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Operation, Valuation and Electricity Sourcing for a
Generic Aluminium Smelter

Sven Henrik Andresen and Eivind Fossan Aas

Abstract—An aluminium producer is concerned with operating
a smelter in a manner that maximises value and minimises shut-
down risk. Operational flexibility is available through mothballs
or closure, whereas procurement of electricity, a dominating
input cost, may be conducted through 1-year forwards or long-
term bilateral contracts. We present a sequential valuation and
optimisation approach for evaluating a smelter and deriving a risk
minimising electricity procurement scheme. Multiple risk factors
are considered. An operating policy that maximises smelter value
is found by solving a stochastic dynamic program with the least
squares Monte Carlo (LSM) method. Electricity procurement is
investigated using a two-stage stochastic program that minimises
a trade-off between electricity cost and Conditional Value-at-
Risk. The paper combines the two methods by using the heuristic
operating policy found by the LSM method as input in the latter.
We find that an aluminium producer can reduce the risk of
mothballs, without compromising smelter value or closure risk,
by procuring electricity according the scheme obtained with our
solution approach. The scheme derived from using the heuristic
operating policy as basis for demand outperforms the one found
when assuming constant demand.

Keywords—Least squares Monte Carlo, real options, portfolio
optimisation, stochastic dynamic programming, electricity sourcing,
Ornstein-Uhlenbeck, three-factor commodity process, Conditional
Value-at-Risk (CVaR)

I. INTRODUCTION

Aluminium production is a classic industrial process, in
which a smelter transforms alumina and carbon into aluminium
through a power intensive electrolysis process. Electricity is
a dominating production cost, and access to power is thus
a critical aspect in deciding where to locate an aluminium
smelter [1]. Smelters are typically constructed close to reliable
and cheap power sources, such as next to dams in mountain-
ous regions, in order to benefit from cheap hydroelectricity.
Furthermore, they often take the role of being cornerstone
businesses in their respective districts due to labour demands.
A proper valuation of an aluminium smelter to be used as
basis for decision-making is therefore of high importance in
both business and social terms. Management of an aluminium
smelter are concerned with operating the smelter in a way
that maximises shareholder value, and has the flexibility to
temporary shut down or abandon the smelter. The value of
such flexibility can be captured through biased heuristics by
the DCF capital budgeting approach, whereas it is rigorously
captured by the real options approach (ROA). Through the
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latter a heuristic operating policy can be determined together
with the net present value of cash flows from operating the
smelter. Finally, management may also choose to purchase
electricity through a set of different contract types. Thus, there
is a trade-off between total electricity cost and risk, as different
contract portfolios yield different risk exposure.

Optimising the processes in aluminium production is a well-
studied problem (see [2], [3], [4]), but existing literature has
only to a limited extent studied aluminium smelters from a
strategic management point of view.

[5] study the effects of operational flexibility for the specific
case of an aluminium smelter. They find significant value in
the flexibility to temporarily shut down the smelter. Electricity
is assumed to be procured through long-term contracts at a
fixed price, thus there is no uncertainty in electricity costs. The
aluminium price is modelled with a single-factor geometric
mean reverting process.

[6] study a related problem, however not for an aluminium
smelter. They look at the extraction of a natural resource
through an example of a copper mine with flexibility to
temporary shut down or abandon operations. The problem
is solved with a real options approach and their solution
yields an optimal extraction policy for the mine. The output
price is modelled stochastically as a geometric Brownian
motion (GBM), whereas extraction costs are assumed constant.
They apply stochastic control and continuous time arbitrage
to derive an analytical solution when considering an infinite
time horizon, whereas finite difference approximations of the
valuation PDEs under no-arbitrage conditions are applied in
their finite time horizon example.

[7] study the electricity procurement problem faced by
a large consumer. They assume that three different sources
of electricity are available to the consumer; limited self-
production, spot market purchases and long-term contracts.
The goal is to determine an optimal electricity procurement
scheme with respect to Conditional Value-at-Risk (CVaR).
Prices are treated as stochastic, whereas demand is assumed
to be constant each period.

The combined problem of determining an operating policy
and optimising electricity procurement has not been studied,
and is a problem faced by a multinational smelting company
that we have worked with.

Optimising the operating policy of a smelter leads to a real
options problem that is typically formulated as an optimal
control problem with multiple risk factors. This type of prob-
lem can be solved by PDE approaches [8] [9], approximate
linear programming [10], stochastic programming [11] [12]
and the least squares Monte Carlo (LSM) method [13] [14]
[15]. LSM is the most popular approach for real options
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problems due to its simplicity compared to other alternatives.
It works as follows. [13], inspired by [14], suggest to ap-
proximate continuation values of American options by least
squares regression based on Monte Carlo simulations of the
state variables. Values of the state variables at the current
time step are used as explanatory variables in the regression,
and the continuation values of the different operating states
are regressed on these. The described procedure is known
as the regress-now variant. [16], [17] and [18] analyse the
applicability of the LSM approach for general real options
problems. Based on numerical results from comparisons with
other methods, they all conclude that the LSM approach may
be successfully used for multidimensional problems.

Our problem has multiple risk factors, which makes it hard
to derive a closed-form expression for the valuation PDEs.
Thus, the finite difference method used in [6] cannot be
applied. The problem in [5] is the most similar to ours, but we
assume stochastic electricity costs and that parts of the costs
are incurred in local currency, thus adding exchange rate risk.
We also argue that the LSM approach is a better alternative
for approximating continuation values, rather than working
directly with expectations of the stochastic variables. This is
because the LSM approach assumes no knowledge about the
expectations of underlying stochastic processes.

[18] have extended the work in [6]. They consider optimal
control of a copper mine using the LSM approach and a three-
factor model for copper prices. Their extension implicates that
the real options approach suggested in the latter successfully
can be used for multidimensional problems. They also argue,
with references to [19], that the dynamics of commodity
prices are better captured with multi-factor models. Their
solution method is general and could easily be extended to
include the relevant risk factors and be used to determine a
heuristic operating policy for the aluminium smelter. However,
it cannot be applied to the combined problem of determining
an operating policy and optimising electricity procurement.

Choosing different portfolios of long-term electricity con-
tracts may reduce the level of risk. [20] introduced the concept
of portfolio optimisation with variance as risk measure. Subse-
quent portfolio optimisation problems focus on Value-at-Risk
(VaR) as the risk measure (discussed by [21] and [22]). VaR
measures the loss in market value over a time horizon that is
exceeded by a given probability. Although its popularity, VaR
has certain characteristics which are undesirable, such as lack
of convexity and subadditivity. [23] therefore discuss the use
of CVaR, the expected loss if VaR is exceeded. CVaR is a
coherent risk measure, and suitable in this problem due to its
linearity and consistency towards rational views on risk.

Since electricity sourcing is important for both electricity
retailers and large consumers, efforts have been made in
the past decade to approach this optimally. [24], [25] and
[7] present stochastic simulation-based methods to optimally
solve procurement problems. The two latter solve electricity
procurement using CVaR as risk measure. [25] also include
uncertainty in electricity demand from an electricity retailer’s
point of view, with demand treated as an independent stochas-
tic process.

