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Current video conferencing services use different topologies and architectures
to realize real-time communication. One possible architecture, used by the service
appear.in, is a full mesh architecture where each participant in a conversation has
a full duplex connection with every other participant in the conversation. Another
possible architecture, used by many traditional video conferencing services, is to
use a Multipoint Control Unit (MCU). This unit will take in video and voice feeds
sent from multiple participants which will then be combined into one video/voice
feed that can be sent to all participants. This requires decoding and re-encoding
of the streams in the MCU. A further possible architecture, is to send all streams
through a central Selective Forwarding Unit (SFU), which will forward streams to
select participants, based on available bandwidth and other preferences.

The different architectures for video conferencing have different properties. For
example, for a conference with only two participants it is usually desirable to use the
full mesh architecture, because the direct communication implies lower latency and
better quality. However, with growing number of participants requirements on both
bandwidth and CPU (due to extensive encoding and decoding) will imply that using
full mesh becomes undesirable. It is therefore likely that the optimal architecture
uses a combination of different topologies, depending on the number of participants
in a conversation and the resources available to each participant.

The task is to investigate what attributes and requirements a WebRTC conversa-
tion needs to perform optimally, and study how different topologies support these
requirements.
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Abstract

Bandwidth efficient, low latency, cheap – pick two. This has been the
traditional trade-off for video conferencing providers, where the network
topology has limited achievable performance in many conversation types.
Consumers have also suffered under this scheme, as only the biggest
companies have been capable of delivering a system that performs in a
wide enough range of conversations to grow sustainable. This has limited
innovation and made it hard for new providers to enter the market.

This thesis demonstrates how a video conferencing solution can be
built using a hybrid network topology, to combine the best properties
of peer-to-peer and centralized topologies. For providers utilizing a
centralized topology, adopting this work can yield lower costs and better
performance for users, while providers utilizing peer-to-peer topologies
today can increase the capacity and coverage of their service.

The proposed method dynamically selects the best topology for a
given conversation based on characteristics of each device in the con-
versation, and will balance routed video to best suit each device. The
solution is extensible to include arbitrary characteristics of each device
or network link when balancing, and special-purpose nodes like supern-
odes, Selective Forwarding Units (SFUs) and Multipoint Control Units
(MCUs) can further enhance the quality. Conversations are modelled
as multi-commodity flow networks, and can be solved by any standard
LP-solver. Non-linear properties like queuing delays are approximated by
piecewise linear functions.

The peer-to-peer video conference solution appear.in is benchmarked,
to see how well peer-to-peer services perform over WebRTC, and to illus-
trate the potential for a solution that can transcend the boundaries of
peer-to-peer. The benchmarking results show severe performance issues
for Firefox in constrained conversations, and more moderate potential im-
provements for Chrome. Tools to assist the benchmarking were developed
and is included in the appendices.





Sammendrag

Lite båndbreddebruk, lav forsinkelse, billig – velg to. Dette er et
kompromiss videokonferansetilbydere har måttet inngå så lenge de har
vært bundet til en gitt nettverkstopologi. Topologien setter grensene for
hva som er mulig, og drift av et system med tilstrekkelig ytelse til at
det adopteres av forbrukere har vært så dyrt at det kun er de største
aktørene som kan konkurrere. Innovasjon er vanskelig i et system med
så høye inngangskostnader, og både forbrukere og tjenestetilbydere lider
som en konsekvens.

Denne oppgaven presenterer en hybrid-topologi for videokonferanser,
som kan øke opplevd kvalitet med små ekstra kostnader. For eksiste-
rende tilbydere som baserer seg på sentraliserte nettverk kan denne
fremgangsmåten senke kostnader og forbedre ytelsen i mange tilfeller.
For eksisterende tilbydere som er basert på jevnbyrdsnett kan metoden
redusere tjenestens ressurskrav og øke ytelsen i mange situasjoner som er
vanskelige i dag.

Metoden velger dynamisk den beste topologien for hver enkelt sam-
tale, basert på egenskaper ved enhetene i samtalen. Videostrømmene
vil rutes i nettet tilpasset hver enkelt enhets kapabiliteter. Løsningen
kan utvides til å ta vilkårlige egenskaper ved enhetene og nettverket inn
i beregningen, og kan benytte både supernoder, Selective Forwarding
Units (SFU) og Multipoint Control Units (MCU) for å øke kvaliteten.
Hver samtale modelleres som et multi-commodity flytnettverk og kan
løses ved lineærprogrammering. Ikke-lineære egenskaper som køforsinkelse
tilnærmes ved stykkevis lineære approksimasjoner.

Jevnbyrdsnettløsningen appear.in testes for å se hvordan videokon-
feranseløsninger over jevnbyrdsnett bygd på WebRTC yter, og for å
illustrere potensialet for løsninger som kan overkomme begrensningene til
en gitt topologi. Testene viser store ytelsesproblemer i Firefox på sterkt
begrensede klienter, og et mer moderat potensiale for forbedring i Chrome.
Verktøy for å bistå testingen ble utviklet og ligger vedlagt.
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Chapter1Introduction

If I have seen further, it is by standing on the shoulders of giants
Isaac Newton

The web is becoming the primary platform for all communication. People are
gradually moving away from solutions provided by their telecommunications company,
such as telephony and text messaging, and over to Internet-based services. Moving
audio conversations to the Internet has been relatively easy, but as we’re now trying
to commoditize video conversations, we have a bigger challenge ahead of us. Video
conferencing has traditionally been the domain of custom rooms and dedicated
hardware, we’re now trying to replicate that experience in regular laptops and phones.
This has led to performance requirements greater than most user equipment and their
connections can handle. This thesis aims to lessen those performance requirements,
and make video conferencing feasible in cases where it is not today.

1.1 Problem

appear.in, Firefox Hello and OpenTok are just a few examples of new video confer-
encing services that have emerged in recent times built on WebRTC, a standard for
peer-to-peer communication in the browser. Without any further magic behind the
scenes, such solutions will demand a linear increase in bandwidth both upstream and
downstream as the number of peers in a conversation grows. This follows from the
fact that in a peer-to-peer video conversation, each peer has to encode its own video
to each of the other peers, send it to each of those peers, and receive that peer’s
video. This is expensive in terms of both CPU and bandwidth, and quickly outgrows
what many devices are actually capable of.

However, many other video conferencing services does not have this problem,
as they ship all video through their own servers. Skype, Google Hangouts, custom

1



2 1. INTRODUCTION

rooms – none of those has this scalability problem1. On the downside, they don’t
have the small latency that is achievable when you route video directly to the receiver,
like you would in a peer-to-peer topology. They are also much costlier to operate;
peer-to-peer systems only require a provider to help peers find each other, and will
never see any of the actual video being transmitted2. Which begs the question at the
heart of this thesis – can we design a solution that transcends these boundaries and
provides high quality service for all combinations of user equipment and connections,
without being prohibitively expensive to run?

The main objective of this thesis is to maximize the system’s Quality of Experience
(QoE). We’ll here adhere to the Qualinet white paper definition of QoE, “Degree
of delight of the user of a service . . . ” [LCMP12]. The white paper identifies three
primary Influence Factors (IFs) that interrelate to together form the QoE; Human
IFs, System IFs and Context IFs. This thesis will focus on two sub-categories of the
System IF, namely network-related and device-related System IFs, since these are the
ones most easily accessible to WebRTC services. However, the approach is designed
with adaptability in mind, such that more IFs can be included in the QoE model if
they’re available. This enables the system to grow as we gain a better understanding
of QoE for video conversations.

However, QoE is a hard thing to maximize, as it’s very dependent on the users,
which we don’t know anything about. We will thus focus on a related term, Quality
of Service Experience (QoSE), which is a quantitative measure of how we believe a
normal user perceives the quality of a service3. Research on psychophysics have yielded
a stimulus-perception model known as the Weber-Fechner Law (WFL) [Web34], which
says that our perception is a logarithmic function of the magnitude of physical stimuli.
[RESA10] has shown this effect to also apply in several domains relevant to this
thesis, namely QoE assessment for Voice over IP (VoIP) and data services. This
fuels our model of QoSE as logarithmic function of the performance delivered by the
service. We aggregate the QoSE for all users in a conversation and try to maximize
this value in our approach, the underlying assumption here being that the QoSE will
act as a proxy for the QoE, thus by maximizing the QoSE we also maximize the
QoE. A formal breakdown of the approach is given in chapter 5.

The problem description mentions studying different topologies and to what
extent they can deliver an optimal service. This was re-focused towards finding
an optimal service, due to how hard it is to study if a service outside your control
is optimal. Optimal implies that it needs to respond well in all situations, thus
the service needs to be tested in many uncommon configurations. This is hard

1They do however have another scalability problem: The number of servers they need to
accommodate their users grows linearly with the total number of users on the platform.

2Generally. In some cases video is sent through the provider for firewall-traversal.
3Definitions vary, thus the explicit statement of how QoSE is interpreted in this thesis.
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to do without controlling the entire environment. Pure peer-to-peer services like
appear.in makes it easier to control the entire environment, as there’s no outside
server that influences the communication. When peers have found each other in
WebRTC-services, the provider doesn’t influence the conversation at all, thus by
controlling the local network we can control everything. This motivated the pursuit
of how a peer-to-peer service performs in hard situations, and from that we could
reason about what an optimal service would do, and finally unto studying how that
could be accomplished.

1.2 Structure and Methodology

Before trying to solve the problem we’ll first evaluate the current video conversation
landscape in chapter 2, to get a sense of the status quo. To limit the scope of what
we’re trying to accomplish, I’ll define some test cases in chapter 3 that we’ll use
throughout the thesis. In chapter 4 we’ll evaluate one of the providers on the market
today by putting it to the test, running all the test cases from chapter 3 to see how
the service performs. Knowing this benchmark helps us evaluate the potential for
the approach outlined in this thesis, which we’ll take a look at in chapter 5. We’ll
discuss how the approach can be implemented and its strengths and weaknesses in
chapter 6, before summarizing what we’ve learned in chapter 7.

1.3 Contribution

This thesis proposes an approach to modelling video conferences with known inter-
node latencies and bandwidths as a flow network, and shows how an efficient routing
for video can be derived from the model using linear programming. The method
demonstrates how video conversation services can bridge the performance gap between
traditional MCU-backed solutions and peer-to-peer solutions.

The two most popular web browsers as of the time of writing, Google Chrome
and Mozilla Firefox, is benchmarked in a set of test cases, which reveals severe flaws
in how Firefox handles constrained nodes. Both browsers are shown to have lots of
potential for increased performance, which the approach outlined in this thesis could
help accomplish. The tests were run with tools developed for this purpose, which are
included in the appendices.

1.4 Terminology

A video conference will often be called a conversation in this thesis. The term “video
conferencing” carries a lot of luggage from its early history, when the technology was
cumbersome, expensive, and only applicable in business scenarios. The movement
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WebRTC represents is about the opposite, commoditizing the technology to make it
cheap and accessible to everyone, allowing it to enter the private domain. Friends don’t
“confer” between themselves; they converse. Names say a lot about a technology’s
intended application, thus if we want the technology to enter the private domain we
need a name for it that does not convey business usage. Hence the term used in this
thesis: video conversations. The even less formal “video chat” could also have fit the
bill, but that feels like it leaves the business side entirely in the dark; conversation
feels like a good middle ground that applies to both sides.

1.5 Disclaimer

This thesis does not try to measure or solve for audio transmission, as that’s a much
simpler problem that can practically always be completed by sending the same stream
to all nodes in the conversation. There’s always only one stream to encode, it doesn’t
noticeably affect available bandwidth, and it’s already widely deployed. However,
results we achieve for video can also be applied to audio streams if the environment
is very heavily constrained or further optimization is required, but is out of scope for
this thesis.



Chapter2Background

In this chapter we’ll discuss some technical aspects of video conferencing that affects
how we reason about the problem, and evaluate what sort of trade-offs established
actors on the market have made.

2.1 WebRTC

This thesis is largely inspired by the efforts of the World Wide Web Consortium
(W3C) on Web Real-Time Communication (WebRTC), a technology which enables
direct browser-to-browser communication. Building on WebRTC, services like Telenor
Digital’s appear.in and Telefónica’s Hello have come to life, ushering in a new age of
communication that does not depend on the traditional GSM infrastructure, but is
fueled by faster Internet connections and more capable smartphones. WebRTC is
not a finished standard yet, which is why browser support is variable at the moment,
but it’s expected that support will become more widespread once the specification is
finished1.

It’s interesting to note that many of the largest WebRTC communication platforms
(like appear.in and Hello, as mentioned) we’ve seen so far have been developed by the
largest players in the traditional communication field, and not from any independent
outsider. The big telephone companies do have capabilities other actors don’t enjoy,
such as being able to freely route calls back over GSM as a fallback solution in case
a person is not reachable online, but this has not been a big selling point for the
services so far. The services have also largely been focused on video conversations,
even though the technology is equally well-suited for pure voice conversations or
text-based communication.

In any case, the hard part of the problem is video conversations, as the demands
on the user equipment and the connection is far greater than what will ever be

1The current status is “working draft”, the full specification can be found here: http://www.w3.
org/TR/webrtc/

5
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exercised by voice or text. Many services are today artificially limited in size, but
often the parties in a conversation will experience trouble before reaching those
limits, as their devices have insufficient bandwidth or their CPUs are not capable of
encoding enough video streams in parallel.

There are three different implementations of the WebRTC specification that are
in extensive use; libjingle, which powers Chrome and Opera; Mozilla’s, which is
tightly coupled with Firefox; and OpenWebRTC, a mobile-first framework for native
apps, started by Ericsson Research. There’s also WebRTC Microstack2, but they
only provide the data-channel, which means they don’t support the audio/video
APIs. Some interest for a pure JavaScript implementation has been expressed to
ease development of WebRTC-aware server-side applications3, but that project has
not seen much activity since late 2014.

Codec issues have been a heated debate for online video, which we will not
reproduce in full here. In summary there’s two contenders, H.264 and WebM. The
WebM project produces the VPx codecs, which are royalty-free and thus preferred
by most browser vendors. H.264 is patent-encumbered and requires licenses for use,
but is widely deployed due to its usage on BluRay-discs, most TV-content, etc. Both
have their pros and cons, but the web community seems to be slowly moving towards
WebM4.

2.2 A Technical Look at Video Conversations

2.2.1 Encoding

The naïve approach to encoding video is to encode the raw stream from the web
camera into several client-optimized streams for transmission. However, H.264 can
be encoded with Scalable Video Coding (SVC), which layers several streams with
different bitrates into a single stream. A node receiving a SVC stream can then
extract layers with the bitrate desired, without re-encoding the entire stream. With
VP8 this is sadly not possible, and the only alternative is to send several streams with
varying bitrates in parallel. This is not as efficient as sending only a single stream,
and the encoding step is costlier in terms of CPU-time. This makes nodes like SFUs
more expensive to run with VP8, as splitting a video stream requires decoding and
re-encoding the data.

2http://opentools.homeip.net/webrtc
3https://github.com/webrtcftw/goals/issues/1
4The Chromium project announced in 2011 that they would remove H.264 support

from the browser, but this has not yet happened. http://blog.chromium.org/2011/01/
html-video-codec-support-in-chrome.html

http://opentools.homeip.net/webrtc
https://github.com/webrtcftw/goals/issues/1
http://blog.chromium.org/2011/01/html-video-codec-support-in-chrome.html
http://blog.chromium.org/2011/01/html-video-codec-support-in-chrome.html
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Google has entered a collaboration with Vidyo [Vid13] to bring SVC to VP9,
which might bring free-to-use SVC to WebRTC. While both Firefox and Google
support decoding VP9 today [Pro14], encoding is not yet supported for either.

Both H.26x and VPx can be hardware-accelerated, and are deployed in several
products on the market. Most deployed solutions are decode only, but some, like the
Nvidia Tegra 4, also supports encoding [nVi13]. The WebM project maintains open
designs for hardware encoders and decoders for VPx.

