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Problem formulation

To implement an optimization model for seasonal planning under uncertainty in
suitable software, by using linear decision rules. Additionally, the applicability of
linear decision rules in this context will be analyzed.
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Abstract

Hydroelectric reservoirs need to be managed carefully in order to maxi-
mize their benefits. Existing stochastic optimization approaches for making
seasonal reservoir schedules often suffer from very high computing efforts,
that grow exponentially with the problem size. This thesis investigates a rel-
atively new approach to solve this problem, known as a linear decision rules
(LDR) approximation. Here, the decision variables are replaced with affine
functions of the realizations of the uncertain parameters. The presented LDR
optimization model takes uncertainty in price and multiple inflow series into
account. Important considerations in hydropower scheduling, such as head
corrections and finding water values, are also incorporated. The model is
tested to find the applicability of LDR in the seasonal hydropower planning
problem, and theoretical upper bounds are obtained to evaluate the quality
of the solutions. The main result is that accuracy is traded expensively for
tractability, as the solutions from the LDR-formulation are far from the up-
per bound. The solution values are also clearly beaten by a rolling intrinsic
heuristic already in use in similar industries. However, reasonable policies and
water values are generated, and head corrections are satisfactorily included.
Additionally, by reducing the number of realizations the decision rules are
dependent on, very short computational times are achieved. Therefore, LDR
are only a good fit if short running times are important.
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Sammendrag

Magasin brukt til vannkraftproduksjon må styres med omhu for å leve-
re sin maksimale nytte. Eksisterende stokastiske optimeringsmetoder for å
sesongplanlegge produksjon krever veldig lang kjøretid, og den vokser eks-
ponensielt med problemstørrelsen. I denne oppgaven undersøkes en relativt
ny måte å løse dette problemet på, kjent som tilnærming ved lineære beslut-
ningsregler (LDR). Her blir beslutningsvariablene erstattet av affine funksjo-
ner, som avhenger av realiseringen av de usikre parameterne elektrisitetspris
og tilsig. Vannkraftspesifikke konsepter som fallhøydeeffekter og vannverdi-
er blir også hensyntatt. Modellen testes, med formål om å finne ut hvor
anvendbare LDR er til å løse sesongplanleggingsproblemet innen vannkraft.
Til dette utvikles teoretiske øvre grenser for objektivverdien, og det viser seg
at korte kjøretider koster dyrt i form av optimalitetstap. Løsningsverdiene
er langt fra de øvre grensene, og blir også slått av en heuristikk med rullende
horisont, som allerede er i bruk i bransjen. Beslutningsreglene fra modellen er
imidlertid fornuftige, og det er enkelt å inkludere fallhøydeeffektene. I tillegg
kan reduksjoner i antall parametere hver beslutningsregel avhenger av føre
til veldig korte kjøretider. Konklusjonen er at LDR bare er en god løsning
på dette problemet dersom kort løsningstid er viktig.
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1 Introduction

For at least 2000 years, people have harnessed falling and running water for use-
ful purposes [32], and in the late 19th century, hydropower became a source for
generating electricity. In the 20th century, technology matured, networks for trans-
mitting power were developed, and markets for trading were established.

Today, hydropower producers make short-term bidding decisions every day to max-
imize profit. These decisions are, among other factors, based on estimates of how
much the water in their reservoirs will be worth at the end of the short term plan-
ning period. To generate these estimates, a seasonal planning optimization model
that accounts for effects further into the future is used. Additionally, a seasonal
planning model outputs schedules that can be used in risk management [44], and
within budgeting, a seasonal plan is used to forecast the revenue stream for the
year ahead.

The seasonal planning model can be implemented as either a deterministic or a
stochastic model. A deterministic model uses future inflows and electricity prices
as if they are fixed, known values.

However, due to the large inherent uncertainty in inflows, it is essential to take
stochasticity into account. This reduces the risk of spilling water or emptying
the reservoir. Considering the price as stochastic is preferred for all deregulated
markets. Especially so in the Nordic market, where the high share of hydropower
leads to electricity prices that are strongly influenced by the hydrological situation
[56].

Several methods can be used when taking stochasticity into account. Historically,
the most promising ones have been based on either dynamic programming (DP) or
nested Benders’ decomposition. One alternative is deterministically solving for the
entire planning horizon, and locking the first stage variables. Then updating with
the actual realizations of inflow and price, the remaining stages can be iteratively
solved with a receding horizon. This is known as a rolling instrisic (RI) heuristic
[43].
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A relatively new way of looking at the seasonal hydropower problem is called lin-
ear decision rules (LDR) approximation. This solution method treats the decision
variables as affine functions of the uncertain parameters. The result is an inter-
esting trade-off, where tractability is achieved at the expense of loss of optimality
due to the linearization.

After Ben-Tal resurrected LDR in [4] a decade ago, several papers have been pub-
lished describing this new method applied to hydropower planning. In [37], the
method of iterative LDR is introduced as the approach where an LDR formulation
is solved iteratively, updating problem parameters, while in [22, 41] LDR approx-
imations are applied on both the primal and dual of the seasonal hydropower
problem, thereby also presenting values for the optimality gap caused by the ap-
proximation.

It is in the wake of these publications our thesis align. More specifically, the
research question adressed in this thesis is:

How suitable are linear decision rules for seasonal hydropower scheduling?

Answering this breaks down to a series of subquestions:

1. Can hydropower specific implementation details, such as head effects and
water values, be included in the solution process?

2. Will LDR be able to give quicker results or higher objective values than RI?

3. What bounds can be found on the suboptimality of the LDR approximation?

Our main contribution is a thorough computational test of LDR in seasonal hy-
dropower planning. It is shown that the method can not be conclusively endorsed
when compared with RI, and with a new, state of the art, theoretical upper bound.
Additionally, we present LDR with explicit focus on several uncertainty types, in an
introductory guide to the topic. To the research on LDR, we contribute with novel
combinations of elements from earlier works. This includes normalized, zero mean
uncertainties [63] and iterative recalculations of energy coefficients. Our work in
general, and these contributions in particular, are presented in two papers, “Linear
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Decision Rules for seasonal hydropower planning: Modelling Considerations” and
“Linear Decision Rules for seasonal hydropower planning: Implementation and
computational performance”. Both articles are planned submitted to international
academic journals.

This thesis is split in three main parts. Chapters 2-5 serve as background and ad-
ditional notes to the articles. Here, theory on the hydropower industry, alternative
solution methods, LDR, and theoretical upper bounds is presented. The purpose
is to provide some context to readers who are not already familiar with the topics
discussed in the articles.

In Article 1 [10], an LDR model is derived from a deterministic seasonal hy-
dropower scheduling model. The intention is to introduce the topic for practi-
tioners of hydropower planning. In the scope of this thesis, the paper functions
as an explanation of the transformations done to obtain an LDR model for the
seasonal hydropower scheduling problem.

Article 2 [9] presents further analysis on the model. Here, the LDR model is
benchmarked against an implementation of RI, and bounds for the optimality
gap are presented. Additionally, implementation details regarding the important
hydropower specific details are outlined and explained, before the findings are
discussed.

Last, in Section 6, our conclusions from Article 1 and Article 2 are summarized,
and the reasearch questions are answered.

It should be noted that several stretches in this thesis are similar, as the articles
are written to be able to be read independently. This means that some theory and
introductory material needs to be presented multiple times.
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2 Hydropower scheduling

This chapter serves as a brief introduction to the hydropower industry. Key figures
are given, and main characteristics of hydropower scheduling are presented.

2.1 Overview

By building large, engineered dams, humans have added over half a million artificial
reservoirs to the world’s surface [15]. These reservoirs serve many purposes such as
flood control, drinking water supply, and low flow augmentation [48]. A fair share
is also used for electricity generation. Globally, more than 50 000 hydropower
installations have been built, although most of them are rather small. Worldwide,
there are around 1000 power plants with a capacity of more than 100MW, and a
comprehensive list can be found in [19]. The utilization of hydropower resources is
not evenly divided between countries, for instance one third of the power stations
larger than 2000MW are situated in China. An overview of the relative shares of
hydropower generation by country is given in Figure 1.

Since 1990, global hydropower generation has increased by about 50%, to 3288TWh
(2008) [28], see Figure 2. Hydropower is the leading renewable energy source, with
new capacity additions since 2005 generating more electricity than all other re-
newables combined. This growth is expected to continue as demand for clean,
economically viable energy increases [27], also increasing the demand for decision
support in the industry.

4



Others

30%

China

18%

Canada
12%

Brazil

11%

United States

9%

Russia

5%
Norway

4%
India

3% Venezuela
3% Japan
3% Sweden
2%

Figure 1: Shares in hydropower generation 2008 [28]
.

500

1000

1500

2000

2500

3000

1992 1996 2000 2004 2008

500

1000

1500

2000

2500

3000

Year

G
en
er
at
io
n
[T
W

h
]

Total
USA
Brazil
Canada
China

Figure 2: Development of global hydropower generation, 1990-2008, [28].

Although the global generation of hydropower grows each year due to the building
of new capacity, there can be significant variations in a single water system’s
annual power output. This can also be observed on a national level. For instance,
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the annual hydropower generation in Norway has had a standard deviation of
11.7TWh from a mean of 126.8TWh since 2000 [50]. New types of reservoir
management may help reduce the deviation between years, if the risk of spill and
emptying is handled and mitigated in a better way.

2.2 Hydropower planning problem

A typical installation is a system with three parts: an electric plant where the
electricity is generated, a dam that can be opened or closed to control water flow,
and a reservoir where water can be stored. The water behind the dam flows
through an intake and pushes against blades in a turbine, causing them to turn.
The turbine spins a generator to create electricity. Then water exits through a
draft tube to a lower-elevated reservoir.

This report considers the problem a price-taking hydroelectric power producer
faces when deciding a seasonal production plan in a deregulated market setting.
The aim is, given a forecast of future spot prices and inflow, to decide the genera-
tion strategy in order to maximize profits. More specifically, the strategy consists
of deciding how much water to save, discharge and pump in every reservoir for all
time periods in the planning horizon, all relevant constraints taken into account.

2.3 Scheduling hierarchy

Seasonal planning is just one of many challenges for a hydropower producer. Ex-
amples include investment decisions, reservoir management, risk management, and
short term bidding decisions. The ideal solution to face all of these issues, would
be one single optimization process that took all future effects of a decision into ac-
count [14]. However, due to the complexity and size of such a model, hydropower
decision making is usually split into several parts with different degree of detail
and different scheduling horizon; long term planning, and seasonal and short term
scheduling [57]. Long term planning models focus on investments and typically
have a 15–20 year horizon, while seasonal term planning deals with reservoir man-
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agement with a horizon of up to five years [51]. Short term planning typically
deals with decisions with horizons of one week or shorter, such as making genera-
tion plans to meet obligations, known as the unit commitment problem [57].

To utilize results across different scheduling horizons, it is necessary to couple
the long-, medium-, and short term models. Several principles can be used, for
example coupling through price or volume, or by penalty functions [14]. Volume
coupling means that the longer term model specifies a target reservoir volume, and
the shorter term model schedules optimally to achieve this. Penalty functions can
be included to allow some deviation from the specified volume. Price coupling is
most common due to its flexibility, given that it is possible to obtain a correct
valuation of the water stored in a reservoir. Using this principle, the longer term
model supplies a valuation function for keeping water in the reservoirs, leaving it
to the shorter term model to decide whether it is more valuable to discharge it
now. Commercial seasonal models such as Vansimtap and Prodrisk use this type
of coupling [17], by outputting water values to the short term optimization.

2.4 Water Values

The water value is defined as the expected future marginal value of stored water
in a reservoir [58]. The water value will increase with decreasing reservoir level,
and vice versa. This is intuitive, as extra water is increasingly important when the
water gets more scarce, reducing the flexibility of the planner.

2.5 Energy coefficient

The energy coefficient measures the amount of energy generated in a power plant
per unit water. In hydropower generation it is defined as:

E(h) =
1

3.6 · 106
ηρgh [kWh/m3].

7



Here, η is the power plant’s efficiency, ρ is the water density [ kg
m3 ], and g is the

gravitational constant [m
s2

]. Importantly, h is the fall height of the water, known
as the plant’s head [m] (see Section 2.6).

The efficiency of a plant’s turbine and generator is typically dependent on the
throughput of water. At optimal conditions, a plant can usually make use of over
90% of the potential energy in the water [54]

In a typical power plant, the energy coefficent is considered to have a non-negative
value. For pumping stations, however, energy is consumed in order to move water
to another reservoir, hence the pumping coefficients at these stations are strictly
negative. For pumped-storage facilities, logically, the pumping coefficient is of
greater magnitude than the corresponding energy coefficient.

2.6 Head Effects

Head, hr, is considered to be the difference in elevation between the preceding
reservoir’s level and where the water ends up after passing through the turbine.
This is either the succeeding reservoir level, or where r’s power station releases the
water to a river or the ocean. The latter is called r’s tailwater level. Mathemati-
cally, the head level is given by

hr = zr −max{zSr , z
TW
r }

Here zr and zSr are the reservoir levels in meters above sea level, while zTWr is the
tailwater level.

This means that deciding between discharging or keeping water affects the head
levels that can be utilized in power generation. Taking head effects into account
might alter the optimal plan, since it gives the model an incentive to keep the
reservoir level high. A higher head increases the energy coefficient, and makes it
possible to generate more energy from the same amount of water.