We do not find existing solution approaches to be directly

applicable to our combined problem. Therefore, we propose a
sequential solution approach that uses the regress-now LSM
to determine a heuristic operating policy and stochastic pro-
gramming to find a favourable electricity procurement scheme.
Contrary to existing literature on procurement optimisation,
we propose to use the demand derived from the operating
policy found with the LSM method as input in the portfolio
optimisation problem, as an alternative to treating demand as
an independent stochastic process. We argue that this way
of treating demand is better anchored in reality compared to
treating it as an independent stochastic process. This yields a
hybrid optimisation approach that combines the LSM method
and stochastic programming.

We contribute to existing literature by combining the LSM
method with risk-minimising electricity portfolio optimisation.
Contributions are; (1) evaluation of an aluminium smelter
using the LSM method and a three-factor model for the
aluminium price and (2) use of demand from optimal control
problem as input in a portfolio optimisation problem as op-
posed to treating demand as an independent stochastic process.

The paper is organised as follows. Section II gives a short
description of the business problem faced by an aluminium
producer. In Section III we conduct an empirical analysis of
the risk factors, whereas section IV in detail describes how the
LSM method and electricity portfolio optimisation are used
in a sequential solution approach. Results from the previous
sections are presented, discussed and interpreted in Section V.
Finally, we draw our conclusions in Section VI.

II. BUSINESS PROBLEM

Management of an aluminium smelter faces a range of
problems due to volatile input and output prices, as well as
exchange rates. The most important risk factors on the input
side are the electricity price and exchange rates, whereas the
aluminium price is the main source of risk on the output side.

Electricity and alumina each represents approximately 30%
of total costs. Management is mainly concerned with hedg-
ing the highly volatile electricity cost, as energy cost is a
major determinant of international differences in aluminium
production. Conversely, the market for alumina is globalised
and changes in these prices will affect all market participants.
In addition, aluminium producers are often vertically integrated
with their own mineral extraction, and are thus less exposed
to fluctuations in alumina prices. Changes in electricity prices,
on the other hand, might affect only one producer and alter the
relative cost position of the firm. The producer must therefore
determine a trade-off between risk and total electricity cost,
and can purchase electricity through 1-year forwards or long-
term bilateral contracts. With short-term exposure the producer
may benefit from periods with low prices, but at the same
time faces greater risk of high prices compared to with long-
term exposure. Finally, risk from fluctuating exchange rates
impact the spread between local electricity costs and the
aluminium price, denominated in U.S. dollars (USD), as well
as processing costs incurred in local currencies.

The aluminium price quoted on the London Metal Exchange
(LME) has a major impact on the revenues of an aluminium
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producer. On top of this, the producer often receives a premium
that takes into account elements such as cost of delivery
and insurance. Short-term aluminium price risk is typically
mitigated by hedging, but the producer stays exposed to long-
term price risk. The rationale behind this can be understood
by investigating other commodity markets. [26] study the
hedging activities of oil and gas producers. They argue that
hedging output prices does not increase market value, since a
shareholder takes a position in a company precisely to increase
risk exposure to the market in which the company operates.
Therefore, hedging long-term aluminium prices should not be
beneficial, since it implicates hedging the very market risk
shareholders seek exposure to.

Management is concerned with operating the smelter in a
value-maximising manner. The smelter can be in three different
states; operating, mothballed or closed. When the smelter
is operating, management receives the net cash flows from
producing and selling aluminium. In a mothballed state, low
or no operating costs are incurred and pre-ordered electricity
is sold in the spot market each period the smelter stays
mothballed. The cost of reactivating the smelter furnaces will
with time increase to the point where reopening the smelter
will no longer be an option [5]. Therefore, the smelter can
only stay mothballed for a limited number of consecutive time
periods. A closed smelter receives no cash flows, and upon
closure all pre-ordered electricity is sold at once. Value of the
latter may be positive or negative, and stems from differences
between conditional expected prices at the contract order date
and time of closure.

Once operating, a smelter is assumed to have a very long
lifetime, thus a planning horizon of 20-40 years is typically
considered by industry players. Furthermore, aluminium pro-
ducers are concerned with relative cost positions. As output
prices are denominated in USD and parts of the costs are
incurred in local currencies, it is reasonable to valuate the
smelter in USD to emphasise the relative cost position. Since
we make no assumptions about economies of scale, we valuate
the smelter on a USD per produced metric ton basis.

Motivated by the above, we seek to determine how to
operate the smelter, then given the resulting electricity demand
identify and evaluate a favourable procurement scheme. The
solution approach should take the most important risk factors
into account, namely electricity price, aluminium price and
exchange rate risk. We consider a time horizon of 40 years.

III. DYNAMICS OF RISK FACTORS

A. Aluminium prices
[27] and [28] suggest the use of a mean reverting process

to forecast the behaviour of commodity prices. The intuition
behind mean reversion in commodity prices comes from basic
microeconomic theory. This states that when prices increase,
high cost producers will enter the market, which in turn will
increase the supply and push down the price. Conversely, when
prices are low, high cost producers will leave the market, which
will decrease the supply and drive up the price. One basic
mean reverting process is the Ornstein-Uhlenbeck process, as
described in among other [19] and [27]. Statistical hypothesis

testing1 of stationarity in the monthly, quarterly and yearly
aluminium price time series and log of the aluminium price
time series do however not provide strong evidence of a
stationary mean level (refer to Table I and Table II for test
results from monthly time series data).

TABLE I. RESULTS FROM STATISTICAL HYPOTHESIS TESTING OF
STATIONARITY IN MONTHLY TIME SERIES. FALSE: DO NOT REJECT H0 ,

TRUE: REJECT H0

Period ADF1 ADF2 ADF3 KPSS1 KPSS2 KPSS3 VR
1987-2015 False False False True True True False
1987-2007 False False False True True True False
2009-2015 False False False True True True False

TABLE II. RESULTS FROM STATISTICAL HYPOTHESIS TESTING OF
STATIONARITY IN LOG OF MONTHLY TIME SERIES. FALSE: DO NOT REJECT

H0 , TRUE: REJECT H0

Period ADF1 ADF2 ADF3 KPSS1 KPSS2 KPSS3 VR
1987-2015 False False False True True True False
1987-2007 False False False True True True False
2009-2015 False False False True True True False

Economic intuition induces that aluminium prices are mean
reverting, but lack of statistical evidence for a stationary mean
level motivates the use of an alternative approach to capture
the dynamics of the aluminium price, that still takes into
account the mean reverting nature of commodity prices. The
superiority of multi-factor models over a single-factor model
for commodities is discussed by among other [18], [19], [29]
and [30]. Two such models are the two-factor model and three-
factor extension presented in [31] and [32]. The two-factor
model allows for mean reversion in prices, but uncertainty in
the equilibrium level to which prices revert. The three-factor
extension allows for the growth rate of the equilibrium level to
be modelled stochastically. On basis of the discussion above
and wide acceptance of the latter model in the literature, we
therefore choose to use the three-factor extension to capture
the dynamics of the aluminium price. Following the notation
in [32] it is formulated in its risk-neutral form as:

dχ∗t = (−κχ∗t − λχ)dt+ σχdZ
∗
χ (1)

dξ∗t = (µ∗t − λξ)dt+ σξdZ
∗
ξ (2)

dµ∗t = (−η(µ∗t − µ̄)− λµ)dt+ σµdZ
∗
µ (3)

SA∗t = ln(χ∗t + ξ∗t ) (4)

At time t, χ∗t is the short-term deviation from the equilib-
rium price, ξ∗t is the equilibrium price and µ∗t is the growth
rate of the equilibrium price. dZ∗χ, dZ∗ξ and dZ∗µ are correlated
Brownian motions, λχ, λξ and λµ are risk premiums of the
respective processes, κ and η are mean reversion parameters
and µ̄ is the unadjusted mean level of the growth rate. The
parameters of (1)-(3) are calibrated by applying the Kalman
Filter [33] on the log of historical monthly spot and futures