2.2.2 Continuous Presence vs. Voice-Activated Switching

There are mainly two different ways to do video conversations, Continuous Presence
and Voice-Activated Switching (VAS). Continuous Presence means that all parties in
the conversation are visible to all other parties at the same time. Voice-Activated
Switching (VAS) means that only one party is visible, typically the one detected by
the system as talking at any given time. There’s also hybrid schemes, like Google
Hangouts, where all parties are shown to everyone, but the active speaker is shown
bigger than the rest. Each node can override locally who’s shown up big.

Clearly, in larger conversations, there’s a huge difference in network impact of
the two technologies, as a VAS-based solution will always just require a single video
link in and out, while Continuous Presence requires bandwidth to scale linearly with
the size of the conversation. Figure 2.1 summarizes the possible services that can be
provided for different amounts of available bandwidth. A minimal video unit is the
smallest bitrate it makes sense to encode video in. This will be service dependent,
but we can imagine ≈400 kbps to be reasonable.

Continuous presence can be accomplished both in a peer-to-peer topology and
centralized topologies, but since a VAS requires insight into the video streams (or
at least, the audio streams) to select who is forwarded at any given time, they are
only realizable if all the video streams go through centralized servers. In theory it’s
possible to expand the system to work over peer-to-peer as well, by having each
peer use a low-bandwidth data channel to tell nodes whether it’s currently speaking
or not, but this requires that video streams can be quickly started, stopped, and
that the system gracefully handles collisions without falling over. The problem is
non-trivial, as it’s essentially a question of distributed consensus. Having a single
place that handles the question of who’s active is a lot simpler to reason about and
implement.

Note that even though video is switched in a VAS-system, everyone’s audio is
usually sent to everyone.
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P2P

Audio only

VAS /
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Audio only /

Video via repeater
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n-1

n-1

1

1

Figure 2.1: The possible services for different upload/download band-
widths. A minimal video is the smallest bitrate where it makes sense
to send video. Dark blue is what appear.in can provide today (audio
only requires manual configuration), light blue is what’s possible with
the approach proposed later in this thesis.

2.2.3 NAT and Firewalls

The presence of Network Address Translation (NAT) makes connection establishment
between users harder than necessary, as nodes behind a NAT are not aware of their
external IP address and port. The Interactive Connectivity Establishment (ICE)
framework provides two protocols that can be implemented to alleviate parts of the
problem; Session Traversal Utilities for NAT (STUN) and Traversal Using Relays
around NAT (TURN). STUN is a very lightweight protocol used to discover your
externally visible network address, while TURN-servers act as intermediaries between
users that cannot reach each other directly due to firewalls. TURN servers are often
the biggest server expense for WebRTC-based solutions, since the provider have to
take the cost for the bandwidth consumed by the users.

For WebRTC, STUN would be needed even in the absence of NATs, since
JavaScript does not have any APIs for binding to ports, only for establishing outgoing
connections. Thus there’s no way for a node to announce the port it’s accepting
connections to before it has established a connection outward, a chicken-and-egg
problem STUN resolves.
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2.3 The Current Providers

A selection of widely known video conversation services with different network
architectures is summarized in section 2.3.

Table 2.1: Network topologies in video conversation services

Service Description
appear.in Browser-based peer-to-peer WebRTC service
Google Hangouts Browser-based with Vidyo-powered SFU
Microsoft Skype Custom application, proprietary peer-to-peer protocol
Cisco TelePresence Custom hardware, self-hosted or cloud MCUs

Notably absent here is FaceTime, Apple’s video conversation service bundled
with their devices. FaceTime’s absence in this thesis is due to the lack of support
for more than two people in a conversation, and the lack of support for non-Apple
devices.

We also note that Mozilla just entered the market in collaboration with Telefónica
with their Hello service, bundled with recent versions of Firefox5. Hello essentially
provides the same service as appear.in, just bundled with the browser. Thus anything
we say about appear.in applies to Firefox Hello as well (and all other peer-to-peer
WebRTC services), and we’ll not consider them separately.

2.3.1 appear.in

appear.in is a free peer-to-peer service built on WebRTC that does not require
sign-ups or installation of add-ons to your browser. Due to WebRTC not being fully
standardized yet, the service is only available on recent versions of either Google
Chrome, Mozilla Firefox or Opera, while the OS-provided browsers (Internet Explorer
and Safari) have notably not implemented WebRTC yet.6 appear.in uses Continuous
Presence, while providing the user the option of resizing video streams at will.

appear.in is the only solution studied in this thesis that allow true anonymous
communication7. The combination of continuous presence and a peer-to-peer topology
makes the device and network requirements scale linearly with the number of people
in a conversation. The service is limited to maximum 8 people in a conversation.

5https://www.mozilla.org/en-US/firefox/hello/
6Browser support for WebRTC can be tracked at http://iswebrtcreadyyet.com/
7Meaning that the provider doesn’t know who you are or who you’re talking with.

http://iswebrtcreadyyet.com/
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2.3.2 Google Hangouts

Google Hangouts is alongside appear.in the only other service covered in this thesis
based in the browser. Hangouts is a merge of several earlier Google communication
solutions like Google Talk, Google+ Messenger and the Hangouts feature from
Google+. The service uses a Vidyo-provided SFU, and VP8/9 over WebRTC in
a non-standard configuration on Chrome [Han14], and requires a plug-in on other
browsers [Goo]. A conversation is limited to 10 people. Like was mentioned earlier,
Hangouts uses a hybrid-VAS system, where only one party can be shown up big,
but the user can override who that is. This strikes a compromise between the high
bandwidth requirements of Continuous Presence and the ability to see everyone at
the same time.

Hangouts requires you to authenticate with a Google account, which makes
anonymous conversations much harder. Hangouts is free to use, but room capacity
can be increased to 15 people in the paid Google Apps for Work version.

2.3.3 Skype

Skype is probably the most well-known of the solutions we’re looking at, being among
the first to offer free video conferencing for personal use way back in 2003. Skype
was also among the first to provide a VoIP-service inter-operating with the Publicly
Switched Telephone Network (PSTN), easing adoption for new users. The Skype
topology is peer-to-peer, built on top of the file-sharing protocol powering Kazaa,
which was developed by the same founders [Tho06]. The protocol used is proprietary
and requires installing the Skype application. For NAT-traversal, Skype initially
used other Skype users known as supernodes as intermediaries, performing the same
role as TURN-servers in the ICE framework. After the Microsoft acquisition in
2011, Skype dropped the client-hosted supernodes in favor of Microsoft-hosted ones,
justified as a means to improve performance and security for users [Goo12]. A Skype
conversation has a soft limit on five people for the best user experience, and a hard
limit on 10 users.

Skype requires a standalone application to run, which is available on almost
all platforms out there, including Windows, Mac, Linux, Android, iOS, Windows
Phone, BlackBerry, most tablets, TVs, video game consoles and more. The benefit
of native applications is closer access to hardware for more efficient video processing.
The downside is often that they – like Skype – do not use open protocols, are not
standardized and offer no transparency.
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2.3.4 Cisco

Cisco offers both on-premises, off-premises and hybrid solutions for video conferencing,
aimed at the enterprise market. Video is routed through either self-hosted or
cloud MCUs or SFUs, using Session Initiation Protocol (SIP) and H.323 for call
establishment [CS12]. In the case of only two people in a conversation, calls can be
established peer-to-peer. TelePresence enables interoperability with other services
that supports SIP and H.323, which through H.320 gateways include devices on
legacy networks like the PSTN, such as ISDN videophones. Their core offering is
specialized hardware and dedicated rooms for video conferencing (so-called immersive
video conferences), but they also have a free service that can be run on end-user
computers using a custom application.

2.4 Related Work

Networking and algorithms related to networking is not a new topic, by any stretch
of the imagination, and like in most branches of computer science, it’s mostly old
problems in a new context.

In this thesis we will borrow heavily from previous work on networking and graph
algorithms in general, and flow algorithms in particular. Many algorithmic problems
can be solved as a linear program, which as a problem was first solved by Fourier in
1827 [Sie01]. Another solution, the simplex algorithm, was first introduced by G.B.
Dantzig in 1947 [Sie01], and serves as the basis for the Linear Programming (LP)-
solver we’ll use for in the sample implementation. Multi-commodity flow networks was
introduced to me in [AMO88] by Ahuja, Magnanti and Orlin, which establishes the
fundamentals for the approach proposed later in this thesis. The simplex algorithm
has been widely adopted for its ease of implementation on computers, and years of
exponential growth of computer performance has made solving increasingly large
problem sets feasible.

A study at Chalmers in 2014 [GE14] investigated the feasibility of utilizing normal
nodes in a video conference as supernodes, routing traffic from less powerful nodes
through these nodes to reduce network load. The authors concluded that such
a solution is feasible given proper supernode selection, which gives even greater
possibilities for a solution utilizing dynamic topologies like presented in this thesis.
Pushing as much traffic as possible over client-provided supernodes lowers the cost
for the provider, and enables better quality for the users since peers can be closer to
each other than to the closest data center. As the study concluded with supernodes
being feasible and beneficial, the approach outlined here is developed to be flexible
enough to allow nodes to forward video to other nodes.





Chapter3Test Cases

Instead of trying to optimize all possible combinations of bandwidths and latencies
that occur in the wild, I’ll define some test cases here that we can work on. The
assumption is that if an approach can be found to efficiently serve these cases, it can
serve most others as well.

A summary of the test cases are given in Table 3.1. Note that these are intended
to be hard cases, with at least one node being significantly more constrained than the
others. Thus, failure to pass these tests do not necessarily imply that the solution is
useless, only that there are cases where it’ll fail, or perform sub-optimally. Figure 3.1
illustrates the test cases graphically with the all the inter-node latencies.

Are there any trivial cases that can be ignored? As long as there’s only two people
in a conversation, and they have fairly low latency between each other and sufficient
bandwidth, peer-to-peer is the optimal choice in all cases. Initially, it might seem
like this would indeed be the case in all conversations with two participants, and
not just the good-bandwidth, small-latency onces. However, this is not the case. To
illustrate why, consider a conversation between two people, one in Europe and one in
Asia. They both have fairly acceptable bandwidth, with 3 Mbps each, which should
be plenty to sustain an acceptable video link between them. This might not be the
case, as the link quality between them is far more limited due to the long distance
and many hops through publicly routed networks, which yields high probability of
packet loss and jitter.

However, if both peers have a data center of a distributed VPS provider nearby,
to which they can fully utilize their connection, this limitation might be overcome.
These distributed VPS providers tend to have established high-quality connections
between their own data centers backed by Service Level Agreements (SLAs), which
ensures a link quality far greater than what’s available to private entities. Because of
this, the two peers can improve their video link by routing their traffic through both

13
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data centers.1. The latency is however close to unchanged from routing through the
data centers, only sustained bandwidth between the peers is improved (and probably
less packet loss and jitter).

The test cases are not extensive, but should cover enough corner cases to be able
to highlight if services have any issues in constrained environments. The examples
cover the low-latency, few peers conversations; the bandwidth-challenged cases; the
high-latency conversations; and the very heterogeneous device conversations, where
some nodes are severely challenged in terms of either bandwidth or latency compared
to the rest.

We assume that the back-end networks are not saturated, and that each user is
bandwidth-constrained only by their own connection. By extension, the maximum
bandwidth attainable between any pair of nodes in our network is the lesser of the
upload bandwidth of the sending party and the download bandwidth of the receiving
party. However, latency has to be defined for any pair of the nodes in the network,
as this is mostly determined by their geographical location in relation to each other.

Table 3.1: Summary of Test Cases. n is the conversation size.

Case name n Description
Traveller 3 Two people with decent connections between

them, one remote with high latency and
severely restricted bandwidth to the others.

Standup 4 Two people on desktop machines with wired
connections, one laptop and one tablet on
WiFi.

Friends 7 Group split in two locations, each subgroup
having short latencies internally, but larger
latencies to the other group. Heterogeneous
bandwidths across the board.

How realistic are these cases? The appear.in data set in Appendix E shows that
conversation frequency exponentially decays as a function of conversation size. More
than half of the observed conversations are between two people. These conversations
were not prioritized for the test cases, as it’s easier to make hard test cases with
larger conversations. And there’s an asymmetry here, browsers that manage to

1This is backed by a simple experiment, using DigitalOcean as our VPS provider. From a 100
Mbps university connection in Norway, sustained data rates to their Singapore data center varied
greatly, measuring 720 kbps, 29.6 Mbps, 15.2 Mbps and 20.64 Mbps for each test. However, from
their Amsterdam data center, a consistent throughput of 196.8 Mbps was measured to Singapore,
and between Amsterdam and the university a consistent 89.6 Mbps.
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deliver service under hard conditions in larger conversations are likely to ace hard
conversations between two people, but the inverse is not necessarily true. No data
was found on common inter-node latencies in conversations, thus we have no data
to support whether the latencies in the test cases are realistic. If services start
monitoring these metrics and combine them with bitrate analysis, they can extract
under-performing conversation types based on QoS and add those conversations as
future test cases.
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Figure 3.1: The different test cases. A node with (x/y) indicates x Mbps
downlink and y Mbps uplink capacity.



Chapter4Experiments

In this chapter we’ll benchmark a WebRTC-based video conferencing solution with
our test cases, to get a sense of how a peer-to-peer architecture performs. The
results from these experiments will be used as motivation for the approach outlined
in chapter 5.

4.1 Test Setup

To benchmark appear.in, our WebRTC-based video conferencing solution of choice,
we have utilized a small cluster of desktop computers with web cameras, running the
most recent versions of Mozilla Firefox1 and Google Chrome2. These two browsers
were chosen since they collectively represent 85% of the browser market (according to
both appear.in data as seen in Appendix E and the W3C [Con15]), and are powered
by two different underlying engines. The goal of the benchmark is to get a sense of
how the browsers – and by extension, appear.in – performs with regard to latency
and bandwidth usage in our different test scenarios, and to observe how resources
are shared among the nodes in a conversation.

Since the test covers two different browsers which do not share a common API
(more on this later), measurements were done in two different ways. For Firefox,
which do not expose timing data of WebRTC-streams, a browser-external way of
measuring end-to-end latencies was necessary. This was achieved by synchronizing
all the clocks in the cluster to the same Network Time Protocol (NTP) server, and
another independent node – also synced to the same time server – was set to run a
timer. Each of the nodes in the cluster filmed this timer, and with the same timer
running locally in a terminal, the end-to-end latency could be extracted by taking
regular screenshots, and finding the difference between the local timer and the timer

1Version 36.0.4, latest version as of 2015.06.05 when the tests were run
2Version 41.0.2272.101, latest version as of 2015.06.11 when the tests were run

17
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Figure 4.1: An example screenshot from a Firefox test run on node A.
The nodes are, from top left and clockwise, A, C, B and D. We can see
how the ≈33 ms refresh rate manifests itself, as the visible times are
.928, .959, .990, and 0.021 (node A, barely visible behind the .990).

as sent by the other nodes. See Figure 4.1 for an example of how the screenshots
looked. The script that ran this sequence can be found in Appendix B.

Bandwidth usage was measured by running tcpdump throughout the test run,
and bitrates between each pair of nodes was extracted with tshark.

For the Chrome tests, this was a bit simpler and less manual, as Chrome provides
both timing data and bitrates through the getStats API. Firefox also supports
getStats, but does not include timing data, even though the data is assumed to
be available internally in the browser. Data was extracted from Chrome using the
scripts included in Appendix D, and submitted to an external server collecting the
data from all nodes.

4.1.1 Sampling

At the start of the test, the nodes join the conversation in alphabetical order (the
node names are the letters A-G), as soon as the previous node has established
connection to all the other parties already in the conversation. Preferably the join
order would be random and the results averaged over several test runs, but due to
time constraints this was not possible.

When all nodes have established bi-directional connections, the conversation was
left running for a minute, before sampling started. This was done to allow some time
to reach a stable state.
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For Firefox, where the interpretation of the results is a very tedious and laboursome
process, samples were taken every ≈12 s.3 The last six samples for each node was
interpreted and stored, yielding a total sample time of ≈80 s. On Chrome, where
there’s no interpretation step, samples were submitted every second. The sample
time was two minutes, yielding 120 samples for each node.

