is used as decision support, the planner should use the net decision
in these cases.

To mitigate this problem, alternatives like piecewise linear [14] or quadratic [32] decision rules can
be investigated. Both of these alternatives allow more asymmetric reactions to positive and negative
realizations.
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(b) Reservoir trajectories M6 after head corrections

Figure 6: Percentile trajectories for M6 obtained from simulating policies from LDR with five period
memory
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Figure 7: Percentile trajectories for M3 obtained from simulating policies from LDR with five period
memory
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Figure 8: Comparison of water value and mean reservoir level for head corrected runs
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7.5 Comparison

The additions that are made to the LDR implementation have shown to have their intended effects.
Now, to evaluate the usefulness of LDR in the context of seasonal hydropower planning, it is
compared to RI. Both solution methods are benchmarked against the DUB described in Section 4,
and the results are presented in Table 2 and Figure 10.

Here, it is clear that RI outperforms LDR. RI comes within 4% of a theoretical upper bound, while
the gap to LDR is more than 40%. At full memory, the LDR model also takes much longer to
compute, leaving RI the dominant solution. The running times of RI are comparable to what is
reported in [17], so it can be assumed to be on par with the standard tools in use.

The time savings of LDR are evident when appropriate memory restrictions are applied. Relative
to RI, the difference between full memory and no memory in LDR is small, at just a few percentage
points. This means that LDR can be run with very restrictive memory with no significant loss
of optimality. The flood memory suggested in Section 5.1 performs comparably with full memory
at under 0.1% of the running time. This supports the idea that if the spring flood is taken into
account, periods of lower uncertainty do not need to be considered as closely, and indicates that
variable memory lengths may be designed, that perform very well with shorter running times. The
flood memory also clearly beats the running time of RI, although it is not evident that the reduced
running time justifies the large optimality gap.

7.6 Conclusion

From the computational results, it is not clear that LDR is a good fit for the seasonal hydropower
planning problem, even though the method potentially delivers some benefits. Examples of this
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Table 2: Comparison of objective values and computational times from the different models and memory
sets

Model Simulated objective value (% of DUB) Computational time (s)
PIUB 136 981 (102) 1 406
DUB 134 240 (100) 32 044
RI 128 830 (96,0) 32 310

LDR perfect memory 77 867 (58,0) 14 928
LDR flood memory 77 203 (57,5) 913
LDR 52 memory 77 867 (58,0) 750 154
LDR 26 memory 77 777 (57,9) 157 484
LDR 14 memory 77 542 (57,8) 9 337
LDR 10 memory 76 915 (57,3) 3 804
LDR 5 memory 76 838 (57,2) 1 520
LDR 2 memory 76 646 (57,1) 970
LDR 1 memory 76 375 (56,9) 691
LDR 0 memory 74 523 (55,5) 371

102 103 104 105 106
50

60

70

80

90

100
DUB

LDRPerfect

LDRFlood

RI

LDR52

LDR0

Computing time (s)

O
bj
ec
ti
ve

va
lu
e
in

%
of

D
U
B

Figure 10: The computational times plotted on a logarithmic scale against the objective value in % of
DUB
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include coherent policies for any scenario, but also intuitively reasonable solutions, and potentially
short running times compared to RI. Especially if efficient reductions of the memory can be de-
veloped, LDR outruns RI by orders of magnitude. However, this comes at a significant cost of
optimality. Even with full memory, the LDR are not able to close the gap up to RI, leaving the
difference at more than one third of the optimal value. This means that LDR cannot be considered
a good replacement, or a good fit for seasonal planning in hydropower scheduling. Rather, LDR
could be used as a quick diagnostic tool, or when a planner wishes to iteratively develop and test
scenarios, or do analysis on a large number of potential scenarios. Here, exact solutions need not
be of high importance, while quickly assessing results of changes might be interesting.

The LDR formulation was shown to handle head effects well using an iterative approach, and deliver
reasonable water values, which means it can be used to quickly produce output for other models to
build upon.

Based on the results presented in this paper, further research is recommended into the reduction
of memory sets in LDR. Since LDR do not seem fit to compete as a primary seasonal planning
tool, attempting to get the quickest solution times possible might add value to the approach.
Additionally, the water values output from the LDR model seemed reasonable. Further comparison
of these against those returned by other methods is potentially interesting. If the marginal values
of water are shown to be correct, they can be used as a quick way to input water values to a shorter
term model. Last, the symmetry of purely linear decision rules seemed to give irrational results.
More research on piecewise linear or quadratic decision rules could yield more fruitful policies.
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6 Conclusion

We started this thesis by stating the following research question: How suitable are
linear decision rules for seasonal hydro power scheduling?

This lead to three sub-questions:

1. Can hydropower specific implementation details, such as head effects and
water values, be included in the solution process?

2. Will LDR be able to give quicker results or higher objective values than RI?

3. What bounds on the suboptimality imposed by the LDR approximation can
be found?

Now we are able to draw conclusions, based on the computational tests we have
conducted.

