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Problem Description

This project main objective is to investigate to what extent an SDN-based routing ar-
chitecture for UNINETT (based on available and upcoming standards and HW/SW) may
provide more dynamic and �exible routing without sacri�cing the level of dependability
when compared to the currently applied routing system. Novel designs with respect to
utilizing multicast features is of special interest. Controller placement and organization
as well as management network operations are also relevant topics.

The thesis will start with an overview of SDN theory, motivations, main concepts,
possible applications and current state of the art, comparing SDN to traditional network
organization. Typical use cases for research network providers (speci�cally UNINETT)
will be described, as well as how the use of SDN in such scenarios can help making
network and service deployment easier.

Special focus will be given to tra�c-intensive network services where multicast may
be utilized, e.g. videoconferencing and distributed cluster computing. How can SDN
make a di�erence in routing and allocating resources for such use cases, e.g. by taking
network statistics collected from physical devices more into account?

Possible network architectures shall be designed and tested with existing simulation
tools. Reliability and stability issues will be taken into account. If time allows, network
designs will be deployed and evaluated on real hardware.





Abstract

The goal of this thesis is to demonstrate and evaluate how Software-De�ned

Networking (SDN) techniques can help provision a �exible network service

in support of videoconferencing applications using multicasting and net-

work service chaining. Speci�cally, we show how OpenFlow and the Ryu

controller can be used to implement multicasting at network level and route

part of the tra�c through a middlebox that converts high-quality streams

into low-quality ones, in order to accommodate users with limited access

bandwidth. After reviewing the main theoretical foundations behind this

work, a solution is designed and tested on a sample network topology emu-

lated with Mininet. The results and experience gained from this work con-

�rm that SDN is a promising approach to computer networking that makes

service deployment and management easier and allows for better utilization

of network resources.
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Chapter 1

Introduction

Software-De�ned Networking (SDN) is a computer networking approach in which the
control plane (routing) is decoupled from the data plane (packet switching) in order to
make network and service management simpler, cheaper and more �exible. This is in
contrast to traditional distributed control where intelligence and switching functions
coexist within the same physical device, resulting in complex and “ossi�ed” networks.
SDN is currently mostly deployed in data centers and controlled environments, where
it is used for custom routing and service chaining, but experiments on a large scale are
being carried out.

Multicast is a network communication model with a single source and multiple re-
ceivers, and is therefore better suited for group communication. As opposed to uni-
cast transmissions, multicast allows e�cient usage of network resources and decreased
workload on hosts and servers by duplicating tra�c only where needed. Unfortunately,
multicast today has several security and scalability issues, and is not very well supported
by service providers or applications. Typical applications of multicast are multimedia
streaming and conferencing.

UNINETT, the Norwegian research network provider, is investigating how SDN may
be useful for its service needs. This thesis will look into possible use cases of SDN and
multicast for a service provider. We will design and implement a solution for a videocon-
ferencing service based on custom routing using network emulation and SDN software
tools.
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1.1 Main Objectives

The main goals of this thesis project are:

• gaining a better understanding of the state-of-the-art, opportunities and limita-
tions concerning multicast and SDN;

• investigating if and how combining SDN and multicast can lead to more �exible
service deployment in a videoconferencing context;

• gaining expertise with existing network emulation tools and software frameworks
for SDN;

• designing, implementing and evaluating a working solution to the selected video-
conferencing scenario, enhanced with network service chaining.

1.2 Thesis Organization

The thesis is structured as follows:

• Chapter 1 introduces and motivates the thesis.

• Chapter 2 o�ers an overview of multicasting in today’s networks.

• Chapter 3 presents the main concepts behind Software-De�ned Networking and
its most popular protocol, OpenFlow.

• Chapter 4 describes the selected videoconferencing scenario and sketches a solu-
tion using SDN and OpenFlow.

• Chapter 5 walks through the practical work of implementation and veri�cation of
the designed solution.

• Chapter 6 discusses the results and achievements from the implementation with a
critical eye.

• Chapter 7 summarizes the content of the thesis and points out possible areas of
future work.
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Chapter 2

Multicast

Network communications can be divided into three main categories based on the car-
dinality of the receivers. At one end we have one-to-one communications, also known
as unicast, involving exactly one sender and one receiver. At the opposite end we have
broadcast communications, representing one-to-all interactions in which a sender trans-
mits a message to every other node in the network. In between lie group communica-
tions, or multicast, where messages are destined to a group of receivers who have pre-
viously subscribed to the group (one-to-many and many-to-many).

One naïve way to implement multicast is through multiple unicast streams from the
source: the source sends a copy of the same message to each recipient. However, this
is highly ine�cient and not scalable, because it increases the workload on senders and
routers and consumes more bandwidth in the network. A better approach that alleviates
the burden on sources and links is to have the source send a single copy of the message,
which intermediate nodes will replicate only where needed, namely where the paths
towards the various destinations begin to diverge. This requires intermediate nodes to
be multicast-aware: in this regard, multicast can exist natively at the network layer, if
supported by routers, or as an application-level overlay network, in which case regu-
lar hosts perform routing and switching. Figure 2.1 shows the key di�erence between
the naïve and e�cient implementations of multicast; the number next to each arrow
indicates the number of copies of the same packet sent over the link.

This thesis and the rest of this chapter focus on network-level multicast in IPv4, but
the same concepts also apply to IPv6 with some minor modi�cations.
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Figure 2.1: Comparison of unicast and multicast group communication

2.1 Applications

Multicast is well suited for applications that take advantage of the logical grouping of
hosts, especially if large amounts of data need to be transmitted to multiple receivers
at the same time. In this case, the bene�ts over unicast, in terms of bandwidth save
and workload reduction, are tangible. Typical examples are multimedia applications
like audio/video conferencing and live streaming in IPTV. In the conference example, a
group may represent a conversation, and all participants in the same conference belong
to the same group. In the IPTV example, each group may represent a TV channel, while
members are all customers watching the same channel at a given time.

Multicast is also a valid alternative to broadcast whenever the identity and number
of receivers are unknown to the sender, but just a fraction of the total number of hosts.
This is the case of discovery protocols such as SSDP and data center monitoring tools [1].
In this sense, multicast implements a limited and controlled form of broadcast in which
hosts that are not participating in a given service or protocol do not receive unwanted
tra�c (broadcast messages must be �ooded everywhere and processed by every host,
while multicast tra�c can be �ltered by routers, switches and NICs).

2.2 IP Multicast

Multicast groups in IP are identi�ed by class D addresses. Class D addresses all start with
“1110”, therefore addresses between 224.0.0.0 and 239.255.255.255 (the range 224.0.0.0/4)
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are reserved for multicast [2]. Multicast addresses can only be used as destination, while
the source must be unicast. Rather than using a protocol like ARP for unicast, multicast
MAC addresses are derived statically from L3 addresses. When hosts subscribe to a
multicast group, they recon�gure their NIC to accept frames with the multicast MAC
address as destination and deliver them to the operating system kernel.

In contrast to IP unicast, senders may not know in advance who they are transmitting
to. Similarly, receivers may receive tra�c from any source transmitting to a multicast
address. This communication model is called Any-Source Multicast (ASM). The security
implications (addressed in Section 2.4) have led to the introduction of a di�erent service
model called Source-Speci�c Multicast (SSM) [3], which allows receivers to explicitly
specify the list of sources from which they are willing to accept tra�c. This however
requires receivers to know the senders in advance, which is not always possible.

In order to receive multicast tra�c for a group, end hosts need to join the group by
subscribing to its address. The Internet Group Management Protocol (IGMP), originally
described in [2] and later revised in [4] (IGMPv2) and [5] (IGMPv3), manages host sub-
scriptions within a single LAN. The actors involved in the protocol are the hosts and the
default gateway. The role of the default gateway is to keep track of active groups in the
LAN using IGMP and to participate in multicast routing with other routers in the core
network.

IGMPv2 de�nes three types of message:

• Host Membership Query: periodically issued by routers to discover if any groups
have active members in the LAN;

• Host Membership Report: sent by hosts to notify their subscription to a group,
either in response to a membership query or in an unsolicited way;

• Leave Group: sent by hosts when they gracefully leave a group.

IGMPv3 introduces support for Source-Speci�c Multicast by extending the format of
membership reports.

2.3 Multicast Routing

Edge routers use local membership information learned via IGMP to coordinate with
other multicast routers (mrouters) and build a distribution tree for each group. It may
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happen that not all core routers are also mrouters, in which case multicast packets must
be tunneled from one mrouter to another inside unicast packets in order to prevent
traditional routers from dropping them.

Not all multicast routing algorithms build an explicit distribution tree. There are two
types of trees:

• source-speci�c trees: one tree exists per source per group, and it is rooted at the
source; all sources and destinations are connected via the shortest path, but com-
putation of the tree is expensive;

• shared trees: each group uses the same tree for all sources; paths may not be opti-
mal but their computation is less expensive.

2.3.1 Flooding schemes

The simplest way to deliver multicast tra�c is to �ood it throughout the whole network.
It is simple and reliable but wastes bandwidth, because packets are sent everywhere,
even where there are no receivers. Besides, loops in the network cause packet storms,
unless routers are able to recognize previously seen packets. Despite these serious draw-
backs, �ooding may be appropriate in networks with high density of receivers. Reverse
Path Forwarding (RPF) and Reverse Path Broadcasting (RPB) improve the basic �ooding
scheme with a reverse path check to avoid loops: if packets are received from an inter-
face that is not on the shortest path towards the source, they must have looped and are
therefore discarded.

As a further enhancement, Reverse Path Multicasting (RPM) introduces the concept
of pruning, which removes entire subtrees from the main forwarding tree in case no
receivers exist along the subtree. Pruning is initiated by edge routers and noti�ed to
the upstream node. Routers must be able to revert the pruning state and rejoin the
main tree in case new receivers appear. RPM is featured in DVMRPv3 (Distance Vector
Multicast Routing Protocol version 3) [6] with prune state timeouts and in PIM-DM
(Protocol Independent Multicast – Dense Mode) [7] with explicit rejoin requests. RPM
is best suited in networks with high density of receivers, where prune messages are
infrequent.

Flooding schemes produce implicit source-speci�c trees. However, their optimality
is guaranteed only if the reverse path to the source is the same as the forward path from
the source, which is not always the case in IP networks due to asymmetric routing.
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2.3.2 Link state multicast routing

Link state protocols can be extended to support multicast routing. Every router has a
global view of the network and can calculate optimal source-speci�c trees from every
source using Dijkstra’s algorithm. This, however, is an expensive process that does not
scale well. MOSPF (Multicast Open Shortest Path First), de�ned in [8] and obsoleted in
[9], extends the OSPF link state protocol by adding a new type of LSA without breaking
the compatibility with the unicast version of the protocol. It attempts to improve perfor-
mance by delaying tree calculation until the �rst packet from a new source is detected,
thus implementing on-demand routing, but this is still not enough to make the protocol
really scalable.