Consider the simplified situation first presented in [52]. Here, the reservoir is
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initially full and should be emptied within a given period, during which inflow is
known and low relative to the generation limit, and electricity prices are constant1.
The optimal strategy will then be to only discharge the inflow, and thus keep the
energy coefficient as high as possible, until the point where the producer has to
drain more water to empty the reservoir in time. Looking at Figure 3b, we can
conclude that the production plan to the right will generate more power than
the left one, because the average energy coefficient is higher. A model that does
not consider head effects, however, will treat the two plans as equivalent, and
potentially deliver suboptimal results.

time

M
m

3
,m

3
/s

Reservoir level
Discharge

(a) Generation plan and reservoir
trajectories without head effects

time

M
m

3
,m

3
/s

(b) Generation plan and reservoir
trajectories with head effects

Figure 3: How including head effects can alter optimal production, as seen in [52]

2.7 Degree of flexibility

The term flexibility in this context refers to the ability to allocate water resources
to certain time periods in order to maximize profit [13]. The producer’s flexibility
in choosing the optimal strategy depends on the generation capacity of the power
stations, the size of the reservoirs, the amount and distribution of inflow, and
judicial regulations on reservoir level and waterway flow.

Hydropower installations are normally categorized within two different types; ”run
of river” and ”reservoir” [42]. A “Run of river”-installation has a small or nonexis-

1A scenario that is not necessarily very different from a regular winter season for many
reservoirs.
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tent forebay, and its operation is solely determined by the rate of instream flow,
hence discharge for generation cannot be adjusted to changes in price and in-
flow [29]. It is characterized by relatively high flow volumes and low degree of
control on power output.

On the other end we have reservoir-installations which can save water for later
use. Pumped-storage hydroelectricity can further increase flexibility by moving
water from a reservoir at lower elevation, to a reservoir at high elevation during
low-cost, off-peak hours. Restrictions on maximum and minimum generation and
bypass, as well as time varying reservoir limits periodic maintenance, will on the
other hand reduce the flexibility of a hydropower plant.

Various factors can be used to measure an installation’s flexibility, among them
the degree of regulation (DoR).

DoR is defined as the reservoir volume divided by the average annual inflow. It
describes the number of years it takes to fill the reservoir given average annual
inflow and no generation, and can be used as a tool when determining the schedule
horizon. High DoR means the reservoir takes a long time to fill up, and a longer
scheduling horizon should be considered.

The largest reservoirs have DoRs in the range 2-3 [32]. Seasonal variations in
inflow will then have limited effect on the discharge decision, making a seasonal
model less useful. The same conclusion can be drawn for run-of-rivers installations.
Since water cannot be stored, there are no decisions to be made. Between these
two extremes, hydropower installations face both uncertainty and flexibility, so
reservoir management is important.
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3 Competing methods

Operations research has been used in hydropower planning for half a century [49].
During this time, many solution methods have been developed, some of them
very successful. In this chapter we present these alternatives to LDR, to give the
reader a sense of each method’s benefits and drawbacks. The method we test our
computational results against, RI, is presented in detail in Article 2.

3.1 Stochastic dynamic programming

Dynamic programming (DP) is a solution method where the initial problem is
broken down into simpler subproblems [2]. Each of them is solved, before they
are combined to reach a final solution. In the context of hydropower generation
planning, an optimal seasonal plan can, at least in theory, be constructed by
solving weekly scheduling subproblems. This is done by iterating over possible
states in each stage. In this context, a state should include information about
reservoir levels, prices and inflow. In each state, a number of actions are possible,
each associated with a payoff in the current stage, and a transition to a new state
in the next stage. A typical example would be a weekly production plan. The
plan includes discharging water for generation of energy, which has an immediate
payoff. At the same time, this discharge of water changes the reservoir levels, and
thus defines a transition to a different state.

Then, the objective is to find the action that maximizes the sum of earnings in
this stage, and future earnings in the resulting state. By starting at the last stage,
working backwards, and recording the value of each state in each stage, a recursive
solution can be found. To find the best action in a given state and stage, the future
value of each potential resulting state is simply looked up in a table, as the next
stage is already solved. Then this value is added to the payoff of the action in this
stage. From this sum, the best action is found, and the best result is stored, so
the next iteration can look it up.

Stochastic dynamic programming (SDP) differs from traditional DP in that the
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Figure 4: Basic structure of stochastic DP, figure collected from [26]

outcome of each stage is not completely determined by the state and action of the
current stage. Rather, the contribution Ci and resulting stage i′ is also dependent
on a known probability distribution [62], as seen in Figure 4. For example, the
weekly plan discussed above does not deterministically lead to a certain state in
the next stage. To tell the reservoir levels with certainty, the realization of the
uncertain inflow is also necessary.

Formally, let sn be the current state where decision xn is made. The probability
of the system then going to state i is pi, and the contribution to the objective in
that case is Ci. The goal of each subproblem is to make decisions that maximize
the expected sum of contributions from stage n and onwards, yielding the profit
to go function [26]:

fn(sn, xn) =
S∑

i=1

pi[Ci + f ∗n+1(i)],

where S is the number of possible states, and with

f ∗n+1(i) = max
xn+1

fn+1(i, xn+1),

for all feasible values of the next decision, xn+1. The main drawback of SDP is the
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computational intractability that occurs when the number of dimensions grows.
As one might imagine, the number of possible states grows rapidly in this case,
often called the curse of dimensionality. An SDP that checks every possible state,
quickly becomes too complex to solve. In resolving this issue, a series of good
techniques have been discovered, such as state aggregation [1], and approximate
dynamic programming [31]. These make SDP a feasible alternative, that still
thrives in the field of reservoir management [53]. Additionally, this research has
resulted in an alternative approach, stochastic dual dynamic programming (SDDP).

3.2 Stochastic dual dynamic programming

The main contribution of SDDP is to remove the need to explore all possible states
[38]. Instead of looking up solutions in every possible next stage, the algorithm
collects dual variables from the solutions at some possible states in the next stage.
Which states to solve is decided by sampling scenarios [29], and each set of dual
variables contribute to an approximation function of the future value. This way,
the number of states to solve in each stage can be drastically reduced, effectively
counteracting the curse of dimensionality. For each state ik that is solved in stage
n+1, the dual variables are used to generate a cut κk(i) (see Figure 5) in a piecewise
linear approximation f̂ ∗n+1(i) of the future value. With this approximation, there
is no need to discretize the state space, which results in reduced computational
complexity.

Since the total future earnings as a function of reservoir levels can be closely
approximated by a piecewise linear function, SDDP has delivered good results and
become very popular within reservoir management [39]. Here, the cuts have a
fairly natural interpretation. In each solved state ik, let αrk be the dual variable
associated with the reservoir balance equation for reservoir r. Then, αrk can be
seen as the additional value of one unit of water in r. Now, if Rk is the total
future value at state ik, and m̂rk the optimal reservoir levels, total future value, as
a function of state i, can be approximated by the cut (remember that the state i
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contains the reservoir levels mr):

f̂ ∗n+1(i) ≤ κk(i) = Rk +
∑

r

αrk(mr − m̂rk), ∀ik.

κ1(i)

κ3(i)

κ2(i)

i

f̂ ∗n+1(i)

Figure 5: In SDDP, the future value is approximated by cuts calculated at sampled
states.

These types of cuts are very commonly in use when describing the water value we
discussed earlier.

The main critique against SDDP, and the reason our comparison is against RI,
is that SDDP struggles with jointly stochastic price and inflow. This is because
letting both of these parameters be stochastic may destroy the convexity (or con-
cavity) of the objective functions, making the cutting plane approach infeasible.
Some authors have circumvented this problem by assuming price and inflow to
be independent parameters. An example with discrete price levels in a combined
SDP/SDDP model is presented in [18], but a significant layer of complexity is still
added.
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3.3 Scenario-based methods

Even though the SDP and SDDP formulations have been the most successful
methods for solving the hydropower scheduling commercially, other approaches
have also been studied in the literature [8, 29]. The most important of these ap-
proaches is perhaps traditional multistage stochastic programming based on sce-
nario generation [33]. Here, given a set of scenarios with associated probabilities, a
deterministic equivalent model can be built [45]. In this, each scenario has its own
recourse variables, representing decisions that would be made, given that the sce-
nario was realized [25]. For each scenario, all constraints must be restated in terms
of the associated recourse variables, to ensure they hold no matter the realized sce-
nario [46]. Then, each scenario will give rise to a certain objective value, and the
overall objective function can be defined as the average of these. Variations exist,
where the objective function is the worst case [3] earnings, or the constraints only
need to hold with a certain probability [5], but the core idea remains.

The primary advantage of scenario-based stochastic programming over the other
mentioned approaches, is the flexibility it offers in modelling and defining scenar-
ios, particularly if the state dimension is high [60]. Further, it is natural to base
stochastic programming on linear or mixed integer programming, which means
that many well-studied and standard techniques are available, like Lagrange re-
laxation [36], Benders decomposition [47], and Dantzig-Wolfe reformulation [35].
Still, the formulation often results in very large models, requiring special solution
algorithms.
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4 Linear decision rules

Linear decision rules are the main focus of this thesis. They provide a tractable
approximation of a stochastic optimization problem [4]. Contrasted to scenario
based models, LDR do not require the distributions of the uncertain parameters or
state discretization. However, it reduces flexibility, and this may result in a larger
optimality gap. This chapter sets the stage for the transformation in Article 1 by
describing robust optimization and briefly introducing LDR as affine reactions to
uncertainty.

4.1 Robust Optimization

In robust optimization the decision-maker is seeking to construct a solution that
is feasible for any realization of the uncertainty. It is a field of growing interest
and importance, and has mainly been developed in the last 15 years [20].

Given that the objective or one or more restrictions depend on a random vector
δ drawn from an set U of possible values, a robust problem can be expressed as a
stochastic program [4]

{
min
x∈R

c(δ)>x s.t. A(δ)x ≥ b(δ)

}

δ∈U
. (SP)

Here, U can be thought of as the set of possible realizations of δ, and a certain
realization of δ as a scenario. In the decision rule approach, the decision variables
are functions x(δ) of the uncertainty, often called decision rules or reactions. Sets
of such reaction functions are called policies, as they allow a coherent mapping
from any realization of uncertainty, to appropriate decisions. Now, the problem is
transformed to a search through the space F of possible functions, in order to find
the set of decision rules that perform best under the uncertainty of the problem:

{
min
x(·)∈F

EU
[
c>x(δ)

]
s.t. A(δ)x(δ) ≥ b(δ), δ ∈ U

}
. (DR)
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As noted in [16], such a search can be very difficult, as the formulation is #P-
hard, i.e. harder than any NP-hard problem [55]. This leaves the problem severely
computationally intractable for realistic sizes, so in order to be able to efficiently
find solutions, some simplifications or restrictions are needed.

4.2 Affine Reaction Functions

Only looking at linear reactions is one such simplification, suggested by multiple
authors [4, 12]. This results in affine reaction functions, consisting of a fixed in-
tercept, and a linear reaction to the uncertainty. We call such functions linear
decision rules, and they greatly simplify our search space. Letting x̂ denote the
intercepts, and Kx be the matrix of slopes on δ, we can now write

x(δ) = x̂ +Kxδ,

or equivalently
xj(δ) = x̂j +

∑

i

Kx
ijδi, ∀j.

Here, i is the index of an element in δ, and j the index of a variable. With
this reformulation, (DR) can be made computationally tractable by a transfor-
mation procedure. This procedure is closely described in Article 1, and results
in a purely linear program if some conditions are met. First, the uncertainty set
should be polyhedral, i.e. bounded by linear constraints and thus on the form
U = { δ : H δ ≤ h }. Second, the problem should have a fixed recourse,
which means that the constraint matrix A should not depend on δ. Third, the
right hand side should be affine in δ, so b(δ) = b̂+Mδ.
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The seasonal hydropower planning problem is presented as a robust optimization model using linear decision
rules (LDR). Uncertainty is present in multiple inflow series and the price of electricity. The objective is to
generate weekly policies that maximize profit. The LDR approximation is effective at reducing computational
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1. Introduction

This paper uses linear decision rules (LDR) to develop a robust seasonal planning model for hydropower
scheduling. Hydropower is the world’s leading renewable energy source with nearly 3500 TW h
generated in 2010, thereby accounting for 16 % of the electricity generation [1].
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Nomenclature

Indices

t, τ time

r, ρ reservoir

d decision type

j uncertainty polytope constraint

v inflow series

u general uncertainty series

Sets

T time periods

R reservoirs

D decision types

Cd
r connected reservoirs in reservoir r for decision type d

U uncertainty series

Md
t time periods whose uncertain parameters influence decision d at time t

Parameters

Frt natural inflow to reservoir r at time t [Mm3]

πt power price at time t [AC/MW h]

T H ,T S number of hours in week and million seconds in time period, respectively

βt discount factor at time t

Ed
rt, (Ē

d
r ) energy coefficient (at reference head) for decision d in reservoir r at time t [MJ/m3]

Ud
rt, L

d
rt upper/lower bound for decision d for reservoir r at time t

Mrt,Mrt,M
0
r upper limit/lower limit/initial volume for reservoir r at

time t [Mm3]

Drt,Drt upper/lower discharge limit for reservoir r at time t [m3/s]

CB
rt minimum bypass from reservoir r at time t [m3/s]

FV
rtτ,Πtτ mapping from the uncertainty in τ into the realization of inflow/price at time t in

reservoir r [Mm3]

Variables

xd
rt decision of type d for reservoir r at time t [m3/s]

mrt level in reservoir r at the end of time t [Mm3]

x̂d
rt LDR intercept of decision d for reservoir r at time t [m3/s]

Kd
rtuτ LDR slope of decision d, for reservoir r at time t for the realization

of uncertainty u at τ [m3/s]

µbd
rt j dual variables associated with the j-th constraint of the uncertainty polytope of

decision d for r at t, b being either upper (U) or lower (L) primal bound
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It is expected to increase by 3.1 % annually for the next 25 years [2]. In order to meet this demand and
maximize benefit, developing well-grounded generation strategies is highly relevant for production
planners.

