
Intelligent Scheduled Backup Using
Duplicity

Håkon Nymo Matland

Master of Science in Communication Technology

Supervisor: Danilo Gligoroski, ITEM

Department of Telematics

Submission date: June 2015

Norwegian University of Science and Technology

Title: Intelligent Scheduled Backup Using Duplicity
Student: Håkon Nymo Matland

Problem description:

Duplicity is a full featured backup tool, that provides encrypted bandwidth-efficient
backups using the rsync algorithm. It supports different backup server types, and
even a chroot’d SFTP server. It works with Linux, FreeBSD, and OpenBSD (out of
the box). It does not require root access on the backup servers.

Duplicity provides backup of directories by producing encrypted tar-format volumes
and uploading them to a remote or local file server. Because duplicity uses librsync,
a software library that implements the rsync remote-delta algorithm, the incremental
archives are space efficient and only record the parts of files that have changed since
the last backup. Duplicity uses GnuPG to encrypt and/or sign the archives. The
encrypted archives will be safe from spying and/or modification by the server or
during transmission.

In addition to full fledged server hosts, Duplicity comes with built in support for
different major personal cloud providers such as Amazon S3, Google Drive, Rackspace
and Mega. This allows easy and convenient cloud backup without having to set up
your own server to act as backup destination.

The goals of the project are:

• Install and test Duplicity in different use case scenarios and report the advan-
tages and disadvantages of the software.

• Identify potential pitfalls and propose guidelines on how to use duplicity in a
secure and safe manner.

• Propose an intelligent scheduling system that distributes the data over several
storage providers to increase availability and decrease probability of restoration
failure or data corruption. The system should decrease the overhead of having
several copies of the same data by distributing parts of the data in a way that
enables restoration without all storage providers available.

Assignment given: 12 January, 2015
Responsible professor: Danilo Gligoroski, ITEM

Abstract

Digital information has rapidly become an important part of everyday
human life. Consequently, backup solutions are important to ensure digital
property is safely stored and protected. This thesis will do an in-depth
study of Duplicity, a backup solution providing encrypted, bandwidth-
efficient backup to both local and remote storage.

The first part of the thesis investigate Duplicity in different use case
scenarios, reporting on the advantages and disadvantages of the soft-
ware. Research is done to explore how various options affect backup and
restoration time. Particularly, the impact of encryption, compression,
and incremental backup chains are of interest. Tests are also conducted
with four cloud storage providers to investigate if the choice of cloud
provider has a large impact on Duplicity’s performance.

Encryption’s impact on backup execution time is concluded to be min-
imal. Users should rather perform analysis of data content to identify
if execution time may be decreased through compression level settings.
Investigation of incremental backup properties clearly shows some of the
issues that arise with the use of incremental backups. While incremental
backup techniques save bandwidth and storage cost when performing
backups, the resources spent while restoring is greatly increased.

Finally, an original system for intelligent distributed backup to be used
together with Duplicity is introduced. The system utilize erasure codes as
the cornerstone of a minimalistic client application that distributes partial
data to different storage hosts. The main objective of the system is to
increase the availability and reliability of backups. System requirements
and vital components are identified through analysing the systems main
objectives. The ideas and architecture lead to a proof of concept prototype.
Open source libraries and self-written source code show how the key
components solve the objectives; increased availability and reliability.

Statistical analysis and calculations are utilized to show the availability
properties of the system. Consequently, it is concluded that a backup
solution using Duplicity and erasure codes is able to provide reliable
distributed backup through encoding of the original data.

Sammendrag

Digital informasjon har raskt blitt en viktig del av menneskets hverdag.
Følgelig er løsninger som utførerer sikkerhetskopiering viktig for å sikre
at digital eiendom er sikkert lagret og beskyttet. Dette prosjektet gjen-
nomfører et grundig studie av Duplicity, en backupløsning som tilbyr
krypterte sikkerhetskopier med effektiv bruk av båndbredde til både
lokale og eksterne lagringsmedium.