2.3.3 Core-Based Trees and PIM-SM

Core-Based Trees (CBT) are shared distribution trees centered at one speci�c router
called the core. The algorithm �nds the shortest path from the core to each destina-
tion according to the unicast routing tables. When tra�c is sent to a multicast group,
the packets �rst go to the core, which in turn forwards them along the tree. The pres-
ence of a common core enables easier and faster construction of the tree. However, even
if the paths from any sender to the core and from the core to any receiver are optimal,
the end-to-end paths usually are not. Tree construction begins at the edge, and if a new
receiver joins the group at a later time, it is attached to the nearest node already in the
tree, thus making tree updates faster.

Core

S D

Actual path

Optimal path

Shared tree

Figure 2.2: Example of a CBT with non-optimal end-to-end paths

PIM-SM (Protocol Independent Multicast – Sparse Mode) [10] is the most successful
and widespread multicast routing protocol today. It is an explicit-join protocol: tra�c
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is forwarded only on those links from which join messages from other routers have
been received. This avoids unnecessary �ooding and makes the protocol best suited
when the receivers are sparse. PIM-SM initially creates a CBT for each group, where the
core is called Rendezvous Point (RP), but it may switch to an optimal source-speci�c tree
whenever a receiver gets a su�cient amount of tra�c from the same source; when this
happens, the old path from the receiver to the shared tree is pruned. PIM-SM is thus
able to balance network e�ciency and computational cost, starting with a shared tree
that is easy to compute and switching to a shortest source-speci�c tree if convenient. It
also implicitly supports the SSM service model.

2.4 Relevant Issues

Group communications are substantially di�erent from the unicast case. Therefore,
many applications, protocols and common practices do not �t well in a multicast sce-
nario. For instance, IP multicast was not conceived with security in mind. The identity
and number of receivers in multicast communications are typically not known in ad-
vance to senders and routers. The implications on security and scalability often make
service providers reluctant to deploy multicast on a large scale on their networks, unless
in a tightly controlled environment.

2.4.1 Scalability, access control and denial of service

The lack of access control in traditional IP multicast allows any host to join any group
and send tra�c to its members. In addition, group sizes are not �xed and can vary with
high dynamicity, and multicast routers need to maintain state and routing information
for every group. Any host joining an existing group may cause the distribution tree to
expand, thus increasing the amount of tra�c �owing in the network. Malicious senders
may also inject bogus packets to all members of a group [11]. While the latter issue can
be mitigated with the use of SSM, other forms of access control are required to prevent
unauthorized hosts from joining a group. These factors seriously limit the scalability of
IP multicast and turn it into a possible vector for DoS attacks on both the hosts and the
network.

2.4.2 Authentication and privacy

Security mechanisms like IPsec and SSL/TLS are tailored to point-to-point communca-
tions, and adapting them to multicast requires some workarounds.
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Security requirements vary from application to application [11]. Sometimes only
authentication is required: this is the case of public data that needs to be veri�ed, like
stock market updates and routing messages. In other cases, secrecy is more important
than authentication, as in pay-per-view services where an IPTV broadcaster wants to
prevent non-subscribers to view their channels. Often, authentication and encryption
are both desired, such as in multimedia conferencing.

Even SSM, although it restricts the allowed sources to a set of trusted unicast ad-
dresses, cannot protect against IP address spoo�ng or authenticate senders. A proposed
extension of IPsec is based on group Security Associations and a centralized trusted en-
tity devoted to the negotiation and distribution of security parameters between members
of a group [12].

SSM also does not help when you want to limit the scope of a group, i.e. to restrict the
set of authorized receivers. Consider the case of a multicast group used to carry sensitive
data within a corporate network: if no scoping mechanisms were implemented, any host
outside the corporate network could join the same group and gain access to the sensitive
data. Possible solutions are to send packets with a limited time-to-live (TTL scoping) or
to use scoped group addresses (administrative scoping) [13] as de�ned in [14]. Both
solutions require gateways to be con�gured with appropriate TTL thresholds and scope
boundaries.

2.4.3 Reliability

Achieving reliable, connection-oriented transmissions in multicast is not a trivial task.
The TCP protocol was designed for point-to-point communications and the mechanics of
acknowledgment do not �t well in a multipoint scenario. If every receiver replied to ev-
ery single TCP segment with an ACK, the tra�c thus generated would easily saturate the
network and overwhelm the sender, e�ectively causing a DoS attack. This basically lim-
its the transport protocol to UDP only and makes �le transfers and other loss-sensitive
applications di�cult to adapt to a multicast scenario. Therefore, if required, reliability
must be enforced in a di�erent way, either with ad-hoc transport protocols [12] or at the
application layer.
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Chapter 3

Software-De�ned Networking

Computer networks have much evolved through the years. Network switches and routers
have been enriched in functionality and performance to handle ever increasing tra�c
loads; specialized appliances like �rewalls, media gateways and load balancers, gener-
ically called middleboxes, have been introduced to face new application requirements;
tra�c patterns and market demands are constantly changing and moving towards mas-
sive virtualization. As a result, networks have become very complex and delicate, and
experimentation is di�cult and risky, while at the same time there is an increasing need
for �exibility and innovation. However, the software running on network devices is
strictly closed-source and new features can only be obtained either through the pur-
chase of new equipment from a di�erent vendor, or by issuing a feature request to the
original supplier, which is likely to be very expensive and require a long development
cycle. Besides, appliances from di�erent manufacturers are often incompatible when
used on the same network due to protocol implementation di�erences, thus invalidating
the �rst option too and making customers totally dependent on a single vendor (ven-
dor lock-in). All these reasons have led to the so-called ossi�cation of today’s networks.
Sofware-De�ned Networking (SDN) aims at overcoming these limitations by adopting a
radically di�erent network organization, as explained in the next section.

3.1 SDN Architecture

In traditional networking, every device exchanges topology information with all the
others in order to build a map of the network and calculate paths between nodes. The
software and protocols dedicated to this task constitute the control plane of the device.
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The results of the control plane are then used to con�gure the local data plane, which is
the part of the device that forwards packets between input and output ports to reach the
correct destinations. Traditional networks are therefore characterized by a distributed
control plane, as every switch or router integrates both control and data planes.

The idea behind SDN is to decouple the control plane from the data plane and move
all the intelligence and complexity to a logically centralized entity called the controller.
The controller runs the relevant algorithms and con�gures each network element ac-
cordingly. In theory, this enables the use of simpler, “dumb” and therefore cheaper hard-
ware that only deals with forwarding packets and has no computing tasks. In practice,
though, line-rate switching still requires special purpose and high quality components.
The real breakthrough with SDN is that now the intelligence of the network is no more
under exclusive control of the equipment manufacturer: network operators and service
providers now have the freedom and tools to implement custom routing using common
programming languages.

Controller

Figure 3.1: Centralized control plane in SDN

The SDN architecture can be broken up into three layers or planes, each with an
abstract view of the underlying layers that favours simplicity and modularity. Between
them, well-de�ned interfaces provide the necessary abstraction and communication pro-
tocols. The data plane consists of forwarding units (switches and routers) and middle-
boxes that perform switching and packet processing, but do not take on an active role in
routing. The control plane sits upon and manages the data plane via a logically central-
ized controller. While in principle the controller can be a single machine, and therefore
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a single point of failure, it is often deployed as a cluster of controllers for fault tolerance
and load balancing. At the top, the application plane hosts a variety of network appli-
cations that take advantage of a high-level view of the network. Examples of network
applications are policy enforcement, network virtualization, tra�c monitoring, and even
routing protocols.

Application plane

Routing Firewall PolicyQoS

Data plane

Northbound interface  (REST)

Southbound interface  (OpenFlow, NETCONF...)

MiddleboxesSwitches Routers

Control plane
Eastbound 
interface 

(SDNi)

Westbound 
interface 

(SDNi)

Figure 3.2: SDN domain architecture

The control and data planes communicate through the southbound interface, which
allows the controller to con�gure individual devices and query their statistics. The most
widespread southbound protocols are NETCONF [15], OpenFlow [16], and the OVSDB
management protocol [17] for the Open vSwitch virtual switch [18]. Applications and
controllers interact via the northbound interface. Currently no standard northbound APIs
exist, but REST architectures with XML or JSON data are popular choices. Finally, east-
bound and westbound interfaces should allow interoperation and state information ex-
change between independent SDN domains.

3.2 Applications

It is often the case that network tra�c needs to be routed according to other rules than
traditional destination-based routing. For example, one may wish to redirect a subset of
the incoming tra�c through �rewalls, content caches and accelerators, deep packet in-
spectors, or other appliances, creating a network service chain (NSC). The reasons behind
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this are disparate; a possible use case is a service provider o�ering �rewall and backup
services to customers for a fee. As the need for these services varies from customer to
customer and over time, SDN can provide the necessary �exibility to implement custom
routing policies.

Firewall DPI Monitor

Figure 3.3: Example of network service chaining with two tra�c classes

These network services are often virtualized for cost e�ciency and easier manage-
ment and deployment, in what is termed as Network Functions Virtualization (NFV) [19,
§ 7]. A single general-purpose server can host tens or even hundreds of such virtual ma-
chines. The virtualization software on the server provides each virtual appliance with
a virtual network interface and implements a software switch (virtual switch) that con-
nect them together and to the data center network via the server’s physical interfaces.
NFV is independent of SDN, but SDN concepts are often used by the virtual machines
orchestration software to dynamically recon�gure physical switches in the network and
virtual switches on the servers whenever a service chain is modi�ed or a virtual machine
is migrated to a di�erent server. In this sense, the orchestrator takes on the role of SDN
controller.

Another recent trend in cloud computing is to sell unused computing, storage and
network resources to customers in order to balance the costs of running an often over-
provisioned data center infrastructure [19, § 6]. This leads to multi-tenant data centers
where the same physical infrastructure is shared among several users, but each user
maintains full control over their own virtualized subset of resources in complete iso-
lation from every other tenant. This is referred to as network slicing and can be easily
achieved using SDN techniques. In the same context, tenants can con�gure custom rout-
ing policies and run their own network applications on their slice without intervention
from data center operators, e.g. via a web-based interface towards the underlying SDN
platform.
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(a) Physical network

(b) First tenant’s slice (blue)

(c) Second tenant’s slice (blue)

Figure 3.4: Example of slicing with two tenants sharing the same infrastructure

3.3 OpenFlow

OpenFlow is an open protocol for programming the forwarding plane of network ele-
ments from a logically centralized controller. OpenFlow was initially developed at Stan-
ford University in 2008 as a way to experiment with custom protocols on existing net-
works [16]. It is now maintained by the Open Networking Foundation (ONF) since 2011
and has become the de facto standard southbound interface in SDN. This section is based
on the OpenFlow 1.3.1 speci�cation described in [20].