A hydropower producer is typically faced with the problem of deciding when to discharge water from
their reservoirs. Discharging water for generation leads to profits right now, while saving water in the
reservoir enables you to get higher head levels and sell more electricity later on, at potentially higher
prices. This scheduling problem is usually adressed with a hierarchy of short-term and longer-term
models [3–5]. A longer-term model, for instance a seasonal planning model, can be used to produce
estimated water values for the short-term model.

Additionally, a seasonal planning model could create policies that serve several purposes. Within
accounting, the policies can be used for budgeting future revenues, while in risk management the
policies are valuable when measuring the overall exposure, for instance the amount of possible
future generation that is price-dependent for different seasons [6]. For risk managers who want to
evaluate future generation in their own price scenarios, price-dependent policies are preferable to
state-contingent plans that are made according to other, potentially incompatible, scenarios.

It might be challenging to find policies for optimal reservoir operations, due to tight operational
constraints, a complex dynamic system of interconnected reservoirs, and power output being a non-linear
and non-convex function of head and water discharge [7]. Uncertain future price and inflow levels
complicate matters further. Such a problem translates well into robust mathematical optimization.
The main complications lie in ensuring sufficient water levels without having to unnecessarily spill
water in high inflow scenarios.

Many existing approaches for solving the seasonal planning problem rely on stochastic dynamic
programming (SDP) or stochastic dual dynamic programming (SDDP). Both of these methods have
been very successful in this industry, but neither is without fault. SDP requires discretization of the
state space, leading to an exponential increase of the computational effort with the number of state
variables [8]. SDDP, on the other hand, cannot easily handle jointly stochastic inflow and price, since
it can lead to objective functions that are neither convex nor concave [9]. Still, these are the standard
solution approaches today, and routinely deliver good results.

LDR offer a way to take several types of uncertainties into account in recourse decisions, without
resorting to discretization of possible outcomes. This is achieved by letting the recourse actions
be functions of the uncertain parameters. A set of such reaction functions can be seen as a policy,
i.e. a coherent mapping from any realization of uncertainty to a proper recourse action. In order
to efficiently find good solutions, the search is restricted to affine functions. As will be seen, this
approximation reduces to an, admittedly large, purely linear program.

In recent years, several other papers regarding LDR in hydropower planning have been published.
An iterative procedure that can handle non-linear value functions is presented in [10], while [11,12]
do analysis on the optimality gap, applying LDR to both the primal and the dual of the seasonal
hydropower planning problem.

This paper is intended as an introductory guide to understanding, modelling and implementing LDR
in practice, specifically in the context of hydropower scheduling. It presents a new approach to
LDR in reservoir management, with zero-mean forecast errors as uncertainty parameters, and slopes
on multiple uncertainty types. Additionally, it discusses issues related to limited dependencies on
uncertainty parameters more thouroughly than earlier literature. These contributions to the field
will be shown to give compact models that return sensible schedules, and intuitively understandable
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policies.

The rest of this paper is organized as follows. First, the hydropower planning problem is introduced
and formulated as a deterministic linear program in Section 2. A description of the uncertainty is
given in Section 3, before the reformulation into an LDR model is done in Section 4. An illustrative
example is presented in Section 5. Finally, concluding remarks are given in Section 6.

2. Problem formulation

The problem at hand involves optimally deciding a seasonal production plan. Given a forecast for
weekly prices and inflow, the aim is to maximize profit. Specifically, discharge for generation, xq

rt,
pumping, xp

rt, and spill, xs
rt should be decided for all reservoirs r at all times t. For simplicity of

notation, the three types of decisions constitute the decision set D = {q, p, s}. From these decisions,
the reservoir levels mrt are deduced. All the variables need to be within certain bounds, that may
be time dependent. Pumping, reservoir level and generation have upper and lower limits, while spill
only needs to be non-negative. Additionally, reservoirs have limits on total discharge, i.e. water for
generation together with water that bypass the connected power station.

max T H
∑

t∈T
βtπt

∑

r∈R

∑

d∈D
Ed

rt x
d
rt (1)

s.t. mr0 = M0
r r ∈ R (2)

mrt = mr(t-1) + Frt + T S
∑

d∈D



∑

ρ∈Cd
r

xd
ρt − xd

rt


r ∈ R, t ∈ T (3)

Mrt ≤ mrt ≤ Mrt r ∈ R, t ∈ T (4)

Lq
rt ≤ Eq

rt x
q
rt ≤ Uq

rt r ∈ R, t ∈ T (5)

Lp
rt ≤ Ep

rt x
p
rt ≤ U p

rt r ∈ R, t ∈ T (6)

Drt ≤ xq
rt + CB

rt ≤ Drt r ∈ R, t ∈ T (7)

xs
rt ≥ 0 r ∈ R, t ∈ T (8)

All reservoirs are considered to have a power station immediately downstream, either real, or a
dummy station without generation capabilities if the reservoir discharges directly to another reservoir.
Power stations can therefore be omitted from the model formulation, as seen in the simplified topology
in Fig. 1. The objective function (1) maximizes the present value of the difference between revenues
and costs for all decision types. Here, prices are given per MW h, while decisions are in m3/s. Thus,
energy coefficients Ed are needed to convert volumetric sizes to power levels, and the number of hours
in a time period, T H , is used to get the total energy level. The energy coefficients are defined such that
generation produces, pumping costs, and spill neither produces nor costs electricity. Equalities (2)
and (3) ensure that the reservoir balance starts at its initial level and is updated between time periods.
The reservoir level in one period depends on the previous level and the natural inflow, as well as the
decisions made both in connected upstream reservoirs, Cd

r , and in the current reservoir. Constraints
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Fig. 1: An illustration of some of the variables used in the formulation.

(4)-(8) impose upper and lower bounds on reservoir level, generation, pumping, discharge, and spill,
respectively. Pumping and generation limits are given in MW, so energy coefficients are also needed
in the generation constraints (5) and pumping constraints (6). Notably, pumping is considered to be
decided at the upstream reservoir, and can simply be seen as negative generation at a different energy
coefficient. Thus, inequalities (6) typically have an upper bound of zero and always a non-positive
lower bound. Since reservoir levels and natural inflows are given in Mm3, the decisions that are given
in m3/s need to be multiplied by the length of a time period. Constraints (7) are the total discharge
limits, so here bypass (CB

rt) is considered in addition to the water for generation.

Some details are omitted due to the weekly time resolution. Omitted restrictions include ramping
constraints, variable efficiency, costs related to start and shutdown of operations, and time delay for
water travelling between reservoirs. Furthermore, the discount rate is assumed deterministic. Water
may be spilled at unlimited rates, and all spill is assumed to end up at its intended target, be that
another reservoir, or the ocean. Lastly, bypass is assumed fixed at its lower bound.

3. Introducing uncertainty

The deterministic model assumes future inflow and price to be known with certainty. In reality,
however, it is rare that forecasts are accurate beyond the very close future. Regulations and capacities,
on the other hand, are certain, and need to be respected regardless of the realized inflow or price.

Therefore, (1)-(8) should be defined to hold for any possible realization of inflow and price. This
can be done by considering some discrete set of possible scenarios, and for each of them ensure
that every constraint holds [4]. Scenarios can be predefined like in classical stochastic programming
or SDP, but in the context of hydropower scheduling, in-run simulations, e.g. in SDDP, are more
common. However, such scenarios only cover a subset of the actual continuous possibility space, and
extrapolation is needed when faced with other scenarios.
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Based on the research in [13,14], the LDR approach has emerged as an alternative. Here, the
proposition is that each recourse decision in a stage needs only one, function valued, solution.

To understand this, consider representing scenarios as points in a cartesian space. For instance, in
one scenario the price could be π = 15 AC/MW h, and the inflow F = 12 Mm3, represented as the
point (15, 12) in the plane. Now, all possible scenarios together form the uncertainty set, see Fig. 2.
In principle, this subspace can take any shape or form, but one natural modelling choice is a polytope
[15]. This general shape has the properties of being simply connected, convex, and easily described
by linear constraints on the parameters.

π

F

(15, 12)

Possible scenarios

Fig. 2: Realization of possible scenario (15,12)
in uncertainty set

Then, the idea of decision rules can be seen as replacing decision variables xδ′ for a number of
selected scenarios δ′ ∈ U, with a function X : U → R. An illustration of this is given in Fig. 3. Here,
X can be seen as a policy, while the actual decision in any given scenario is found by evaluating the
function at the corresponding point X(δ′).

δ1
δ2

x

δ1
δ2

(a) Scenario based model

δ1
δ2

x

(b) LDR approximation

Fig. 3: Illustrations, adapted from [14], of feasible regions and decisions in scenario based models and LDR
approximation. LDR restrict the decisions to lie on a hyperplane imposed by the uncertain parameters.

Allowing X to take any functional form makes it very difficult to find the optimal functions [16].
However, by restricting the search space to functions that are affine with respect to δ, significant
performance gains can be achieved [13,14].

To bring this back to the context of the model presented in Section 2, consider how the uncertainty
parameters δ and the uncertainty setU are defined. The realized inflow and price could be described
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by

Frt = F̂rt +
∑

τ∈T
FV

rtτδV(r)τ r ∈ R, t ∈ T (9)

πt = π̂t +
∑

τ∈T
ΠtτδPτ r ∈ R, t ∈ T . (10)

In these definitions, F denote inflow, and π price, while F̂ and π̂ denote their respective forecasted
values. Every reservoir r belongs to an inflow series V(r) = v ∈ V, where reservoirs in the same
series face similar uncertainty, because as seen in (9), the same parameters δv decide their deviations.
Additionally, there is the series, P, of parameters, δP, corresponding to the price. In total, these give
rise to the set of uncertainty series U = V ∪ {P}.

Each uncertainty series u ∈ U has its corresponding vector δu of uncertain parameters, with one
element for each time period. The matrices containing FV

rtτ and Πtτ represent the mapping from the
uncertainty parameters δ to the actual deviation from forecasted price and inflow. While complex
relationships between periods can be modelled through these matrices, letting them be diagonal gives
rise to some attractive simplifications. That is, for each time period t, FV

rtτ is only non-zero when t = τ,
so natural inflow in period t only depends on the δ of period t. This gives δvt a natural interpretation,
as the normalized deviation from the forecasted inflow during period t at reservoirs in inflow series v.
With non-diagonal mapping matrices, it might be difficult to find the proper dependencies between
time periods in historical data, and estimate historical values of δ.

The uncertainty set considered in this paper is a polytope, described by constraints on the form

−1 ≤ δut ≤ 1 u ∈ U, t ∈ T (11)

−ΓL
i ≤

∑

t∈T
δut ≤ ΓU

i u ∈ U, (12)

as illustrated in Fig. 4. The uncertain parameters δuτ are normalized deviations from the forecast, so
Eqs. (11) and (12) define how much any scenario can deviate from the expected case represented
by (0,0). Individual parameters are bounded by [-1,1], and the cumulative normalized deviation is
limited by the parameter Γ. In the remainder of the paper, the uncertainty set will be denoted by the
shorthandU = {δ | Hδ ≤ h}.

δ1

δ2

Fig. 4: Uncertainty polytope as described by (11) and (12)
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4. Linear decision rules and reformulation

Understanding the parameters δ, decisions of how much to discharge, pump and spill at reservoir r at
time t can now be defined as affine functions. As an example, the amount of discharge for generation
becomes

xq
rt = x̂q

rt +
∑

u∈U

∑

τ∈Mu
t

Kq
rtuτδuτ. (13)

Here, the intercept x̂q
rt and slopes Kq

rtτυ uniquely define the function, as long as the uncertainty
parameters are linearly independent [17]. The intercepts represent scheduled values, while the slopes
represent the real-time adjustments. Note that these adjustments depend on the realizations of the
uncertain parameter δuτ for all time periods τ in the memory setMu

t .

The memory set contains the periods a decision is dependent on, and can include all or some of the
previous time periods, but never future ones. Allowing the LDR to depend on only a subset of the
uncertain parameters will speed up computation, but reduce the flexibility of decisions. Some ways
to reduce the size of the memory set include limiting the number of periods the decision can look
backwards, and neglecting the uncertainty in time periods where the reservoir level typically is well
within its upper and lower limits. Similarly, one could restrict what uncertainty series a variable
is allowed to depend on, but in the following, it is assumed that every decision depends on every
uncertainty series.

Now, a reformulation of the deterministic model to a robust optimization problem with LDR is
described, following the setup in [18]. The aim is to show how a purely linear model can be used
to find the intercepts and slopes as decision variables, and thus identify the optimal affine reactions.
First, the inequalities for discharge, pumping and spill are converted, before the reservoir volume
inequalities and the objective are transformed.