For all test cases the test was first run without any traffic shaping applied, so to
see that the browsers behave as expected in an unconstrained setting. The full data
set from these tests are included in Appendix G. Both browsers behaved as expected,
which helps validate that the results presented here are regressions because of the
constraints applied, and not CPU or other factors not controlled in the experiment.

4.1.2 getStats

The relevant values offered by the getStats-API on Chrome4 and Firefox is presented
in Table 4.1 and Table 4.2. The values reported here is what’s returned by the
browser.

Table 4.1: Incoming video data

Chrome Firefox
bytesReceived:str/int

packetsLost:str/int

packetsReceived:str/int

googCurrentDelayMs:str jitter:float

googDecodeMs:str mozRtt:int

googJitterBufferMs:str

googMaxDecodeMs:str

googMinPlayoutDelayMs:str

googRenderDelayMs:str

googTargetDelayMs:str

Table 4.2: Outgoing video data

3A bit variable, as it’s 10 s + the delay for taking and storing the screenshot.
4Documentation is very poor for the getStats-API as the specification is not completed yet,

therefore the most reliable reference is the source: https://chromium.googlesource.com/external/
webrtc/+/master/talk/app/webrtc/statstypes.cc

https://chromium.googlesource.com/external/webrtc/+/master/talk/app/webrtc/statstypes.cc
https://chromium.googlesource.com/external/webrtc/+/master/talk/app/webrtc/statstypes.cc
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Chrome Firefox
bytesSent:str/int

packetsSent:str/int

googAvgEncodeMs:str bitrateMean:float

googCaptureJitterMs:str bitrateStdDev:float

googCaptureQueueDelayMsPerS:str droppedFrames:int

googCodecName:str framerateMean:float

googBandwidthLimitedResolution:str framerateStdDev:float

googCpuLimitedResolution:str

googViewLimitedResolution:str

googRtt:str

packetsLost:str

It’s sad to see that all values are casted to strings in Chrome. This is not the
case on Firefox, where appropriate types are used. As we also see, all of the timing-
related values we’re interested in are vendor-prefixed on Chrome, which hints to their
unspecified nature. Note that both browsers report more data than what is shown
here, this is only the data I consider to be relevant for link quality measurements.
Chrome is very helpful in providing why resolution is limited5 (received resolution is
present in the full data set), which could be incorporated into more advanced models.
When the getStats API specification6 reaches stable in the W3C, I expect most of
these differences to disappear. Note that Firefox has the API closest to the proposed
specification as of the time of writing.

The values of jitterBufferMs, renderDelayMs, decodeMs and currentDelayMs was
summed to get the observed latency. This was based on some trial and error to
see what best aligned with the observed latencies using the timer, as outlined in
Appendix F, since they are not documented anywhere. A more thorough reading of
the source code might reveal a more accurate combination, but there was no time to
do this for this thesis.

4.1.3 Constraining Nodes

To configure the cluster according to the different test cases, we utilized the Linux
traffic control utility tc, which is capable of rate-limiting incoming and outgoing
traffic, as well as delaying traffic destined for certain hosts. A small script was

5Although it would be preferable to see a single value “limitedResolution”, which could be either
false, “cpu”, “bandwidth” or “view”, to make it a bit less verbose and easier to extend.

6http://w3c.github.io/webrtc-stats/

http://w3c.github.io/webrtc-stats/
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developed to act as a glue layer between a representation of a network and tc,
making configuration repeatable and easily parametrized. The script is included in
Appendix C. The test cases from chapter 3 were serialized into YAML, and the same
case definitions could then be used by both the script configuring the nodes, and for
the sample solution provided in chapter 5.

Applying a given test case is thus completely independent of the actual network
utilized in the test cluster, keeping all intelligence on the nodes themselves. This
removed the need for expensive routers or having to customize the application code,
thus making the method application-agnostic and applicable to any peer-to-peer
solution, not only to appear.in.

4.1.4 Automated Testing?

Ideally, testing would be automated and not require running a graphical environment,
to allow tests to be run often and in response to events such as commits. This could
be possible using by running a browser in a fake framebuffer like Xvfb7 and faking
out a media stream8. Both browsers should be able to be tested in such a setting,
but data would be limited to what can be extracted through the getStats-API as
described above. Therefore it is possible to automate this, but was considered out of
scope for this thesis.

Chrome runs regular interoperability tests with Firefox9, but these tests only test
that calls can be established, and do not test any network configurations or measure
statistics. Integrating the results from this thesis into this test suite is encouraged
for more insight into the performance and behavior of WebRTC implementations.
The W3C also maintain a test suite for implementations10, but those only test
compatibility with the APIs, and not network behavior.

4.1.5 Caveats

The Firefox method is accurate in the sense that latencies observed are the actual
end-to-end latencies that users would observe, but the precision of the timing values
observed is not on the millisecond level we’d prefer. This is due to a number of factors,
most notably the refresh rate of the screen running the timer and the frame rate of
the video, limiting the precision to 1s/60 ≈ 17ms and 1s/30 ≈ 33ms respectively.
However, we can surpass this precision by averaging several samples taken during the

7http://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
8Chrome: --use-fake-device-for-media-stream, Firefox: getUserMedia({fake: true,

<...>}). More info about this approach can be found at http://images.tmcnet.com/expo/
webrtc-conference/presentations/san-jose-14/D3-2_Testing_v2_2.pdf

9Google blogged about this: http://googletesting.blogspot.se/2014/09/
chrome-firefox-webrtc-interop-test-pt-2.html

10http://www.webrtc.org/testing/w3c-conformance-tests

http://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml
http://images.tmcnet.com/expo/webrtc-conference/presentations/san-jose-14/D3-2_Testing_v2_2.pdf
http://images.tmcnet.com/expo/webrtc-conference/presentations/san-jose-14/D3-2_Testing_v2_2.pdf
http://googletesting.blogspot.se/2014/09/chrome-firefox-webrtc-interop-test-pt-2.html
http://googletesting.blogspot.se/2014/09/chrome-firefox-webrtc-interop-test-pt-2.html
http://www.webrtc.org/testing/w3c-conformance-tests
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Figure 4.2: A screenshot where a node has sent two overlaying times-
tamps. In this case interpreted as 10.106, which is reasonable as it’s
close to the expected ≈33 ms increase from the previous 10.075.

test run, which is why we take six screenshots for each case. The standard deviation
of the measurements is reported in the graphs included later in this chapter, which
should give some indication towards how accurate the average is. The sample size is
very small and should thus be taken with a grain of salt, but it was the best option
available at the time.

Taking several samples to improve accuracy leads us to another weakness, which
is the manual interpretation of the screenshots. Due to the frequency-related issues
discussed above, many of the images include timestamps that are blurred, as the
camera captured two underlying screen updates in the same frame, as shown in
Figure 4.2.

In general for these cases, the recorded timestamp was consistently interpreted to
be the latest of what could be distinguished in the screenshot.

Even assuming that the timestamps are comprehensible and fairly accurate,
there’s still a possibility of human error when many numbers has to be recorded in
this way. To minimize the risk of any mistyped numbers making it into the dataset,
any observation outside 1.5 standard deviations of the mean (a range which should
include 87% of the numbers observed) was re-interpreted to verify. There’s still a
chance of smaller errors making it into the dataset, but we assume that these are
small enough and distributed evenly among the nodes to not significantly influence
any conclusions drawn.

As not enough cameras of any single model was available for the experiments,
two different models11 had to be used. These had slightly different performance

11HP Webcam HD-4110 and Tandberg (now Cisco) PrecisionHD
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characteristics; the cameras were put side by side with a timer and showed a mean
difference of 39.6 ms, but with a relatively large standard deviation of 19.5 ms. As
the same effects related to refresh rates as discussed above applies, all samples were
at a 30 ms or 60 ms difference of each other.12 As the difference was assumed to
be normally distributed, the mean was simply added to all measurements from the
slower camera model to compensate.

For measuring bandwidth utilization between nodes, our method of using tcpdump
is not entirely satisfactory, as there’s no way to report actual consumed bandwidth
by the application. This is because the traffic control features of the Linux kernel lies
above libpcap, the library that performs packet capture for tcpdump in the network
stack. Effectively this means that any incoming bandwidth reported by libpcap
will be before the rate limiting performed by tc. Thus, tcpdump cannot report the
actual bandwidth consumed by application, only what was received by the network
interface. Nonetheless, the bandwidth sent by each node is what was actually sent by
the application, but there’s no guarantee that the receiver was capable of consuming
it all. This is good enough for us though, as we can aggregate the data sent by all
nodes to determine how saturated a given node’s network link is.

While the method itself is application-agnostic, configuring nodes the way we do
is not suitable for testing other architectures, such as the ones used by Hangouts
and Skype. This is unfortunate, as a performance comparison between the different
architectures would have been very interesting, but without running a local instance
of the architecture under test, there’s no way to achieve the inter-node latencies we
desire. This follows from observing that if node A sends its video stream to a Google
server, there’s no way for it to signal to Google that when the stream is broadcast to
nodes B and C, B’s stream should be delayed by x ms, and the stream to C should
be delayed y ms. It’s also not possible for B and C to apply this latency on the
receiving side, as they’d have to split the incoming stream for Google into separate
streams for each of the transmitting nodes, which would require both getting access
to the DTLS keys used by the web browser to encrypt the traffic, and being capable
of splitting the stream and rejoining it again without interfering with the browser.

For the most accurate comparison of bitrate, it would have been preferable to
use the same method for sampling this on both browsers. However, as Firefox was
incapable of delivering timing data, the getStats API was discarded entirely, even
though it could have been used to sample bitrates as observed by the application.
This is unfortunate, but the tools left behind by these experiments allow others who
want to repeat the tests to not do this mistake.

12Out of 20 samples, 1 was 0 ms, 13 were 30 ms, 5 were 60 ms, and 1 was 90 ms. Which really
means that the sample is in the range of 0–29 ms difference, 30–60 ms difference, and so on.
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Figure 4.3: How to read bandwidth graphs. Latency graphs are similar,
only with different units.

4.2 Results

4.2.1 How To Read the Graphs

As there will be a lot of graphs in this chapter, a good understanding of how to read
them is essential. Figure 4.3 gives a quick primer.

For latency graphs, the lower the observed latency the better. For bandwidth the
opposite applies; the more the better. However, this should be seen in context to
how widely distributed a node’s bandwidth is. If the node does not evenly distribute
it’s available resources when neither itself nor the peer is constrained by bandwidth,
it has failed to reach an even, stable state.

Before we embark on the test cases, we put our two sampling methods up against
each other, to see whether the results are comparable. The results were fairly equal
across the board, and considered good enough to indicate any serious performance
discrepancies. The results are included in Appendix F.

4.2.2 Test Case “Traveller”

A quick recap of the bandwidth limits put on the nodes in the “traveller” test case
(read X (7/3) as node X having 7 Mbps downlink and 3 Mbps uplink): A (10/5), B
(2/1), C (10/8).
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Figure 4.4: Observed bitrates in the “traveller” test case

Figure 4.4 shows the bitrates flowing between the nodes in the “traveller” test
case. As was mentioned earlier; the values reported here are only what was received
at the node’s interface, not what the application consumed. This is important, as it
seems from the bandwidths alone that all nodes are doing fairly well in the Firefox
case, but look closer. Node B only has a 2 Mbps downlink, but is sent more than 3
Mbps of data. Thus its link is completely saturated, which is reflected in the latencies
in Figure 4.5. We can also see that node B is saturating its own uplink as well, which
also has a grave impact on the latencies.

Chrome balances this out much better, where A and C communicate unhindered
by the constraints of node B (like the Firefox case), but also respect B’s constraints
and only send what it’s capable of receiving. Thus, B’s downlink has 43% utilization,
and likewise 66% for the uplink. The full link utilization data is given in Table 4.3.

Table 4.3: Link utilization in the “traveller” test case

Firefox
Node Downlink Uplink
A 26 60
B 100 100
C 22 54

Chrome
Node Downlink Uplink
A 26 47
B 43 66
C 20 31
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Figure 4.5: Observed latencies in the “traveller” test case. Actual values
for the out-of-bounds values in Firefox, from left to right: 26s, 48s, 48s,
23s.

4.2.3 Test Case “Standup”

Quick refresher on “standup” bandwidth limits: A (30/20), B (30/15), C (8/6) and
D (6/3).

The key challenge in this case is node D, with only 6 Mbps available on the
downlink, slightly upped by node C with 8 Mbps. Observed bitrates from the test
are given in Figure 4.6. Firefox displays much of the same behavior we saw in the
“traveller” test case; Node C doesn’t have any troubles in this test, but node D is
completely saturated. Node D receives 2.1 Mbps from each of the other three nodes,
which again destroys the latencies in the conversation. Even though node D sends to
its fullest capacity, hardly anything of this is correctly received by the other nodes.
This probably implies that among the data Firefox is actually putting onto the wire,
not enough of it reaches the destinations unfragmented, and thus the receiver is
incapable of reconstructing a complete frame to show to the user. Node C doesn’t
entirely saturate it’s uplink however, so there’s obviously some way streams are
limited in Firefox, but it’s clearly not adequate.

Chrome handles the two challenged nodes elegantly, with 61/76% downlink/uplink
utilization on node C, and 85/80% utilization on node D. The complete link utilization
results are given in Table 4.4.
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Table 4.4: Link utilization in the “friends” test case

Firefox
Node Downlink Uplink
A 16 32
B 17 42
C 64 97
D 100 100

Chrome
Node Downlink Uplink
A 13 31
B 16 38
C 61 76
D 85 80

Latencies are depicted in Figure 4.7. While Chrome generally performs okay,
we see that even though nodes C and D are not saturating their connections, they
observe latencies which are significantly more delayed compared to the two other
nodes. Both C and D would have a noticeable delay in this test case. On Firefox
only nodes A to C can communicate.

4.2.4 Test Case “Friends”

Quick refresher of the “friends” test case; there’s two groups (A–C and D–G), with
high latency between the groups, and the following bandwidth limits: A (15/15), B
(50/50), C (14/8), D (15/9), E (30/20), F (40/30), and G (9/4).

Figure 4.8 shows that for the most resource-constrained nodes, Firefox – not
unexpectedly – completely saturates the links. Both C and G have a fully saturated
uplink. G is the only node that also has a saturated downlink, and again we see the
effects this has on the latencies in Figure 4.10.

The link utilizations are given in Table 4.5.

Table 4.5: Link utilization in the “friends” test case

Firefox
Node Downlink Uplink
A 57 83
B 18 25
C 75 99
D 66 100
E 33 49
F 22 41
G 100 99

Chrome
Node Downlink Uplink
A 57 81
B 15 24
C 72 83
D 68 84
E 34 56
F 23 37
G 90 75
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Figure 4.6: Bitrates in the “standup” test case.
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Figure 4.7: Observed latencies in the “standup” test case. Firefox out-
of-bounds values are, left to right: 4.8 s, 3.5 s, 7.8 s, and > 11 s for
everything in to D.
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On Chrome, bandwidth is not distributed evenly among its peers. We see this
in the data for node G. Of it’s 4 Mbps uplink, we see that node E receives a little
more than 1 Mbps of this, while F gets around 400 kbps. Node C and D both receive
≈350 kbps, while A gets a full 720 kbps. B are left with the scraps that remain, at
≈130 kbps.

We observe something similar for nodes C and D, with their 8 Mbps and 9 Mbps
uplinks, respectively. Node C is well received by most of the nodes in the other group
(D, E and F), which all get more than 1.5 Mbps. The local nodes A and B however,
get only 1 Mbps and 450 kbps – which shows that having low latencies does not seem
to significantly influence allocated bitrate. Granted, this dataset is only from one
single test run, more data is needed to say anything conclusively about whether this
is consistent behavior, but the data seem to imply that even a minute is not enough
to reach fairness for Chrome.