An OpenFlow switch, also called datapath, is a forwarding unit consisting of a set of
ports and a pipeline of �ow tables that contain the forwarding rules of the switch. Each
�ow table entry is a set of packet header �elds and values to match, associated actions to
execute and counters for statistics. Upon receiving a packet, the switch searches the �ow
tables for a match and, if found, applies the speci�ed actions and updates the counters.
If a match is not found, the packet is simply dropped. An OpenFlow switch abstracts
common switching components like ports and queues and provides statistics such as
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the number of packets matching a �ow, the number of transmission and receive errors,
and more. Controllers can leverage these statistics to implement more intelligent and
�exible routing.

3.3.1 Flow tables

OpenFlow supports a number of header �elds ranging from layer 1 to layer 4 of the
OSI reference stack. Possible �elds include, but are not limited to, the input port on
the switch, Ethernet source and destination addresses, IPv4/IPv6 source and destination
addresses, UDP/TCP source and destination ports, VLAN tags, MPLS labels, IP ToS (Type
of Service) �eld, ICMP type and code and ARP opcode. Some of these �elds, notably
Ethernet and IP addresses, are maskable, meaning that it is possible to partially match
those �elds. A match �eld whose value is not speci�ed is said to be a wildcard and
e�ectively matches any value. Because a packet can match several wildcard �ow entries,
it is possible to assign a priority value to each entry. Exact matches, on the other hand,
always have precedence over any wildcard entry.

Match fields Priority Counters Instructions Timeouts Cookie

Figure 3.5: Structure of a �ow table entry

Each �ow entry has an associated set of instructions that are executed for each
matching packet. Flow entries may expire after a certain amount of time without any
matches (idle timeout) or regardless of this (hard timeout), whichever comes �rst. Flow
counters measure the number of packets and bytes that matched the �ow as well as the
total age of the �ow. The cookie is an opaque value that can be set by the controller to
easily identify a single entry.

A special entry, called table-miss �ow entry, can be used to handle the case where
no other �ow entry is matched. This entry is de�ned as all wildcards with zero (lowest)
priority. Although it does not need to be installed in any �ow table, the switch must
support it and at least be able to drop the packet or send it to the controller.

3.3.2 Instructions and actions

The standard requires that OpenFlow switches support at least the following two in-
structions:
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• Write-Actions [action-list]: the enclosed actions are added to the current action set
of the packet, possibly overwriting previous actions of the same type;

• Goto-Table [table-id]: the packet and its current action set are sent to the speci�ed
�ow table where the lookup and matching process starts over.

The Goto-Table instruction allows to arrange several �ow tables in a pipeline. To avoid
loops, the target table identi�er must be greater than the current one. The main ad-
vantage of a pipeline over a single table is the possibility to group di�erent classes of
rules (e.g. forwarding and �ltering) in separate tables and keep the total number of �ow
entries small while still covering all possible cases.

An OpenFlow-compliant switch must support at least the following actions:

• Output [port-id]: the packet is sent out of the speci�ed port, which can be a phys-
ical port, a logical port (vendor-dependent, not de�ned by OpenFlow, e.g. a tunnel
endpoint or link aggregation group) or a reserved port de�ned by OpenFlow;

• Group [group-id]: the packet is processed through the speci�ed group table entry
(see Section 3.3.3);

• Drop: the packet is dropped (this is the default behaviour when no match is found
or no output or group action is speci�ed).

Among the optional actions, the most relevant are:

• Push-Tag/Pop-Tag: the switch may be able to push and pop the outermost element
of the VLAN, PBB and/or MPLS stack;

• Set-Field: the switch may be able to rewrite some of the packet header �elds, such
as addresses and port numbers.

3.3.3 Group table

Group tables, introduced in OpenFlow 1.1, allow for easier and more e�cient �ow action
managament and richer switch behaviour. Each group entry contains an identi�er, a
group type, and counters and actions similar to �ow counters and actions. Actions are
arranged in a list of action buckets, where each bucket is a set with at most one action
of each type (e.g. at most one output action per bucket). Groups can be used to group
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common �ow actions together: with several �ow entries pointing to the same group,
it is possible to change the actions of all those �ows by simply modifying the common
group.

Group ID Type Counters Action buckets

Figure 3.6: Structure of a group table entry

The group type determines the semantics of the group and how the buckets are ex-
ecuted. Possible group types are:

• All (required): all buckets are executed and the packet is cloned for each of them;
used to implement multicasting and broadcasting;

• Indirect (required): only one bucket is allowed; equivalent to an All group with a
single bucket;

• Select (optional): multiple buckets are allowed, but only one is executed; the selec-
tion algorithm is up to the switch implementation and out of scope of the Open-
Flow standard, however a weighted load balancing algorithm is suggested;

• Fast Failover (optional): each bucket is associated with a port or group whose live-
ness is monitored; this group executes the �rst live bucket available and can be
used to react to failures without controller intervention.
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Chapter 4

Design

This chapter begins with a description of possible use cases for UNINETT in which SDN
and multicast may be relevant. We will then select one of these use cases and design a
solution to a proposed test scenario. Goals and requirements shall be clearly stated and
related to the concepts and features discussed in the previous chapters.

4.1 Use Cases for UNINETT

UNINETT [21] is Norway’s National Research and Education Network provider (NREN)
and o�ers connectivity and other network-related services to Norwegian universities,
educational institutions and research centers over a high-capacity network infrastruc-
ture. As part of the thesis work, we analyzed UNINETT’s service o�er in search of
suitable applications for SDN and SDN-based multicast.

UNINETT o�ers backup and storage services in the cloud environment. In this con-
text, data are often replicated and spread out over di�erent locations in the data center
in order to achieve fault-tolerance through redundancy. As stated in the introduction
of Chapter 2, one of the advantages of multicast over unicast is that packets to multiple
receivers need only be duplicated at some points in the network, thus limiting band-
width consumption. Bandwidth saving becomes evident with high volumes of data, as
is the case for �le system and database replication. SDN can also help in �nding the least
loaded paths at any given time by keeping track of link allocation and performing tra�c
engineering.

Another set of services o�ered by UNINETT belongs to the multimedia domain and
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includes live video streaming, IPTV and audio/video conferencing. The multimedia con-
ferencing service supports both H.323 and SIP clients and provides a Multipoint Control
Unit (MCU) for both signaling and media processing. The MCU acts as the “meeting
room” for all participants, mixes media streams from di�erent sources and delivers a
single stream to each participant. As such, all communications between participants are
actually done in unicast to and from the MCU. In addition, some of the participants may
be located in parts of the network with unstable connections or limited access band-
width, such as radio links in cellular networks. The currently deployed service does not
take this into account, and improvements can be made with respect to stream delivery
(replacing unicast with multicast) and custom routing through high-capacity links or
dedicated appliances via SDN.

4.2 Description of Scenario

The selected use case for this project is the videoconferencing scenario, enhanced with
service chaining. For our purposes, hosts are divided into two groups, according to
their access bandwidth and capabilities. Full-capacity hosts connect to the network via
reliable high-speed links and can therefore handle multimedia streams at high quality. In
contrast, low-capacity hosts cannot handle streams at the same quality level and would
greatly bene�t from a downgrade. Transcoders are dedicated network appliances that
perform quality downgrading, compression and re-encoding of multimedia content in
order to accommodate the limited capabilities of low-capacity hosts.

The control plane should take this distinction into consideration and apply two dif-
ferent routing schemes:

• full-capacity hosts should communicate directly among them, without a central
MCU, using multicast;

• low-capacity hosts should also send tra�c directly to other participants, but should
receive only from a transcoder.

The selected network topology is shown shown in Figure 4.1 and comprises six Open-
Flow switches, one transcoder and �ve hosts. Among these, h4 is the only low-capacity
host and should receive tra�c from transcoder T1. All hosts belong to the same logical
group, which is identi�ed with the multicast address 239.192.0.1, in compliance with the
guidelines for administratively scoped addresses found in [14].
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The SDN application must be able to calculate source-speci�c trees from every poten-
tial source of tra�c (hosts and transcoders) and automatically install the corresponding
�ow and group entries on traversed switches. In order to implement service chaining,
outgoing tra�c from each host must additionally be routed to the transcoder, which
will then perform media processing and inject compressed tra�c back into the network
towards h4. We will refer to the source-speci�c tree from the transcoder towards all low-
capacity hosts as the low-capacity tree. Low-capacity trees must be distinguished from
regular trees in order to avoid inconsistencies and loops; we choose to mark packets
coming from the transcoder with a special DSCP value (63) in the IP ToS �eld.

We assume that all necessary signaling procedures have already been completed and
the controller has a stable view of the network. This simpli�es the design and helps focus
on service chaining and switch con�guration. We can imagine that the controller and
the application learn about end host capabilities during the signaling phase, e.g. via
extensions to the SIP signaling protocol.

The �nal distribution trees, as well as �ow and group entries on each switch, shall not
be de�ned here, as these will be dynamically calculated by the SDN application based on
whatever topology is chosen. Details on how topology data is used by the application to
derive trees and forwarding rules for switches are given in Section 5.2.2. Here we shall
instead describe how the designed forwarding behaviour can be achieved using features
of the OpenFlow protocol (see Section 4.2.2).

4.2.1 Objectives

We will now summarize the main requirements for our test scenario:

• source-speci�c trees: the application should be able to build optimal distribution
trees rooted at each tra�c source (hosts and transcoders);

• automatic switch con�guration: the application should automatically convert the
source-speci�c trees into �ow and group entries and install them on all switches
along each tree;

• ToS-marking: switches should be able to distinguish low-capacity trees from the
others by means of a special value in the IP ToS �eld;

• multicasting: packet forwarding should take advantage of multicasting in order to
limit bandwidth usage in the network and duplicate packets only where needed;
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Figure 4.1: Tested network topology

• service chaining: low-capacity hosts should receive tra�c indirectly through the
transcoder, therefore outgoing tra�c from every host must be delivered not only
to full-capacity hosts, but also to the transcoders, and from there to low-capacity
hosts; the �rst switch along the low-capacity tree will change the ToS �eld of all
packets coming from the transcoder.

In addition, we would also like to meet three additional requirements:

• transparency: end hosts should be, as far as possible, unaware of custom routing
and chaining, and our solution should have little or no impact on existing appli-
cations (this includes maintaining the original source address in packets coming
back from the transcoder);

• access control: the set of hosts that are allowed to send tra�c to the multicast group
should be restricted in order to avoid denial of service attacks;
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• spoo�ng protection: IP address spoo�ng can be easily mitigated with simple reverse
path checks.