1ADFX= augmented Dickey-Fuller test on X lags. H0: Series contains a
unit-root. KPSSX= Kwiatkowski-Phillips-Schmidt-Shin test on X lags. H0:
Series is trend or level stationary. VR= variance ratio test. H0: Series is a
random walk.
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prices by maximising the log-likelihood function. Historical
monthly data on LME futures prices is collected from Reuters
to calibrate the processes. Calibration is done on monthly
data as satisfactory forward data only is available from 2009,
and lower granularity yields too few data points. Parameters
are however easily transformed to be expressed in terms of
years. [32] and [34] point out challenges in obtaining reliable
estimates of risk premiums that are significantly different from
zero, especially for small data sets. This implies that estimates
of λχ, λξ and λµ are not likely to be reliable and thus there will
be difficulties when simulating futures prices, as risk premiums
are key for risk-neutral pricing of futures contracts. However,
the aluminium smelter in this paper does not rely on futures
contracts for aluminium, thus only simulations of the spot price
are needed. To avoid further issues with risk premiums, the
risk premiums are set to zero in the simulations, effectively
not using the risk-neutral form of the process. Equations (1)-
(3) are discretised in order to conduct Monte Carlo simulations
of quarterly prices for the time horizon considered.

B. Electricity prices
Historically, electricity prices have been characterised as

highly volatile due to certain unique properties of electricity
with significant impact on the price dynamics, e.g. the com-
modity is non-storable and highly demand-driven in the short-
run. The short-term effects may be daily, weekly or yearly,
and is modelled by [35]. In the long-run, the effects of the
short-term spikes in electricity prices diminish. [36] argue that
electricity prices follow a two-factor model, where the process
depends on a stochastic long-term equilibrium component
and a short-term mean reverting component. To avoid being
affected by short-term price movements, we consider quarterly
quoted electricity prices using historical data on the 1-year
forward Nord Pool (NP) system price, later referred to as
1-year or 1-y forward price. Historical quarterly prices are
collected from Reuters. Since long-term forward prices are
only available from 2009 and onwards, we have few data points
on which to calibrate the long-term equilibrium component in
the two-factor model. Hence, it is less applicable compared to
alternative stochastic models.

Fig. 1. Quarterly 1-y forward
log price.

Fig. 2. Q-Q plot of residuals 1-y
forward log electricity price.

Figure 1 shows a plot of historical log prices and volatility
for the 1-year forward price. We can see from the figure that,
disregarding the financial crisis, the volatility is constant during
the selected time period. The high volatility observed during
the financial crisis was due to the extraordinary event of new
CO2 quotas entering the market. Figure 2 shows a quantile-
quantile (Q-Q) plot of an autoregressive process of order one

(AR(1)) fitted to the quarterly log electricity price. We choose
to fit the log price in order to normalise the residuals from the
process. Except for two extreme points observed during the
entry of new CO2 quotas, the figure shows that the residuals
from the fitted process are normally distributed. On the basis
of constant volatility and normally distributed residuals, we
argue that the dynamics of the quarterly 1-year forward log
price can be captured with an AR(1) process, described in (5).

ln(Set ) = αSe + βSe ln(Set−1) + εSe (5)

C. Exchange rates
According to [37], predicting foreign exchange rates using

a random walk process performs as well as several other time
series processes, e.g. autoregressive processes, when consid-
ering a one to twelve month horizon. However, simulating a
random walk over 40 years could potentially yield scenarios
with highly unrealistic exchange rates, which motivates the use
of an alternative process.

Figures 3-6 show the same analysis as in Figures 1-2 for
a fitted AR(1) process on both USD/EUR and USD/NOK
exchange rates in quarterly intervals using data from Reuters.
Figures 3 and 5 show that the two exchange rates have approx-
imately constant volatility throughout the selected time period.
As we can see from the Q-Q plots, the residuals from the fitted
USD/EUR exchange rate process are normally distributed.
The residuals from the fitted USD/NOK process have some
deviations from a normal distribution due to financial crises,
actions from central banks and other extraordinary events.

Fig. 3. Quarterly USD/EUR
exchange rate.

Fig. 4. Q-Q plot of USD/EUR
residuals.

Fig. 5. Quarterly USD/NOK
exchange rate.

Fig. 6. Q-Q plot of USD/NOK
residuals.

[38] argue that even though real exchange rates seem to
move randomly in the short-run, there is empirical evidence
that exchange rates move towards a long-term purchasing
power parity. This implicates that a mean reverting process
is necessary in order to capture long-term movements of real
exchange rates. We adapt an AR(1) process fitted on real values
as described by (6) and (7).
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Ekrt = αEkr + βEkr (E
kr
t−1) + εEkr (6)

Eet = αEe + βEe(E
e
t−1) + εEe (7)

IV. SOLUTION APPROACH

In order to evaluate operation and electricity sourcing for the
aluminium smelter we use the LSM method and a two-stage
stochastic program in a sequential approach. First, we evaluate
the operation of the smelter with the LSM method assuming
electricity is procured through 1-year forward contracts. The
heuristic operating policy derived in the previous step is
then used as input to the optimisation routine to investigate
different electricity procurement schemes. We then select a
favourable scheme and re-evaluate the smelter with the LSM
method assuming electricity is procured accordingly, in order
to investigate its effect on shutdown risk and smelter value. The
information flow between the different steps of the sequence
is illustrated in Figure 7.

Fig. 7. Illustration of sequential solution approach.

A. Aluminium smelter operating policy
This section outlines the details of Step 2 in Figure 7. In

order to find the net present value (NPV) of a smelter with
operational flexibility one must also determine the optimal
operating mode at any given time. As the complexity of
the problem prevents us from deriving an analytical solution,
a numerical method must be applied to obtain a heuristic
operating policy and a lower bound on the smelter value. We
use the regress-now variant of LSM for this purpose.

Every year the aluminium producer decides whether to
operate the smelter for one more year, mothball or close.
At the end of the planning horizon of T years, the smelter
must either be closed or is assumed to operate in perpetuity.
The value of the latter is approximated as the perpetuity
of the cash flow in year T . The time required for state
transitions is typically much shorter than a year. Therefore,
we assume that transitions between states are immediate. We
denote the aluminium and electricity price as SA and Se. The
USD/NOK and USD/EUR exchange rates are denoted by Ekr
and Ee. Let ΠP (SA, Se, Ekr, Ee) and ΠM (Se, Ee) denote the
respective cash flows of the producing and mothballs states. To
streamline our presentation, we provide precise definitions of

these cash flows in Appendix A. Switching from producing to
mothballed or closed incur costs KPM and KPC respectively.
A transition from mothballs to closed has a cost of KMC and
a transition from mothballs to producing incurs cost KMP . In
all transitions to the closed state the producer receives the net
value of pre-ordered electricity, denoted by IR(Se, Ee) (see
Appendix A for detailed definition).