Første delen av prosjektet undersøker Duplicity i forskjellige brukssce-
narier, og presenterer fordeler og ulemper med programvaren. Gjennom
forsøk og eksperiment testes det hvordan forskjellige valgmuligheter i
Duplicity påvirker tiden det tar å gjennomføre sikkerhetskopiering og
gjenoppretting av data. Testene undersøker spesielt hvordan kryptering,
komprimering og inkrementell sikkerhetskopiering påvirker programmet.
Duplicity testes også sammen med forskjellige skylagringstjenester for å
undersøke om lagringstjenesten har stor påvirkning på ytelsen.

Innvirkningen av kryptering på tiden det tar å gjennomføre sikkerhets-
kopi blir konkludert med å være minimal. Brukere burde heller analysere
datainnhold for å undersøke om tid kan spares gjennom endring av kom-
primeringsnivå. Undersøkelsene viser tydelig noen av problemene som
oppstår ved bruk av inkrementell sikkerhetskopiering. Både båndbredde
og lagringskapasitet kan spares ved bruk av inkrementell backup, men
ressursbruken under gjenoppretting øker kraftig når den inkrementelle len-
ken er lang. De fire skylagringstjenestene gir veldig forskjellige resultater
når de brukes med Duplicity.

Andre del av prosjektet foreslår et system for intelligent distribuering
av sikkerhetskopier for bruk sammen med Duplicity. Systemet benytter
“erasure codes” som grunnsten i en minimalistisk klientapplikasjon som
distribuerer deler av den opprinnelige dataen til forskjellige lagringsplasser.
Hovedmålet med systemet er å øke tilgjengeligheten og påliteligheten av
sikkerhetskopier. Systemkrav og vitale komponenter identifiseres gjennom
analyse av systemets målsetninger. Idéene og arkitekturen brukes som
mal for en prototype for å vise at konseptet fungerer. Prototypen viser
hvordan de ulike nøkkelkomponentene løser utfordringene til systemet.

Statistisk analyse benyttes for å kalkulere påliteligheten til systemet. Det
konkluderes med at det foreslåtte systemet kan brukes til å tilby pålitelig
distribuert backup gjennom koding av de opprinnelige dataene.

Preface

This report is submitted to the Norwegian University of Science and
Technology (NTNU) as the master thesis of my Master of Science in
Communication Technology at the Department of Telematics (ITEM).

I would like to thank Professor Danilo Gligoroski (Department of Telem-
atics) for being my responsible professor and supervisor. The quality of
my project greatly increased through his valuable feedback and support
throughout the project.

Contents

List of Figures xi

List of Tables xiii

List of Source Code Examples xvi

List of Abbreviations xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Scope and Objectives . 2
1.3 Method . 3
1.4 Outline . 3

2 Background 5
2.1 rsync . 5

2.1.1 librsync . 6
2.2 GNU Privacy Guard . 7
2.3 Erasure Codes . 8

2.3.1 Reed-Solomon codes . 8
2.4 Data Compression . 9

3 Introduction to Duplicity 11
3.1 Installation of Duplicity . 12
3.2 Incremental Backup . 13
3.3 Encryption . 14
3.4 Tutorial on Basic Duplicity Usage 15
3.5 File Transfer Protocols . 18
3.6 Cloud Provider Support . 20

3.6.1 Amazon S3 . 20
3.6.2 Google Drive . 21
3.6.3 OneDrive . 22
3.6.4 Dropbox . 23

vii

3.7 Concluding Remarks . 24

4 Testing of Duplicity in Different Scenarios 27
4.1 Related Work . 28
4.2 System Setup . 29
4.3 Setup of Test Data . 30

4.3.1 Generation of test files . 31
4.4 Encryption’s Impact on Execution Time 32
4.5 Compression’s Impact on Execution Time 33
4.6 Backup and Restoration with Ubuntu as Storage Host 35
4.7 Backup with Asynchronous Upload 37
4.8 Incremental Backup’s Impact on Execution Time 38
4.9 Backup and Restoration with Cloud Storage Providers 40