4.2.2 Solution with OpenFlow

Multicasting is supported by all OpenFlow versions, with a slight di�erence between
version 1.0 and 1.1+. In OpenFlow 1.0 it is possible to specify multiple OUTPUT ac-
tions in a single �ow rule. Group tables, introduced in OpenFlow 1.1, allow the same
behaviour via the GROUP action with multiple action buckets, each containing a single
OUTPUT action. Group tables also enable grouping of �ow actions (hence the name) so
that multiple �ows can point to the same group, and modifying a single group results
in all �ows being updated in a single transaction. For this reason, an OpenFlow ver-
sion greater than 1.0 was preferred. We decided to use the highest version available that
started to see some vendor support at the time the experiments were carried out, so our
choice fell on OpenFlow 1.3. All versions of OpenFlow silently prevent sending a packet
back over the interface it was received (unless the reserved port IN_PORT is explicitly
used), so it is perfectly safe to create a single group entry to be executed for all packets
coming from any port along the multicast tree.

Multiple source-speci�c trees can easily coexist on the same switch by creating a �ow
rule and a group for every source whose tree includes that switch, and matching �ows
on source address. This also implicitly enables us to perform access control, because
any packet that does not match on any known source address is automatically dropped.
Relevant match �elds for low-capacity trees are input port, source IP address (unicast),
destination IP address (multicast), and ToS value. For standard trees, only input port
and IP addresses need to be matched. Explicitly matching on input ports implements a
simple reverse path check and protects us from address spoo�ng.

Finally, the SET_FIELD action is used to mark tra�c coming from the transcoder
before sending it down the low-capacity tree. This action is only performed by the switch
where the transcoder is attached. In summary, switches need to be con�gured according
to the rules listed below.

• For every source-speci�c tree from a host traversing the switch:

– Flow match: input port towards host, source host IP address, destination
multicast address.

– Flow action: GROUP.
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– Group: type ALL, one bucket with OUTPUT action for every port towards
full-capacity hosts and transcoders.

• For every low-capacity tree from a transcoder traversing the switch (and if the
switch is not the attachment point for that transcoder):

– Flow match: input port towards transcoder, source transcoder IP address,
destination multicast address, IP ToS.

– Flow action: GROUP.

– Group: type ALL, one bucket with OUTPUT action for every port towards
low-capacity hosts.

• For every transcoder attached to the switch:

– Flow match: input port towards transcoder, destination multicast address.

– Flow actions: SET_FIELD ToS, GROUP.

– Group: type ALL, one bucket with OUTPUT action for every port towards
low-capacity hosts.
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Chapter 5

Implementation and Testing

Following the description of the test scenario given in the previous chapter, it is now
time to show how they have been implemented and evaluated. First we present the
tools chosen to accomplish the tasks. We then show how these tools were combined
to build and verify the application, and we discuss the di�culties encountered during
implementation and the results obtained from the testing phase.

5.1 Tools

This sections gives an overview of the software tools used in the implementation phase
and motivates their choice over possible alternatives.

5.1.1 Network emulation

In order to achieve the maximum degree of �exibility and take advantage of the features
of OpenFlow 1.3 without depending on the availability of physical devices or vendor
support for OpenFlow, all experiments were carried out in a virtualized network envi-
ronment created with Mininet [22].

Mininet is a network emulation tool written mostly in Python and based on Linux
network namespaces. Hosts are modeled as regular processes running in user space; as
such, they all share the same �lesystem and can run any programs and scripts that are
available on the host (this also helps with management and testing). Every host runs in
its own network namespace and is connected to a switch via a virtual Ethernet pair pro-
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vided by the namespace. Mininet exposes a Python API that can be used to build custom
topologies, con�gure hosts addresses, send commands to hosts and invoke a command-
line interface (CLI) that allows real-time interaction with the emulated network. Mininet
supports several software switches, the default being Open vSwitch running in kernel
mode. Version 2.2.1 was used.

Open vSwitch (OVS) [23, 24] is a multilayer software switch typically used to inter-
connect virtual machines. The Linux kernel includes OVS by default since version 3.3.
Open vSwitch supports OpenFlow 1.3; support for versions 1.4 and 1.5 is currently under
development. OVS performs fast �ow lookup and packet switching as a kernel module,
while the OpenFlow protocol and various management utilities run in user space. The
most relevant utility is ovs-ofctl, the OpenFlow management tool. Open vSwitch 2.3.1
was used in this project.

As both Mininet and Open vSwitch require a Linux operating system, and all tutorials
and guides found on the web refer to the Ubuntu distribution, this was also the choice
for this project. Ubuntu 14.10 (later upgraded to 15.04) was hosted on a Windows 8.1
machine through VirtualBox.

5.1.2 Choice of controller platform

The choice of the controller was driven mainly by two factors. First of all, as explained
in the previous chapter, one of the requirements was to take advantage of group tables
and other features available in OpenFlow 1.3. This quickly narrowed down the list of
suitable controllers to a very small set, in which the most promising options seemed
to be OpenDaylight [25] and Ryu [26]. Both provide an SDN framework consisting of
an OpenFlow controller and built-in modules that implement some common network
functions, such as topology discovery, L2 switching and simple L3 routing, and expose
APIs to external applications.

The second motivating factor was the degree of complexity of the framework along
with the availability and quality of documentation and online support. OpenDaylight
is a very lively community-led project with contributions from several major vendors
as well. This has led to a very complex and feature-rich framework which is somewhat
di�cult to master. Besides, many of its built-in features were not needed in our small-
scale project. Ryu, on the other hand, has a simpler architecture, yet provides a fairly
complete SDN solution that covers many use cases. The online documentation is lacking
in some parts, but it is backed up by an excellent book full of examples with source code
explained [27]. Another source of documentation is the code itself, which is not always
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well commented but can be inspected rather easily.

For all these reasons the choice fell on Ryu, version 3.18. At the time when this choice
was made, it was not yet entirely clear whether the solution would be implemented as
a module inside the controller, or as an application on top of it. Controller modules can
interact with the network directly via the controller’s native OpenFlow API for better
performance, but this makes the application tightly coupled to the speci�c platform.
On the other hand, external applications use the simpler northbound API, which adds
some overhead but is easier to port. Both frameworks are suited for the second option,
but the �rst thought was to use the built-in module approach, and Ryu was chosen for
its simplicity. Later, when the decision was taken to switch to an external application,
Ryu was kept as the controller of choice because enough familiarity had already been
gained with it. The Ryu module chosen to interact with the network is the ofctl_rest.py
module, which provides a REST OpenFlow API for modifying �ow and group entries,
get statistics and change port behaviour.

5.1.3 Generating multicast tra�c

The �rst choice for generating (and receiving) sample multicast tra�c was iperf [28], a
client-server performance measurement tool capable of listening and sending to unicast
and multicast addresses. When used in server mode with a multicast address, iperf gen-
erates an IGMP Membership Report at startup and an IGMP Leave Group message on
termination. However, it comes with options and limitations that are speci�c to the �eld
of network performance evaluation, so a general-purpose tool was preferred.

Netcat [29] is a very popular and �exible utility designed for simplicity and ease of
integration in commands and scripts. It allows to read and write �les, receive data from
standard input, execute commands received from a peer, create simple proxies and port
forwarders, and more. Unfortunately, netcat’s big limitation with respect to this thesis
project is its inability to listen to a multicast address. Despite this, it is still a valid choice
for generating multicast tra�c.

Finally, socat [30] was chosen as the tool for listening to a multicast address. Socat
can be thought of as an augmented version of netcat, as it provides a much richer set of
functionalities and con�guration options, even down to the socket level. One of these
options allows to disable the loopback of multicast tra�c over the interface they are sent
out, preventing applications from receiving their own outgoing tra�c. Socat can also be
con�gured to generate IGMP messages like iperf.
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5.2 Implementation

Two major functional blocks were implemented in order to test and validate our design.
The �rst component, consisting of a topology �le and a Mininet script, recreates and
emulates the sample network described in the previous chapter. The second compo-
nent is the SDN application proper, running on top of the Ryu framework and its REST
OpenFlow API, and is in charge of con�guring the switches and enforcing the correct
forwarding rules to achieve service chaining. The rest of this section describes the high-
level structure of these components.

5.2.1 Mininet script

The topology of the network is stored in a JSON �le that contains the list of switches,
hosts and transcoders. The JSON format allows portability and easy parsing via Python’s
JSON package. The network graph is represented as an adjacency list of switches and
their remote interface identi�er. For each host and transcoder, the attachment switch
is speci�ed, along with its IP address and switch port. The �le is shown in Listing A.1
and the resulting topology, with IP addresses and switch port numbers, can be seen in
Figure 5.1.

The Mininet script parses the topology �le and adds each node and link to the em-
ulated network environment. Since links in Mininet are bidirectional by default, it is
necessary to keep track of those added so far, otherwise an error occurs when a link is in-
serted twice. It is worth noting that Mininet makes no distinction between low-capacity
hosts, full-capacity hosts or transcoders; this must be handled within the network appli-
cation. Finally, the script adds the controller, starts the emulation and invokes the CLI.
The complete script is shown in Listing A.2.

5.2.2 Network application

The network application is written in Python and uses the OpenFlow REST API provided
by Ryu’s ofctl_rest.py module to con�gure �ows and groups on the switches.

The application reads the same topology �le used by the Mininet script and runs
Dijkstra’s algorithm to calculate the shortest paths from every switch to all the others,
thus obtaining optimal source-speci�c trees. The set of switch ports along each tree
is then retrieved by backward traversal of the tree until either the root, or an already
visited switch is encountered. The port sets are stored in two similar data structures,
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Figure 5.1: Detailed network topology as speci�ed in the topology �le

one for normal trees and indexed by source host, the other for low-capacity trees and
indexed by transcoder. Group entries and �ow rules are derived directly from port sets:
on each switch along a tree, a group is created for each set of ports on that tree, and a �ow
pointing to that group is installed; this may result in several identical groups on the same
switch, but it was easier to code and maintain and does not lead to incorrect behaviour.
A simple menu is available for debugging purposes, with options to print shortest paths
and trees. The full code of the network application is available in Listing B.1.

Switch con�guration is done through the classes and methods de�ned in a small
helper �le, shown in Listing B.2, which is a very simple wrapper around the �ow and
group commands of the REST API. To install a �ow on a switch, �ow attributes (matches,
priority and actions) are formatted in JSON and sent as the body of an HTTP POST
request to the controller, at the /stats/�owentry/add URI. Similarly, groups are installed
through a POST request to the /stats/groupentry/add URI.