The following is a formulation of the aluminium producer’s
problem formulated as a stochastic dynamic program (SDP).
We let T = {0, ..., T} denote the decision stages. The
smelter’s operating status is represented by an endogenous
component, whereas the aluminium price, electricity price and
exchange rates make up the exogenous component. We let P
denote the producing state, M the mothballed state and C
the closed state. Furthermore, since we limit the number of
consecutive stages in which the smelter can stay mothballed
to three, we let M2 and M3 denote a smelter in mothballs for
two and three consecutive stages respectively. The endogenous
set of states can then be defined as X = {P,M,C,M2,M3}.
We assume that the aluminium smelter is producing at stage
i = 0. At stage i the exogenous set is denoted by the vector
zi = {SAi , Sei , Ekr, Ee}. Thus, at stage i the state space is
X × R4. We denote the decision to continue at the current
state as dN . Likewise, dM , dC and dO represent the decisions
to mothball, close and restart operations respectively. The set
of decisions at endogenous state x ∈ X is defined by set

D(x) =


{dN , dM , dC}, if x = P

{dN , dC , dO}, if x ∈ {M,M2}
{dC , dO}, if x = M3

{dN}, if x = C

The aluminium producer’s decision results in an immediate
cash flow. We define these cash flows using the function

ri(x, zi,d)=



ΠP (zi), if (x, d) = (P, dN )

ΠM(zi)−KPM, if (x, d) = (P, dM )

IR(zi)−KPC, if (x, d) = (P, dC)

ΠP(zi)−KMP, if x∈{M,M2,M3} and d=dO
IR(zi)−KMC, if x∈{M,M2,M3} and d=dC
ΠM (zi), if x∈{M,M2} and d = dN
0, if (x, d) = (C, dN )

The function f(x, d) defines the state transitions illustrated
in Figure 8 (refer to Appendix A for a formal definition). The
exogenous factors evolve according to the diffusion processes
in Section III. Let ρ denote the discrete discount rate. In order
to find an optimal operating policy the following stochastic
dynamic program must be solved:

Vi(x, zi)= max
d∈D(x)

r(x, zi, d)+
1

1+ρ
E[Vi+1(f(x, d), zi+1)|zi]

,∀(i, x, zi) ∈ T × X × R4 (8)

where Vi(x, zi) is the value function at stage i and state (x, zi).
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Fig. 8. State transitions.

LSM approximates the continuation function
Wi(x, zi) := 1

1+ρE[Vi+1(x, zi+1)|zi] using basis functions in
set Φi,x = {φi,x,b, b = 1, ...Bi} where Bi is the number of
basis functions at stage i and endogenous state x. Each φi,x,b
is a function of zi. The continuation function approximation

at (x, zi) is defined as (Φi, βi)(x, zi) :=
B∑
b=1

φi,x,b(zi)βi,x,b

where βi,x,b is the coefficient in front of basis function b at
time stage i and endogenous state x. The steps of the LSM
procedure are as follows.

First we conduct Monte Carlo simulations of the exogenous
information. We let ẑi(ω) represent the stage i exogenous
factor on sample path ω. The terminal values v̂T (x, ẑT (ω))
are calculated as in (9)-(11).

v̂T (P, ẑT (ω))= max{r(P, ẑT (ω), dN )+
ΠP (ẑT (ω))

ρ
,

r(P,ẑT (ω), dC)}
(9)

v̂T (M, ẑT )(ω)= max{r(M, ẑT (ω), dO)+
ΠP (ẑT (ω))

ρ
,

r(M,ẑT (ω),dC)}
(10)

v̂T (C, ẑT (ω)) = 0 (11)

Moving backwards from stage T − 1 to stage 0, at each stage
i ∈ {T − 1, ..., 0} we (i) compute the value estimates along
each sample path ω using the stage i+1 continuation function
approximation:

vi(x, ẑi(ω)) =
1

1 + ρ
max

di+1∈D(x)
ri+1(x, ẑi+1(ω), di+1)

+ (Φi+1, βi+1)(f(x, di+1), ẑi+1(ω))

and (ii) for each x ∈ X , we compute the coefficients βi,x,b,∀b
by performing a least squares regression on the estimates
vi(x, ẑi(ω)),∀ω.

Having found the regression coefficients we can compute a
feasible decision di(x, zi) at a given stage i and state (x, zi)
by solving the following optimisation problem:

di
(
x, zi

)
∈ arg max

di
ri
(
x, zi, di

)
+
(
Φi, βi

)(
f(x, di), zi

)
Therefore, LSM implicitly defines a heuristic operating policy.
We simulate a separate set of sample paths of the exogenous
information and simulate this operating policy to obtain a
lower bound estimate on the smelter value.

A functional form for the regression basis φi,x,b ∈ Φi,x
must be chosen. [13] use weighted Laguerre polynomials in
their original paper, but [39], [40], [41] and [42] argue that
regressing on simple powers of the explanatory variables and
cross products also provide fairly accurate numerical results
compared to other forms of the explanatory variables. We
choose to use the first four Laguerre polynomials as it is
straightforward to implement and [40] show that this functional
form provides fairly accurate results. These are defined as:

Φi,x,0(ẑi) = 1

Φi,x,1(ẑi) = 1− ẑi

Φi,x,2(ẑi) =
1

2

(
ẑ2
i − 4ẑi + 2

)
Φi,x,3(ẑi) =

1

6

(
− ẑ3

i + 9ẑ2
i − 18ẑi + 6

)
Solving the problem described in this section yields a

heuristic operating policy as well as an unbiased approximation
of the smelter value.

B. Electricity sourcing
Optimising electricity procurement is Step 3 in Figure 7.

Electricity can be procured through both long- and short-term
contracts. Typically, short-term contracts have lower expected
cost, but are more volatile. The challenge for a producer is
to find a procurement scheme that minimises electricity costs,
and at the same time limits the risk of incurring mothballs
or closure in unfavourable market conditions. In this section
we present a two-stage stochastic program that minimises a
trade-off between the net present value of electricity costs and
downside risk in cash flows from volatile electricity prices. We
use CVaR as risk measure. Table III introduces the notation
used, and the two-stage stochastic program is defined by (12)-
(27).
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TABLE III. DECLARATION OF TWO-STAGE STOCHASTIC PROGRAM TO
SOLVE THE ELECTRICITY PROCUREMENT PROBLEM

Sets
N = Time stages [1...Tmax]
L = Scenarios [1...Lmax]
B = Contract lengths [5, 10, 20]
C = Currencies [USD,EUR,NOK]

Indices
n ∈ N time
m ∈ N time
l ∈ L scenario
b ∈ B contract length
c ∈ C contract currency

Variables
qn,m,b,c planned quantity of electricity delivered at time n originating

from contract length b in currency c procured at time m
rln amount of electricity purchased in the 1-year forward market at

time n in scenario l
yln total electricity cost in period n from previously ordered bilateral

contracts in scenario l
xln loss over α-VaR at time n in scenario l
cln total electricity cost at time n in scenario l
ζ α-VaR for every stage
δn largest α-CVaR at time step n

Parameters
Tmax number of stages (years) in the planning period
Lmax number of scenarios
Dmax maximum possible electricity demand in a period
Bmax number of contract lengths
Cmax number of contract currencies
ρ per stage discount factor
α probability level VaR
pl probability of scenario l
sln 1-year forward electricity price at time n in scenario l denoted

in EUR/MWh
f ln,m,c expected forward price at time n conditional on electricity price

at time m quoted in currency c in scenario l
Dln electricity demand incurred from optimal operating policy at time

n in scenario l
θln USD/EUR exchange rate at time n in scenario l
λ factor weight on CVaR versus minimising total electricity costs
CF ln cash flow from aluminium smelter at time n in scenario l
ν tax rate
u factor to equalise the magnitude of CVaR and electricity cost in

the objective function

min
q,r,ζ,δ

(1− λ)
1

Tmax

Tmax∑
n=2

δn

+
λ

u

Lmax∑
l=1

pl
Tmax∑
n=2

1

(1 + ρ)n−1
cln

(12)

s.t. rln+

Cmax∑
c=1

Bmax∑
b=1

Tmax∑
m=1

qn,m,b,c=Dl
n, n∈N, l∈L (13)