Node D repeats much of what we saw in node C, where the remote nodes all get
more than the local ones. This might be due to D being the first of the second group
into the conversation, establishing connections with the remote nodes before any of
the other local nodes are present. Thus when the other nodes in D’s group joins,
they get to share whatever capacity D has left. How the distribution evolves with
time was not studied in this thesis, but might provide insight into how long it would
take to reach fairness.

In any case, if it takes more than 10-30 seconds to establish fairness, this author
considers it likely that the users will leave the platform and not wait for stuff to
smoothen out, at least if video is of any importance in the conversation. Audio will
not be hit as hard by uneven distribution, but if your goal as a service provider is to
deliver video conversations, video quality and quick connection times will be central
to how you’re compared to other providers.

Uneven uplink distribution is not only bad for fairness in the conversation, but
also for CPU and battery consumption. We can assume node G’s video is encoded
at least three times, possibly four in this test case13, even though all of the nodes
have spare downlink capacity for sharing one ≈600 kbps stream (4 Mbps/6).

As there’s a lot of data points with wildly varying magnitude for Firefox in this
case, the latency results have been split in two; one logarithmic view giving a rough
overview of how the nodes performed (Figure 4.9), and one cropped view, where only
edges with latency less than 500 ms is included (Figure 4.10). As we can see from
the linear chart, there’s only four nodes that observe latencies below 500 ms, and
not even all of those can reasonably be expected to be able to hold a conversation.

13A and B could have shared the same stream, C, D and F could have shared a stream, and E
has a stream of its own.
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A and B can talk together; A and E can talk, although a little more strained with
latencies around 400 ms. B and E can not talk, as B doesn’t receive E’s stream in
reasonable time; B and F however can talk together.

To summarize, out of 42 pairs of nodes in the test case, only three of them are
able to communicate bidirectionally with Firefox. In practice, this is a conversation
all parties abandon immediately.

The latency results on Chrome reinforce the impression we got from the “standup”
test case, that nodes with severely constrained connections will also experience
much more severe latencies. In this case, nodes C, D and G will all experience
noticeable latency. We also note that node C, which favored the remote nodes with
it’s bandwidth, experiences significantly higher latencies from the two other nodes in
its own group than from the remote ones.
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Figure 4.8: Bitrates for test case “friends”
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Figure 4.10: Observed latencies in the “friends” test case



Chapter5Analytical Study

In this chapter we’ll walk through how the problem can be modelled as a multi-
commodity flow problem and solved using linear programming.

5.1 Modelling

With some prior knowledge of graph algorithms, the first stab at solving the problem
might be to look at our sample topologies and see a certain similarity to a max-flow
problem – edges have capacities, there’s a set of sources, a set of sinks, and we want
to maximize something. However, there’s a couple of things that make it hard to
solve directly as a traditional flow problem, particularly that we don’t have a single
source and a single sink, but lots of them. Trying to model it as a single-source,
single-sink problem quickly leads us to discover the limitations of that model, where
we realize that if we actually solved it, how would we be able to tell which node is
generating flow on a given edge? Clearly, we need a way to distinguish node A’s
video from node B’s video. And we need to make sure that all nodes receive video
from every other node, not just maximum bitrate of any video.

If we change perspective slightly, we see that this is not a single flow problem, but
a series of flow problems, sharing an underlying constrained resource. There’s the
problem of routing video from A to all other nodes, there’s the problem of routing
video from B to all other nodes, etc. In a conversation with n participants, we now
have n separate flow problems, which all share the same resource. However, also
this model is too limiting for our use case, as video is sent at a given bitrate, and
this stream can neither be split at a given node without incurring a cost, nor does it
make sense to add it; two 2 Mbps videos cannot be joined to form a 4 Mbps video.
If you put enough restrictions on your nodes and edges it’s probable that you might
be able to able to prevent this from happening, but there’s another way.

This time around, imagine that we have a separate flow problem for each pair of
nodes; we have one problem routing node A’s video to node B, we have one problem

35
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Figure 5.1: How we can split nodes into external and internal pairs

routing node A’s video to node C, etc. This yields a total of n(n − 1) problems,
which is O(n2). Modelling the problem this way means we don’t have to add any
supersinks to connect the targets; each node can act as sink for the video stream –
hereafter known as the commodity – destined for itself.

One other thing we notice from our initial graph compared to traditional flow
problems is that the former have node constraints, while flow problems only work
with edge constraints. To accommodate this, we split each node into two parts,
hereafter called the external and internal part, as illustrated in Figure 5.1.

As we now have a well-specified way to go from a given conversation to a graph
that can be solved by max-flow algorithms, the entire problem can be solved by
joining all the different subproblems under the same resource constraints, and solve
as a multi-commodity max-flow problem. This class of problems can be solved with
Linear Programming (LP) [AMO88], which can be summarized in canonical form as
in Equation 5.1.

maximize cTx (5.1)
subject to Ax ≤ b

and x ≥ 0

The vector x is the variables we’re trying to find a solution for, each entry in
the vector defines a flow on a given edge in the graph for a given commodity. The
vector c scores each flow to determine how much it influences the objective (hereafter
known as the gain), while the matrix A and the vector b is the set of constraints put
on the system, like staying below bandwidth, flow conservation among non-source
and non-sink nodes, and so on.

As LP is a well-known and very general technique that’s effective to a vast
collection of problems, there are lots of LP-solvers freely available1. This simplifies

1https://en.wikipedia.org/wiki/Linear_programming#Solvers_and_scripting_
.28programming.29_languages

https://en.wikipedia.org/wiki/Linear_programming#Solvers_and_scripting_.28programming.29_languages
https://en.wikipedia.org/wiki/Linear_programming#Solvers_and_scripting_.28programming.29_languages
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building a solution on top of LP; if you can model your problem as a linear program,
it can be efficiently solved by existing, well-tested code. For our experimental solution
I chose a solver somewhat arbitrarily among those which had Python bindings, and
picked GNU Linear Programming Kit (GLPK).

5.2 Objective

To approach the problem as an LP, we need to have a well-defined objective; the
function the LP will try to maximize. To formulate the objective, we need to
understand how several performance parameters of the system affect the QoSE.

We can start by decomposing the problem, by first looking at how to measure the
QoSE from a single node’s perspective to one other peer. We then aggregate all of
the peers to form the full QoSE as observed by that node, and aggregate that for all
nodes in the conversation. Maximizing this value gives a natural even distribution
due to the WFL and the logarithmic nature of the QoSE. If the QoSE was a linear
function of performance, a small set of nodes could devour all the resources, and the
QoSE would have been the same as if the resources were divided evenly. However, the
logarithmic shape of the QoSE ensures that there’s diminishing returns for resource
consumption, thus when one node is receiving 2 Mbps, and one other node is receiving
1 Mbps, increasing the latter from 1 Mbps to 2 Mbps has a greater impact on the
QoSE than increasing the former from 2 Mbps to 3 Mbps.

As this thesis only considers bandwidth and latency, the QoSE for a single node
to a single peer will be a function of these two variables. No research was found
on how these two affect the QoSE for video conversations2, so we’ll make some
assumptions here, and if further research is done on this topic, the model can be
refined by incorporating actual results at this step.

First, assuming that the latency is fixed, we will adopt a QoSE model from the
bandwidth as given in Figure 5.2a. The graph will be tuned to the node’s device, as
different devices have different saturation points for where there’s nothing to gain
from sending more data. Devices with larger displays and fast connections have
higher expectations to the quality of displayed video, thus the QoSE for a given
bandwidth will be higher on smaller devices than larger ones.

As for latency, we assume it follows a function somewhat like the one depicted
in Figure 5.2b. Given these two functions for QoSE, we combine them by simply
adding them together, with a tunable weighting factor w, which says how heavily
latency should count into the QoSE. When considering the QoSE as delivered to a

2Much research has been done on QoS in relation to Video-on-Demand, but while the bitstream
might be similar, the environment and expectations for real-time communication is entirely different
from VOD, and thus not considered directly applicable in this setting
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Figure 5.2: Assumed QoSE on the signal between a single pair of nodes

single node, we also need to subtract the cost of using its connection, as saturating
the connection will have grave impact on queuing delays and packet loss. This cost
follows from the queuing delay formula, µ

µ−λ , where µ is the capacity of the link and
λ is the offered traffic.

Formally, if we consider our flow network as a graph G = (V,E), ai is node i’s
device. xci,j is the bandwidth of commodity c on the edge (i, j), li,j is the latency
between nodes i and j. ki,j is the commodity from i to j, C is the set of all
commodities, u(i) is the uplink capacity of node i and d(i) is its downlink capacity.
r is a constant < 1 that determines how heavily excessive link consumption should
be tolled. With QoSEBandwidth and QoSELatency as given in Figure 5.2, we can
derive the QoSE for the entire conversation as

ULCost(i) = ui

ui − r
∑
c∈C

∑
j∈V

xci,j
, DLCost(i) = di

di − r
∑
c∈C

∑
j∈V

xcj,i

QoSEPair(i, j) = QoSEBandwidth(xkj,i

j,i , ai) + w ×QoSELatency(lj,i)

QoSENode(i) =
∑
j∈V

QoSEPair(i, j)− ULCost(i)−DLCost(i)

QoSE =
∑
i∈V

QoSENode(i) (5.2)

Equation 5.2 is then the QoSE of the entire graph, which becomes the objective
function in our LP. Note that this is an assumption, more research should be
conducted into finding the actual relationships involved.
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This raises some other issues that has to be handled. The objective function
has to be linear to be solved as a linear program, but several of its parameters are
non-linear. However, all of these can be approximated arbitrarily close by piecewise
linear functions, as illustrated in Figure 5.3. The precision of the approximation
can also be parametrized, as either the number of pieces to divide into or as the
maximum deviation allowed.

In the following paragraphs we’ll discuss how to transform the problem to a linear
one that we can solve.

5.2.1 Linear Approximation

Piecewise linear approximations basically try to make a variable subject to different
functions in different ranges of its input. As the objective cannot be defined using
conditionals or any sort of logic, the approach is a matter of recognizing where a
single variable can be replaced by several.

Let’s first consider the QoSE from bandwidth. To illustrate how we model this,
imagine that instead of node splitting like we did above, we’re doing edge splitting,
replacing a single edge connecting two nodes with a set of edges, which can have
different capacities and costs. Note that we only have to split the edge coming
into the node; there’s nothing that affects the objective on the outgoing one. This
results in a linear approximation of the actual logarithmic function, as illustrated in
Figure 5.3.

Conceptually, we can approach the cost of link utilization in the same way as for
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Figure 5.4: How packet delay grows as a function of link utilization for
network links. Packet delay for us is equivalent to cost, which thus has
to be approximated in an implementation.

bandwidth QoSE by splitting the edges into the node. Thus a 8 Mbps link might be
divided into four links of 2 Mbps, with exponentially increasing costs.

As given in the objective function, the link cost can be defined by µ
(µ−rλ , where r

is a customizable parameter for how heavily link saturation should be punished. We
then partition this function into a small set of piecewise linear intervals, which we
can model as parallel edges between two nodes, with different capacities and costs.
Keeping this set small limits the number of variables, and thus keeps processing
times reasonably low.

Table 5.1: Cost multiplier for link utilization ranges, r = 0.7

Link utilization Cost multiplier
0–50% 1.54
51–70% 1.96
71–80% 2.27
81–90% 2.70

To avoid having extra constraints to keep flowing video above a certain minimal
threshold, we can replace link capacity with link slots. A slot is the size of a minimal
unit of video, like 300 kbps. This means that we only need to ensure at least one
slot is used between each pair, instead of enforcing more fine-grained constraints.
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Figure 5.5: An example (20/5) node after two rounds of edge splitting.
g is the gain from the bandwidth over an edge, c is the cost. How to
split the edges is up to implementations.

Using the partitioning in Figure 5.2.1 as a guide, we can map any number of slots
on a physical link into a set of edges E in our graph where |E| <= 4. The number
of edges to split into determines how close the approximation is, at a cost of more
variables in the objective. This can be tuned by implementations.

As there’s now two different edge splits on the edge between a node’s internal and
external parts, we have to insert a temporary node between them to separate the two
edge sets. After doing the linear approximations for both edge cost and bandwidth
gains, a single node in our flow network ends up like depicted in Figure 5.5.

5.3 Alternative Model

One alternative way to model the problem, is to skip the node splitting step of the
previous model, and instead connect nodes directly, but stay below bandwidth by
adding constraints for the total sum going out from each node. Which model to
choose is – as in every engineering matter – a question of priorities. The first model
is a bit harder to comprehend initially, but results in fewer total edges than the latter
model does when n > 3, as can be seen in Figure 5.6. Edge counts do not matter
that much when n is low as finding a solution will occur in trivial time anyway, but
the difference might be substantial when n is larger. If performance becomes an issue,
more research into different ways to model the problem might yield more efficient
solutions.

5.4 Repeaters

This is all well and good, if we solve the maximization problem given earlier we
will arrive at an optimal routing of video in any graph. Using this, a browser could
immediately establish flows of sustainable bitrate for everyone in the conversation,
without the slow creep to steady state that is the case today. However, where
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Figure 5.6: How the number of edges in the graph scales for different
modelling techniques. The blue graph is the alternative model, red is
the suggested one. e is the number of parallel edges to use in the linear
approximations, n is the size of the flow network.

today’s solutions are topology-bound, we can go beyond those limitations, and use
our established technique on slightly modified flow networks.

One thing we note with pure peer-to-peer topologies, is that required bandwidth
in and out grows linearly with n, which quickly saturates constrained nodes. Going
pure peer-to-peer is usually best in terms of latency, but if the necessary bandwidth
is not available, we want to have the option to fall back to relaying some – but not
necessarily all – nodes via some unconstrained repeater. This repeater could be
provided by the service provider in a data center somewhere, or could be one of the
other nodes in the conversation with excess bandwidth available3. We have assumed
that repeaters are provided in data centers for now, but the constraints can easily be
adapted to accommodate nodes as repeaters in a conversation.

Formulating the constraints get a bit weird for repeaters, as they do not conserve
either bandwidth or commodities. We say that repeaters can mangle commodities,
which means it can receive the commodity k sent from node A to node B, and can
send it as commodity k to B, but it can also send it as commodity m to node C,
assuming m is the commodity sent by node A to node C. This is less awkward if
the alternative model suggested in section 5.3 is implemented, but there was only
time to implement one model for this thesis. This mangling is why we require

3These are the nodes Skype calls “supernodes”, see [GE14] for a study of supernodes in WebRTC.
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each commodity to be received in the objective, it allows receivers to change the
commodity to something else than what was sent.

There are some constraints on repeaters though, namely that the incoming amount
of one commodity has to be equal to the outgoing amount of all other commodities
from the same source. Practically speaking, repeaters can not change the bitrate of
incoming video, either up or down. That way, a repeater is a pure IO-bound device,
which does not require much else than a fast Internet connection to be operated.

Note that since commodities are routed independently in our flow network, it’s
possible for a node to use a repeater only for outgoing traffic, but still receive incoming
traffic directly from its peers. This will probably often be the case, as many consumer
connections are still highly asymmetric in inbound/outbound capacity.

Repeaters are also practical since they’re not required to know the contents of the
packages it forwards, and thus anyone with spare bandwidth can provide a repeater
for anyone to use, without compromising the confidentiality of those conversations.

Deployment wise, repeaters are practically the same as SFUs, thus adding re-
peaters to a network should not be a challenging task. The biggest difference between
repeaters and SFUs is in who controls the sent data; traditional SFUs handle that
themselves, negotiating with each peer which stream it should receive based on the
peer’s capabilities. Repeaters would be instructed by either the sending node or the
service provider which streams should be routed where, thus a repeater is a slightly
simpler unit.

5.5 Transcoders

Another unit that can be added to the flow network is a transcoder, which is like
a repeater in that it has practically unconstrained bandwidth in and out, but also
has the capability to transcode incoming video. If node A only has 2 Mbps upload
capacity, and node B is a desktop with 10 Mbps downlink, and node C is a phone
with only 1 Mbps downlink, A can send its full 2 Mbps video stream to a transcoder,
which can then forward the full 2 Mbps stream to node B, but transcode the stream
down to a leaner 1 Mbps stream for node C. That way A is able to fully utilize
its upload capacity, while the receivers get a stream best utilizing their downlink
capacity.