4.1. General inequalities

Consider inequality (5) rewritten with the function valued variable for generation,

x̂q
rt +

∑

u∈U

∑

τ∈Mu
t

Kq
rtτuδuτ ≤ Uq

rt

Eq
rt
, r ∈ R, t ∈ T , δ ∈ U. (14)

Rewriting (1)-(8) this way would yield an LP where the intercepts and slopes are the decision
variables, so the function valued search is reduced to an LP. However, since there should be one such
constraint for each point in U, and there are uncountably many points in a polytope, the problem
will still be impossible to solve. As noted in [18], this problem can be circumvented, because only
constraints describing the worst case is really needed. It is not trivial, though, to tell which constraint
will be the strictest. To this end, the shape of the uncertainty set can be utilized. As a polytope defined
by Hδ ≤ h, it can be used as the feasible region for a linear program determining the parameter values
maximizing the LHS.

max
δ



∑

u∈U

∑

τ∈Mu
t

Kq
rtτυδuτ

s.t.
∑

u∈U

∑

τ∈T
H juτδuτ ≤ h j, ∀ j : µUq

rt j


≤ Uq

rt

Eq
rt
− x̂q

rt r ∈ R, t ∈ T (15)
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This formulation of the constraints is equivalent with (14), but has finite cardinality. However, it is
not linear as both the slopes and the uncertainties are decision variables in the objective. To regain a
completely linear structure, LP duality theory [19] can be exploited to unlink the different variables K
and δ (Note the dual variables in gray with their corresponding constraint). An equivalent formulation
to (15) is

min
µUq



∑

j

h jµ
Uq
rt j

s.t.
∑

j

H juτµ
Uq
rt j = Kq

rtτυ, u ∈ U, τ ∈ Mu
t : δuτ

∑

j

H juτµ
Uq
rt j = 0, u ∈ U, τ <Mu

t : δuτ

µ
Uq
rt j ≥ 0, ∀ j



≤ Uq
rt

Eq
rt
− x̂q

rt r ∈ R, t ∈ T . (16)

Here, the equalities come from the fact that the δ-variables are free. Now, this formulation only
requires that

∑
j h jµ

Uq
rt j ≤ Uq

rt
Eq

rt
− x̂q

rt for some set of µUq. That is, the set of constraints that needed to
hold true for all realizations is replaced with a set of constraints that only need to be satisfied once.
Thus, the original (14) holds whenever the following set of constraints have a solution:

∑

j

h jµ
Uq
rt j ≤ Uq

rt

Eq
rt
− x̂q

rt, r ∈ R, t ∈ T (17)

∑

j

H juτµ
Uq
rt j = Kq

rtτυ, r ∈ R, t ∈ T , u ∈ U, τ ∈ Mu
t (18a)

∑

j

H juτµ
Uq
rt j = 0, r ∈ R, t ∈ T , u ∈ U, τ <Mu

t (18b)

µ
Uq
rt j ≥ 0, r ∈ R, t ∈ T , j. (19)

Similar transformations can be carried out for all the original constraints, to formulate a robust linear
program in which (4)-(8) holds for any realization of the uncertainty. Further examples are omitted
here for brevity, as the transformations are very similar to the one shown above. However, there are
some subtleties to be noted.

First, constraints (18) are defined for every combination (u, τ), even if the decision in question does
not depend on δuτ. This simply means that δuτ has objective coefficient 0 in the primal in (15), but
the variable is still present in the constraints below. Thus, the corresponding dual constraint (18b)
should have a right hand side of 0. Second, completely analogous transformations could be done to
≥-restrictions. But here, the left hand side becomes a minimization problem in the primal space, so
the restrictions Hδ ≤ h are non-standard and give rise to non-positive dual variables [19]. Third,
equality constraints can be handled in a simpler way, see [18].

4.2. Reservoir volumes

The reservoir volumes mrt are not decisions themselves, but merely consequenses of all previous
discharge, pumping and spill decisions, which again depend on all previous realizations of uncertainty.
This makes limited memory (|Mu

t | < t) impossible1. The idea is that the reservoir balance is simply

1 Similarly, if restrictions are imposed on which uncertainty series decisions are allowed to depend on, these restrictions
cannot apply as strictly to the reservoir level. This is because the reservoir level is a consequence of decisions at upstream
reservoirs as well, and these can depend on other series.
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the initial level plus the sum of all natural inflows, adjusted for all decisions in the current and
connected reservoirs. A more detailed deduction is given in the appendix. Also note that the purpose
of stating Eqs.(2)-(3) in the deterministic model is for readability, and they can be substituted into
(4).

If the expressions of the linear decision rules for discharge, pumping and spill are inserted, then
(2)-(4) can be desribed by the following inequalities2,

Mrt ≤+

t∑

τ=1


F̂rτ +

∑

d∈D

[ ∑

ρ∈Cd
r

x̂d
ρτ − x̂d

rτ

]
+

∑

u∈U

( ∑

t∗≤t
τ∈Mu

t∗

∑

d∈D

[ ∑

ρ∈Cd
r

Kd
ρt∗uτ − Kd

rt∗uτ

]
+ IS

urFV
rτ

)
δuτ


(20)

+ M0
r ≤ Mrt,

and similar transformations as described in Section 4.1 can be made.

4.3. The objective function

At last, the definitions in (13) are employed on the objective function (1). Also inserting (10) yields

Eδ

T
H
∑

t∈T
βt

(
π̂t +

∑

τ∈Tt

ΠτδPτ

)∑

r∈R

∑

d∈D
Ed

(
x̂d

rt +
∑

u∈U

∑

τ∈Mu
t

Kd
rtuτδuτ

) . (21)

Exploiting that (21) is a linear expression and expanding the multiplication, it is possible to take
advantage of the facts that E[δut] = 0 and thus E[δPtδuτ] = Cov(δPt, δuτ), to get

∑

t∈T

∑

r∈R

∑

d∈D
T HβtEd

rt

π̂t x̂d
rt +

∑

u∈U

∑

τ∈Mu
t

ΠtKd
rtuτCov(δPt, δuτ)

 . (22)

This objective function contains two terms, the first one equivalent to the deterministic objective in
Section 2, while the second one accounts for the uncertainty. The price depends on ΠtδPt, and the
decisions depend on Kd

rtuτδuτ, so the expected value of their product is needed. This is exactly what
the covariance provides for zero-mean variables, so this term allows the objective function to take
into account both cross- and autocorrelations between the stochastic parameters.

5. Illustrative example

A two-reservoir system in cascade is considered with a 52-week planning horizon starting in January.
The larger reservoir upstream (M7) is connected to a pumped-storage facility, and has the highest
degree of regulation (DoR). The downstream reservoir (M6) can only generate power. M7 and M6
belong to different inflow series, denoted in this example by their respective reservoir names. The
capacities for storage and generation are listed in Table 1. As price and inflow forecasts, the mean
of 3000 scenarios is used. They are generated by a time series model, tuned to match data from a
sofisticated market model [20]. The time series formulation is similar to what is outlined in [21]. The
weekly standard deviation in inflow ranges from 40 % to 140 % of the forecasted value, averaging at

2 Here, binary parameters IS
ur are 1 if u is the inflow series reservoir r belongs to, i.e. u = V(r).
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78 %. The uncertainty polytope is also defined as the convex hull of these scenarios, so the problem
is feasible for each of them.

M7 M6

Res.vol. [Mm3] 300 100
Uq

rt [MW] 150 50
DoR 1.00 0.14

Table 1: Reservoir volume, maximum production capacity (Uq
rt) and degree of regulation (DoR).

Pumping capacity at M7 is equal to the generation capacity

The LDR formulated in Section 2 have been implemented and solved in IBM ILOG CPLEX Optimization
Studio 12.6.1.0 on a 64-bit Windows 7 Enterprise, Intelr CoreTMi7-3770 3.40 GHz, 16.0 GB RAM.
The formulations yield an LP of 131 021 rows, 295 128 columns, and a run time of 249 seconds.
The model is implemented with a full memory set, i.e. every previous time period is in the memory
of every decision. Additionally, every reservoir has a target volume of 66.8 % in week 52, a normal
reservoir level in this time period. The optimal policies are simulated on the 3000 scenarios. Percentiles
of the resulting reservoir trajectories are plotted in Fig. 5a and Fig. 5b.

As can be seen, the LDR yield rather similar trajectories regardless of the inflow and price development.
This is indicative of the model trying to counteract deviations. A natural conclusion is that it is easier
to find robust continuations if the reservoir level is known with some degree of certainty. In M7 a
gradual dispersal of scenarios can be seen, while in M6 the weeks 22-40 see the biggest spread of
trajectories. In weeks of greater uncertainty, such as the snow melting season around weeks 17 to
33, more variation in trajectories can be observed. Since M6 has the lowest DoR, it is intuitively the
reservoir most likely to spill. Considering this, it makes sense that M6 is drained first, resulting in a
rather sharp volume decrease in the initial weeks. Then, as M6 moves close to its lower bound, M7
is gradually emptied.
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Looking at the forecasted price in Fig. 6, it also seems logical that both reservoirs are emptied during
the inital high price, and then start filling up at the very low prices during summer. In summary, the
reservoir trajectories seem sensible.
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The next series of plots (Fig. 7-8) illustrate the slopes for discharge and pumping in every (t, τ)-combination
for all uncertainty series. They indicate the amount of adjustment of a decision, given the realization
of the price error, inflow error in M7 and inflow error in M6, respectively. The greater the magnitude
of coefficients, the more the realization of δuτ affects discharge and pumping in t. As one cannot react
to the realization of future uncertainty, no elements appear above the diagonals.

In general, the discharge adjustment decisions are positively dependent on both the price and inflow
deviation in the current time period. This means that if the realized price or inflow exceeds the
forecast, the discharge is adjusted upwards, generating more power. Intuitively, the strongest dependencies
are found in the reservoir’s own inflow series. Generation decisions at M7 (Fig. 7) depend only
on its own inflow series, while pumping decisions (Fig. 8) are entirely independent of both inflow
disturbances, only reacting to the price in the previous period. Here one must note that since pumping
is a negative variable, negative slopes imply an upward adjustment in pumping volume. Discharge
decisions at M6 (Fig. 9), on the other hand, depend mainly on inflow at its own reservoir, but also
on inflow to M7. These observations are reasonable, as M6 is the bottom reservoir, and its reservoir
level depends on decisions made at M7. M7 does not need to take M6 into account, and pumping is
used mainly as a financial opportunity, rather than as a tool to balance reservoir levels.

The possibility of reducing memory has been mentioned. Fig. 7-8 show that there are mainly two
periods where long memory matters. First, there are dependencies between decisions around week
30 and realizations of inflow disturbance for up to the 10 previous weeks. The second period is the
end of the scheduling horizon, where dependencies on many earlier periods are seen. Common for
both periods is a need for a specific reservoir level. Around week 30, the reservoirs are approaching
their maximum capacity, so accurate decisions keep the reservoirs from spilling. At the end, one aims
for the target volume. Keeping more water than the minimum requirement does not give any benefits,
but reduces the total generation, so here, higher accuracy pays off. It seems that the memory in the
other time periods can safely be reduced, without affecting the optimal objective value much.
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Fig. 7: Optimal slope matrix for discharge from the large upstream reservoir, Kq
M7tuτ

Fig. 8: Optimal slope matrix for pumping from the downstream to the upstream reservoir, K p
M7tuτ

Fig. 9: Optimal slope matrix for discharge from the smaller downstream reservoir, Kq
M6tuτ

6. Concluding remarks

In this work, the seasonal planning problem for a hydropower producer is considered. Decisions
regarding the amount to discharge for generation, pumping and spillage are made in the face of
uncertainty in inflow and price. A robust optimization model using LDR is proposed. Here, recourse
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decisions are decided by affine functions of the stochastic disturbances, rendering a tractable pure
LP-formulation.

Results from an illustrative example provide credible decisions and reservoir trajectories. The obtained
policies are robust with respect to deviations in inflow and price, and the level of discharge is
positively dependent on the inflow and price disturbance.

Future research should include testing with larger water systems, and comparison of LDR with
alternative solutions methods, both in terms of run time, objective value and schedule. It was seen
that long memory was only significant in certain periods, suggesting that memory could be limited in
others. Reducing memory is one way to improve the performance of LDR, so further research into
this topic is recommended. Furthermore, quantifying the approximation error will be important to
test LDR’s applicability in seasonal hydropower scheduling.
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Appendix

In Section 4.2, the reservoir bounds seen in (4) are rewritten in terms of the linear decision rules. In
the following section, a description of this procedure is given.

In (3), mrt is defined in terms of other variables. In each week, the change in the reservoir levels from
the last week is the sum of three parts. First, natural inflow increases the level. Second, decisions
at all reservoirs directly upstream provide inflow. In the case of pumping, this is negative inflow, so
it represents water leaving for an upstream reservoir. Third, decisions at the reservoir in question
reduces the reservoir level (once again with the exception of pumping, which is negative reduction,
adding water). This relation could be expressed

mrt =T S
∑

d∈D


∑

ρ∈Cd
r

xd
ρt − xd

rt

 + Frt + mr(t-1) (23)

mrt =T S
∑

d∈D


∑

ρ∈Cd
r

x̂d
ρt +

∑

u∈U

∑

τ∈Mu
t

Kd
ρtuτδuτ

 −
x̂d

rt +
∑

u∈U

∑

τ∈Mu
t

Kd
rtuτδuτ



 +
[
F̂rt + FV

rtδv(r)t

]
(24)

+ mr(t-1).

This formulation could be rolled out recursively, by expanding the definition of mr(t-1) on the second
line. This definition, in turn, relies on an even earlier reservoir balance, and so on, until mr1 depends
on the initial level mr0 = M0

r . Regrouping into intercept and slope terms yields

mrt = F̂rt +
∑

d∈D


∑

ρ∈Cd
r

x̂d
ρt − x̂d

rt

 +
∑

u∈U

∑

τ∈Mu
t

∑

d∈D


∑

ρ∈Cd
r

Kd
ρtuτ − Kd

rtuτ

 δuτ + FV
rt δv(r)t

+F̂r(t-1) +
∑

d∈D


∑

ρ∈Cd
r

x̂d
ρ(t-1) − x̂d

r(t-1)

 +
∑

u∈U

∑

τ∈Mu
(t-1)

∑

d∈D


∑

ρ∈Cd
r

Kd
ρ(t-1)uτ − Kd

r(t-1)uτ

 δuτ + FV
r(t-1)δv(r)(t-1)

(25)

+... .