4.9.1 Backup execution time . 42
4.9.2 Restoration execution time 43

4.10 Guidelines for Backing up with Duplicity 44
4.11 Concluding Remarks and Future work 45

5 Intelligent Scheduled Backup 47
5.1 System Introduction . 47

5.1.1 Availability . 48
5.1.2 Restoration failure and data corruption 50
5.1.3 Related work . 50

5.2 System Architecture . 51
5.2.1 Erasure code modules . 52
5.2.2 Traversal component . 53
5.2.3 Duplicity backup component 54
5.2.4 Duplicity restoration component 54
5.2.5 Argument parser and configuration file 55
5.2.6 Detection of corrupted backups 55

5.3 Implementation of Prototype . 56
5.3.1 Directory traversal . 57
5.3.2 Erasure codes . 58
5.3.3 Execution of duplicity instances 63
5.3.4 Limitations of the prototype 65

5.4 Analysis of the Distributed Backup System 66
5.4.1 Availability with optimal erasure codes 66
5.4.2 Availability with sub-optimal XOR scheme 70
5.4.3 Performance of zfec and XOR implementation 72
5.4.4 Storage overhead of encoded data 72

5.5 Concluding Remarks and Future Work 73

6 Conclusion 75

References 77

Appendices
A Test File Creation 83

B Timing test between openssl rand and dd if=/dev/urandom 85

C Duplicity Patch to Set Compression Level 87

D Code From Distributed Duplicity prototype 89

List of Figures

2.1 Reed-Solomon coding for k = 4 and r = 2, where k is number of blocks
containing data, and r is number of blocks that contain parity data. [22] 9

3.1 Key generation sequence with GnuPG. User is prompted to select desired
key type, key length and expiry date . 15

3.2 Output from a successful key generation sequence with GnuPG. 15
3.3 Example output from a full Duplicity backup 16
3.4 Example output from an incremental Duplicity backup 17
3.5 Shell output from OneDrive authentication sequence. 22
3.6 OneDrive prompts the user to allow Duplicity permission to access and

edit OneDrive content. 23

4.1 The client computer is set up to enable backup to several different storage
options. 29

4.2 Comparison of the restoration time of full and incremental backups . . . 39

5.1 The system distribute erasure coded partial blocks to different storage
host. 49

5.2 The erasure code encoder module takes a file as input, and outputs
k + r = n partial files . 53

5.3 The erasure code decoder module takes k to n partial files as input, and
outputs to original file . 54

5.4 Shell output from Duplicity restoration with altered/corrupted data. . . 55
5.5 Flow of key tasks when performing distributed backup 56
5.6 Flow of key tasks when performing restoration of distributed backup . . 57
5.7 Example output from the collection-status option of Duplicity 64

xi

List of Tables

4.1 Specifications of Apple Macbook Pro running the use case scenarios . . 30
4.2 Timing statistics of creating random files with OpenSSL and dd with

infile /dev/urandom . 32
4.3 Average execution time of duplicity with symmetric, asymmetric and

disabled encryption . 33
4.4 Average execution time of duplicity with compression level 0. 34
4.5 Average execution time of full duplicity backup to local Ubuntu desktop

computer . 35
4.6 Average CPU time of full duplicity backup to local Ubuntu desktop

computer . 36
4.7 Backup execution time of H.264 encoded MPEG-4 movie file with default

and disabled compression level . 37
4.8 Average execution time of full duplicity backup to local Ubuntu desktop

computer with asynchronous upload enabled 38
4.9 Average execution time of incremental duplicity backup to local Ubuntu

desktop computer . 38
4.10 Average restoration time of incremental Duplicity backup from local

Ubuntu desktop computer . 39
4.11 Average execution time and standard deviation of duplicity backup with

symmetric encryption to cloud storage providers 42
4.12 Average execution time and standard deviation of duplicity restoration

symmetric encryption from cloud storage providers 43

5.1 Encoding equations of a systematic (10, 6) XOR scheme, i.e. with 6 data
parts and 4 redundant parts. 59

5.2 Decoding equations of a systematic (10, 6) XOR scheme 59
5.3 Probability of being in the different states with 3 hosts, each host has

availability of 0.99. A state is a unique combination of available and
unavailable hosts. 67