Transcoders are more costly to run than repeaters, due to much heavier compute
operations required to transcode video in real-time. They will typically be nodes
with specialized hardware for video encoding4.

4The WebM project maintains royalty-free hardware-accelerated designs for encoding VPx:
http://www.webmproject.org/hardware/vp9/bige/

http://www.webmproject.org/hardware/vp9/bige/


44 5. ANALYTICAL STUDY

Constraint-wise, a transcoder performs the same commodity mangling as repeaters,
but can output commodities of arbitrary bitrates less than or equal to the source
commodity.

In contrast to repeaters, transcoders have to access the contents of the calls to be
able to transcode the signal. This will be the case until a homomorphic cryptosystem
is available for video transcoding, which might be in a couple of years or it might be
never.

Transcoders are to MCUs what repeaters are to SFUs; slightly simpler since
instructions are given on what to do, thus less negotiation with peers.

5.6 Implementation

The sample implementation is in Python and uses GLPK for solving the created
linear program. The script makes no attempt to optimize the creation of the linear
program, thus it iterates over every single edge dozens of times. Hence, the creation
of the linear program is often more expensive than the actual solving of said program.
While it’s true that there will always be a cost of creating the linear program, since
the O(n4) objective function has to be created along with O(n4) constraints, the n
is usually small enough not to make the total running time unmanageable5. If the
approach is to be used in situations where n can be large, more work is needed on
optimizing this step.

The provided implementation does not fully implement everything discussed
here, as time was limited. The script is capable of finding optimal routes for the
objective as specified in reasonable time, but does not implement any approximation
of the non-linear functions. Thus there’s no punishment for maximizing network
links, which means all nodes end up with 100% utilization of their uplink, as long as
someone has the capacity to receive. The script supports adding repeaters to the
mix, routing video through them for nodes that are otherwise incapable of receiving
video.

Source code for the implementation is included in Appendix A.

5.7 Scaling

How does the approach scale with the size of the conversation? Our objective function
is O(n4), the same for the number of constraints. Worst-case running time of simplex,
the algorithm that powers many LP-solvers, is exponential, but is polynomial in the
average case. So how do our cases fare?

5Even with 20 nodes, n4 is only 160,000 operations.
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Figure 5.7: Resource consumption for the sample implementation on
desktop computer with Intel i7 860 CPU (four cores, 2.8GHz)

The script was run with a minimal video unit of 400 kbps, which allows even the
weakest node in the friends case (node G, with 4 Mbps up) enough slots to stream to
all other nodes. While the included script is not feature-complete, it does create test
cases close to the correct size, which we can use to give some inclination to expected
running time, and how it scales. The tests for 8 and 9 nodes were run by adding one
and two extra nodes to the friends test case.

The best fit found for the sample data was a cubic fit,6 with R2 = 0.9995,
indicating that we can expect something close to O(n3) for this approach. As
mentioned earlier, since the n is very small in most of the scenarios, performance is
not expected to be an issue. The actual solving step took 0.4 s in the 9 person case,
which is not an unreasonable waiting time to establish a connection. The time taken
to build the flow network is significantly larger than the solving time in the sample
implementation, but since this is highly unoptimized Python it’s expected that it
can be optimized substantially.

6However, the quadratic fit was not much worse, at R2 = 0.9974. The data set is small, more
data is needed to say anything conclusively.





Chapter6Discussion

In this chapter we’ll take a step back, and try to evaluate both the experiments and
the suggested solution to see what’s necessary to get any further traction.

6.1 Experimental Results

We saw in the experiments that both browsers struggle in heavily constrained
environments, but in their own way. Firefox is unable to accommodate constrained
nodes at all, while Chrome is very slow at reaching an even distribution of connection
resources. Being able to know within seconds of a node joining how best to allocate
resources would be of high value.

Our experiments were run in browser-homogeneous environments; all browsers
in a conversation were the same. It would be interesting to see how the test cases
would have evolved in a more realistic scenario, where some of the users are running
Firefox and others are running Chrome. Our “traveller” test case for example, where
one node has severely limited bandwidth and higher latencies than the two others,
would make an interesting test. How does Firefox act as the limited node, when
the two others are Chrome, compared to how Chrome acts as limited, when the two
others are Firefox? As we saw in our results, Chrome is much better at negotiating
bitrates that don’t saturate a node’s link, would this also be the case if the sender
is Firefox? Results from such a test could indicate where exactly Firefox is failing;
whether it’s not adhering to signals sent by the limited node, or whether the limited
node fails to send to appropriate signals.

These sort of cross-browser tests could also provide tremendous value to the
browser implementors if they could be run in an automatic way (like discussed in
subsection 4.1.4). When tweaking the implementations, the implementors would be
able to run a sanity check towards other browsers and itself in a set of test cases,
immediately seeing how the changes affect the performance in different test cases.

47



48 6. DISCUSSION

6.2 Implementation

Implementing a script demonstrating how the routing works was harder than expected,
and not all desired features could be implemented. As every edge in the flow network
is a variable, and since almost all will contribute with either cost or gain, you need
to keep track of them somehow. The sample script did this with lists within nested
maps, which quickly got unwieldy and hard to work with.

Performance did not turn out to be an issue since the data sets in the test cases
are quite small. This would also be the case in a production environment, as more
than 96% of conversations on appear.in had 5 or fewer participants1. Computational
overhead is thus largely negligible.

6.3 VAS Fallback

In case a node does not have sufficient bandwidth for receiving (n− 1) streams of
the minimal bitrate, the routing algorithm will fail. In case this happens, a smart
system could fall back to VAS for the most challenged nodes. If this is accomplished,
services like appear.in could cover the entire bandwidth spectrum, as was illustrated
in Figure 2.1. However, in case the node has sufficient bandwidth for receiving
some streams, but not all, the user could be presented with an interface that allows
prioritizing certain nodes for always being present, while the rest share a VAS-link
to the node.

Further fallback is also possible, in the cases where either upload or download
is less than the minimal bitrate. If this is the case, the user could be prompted to
join the conversation as a voice-only participant, enabling the service to smoothly
accommodate all devices with bandwidth larger than 30–40 kbps in both directions.
Many services allow the user to opt-in to voice-only, but the service could also detect
when video is failing and then automatically switch over, or prompt the user2. This
step in itself does not require running the full approach, only that the service detects
when video fails to deliver at expected quality.

6.4 Finding Network Properties

The proposed approach is heavily reliant on having a fairly accurate representation of
the actual capabilities of the network in a given conversation. Some of the properties
we’re looking for are relatively easy to establish, like latency between the nodes. If
the service yields IP-addresses of all the participants when a new user joins, the

1Full data in Appendix E
2Skype already does this
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user can ping those addresses and determine latency to all of them in hundreds of
milliseconds.

Bandwidth is notoriously trickier. The biggest problem for measuring bandwidth
is that in general it takes a long time, something most users would be very annoyed
if they had to do for every conversation. However, the suggested solution does not
require you to know your exact bandwidth, and underestimates can work pretty
well. Thus a rough test against the provider upon entering a conversation should
yield usable results, but this is largely a hypothesis. More research into the effect of
accurate bandwidth measurements would be needed to say anything conclusively on
the matter.

While tricky, this thesis assumes that efficient ways of gathering the necessary
information can be found.

6.5 Who’s the Boss

In theory, any node in the conversation could model the problem and solve it to
derive where its video should be routed and at what quantity. However, no node
can do this without full knowledge of the flow network, which requires everyone
to share data with everyone. You’d also need to make sure that everyone in the
conversation agrees about the numbers the node came up with, which is hard in a
distributed scenario. Since most solutions will be require some central provider to
find contacts, it’s natural to assume that the service provider can be the negotiator.
As the intended application is for WebRTC deployments, this keeps the client light
and allows the LP-solver to run where there’s most compute capacity available.

This is not a hard requirement however, WebRTC has no dependency on cen-
tralization to work. The only thing WebRTC requires is an external channel to
communicate session establishment. Practically all WebRTC-based video conversa-
tion providers do this over HTTP/WebSockets towards a central server hosted by
the provider, but WebRTC could also be utilized without any providers. This could
allow the communicating parties to publish connection info over external channels,
like SMS, Twitter or mail. The proposed solution could work in such a scenario,
perhaps by letting the node with the most compute capacity solve the LP-problem.
Such distributed schemes have not been the focus for this thesis, but is an interesting
avenue for further research.

6.6 Limitations

The dynamic routing scheme proposed in this thesis is largely independent of under-
lying technology, but is intended to be built on top of WebRTC. The requirements
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to adopt the proposed approach is as follows:

– Clients can discover their own bandwidth

– Clients can discover the latency to each of their peers

– Clients can establish connections with a given bitrate

– Clients can reach each other directly (i.e. known IP addresses)

– Clients can route their video through parties not in the conversation

– Clients can forward received video to other nodes

I believe WebRTC fulfills all of these requirements, but I’m not entirely sure if it’s
easy to forward video from a client. If that’s not possible, the approach still works,
but nodes cannot be used as supernodes, thus repeaters have to be provided by the
service provider if the limits posed by the peer-to-peer topology is to be overcome.

As long as conversations are modelled as flow networks, any device or network
characteristic that can be included in such a model and described as a linear function
or approximation can be used to define the objective function. Our goal of maximum
bandwidth at minimum latency could also have been minimum latency at minimum
server costs, or minimal CPU usage at maximum bandwidth. Any combination is
possible.

The proposed approach requires every element in the flow network to be modelled
linearly, but I’m not totally certain if that’s a hard requirement. I believe it would be
possible to solve the problem also in a non-linear way, possibly using algorithms that
do not try to be optimal. For the intended application, high precision of the results
should not be necessary, thus it might be possible to simplify the model by skipping
the linear approximation step in the modelling, and rather find an algorithm that
approximates the solution directly.

6.7 Privacy

For privacy-oriented consumers, the suggested solution opens up an interesting
opportunity. Many existing solutions like Google Hangouts route every conversation
through company-controlled data centers, which in light of the recent NSA revelations3

is less than stellar from a privacy perspective. Dynamic topologies like discussed
in this thesis, combined with a multitude of global VPS providers which provide

3I’m referring here to the PRISM program revealed by Edward Snowden [BFGA13]
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quick-bootable disk images, enable consumers to provide their own infrastructure
that can be used to offload their compute and connectivity to. Combined with
WebRTC’s mandatory encryption using DTLS, this makes conversations private and
not susceptible to surveillance, from companies or governments.

For providers, this could be great news. They would not have to provide expensive
infrastructure for call routing, and would rather focus on interfaces for finding friends
and other complementary features like text chat, file sharing, call history, contact
lists, etc.

This would make the market more volatile, as there would be a lower investment
barrier to be able provide a full-blown communications infrastructure. New providers
with original ideas could quickly blossom, as users traditionally have not shown a
lot of loyalty to most communication platforms4. Providing quick-bootable user-
controlled server images could be a potential for innovation for companies. It boils
down to where the user decides to put their trust, a powerful desktop at home could
be used as a relay, or a cloud VPS could provide the same service, granted that
you trust the company that provides them – which does not have to be the same
company that provides the main service.

6.8 Dynamic Conversations

In our solution, we have so far assumed that most of the properties in the network
are static, like the number of nodes, upload/download capacities, latencies, and
possibly available CPU, if implemented. In reality however, many of these properties
are likely to fluctuate during a conversation, either because the people join and
leave conversations, users might be multi-tasking and running other IO-intensive
applications on the nodes, or mobile users might have started a conversation over
WiFi at home, but started walking to work and thus changed to a cellular connection
mid-conversation.

Regularly assessing the state of the conversation should be a natural extension
of the system, and should not pose too large of a challenge for implementations.
Push-based notifications should also be able to trigger a re-assessment, such as the
provider notifying the peers of new nodes joining, to avoid any delay for events that
everyone in a conversation should react to immediately. As the algorithm underlying
most LP solvers, simplex, is iterative in nature, it might be possible for a solution
to a new configuration to start from a previous known good solution, and thus
only incorporating the changes to the system to avoid a full re-computation of the

4We’ve seen this several times recently, as users have migrated en masse from SMS to Facebook
Messenger to Whatsapp to Snapchat. The only value a user sees in their provider seems to be
whether they can reach their friends through them.
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topology, but this has not been considered a goal of a system in this first exploration
of the idea.

The biggest challenge is ensuring the transitions between topologies become
transparent to the user, but as users are more lenient with lagging video than lagging
audio, audio could be duplicated on several topologies before video is switched. This
could help audio run smoothly during the transition, while video might take a few
moments to catch up.



Chapter7Conclusions and Future Work

7.1 Concluding Remarks

Traditional peer-to-peer systems require all nodes in a conversation to have upload
and download capacity of at least (n− 1)× b, where n is the number of users in a
conversation, and b the minimal bitrate of a video stream. This requirement grows
linearly with the number of users in a conversation, quickly becoming a limiting
factor. Other solutions like Google Hangouts route all calls through the service
provider’s data centers, sacrificing latency for an upload requirement of only b. The
approach presented in this thesis merges the best of these properties, allowing users
in conversations with sufficient resources to route all their calls in a peer-to-peer
to manner, while directing only constrained users through data centers, or through
other peers with excess resources.

The approach in this thesis can also improve pure peer-to-peer conversations, by
finding an optimal routing of video much faster than what browsers do through trial
and error today. Providers adapting this work could instrument the browser directly,
allow everyone to establish connections with bandwidth adjusted to fit them from
the start without a long period to reach steady state.

Current browsers were shown to not handle constrained environments satisfactorily,
either failing entirely or taking a very long time to establish decent connections to
new nodes. The approach outlined could enable existing service providers to serve
markets that are currently incapable of communicating over peer-to-peer services.
Centralized providers could adapt the approach to push high-capacity conversations
over peer-to-peer, to reduce the need for servers to manage the traffic.

7.2 Future Work

This thesis only presented a light sample implementation of the approach, which
does not conclusively demonstrate that the approach is feasible. Some points below
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are listed that remains before this can be established.

7.2.1 Implementation

The system has not been tested in any actual video conversations and does not
currently employ all the features described in chapter 5 to achieve a fair routing.
Implementing the missing features and testing the solution in actual conversations
needs to be done.

As discussed in section 6.8, conversations are unlikely to be static, and will
probably in many cases greatly change topology as the conversation progresses. This
is inevitable for conversations with more than two participants, as the system will
first solve for a n = 2 system, and then later have to solve for a n = 3 system when
the next node joins. The system as proposed in this paper is completely oblivious to
the state of a conversation, it simply takes in a configuration of nodes, and outputs an
efficient routing of commodities. Adapting the system to support either change-sets
to an existing topology, maybe prioritizing not interrupting existing connections
when new nodes enter a conversation, or just recomputing from scratch, will require
both the provider and the nodes to listen to notifications from others about topology
changes. Incorporating this into the system in a transparent way for the user remains
to be done in future work.

7.2.2 Other Limiting Factors

Bandwidth and latency were the only limiting factors we included in the sample
implementation, but there’s a ton of other variables that could influence desired
topology, such as CPU, battery, screen size, link packet loss, link jitter, and user
profiles ("Only do peer-to-peer, this is a confidential call").

None of these factors were considered for these first tests of a dynamic topology
system, but should be considered for future work. Decisions could be based on
data, but allow user overrides, such as prompting the user whether to optimize for
performance, which will kill the battery in 10 minutes, or slightly degrade performance
by routing video through a repeater/transcoder to reduce local CPU consumption to
last another 20 minutes. Or just take the decision and silently notify the user. The
degree of user autonomy in these cases are left to implementations to decide.

7.2.3 Integrate Test Cases With Browsers

If the entire test suite is made automatic, tests could easily be run by browser
vendors to continuously assess how they perform in constrained environments. This
also requires that Firefox exposes timing data from the RTCP stream through the
getStats API, and preferably that the API gets standardized.
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AppendixAThe find_allocations script

This is the Python script1 introduced in the chapter 5, which computes an efficient
video routing for a flow network from a file of cases and a set of parameters.