In summary, the application performs, in order, the following:
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• reads the topology �le;

• computes shortest paths;

• converts shortest paths into port sets;

• installs group entries;

• installs �ow entries.

5.3 Testing

The testing phase aims at verifying the correctness of the implementation with respect
to the goals set at design time. We now show how the tools described earlier in this
chapter are used for this purpose.

5.3.1 Emulated network setup

The following command launches the Mininet script that builds the network from the
topology �le and invokes the CLI:

$ sudo python net.py

One can verify that the network was created as expected by executing the net command
in Mininet:

mininet> net

h2 h2-eth0:s3-eth5

h3 h3-eth0:s4-eth4

h1 h1-eth0:s2-eth4

h4 h4-eth0:s5-eth3

h5 h5-eth0:s5-eth4

T1 T1-eth0:s6-eth5

s3 lo: s3-eth1:s2-eth3 s3-eth2:s6-eth3 s3-eth3:s4-eth1 s3-eth4:s5-

eth1 s3-eth5:h2-eth0

s2 lo: s2-eth1:s1-eth2 s2-eth2:s6-eth2 s2-eth3:s3-eth1 s2-eth4:h1-

eth0

s1 lo: s1-eth1:s6-eth1 s1-eth2:s2-eth1

s6 lo: s6-eth1:s1-eth1 s6-eth2:s2-eth2 s6-eth3:s3-eth2 s6-eth4:s4-

eth2 s6-eth5:T1-eth0
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s5 lo: s5-eth1:s3-eth4 s5-eth2:s4-eth3 s5-eth3:h4-eth0 s5-eth4:h5-

eth0

s4 lo: s4-eth1:s3-eth3 s4-eth2:s6-eth4 s4-eth3:s5-eth2 s4-eth4:h3-

eth0

c0

The output shows the name of each node and the list of interfaces and connected nodes.
For example, switch s1 has a loopback interface and two links, one from local port s1-
eth1 to remote port s6-eth1 of switch s6, and the other from local port s1-eth2 to remote
port s2-eth1 of switch s2. The controller is shown as c0.

5.3.2 Installation of forwarding rules

Before showing how the application was tested, it is important to mention that the cor-
rectness of the designed forwarding rules was �rst veri�ed by statically pushing group
and �ow entries using the ovs-ofctl utility mentioned in Section 5.1.1. This helped dis-
covering design �aws before coding the SDN application. Here is an example of how
entries can be installed with ovs-ofctl from a Linux terminal after launching the Mininet
script:

$ sudo ovs-ofctl -O OpenFlow13 add-group s2 "group_id=1 type=all

bucket=output:2 bucket=output:3"

$ sudo ovs-ofctl -O OpenFlow13 add-flow s2 "ip in_port=1 priority=1

actions=group:1"

This example (which is not part of our implementation) replicates incoming IP packets
from interface 1 of switch s2 and sends them out of interfaces 2 and 3, demonstrating
how multicasting can be achieved with OVS and OpenFlow 1.3.

The Ryu controller and its REST module can be started either before or after launch-
ing Mininet, with the following command run from a di�erent terminal:

$ ryu-manager ryu/ryu/app/ofctl_rest.py

This launches Ryu on the default TCP port 6633 and loads the ofctl_rest.py module,
which starts an HTTP server on port 8080 and logs every request to the console.
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The next step is to run the network application that dynamically installs groups and
�ow rules on switches based on the topology �le and shortest path calculations:

$ python app.py

The ovs-ofctl tool can be used once again to verify how the switches have been con�g-
ured by the application. To retrieve the �ow rules from, say, switch s6, the following
command sends a �ow statistics request to the switch:

$ sudo ovs-ofctl -O OpenFlow13 dump-flows s6

OFPST_FLOW reply (OF1.3) (xid=0x2):

cookie=0x0, duration=7.792s, table=0, n_packets=0, n_bytes=0,

priority=1,ip,in_port=3,nw_src=10.0.0.4,nw_dst=239.192.0.1

actions=group:4

cookie=0x0, duration=7.868s, table=0, n_packets=0, n_bytes=0,

priority=1,ip,in_port=4,nw_src=10.0.0.3,nw_dst=239.192.0.1

actions=group:2

cookie=0x0, duration=7.757s, table=0, n_packets=0, n_bytes=0,

priority=1,ip,in_port=3,nw_src=10.0.0.5,nw_dst=239.192.0.1

actions=group:5

cookie=0x0, duration=7.838s, table=0, n_packets=0, n_bytes=0,

priority=1,ip,in_port=2,nw_src=10.0.0.1,nw_dst=239.192.0.1

actions=group:3

cookie=0x0, duration=7.922s, table=0, n_packets=0, n_bytes=0,

priority=1,ip,in_port=3,nw_src=10.0.0.2,nw_dst=239.192.0.1

actions=group:1

cookie=0x0, duration=7.729s, table=0, n_packets=0, n_bytes=0,

priority=1,ip,in_port=5,nw_dst=239.192.0.1 actions=set_field

:63->ip_dscp,group:6

The reply contains a list of �ow entries along with their duration, packet and byte counts,
match �elds and actions. Recall that s6 is the attachment switch for the transcoder. As
can be seen, six �ow rules were retrieved. The �rst �ve rules match packets from the
hosts and forward them along their source-speci�c trees towards the transcoder and the
other hosts. The last rule matches tra�c from the transcoder, sets the DSCP �eld to 63
(Tos value 252), and sends it down the low-capacity tree towards host h4. Group details
are retrieved as follows:

$ sudo ovs-ofctl -O OpenFlow13 dump-groups s6
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OFPST_GROUP_DESC reply (OF1.3) (xid=0x2):

group_id=6,type=all,bucket=weight:0,actions=output:3

group_id=4,type=all,bucket=weight:0,actions=output:5

group_id=1,type=all,bucket=weight:0,actions=output:5

group_id=5,type=all,bucket=weight:0,actions=output:5

group_id=2,type=all,bucket=weight:0,actions=output:5

group_id=3,type=all,bucket=weight:0,actions=output:5

In order to show that groups are set up properly and packets are indeed sent out of the
correct interfaces, it is necessary to examine the con�guration of all the other switches
(see Appendix C). Also notice how most groups are identical, as expected. This may be
a little ine�cient but makes topology updates easier to manage. The con�guration of
other switches can be veri�ed in a similar way.

5.3.3 Delivery of multicast tra�c

The �nal test consists in generating sample multicast tra�c and checking that it truly
reaches every host according to design goals and switch con�guration. To do so, we
need to send commands to hosts and the transcoder through Mininet’s CLI. We can
open terminal windows (xterm) on hosts as follows:

mininet> xterm h1 h2 h3 h4 h5 T1

Using the tools described in Section 5.1.3, we want hosts to listen to the selected multicast
address and port (239.192.0.1:1234) with the socat command and print what they receive
to standard output:

# socat UDP4-RECVFROM:1234,ip-add-membership=239.192.0.1:10.0.0.1,

fork STDOUT

This command subscribes the host (h1 in this case) to the multicast address, binds it to
the virtual interface with address 10.0.0.1 and forks a new process to print the payload
of every received packet to standard output. Similarly, the transcoder pipes two socat
commands together so that received tra�c is re�ected back over the same interface it
was received:

# socat UDP4-RECVFROM:1234,ip-add-membership=239.192.0.1:10.0.0.255,

fork STDOUT | socat STDIN UDP4-DATAGRAM:239.192.0.1:1234,ip-
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multicast-if=10.0.0.255,ip-multicast-loop=0

The ip-multicast-loop option is explicitly disabled to prevent outgoing packets from be-
ing received again by the transcoder. This is obviously not real transcoding at all, but
merely serves the purpose of demonstrating that it is possible to reroute tra�c through
a middlebox to achieve service chaining. A better way would be to have the transcoder
perform some kind of basic compression (e.g. removing random bytes from the payload)
by piping a third command between the two socat commands. Unfortunately, for some
reason we were not able to pipe three commands together with socat. Finally, we need
to pick a host as the sender (h1 in this case), open a new xterm window from Mininet
and type the following:

# nc -u 239.192.0.1 1234

The netcat command shown above should prompt the user for data to be sent to the
multicast address on UDP port 1234. However, the program terminates immediately and
nothing happens. This is easily �xed by adding a default route to h1’s IP con�guration
and trying again:

# ip route add default via 10.0.0.1

# nc -u 239.192.0.1 1234

Alternatively, we can use socat again:

# socat STDIN UDP4-DATAGRAM:239.192.0.1:1234,ip-multicast-if

=10.0.0.1,ip-multicast-loop=0

We can now type some test data into h1’s terminal. Upon pressing enter, the input is
sent as payload of a UDP packet to the multicast address and will appear in the xterm
windows of the other hosts. In order to check the actual path of the packet through the
network we can look at the �ow counters on each switch along h1’s and T1’s trees using
the ovs-ofctl utility. The complete �ow and group dumps for every switch, retrieved after
testing, are shown in Appendix C. Results related to the tra�c from h1 are summarized
in Table 5.1 and Figure 5.2.
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Switch
Match �elds Actions

Input port Source Destination ToS Set �eld Output
s2 4 10.0.0.1 239.192.0.1 - - 2, 3

s3
1 10.0.0.1 239.192.0.1 - - 3, 4, 5
2 10.0.0.255 239.192.0.1 252 - 4

s4 1 10.0.0.1 239.192.0.1 - - 4

s5
1 10.0.0.1 239.192.0.1 - - 4
1 10.0.0.255 239.192.0.1 252 - 3

s6
2 10.0.0.1 239.192.0.1 - - 5
5 - 239.192.0.1 - ToS: 252 3

Table 5.1: Summary of forwarding rules for tra�c from h1
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Figure 5.2: Path of tra�c from h1 through the network (low-capacity tree in red)
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Chapter 6

Discussion

After demonstrating how the original problem can be solved using a combination of
multicast and SDN, we need to draw some conclusions and comment on the results. This
chapter points out achievements and possible areas of improvement and will hopefully
inspire further investigation on the problem.

SDN in general brings in both advantages and drawbacks. On the positive side, the
ability to drive networks and deploy services using generic programming tools is per-
haps the most promising feature of SDN and provides a high degree of �exibility that is
not possible with proprietary and closed-source network architectures. The separation
of the control plane from the data plane and the uni�ed southbound interface provided
by OpenFlow make network management easier, but at the same time add some com-
plexity in the control and application planes (this is espcially apparent in OpenDaylight).
The additional layers of abstraction can make high-performance and scalable application
development more di�cult. Besides, unlike traditional distributed control, a centralized
controller is very intuitively a single point of failure.

Only proactive con�guration of switches has been tested, i.e. �ows and groups were
installed before running the experiments, with the network “at rest”. Reactive con�gu-
ration in response to network events and host activity is another possibility, but requires
careful design to ensure acceptable performance, and programming at controller level
rather than application level, thus increasing the overall complexity of the solution.