Cmax∑
c=1

Bmax∑
b=1

Tmax∑
m=1

qn,m,b,c ≤ Dmax, n ∈ N (14)

Cmax∑
c=1

Bmax∑
b=1

Tmax∑
m=1

qn,m,b,cf
l
n,m,c=yln, n∈N, l∈L (15)

qn,m,b,c = qm+1,m,b,c, m ∈ N, b ∈ B,
c ∈ C, n ∈ [m+ 2...m+ b]

(16)

qn,m,b,c = 0, m ∈ N, b ∈ B, c ∈ C,
n ∈ [1...m] ∪ [m+ b+ 1...N ]

(17)

slnθ
l
nr
l
n + yln = cln, n ∈ N, l ∈ L (18)

ζ +

Lmax∑
l=1

plxln

1− α
≤ δn, n ∈ N (19)

− CF ln − slnθlnDl
n(1− ν) + cln(1− ν)

− ζ ≤ xln, n ∈ N, l ∈ L
(20)

xln ≥ 0, n ∈ N, l ∈ L (21)
qn,m,b,c ≥ 0, n ∈ N,m ∈ N, b ∈ B, c ∈ C (22)
δn ≥ 0, n ∈ N (23)
yln ≥ 0, n ∈ N, l ∈ L (24)
ζ ≥ 0 (25)
rln is free, n ∈ N, l ∈ L (26)
cln is free, n ∈ N, l ∈ L (27)

The portfolio optimisation takes the scenarios for exchange
rates and electricity prices from Step 1 in Figure 7 as input.
Demand, Dl

n, is derived from the heuristic operating policy
found with the LSM method in Step 2 of the solution approach,
e.g. when the smelter is mothballed there is no demand for
electricity. Finally the cash flows, CF ln, calculated in Step 2
are used to calculate CVaR.

The objective function (12) is a trade-off between min-
imising CVaR and the NPV of electricity purchases, and is
tractable by varying the parameter λ. Constraint (13) ensures
that the demand at time n in scenario l is satisfied. If the
smelter is closed and demand equals zero we allow for sale
of pre-ordered electricity to the spot price, hence rln is a free
variable. Constraint (14) prevents pure speculation in long-
term contracts by limiting the amount of electricity that can be
purchased through these. Equation (15) calculates the realised
electricity cost for delivery at time n from long-term contracts
in scenario l. Note that (15) is not a constraint as yln is a
derived variable to ease the readability and hence does not
increase the number of fundamental variables in the problem
since it is substituted out by the solver. The prices of the long-
term contracts are determined by f ln,m,c. Constraints (16)-(17)
ensure consistency between the decision variables qn,m,b,c.
When entering a long-term contract at time m, qn,m,b,c stores
the volume of this contract. Constraint (16) ensures that the
volume of electricity is constant for each year of the contract’s
tenor. Constraint (17) ensures that qn,m,b,c cannot have value if
it represents an infeasible contract, e.g. if n is smaller than m.
Equation (18) is the total realised electricity cost at time n from
purchasing electricity in the 1-year forward market and through
long-term contracts. Note that cln is also a derived variable in
order to ease the readability. Constraint (19) corresponds to
the CVaR constraint and (20) is the associated loss function.
A loss at time n in scenario l is defined as a cash flow that
is more negative than the α-VaR level. Finally, (21)-(27) are
boundary constraints for the decision variables.
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The two-stage stochastic program in (12)-(27) is solved
with the software Xpress-Optimiser version 26.01.042. Using
10,000 scenarios, 40 time steps, three currencies and three
possible long-term contract lengths we experienced a run time
of 15-35 minutes for each value of λ.

The main output from the portfolio optimisation is the
procurement scheme for long-term contracts, stored in qn,m,b,c,
along with 1-year forward purchases, stored in rln.

C. Evaluation of procurement scheme
A favourable procurement scheme is chosen based on the

relationship between total electricity cost and CVaR. Next, the
scheme is evaluated by investigating its effect on shutdown risk
and smelter value, and is compared to benchmark procurement
schemes. This corresponds to Step 4 and Step 5 in Figure 7.

V. RESULTS

A. Calibrated parameters of risk factor processes
1) Aluminium price: The parameters of the three-factor

extension for the aluminium price are calibrated from historical
closing prices of monthly quoted futures3 at the London
Metal Exchange (LME) in the period November 2009 to
January 2015. This period has been carefully chosen in order
to mitigate the effects of the financial crisis in 2007-2008.
Calibrated parameter values are given in yearly terms in Table
IV and the fit of the three-factor extension is illustrated in
Figure 9.

TABLE IV. CALIBRATED PARAMETER VALUES THREE-FACTOR
EXTENSION

Parameter Estimate Standard Error
κ 0.0415 0.0074
σχ 0.1966 0.0304
λχ 0.1295 0.0204
σξ 0.1615 0.0158
η 2.8238 0.1710
µ̄ -0.0571 0.0079
µ̄∗ 0.0500 1.0000
(µ̄∗ − λξ) 0.1165 0.0208
σµ 0.0530 0.0098
ρχξ -0.3827 0.1952
ρχµ 0.2577 0.1444
ρξµ -0.5172 0.1543

Parameter estimates for µ̄∗, ρχξ, ρχµ and ρξµ have unde-
sirably high standard errors. Interpretations and conclusions
based on these estimates must thus be done with special
care. Table IV does not include estimates of λξ or λµ. Point
estimates of the latter parameters can be obtained by using
(µ̄∗ − λξ) together with differences in estimated long-term
futures prices. Following the discussion in Section III-A we
do not calculate these point estimates since λχ, λξ and λµ
are all set to zero in the simulations of (1)-(3). This means
that we do not risk adjust the cash flows, but rather work
under the real probability measure. Issues related to a high
standard error for the estimate of µ̄∗ are thus also avoided.

2Part of the FICO Xpress Optimisation Suite 7.7.
3Futures considered are 3, 6, 9, 12, 24, 48, 72, 96 and 120 month tenors.

Fig. 9. Time series of the calibrated three-factor extension, with observed
prices included.

The estimated value of κ corresponds to a half-life of 17 years
for short-term deviations, which intuitively is unrealistically
high. We argue that short-term deviations in the aluminium
price are caused by events such as changes in storage levels,
the market’s perception of short-term scarcity and monetary
disturbances such as a temporary increase in real interest
rates [43], which cease within a year or two. A half-life of
six months could therefore be realistic. Therefore, we set
κ = 1.174. Simulating scenarios for quarterly prices over
40 years entails a few challenges when using the calibrated
parameters from monthly time series data. A random walk for
the equilibrium price yields unlikely values in some scenarios
as the process may explode within the long time horizon that
is simulated. This issue is pointed out by [44] who analyses
simulation of the two-factor model. He argues that when used
in long-term simulations, the equilibrium price should have a
stationary mean. Therefore, we enforce a weak mean reversion
to the equilibrium price when doing simulations by adjusting
the discretised version of (2). We set the coefficient in front of
ξt−1 to 0.95 and add a constant term of 0.382386, the latter
in order to match the average of the log spot price in the
calibration period. In addition we assume that the mean growth
rate µ̄ in (3) is zero.