Necessary dependencies for running the script include the glpk LP solver (available
for both Windows and *nix), and the Python bindings provided by the pulp library2.

1 # -*- coding: utf-8 -*-
2 """
3 Find optimal video routing for a given case.
4

5 :copyright: (c) 2015 by Tarjei Husøy
6 :license: MIT, see http://opensource.org/licenses/MIT
7 """
8

9 from collections import defaultdict, namedtuple
10 from itertools import chain, product
11 from pdb import set_trace as trace
12 from pulp import (LpMinimize, LpMaximize, LpProblem, LpVariable, LpInteger,
13 LpSenses, GLPK, value)
14 import argparse
15 import io
16 import logging
17 import os
18 import sys
19 import time

1Available online at https://github.com/thusoy/hybrid-video-topology/blob/master/tools/find_
allocation.py

2Install with pip install pulp
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20 import yaml
21

22 logger = logging.getLogger(’hytop’)
23 case = None
24 constraints = []
25

26 device_gain = {
27 ’desktop’: 4,
28 ’laptop’: 3,
29 ’tablet’: 2,
30 ’mobile’: 1,
31 }
32

33 class Commodity(int):
34 def set_pair(self, sender, receiver):
35 self.sender = sender
36 self.receiver = receiver
37

38

39 def load_cases(case_file):
40 with open(case_file) as fh:
41 return yaml.load(fh)
42

43 Edge = namedtuple(’Edge’, [’slots’, ’threshold’, ’cost’])
44

45

46 def main():
47 global case
48 default_case_file = os.path.join(os.path.dirname(__file__), ’cases.yml’)
49 cases = load_cases(default_case_file)
50 parser = argparse.ArgumentParser()
51 parser.add_argument(’-v’, ’--verbose’, help=’Logs all constraints added’,
52 action=’store_true’, default=False)
53 parser.add_argument(’-d’, ’--debug’, help=’Print debug information’,
54 action=’store_true’, default=False)
55 parser.add_argument(’-s’, ’--slot-size’, default=’512kbps’,
56 help=’Set slot size to this size’)
57 parser.add_argument(’-e’, ’--edges’, default=4, type=int,
58 help=’How many parallell edges to add between each pair of nodes’)
59 parser.add_argument(’-c’, ’--case’, choices=cases.keys(),
60 default=’traveller’)
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61 args = parser.parse_args()
62 log_level = logging.INFO if args.verbose else logging.WARNING
63 logging.basicConfig(level=log_level, stream=sys.stdout)
64 case = cases[args.case]
65 solve_case(args, number_of_edges=args.edges)
66

67

68 def all_edges(include_self=False):
69 for node in nodes():
70 for other_node in nodes():
71 if other_node != node or include_self:
72 yield (node + ’proxy’, other_node + ’proxy’)
73 yield (node, node + ’proxy’)
74 yield (node + ’proxy’, node)
75 for proxy in proxies():
76 for repeater in repeaters():
77 yield (proxy, repeater)
78 yield (repeater, proxy)
79

80 def get_edges(number_of_slots, number_of_edges=4):
81 cutoffs = get_cutoffs(number_of_edges)
82 print ’%d slots:’ % number_of_slots,
83 edges = [] # (slots, treshold, cost) tuples
84 utilization = 0.0
85 utilization_step = 1.0/number_of_slots
86 for cutoff in cutoffs:
87 slots = int(number_of_slots*(cutoff - utilization))
88 utilization += utilization_step*slots
89 edges.append(Edge(slots, utilization, cost(utilization)))
90 utilized_slots = sum(edge.slots for edge in edges)
91 edges.append(Edge(number_of_slots - utilized_slots, 1, cost(1)))
92 edges = [edge for edge in edges if edge.slots]
93 return edges
94

95 def cost(utilization, punishment_factor=0.9):
96 # The closer the punishment_factor is to 1, the heavier the punishment
97 # for saturating links (balance against cost factor of delay)
98 return 1/(1-punishment_factor*utilization)
99

100 def get_cutoffs(partitions=4):
101 """ Find the cut-off points for partitioning something where each part is
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102 twice as large as the previous.
103

104 >>> get_cutoffs(2)
105 [0.66]
106 """
107 number_of_segments = sum(2**i for i in range(partitions))
108 segment_size = 1.0/number_of_segments
109

110 # Create an array like [0.066667, 0.1333, 0.26667, 0.53] for partitions=4
111 segs = [segment_size*2**i for i in range(partitions)]
112

113 # Reverse the array and make each element a cumulative sum
114 cutoffs = [sum(segs[-1:-1-i:-1]) for i in range(1, partitions)]
115 return cutoffs
116

117 def node_pairs():
118 for node in nodes():
119 for other_node in nodes():
120 if node != other_node:
121 yield (node, other_node)
122

123

124 def nodes():
125 for node in sorted(case[’nodes’].keys()):
126 yield node
127

128

129 def commodities():
130 commodity_number = 0
131 for node in nodes():
132 for other_node in nodes():
133 if node != other_node:
134 commodity = Commodity(commodity_number)
135 commodity.set_pair(node, other_node)
136 yield commodity
137 commodity_number += 1
138

139

140 def commodity_from_nodes(sender, receiver):
141 number = 0
142 for node in nodes():
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143 for other_node in nodes():
144 if node != other_node:
145 if node == sender and other_node == receiver:
146 commodity = Commodity(number)
147 commodity.set_pair(node, other_node)
148 return commodity
149 number += 1
150

151

152 def proxies():
153 for node in nodes():
154 yield node + ’proxy’
155

156

157 def repeaters():
158 for repeater in case.get(’repeaters’, {}):
159 yield repeater
160

161 def add_constraint(constraint, label=None):
162 text = ’%s constraint’ % label if label else ’Constraint’
163 logger.info(’%s: %s’, text, constraint)
164 constraints.append(constraint)
165

166

167 _debug_vars = []
168 _debug_index = 0
169 def debug():
170 global _debug_index
171 _debug_index += 1
172 _debug_vars.append(LpVariable(’__debug__x%d’ % _debug_index, lowBound=0))
173 _debug_vars.append(LpVariable(’__debug__y%d’ % _debug_index, lowBound=0))
174 return _debug_vars[-1] - _debug_vars[-2]
175

176 def dump_nonzero_variables(prob):
177 print ’\n’.join(’%s = %s’ % (v.name, v.varValue) for v in prob.variables()
178 if v.varValue)
179

180

181 def get_edge_latency(node, other_node):
182 """ Get latency of edge between node and other_node. If that is not
183 specified in the case spec, latency from other_node to node will be
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184 returned if present.
185 """
186 if node.startswith(’rep’):
187 edge_latency = case[’repeaters’][node][other_node[0]].split()[0]
188 elif other_node.startswith(’rep’):
189 edge_latency = case[’repeaters’][other_node][node[0]].split()[0]
190 elif ’proxy’ in node and ’proxy’ in other_node:
191 try:
192 edge_latency = case[’nodes’][node[0]][other_node[0]].split()[0]
193 except:
194 # A -> B not defined, lookup B -> A
195 edge_latency = case[’nodes’][other_node[0]][node[0]].split()[0]
196 else:
197 # TODO: Add edge cost for parallell edges between proxies and their
198 # nodes
199 edge_latency = ’0ms’
200 return int(edge_latency.strip(’ms’))
201

202

203 def get_objective(variables, number_of_edges):
204 objective = 0
205 for node, other_node in node_pairs():
206 commodity = commodity_from_nodes(node, other_node)
207 other_proxy = other_node + ’proxy’
208 edges = get_edges(number_of_edges)
209 for edge_num, edge in enumerate(edges):
210 # Add bandwidth-gains to objective
211 device_class = case[’nodes’][other_node][’class’]
212 gain = device_gain[device_class]
213 edge_var = variables[other_proxy][other_node][commodity][edge_num]
214 gainconst = 10
215 objective += gainconst * gain * edge_var
216 # objective -= edge.cost * edge_var
217 # TODO: Subtract incoming flow to the source node from objective?
218

219

220 for commodity, (node, other_node) in product(commodities(), all_edges()):
221 # Subtract edge cost from objective
222 edge_latency = get_edge_latency(node, other_node)
223 for edge in variables[node][other_node][commodity]:
224 objective -= edge_latency*edge
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225

226 return objective
227

228

229 def initialize_variables(number_of_edges):
230 variables = defaultdict(lambda: defaultdict(list))
231 # Initialize all edge variables
232 for (node, other_node), commodity in product(all_edges(), commodities()):
233 bandwidth_limited = (’proxy’ in node and node[0] == other_node) or (
234 ’proxy’ in other_node and other_node[0] == node)
235 parallell_edges = number_of_edges if bandwidth_limited else 1
236 for edge in range(parallell_edges):
237 # Assume nothing exceeds gigabit speeds, not even backbone links
238 if edge == 0:
239 variables[node][other_node].append([])
240 variables[node][other_node][-1].append(LpVariable(’%sto%sK%dC%d’ %
241 (node, other_node, commodity, edge), lowBound=0, upBound=1000,
242 cat=LpInteger))
243 return variables
244

245 def parse_bandwidth_into_slots(bandwidth):
246 slot_size = 400000
247 bandwidth = bandwidth.strip(’bit’)
248 unit = bandwidth[-1]
249 multipliers = {
250 ’G’: 10**9,
251 ’M’: 10**6,
252 ’k’: 10**3,
253 }
254 multiplier = multipliers[unit]
255 return int(bandwidth[:-1])*multiplier/slot_size
256

257

258 def add_bandwidth_conservation(variables):
259 # Stay below bandwidth (capacities)
260 for node in nodes():
261 downlink_raw = case[’nodes’][node][’downlink’]
262 downlink_capacity = parse_bandwidth_into_slots(downlink_raw)
263 add_constraint(sum(sum(variables[node+’proxy’][node][commodity]) for
264 commodity in commodities()) <= downlink_capacity)
265 uplink_raw = case[’nodes’][node][’uplink’]
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266 uplink_capacity = parse_bandwidth_into_slots(uplink_raw)
267 add_constraint(sum(sum(variables[node][node+’proxy’][commodity]) for
268 commodity in commodities()) <= uplink_capacity)
269

270

271 def add_all_commodities_must_be_sent_and_received_constraint(variables):
272 # All commodities must be sent by the correct parties
273 # Note: Node should not need to send a commodity if a repeater does, and
274 # the repeater receives another commodity from this node
275 for commodity in commodities():
276 proxy = commodity.sender + ’proxy’
277 commodity_sources = sum(variables[commodity.sender][proxy][commodity])
278 for repeater, proxy in product(repeaters(), proxies()):
279 commodity_sources += sum(variables[repeater][proxy][commodity])
280 add_constraint(commodity_sources >= 1)
281 node_ext = commodity.receiver + ’proxy’
282 node = commodity.receiver
283 all_incoming_edges = variables[node_ext][node][commodity]
284 add_constraint(sum(all_incoming_edges) >= 1)
285

286

287 def add_proxy_flow_conservation(variables):
288 for commodity, node in product(commodities(), nodes()):
289 # Add flow conservation for proxies, as per an all-to-all topology
290 proxy = node + ’proxy’
291 in_to_proxy = 0
292 out_of_proxy = 0
293 for other_node in chain(proxies(), repeaters()):
294 if proxy == other_node:
295 continue
296 in_to_proxy += sum(variables[other_node][proxy][commodity])
297 out_of_proxy += sum(variables[proxy][other_node][commodity])
298 add_constraint(in_to_proxy == variables[proxy][node][commodity])
299 add_constraint(out_of_proxy == variables[node][proxy][commodity])
300

301

302 def add_node_flow_conservation(variables):
303 for commodity, node in product(commodities(), nodes()):
304 # Add flow conservation for nodes, make sure they can only be origin
305 # for their own commodity, and does not terminate their own
306 # commodities
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307 # TODO: Does not allow nodes to re-encode data for now
308 proxy = node + ’proxy’
309 if node == commodity.sender:
310 received = sum(variables[proxy][node][commodity])
311 add_constraint(received == 0, ’Node’)
312 elif node != commodity.receiver:
313 sent = sum(variables[node][proxy][commodity])
314 received = sum(variables[proxy][node][commodity])
315 add_constraint(sent == received, ’Node’)
316

317 def add_repeater_flow_conservation(variables):
318 # Repeaters repeat incoming commodities out to all proxies, mangled to
319 # their desired commodity
320 for repeater, node in product(repeaters(), nodes()):
321 proxy = node + ’proxy’
322 left_side = 0
323 right_side = []
324 for commodity in commodities():
325 if commodity.sender == node:
326 left_side += variables[proxy][repeater][commodity][0]
327 recv_ext = commodity.receiver + ’proxy’
328 right_side.append(variables[repeater][recv_ext][commodity][0])
329

330 # Never send traffic back to source (hopefully not needed)
331 sender_ext = commodity.sender + ’proxy’
332 edge_var = variables[repeater][sender_ext][commodity][0]
333 add_constraint(edge_var == 0, ’Repeater flow’)
334

335 for outgoing in right_side:
336 add_constraint(left_side == outgoing, ’Repeaterflow’)
337

338

339

340 def get_constraints(variables):
341 constaint_sources = (
342 add_bandwidth_conservation,
343 add_all_commodities_must_be_sent_and_received_constraint,
344 add_proxy_flow_conservation,
345 add_node_flow_conservation,
346 add_repeater_flow_conservation,
347 )
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348 for source in constaint_sources:
349 source(variables)
350 return constraints
351

352 def print_problem_constraints(prob):
353 print ’Problem constraints:’
354 for v in prob.variables():
355 if v.varValue and v.name.startswith(’__debug__’):
356 for c in prob.constraints.values():
357 if ’ %s ’ % (v.name,) in str(c):
358 print ’\t%s’ % c
359

360 def find_path_between_nodes(variables, node, other_node):
361 commodity = commodity_from_nodes(node, other_node)
362 destination = node + ’proxy’
363 path = [other_node + ’proxy’]
364 while path[-1] != destination:
365 # print path
366 path_hops, commodity = find_next_path_hops_and_commodity(variables,
367 path[-1], destination, commodity)
368 path.extend(path_hops)
369 else:
370 # Found path between nodes
371 path = list(reversed(path))
372 return path
373

374 def find_next_path_hops_and_commodity(variables, origin, destination,
375 commodity):
376 incoming_paths = find_nodes_who_sends_commodity(variables, origin,
377 commodity)
378 if len(incoming_paths) == 2:
379 # There’s a cycle (we go through another node), add the cycle and
380 # the actual exit to the path
381 return get_exit_path_from_proxy(variables, origin,
382 incoming_paths, commodity), commodity
383 elif len(incoming_paths) == 1:
384 return incoming_paths, commodity
385

386 else:
387 if not origin.startswith(’rep’):
388 raise ValueError(’Commodity K%d not found in to %s’ % (commodity,
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389 destination))
390 # Trace a repeater changing commodity type
391 commodity = find_mangled_commodity(variables, destination,
392 commodity.sender)
393 return find_path(variables, origin, destination, commodity), commodity
394

395 def get_exit_path_from_proxy(variables, origin, incoming_paths, commodity):
396 path = []
397 # Check for cycle
398 for incoming_path in incoming_paths:
399 if incoming_path == origin:
400 continue
401 # Do we send to that node as well as receive -> cycle.
402 if any(edge.varValue for edge in
403 variables[origin][incoming_path][commodity]):
404 path.append(incoming_path)
405 path.append(origin)
406 break
407

408 # Add non-cycle path
409 for incoming_path in incoming_paths:
410 if incoming_path not in path:
411 # The other non-cycle path
412 path.append(incoming_path)
413 break
414 return path
415

416

417 def find_mangled_commodity(variables, repeater, sender):
418 all_node_commodities = [c for c in commodities() if c.sender == sender]
419 for c in all_node_commodities:
420 for sending_node, variable in variables.iteritems():
421 if repeater in variable and any(edge.varValue for edge in \
422 variable[repeater][c]):
423 return c
424 raise ValueError(’Mangled commodity not found.’)
425