Here, it is clear that the intercepts for each of the earlier time periods will appear once, and each δuτ

will appear in the expression for period t∗ as long as τ ∈ Mu
t∗ , the memory set of t∗. Let these periods

t∗ define the usage horizonHu
τ of δuτ. Additionally, let IS

ur be 1 when u = V(r) and 0 otherwise. This
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parameter is used to include natural inflow from the inflow series r belongs to, but exclude inflow
from any others. Then, the long chain in (25) can be collapsed into

mrt =+

t∑

τ=1


F̂rτ +

∑

d∈D


∑

ρ∈Cd
r

x̂d
ρτ − x̂d

rτ

 +
∑

u∈U



∑

t∗∈Hu
τ

t∗≤t

∑

d∈D


∑

ρ∈Cd
r

Kd
ρt∗uτ − Kd

rt∗uτ

 + IS
urFV

rτ


δuτ


(26)

+ M0
r .

Now, (4) can be expanded by inserting (26), and transformed in the same manner as presented for
inequalties in Section 4.1.
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5 Intermezzo

In Article 1, we presented the basics of the LDR transformation. To complement
this, we will in Sections 5.1 and 5.2 give some explanatory notes. Then, in Sec-
tion 5.3, a more detailed explanation of uncertainty sets is given. This topic was
briefly utilized, but never elaborated upon in Article 1. Section 5.4 explains how
our uncertainty set is generated. Last, theory is given on how upper bounds on
the optimality gap can be found. Such upper bounds are important when evalu-
ating the quality of LDR, and an introduction to the topic is needed before the
implementation in Article 2.

5.1 Inequality constraints

The most interesting part of the LDR transformation is reformulating the inequal-
ity constraints. Equality constraints will be covered briefly in the next section,
and the objective function is easily handled, so it will not be covered again here.
Consider a set of inequality constraints

∑

j

Ajxj(δ) ≤ b(δ) ∀δ ∈ U . (1)

Rewriting in terms of affine functions, and separating intercepts and slopes yields

∑

j

∑

i

(AjK
x
ij −Mi)δi ≤ b̂−

∑

j

Ajx̂j ∀δ ∈ U , (2)

which is shown in Article 1 to be equivalent to

∑

k

hkµk ≤ b̂−
∑

j

Ajx̂j (3)

∑

k

Hikµ
Uq
k =

∑

j

AjK
x
ij −Mi, ∀i (4)

where k is the index of a constraint in the uncertainty polytope. Here, the impor-
tance of the polyhedral uncertainty set, fixed recourse, and affine right hand side
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is shown. These make LP duality theory applicable, to reformulate (2) into (3)
and (4). If A depended on δ, or b was not affine, LP theory could not have been
utilized. Where (2) has infinite cardinality and δ multiplied with Kx

ij, (3) and (4)
are of finite cardinality and completely linear.

In the context of the problem at hand, the formulation in Article 1 has some
notable properties. First, since most constraints in the original problem presented
there, are of the simple form

x̂j +
∑

i

Kx
ijδi ≤ b̂.

This makes constraints of form (3) and (4) relatively simple, with only one variable,
A1 = 1 and Mi = 0. However, some subtleties arise from the introduction of
limited memory. Specifically, each decision in time period t has a setMt of time
periods on which it depends. Every other time period is ignored. The reason
for the expression ‘limited memory’ is that one natural way of implementing this,
is by letting each time period remember only the last few periods. This arises
as a natural way to reduce the size of the problem, and leads to some attractive
simplifications. If xj is independent of a certain δi, it means that the slope Kx

ij

does not exist, and a column is cut from the problem. On the other hand, δi still
needs to be taken into account when deciding the worst case value of xj, so none
of the constraints (4) are removed. Additionally, special care needs to be taken
in constraints where variables with different memories appear together, like the
reservoir balances that take decisions at other reservoirs into account. Limited
memory could be implemented by explicitly requiring that the affected slopes
Kx
ij = 0, but our approach utilizes human knowledge of the problem at hand,

and reduces the need to trust a potentially unknown engine presolve procedure to
remove these variables.
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5.2 Equality constraints

As pointed out in [59], constraints on the form

x̂+
∑

i

Kx
i δi = ŷ +

∑

i

Ky
i δi

can be split term by term, when uncertain parameters are linearly independent,
and are therefore equivalent to

x̂ = ŷ

Kx
i = Ky

i , ∀i.

This is because the linear independence implies that a certain δi cannot be ex-
pressed by the other δ, so for the expressions to stay equal when δi varies, the
slopes Ki on each side must be the same. These equations are generally not very
complex, and simply act as definitions of placeholder variables. As we saw in
Article 1, we opted for a slightly different approach when handling the equality
constraints in the reservoir balance. In this case, since the reservoir balance simply
defined the reservoir level, we substituted this expression into the bounds on the
reservoir level.

5.3 Uncertainty sets

To fully utilize the benefits of LDR, a meaningful representation of the uncertainty
set U is needed.

One often faces a trade-off between covering every imaginable realization of the un-
certain parameters, and minimizing the complexity and size of the uncertainty set.
The easiest to interpret, and the most robust choice, is a box uncertainty set that
contains the full range of realizations for every single element δ of the uncertainty.
However, it is highly unlikely that every uncertain parameter takes its worst-case
value simultaneously. Thus, smaller uncertainty sets which are still nearly impos-
sible to violate, can often be described. For instance, ellipsoidal uncertainty sets
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are used to solve an LDR hydropower planning formulation in [34]. These disallow
the corners in box uncertainty sets, and are therefore tighter, without being much
harder to describe. Nevertheless, as we saw, polyhedral sets are the most popular
and natural choice. These can be described by a set of linear constraints, and are
convex and simply connected. There are many types of polytopes, and here we
will look at the linear equations that are used to describe ours.

We use a typical class of polyhedral sets, known as budgeted uncertainty sets or
Bertsimas and Sim uncertainty sets [7], on the form:

U = {δ : ||δ||1 ≤ Γ ||δ||∞ ≤ 1}, (5)

where δ ∈ R. Here, the uncertain parameters δ are normalized deviations from
the forecast. These are continous, and can take both positive and negative values,
with a maximal magnitude of 1. The parameter Γ in budgeted uncertainty sets
is often interpreted as the highest number of worst case periods, but with δ free,
it takes a somewhat different meaning. Slightly simplified, it is here the highest
allowable difference between the numbers of periods with 1 and -1 realizations.
This is complicated by the fact that values between -1 and 1 are also allowable,
but the basic principle is the same.

The basic framework described above is sufficient for understanding, and was how
the uncertainty polytope was presented in Article 1. However, in the final ver-
sion of our uncertainty polytope, we have refined the formulation somewhat. We
have added the possibility of restricting with Γ-parameters for the whole planning
horizon, or for other sets Ui of weeks. Here, the index i simply denotes such a
set of weeks. For example, a lot of the uncertainty is related to snow melting
in the spring, but most of this uncertainty is related to when the inflow will be
coming, not its magnitude [52]. Therefore, it might be reasonable to restrict the
total deviation in this period. Additionally, restrictions could be added to con-
strain the actual inflow deviations, instead of the normalized ones. Simply using
the mapping values F V

rt from Article 1, enables us to limit the number of Mm3

of deviation to the range (−ΛL
i ,Λ

U
i ). Similarly, these restrictions can be defined

for the whole or subsets of the planning horizon. Equivalent restrictions could be
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expressed for price, but would not have a similarly intuitive interpretation, and we
do not have them in the definition of our polytope. Implementing these changes,
the final description of the uncertainty polytope becomes

−1 ≤ δut ≤ 1 u ∈ U, t ∈ T (6)

−ΓLi ≤
∑

t∈Ui

δut ≤ ΓUi u ∈ U, Ui ⊆ T (7)

−ΛL
i ≤

∑

t∈Ui

F V
vtδvt ≤ ΛU

i v ∈ V , Ui ⊆ T . (8)

Note that the bound is not necessarily equal for downward and upward deviation,
since the uncertainty distribution could be asymmetrical. Most parameters can
only drop to zero, but theoretically increase infinitely. For simplicity of notation,
(6) range from -1 to 1, but in reality the upper and lower bounds might be asym-
metrical here as well. The slackest bound is set to have magnitude one, and the
other is scaled proportionally.

5.4 The uncertainty at hand

In the uncertainty set we employ, all of the parameters described above, Γ,Λ,
and F V

vt , are estimated from a set of 3000 scenarios. As each of the parameters
represents a measurable size, the bounds on them can be estimated from their
realizations in the data.

Scenarios were generated by transforming price and inflow scenarios generated by
EMPS into a time series model and simulating scenarios from this. The EMPS
model is a fundamental model that describes hydrodominated systems like the
Nordic countries well [61]. The price scenarios it generates retain a natural corre-
lation between price and inflow.

Time series parameters for the inflow were estimated from historical data using
a semiparametric AR1 model as described in [18]. Then a price model was es-
timated as a function of local inflow. Parameters were found using panel data
methodology with an AR1 error process. With these models, a standardized ran-
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dom error was drawn and used as input to generate the inflow series. The resulting
inflow scenarios were passed to the price model, and a corresponding price scenario
was generated. The appropriate correlation between error terms was achieved by
multiplying the standard random error with the Cholesky decomposed covariance
matrix.

The simplest way of generating the polytope from these scenarios is to simply use
the extreme values of all scenarios, as mentioned above. To trade robustness for
less over-conservative solutions, percentiles of the scenarios can be used. This is
illustrated in Figure 6 for inflow deviations of the scenarios. Here, it is seen that
removing the 30 most extreme values in every time period, makes the uncertainty
set substantially tighter. Still, only 1% of the observations are removed, so the
probability of scenarios outside of the polytope occurring is small.
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Figure 6: Deviation from inflow forecast in the 3000 scenarios.

This has been a short explanation of the uncertainty set employed in our thesis.
The modelling and implementation details of generating the polytope receive closer
attention in [40].
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5.5 Upper bounds

While LDR have shown promising signs at reducing complexity, this approximation
method might lead to a significant loss of optimality [30]. To evaluate the method,
then, a measure of the optimality gap ε is necessary. Ideally, ε could be computed
as the difference between the LDR solution’s and the optimal solution’s value.
However, solving the original problem LDR was applied to exactly is potentially
very hard [55]. Thus, upper bounds on ε are often of interest, to quantify the
maximal potential suboptimality.

Such upper bounds could take the form of a priori bounds on the maximal value of
ε for a whole group of instances, or a posteriori for a specific problem instance [16].
In the setting of LDR, a priori bounds have only been obtained for a handful of
problems, limited to either a two-stage nature [21] or one-dimensional control
[6]. A posteriori bounds are therefore more practically attainable for the seasonal
planning problem. There are many ways of finding such upper bounds.

In the context of LDR, one possibility is the dual LDR approximation [30]. Here,
an LDR transformation is applied to the dual version of the original LP. Strong
duality ensures that the dual optimum has the same objective value as the primal
one. Since the problem in question is a maximization problem, weak duality assures
that any feasible approximation of the dual will be an upper bound on the optimal
primal solution, and a new non-negative error, εD, emerges. The joint primal and
dual approximation error (ε + εD) can be calculated as the difference between the
primal and dual LDR solutions, and obviously constitutes an upper bound on ε.
However, calculating this bound requires a whole new LDR approximation, and
the quality of these bounds is highly sensitive to the distribution governing the
uncertain parameters [23].

Alternatively, by sampling a sufficient number of scenarios, and solving each of
them deterministically, an estimate of the expected value given perfect informa-
tion (EV|PI) is obtained. Obviously, EV|PI is an upper bound on the expected
attainable value without certain information, so the gap up to this value con-
stitutes an upper bound on ε. Though these perfect information upper bounds
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(PIUB) are simple to grasp and easy to compute, they often lack the necessary ac-
curacy. Therefore, this thesis strengthens PIUB to the somewhat more promising
dual upper bound (DUB) [43].

DUB is based on the theory developed in [11] and [24]. The basic principle is to
give the solution algorithm access to future information, but punishing its use.
The concept of dual feasible penalty terms is central, and a proper treatment of
the topic is found in [11]. In a maximization problem, such penalty terms are
subtracted from the objective function for any action, but should not penalize
policies that do not use the extra information.

To briefly introduce the concept, consider a time period t. Let rt(πi) be the reward
or revenue generated by a feasible policy πi ∈ Π, and It the information that is
naturally known at t. That is, Π is the set of policies depending on I = {I1, I2, ...}.
Here, a policy πi is a vector of actions {ai1(δ), ai2(δ), ...}, one for each time period
t. It is said to depend on I if for any t, ait(δ) only depends on information available
in It. Then, introduce an information relaxation IR, a set of more information
than would naturally be known, so It ⊂ IRt . This additional information makes a
new set ΠR of policies possible, that can potentially depend on future information,
so Π ⊂ ΠR. Now, for any policy πi ∈ ΠR define a penalty zt(πi), which, as
mentioned, should not, in expectation, punish any non-anticipative policies. Thus,
this punishment can, and should, be positive for anticipative policies in ΠR, but
importantly, E[zt(πi)] ≤ 0 if πi ∈ Π. With this simple requirement, we have that
for any feasible, non-anticipative policy πi,

E
[
rt(πi)

∣∣ It
]
≤ E

[
rt(πi)− zt(πi)

∣∣ IRt
]
≤ max
πj∈ΠR

E
[
rt(πj)− zt(πj)

∣∣ IRt
]
.

The first inequality holds because zt is non-positive in expectation for πi ∈ Π.
The second holds because the best policy that is allowed to use IRt cannot do
worse than a policy using less information. (Or even more fundamentally, πi is a
permittable choice for πj in the maximization). This is important, because it is
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now possible to solve

max
πi

∑

t

E
[
rt(πi)− zt(πi)

∣∣ IRt
]
, (DUB)

in order to get an upper bound for

max
πi

∑

t

E
[
rt(πi)

∣∣ It
]
.