5.4 Different scenarios with 3 hosts and a (3, 2) erasure code scheme. Each
host has an availability of 0.99. si notates the states given in Table 5.3 . 68

xiii

5.5 Total availability for system with (n, k) erasure code scheme and n = k+r
hosts. Each host has the availability of 0.99. 69

5.6 Probability of XOR scheme being able to reconstruct the original data . 70
5.7 Average execution time of encoding and decoding with the implemented

XOR scheme and zfec with parameters n = 10 and k = 6. Decoding is
done with two of the data parts missing. 72

List of Source Code Examples

5.1 Top down directory walk that returns a list of the paths to every file
encountered. 57

5.2 The encode function of the XOR scheme implementation takes a
list containing 6 elements, and returns a list with the 4 calculated
redundant parts. 60

5.3 Encode function that prepares the variables required for the file en-
coding functions . 62

5.4 Example of Pool class enabling encoding of several files in parallel . 63
A.1 Bash script used to create the test directory used in chapter 4 83
B.1 Timing test script between openssl rand and dd with interface /de-

v/urandom . 85
C.1 The new option is accessible as an argument when executing Duplcity

from shell. 87
C.2 Variable for storing the parsed compression level option. Default value

is 6. 87
C.3 The newly created --compress-level option is not used if compress

level is set through GNU Privacy Guard (GnuPG) options 88
C.4 New global variable used instead of hardcoded value 6. 88
D.1 duplicity_distributer.py with the Duplicity_distributer class 90
D.2 The XOR encoder for the (10, 6) systematic erasure code scheme. . . 91
D.3 The XOR decoder for the (10, 6) systematic erasure code scheme. . . 92
D.4 Continuation of the XOR decoder for the (10, 6) systematic erasure

code scheme. 93
D.5 Script that calculates Atotal, the total availability of the system, when

Reed-Solomon is used with number of hosts equal n, and every host
has the same availability . 94

D.6 Script that simulates availability of hosts at backup and restoration,
and checks if restoration is possible with the current combination. A
large number of trials should be done to get a good estimate of the
total availability. The script is when Maximum Distance Separable
(MDS) erasure codes, as provided by the zfec library, is used. 95

xv

D.7 Script that calculates Atotal, the total availability of the system when
the (10, 6) XOR scheme is used with 10 hosts, every host has the same
availability . 96

List of Abbreviations

API Application Programming Interface.

AWS Amazon Web Services.

CPU Central Processing Unit.

FEC Forward Error Correction.

GnuPG GNU Privacy Guard.

MDS Maximum Distance Separable.

NSA National Security Agency.

NTNU Norwegian University of Science and Technology.

SCP Secure Copy.

SDK Software Development Kit.

SFTP SSH File Transfer Protocol.

SSD Solid State Drive.

SSH Secure Shell.

URL Uniform Resource Locator.

XOR exclusive-or.

xvii

Chapter1Introduction

1.1 Motivation

Security of digital information becomes increasingly important as more and more
content become digital. Digital information includes personal documents, media
and professional business related data. Business plans, databases, and digital corre-
spondence may be inestimably precious if lost. Without a proper backup of digital
information, users risk losing valuable, and sometimes irreplaceable, property.

Traditionally backup was often done to local storage media such as optical disks
and tape drives. The last decade has seen several cloud storage providers create
services that facilitates easy storage of files on the internet. The services are easy
to use, even for users without a lot of computer experience. Services like Dropbox
offer automatic synchronization of files through a desktop application using easy
to understand concepts.1 Smartphone applications offer features such as automatic
upload of photographs taken. Users may view, upload or download files through
their browser, or the client application of the platform.

Locally stored backups have limited risk of unintended disclosure of private or
sensitive information. However, with the rise of cloud computing, providing users
with easy-to-use and cheap cloud storage, new security concerns regarding user
information and secure storage of backups is introduced [1]. In addition to the risk
of the data being network connected, cloud storage techniques such as deduplication
introduce additional attack vectors that needs to be considered [2]. Can data be
trusted to large corporations abroad? Is it enough with secure transmission of data,
if it is stored in plain text in their data halls? Users of cloud storage providers should
be concerned with the privacy of their files.