2) Electricity price: The parameters of (7) are calibrated
using Reuters data on 1-year forward NP system prices quoted
in quarterly intervals. The time series starts in 2001 when the
Nordic power market became fully integrated.

TABLE V. CALIBRATED PARAMETER VALUES FOR THE LOG
ELECTRICITY PRICE DYNAMICS

Parameter Estimate Standard Error
αSe 0.471 0.203
βSe 0.870 0.057
σSe 0.118

The calibrated parameters of the log price process are given
in quarterly terms in Table V, and correspond to a long-term

4This is actually very similar to the κ estimate for crude oil obtained by
[32].
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mean level of 38.475 EUR/MWh and a half-life of 1.25 years.
3) Exchange rates: The parameters of (6) and (7) are cali-

brated using historical data from Reuters EcoWin Pro quoted in
quarterly intervals from 1974 to 2014. The EUR currency was
first introduced in January 1999, but to increase the size of the
data set we have used an extended time series approximated
by Reuters to estimate parameters.

TABLE VI. CALIBRATED PARAMETER VALUES FOR THE USD/EUR
EXCHANGE RATE

Parameter Estimate Standard Error
αEe 0.077 0.034
βEe 0.935 0.028
σEe 0.040

TABLE VII. CALIBRATED PARAMETER VALUES FOR THE USD/NOK
EXCHANGE RATE

Parameter Estimate Standard Error
α
Ekr

0.010 0.004
β
Ekr

0.933 0.028
σ
Ekr

0.001

The calibrated parameters are given in quarterly terms in
Tables VI and VII. For the USD/EUR exchange rate the pa-
rameters correspond to a long-term mean of 1.183 USD/EUR
and a half-life of 2.57 years. The USD/NOK exchange rate
has an estimated long-term mean of 0.152 USD/NOK and a
half-life of 2.51 years.

4) Simulations: We perform Monte Carlo simulations of the
discretised price processes to generate sample paths. Correla-
tions between the processes are captured through Cholesky
decomposition of the covariance matrix.

B. Evaluating smelter operation when sourcing electricity
from 1-year forward contracts

The parameters used for deriving the aluminium smelter
cash flows are listed in Table VIII. Note that we use a
real discount rate, hence all inputs are in real values. The
problem was solved under the assumption that all electricity
is purchased through 1-year forward contracts.

The smelter value approximations for different multiples of
the actual volatilities of the aluminium and electricity price
processes are shown in Table IX. It is evident that an increase
in electricity price volatility has a negative impact on the

5We have used the following. Log electricity price, denoted by X̂ , follows
an Ornstein-Uhlenbeck (OU) process. Then dX̂t=κ∗(θ∗−X̂t)dt+σSedWt.
Discretisation yields M t= 1, κ∗=

1−βSe
4t and θ∗=

αSe
κ∗Mt . θ∗ is the long-

term expected value of an OU process. The conditional variance when t goes

towards infinity is by Ito’s isometry given as limt→∞ V ar[X̂t|X̂0]=
σ2
Se

2κ∗ .
Using this variance together with θ∗ in the formula for the expected value of a
lognormally distributed variable, the expected long-term real electricity price

when substituting for κ∗andθ∗ is given by S̄e= e

[
αSe

(1−βSe )
+ 1

2

( σ2
Se

2(1−βSe )

)]
.

6Parts of the costs in the electrolysis step are incurred in local currency,
there is thus some exchange rate risk related to this part of total electrolysis
cost.

TABLE VIII. PARAMETER VALUES

Parameter Parameter description Parameter value
Ca Carbon cost per mt aluminium 400 USD/mt
A Alumina cost per mt aluminium 758 USD/mt
ρ WACC (real) 5%
ν Company tax rate 27%

BL Electrolysis cost local currency6 3, 173 NOK/mt
BU Electrolysis cost USD 163 USD/mt
CL Casthouse cost local currency 1, 692 NOK/mt
CU Casthouse income USD 425 USD/mt
M∗ El. consumption rate per mt aluminium 14 MWh/mt
OM Annual operating cost for a mothballed smelter 0 USD/mt
KPC After-tax switching cost operating to closed 2, 000 USD/mt
KPM After-tax switching cost operating to mothballed 1, 000 USD/mt
KMC After-tax switching cost mothballed to closed 1, 000 USD/mt
KMP After-tax switching cost mothballed to operating 1, 000 USD/mt
T temp Max number of consecutive years mothballed 3 years
SAP Premium in percentage of aluminium price 10%

TABLE IX. SENSITIVITY TABLE OF SMELTER VALUE WITH FULL
OPERATIONAL FLEXIBILITY

σel

0.5x 0.75x 1.0x 1.25x 1.5x

σ
a
lu

0.5x 854 807 748 649 566
0.75x 1, 213 1, 151 1, 140 1, 020 986
1.0x 1, 794 1, 698 1, 602 1, 575 1, 517
1.25x 2, 384 2, 353 2, 334 2, 235 2, 112
1.5x 3, 158 3, 091 2, 979 2, 944 2, 813

TABLE X. VALUE INCREASE OF ADDING FULL OPERATIONAL
FLEXIBILITY

σel

0.5x 0.75x 1.0x 1.25x 1.5x

σ
a
lu

0.5x 100 129 159 180 224
0.75x 194 199 218 269 321
1.0x 289 312 321 366 426
1.25x 403 432 436 477 510
1.5x 498 504 535 571 607

TABLE XI. VALUE INCREASE OF ADDING MOTHBALLS ON TOP OF
CLOSURE OPTIONALITY

σel

0.5x 0.75x 1.0x 1.25x 1.5x

σ
a
lu

0.5x 2 9 19 25 40
0.75x 15 27 38 55 82
1.0x 43 55 57 94 113
1.25x 77 83 96 124 143
1.5x 142 143 149 178 185

smelter value, a result that may be counter intuitive. Increased
volatility yields larger random terms. Since we simulate log
prices the simulated state space of real prices is lognormally
distributed. Hence, positive random terms have a greater effect
on the real price than negative random terms. As electricity is a
cost, higher volatility will thus have a net negative effect on the
smelter value. Increased volatility in the electricity price will
also trigger more mothballs and closures, thus accumulated
shutdown costs increase. Conversely, higher volatility in the
aluminium price has a positive effect on the smelter value, as
a higher aluminium price has a positive cash flow effect.

Table X shows the value increase from adding both closure
and mothballs optionality compared to having no closure
optionality, while Table XI shows the additional value gained
by adding mothballs optionality when already having closure
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optionality. In the base case the value increase of having full
operational flexibility compared to no flexibility is $321/mt,
which represents an increase of 25%. Somewhat surprisingly
there is a noticeable increase in value attributed to introducing
the option to mothball when already having the option to close.
The increase in value is $57/mt, or 4% in relative terms, but
when electricity price volatility is high, the value increases
with up to 8%. Increased volatility in the aluminium price
and/or the electricity price increase(s) the value of both closure
and mothballs. This is an expected result since operational
flexibility is of higher value in more uncertain times. For
instance, when having operational flexibility, periods with high
electricity prices may be hedged by the means of mothballs or
closure, which increases the smelter value.