That is, DUB provides an upper bound on the non-anticipative value. The strength
of these bounds depend heavily on the penalty functions, but for real option val-
uation in gas markets, DUB has shown to give fairly tight bounds that are much
tighter than PIUB [31]. In Article 2, a specific penalty scheme is implemented,
that makes calculation of DUB computationally tractable.
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Abstract

Seasonal hydropower scheduling involves finding the optimal reservoir schedules, while taking un-
certainties and non-linearities into account. This paper presents the implementation of a relatively
new approach in this field, known as linear decision rules (LDR). In order to solve the problem
in a satisfactory fashion, hydropower specific concepts like head effects and water values are taken
into consideration through iterative methods. Furthermore, the performance of the LDR model
is compared to a rolling intrinsic heuristic (RI), and a novel upper bound to quantify the loss of
optimality. The test case used is an interconnected water system with 8 reservoirs, involving un-
certainties in price as well as in 4 inflow series. Results show that the LDR model, especially when
limited memory is incorporated, provide short computational times compared to RI. However, the
gap between the LDR solutions and the upper bound is over 40%, while RI comes within 4% of
this bound. Therefore it is not clear that LDR are a good fit for the seasonal hydropower planning
problem, unless running times are of large importance.

1 Introduction

In this paper a linear decision rules (LDR) formulation for the seasonal hydropower planning prob-
lem is tested against both a standard solution algorithm, and theoretical upper bounds. The aim is
to present how an LDR method can be used to handle the requirements of hydropower scheduling,
and based on this, decide whether LDR are suited for use in seasonal hydropower scheduling. To
this end, an alternative approach to solving the same problem is presented. This model is a Rolling
Intrinsic (RI) formulation, a fairly standard tool for use in commmodity storage management [34].
The two solution methods are compared in a computational study.

The problem at hand is of interest to planners in the hydropower industry. There are hydropower
plants in more than 150 countries around the world, and they account for 16% of the total elec-
tricity generation [18]. Since 1990, global hydropower generation has increased by more than 50%
to 3427TWh in 2010 [2]. Still, the technically exploitable potential is estimated at more than
16 400TWh annually, and the steady growth of demand is expected to continue [19]. Thus, ensuring
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optimal operation is becoming increasingly important, and has major financial and environmental
benefits.

Seasonal planning has a horizon of one to five years [37]. The problem is one of the early uses
of operations research [35], and solution methods have often been based on stochastic dynamic
programming (SDP) [20, 36]. These solutions are trusted by the industry and deliver good results,
but suffer from the curse of dimensionality, related to sampling scenarios.

LDR do not need explicit scenario formulations, and the aim of the approach is to create simpler,
smaller implementations, to reduce running time. This has been done successfully in other fields [6]
such as supply chain management [5] and combined heat and power production [44].

In recent years, several other papers regarding LDR in hydropower scheduling have been published.
An iterative procedure that can better handle the non-linear objective functions often arising when
variable head of water is included, is presented in [23]. In [31,39], LDR approximations are applied on
both the primal and dual of the seasonal hydropower problem, thereby also presenting values for the
optimality gap. Compared to [23], the LDR formulation in this paper is applied to a more intricate
water system. Additionally, in [23], electricity price is ignored, and output power is maximized,
while in this paper, prices are considered stochastic and earnings are maximixed. This paper also
builds on [39], but uses zero-mean uncertainty, and a new method for upper bounds. A similar LDR
formulation is presented in [44], but this work focuses on application in hydropower scheduling,
rather than combined heat and power systems.

The main contribution of this paper is testing the suitability of LDR in hydropower planning. Multi-
ple adjustments are made, so that the LDR formulation handles the problem at hand satisfactorily.
Computationally, it is shown that the loss of optimality is significant, but that running times can
be much lower than those of competing methods. This means that LDR are not clearly suited for
seasonal hydropower scheduling, but can have some value if running time is of the essence.

The rest of this paper is structured as follows. In Section 2 the important hydropower concepts of
head and water value are introduced. A brief litterature review is also presented in this section.
Then, the theories of LDR and upper bounds are given in Section 3 and 4 respectively. Details
regarding the implementation of the head corrections, water values, limited memory, RI and upper
bounds are found in Section 5. Lastly, the implementations of the LDR and RI formulations are
tested on the 8-reservoir case provided in section 6, and results are presented and analyzed in section
7.

2 Hydropower scheduling

In this section an introduction is given to the problem at hand and its background.

2.1 Problem formulation

The challenge considered involves deciding a seasonal production plan. Given forecasted weekly
electricity prices and inflows, profit should be maximized. For each reservoir r, discharge for gener-
ation, xqrt, pumping, xprt, and spill, xsrt should be decided at all times t. For simplicity of notation,
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the three types of decisions constitute the decision set D = {q, p, s}. The decisions that are made
lead to reservoir levels mrt, and every one of these variables need to be within certain bounds
that may change from week to week, but are known on beforehand. Pumping, reservoir level and
generation have upper and lower limits, while spill only needs to be non-negative. Last, each reser-
voir face limits on total discharge, i.e. water for generation together with water that bypass the
connected power station. All reservoirs are considered to have a power station immediately down-
stream. Reservoirs that do not are modelled with dummy stations without generation capabilities.
With this simplification, power stations can therefore be omitted from the model formulation.

max TH
∑

t∈T
βtπt

∑

r∈R

∑

d∈D
Edrtx

d
rt (1)

s.t. mr0 =M0
r r ∈ R (2)

mrt = mr(t-1) + Frt + TS
∑

d∈D




∑

ρ∈Cd
r

xdρt − xdrt


 r ∈ R, t ∈ T (3)

Mrt ≤ mrt ≤Mrt r ∈ R, t ∈ T (4)

Lqrt ≤ Eqrtxqrt ≤ Uqrt r ∈ R, t ∈ T (5)

Lprt ≤ Eprtxprt ≤ Uprt r ∈ R, t ∈ T (6)

Drt ≤ xqrt + CBrt ≤ Drt r ∈ R, t ∈ T (7)

xsrt ≥ 0 r ∈ R, t ∈ T (8)

Total profit is maximized in the objective function (1), as the present value of the difference between
revenues and costs for all decision types. Here, prices are given per MWh, while decisions are in
m3/s. Energy coefficients Ed are used to convert these volumetric flows to electric power. The
energy coefficients are defined to ensure that generation produces electric power, while pumping
costs power, and spill does neither. The number of hours in a time period, TH , is used to get the
total energy level in MWh.

Equalities (2) establish initial reservoir levels, while (3) update them between time periods. De-
cisions made, both in connected upstream reservoirs, Cdr , and in the current reservoir r, together
with natural inflow Frt and the previous level decide the current reservoir level. Constraints (4)-(8)
impose upper and lower bounds on reservoir level, generation, pumping, discharge, and spill respec-
tively. Energy coefficients are needed in the generation constraints (5) and pumping constraints (6),
as pumping and generation limits are given in MW. It is worth noting that pumping is considered
to be negative generation, decided at the upstream reservoir. Thus, inequalities (6) often have an
upper bound of zero and a negative lower bound. Since reservoir levels and natural inflows are given
in Mm3, the decisions that are given in m3/s need to be multiplied by the length of a time period,
TS . Constraints (7) are the total discharge limits, so here bypass (CBrt) is considered in addition to
the water for generation.

Here, all constraints are given as deterministic, but obviously, future prices and inflows are not
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known a year in advance. The problem should therefore be considered to have uncertain price and
inflow. How this is done is explained closer in Section 3.

2.2 Head effects

Maintaining optimal head is one of many considerations when operating a hydropower system [26].
A higher reservoir level gives a higher head and energy coefficient, which means that more energy is
generated per discharged unit of water. One of the reasons standard linear programming has seen
somewhat limited use in the field is the inherent non-linearity this introduces.

One way of including variable head is by correction coefficients, in the form of head sensitivities in
the objective, as in [16,17]. Another approach is solving the model for specific heads of water, then
updating these based on the given reservoir trajectories from the optimization [10, 12]. The first
method uses a potentially inaccurate point estimate of the value of head, and the constraints are
not affected by the change of generation in the objective. The drawback of the second approach is
that updating the energy coefficient parameter before reoptimizing, gives the model an incentive to
switch between high and low reservoir volumes for every iteration, ultimately leading to convergence
issues [16].

In this paper, the two methods are combined, so that the deficiencies of both models are mitigated.
A similar approach for including head variations can be seen in [23].

2.3 Water value

One of the primary applications of a seasonal planning model for a power producer, is to obtain
water values to use in short-term operations. Finding water values can also be useful within seasonal
planning itself, as they can help valuate the water in the end period, thus avoiding unwanted effects
such as reservoirs emptying in the final stage. Various heuristics can be used to estimate these values,
for example heuristics based on the information in long-term forward contracts [21]. Alternatively,
one can use derivatives of the value function in SDP with respect to reservoir level, as in [13]. In LP
solutions, the shadow prices of the reservoir balance is a natural estimate of the marginal benefit
of additional water [11].

In this paper, water values are found by fixating different storage levels, before optimizing with and
without a marginal unit of water, and calculating the difference in objective value. This is because,
even though purely linear, the standard reservoir balance equation is not present in the LDR-
formulation. As seen in [44], equality constraints are either decomposed or embedded in inequality
constraints. However, the completely linear structure makes it possible to store the optimal basis,
so reoptimizing after minor changes is very quick.

2.4 Standard approaches

The earliest approaches for solving the seasonal scheduling problem with uncertainty rely on SDP
[36,42]. The approach consists of solving a sequence of subproblems, each linked to a specific time
and state, and combining them to full solutions. It does not require linear or even convex problems,
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but is most applicable for small systems, due to the curse of dimensionality [4]. Many techniques
exist to reduce the complexity [3], thus SDP is still an active field of research [27], and much used
in reservoir management [38].

One popular way of tackling the curse of dimensionality is stochastic dual dynamic programming
(SDDP) [24, 25]. Based on nested Benders’ decompostion, SDDP collects optimal dual variables
from later stages, and use them to estimate the value in states other than those that are solved.
Although probably the most successful method available, SDDP is not easily able to handle jointly
stochastic inflows and prices [30], as this can destroy the convexity of the objective function. To
overcome this, independence between price and inflow can be assumed [17], but a layer of complexity
is still added.

As another approach to reduce complexity, approximate dynamic programming [33] relies on simpli-
fied value functions or Monte Carlo-simulation [34] to estimate future value. However, since these
approaches require sampling scenarios, an accurate distribution of the uncertain parameters might
be necessary. Often, historical scenarios will suffice, so this problem is reduced, but real distrubu-
tions are rarely available [23].

In this work, computational tests are run against RI. RI is an iterative approach, based on Monte
Carlo simulation and receding horizons. Also known as model predictive control or receding horizon
deterministic optimization [29], it has seen use within hydropower scheduling [43], as well as other
power and energy systems facing uncertain forecasts [1]. In the approach of this paper, inspired
by [34] in the context of commodity storage, scenarios for the uncertain parameters are sampled.
Then, a forecast is generated for the planning horizon, and for each scenario, a deterministic model
is solved, using this forecast as certain data. From the solution, the first stage decisions are locked,
and the forecasts for the remaining stages are updated. Using these new forecasts, the deterministic
model is reoptimized for the rest of the horizon. Repeating this as the remaining horizon decreases
toward zero, yields a final solution consisting of the locked solution from each stage. This constitutes
one simulation run. To get a good approximation on the optimal value, a large number of simulations
are run, and the objective values averaged.

3 Linear decision rules

LDR approximations have emerged as an alternative solution method, that does not rely on dis-
cretization of the uncertainty. Rather than solving a problem given certain states or scenarios,
recourse decisions are modelled as functions of the uncertain parameters. This way, it is possible to
find decisions for any realization of the uncertaininty. If all types of functions are to be considered,
finding the optimal recourse function is very difficult [15]. However, only looking at functions that
are affine in the parameters leaves the search computationally tractable [7, 22].

In practice, denoting uncertain parameters by δ, this means that a recourse variable xj can be
defined as

xj = x̂j +
∑

i

Kijδi.

Here, x̂ denotes the intercept, and Kij the slopes of an affine function. As described in [44], substi-
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tuting these rules into a restriction on the form
∑

j

Ajxj ≤ b

which should hold for all possible realizations of δ, given by
∑

i

Hikδi ≤ hk, ∀k (U)

leads to the equivalent formulation, µk being the dual variables of the uncertainty set.
∑

k

hkµk ≤ b−
∑

j

Aj x̂j (9)

∑

k

Hikµk =
∑

j

AjKij , ∀i (10)

µk ≥ 0, ∀k. (11)

In this paper, the parameters δ are considered to be normalized deviations from forecasted levels,
for both price and inflow. The interested reader can refer to [8] or [44] for a closer introduction to
this transformation.

4 Upper bounds

While LDR have shown very promising signs at reducing computational complexity, a considerable
loss of optimality is possible [22]. This means that to evaluate the method’s usefulness, a measure
of the optimality gap ε is needed. Clearly, it is not trivial to calculate ε directly, as it necessitates
the exact solution of the original problem LDR was applied to, which is potentially very hard [40].
Thus, upper bounds on ε are often of interest, to quantify the maximal potential suboptimality.

To do this, several methods are applicable. In the context of LDR, an especially interesting choice
is the dual LDR bound [32]. Here, LDR are applied to the dual of the original problem, and the
difference between the solutions is an upper bound on both optimality gaps. Another, simple method
is that of perfect information upper bounds (PIUB). A set of scenarios are deterministically solved
with perfect information, and the expected value is an upper bound for the optimal objective value
with uncertainty. In this article, the PIUB is strengthened by introducing dual feasible penalty
terms [9] in the objective function. The solution value with these penalties constitutes a potentially
tighter upper bound [34], and in Section 5, a specific penalty scheme is introduced that makes the
calculation of such a dual upper bound (DUB) computationally tractable.