The lack of a real transcoding middlebox made evaluation somewhat di�cult and im-
precise. For this reason we could not rely on �ow byte counters for measuring bandwidth
saving, so we resorted to simply counting the number of packets in order to verify that
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forwarding was carried out properly. In addition, it was recalled quite late that Mininet
supports tra�c shaping and virtual link bandwidth limiting, which could be useful to
evaluate the usefulness of service chaining by comparing the number of packet drops
with and without the transcoder.

We do not believe that SDN is the de�nitive solution to all networking problems, but
it sure has a lot of potential. It appears from this thesis work that SDN is well suited
to build simple custom forwarding and service chaining, although its performance in
highly dynamic environments with near real-time requirements should be studied and
evaluated in much greater detail.

We are conscious of the fact that the application developed in this project has many
imperfections and is still far from being a complete solution. We are, however, reason-
ably satis�ed with our results.

6.1 Ful�llment of Objectives

Most of the objectives listed in Section 4.2.1 have been succesfully achieved, as shown
in Table 6.1. The only exception is transparency, which stated that the original IP ad-
dresses should preferably be maintained after packet processing by the transcoder. Un-
fortunately, too much time and e�ort were required in order to address the problem, and
this requirement, being not among the primary goals, was eventually dropped. It has to
be said that the most di�cult part of the project was not the implementation, but rather
�guring out the necessary �ow rules at design time.

Objective Ful�lled
Source-speci�c trees Yes
Automatic switch con�guration Yes
ToS-marking Yes
Multicasting Yes
Service chaining Yes
Transparency No
Access control Yes
Spoo�ng protection Yes

Table 6.1: Summary of objectives and their ful�llment
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6.2 Middlebox Placement

In our design, the transcoder was placed in an arbitrary position without any special
requirement: the main objective was not to �nd the best location for the middlebox,
but rather to correctly setup forwarding rules for service chaining. Now that we have
shown that this is possible with SDN and OpenFlow, some words should be spent on
how to determine the appropriate location of such middlebox. This problem is known
in the literature as the facility location problem. Even without addressing the problem
in a complete and formal way (this would likely require a whole book on its own, and is
de�nitely out of scope here) we can still draw some empyrical guidelines.

The number and distribution of low-capacity hosts surely a�ects transcoder place-
ment. This is also highly dependent on the network topology. In general, the most rea-
sonable solution is to place the controller as close to the low-capacity receivers as possi-
ble. However, if all low-capacity hosts reside in the same region, locating the transcoder
next to the sources may be more appropriate in order to avoid unnecessary bandwidth
occupancy. Other variables in�uence this choice, for instance the number of available
middleboxes and the cost of installation. Another interesting factor is whether the ap-
pliance is virtualized or not: if so, it may be possible to move it across the network
on demand and leverage the full potential of Network Functions Virtualization. These
considerations show how di�cult it is to derive a general rule for every case.
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Chapter 7

Conclusions

This thesis looked into how custom routing and multicasting are possible with Software-
De�ned Networking and OpenFlow. Decoupling the control plane from the data plane
and unifying the network management interface allows con�guration of the network
using standard, general-purpose programming tools, and paves the way for a whole new
range of services and applications. We have also shown how networks can be designed
and evaluated easily with Mininet and Open vSwitch without physical deployment and
interconnection of hardware.

Among the possible use cases of multicast and SDN for a research network provider,
we focused on videoconferencing. It is common today to access the Internet from a va-
riety of devices and locations, such as smartphones connected over wireless networks
with low bandwidth or poor coverage. Our design aimed at providing a �exible solution
that allows end-users with limited capabilities to participate in a videoconferencing ex-
perience together with other users that do not su�er from such limitations. This was
accomplished through network service chaining, in which tra�c is re-routed through a
transcoding middlebox that delivers a compressed, low-quality multimedia stream only
to those struggling hosts.

Following the description of the implementation and testing procedure, possible ad-
vantages, drawbacks and middlebox location were discussed. Although SDN can provide
the required degree of �exibility, a complete solution needs careful planning, taking into
account scalability, availability and security issues.
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7.1 Future Work

During the work on this thesis, several interesting ideas emerged but did not make it
into the �nal design due to lack of time. Possible continuations of this work include:

• automatic topology discovery in the controller;

• load balancing between multiple transcoders;

• dynamic optimization of transcoder placement;

• integration with multimedia signaling and group management;

• tra�c engineering with load balancing across links;

• dynamic/predictive fault handling with periodic collection of statistics;

• testing on real hardware.
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Appendix A

Topology File and Mininet Script

Listing A.1: Topology �le: topo1.json
1 {

2 "__COMMENT": "Network topology description used by network application and

Mininet script",

3

4 "__COMMENT": "switches: each switch is a dictionary of adjacent switch name

: local port switch",

5 "__COMMENT": "dpids: mapping from switch name to datapath id (only for app.

py)",

6 "__COMMENT": "hosts: each host is a dictionary of attached switch, switch

port and host IP address",

7 "__COMMENT": "low_hosts: array of low-capacity hosts, each as key in hosts

dictionary",

8 "__COMMENT": "tees: transcoders, same format as hosts",

9

10

11 "switches": {

12 "s1": { "s2": 2, "s6": 1 },

13 "s2": { "s1": 1, "s3": 3, "s6": 2 },

14 "s3": { "s2": 1, "s4": 3, "s5": 4, "s6": 2},

15 "s4": { "s3": 1, "s5": 3, "s6": 2 },

16 "s5": { "s3": 1, "s4": 2 },

17 "s6": { "s1": 1, "s2": 2, "s3": 3, "s4": 4 }

18 },

19

20 "dpids": {

21 "s1": 1,

22 "s2": 2,
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23 "s3": 3,

24 "s4": 4,

25 "s5": 5,

26 "s6": 6

27 },

28

29 "hosts": {

30 "h1": { "switch": "s2", "port": 4, "ip": "10.0.0.1" },

31 "h2": { "switch": "s3", "port": 5, "ip": "10.0.0.2" },

32 "h3": { "switch": "s4", "port": 4, "ip": "10.0.0.3" },

33 "h4": { "switch": "s5", "port": 3, "ip": "10.0.0.4" },

34 "h5": { "switch": "s5", "port": 4, "ip": "10.0.0.5" }

35 },

36

37 "low_hosts": [

38 "h4"

39 ],

40

41 "tees": {

42 "T1": { "switch": "s6", "port": 5, "ip": "10.0.0.255" }

43 }

44 }

Listing A.2: Mininet script: net.py
1 from mininet.net import Mininet

2 from mininet.cli import CLI

3 from mininet.node import OVSSwitch, RemoteController

4 import json

5

6

7 def net():

8

9 net = Mininet()

10

11 # read topology file

12 filejson = open("topo/topo1.json")

13 topojson = json.load(filejson)

14

15 # create topology

16 link_exists = {}

17

18 for name in topojson['switches']:

19 net.addSwitch(name, cls=OVSSwitch, protocols="OpenFlow13")

20 link_exists[name] = {}

21
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22 for name in topojson['hosts']:

23 net.addHost(name, ip=topojson['hosts'][name]['ip'])

24

25 for name in topojson['tees']:

26 net.addHost(name, ip=topojson['tees'][name]['ip'])

27

28 # connect switches

29 for swname in topojson['switches']:

30 adjsw = topojson['switches'][swname]

31 for adjswname in adjsw:

32 # links are bidirectional, error if added twice

33 if adjswname not in link_exists[swname]:

34 local_if = adjsw[adjswname]

35 remote_if = topojson['switches'][adjswname][swname]

36 net.addLink(swname, adjswname, port1=local_if, port2=remote_if)

37 # mark both as created

38 link_exists[swname][adjswname] = True

39 link_exists[adjswname][swname] = True

40

41 # connect hosts and transcoders to switches

42 for name in topojson['hosts']:

43 hostdata = topojson['hosts'][name]

44 net.addLink(name, hostdata['switch'], port2=hostdata['port'])

45

46 for name in topojson['tees']:

47 hostdata = topojson['tees'][name]

48 net.addLink(name, hostdata['switch'], port2=hostdata['port'])

49

50 # add controller and start network

51 net.addController(controller=RemoteController, port=6633)

52 net.start()

53

54 # start CLI

55 CLI(net)

56

57 # done

58 net.stop()

59

60

61 if __name__ == '__main__':

62 net()
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Appendix B

Network Application Files

Listing B.1: Network application: app.py
1 from ofhelper import FlowEntry, GroupEntry

2 import json

3

4

5 # allocate variable names (see topology files in common dir for format)

6 switches = {} # switches

7 hosts = {} # all hosts, including low-capacity hosts but not transcoders

8 low_hosts = [] # low-capacity hosts

9 tees = {} # transcoders

10 dpids = {} # datapath id for each switch

11

12 # for each source host, store the list of output ports for each switch in tree

13 # used to build and track group entries

14 ports = {}

15 ports_lq = {} # rooted at T

16

17 # shortest paths, from each switch

18 sp = {}

19

20 # different groups may be installed on each switch (one for each source-

specific

21 # tree traversing the switch): keep track of the next available group id

22 gid = {}

23

24 # the multicast address reserved to this group

25 MCAST_ADDR = "239.192.0.1"

26 DSCP_VALUE = 63
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27

28

29 def load_json_topology (filename):

30

31 global switches

32 global hosts

33 global low_hosts

34 global tees

35 global dpids

36 global gid

37

38 filejson = open(filename)

39 topojson = json.load(filejson)

40

41 switches = topojson['switches']

42 hosts = topojson['hosts']

43 low_hosts = topojson['low_hosts']

44 tees = topojson['tees']

45 dpids = topojson['dpids']

46

47 for sw in switches:

48 gid[sw] = 1

49

50

51 def get_next_gid (sw):

52 g = gid[sw]

53 gid[sw] += 1

54 return g

55

56

57 # Dijkstra's algorithm from switch src

58 def shortest_paths (src):

59

60 dist = {}

61 prev = {}

62

63 tovisit = switches.keys()

64 for node in tovisit:

65 dist[node] = float('inf')

66 prev[node] = None

67 dist[src] = 0

68

69 while len(tovisit) > 0:

70 # extract node u closest to the set of visited nodes

71 tovisit.sort(key = lambda x: dist[x])

72 u = tovisit.pop(0)
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73 # for each neighbor v of u still unvisited, update distances

74 for v in switches[u]:

75 if v in tovisit:

76 tmp = dist[u] + 1

77 if tmp < dist[v]:

78 dist[v] = tmp

79 prev[v] = u

80

81 return prev

82

83

84 def shortest_paths_all():

85 for s in switches:

86 sp[s] = shortest_paths(s)

87

88

89 def tree_ports_hq (sh): # source host

90 done = set() # switches already part of the tree

91 treeports = {}

92 src = hosts[sh]['switch'] # source switch

93 for dh in hosts: # high-capacity destination hosts

94 if dh != sh and dh not in low_hosts:

95 dst = hosts[dh]['switch'] # destination switch

96 # walk back towards source until root (pre is None)

97 # or another switch is found that is already part of the tree

98 cur = dst # current switch

99 pre = sp[src][cur] # parent of current switch

100 while pre is not None and cur not in done:

101 port = switches[pre][cur]

102 if pre not in treeports:

103 treeports[pre] = set()

104 treeports[pre].add(port)

105 # next iteration

106 done.add(cur) # mark current switch as added to the tree

107 cur = pre

108 pre = sp[src][cur]

109 # add destination host

110 if dst not in treeports:

111 treeports[dst] = set()

112 treeports[dst].add(hosts[dh]['port'])

113 for t in tees: # transcoders (also part of multicast group)

114 dst = tees[t]['switch'] # destination switch

115 # walk back towards source until root (pre is None)

116 # or another switch is found that is already part of the tree

117 cur = dst # current switch

118 pre = sp[src][cur] # parent of current switch
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119 while pre is not None and cur not in done:

120 port = switches[pre][cur]

121 if pre not in treeports:

122 treeports[pre] = set()

123 treeports[pre].add(port)

124 # next iteration

125 done.add(cur) # mark current switch as added to the tree

126 cur = pre

127 pre = sp[src][cur]

128 # add destination host

129 if dst not in treeports:

130 treeports[dst] = set()

131 treeports[dst].add(tees[t]['port'])

132 return treeports

133

134

135 def tree_ports_hq_all():

136 for sh in hosts: # source host

137 ports[sh] = tree_ports_hq(sh)

138

139

140 def tree_ports_lq (t): # source transcoder

141 done = set() # switches already part of the tree

142 treeports = {}

143 src = tees[t]['switch'] # source switch

144 for dh in low_hosts: # low-capacity destination hosts

145 dst = hosts[dh]['switch'] # destination switch

146 # walk back towards source until root (pre is None)

147 # or another switch is found that is already part of the tree

148 cur = dst # current switch

149 pre = sp[src][cur] # parent of current switch

150 while pre is not None and cur not in done:

151 port = switches[pre][cur]

152 if pre not in treeports:

153 treeports[pre] = set()

154 treeports[pre].add(port)

155 # next iteration

156 done.add(cur) # mark current switch as added to the tree

157 cur = pre

158 pre = sp[src][cur]

159 # add destination host

160 if dst not in treeports:

161 treeports[dst] = set()

162 treeports[dst].add(hosts[dh]['port'])

163 return treeports

164
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165

166 def tree_ports_lq_all():

167 for t in tees:

168 ports_lq[t] = tree_ports_lq(t)

169

170

171 def reverse_path_port (host, switch):

172 root = host['switch'] # root switch of h's tree

173 pre = sp[root][switch] # parent switch of current switch

174 if pre is None: # current switch is root switch

175 return host['port'] # local port towards host

176 else:

177 return switches[switch][pre] # local port towards parent switch

178

179

180 def install_hq_flows():

181 for h in ports: # for each high-capacity source host

182 for sw in ports[h]: # for each switch in the tree

183 # group entry

184 newgid = get_next_gid(sw)

185 g = GroupEntry(dpids[sw], newgid, "ALL")

186 i = 0

187 for p in ports[h][sw]: # for each switch port in the tree

188 g.addBucket()

189 g.addAction(i, "OUTPUT", port=p)

190 i += 1

191 g.install()

192 # flow entry (also match on in_port for reverse path check)

193 f = FlowEntry(dpids[sw])

194 f.addMatch("in_port", reverse_path_port(hosts[h],sw))

195 f.addMatch("dl_type", 0x800)

196 f.addMatch("nw_src", hosts[h]['ip'])

197 f.addMatch("nw_dst", MCAST_ADDR)

198 f.addAction("GROUP", group_id=newgid)

199 f.install()

200

201

202 def install_lq_flows():

203 for t in ports_lq: # for each transcoder as source

204 for sw in ports_lq[t]: # for each switch in the tree

205 # group entry

206 newgid = get_next_gid(sw)

207 g = GroupEntry(dpids[sw], newgid, "ALL")

208 i = 0

209 for p in ports_lq[t][sw]: # for each switch port in the tree

210 g.addBucket()
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211 g.addAction(i, "OUTPUT", port=p)

212 i += 1

213 g.install()

214 # flow entry (also match on in_port for reverse path check)

215 # do not install on transcoder switch, tos is not set by T

216 if not sw == tees[t]['switch']:

217 f = FlowEntry(dpids[sw])

218 f.addMatch("in_port", reverse_path_port(tees[t],sw))

219 f.addMatch("dl_type", 0x800)

220 f.addMatch("ip_dscp", DSCP_VALUE)

221 f.addMatch("nw_src", tees[t]['ip'])

222 f.addMatch("nw_dst", MCAST_ADDR)

223 f.addAction("GROUP", group_id=newgid)

224 f.install()

225 # set ip_dscp when coming from T

226 # the last group added to T's switch refers to the low-capacity tree

227 tsw = tees[t]['switch']

228 lastgid = gid[tsw]-1

229 # flow entry (match on in_port, not nw_src, because original IP address

230 # should be kept)

231 f = FlowEntry(dpids[tsw])

232 f.addMatch("in_port", tees[t]['port'])

233 f.addMatch("dl_type", 0x800)

234 f.addMatch("nw_dst", MCAST_ADDR)

235 f.addAction("SET_FIELD", field="ip_dscp", value=DSCP_VALUE)

236 f.addAction("GROUP", group_id=lastgid)

237 f.install()

238

239

240 def dump_sp():

241 for s in sp:

242 print "sp[%s]:" % (s, sp[s])

243 print #newline

244

245

246 def dump_ss_trees():

247 for sh in hosts: # source host

248 src = hosts[sh]['switch'] # source switch

249 print "source: %s (%s)" % (sh,src)

250 for dh in hosts: # destination hosts

251 if dh != sh:

252 dst = hosts[dh]['switch'] # destination switch

253 print " dest: %s (%s)" % (dh,dst)

254 if dh not in low_hosts:

255 print " pre[%s]=%s, port=%d" % (dh,dst,hosts[dh]['port

'])
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256 # walk back until root (pre is None)

257 cur = dst # current switch

258 pre = sp[src][cur] # parent of current switch

259 while pre is not None:

260 port = switches[pre][cur]

261 print " pre[%s]=%s, port=%d" % (cur,pre,port)

262 cur = pre

263 pre = sp[src][cur]

264

265 for t in tees: # transcoders (also part of multicast group)

266 dst = tees[t]['switch'] # destination switch

267 print " dest: %s (%s)" % (t,dst)

268 # walk back towards source until root (pre is None)

269 cur = dst # current switch

270 pre = sp[src][cur] # parent of current switch

271 while pre is not None:

272 port = switches[pre][cur]

273 print " pre[%s]=%s, port=%d" % (cur,pre,port)

274 cur = pre

275 pre = sp[src][cur]

276

277 portbuf = "ports:"

278 for sw in ports[sh]:

279 for port in ports[sh][sw]:

280 portbuf += " %s-eth%d" % (sw,port)

281 print portbuf

282 print #newline

283

284

285 def dump_low_trees():

286 for t in tees: # source transcoder

287 src = tees[t]['switch'] # source switch

288 print "source: %s (%s)" % (t,src)

289 for dh in low_hosts: # destination low-capacity hosts

290 dst = hosts[dh]['switch'] # destination switch

291 print " dest: %s (%s)" % (dh,dst)

292 print " pre[%s]=%s, port=%d" % (dh,dst,hosts[dh]['port'])

293 # walk back until root (pre is None)

294 cur = dst # current switch

295 pre = sp[src][cur] # parent of current switch

296 while pre is not None:

297 port = switches[pre][cur]

298 print " pre[%s]=%s, port=%d" % (cur,pre,port)

299 cur = pre

300 pre = sp[src][cur]

301 portbuf = "ports:"
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302 for sw in ports_lq[t]:

303 for port in ports_lq[t][sw]:

304 portbuf += " %s-eth%d" % (sw,port)

305 print portbuf

306 print #newline

307

308

309 def menu():

310

311 options = [

312 {'str': "Quit", 'action': None},

313 {'str': "Dump shortest paths", 'action': dump_sp},

314 {'str': "Dump source-specific trees", 'action': dump_ss_trees},

315 {'str': "Dump low-capacity trees", 'action': dump_low_trees}

316 ]

317

318 while True: # until quit

319 while True: # while bad input

320

321 for i in range(len(options)):

322 print " %d - %s" % (i, options[i]['str'])

323 print #newline

324

325 try:

326 choice = int(raw_input("Choose an option: "))

327 if choice < 0 or choice >= len(options):

328 raise ValueError

329 break

330 except ValueError:

331 print "Invalid choice: enter a number between 0 and %d" \

332 % (len(options)-1)

333 except (EOFError, KeyboardInterrupt):

334 print #newline

335 choice = 0

336 break

337

338 print #newline

339

340 if choice == 0: # quit

341 break

342

343 if not options[choice]['action'] is None:

344 options[choice]['action']()

345

346

347 if __name__ == "__main__":

58



348 print "** Loading topology **"

349 load_json_topology("../topo/topo1.json")

350 print "** Generating shortest paths (source-specific trees) **"

351 shortest_paths_all()

352 print "** Generating port sets for high-capacity trees **"

353 tree_ports_hq_all()

354 print "** Generating port sets for low-capacity trees **"

355 tree_ports_lq_all()

356 print "** Installing flows for high-quality traffic **"

357 install_hq_flows()

358 print "** Installing flows for low-quality traffic **"

359 install_lq_flows()

360 menu()

Listing B.2: Helper �le: ofhelper.py
1 import json

2 import httplib

3

4

5 class FlowEntry():

6

7 def __init__ (self, dpid, priority=1):

8 self._dpid = dpid

9 self._priority = priority

10 self._matches = {}

11 self._actions = []

12

13 def addMatch (self, field, value):

14 self._matches[field] = value

15

16 def addAction (self, action, **params):

17 action = {'type': action}

18 for key in params:

19 action[key] = params[key]

20 self._actions.append(action)

21

22 def install (self):

23 body = self._make_request_body()

24 res = self._send_request("POST", "/stats/flowentry/add", body)

25

26 def delete (self):

27 body = self._make_request_body()

28 res = self._send_request("POST", "/stats/flowentry/delete", body)