426

427 def find_path(variables, origin, destination, commodity):
428 path = []
429 last_node_found = origin



68 A. THE FIND_ALLOCATIONS SCRIPT

430 while last_node_found != destination:
431 sending_nodes = find_nodes_who_sends_commodity(variables,
432 last_node_found, commodity)
433 if sending_nodes:
434 last_node_found = sending_nodes[0]
435 else:
436 raise ValueError(’No path found after repeater change, ’
437 ’path: %s, origin: %s, dest: %s, c: %s’ % (path, origin,
438 destination, commodity))
439 path.append(last_node_found)
440 return path
441

442 def find_nodes_who_sends_commodity(variables, destination, commodity):
443 sending_nodes = []
444 for search_node, variable in variables.iteritems():
445 if destination in variable:
446 edges = variable[destination][commodity]
447 any_traffic = any(edge.varValue for edge in edges)
448 if any_traffic:
449 sending_nodes.append(search_node)
450 return sending_nodes
451

452

453 def get_path_cost(variables, path, commodity):
454 cost = 0
455 for index, edge in enumerate(path[1:], 1):
456 sender, receiver = path[index-1], path[index]
457 cost += get_edge_latency(sender, receiver)
458 return cost
459

460 def print_solution(variables):
461 # Print the solution
462 for node, other_node in node_pairs():
463 commodity = commodity_from_nodes(node, other_node)
464 path = find_path_between_nodes(variables, node, other_node)
465 cost = get_path_cost(variables, path, commodity)
466 flow = sum(edge.varValue for edge in
467 variables[path[-2]][path[-1]][commodity])
468 path_as_str = ’ -> ’.join(path)
469 print ’%s til %s (K%d): %s, flow: %d, cost: %dms’ % (node, other_node,
470 commodity, path_as_str, flow, cost)
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471

472 def print_bandwidth_usage(variables):
473 for node in nodes():
474 downlink_raw = case[’nodes’][node][’downlink’]
475 downlink_capacity = parse_bandwidth_into_slots(downlink_raw)
476 uplink_raw = case[’nodes’][node][’uplink’]
477 uplink_capacity = parse_bandwidth_into_slots(uplink_raw)
478 proxy = node + ’proxy’
479 downlink_used = sum(sum(edge.varValue for edge in
480 variables[proxy][node][commodity]) for commodity in commodities())
481 uplink_used = sum(sum(edge.varValue for edge in
482 variables[node][proxy][commodity]) for commodity in commodities())
483 downlink_percentage = float(downlink_used)/downlink_capacity
484 uplink_percentage = float(uplink_used)/uplink_capacity
485 print ’%s downlink: %.1f, uplink: %.1f’ % (node, downlink_percentage,
486 uplink_percentage)
487

488 def solve_case(args, number_of_edges):
489 global_start_time = time.time()
490 variables = initialize_variables(number_of_edges)
491

492 # TODO: Subtract repeater/re-encoder costs
493

494 constraints = get_constraints(variables)
495

496 if args.debug:
497 for i in range(len(constraints)):
498 constraints[i] += debug()
499

500 prob_type = LpMinimize if args.debug else LpMaximize
501 prob = LpProblem("interkontinental-asymmetric", prob_type)
502 objective = get_objective(variables, number_of_edges) if not args.debug \
503 else sum(_debug_vars)
504 logger.info(’Objective: %s %s’, LpSenses[prob.sense], objective)
505 prob += objective
506

507 for constraint in constraints:
508 prob += constraint
509

510 starttime = time.time()
511 pipe = io.StringIO()
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512 res = GLPK(pipe=pipe).solve(prob)
513 endtime = time.time()
514

515 output = pipe.getvalue()
516 memstart = output.find(’Memory used’)
517

518

519 for commodity in commodities():
520 print ’K%d: %s -> %s’ % (commodity, commodity.sender,
521 commodity.receiver)
522

523 if res < 0:
524 print ’Unsolvable!’
525 sys.exit(1)
526 else:
527 if args.debug:
528 print_problem_constraints(prob)
529

530 dump_nonzero_variables(prob)
531 print
532

533 print_solution(variables)
534 print_bandwidth_usage(variables)
535

536 print "Score =", value(prob.objective)
537 print ’Found solution in %.3fs’ % (endtime - starttime)
538 with open(’results.csv’, ’a’) as fh:
539 memory_segment = ’’.join(output[memstart:memstart+20])
540 memory_used = float(memory_segment.split()[2])*10**6
541 solve_time = endtime - starttime
542 build_time = starttime - global_start_time
543 retrace_time = time.time() - endtime
544 fh.write(’%.3f,%.3f,%.3f,%d’ % (solve_time, build_time,
545 retrace_time, memory_used) + ’\n’)
546

547

548 if __name__ == ’__main__’:
549 main()



AppendixBcapture.sh
The capture.sh1 script was executed on each of the machines in the cluster to start
taking regular screenshots, and print the current local time to the terminal. This
allowed calculating the end-to-end latency as the difference between the local current
time (which was kept in sync between the nodes using a common nearby NTP server)
and the time sent by each of the nodes in the conversation. The observed times was
later manually interpreted and noted down in a Comma-Separated Values (CSV)
document, which was then used for further analysis. Manual interpretation was
unavoidable since the timestamps was often overlayed with previous timestamps, due
to several components in the end-to-end chain having refresh rates far larger than
the millisecond accuracy we’d prefer.

The script also starts tcpdump, to capture how much traffic is sent and received
from the different hosts, for further analysis.

1 #!/bin/bash
2

3 # Starts the actual capture of screenshots, and prints the current time
4 # offset and local clock
5 session_id=$(hostname)-$(date +"%s")
6

7 # Print which role we’re configured as
8 # grep $(hostname) apply-case.py
9 my_ip=$(curl -s canhazip.com)

10 iface=$(ifconfig | grep "inet addr:$my_ip" -B1 | head -1 | cut -d" " -f1)
11

12 # Start sniffing traffic to reconstruct bandwidth usage between peers,

1Available online at https://github.com/thusoy/hybrid-video-topology/blob/master/tools/
capture.sh
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13 # excluding some common spammy services (ssh, spotify, name lookups, ssdp)
14 sudo tcpdump -i $iface -nNqtts68 "port not 3271 and port not 17500 and port \
15 not 137 and port not 138 and port not 1900 and (udp or tcp)" \
16 -w /tmp/$session_id.pcap 2> /dev/null &
17 tcpdump_pid=$!
18

19 python clock.py &
20 clock_pid=$!
21 trap cleanup INT
22

23 function cleanup () {
24 echo -e "\n$session_id/$my_ip"
25 kill -9 $clock_pid
26 sudo kill -INT $tcpdump_pid
27 exit $?
28 }
29

30 while :; do
31 gm import -window root /tmp/screen-$session_id-$(date +"%s").png
32 sleep 10
33 done



AppendixCapply-case.py script

This is the script1 used to limit available bandwidth and set up inter-node latencies
in the test cluster. The script loads it’s configuration from the same cases.yml case
definition file as some of the other scripts. It then calls out to the Linux command
tc, which instructs the kernel to assign the given parameters to outgoing traffic.

Incoming traffic is only restricted in bandwidth, no latencies are being applied.

The script automatically detects from the IP of the host running it which role it
should be assigned in the case, which makes it fast and easy to automate execution of
the script across several machines. This is based on another YAML-file rolemap.yml,
which holds a simple mapping from role names to their hostname. This enables the
script to use the hostname of the current machine to find the role, and to use DNS
to find the IP of the other machines, which is necessary as parameters to tc.

1 #!/usr/bin/env python
2 # -*- coding: utf-8 -*-
3 """
4 Applies network restrictions according to a desired case.
5

6 :copyright: (c) 2015 by Tarjei Husøy
7 :license: MIT, see http://opensource.org/licenses/MIT
8 """
9

10 import argparse
11 import requests
12 import socket

1Available online at https://github.com/thusoy/hybrid-video-topology/blob/master/tools/
apply-case.py
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13 import os
14 import re
15 import yaml
16 from subprocess import call as _call, check_output
17

18

19 TC=["sudo", "tc"]
20 SSH_PORT = 3271
21

22

23 def load_cases(case_file):
24 with open(case_file) as fh:
25 cases = yaml.load(fh)
26 for case in cases.values():
27 for role in case[’nodes’]:
28 for other in case[’nodes’]:
29 if role == other:
30 continue
31 if other not in case[’nodes’][role]:
32 case[’nodes’][role][other] = case[’nodes’][other][role]
33 return cases
34

35 def load_role_map(map_file):
36 with open(map_file) as fh:
37 return yaml.load(fh)
38

39

40 def main():
41 default_case_file = os.path.join(os.path.dirname(__file__), ’cases.yml’)
42 default_role_map = os.path.join(os.path.dirname(__file__), ’rolemap.yml’)
43 cases = load_cases(default_case_file)
44 role_map = load_role_map(default_role_map)
45 parser = argparse.ArgumentParser()
46 parser.add_argument(’-r’, ’--role’, help=’Which role should be ’
47 ’activated. Defaults to checking whether any role is associated ’
48 ’with your IP address’)
49 parser.add_argument(’-c’, ’--case’, help=’Which case to load’,
50 default=’traveller’, choices=cases.keys())
51 parser.add_argument(’-C’, ’--clear’, action=’store_true’,
52 help="Clear all existing rules without applying a new case")
53 args = parser.parse_args()
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54 if args.clear:
55 print(’Clearing any existing rules...’)
56 clear_all_rules()
57 return
58 case = cases[args.case]
59 ipify_role_map(role_map, case[’nodes’].keys())
60 role = args.role or get_role_from_ip(role_map)
61 activate_role(role, role_map, case)
62

63

64 def clear_all_rules():
65 device = get_interface_device()
66 call(TC + [’qdisc’, ’del’, ’dev’, device, ’ingress’], silent=True)
67 call(TC + [’qdisc’, ’del’, ’dev’, device, ’root’], silent=True)
68

69

70 def ipify_role_map(role_map, roles_in_use):
71 """ Needed since a DNS lookup usually will only return IPv4 addresses,
72 while the WebRTC-discovery protocol will also find the node’s IPv6
73 addresses. We thus SSH to each node and query its interface list for
74 all IPs it’ll answer on.
75 """
76 ip_regex = re.compile(r’[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}’)
77 if_cmd = ("ifconfig"
78 " | grep -o ’inet addr:[^ ]*’"
79 " | cut -d: -f2"
80 " | grep -v 127.0.0.1")
81

82 if6_cmd = ("ifconfig"
83 " | grep -o \"inet6 addr: [^ ]*\""
84 " | cut -d’ ’ -f3"
85 " | grep -v ’^fe80’"
86 " | grep -v ’^::1’ || exit 0")
87 for role in roles_in_use:
88 hostname_or_ip = role_map[role]
89 if not ip_regex.match(hostname_or_ip):
90 # Not an IP in the role map, let’s find the IPs
91 ips = []
92 ipv4_addr_out = check_output([
93 ’ssh’,
94 ’-o StrictHostKeyChecking=no’,
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95 hostname_or_ip,
96 ’-p %d’ % SSH_PORT,
97 if_cmd])
98 ips += ipv4_addr_out.strip().split(’\n’)
99 ipv6_out = check_output([

100 ’ssh’,
101 ’-o StrictHostKeyChecking=no’,
102 hostname_or_ip,
103 ’-p %d’ % SSH_PORT,
104 if6_cmd])
105 if ipv6_out:
106 ips += ipv6_out.strip().split(’\n’)
107 # Probably a hostname, resolve it and use the IP in the role map
108 role_map[role] = ips
109

110

111 def get_role_from_ip(rolemap):
112 my_ip = get_my_ip()
113 for role, ips in rolemap.items():
114 if my_ip in ips:
115 return role
116 raise ValueError("Role not found for ip %s" % my_ip)
117

118

119 def get_my_ip():
120 """ Get the IP of the box running this code. """
121 # This function is memoizable
122 return requests.get(’http://httpbin.org/ip’).json()[’origin’]
123

124

125 def activate_role(role, role_map, case):
126 print ’Activating role %s’ % role
127 clear_all_rules()
128 uplink = case[’nodes’][role][’uplink’]
129 downlink = case[’nodes’][role][’downlink’]
130 add_roots(downlink, uplink)
131 add_role_rules(role, role_map, case)
132

133

134 def add_roots(downlink, uplink):
135 device = get_interface_device()



77

136 # Limit uplink
137 call(TC + [’qdisc’, ’add’, ’dev’, device, ’root’, ’handle’, ’1:’, ’tbf’,
138 ’rate’, uplink, ’buffer’, ’20000’, ’limit’, ’30000’])
139 call(TC + [’qdisc’, ’add’, ’dev’, device, ’parent’, ’1:’, ’handle’, ’2:’,
140 ’htb’])
141

142 # Limit downlink. This effectively limits UDP to the given downlink
143 # bandwidth, but TCP will have lower performance, because of negative
144 # effects of the window size and the large delays. This doesn’t matter in
145 # this case, as our traffic is UDP-based, but it’s worth keeping in mind.
146 call(TC + [’qdisc’, ’add’, ’dev’, device, ’handle’, ’ffff:’, ’ingress’])
147 call(TC + [’filter’, ’add’, ’dev’, device, ’parent’, ’ffff:’, ’protocol’,
148 ’ip’, ’prio’, ’50’, ’u32’, ’match’, ’ip’, ’src’, ’0.0.0.0/0’,
149 ’police’, ’rate’, downlink, ’burst’, downlink, ’flowid’, ’:1’])
150

151

152 def add_role_rules(role, role_map, case):
153 device = get_interface_device()
154 ipv4_regex = re.compile(r’[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}’)
155 for role_num, (other_role, delay_config) in enumerate(
156 sorted(case[’nodes’][role].items(), key=lambda t: t[0]), 1):
157 if other_role in (’uplink’, ’downlink’, ’class’):
158 continue
159 class_id = role_num*10
160 handle_id = str(class_id) + ’1’
161 delay_config_as_list = delay_config.split()
162 if not other_role in role_map:
163 raise ValueError(’Role does not have a specified target in the ’
164 ’role_map: %s’ % other_role)
165 call(TC + [’class’, ’add’, ’dev’, device, ’parent’, ’2:’, ’classid’,
166 ’2:%d’ % class_id, ’htb’, ’rate’, case[’nodes’][role][’uplink’]])
167 call(TC + [’qdisc’, ’add’, ’dev’, device, ’parent’, ’2:%d’ % class_id,
168 ’handle’, ’%s:’ % handle_id, ’netem’, ’delay’] +
169 delay_config_as_list)
170 for ip in role_map[other_role]:
171 if ipv4_regex.match(ip):
172 call(TC + [’filter’, ’add’, ’dev’, device, ’protocol’, ’ip’,
173 ’parent’, ’2:0’, ’prio’, ’3’, ’u32’, ’match’, ’ip’, ’dst’,
174 ip, ’flowid’, ’2:%d’ % class_id])
175 else:
176 call(TC + [’filter’, ’add’, ’dev’, device, ’protocol’, ’ipv6’,
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177 ’parent’, ’2:0’, ’prio’, ’4’, ’u32’, ’match’, ’ip6’,
178 ’dst’, ip, ’flowid’, ’2:%d’ % class_id])
179

180

181 def get_interface_device():
182 # This function is memoizable
183 my_ip = get_my_ip()
184 all_interfaces = []
185 ip_links_output = check_output([’ip’, ’link’, ’list’])
186 for line in ip_links_output.split(’\n’):
187 if not line.startswith(’%s:’ % (len(all_interfaces) + 1)):
188 continue
189 interface = line.split(’:’)[1].strip()
190 all_interfaces.append(interface)
191 for interface in all_interfaces:
192 ip_addr_output = check_output([’ip’, ’addr’, ’show’, ’dev’,
193 interface])
194 if my_ip in ip_addr_output:
195 return interface
196 raise ValueError(’Failed to find correct interface to use!’)
197

198

199 def call(args, silent=False, **kwargs):
200 devnull = open(os.devnull, ’wb’)
201 if silent:
202 kwargs[’stdout’] = devnull
203 kwargs[’stderr’] = devnull
204 else:
205 print ’Running cmd: %s’ % ’ ’.join(args)
206 _call(args, **kwargs)
207

208

209 if __name__ == ’__main__’:
210 main()



AppendixDExtracting getStats data

Data extraction from the browsers while running the tests consisted of two parts: A
JavaScript file that was injected into the browser extracting the actual data, and a
webserver running outside the test cluster storing the captured data for analysis.