This observation is also emphasised by Figure 10, which
plots the percentage of scenarios with closures, mothballs
and no shutdowns respectively as function of electricity price
volatility. It is evident that higher electricity price volatility
yields an increased probability of closures and/or mothballs.
The same pattern materialises for the aluminium price and is
illustrated in Figure 11. Hedging aluminium price risk is how-
ever beyond the scope of this paper, but we consider hedging
the electricity price risk. Optimising electricity procurement
with respect to some risk measure is, based on the above
rationale, a potential means for reducing closure and mothballs
risk, an issue that is further discussed in Section V-D.

Fig. 10. Shutdown risk at different volatility levels for the electricity price.

Fig. 11. Shutdown risk at different volatility levels for the aluminium price.

A final remark is that the smelter value estimates, when
repeating the LSM procedure on new simulation sets for risk
factors, converge with an increasing number of scenarios being
used in the simulations. Figure 12 illustrates this feature. We

use 10,000 simulated scenarios when determining an operating
policy and approximating the smelter value.

Fig. 12. Convergence of results, as function of the number of in- and out-
of sample scenarios. For illustrative reasons, only 10 example runs for each
number of scenarios are plotted.

C. Results from optimising electricity sourcing
Using the operating policy, cash flows and underlying risk

factor simulations as input to the problem in (12)-(27), we are
able to investigate different electricity procurement schemes.
Figure 13 illustrates the relationship between total electricity
cost and average CVaR over all operating years for different
values of λ. For low values of λ we have risk aversion, whereas
higher values of λ yield higher risk tolerance. We observe a
high total electricity cost and low CVaR when λ is small.
As λ increases the producer becomes more risk tolerant with
respect to electricity price volatility and more emphasis is put
on minimising the total electricity cost. Hence, riskier contracts
are selected, electricity cost is reduced and average CVaR
increases. An interesting observation is that real changes to
the CVaR in Figure 13 are relatively small. This is due to the
fact that the loss function in (20) includes not only risk from
high electricity prices, but also risk from low aluminium prices.
The implication of this is that when management is risk averse,
CVaR will still be relatively large due to aluminium price risk.
The latter is dominating and reducing electricity price risk
has only a limited impact on total system risk compared to
reducing aluminium price risk, which can be observed when
comparing Figure 10 and Figure 11. This argument is also
supported by Figure 14, which displays the same analysis as
in Figure 13, but where the volatility of the aluminium price
process is halved. We can observe that CVaR is reduced as
a result of lower total risk, and the difference between the
highest and the lowest CVaR is larger in magnitude. This is
because a greater part of the system risk now originates from
electricity prices.

In Figure 15 we can see how the average electricity portfolio
mix over all simulated years varies with different values of λ.
As expected, when management is risk averse the portfolio
consists of a combination of 1-year forwards and long-term
contracts. When λ increases and thus risk tolerance increases,
a larger share of the portfolio is comprised of 1-year forward
contracts. An interesting observation from Figure 15(a) is the
large share of 1-year forward contracts when minimising CVaR
alone. As the 1-year forward contracts are the most volatile
contracts, this result might be counterintuitive. It appears
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Fig. 13. CVaR and electricity cost against λ, σalu = 1.0x base case.

Fig. 14. CVaR and electricity cost against λ, σalu = 0.5x base case.

because the CVaR is calculated using smelter cash flows, hence
incorporates aluminium price risk. At a certain CVaR level, all
risk originates from low aluminium prices, hence procuring
a larger share of forward contracts will not reduce the risk
of losses. For the same reason the longest contracts with
duration of 20 years are never purchased. Since aluminium
price risk becomes more dominating for low values of λ,
20-year contracts will not contribute to reducing CVaR. We
confirmed this by reducing the volatility of the aluminium price
process by 50%. We found that 20-year contracts now to a
much larger extent were procured in order to reduce risk. For λ
equal to zero, that is maximum risk aversion, we observed that
the procurement scheme only included long-term contracts.

Another observation when studying the derived procurement
scheme is that, even though it is possible to enter into contracts
denominated in three different currencies, the portfolio optimi-
sation always finds the USD currency to be most favourable.
This result is unexpected, and may occur due to the risk
measure used in the two-stage stochastic program. Since the
smelter is valuated on a USD per produced mt aluminium ba-
sis, entering into a long-term USD contract implicates hedging
both electricity price and exchange rate risk. Since CVaR is a
tail statistic, it will penalise the EUR and NOK contracts for
being exposed to fluctuations in foreign exchange rates. Hence,
when minimising risk the two-stage stochastic program will
favour USD contracts over other currencies.

To evaluate the stability of the solution, Step 1 through 3
in Figure 7 were repeated ten times and the different resulting
procurement schemes were compared. The results are analysed
in Figure 16, which shows the average volume of each contract
together with the maximum and minimum volume observed for

(a) λ = 0.0. (b) λ = 0.3.

(c) λ = 0.6. (d) λ = 1.0.

Fig. 15. Average contract mix for different values of λ.

each year in the ten schemes when λ equals 0.6. We observe
that the portfolio optimisation yields fairly stable solutions.
Figure 16(a) shows that the volume of 1-year forwards is
relatively stable compared to the long-term contracts in 16(b)
and 16(c). An explanation for this can be found in Figure
17, where we see evidence that the volume of the 10-year
contract ordered in year 8 substitutes the volume of 5-year
contracts. Exposure to the 1-year forward contract thus remains
stable. Note that we assume that the smelter does not hold
any contracts in the beginning of the period. Therefore, we
argue that the procurement schemes in years 11-34 represent
a steady-state, with minimal start-of and end-of-period effects.

Utilising insights from the portfolio optimisation solution
we are able to find electricity sourcing schemes that reduce
the risk of losses from volatile electricity prices. Figure 13
illustrates that for λ ∈ [0.3, 0.6], cost has decreased noticeably
without compromising CVaR too much. We therefore consider
the procurement schemes in this interval as favourable. In the
following section we therefore use the scheme derived when
λ = 0.6 as input in Step 4 and Step 5 (refer to Figure 7) in the
sequential solution approach to investigate possible benefits.

D. Results from the integrated problem
The procurement scheme in Figure 17 was evaluated by

using it as input and re-solving the problem in Section
IV-A. Table XII summarises key findings where the selected
procurement scheme, called portfolio, is compared against
static long-term schemes, a 1-year forward scheme and a two-
stage benchmark portfolio, named constant demand. A static
long-term procurement scheme assumes that demand is to be
fulfilled only from one type of contract. E.g. with a 20-USD
scheme electricity is purchased through a 20-year contract
ordered the first year and another 20-year contract ordered in
year 21, both denominated in USD. The two-stage benchmark
is derived by solving the portfolio optimisation without the
operating policy derived with the LSM method as input, thus
treating demand as constant. The impact on smelter value and
shutdown risk is shown in Figure 18 and Table XII.
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(a) Share of electricity from 1-year forwards.

(b) Share of electricity from 5-year contracts.

(c) Share of electricity from 10-year contracts.

Fig. 16. Average result and high-low lines of ten electricity procurement
schemes for λ = 0.6.

Fig. 17. Electricity procurement scheme for λ = 0.6.

In Table XII, the two first columns show the share of
scenarios where closures and mothballs have occurred respec-
tively. Since multiple mothballs can occur in one scenario, the
third column calculates the average number of mothballs per
scenario. The fourth column shows the percentage of scenarios

Fig. 18. Comparison of portfolio and 1-y forward shutdown risk at different
volatility levels for the aluminium price.