29

30 def _make_request_body (self):
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31 obj = {}

32 obj['dpid'] = self._dpid

33 obj['priority'] = self._priority

34 obj['match'] = self._matches

35 obj['actions'] = self._actions

36 return json.dumps(obj)

37

38 def _send_request (self, method, url, body):

39 conn = httplib.HTTPConnection("127.0.0.1", 8080)

40 conn.request(method, url, body)

41 res = conn.getresponse()

42 return res

43

44

45 class GroupEntry():

46

47 def __init__ (self, dpid, grpid, grptype):

48 self._dpid = dpid

49 self._grpid = grpid

50 self._type = grptype

51 self._buckets = []

52

53 def addBucket (self, weight=0):

54 self._buckets.append({'weight': weight, 'actions': []})

55

56 def addAction (self, bucket, action, **params):

57 if not bucket < len(self._buckets):

58 print "** Bucket %d does not exist **" % bucket

59 return

60 action = {'type': action}

61 for key in params:

62 action[key] = params[key]

63 self._buckets[bucket]['actions'].append(action)

64

65 def install (self):

66 body = self._make_request_body()

67 res = self._send_request("POST", "/stats/groupentry/add", body)

68

69 def delete (self):

70 body = self._make_request_body()

71 res = self._send_request("POST", "/stats/groupentry/delete", body)

72

73 def _make_request_body (self):

74 obj = {}

75 obj['dpid'] = self._dpid

76 obj['group_id'] = self._grpid
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77 obj['type'] = self._type

78 obj['buckets'] = self._buckets

79 return json.dumps(obj)

80

81 def _send_request (self, method, url, body):

82 conn = httplib.HTTPConnection("127.0.0.1", 8080)

83 conn.request(method, url, body)

84 res = conn.getresponse()

85 return res
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Appendix C

Flow and Group Table Entries after
Testing

Listing C.1: Flows and groups on switch s1
$ sudo ovs-ofctl -O openflow13 dump-flows s1 --sort=nw_src

OFPST_FLOW reply (OF1.3) (xid=0x2):

$ sudo ovs-ofctl -O openflow13 dump-groups s1

OFPST_GROUP_DESC reply (OF1.3) (xid=0x2):

Listing C.2: Flows and groups on switch s2
$ sudo ovs-ofctl -O openflow13 dump-flows s2 --sort=nw_src

OFPST_FLOW reply (OF1.3) (xid=0x2):

cookie=0x0, duration=438.477s, table=0, n_packets=1, n_bytes=49, priority=1,ip

,in_port=4,nw_src=10.0.0.1,nw_dst=239.192.0.1 actions=group:3

cookie=0x0, duration=438.522s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=3,nw_src=10.0.0.2,nw_dst=239.192.0.1 actions=group:1

cookie=0x0, duration=438.498s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=3,nw_src=10.0.0.3,nw_dst=239.192.0.1 actions=group:2

cookie=0x0, duration=438.455s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=3,nw_src=10.0.0.4,nw_dst=239.192.0.1 actions=group:4

cookie=0x0, duration=438.430s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=3,nw_src=10.0.0.5,nw_dst=239.192.0.1 actions=group:5
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$ sudo ovs-ofctl -O openflow13 dump-groups s2

OFPST_GROUP_DESC reply (OF1.3) (xid=0x2):

group_id=4,type=all,bucket=weight:0,actions=output:4

group_id=1,type=all,bucket=weight:0,actions=output:4

group_id=5,type=all,bucket=weight:0,actions=output:4

group_id=2,type=all,bucket=weight:0,actions=output:4

group_id=3,type=all,bucket=weight:0,actions=output:2,bucket=weight:0,actions=

output:3

Listing C.3: Flows and groups on switch s3
$ sudo ovs-ofctl -O openflow13 dump-flows s3 --sort=nw_src

OFPST_FLOW reply (OF1.3) (xid=0x2):

cookie=0x0, duration=460.727s, table=0, n_packets=1, n_bytes=49, priority=1,ip

,in_port=1,nw_src=10.0.0.1,nw_dst=239.192.0.1 actions=group:3

cookie=0x0, duration=460.777s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=5,nw_src=10.0.0.2,nw_dst=239.192.0.1 actions=group:1

cookie=0x0, duration=460.706s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=4,nw_src=10.0.0.4,nw_dst=239.192.0.1 actions=group:4

cookie=0x0, duration=460.749s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=3,nw_src=10.0.0.3,nw_dst=239.192.0.1 actions=group:2

cookie=0x0, duration=460.683s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=4,nw_src=10.0.0.5,nw_dst=239.192.0.1 actions=group:5

cookie=0x0, duration=460.655s, table=0, n_packets=1, n_bytes=49, priority=1,ip

,in_port=2,nw_src=10.0.0.255,nw_dst=239.192.0.1,nw_tos=252 actions=group:6

$ sudo ovs-ofctl -O openflow13 dump-groups s3

OFPST_GROUP_DESC reply (OF1.3) (xid=0x2):

group_id=6,type=all,bucket=weight:0,actions=output:4

group_id=4,type=all,bucket=weight:0,actions=output:1,bucket=weight:0,actions=

output:2,bucket=weight:0,actions=output:5

group_id=1,type=all,bucket=weight:0,actions=output:1,bucket=weight:0,actions=

output:2,bucket=weight:0,actions=output:3,bucket=weight:0,actions=output:4

group_id=5,type=all,bucket=weight:0,actions=output:1,bucket=weight:0,actions=

output:2,bucket=weight:0,actions=output:5

group_id=2,type=all,bucket=weight:0,actions=output:1,bucket=weight:0,actions=

output:5

group_id=3,type=all,bucket=weight:0,actions=output:3,bucket=weight:0,actions=

output:4,bucket=weight:0,actions=output:5

Listing C.4: Flows and groups on switch s4
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$ sudo ovs-ofctl -O openflow13 dump-flows s4 --sort=nw_src

OFPST_FLOW reply (OF1.3) (xid=0x2):

cookie=0x0, duration=481.078s, table=0, n_packets=1, n_bytes=49, priority=1,ip

,in_port=1,nw_src=10.0.0.1,nw_dst=239.192.0.1 actions=group:3

cookie=0x0, duration=481.122s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=1,nw_src=10.0.0.2,nw_dst=239.192.0.1 actions=group:1

cookie=0x0, duration=481.099s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=4,nw_src=10.0.0.3,nw_dst=239.192.0.1 actions=group:2

cookie=0x0, duration=481.056s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=3,nw_src=10.0.0.4,nw_dst=239.192.0.1 actions=group:4

cookie=0x0, duration=481.028s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=3,nw_src=10.0.0.5,nw_dst=239.192.0.1 actions=group:5

$ sudo ovs-ofctl -O openflow13 dump-groups s4

OFPST_GROUP_DESC reply (OF1.3) (xid=0x2):

group_id=4,type=all,bucket=weight:0,actions=output:4

group_id=1,type=all,bucket=weight:0,actions=output:4

group_id=5,type=all,bucket=weight:0,actions=output:4

group_id=2,type=all,bucket=weight:0,actions=output:1,bucket=weight:0,actions=

output:2,bucket=weight:0,actions=output:3

group_id=3,type=all,bucket=weight:0,actions=output:4

Listing C.5: Flows and groups on switch s5
$ sudo ovs-ofctl -O openflow13 dump-flows s5 --sort=nw_src

OFPST_FLOW reply (OF1.3) (xid=0x2):

cookie=0x0, duration=495.813s, table=0, n_packets=1, n_bytes=49, priority=1,ip

,in_port=1,nw_src=10.0.0.1,nw_dst=239.192.0.1 actions=group:3

cookie=0x0, duration=495.858s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=1,nw_src=10.0.0.2,nw_dst=239.192.0.1 actions=group:1

cookie=0x0, duration=495.835s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=2,nw_src=10.0.0.3,nw_dst=239.192.0.1 actions=group:2

cookie=0x0, duration=495.793s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=3,nw_src=10.0.0.4,nw_dst=239.192.0.1 actions=group:4

cookie=0x0, duration=495.765s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=4,nw_src=10.0.0.5,nw_dst=239.192.0.1 actions=group:5

cookie=0x0, duration=495.749s, table=0, n_packets=1, n_bytes=49, priority=1,ip

,in_port=1,nw_src=10.0.0.255,nw_dst=239.192.0.1,nw_tos=252 actions=group:6

$ sudo ovs-ofctl -O openflow13 dump-groups s5

OFPST_GROUP_DESC reply (OF1.3) (xid=0x2):

group_id=6,type=all,bucket=weight:0,actions=output:3
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group_id=4,type=all,bucket=weight:0,actions=output:1,bucket=weight:0,actions=

output:2,bucket=weight:0,actions=output:4

group_id=1,type=all,bucket=weight:0,actions=output:4

group_id=5,type=all,bucket=weight:0,actions=output:1,bucket=weight:0,actions=

output:2

group_id=2,type=all,bucket=weight:0,actions=output:4

group_id=3,type=all,bucket=weight:0,actions=output:4

Listing C.6: Flows and groups on switch s6
$ sudo ovs-ofctl -O openflow13 dump-flows s6 --sort=nw_src

OFPST_FLOW reply (OF1.3) (xid=0x2):

cookie=0x0, duration=517.216s, table=0, n_packets=1, n_bytes=49, priority=1,ip

,in_port=2,nw_src=10.0.0.1,nw_dst=239.192.0.1 actions=group:3

cookie=0x0, duration=517.260s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=3,nw_src=10.0.0.2,nw_dst=239.192.0.1 actions=group:1

cookie=0x0, duration=517.237s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=4,nw_src=10.0.0.3,nw_dst=239.192.0.1 actions=group:2

cookie=0x0, duration=517.194s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=3,nw_src=10.0.0.4,nw_dst=239.192.0.1 actions=group:4

cookie=0x0, duration=517.169s, table=0, n_packets=0, n_bytes=0, priority=1,ip,

in_port=3,nw_src=10.0.0.5,nw_dst=239.192.0.1 actions=group:5

cookie=0x0, duration=517.140s, table=0, n_packets=1, n_bytes=49, priority=1,ip

,in_port=5,nw_dst=239.192.0.1 actions=set_field:63->ip_dscp,group:6

$ sudo ovs-ofctl -O openflow13 dump-groups s6

OFPST_GROUP_DESC reply (OF1.3) (xid=0x2):

group_id=6,type=all,bucket=weight:0,actions=output:3

group_id=4,type=all,bucket=weight:0,actions=output:5

group_id=1,type=all,bucket=weight:0,actions=output:5

group_id=5,type=all,bucket=weight:0,actions=output:5

group_id=2,type=all,bucket=weight:0,actions=output:5

group_id=3,type=all,bucket=weight:0,actions=output:5
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