Our results indicate that head effects and water values can indeed be handled by
the use of iterative procedures, so LDR models have sufficient expressiveness to
take the details of hydropower scheduling into account. The computational times
are reduced significantly in comparison with RI when limited memory is applied.
It also seems relatively fast against other solution methods currently in use, even
though this needs to be tested before conclusions can be made. However, this
comes at a considerable cost. The LDR formulation is not able to give objective
values that are competetive with RI’s. The solutions values are well below both
theoretical upper bounds, and feasible solutions from RI. Thus, the suboptimality
of the LDR approximation is quantified and large.

Altogether, it is therefore not clear that LDR is a good fit for the seasonal hy-
dropower planning problem. The topic should be further researched, since there
are several interesting questions that arise from our tests.

In Article 2 [9], we saw that piecewise or quadratic decision rules should be investi-
gated, since they potentially can reduce the symmetry, and thus the suboptimality,
observed. Additionally, LDR could be fit for other purposes than returning poli-
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cies to be implemented. If the water values are benchmarked against results from
other methods, they could turn out to be usable as input to short-term models.
If good limitations on the memory set are found, LDR could be used as a very
fast diagnostic tool when quick results are more important than optimal results.
Last, we saw in both articles that the bounds on final reservoir levels lead to many
dependencies at the end of the horizon. Further research could reveal if LDR mod-
els will perform better with an end-of-horizon water valuation instead of a strict
bound.
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Appendix A Assumptions

A number of assumptions and simplifications have been made when developing the
mathematical formulation of the hydropower problem. These are detailed below.

All technical power station data, such as minimum and maximum generation ca-
pacities and generator efficiencies, are assumed fully known. Limitations on mini-
mum and maximum reservoir levels are also classified as deterministic data, along
with information describing the topology of the water system. The reason behind
these assumptions is the fact that uncertainties in station and reservoir data are
negligible compared to the uncertainty in the inflow and price parameters that we
have chosen to model as stochastic.

Line congestion or line outage is hard to predict and is not considered. Instead
the producer is expected to always get the weekly electricity price (on average) for
every MWh generated.

The discount rate has been considered deterministic and constant, since the focus
of this paper has been on hydropower modeling, not representating the interest
rate.

Typical short term operational issues, such as ramping constraints, curtailment
costs, and costs related to start-up and shutdown, are neglected due to the length
of each time period. In the case of omitting start-up and shutdown costs, there
is also a second motive, as including these costs would have turned the model
into an NP-hard mixed integer programming problem, rather than a P-hard linear
program.

A power plant’s effienciency (η) is assumed constant, thus independent of the level
of generation (q). Establishing a schedule where generating units operate at their
best point is a task for a short-term model, the seasonal model only allocates
generation to power stations.
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Appendix B Full LDR formulation

By applying the LDR reformulation steps described in Article 1 to the mathematical model pre-
sented in both articles, we arrive at the following model.

max
∑

t∈T

∑

r∈R

∑

d∈D
THβtE

d
rt


π̂tx̂drt +

∑

u∈U

∑

τ∈Mu
t

ΠtK
d
rtuτCov(δPt, δuτ )


 (B.1)

s.t.
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rtj ≤M rt −
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Here, (B.1) is the objective function, as described in Article 1. The constraints are hard to under-
stand or describe intuitively, but are grouped according to their origin. Generally, µ denotes a dual
variable from the transformation, x̂ an intercept, and K a slope. A dual variable µU · corresponds
to an upper bound, while µL· corresponds to a lower bound. Where equivalent constraints differ
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only in the dual variables, the shorthand b is used, to stand for either U or L.

Constraints (B.2) and (B.3) are the transformed reservoir limits, with expressions for the reservoir
level substituted in. We call the constraints on the form (B.2) dual objective constraints because
they correspond to the objective value on the left hand side in the transformations. There is one
dual objective constraint for each constraint in the original problem. (B.2a) correspond to upper
bounds, while (B.2b) correspond to lower bounds. Equations like (B.3) are called dual feasibility
constraints, because they define the feasible region of the left hand side in the transformations.

Constraints (B.4) and (B.5) are transformed from the bounds on the power generation. The two
cases (B.5a) and (B.5b) separate between the uncertainty parameters δuτ that the generation in
period t depends on, and those it does not, respectively. As mentioned in Article 1, uncertainty
parameters outside the memory setMu

t lead to zero-valued right hand sides.

Similarly, (B.6) and (B.7) correspond to the discharge limits, while (B.8) and (B.9) originate from
the pumping limits. (B.10) and (B.11) are the transformed limits on spill, and notably only one
dual objective constraint is needed here, since spill is unconstrained from above. As a last note,
(B.15) reflects the fact that pumping is defined as a non-positive variable, while all other intercepts
and dual variables are non-negative, and slopes are free.
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