TABLE XII. PERFORMANCE OF PORTFOLIO AGAINST STATIC
CONTRACTS AND CONSTANT DEMAND OPTIMISATION, λ = 0.6

Contract type Closures Mothballs # mothb.
/scenario

No
shutdows

Value
[USD/mt]

Portfolio 17 % 38 % 1.0 60 % 1,593
20-Nok 17 % 34 % 0.9 63 % 1,449
20-Eur 18 % 36 % 0.9 61 % 1,450
20-Usd 21 % 37 % 0.9 59 % 1,414
10-Nok 17 % 35 % 0.9 63 % 1,450
10-Eur 18 % 37 % 0.9 61 % 1,449
10-Usd 20 % 37 % 0.9 59 % 1,417
5-Nok 17 % 36 % 0.9 62 % 1,453
5-Eur 18 % 37 % 1.0 61 % 1,455
5-Usd 19 % 37 % 1.0 60 % 1,431
1-y forward 17 % 41 % 1.1 58 % 1,602
Const. demand 18 % 39 % 1.0 59 % 1,582

where no closures or mothballs are undertaken, whereas the
last column gives us the approximated value of the smelter.

Relative to the 1-year forward case, the portfolio has fewer
scenarios with mothballs, a lower average number of mothballs
per scenario and an increase in the number of scenarios where
the smelter operates with no shutdowns. Furthermore, there is a
marginal decrease in smelter value when procuring electricity
according to the portfolio compared to only 1-year forward
contracts. In Table XII we also observe that the static 20-
NOK scheme seems to be the most favourable procurement
scheme in terms of shutdown risk. However, the smelter value
is approximated to be 10% higher with the portfolio compared
to the 20-NOK scheme. We argue that the considerable com-
promise in smelter value with the 20-NOK scheme is negative
from a shareholder’s point of view, which favours the portfolio.
Finally, we observe that the portfolio outperforms the constant
demand benchmark on most metrics. Hence, it is value adding
to solve the optimisation problem with demand derived from
the heuristic operating policy determined in Step 2. Overall,
the results show that the portfolio reduces the risk of mothballs
without compromising the value of the smelter significantly.

Since the portfolio is a mix of 1-year forward and long-
term contracts, we would expect the closure risk to fall in the
interval between what is observed for the 1-year and long-term
electricity procurement schemes. A somewhat surprising ob-
servation is that there is an equal probability of shutting down
the smelter permanently with the portfolio mix compared to
the 1-year forward case, which favours the portfolio. We argue
that closures have more negative impacts for stakeholders than
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mothballs. Thus, it is desirable with an electricity procurement
scheme that does not compromise on closure risk. Being able
to reduce mothballs risk without increasing the closure risk is
therefore an attractive feature with our findings.

In Figure 19 we further evaluate how the portfolio performs
against static contracts for different values of λ. The line is a
plot of electricity cost and CVaR from the optimal portfolio
for different values of λ, and represents an efficient frontier.
Portfolios that lie to the upper right of this frontier are sub-
optimal, since they do not provide a lower electricity cost for
the given level of risk. As expected, the figure illustrates that
the static contracts perform worse in terms of CVaR and total
electricity cost. We see that the difference in total electricity
cost between the efficient frontier and static contracts is large
for all contracts, and roughly similar to the difference in
smelter value observed in Table XII.

Fig. 19. Efficient frontier of portfolio compared to static contracts.

The insights and solution approach presented in the lat-
ter sections make up a valuable decision-making basis for
management when planning long-term schemes for electricity
procurement and for assessing the implications of the current
market conditions on the robustness of smelters.

VI. CONCLUSION

We have shown how the least squares Monte Carlo (LSM)
method can be used to produce unbiased value estimations
of an aluminium smelter with mothballs and closure op-
tionality. There is substantial value in operational flexibility,
and adding the flexibility of mothballs when already having
closure flexibility surprisingly yields a noticeable increase in
smelter value. We argue that capturing the dynamics of the
aluminium price, the most important risk factor, should be
done according to recent literature which states that a single-
factor mean reverting process is not well anchored in reality
and that a more sophisticated approach should be used. The
Schwartz-Smith three-factor extension in [32] is applied. We
also developed a two-stage stochastic program that optimises
the electricity procurement scheme with respect to a trade-off
between Conditional Value-at-Risk (CVaR) and total electricity
cost, using the heuristic operating policy derived with the
LSM method and simulated state space of the risk factors as

input. The solution from the optimisation routine proved to be
fairly stable. Re-evaluating the aluminium smelter using the
optimal electricity procurement scheme yielded a reduction in
the probability of mothballs, an increase in the probability of
operating without shutdowns and no difference in closure risk.
This without compromising smelter value. We also found that
using the demand derived from the heuristic operating policy
as input to the two-stage stochastic program as opposed to
assuming constant demand resulted in a higher smelter value
and lower risk of closures and mothballs. Using the sequential
solution approach in an iterative manner could potentially yield
a procurement scheme that further decreases shutdown risk. It
may also be used for rolling simulations and rebalancing of
bilateral electricity contract portfolios.

APPENDIX A
SUPPLEMENTARY DETAILS STOCHASTIC DYNAMIC

PROGRAM

Smelter cash flows depend on the elements listed in Table
XIII, all expressed in per mt produced aluminium terms unless
otherwise stated.

TABLE XIII. CASH FLOW ELEMENTS

Element Description
SA Aluminium price
Se Electricity price
Ekr USD/NOK exchange rate
Ee USD/EUR exchange rate
Ca Carbon cost
A Alumina cost
ν Company tax rate
BL Electrolysis cost local currency NOK per mt aluminium
BU Electrolysis cost USD
CL Casthouse cost local currency NOK per mt aluminium
CU Casthouse income USD. Casthouse is considered as an own

factory with costs in NOK and revenues in USD
M∗ El. consumption rate MWh per mt aluminium
OM Annual operating cost for a mothballed smelter
Se Electricity price
SA Aluminium price
F e Average price of pre-ordered electricity contracts with de-

livery the current period, quoted in USD
Ekr Exchange rate USD/NOK
Ee Exchange rate USD/EUR
Q Amount of pre-ordered electricity for the current period
SAP Premium in percentage of aluminium price

ΠP and ΠM are the cash flows of an operating and moth-
balled smelter respectively, and are defined as follows.

ΠP =
(
SA(1 + SAP )−A− Ca−BLEkr −BU

− CLEkr+ CU− SeEe(M∗−Q)−FEQ
)(

1−ν
)

ΠM =
(
Q(SeEe − F e)−OM

)(
1− ν

)
IR is the net present value of all pre-ordered electricity

with delivery after the closure time. When procuring electricity
through 1-year forwards this is just the difference between the
price paid with the 1-year forward and the spot electricity price
at closure time, all multiplied with the amount of purchased
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electricity. The value of pre-ordered electricity with delivery
at a date t∗ > t, where t is the closure time, is the difference
between F e at t∗ and the expected electricity price at time
t∗ conditional on the current electricity price. Then IR is
the discounted value of these differences adjusted for tax
and multiplied with the respective amounts of pre-ordered
electricity.

Figure 8 illustrates the transitions given (x, di). The formal
definition of the transition function f(x, d) is:

f(x, d) =



x, if x ∈ {P,C} and d = dN
M, if x = P and d = dM
M2, if x = M and d = dN
M3, if x = M2 and d = dN
C, if x ∈ {P,M,M2,M3} and d = dC
P, if x ∈ {M,M2,M3} and d = dO
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