5 Implementation

In this section follows a discussion of the implementation details. Both the model and the testing
framework are described, with a focus on handling the challenges mentioned above.
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Applying the transformation of (9)-(11) to (2)-(8) and employing expectancy in (1) yields the LDR
model used in this paper, with weekly resolution and a 52-week scheduling horizon. It is implemented
in IBM ILOG CPLEX Optimization Studio 12.6.1 using IBM OPL on a computer running 64-bit
CentOS 6.6, with two AMD Opteron 2431 2.4GHz processors and 24GB RAM.

5.1 Variable memory sets

The policies generated by the LDR model are specified by a memory length, i.e. how many periods
back in time the decisions can react on. Zero memory implies that the policy only takes the present
into consideration, while a memory length of 52, considered as full memory, means that the decisions
can react on every previous uncertainty parameter. The memory length can vary across reservoirs,
uncertainty series and time periods, e.g. based on topology, known periods of high uncertainty, or
reservoir size. Several memory sets have been tested, including simple sets where every reservoir
has identical memory length across every uncertainty series and time period, and more complex
sets where water course specific information is utilized. Two such sets are the perfect memory set,
and the flood memory set.

The perfect memory set is not a feasible implementation strategy, but rather a benchmark test.
Here, analysis is done on the results of running with full memory. The perfect memory set consists
of exactly those slopes that take on a value in this run. That is, the perfect memory set contains
those dependencies that the model chooses, given the possibility to use any slopes. Of course, the
information about which slopes to choose would not be available to the planner ahead of time. Thus,
this is not a fair set to compare against, but it reveals an interesting property of LDR. By keeping
only about 5% of the available slopes, the same objective value can theoretically be achieved.

The flood memory set is based on the idea that some periods are more important than others.
Specifically, much of the uncertainty lays in the spring flood, which is often based around week 20
to 33 in the test case presented in 6. Thus, the flood memory is a modified version of memory one.
In addition to having memory one, every period in the spring flood is dependent on every earlier
period in the spring flood. On top of this, the last three periods are also dependent on the spring
flood. This way, the most critical periods get flexibility from knowing the outcome of the most
uncertain periods.

5.2 Head effects

When solving the LDR-model, the energy coefficients have to be considered constant to keep the
formulation linear. Thus, iterative reoptimizations and updates of these coefficients are made, to
include the dynamics of variable head. The model is initially solved with energy coefficients corre-
sponding to reference head levels. After optimization, updated head levels are calculated from the
expected reservoir levels, and the coefficients are updated accordingly, as is done in [12]. Pseudocode
for the implementation of this procedure is described in Algorithm 1. Without any other changes
the solutions will diverge, as a greater coefficient motivates higher generation, which in turn leads
to a lower reservoir level the next iteration. It is thus important to give the model an incentive
to try to obtain a beneficial head level. In this implementation, the incentive is given by the term
presented in [16, 17] in the objective. The term is a linearization of the marginal increase in the
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objective given a unit of extra head. Thus, it rewards high storage levels for reservoirs with gen-
eration immediately downstream, and penalizes high storage levels for reservoirs with generation
immediately upstream. For pumping, this is reversed.

Algorithm 1 Update energy coefficient
input: T - set of time periods

R - set of reservoirs

mrt - expected volume level in reservoir r at end of time period t

sr - reservoir immediately downstream r

wr - tailwater level of reservoir r

hr - reference head of reservoir r

1: procedure Update energy coefficients

2: for all t ∈ T do

3: for all r ∈ R do

4: zrt ← GetSurfaceHeight(mrt) # Get meters above sea level from reservoir volume

5: for all r ∈ R do # Update the head level

6: hrt ← zrt−max(zsrt, wr)
7: h′rt ←mean(hr(t−1), hrt) # The average head of time period t

8: Ert ← Er0 · (h′rt/hr)

9: return

5.3 Water values

Water values as functions of the reservoir level are important outputs of a seasonal hydro power
scheduling model. Here, these functions are estimated based on multiple sampled points consisting
of water values and reservoir levels for a given time period, i.e states, as presented in Algorthim 2.
To retrieve the values for different states, the regulated water levels are constrained. Depending on
the regulated levels, the uncertainty in inflow might now lead to an infeasible problem. This issue is
avoided by changing the uncertainty set so that the change in water in the reservoir is accounted for
by the uncertainty. Additionally, the slopes reacting on the now constrained δ have to be forced to
zero. If not, the problem is unbounded, as these slopes now have the possibility to counterbalance
an infinitely large production intercept. The model is then optimized with and without a marginal
unit of water in the reservoirs, by changing the upper bounds of the transformed version of (4).
Finally, the water values at the given scenario are obtained by taking the difference between the
objective values before and after the marginal change. Every reoptimization of the LP is done very
quickly, as CPLEX warm starts with the previous optimal basis.

52



Algorithm 2 Calculate water values
input: model - the LDR model

S - set of states where water values are wanted

R - set of reservoirs

mrs - desired level for reservoir r in state s

ε - marginal unit of water

1: procedure Calculate water values

2: for all s ∈ S do

3: Restrict δ such that it is in compliance with water levels in s

4: for all r ∈ R do

5: (Mr1,Mr1)← (mrs,mrs) # Restrict reservoir levels

6: model.Slope(r, δ).Limits← 0 # Prevent relevant slopes from taking value

7: z1 ← model.solve()

8: for all r ∈ R do

9: model.ReservoirBalance(r).Bounds.Add(ε) # Add marginal unit

10: z2 ← model.solve()

11: model.ReservoirBalance(r).Bounds.Remove(ε) # Reset bounds

12: wrs ← (z2 − z1)/ε # Water value reservoir r in state s

13: model.Reset() # Reset changes done to model

14: return w

5.4 Rolling intrinsic heuristic

The RI heuristic is implemented in Matlab r2014a. A deterministic model is built, taking the number
of periods remaining, future inflows, and prices as input. Initial forecasts are generated as the mean
of 3000 scenarios based on EMPS [41], and multiple update methods are available. Deviations
from the forecast could be used as indicators of trend, such that stretches of low inflow leads to
pessimistic forecasts. Symmetrically, deviations could be compensated for, so low inflow leads to
higher forecasts going forward [13]. The simplest option is staying with the mean throughout the
horizon, only updating with correct information for the current week. This forecasting method is
chosen in the tests since it is widely used by practitioners. The specifics of the procedure are outlined
in Algorithm 3.

A known weakness of RI is that the locked solutions may lead to infeasibilities at later stages, when
realized inflow differs from expectations [28]. To counteract this, the RI problem is given buffered
bounds to avoid going too close to the actual bounds. When the buffered problem turns out to be
infeasible, the buffers are removed, and the model is solved with its actual bounds. Additionally, to
give the algorithm a conservative view of the future, the forecast is adjusted to its worst case for
the last 5 weeks in the horizon. This way, RI proceeds with more caution, and rarely makes choices
leaving future periods infeasible (one or more periods are infeasible in only ∼3%� of all scenarios).
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Algorithm 3 Rolling Intrinsic
input: DetProb(T ′, P, I, b) - the deterministic problem, given remaining time periods, price, inflow, and constraint

buffers.

Forecast(ti : tj) - a way to forecast inflow and price for periods i to j

T - number of time periods,

N - number of Monte Carlo simulations,

b - buffer values for restrictions.

1: procedure RI

2: for i = 1 : N do

3: P, I ← generated price and inflow scenario

4: for t = 1 : T do

5: P̂t, Ît ← Pt, It # Information of this period is known

6: P̂t+1:T , Ît+1:T ← Forecast(t+ 1 : T ) # Information for rest of horizon is forecasted

7: x←Solve DetProb(T + 1− t, P̂ , Î, b) # Solve with buffers

8: if x is infeasible then

9: x←Solve DetProb(T + 1− t, P̂ , Î, 0) # Solve without buffers

10: xlockt ← xt # Lock solution of current period

11: z ←Simulate(xlock, P, I) # Evaluate locked solution under realized price and inflow

12: MeanResult← UpdateMean(z) # The average objective value

13: return MeanResult

5.5 Upper bounds

Both the PIUB and DUB approaches benefit from the same deterministic model that is used in RI.
When calculating PIUB, each scenario is deterministically solved with perfect information for the
full planning horizon. The mean objective value constitutes the bound.

For DUB, optimal policies are calculated by using a rolling horizon, similar to RI. However, DUB
should also allow anticipative policies, although with a penalty. The idea behind the particular
scheme utilized here is to use the perfect information relaxation. That is, the problem is solved
with all information available, but the algorithm is penalized for using future price information.
As can be seen in Algorithm 4, the method bears close resemblance to RI, but operates with
perfect inflow information. Intuitively, this is an upper bound, since the planner knows the future
inflow. Technically, it implements a scheme to penalize marginal net production due to better price
information. The objective function can be expressed as P · (q− p), where P is price, q is generated
energy, and p is energy consumed for pumping. Now, define the penalty term

(P − P̂ ) · ((q − q̂)− (p− p̂)). (12)

Here, P̂ is the forecasted price, while q̂ and p̂ are the best solutions not using future price informa-
tion. Such a scheme will only penalize the marginal net production (q − q̂) that is scheduled based
on the knowledge that realized price exceeds expectation (and marginal net reduction or pumping
(p − p̂) when realized price is low). Thus, in expectation, it should not punish any policies that
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do not use future price information. Since perfect inflow information is used all the way from the
beginning, the problem will never become infeasible. This means that the penalties are dual feasible,
and the solutions are primal feasible, so DUB can be found using the following maximization:

max
q,p

P · (q − p)− (P − P̂ ) · ((q − q̂)− (p− p̂)) (13)

= max
q,p

P · (q − p)− P · (q − p) + P̂ · (q − p) + P · (q̂ − p̂)− P̂ · (q̂ − p̂) (14)

= max
q,p

P̂ · (q − p) + (P − P̂ ) · (q̂ − p̂). (15)

Since q̂ and p̂ are independent of this problem, the second term of (15) is constant with respect to
the decision variables q and p. By this, the solution (q, p) to (13) should coinicide with

argmax
q,p

P̂ · (q − p), (16)

which is exactly what q̂ and p̂ are defined to be. Thus, the optimal value of (15) will be

P̂ · (q̂ − p̂) + (P − P̂ ) · (q̂ − p̂) (17)
= P · (q̂ − p̂), (18)

which simply amounts to solving the problem with forecasted prices, and then evaluating the so-
lution using realized prices. This is what Algorithm 4 does, and what constitutes the dual upper
bound on the optimal solution value.

Algorithm 4 Dual Upper Bound
input: DetProb(T ′, P, I) - the deterministic problem, given remaining time periods, price, and inflow

Forecast(ti : tj) - a way to forecast price for periods i to j

T - number of time periods,

N - number of Monte Carlo simulations.

1: procedure DUB

2: for i = 1 : N do

3: P, I ← generated price and inflow scenario

4: for t = 1 : T do

5: P̂t ← Pt # Price information of this period is known

6: P̂t+1:T ← Forecast(t+ 1 : T ) # Price information for rest of horizon is forecasted

7: x←Solve DetProb(T + 1− t, P̂ , I) # Solve with perfect inflow information

8: xlockt ← xt # Lock solution of current period

9: z ←Simulate(xlock, P, I) # Evaluate locked solution under realized price

10: MeanResult← UpdateMean(z) # The average objective value

11: return MeanResult

6 Example case

Fantasi is a hydropower plant developed by Powel AS as a testing and benchmarking case. Its
topology is illustrated in Figure 1, and it is specifically designed to contain many of the most
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Figure 1: An illustration of the water course “Fantasi”.

common components of a water course. Examples include a large spread in reservoir sizes, multiple
inflow series, a pumped storage facility, and a pure pumping station. Additionally, M3 has a fixed
minimal bypass, and some reservoirs spill to other reservoirs, while some spill to the ocean.

Key data points on the example case are given in Table 1, and both the expected price and standard
deviation in inflow is presented in Figure 2. The latter is obtained by taking the average of the
standard deviations of the different inflow series, and is included to depict the development in the
uncertainty over time. In addition, all reservoirs are required to start and end at 66.8% of their
capacity, an average degree of filling in January.

7 Computational results and conclusion

In this section, the main results and findings from running LDR on the example case are presented.
Finally, the performance of LDR is evaluated in comparison to RI and DUB.
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Table 1: Key characteristics of the water course Fantasi

Reservoir Inflow series Capactiy [Mm3] Average storeable inflow [Mm3/year]
M1 4 50 150
M2 3 50 200
M3 1 500 1000
M4 1 400 500
M5 2 150 300
M6 2 100 700
M7 1 300 300
M8 1 10 260
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Figure 2: The expected price plotted with the standard deviation of inflow
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7.1 Memory sets

The LDR model is solved with a number of different memory sets, among them the flood memory
and perfect memory set. The results from these test are presented in Figure 3, where computational
times are plotted on a logarithmic scale against the objective value. It is evident that larger memory
sets lead to significantly higher complexity in the problem. This is not surprising, as each slope is
a variable, and the number of variables drives solution time in Simplex.

When it comes to the objective value, the biggest gap is between the 0-memory and the 1-memory
solution. This is sensible, as it should be valuable to be able to take the past into account at all,
relatively to only reacting to the present. The relative differences between the memory lengths de-
crease slightly towards the 10-memory solution. Somewhat surprisingly, an increase in the relative
differences between the memory lengths can be observed from the 10-memory to the 14-memory
implementation. This could be because the snow melting period, in which the uncertainty is high-
est, is approximately 14 weeks long, around weeks 16-30 in the spring and summer (see Figure 2).
Taking this whole period into account might add significant flexibility to the solution, yielding less
conservative plans. From memory length 14 up to full memory at 52 weeks, the relative improve-
ments are once again minor, suggesting that beyond this, there is no large benefit in very long
memory lengths.