Several backup software solutions roam the market, easing the process for users

1 Dropbox: http://www.dropbox.com

1

http://www.dropbox.com

2 1. INTRODUCTION

with the wish of secured copies of their data. This thesis will focus on Duplicity2.
Duplicity offers encrypted bandwidth-efficient backup and comes preinstalled on
several Unix distributions. Duplicity and its features will be explained in detail in
chapter 3.

1.2 Scope and Objectives

The scope of this project is to perform an in-depth analysis of the features of Duplicity.
Three objectives have been identified to be the main focus of the thesis. The objectives
of the project are:

• Install and test Duplicity in different use case scenarios and report the advan-
tages and disadvantages of the software.

• Identify potential pitfalls and propose guidelines on how to use Duplicity in a
secure and safe manner.

• Propose an intelligent scheduling system that distributes the data over several
storage providers to increase availability and decrease the probability of restora-
tion failure or data corruption. The system should decrease the overhead of
having several copies of the same data by distributing parts of the data in a
way that enables restoration without all storage providers available.

The use case scenario objective should inform about configuration and installation
steps required to enable backup with Duplicity. The project will identify software
dependencies required for different use cases, and showcase the wide array of storage
possibilities Duplicity offers. The project will investigate and report on how Duplicity
offers incremental and encrypted backup. The use case scenarios will be focused
on the usage of different storage hosts, and if there is any significant performance
difference between the tested options.

Guidelines on how to use Duplicity in a secure and safe manner will be given after
Duplicity has been tested in different use cases. It will provide some basic, but useful
steps on how to maximize utilization of Duplicity’s capabilities.

The last, and most advanced topic of this project, will investigate how Duplicity
can be utilized as part of a system to distribute backups to different storage hosts,
increasing the availability and reliability of the backed up data. The project will
design a possible system, implement a simple prototype, and provide an analysis of
the systems availability and storage overhead properties.
2 duplicity: http://duplicity.nongnu.org/

http://duplicity.nongnu.org/

1.3. METHOD 3

1.3 Method

As this project consist of several different, quite independent objectives, the method
use varies depending on the objective in question.

The first part of the project consist of a literature study, identifying important
background knowledge about incremental backup, encryption with GNU Privacy
Guard and possible techniques to obtain increased availability in data communication
and storage.

Prior to testing of use case scenarios, an initial test plan was created to identify
interesting features to test and measure. Each step to solve each use case is logged,
to enable rerun of the scenario if needed. The goal is that each test discussed should
contain enough information to allow other parties to run similar tests, perhaps with
different hardware and storage hosts. The different scenarios will be benchmarked
by appropriate properties to allow analysis and comparison between different options
tested. Further discussion and explanation of how appropriate properties are measures
is found in chapter 4. Additional items are added to the test plan if interesting, or
unexpected, new cases appear throughout testing. The iterative approach is selected
due to the experimental nature of the project. The author has not previously used
the software tested, and it is useful to consider new possible test scenarios and options
as they are discovered.

The intelligent distributed backup system is designed through different phases to
identify, develop and analyse different properties of the system. The first phase is
to identify the properties the system should have, and discuss how the properties
may be achieved. The second phase is to design a possible software architecture
of the system. The purpose is to identify possible modularization of the system,
to allow efficient implementation of a prototype. The last phase is to analyse the
properties of the system. Calculations are done to answer if the objectives of the
system are achieved, and to provide insight into the benefits and drawbacks of
a distributed backup solution. Additionally, the analysis is important to identify
potential improvements or issues that should be addressed in further work.

1.4 Outline

The thesis contains 6 chapters and 4 appendices. A short description of each chapter
follows:

Background information on some important key concept, technologies and techniques
used in the project is presented in chapter 2. The chapter provides information on
the rsync algorithm, GNU Privacy Guard, erasure codes and data compression.

4 1. INTRODUCTION

Duplicity is introduced in chapter 3. Information about how Duplicity achieves
important features, such as incremental backup and encryption is investigated and
discussed. The chapter also describes the initial setup required to use Duplicity,
including additional configuration needed for cloud storage utilization.