Since the data directly from getStats is overly verbose and a bit hard to navigate,
some cleanup is performed in the browser before shipping it off to storage, to have as
small an impact on the test bandwidth as possible. If no influence of analytics is
desired, a local web server could have been spawned on each node running in the
test, preventing any external data usage during the duration of the test. The data
could then be collected later. This was not considered necessary for these tests, as
the overhead of relatively small JSON posted over HTTP is very small compared to
streaming live video.

The JavaScript was injected into Chrome using the extension “Custom JavaScript
for websites”1. The script was configured to dump statistics to the external server
every second.

The client-side script is very compact and carries negligible overhead on page
load. Minified and gzipped it weighs in at 1.3kB, with no external dependencies.

Since the returned data from the getStats API differs between browsers, it has
to be cleaned up before it can be presented for analysis. This could be done either
on the client side, or on the server side. I’d argue that this is most sensibly done on
the server side, since if keeps the client-side script lighter, prevents it from having to
incorporate changes as the browsers change, and reduces the likelihood of crashes. If
parsing is done here, the script will have to know about every change done by every
browser, which will make it huge and failure-prone when the browsers change the
data format. If the script submits the user agent string with the results, the server

1Available here: https://chrome.google.com/webstore/detail/custom-javascript-for-web/
poakhlngfciodnhlhhgnaaelnpjljija
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can collect them all, and when new data appears, it can add handlers for that, and
build up support for ever more user agents in the backend.

However, there’s a balance to be found. The getStats API is very verbose,
returning lots of data of connection candidates and key pairs and lots of data that is
generally not that interesting for analytics. To reduce impact on bandwidth, it’s of
interest to the client to not have to submit a lot of junk that will be discarded by the
backend anyway. Thus the script used here tries to find the middle way; it detects
the interesting parts (audio in/out, video in/out and current connection details) and
discards the rest, sending the interesting parts off to the server without any further
parsing of the contents.

Support for Firefox is only half-way there, reports are fetched from the API
but the aforementioned detection of report types is not compatible with Firefox.
Extending the script to support this should be easy.

1 /*
2 Loosely based on getStats.js by Muaz Khan (available at
3 github.com/muaz-khan/getStats)
4

5 (c) 2015 by Tarjei Husøy, MIT license
6 */
7

8 (function () {
9 function preprocessGoogleGetStats(reports, keysToSkip, callback) {

10 var result = {
11 audio: {},
12 video: {},
13 timestamp: new Date().getTime(),
14 };
15

16 for (var i = 0; i < reports.length; i++) {
17 var report = reports[i],
18 isIncomingAudio = report.audioOutputLevel !== undefined,
19 isOutgoingAudio = report.audioInputLevel !== undefined,
20 isIncomingVideo = report.googFrameRateReceived !== undefined,
21 isOutgoingVideo = report.googFrameRateSent !== undefined,
22 // TODO: googActiveConnection is only true between two
23 // Chrome browsers, find a better way.
24 isConnectionInUse = report.type == ’googCandidatePair’ &&
25 report.googActiveConnection == ’true’,
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26 isBandwidthEstimation = report.type == ’VideoBwe’;
27

28 if (isIncomingAudio) {
29 result.audio.incoming = parseReport(report,
30 ’audio.incoming.’, keysToSkip);
31 } else if (isOutgoingAudio) {
32 result.audio.outgoing = parseReport(report,
33 ’audio.outgoing.’, keysToSkip);
34 } else if (isIncomingVideo) {
35 result.video.incoming = parseReport(report,
36 ’video.incoming.’, keysToSkip);
37 } else if (isOutgoingVideo) {
38 result.video.outgoing = parseReport(report,
39 ’video.outgoing.’, keysToSkip);
40 } else if (isBandwidthEstimation) {
41 result.video.bandwidth = parseReport(report,
42 ’video.bandwidth.’, keysToSkip);
43 } else if (isConnectionInUse) {
44 result.connection = parseConnectionReport(report);
45 }
46 }
47

48 if (result.connection !== undefined) {
49 callback(result);
50 } else {
51 console.log("Failed to find active connection, try again...");
52 console.log(reports);
53 }
54 }
55

56 function getPrivateStats(peer, callback, keysToSkip) {
57 _getStats(peer, function (reports) {
58 preprocessGoogleGetStats(reports, keysToSkip, callback);
59 });
60 }
61

62 function parseReport(report, prefix, keysToSkip) {
63 var parsedReport = {};
64 for(var key in report) {
65 var qualifiedKeyName = prefix + key;
66 var shouldSkip = keysToSkip.indexOf(qualifiedKeyName) != -1;
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67 if (report.hasOwnProperty(key) && !shouldSkip) {
68 parsedReport[key] = report[key];
69 }
70 }
71 return parsedReport;
72 }
73

74 function parseConnectionReport(report) {
75 return {
76 local: {
77 candidateType: report.googLocalCandidateType,
78 ipAddress: report.googLocalAddress
79 },
80 remote: {
81 candidateType: report.googRemoteCandidateType,
82 ipAddress: report.googRemoteAddress
83 },
84 transport: report.googTransportType
85 };
86 }
87

88

89 // a wrapper around getStats which hides the differences (where possible)
90 // following code-snippet is taken from somewhere on github
91 function _getStats(peer, callback) {
92 if (navigator.mozGetUserMedia) {
93 // Running on Firefox, Firefox requires the stream to fetch
94 // stats for as an argument to getStats.
95 var localStreams = peer.getLocalStreams()[0];
96 var tracks = localStreams.getTracks();
97 tracks.forEach(function (track) {
98 peer.getStats(track).then(function (res) {
99 var items = [];

100 res.forEach(function (result) {
101 items.push(result);
102 });
103 callback(items);
104 }, function (reason) {
105 console.log("getStats failed. Reasons: " + reason);
106 });
107 });
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108 } else {
109 peer.getStats(function (res) {
110 var items = [];
111 res.result().forEach(function (result) {
112 var item = {};
113 result.names().forEach(function (name) {
114 item[name] = result.stat(name);
115 });
116 item.id = result.id;
117 item.type = result.type;
118 item.timestamp = result.timestamp;
119 items.push(item);
120 });
121 callback(items);
122 });
123 }
124 };
125

126 window.getStats = function (peer, callback, keysToSkip) {
127 keysToSkip = keysToSkip || [];
128 getPrivateStats(peer, callback, keysToSkip);
129 }
130 })();
131

132 // appear.in-specific code starts here
133 (function () {
134 function ajax(url, config) {
135 // $.ajax-like wrapper around XHR, without any jQuery-dependencies
136 var method = config.type || ’GET’;
137 var xhr = new XMLHttpRequest();
138 xhr.onreadystatechange = function () {
139 if (xhr.readyState = XMLHttpRequest.DONE) {
140 if (xhr.status >= 200 && xhr.status < 300) {
141 if (config.success) {
142 config.success(xhr, xhr.status);
143 }
144 } else if (xhr.status >= 400 && xhr.status < 600) {
145 // Client or server error
146 if (config.error) {
147 config.error(xhr, xhr.status);
148 }
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149 }
150 }
151 }
152 if (config.error) {
153 xhr.onerror = function (xhrStatusEvent) {
154 config.error(xhr, ’Non-HTTP failure. Could be connection ’ +
155 ’related, CORS, etc. Check console for details.’);
156 };
157 }
158 xhr.open(method, url);
159 if (config.contentType) {
160 xhr.setRequestHeader(’Content-Type’, config.contentType);
161 }
162 var payload = config.data || ’’;
163 xhr.send(payload);
164 }
165

166 function shipReports(reports) {
167 ajax(’https://collect.thusoy.com/collect’, {
168 type: ’POST’,
169 data: JSON.stringify(reports),
170 contentType: "application/json",
171 error: function (xhr, status) {
172 console.log("Posting stats to collector failed: " + status);
173 }
174 });
175 }
176

177 function createReportAggregator() {
178 // Bundles all reports from the same time into a list that’s shipped
179 // of to the collector at the same time. Uses a list of remotes
180 // currently collected, and ships off when the same remote appears
181 // again.
182 var remoteIps = [];
183 var currentReports = [];
184

185 return function (result) {
186 var remoteIp = result.connection.remote.ipAddress;
187 if (remoteIps.indexOf(remoteIp) != -1) {
188 // New set of connections coming, flush
189 shipReports(currentReports);
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190 currentReports = [];
191 remoteIps = [];
192 }
193 remoteIps.push(remoteIp);
194 currentReports.push(result);
195 }
196 }
197

198 // TODO: ideal API for getStats: getStats(funcThatGetsConnections,
199 // resultFunc, interval)
200 // This would put aggregation within the API, instead of outside. If
201 // interval is missing, only call once.
202 function printStats() {
203 var ngInjector = angular.element(document.body).injector();
204 var rtcmanager = ngInjector.get(’RTCManager’);
205 var peerConnections = rtcmanager.getPeerConnections();
206 // TODO: Allow skipping entire categories by ’audio.*’, or the same
207 // field in all categories, like ’*.ssrc’
208 var skipList = [
209 ’audio.incoming.ssrc’,
210 ’audio.outgoing.ssrc’,
211 ’video.incoming.ssrc’,
212 ’video.outgoing.ssrc’,
213 ];
214 for (var i = 0; i < peerConnections.length; i++) {
215 var peerConnection = peerConnections[i];
216 getStats(peerConnection, reportAggregator, skipList);
217 }
218 setTimeout(printStats, 1000);
219 }
220 var reportAggregator = createReportAggregator();
221

222 console.log("Starting stats collection in 5s");
223 setTimeout(printStats, 5000);
224 })();

The web server code storing the incomng data is quite simple. It performs
some very basic sanity checking of the incoming data, and appends it to a file in a
customizable location. It uses the Flask python framework2.

2Available here: http://flask.pocoo.org/

http://flask.pocoo.org/
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1 # -*- coding: utf-8 -*-
2 """
3 Webserver that appends incoming getStats data to file.
4

5 :copyright: (c) 2015 by Tarjei Husøy
6 :license: MIT, see http://opensource.org/licenses/MIT
7 """
8

9 import flask
10 import argparse
11 import json
12

13 app = flask.Flask(__name__)
14

15 @app.route(’/collect’, methods=[’POST’])
16 def collect():
17 data = flask.request.get_json()
18 if sanity_check_data(data):
19 with open(app.config[’TARGET’], ’a’) as target:
20 target.write(request.data + ’\n’)
21 return ’Thank you’
22 else:
23 return ’Missing mandatory arguments’, 400
24

25

26 def sanity_check_data(data):
27 required_properties = (
28 ’audio’,
29 ’video’,
30 ’connection’,
31 ’timestamp’,
32 )
33 if data and isinstance(data, list):
34 for report in data:
35 if not all(key in report for key in required_properties):
36 return False
37 return True
38 return False
39

40



87

41 if __name__ == ’__main__’:
42 parser = argparse.ArgumentParser()
43 parser.add_argument(’-t’, ’--target’, help=’Where to store incoming data’,
44 default=’data.dat’)
45 parser.add_argument(’-d’, ’--debug’, default=False, action=’store_true’)
46 args = parser.parse_args()
47 app.config[’TARGET’] = args.target
48 app.run(host=’0.0.0.0’, port=9000, debug=args.debug)





AppendixEappear.in Usage Data

For this thesis, appear.in has been generous enough to lend some insight into their
user data. The dataset is quite interesting; take for example the difference between
browser popularity for new users and total sessions in Figure E.1 – Chrome has
a substantially bigger portion of the latter. I consider it likely that it’s driven by
Chrome’s superior performance to Firefox in the tests performed in chapter 4, which
yields other questions for browser vendors. Are users so fluid in terms of browser
choice that they pick whichever is best suited for the task at hand? I suspect that
might be the case, but for now possibly only among the early adopters that find and
use services like appear.in.

Although, it could also be the other way around – that users on other browsers
are less likely to return given their browser’s inability to deliver adequate service.
Whichever the actual cause is, browsers with poor WebRTC performance are loosing
shares to those who can deliver, and everyone would gain from support being more
widespread. This is based on the reasoning that Chrome users will also be more
satisfied with the experience if their non-Chrome friends also have a better experience.

Browser breakdown, by total sessions and new sessions, is given in Figure E.1.
An overview of what devices users on appear.in use, is given in Figure E.2, and
conversation sizes are broken down in Figure E.3.
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AppendixFComparison of Sampling Methods

While the direct comparison between Firefox and Chrome in chapter 4 is interesting,
any discrepancy observed there could also be a result of different performance between
the browsers, not just the sampling method used.

To directly compare the methods, a subset of the tests were run with both
methods on Chrome, so that the results could be compared. Note that like the other
tests, since the method that films the timer is very labor intensive, only a single
test run was performed, thus the sample size is too small to say anything conclusive.
However, we do have an indication that the methods are both fairly accurate.

Then there’s the bitrate sampling methods, tcpdump vs. getStats, which are
compared in Figure F.3 and Figure F.4. They seem to be very well aligned, but
getStats seems to underreport actual traffic a little bit. I suspect this might be due
to the RTP Control Protocol (RTCP) stream not being accounted for, RTCP can
take up to 5% of the session bandwidth. If it’s left out of the getStats reports, we
can assume the full session bandwidth is 5.3% higher than what we can see in the
graphs, which means they’re about 108 kbps lower than the actual numbers. Taking
this into account, they’re practically equal.1

Figure F.4 shows a bit higher discrepancy for bitrate from node B to node C. This
might be because node B is closer to saturating it’s outbound link, which increases
the odds of queued and dropped packets, and could explain why the effective bitrate
seen by the application is lower than what’s received by the interface. This is not
thought to have any significant effect on conclusions made from this data.

1This could be verified by checking the dump files to see what ports were used, but libjingle
multiplexes RTP and RTCP over the same port, so there’s no way to extract the RTCP overhead
without doing deep packet inspection, which is hard since it’s all DTLS.
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Figure F.1: Timer broadcasting and getStats compared for three nodes
without traffic shaping. Note that the timer broadcasting has only 6
samples, while getStats has 80.
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Figure F.2: Timer broadcasting and getStats compared for the traveller
test case. Note that the timer broadcasting has only 6 samples, while
getStats has 80.
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Figure F.3: Bitrates reported by tcpdump and getStats compared, no
traffic shaping. Sample size was 120 for both methods.
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Figure F.4: Bitrates reported by tcpdump and getStats compared,
“traveller” test case. Sample size was 120 for both methods.





AppendixGNo Traffic Shaping Comparison

The full data set for the browsers compared, without any traffic shaping applied,
follows.

The only big outlier here is node E on the seven person test case. For some reason,
it sends consistently less video out, and with higher latencies than all the other nodes
in the test. It’s unknown why this is, but could be because of more traffic on the
subnet that node was placed on. These sort of random perturbations of network
links should be expected on the Internet, thus applications need to be resilient to
these events. Note that the Chrome tests were run a couple of days later and was
probably not affected by the same outburst, thus yielding Firefox in a slightly worse
light here than what is reasonable.

The full data set can be found in the project repository, at https://github.com/
thusoy/hybrid-video-topology.
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Figure G.1: Observed bitrates with three people, no traffic shaping
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Figure G.2: Observed latencies with three people, no traffic shaping
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Figure G.3: Observed bitrates with four people, no traffic shaping
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Figure G.4: Observed latencies with four people, no traffic shaping
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Figure G.5: Observed bitrates with seven people, no traffic shaping
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Figure G.6: Observed latencies with seven people, no traffic shaping
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