The optimal slope values from the 52-memory solution, illustrated in Figures 4 and 5, support these
arguments. Here, it is clear that the slopes closest to the main diagonal are the most important ones.
Most periods are only dependent on their own uncertainty, and at most the last few weeks. The
notable exceptions are periods close to the end of the spring flood, and at the end of the horizon. In
these periods, many previous weeks are taken into consideration, to accurately react to total inflow.
At the end of the spring flood, the reservoirs are usually close to full, making it important to avoid
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Figure 4: Optimal slope matrix for discharge from reservoir M6

spilling. When coming close to the end of the planning horizon, the reservoirs levels should be as
close as possible to final lower bounds, to optimally utilize the water available.

Another interesting and intuitive observation, is that the decisions at a reservoir r only depend on
the uncertainty in the reservoir’s own inflow series, and the series at the reservoirs upstream to r,
in addition to the price. Consider the slopes of reservoir M6 presented in Figure 4. These slopes
depend on the realization of the price, the first, and the second inflow series. Reservoir M7, the
only reservoir upstream to M6, belong to the first inflow series, while the second inflow series is
M6’s own series. In contrast, study the plot for the bottom reservoir M1, found in Figure 5. The
decisions of this reservoir are clearly dependent upon every uncertainty series in the model. This
is a natural result, as the total inflow to a reservoir is dependent upon the preceeding reservoirs,
which naturally react to their own inflow series. Thus, as long as the decisions can be made based
on what has happened upstream, robustness can be achieved. This could be the basis of further
memory reductions, removing dependencies to redundant inflow series.

7.2 Head effects

The iterative modifications presented have an effect on the reservoir trajectories and objective
values. In Figures 6 and 7, trajectories of two reservoirs are shown. M6 is one of the smaller reservoirs
in the water course, while M3 is the largest. Both of the trajectories seem suboptimal before any
corrections are made. Notably, M6 discharges a large amount of water very early, leaving it with

59



Figure 5: Optimal slope matrix for discharge from the bottom reservoir M1
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a low head during the profitable winter months, while M3 stops its filling period with a negative
spike around period 25.

After adding the head value term in the objective function, and iterating until convergence, a
different pattern emerges. Now M6 maintains an almost maximal head through the three first
months, while M3 completes filling up without interruption. This is evidence that the LDR model
is able to take non-linearities into account if handled correctly, and makes it more usable. A planner
would be able to trust more in a policy that takes head variations into account, modelling the reality
more closely.

7.3 Water values

Another iterative procedure, namely the water value calculation, also seems to provide sensible
results. This is important if considering to use output from the model in shorter term scheduling
models. As seen in Figure 8, the water value curves look reasonable. In periods when inflow is high,
an extra unit of water is worth less than in periods where inflow is low. Similarly, when the price is
high in the winter, and the reservoirs are slowly emptying, additional water is valuable. Here, the
point value of the water at the mean reservoir levels is shown, but the water value at each reservoir
is actually a multidimensional function of reservoir levels at all reservoirs in the whole system.

7.4 The problem with linearity

One of the areas where the LDR model seemingly produces irrational results is in the relationship
between power generation and pumping. In several time periods the model suggests both pumping
and generating power at the same reservoir. Given a constant price throughout the period, and that
pumping consumes more power than discharging generates, this is not something a real production
planner would do.

As seen in Figure 9, the result is natural when considering how LDR are defined. The uncertain
parameters can go below their expected values, in which case a positive slope will lead to decisions
that are below their nominal levels. For this to still be feasible, the decisions need to have inter-
cepts above their lower bounds. The consequence of this, is that if there is a time period where
both pumping and power generation have slopes, then both needs intercepts as well. Often it is a
good idea to have non-zero slopes for both these decisions, in order to fully exploit scenarios with
extreme prices or inflows. In this case, the symmetry of reactions gives a situation where almost
any realization of the uncertainty will give rise to both pumping and power generation in the same
time period. If the LDR model is used as decision support, the planner should use the net decision
in these cases.

To mitigate this problem, alternatives like piecewise linear [14] or quadratic [32] decision rules can
be investigated. Both of these alternatives allow more asymmetric reactions to positive and negative
realizations.
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Figure 6: Percentile trajectories for M6 obtained from simulating policies from LDR with five period
memory

62



1 13 26 39 52
0

200

400

Time period (t)

R
es
er
vo
ir

vo
lu
m
e
M
3
[M

m
3
]

100% percentile
95% percentile
5% percentile
0% percentile

(a) Reservoir trajectories M3 prior to head corrections

1 13 26 39 52
0

200

400

Time period (t)

R
es
er
vo
ir

vo
lu
m
e
M
3
[M

m
3
]

100% percentile
95% percentile
5% percentile
0% percentile

(b) Reservoir trajectories M3 after head corrections

Figure 7: Percentile trajectories for M3 obtained from simulating policies from LDR with five period
memory
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Figure 8: Comparison of water value and mean reservoir level for head corrected runs
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7.5 Comparison

The additions that are made to the LDR implementation have shown to have their intended effects.
Now, to evaluate the usefulness of LDR in the context of seasonal hydropower planning, it is
compared to RI. Both solution methods are benchmarked against the DUB described in Section 4,
and the results are presented in Table 2 and Figure 10.

Here, it is clear that RI outperforms LDR. RI comes within 4% of a theoretical upper bound, while
the gap to LDR is more than 40%. At full memory, the LDR model also takes much longer to
compute, leaving RI the dominant solution. The running times of RI are comparable to what is
reported in [17], so it can be assumed to be on par with the standard tools in use.

The time savings of LDR are evident when appropriate memory restrictions are applied. Relative
to RI, the difference between full memory and no memory in LDR is small, at just a few percentage
points. This means that LDR can be run with very restrictive memory with no significant loss
of optimality. The flood memory suggested in Section 5.1 performs comparably with full memory
at under 0.1% of the running time. This supports the idea that if the spring flood is taken into
account, periods of lower uncertainty do not need to be considered as closely, and indicates that
variable memory lengths may be designed, that perform very well with shorter running times. The
flood memory also clearly beats the running time of RI, although it is not evident that the reduced
running time justifies the large optimality gap.

7.6 Conclusion

From the computational results, it is not clear that LDR is a good fit for the seasonal hydropower
planning problem, even though the method potentially delivers some benefits. Examples of this
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Table 2: Comparison of objective values and computational times from the different models and memory
sets

Model Simulated objective value (% of DUB) Computational time (s)
PIUB 136 981 (102) 1 406
DUB 134 240 (100) 32 044
RI 128 830 (96,0) 32 310

LDR perfect memory 77 867 (58,0) 14 928
LDR flood memory 77 203 (57,5) 913
LDR 52 memory 77 867 (58,0) 750 154
LDR 26 memory 77 777 (57,9) 157 484
LDR 14 memory 77 542 (57,8) 9 337
LDR 10 memory 76 915 (57,3) 3 804
LDR 5 memory 76 838 (57,2) 1 520
LDR 2 memory 76 646 (57,1) 970
LDR 1 memory 76 375 (56,9) 691
LDR 0 memory 74 523 (55,5) 371
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Figure 10: The computational times plotted on a logarithmic scale against the objective value in % of
DUB
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include coherent policies for any scenario, but also intuitively reasonable solutions, and potentially
short running times compared to RI. Especially if efficient reductions of the memory can be de-
veloped, LDR outruns RI by orders of magnitude. However, this comes at a significant cost of
optimality. Even with full memory, the LDR are not able to close the gap up to RI, leaving the
difference at more than one third of the optimal value. This means that LDR cannot be considered
a good replacement, or a good fit for seasonal planning in hydropower scheduling. Rather, LDR
could be used as a quick diagnostic tool, or when a planner wishes to iteratively develop and test
scenarios, or do analysis on a large number of potential scenarios. Here, exact solutions need not
be of high importance, while quickly assessing results of changes might be interesting.

The LDR formulation was shown to handle head effects well using an iterative approach, and deliver
reasonable water values, which means it can be used to quickly produce output for other models to
build upon.

Based on the results presented in this paper, further research is recommended into the reduction
of memory sets in LDR. Since LDR do not seem fit to compete as a primary seasonal planning
tool, attempting to get the quickest solution times possible might add value to the approach.
Additionally, the water values output from the LDR model seemed reasonable. Further comparison
of these against those returned by other methods is potentially interesting. If the marginal values
of water are shown to be correct, they can be used as a quick way to input water values to a shorter
term model. Last, the symmetry of purely linear decision rules seemed to give irrational results.
More research on piecewise linear or quadratic decision rules could yield more fruitful policies.
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6 Conclusion

We started this thesis by stating the following research question: How suitable are
linear decision rules for seasonal hydro power scheduling?

This lead to three sub-questions:

1. Can hydropower specific implementation details, such as head effects and
water values, be included in the solution process?

2. Will LDR be able to give quicker results or higher objective values than RI?

3. What bounds on the suboptimality imposed by the LDR approximation can
be found?

Now we are able to draw conclusions, based on the computational tests we have
conducted.

Our results indicate that head effects and water values can indeed be handled by
the use of iterative procedures, so LDR models have sufficient expressiveness to
take the details of hydropower scheduling into account. The computational times
are reduced significantly in comparison with RI when limited memory is applied.
It also seems relatively fast against other solution methods currently in use, even
though this needs to be tested before conclusions can be made. However, this
comes at a considerable cost. The LDR formulation is not able to give objective
values that are competetive with RI’s. The solutions values are well below both
theoretical upper bounds, and feasible solutions from RI. Thus, the suboptimality
of the LDR approximation is quantified and large.

Altogether, it is therefore not clear that LDR is a good fit for the seasonal hy-
dropower planning problem. The topic should be further researched, since there
are several interesting questions that arise from our tests.

In Article 2 [9], we saw that piecewise or quadratic decision rules should be investi-
gated, since they potentially can reduce the symmetry, and thus the suboptimality,
observed. Additionally, LDR could be fit for other purposes than returning poli-
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cies to be implemented. If the water values are benchmarked against results from
other methods, they could turn out to be usable as input to short-term models.
If good limitations on the memory set are found, LDR could be used as a very
fast diagnostic tool when quick results are more important than optimal results.
Last, we saw in both articles that the bounds on final reservoir levels lead to many
dependencies at the end of the horizon. Further research could reveal if LDR mod-
els will perform better with an end-of-horizon water valuation instead of a strict
bound.
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Appendix A Assumptions

A number of assumptions and simplifications have been made when developing the
mathematical formulation of the hydropower problem. These are detailed below.

All technical power station data, such as minimum and maximum generation ca-
pacities and generator efficiencies, are assumed fully known. Limitations on mini-
mum and maximum reservoir levels are also classified as deterministic data, along
with information describing the topology of the water system. The reason behind
these assumptions is the fact that uncertainties in station and reservoir data are
negligible compared to the uncertainty in the inflow and price parameters that we
have chosen to model as stochastic.

Line congestion or line outage is hard to predict and is not considered. Instead
the producer is expected to always get the weekly electricity price (on average) for
every MWh generated.

The discount rate has been considered deterministic and constant, since the focus
of this paper has been on hydropower modeling, not representating the interest
rate.

Typical short term operational issues, such as ramping constraints, curtailment
costs, and costs related to start-up and shutdown, are neglected due to the length
of each time period. In the case of omitting start-up and shutdown costs, there
is also a second motive, as including these costs would have turned the model
into an NP-hard mixed integer programming problem, rather than a P-hard linear
program.

A power plant’s effienciency (η) is assumed constant, thus independent of the level
of generation (q). Establishing a schedule where generating units operate at their
best point is a task for a short-term model, the seasonal model only allocates
generation to power stations.
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Appendix B Full LDR formulation

By applying the LDR reformulation steps described in Article 1 to the mathematical model pre-
sented in both articles, we arrive at the following model.
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Here, (B.1) is the objective function, as described in Article 1. The constraints are hard to under-
stand or describe intuitively, but are grouped according to their origin. Generally, µ denotes a dual
variable from the transformation, x̂ an intercept, and K a slope. A dual variable µU · corresponds
to an upper bound, while µL· corresponds to a lower bound. Where equivalent constraints differ
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only in the dual variables, the shorthand b is used, to stand for either U or L.

Constraints (B.2) and (B.3) are the transformed reservoir limits, with expressions for the reservoir
level substituted in. We call the constraints on the form (B.2) dual objective constraints because
they correspond to the objective value on the left hand side in the transformations. There is one
dual objective constraint for each constraint in the original problem. (B.2a) correspond to upper
bounds, while (B.2b) correspond to lower bounds. Equations like (B.3) are called dual feasibility
constraints, because they define the feasible region of the left hand side in the transformations.

Constraints (B.4) and (B.5) are transformed from the bounds on the power generation. The two
cases (B.5a) and (B.5b) separate between the uncertainty parameters δuτ that the generation in
period t depends on, and those it does not, respectively. As mentioned in Article 1, uncertainty
parameters outside the memory setMu

t lead to zero-valued right hand sides.

Similarly, (B.6) and (B.7) correspond to the discharge limits, while (B.8) and (B.9) originate from
the pumping limits. (B.10) and (B.11) are the transformed limits on spill, and notably only one
dual objective constraint is needed here, since spill is unconstrained from above. As a last note,
(B.15) reflects the fact that pumping is defined as a non-positive variable, while all other intercepts
and dual variables are non-negative, and slopes are free.
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