Chapter 4 describe Duplicity in different use case scenarios. Some of Duplicity’s
different options are investigated, e.g. encryption, compression and asynchronous
upload. The chapter test Duplicity with Dropbox, Amazon S3, Google Drive and
OneDrive, reporting on execution time differences when using the different cloud
storage providers. Generally, the results are analysed and discussed after they are
presented, with further comparisons made as other appropriate tests are conducted.
Concluding remarks, and identified possible future work rounds up the chapter.

An intelligent distributed backup system is presented in chapter 5. The system
utilize Duplicity and erasure codes to enable distribution of partial data files in a way
allowing data restoration even if some of the data is unavailable. It discusses and
analyse the effect of using such a system, such as increased availability and reliability
while keeping the storage and bandwidth cost lower than with simple redundancy
through replication. Concluding remarks, and identified possible future work rounds
up the chapter.

Finally, chapter 6 provides a conclusion on the project. Accordingly, it provides a
summary of the most important results of the different studies conducted.

The report also contain several appendices. The appendices contain information and
material for readers that wish to gain insight out of what is directly presented in the
main report, i.e. source code listings, simulation scripts and tutorials.

Two partially independent parts are presented in this report. Consequently, sections
on related work corresponding to the particular chapters are found in both chapter 4
and chapter 5.

Chapter2Background

This chapter provides background information on some of the technologies used by
Duplicity and in this project. To properly understand the content of later chapters,
it is vital to know about the key concepts happening behind the scene. Background
information is provided on the rsync algorithm, GnuPG, erasure codes and data
compression.

2.1 rsync

The rsync algorithm is an algorithm for efficient remote update of data developed
by Andrew Tridgell as part of his PhD studies[3, 4]. It led to the widely used rsync
software [5].

The rsync algorithm was developed to speed up remote update of data. The algorithm
computes which parts of the source data that matches the remote data, with the
intention to decrease bandwidth resources required to update the remote file to the
new version[3].

The algorithm is explained by Tridgell in “The rsync algorithm” [3]:

“Suppose we have two general purpose computers α and β. Computer
α has access to a file A and β has access to file B, where A and B are
"similar". There is a slow communications link between α and β. The
rsync algorithm consists of the following steps:

1. β splits the file B into a series of non-overlapping fixed-sized blocks
of size S bytes. The last block may be shorter than S bytes.

2. For each of these blocks β calculates two checksums: a weak "rolling"
32-bit checksum (described below) and a strong 128-bit MD4 check-
sum.

3. β sends these checksums to α.

5

6 2. BACKGROUND

4. α searches through A to find all blocks of length S bytes (at any
offset, not just multiples of S) that have the same weak and strong
checksum as one of the blocks of B. This can be done in a single
pass very quickly using a special property of the rolling checksum
described below.

5. α sends β a sequence of instructions for constructing a copy of A.
Each instruction is either a reference to a block of B, or literal data.
Literal data is sent only for those sections of A which did not match
any of the blocks of B.

The end result is that β gets a copy of A, but only the pieces of A that
are not found in B (plus a small amount of data for checksums and block
indexes) are sent over the link. The algorithm also only requires one
round trip, which minimises the impact of the link latency.”

In Tridgell’s PhD thesis, the delta calculation is explained through the use of two
signatures [4]. The first signature, the rolling checksum, needs to be very cheap to
compute for all byte offsets [3, 4]. A stronger, more expensive checksum is calculated
on all byte offsets where the cheap signature at A matches the one at B [3, 4].
Together, the two signatures find the balance between efficiency and probability of
error.

2.1.1 librsync

librsync is a software library for remote file synchronization using rolling checksum
influenced by the rsync algorithm [6]. It is licensed under GNU LGPL v2.1 and used
in many tools, such as Duplicity and Dropbox [6, 7, 8].

The librsync library provides four basic operations to provide the possibility to use
delta files that enables patching of a file to update it to the newest version [9]. The
librsync programmer’s manual list four basic operations [9]:

• gensig: Signature generation describing a file.

• loadsig: Loading a signature into memory.

• delta: Calculate a delta from an in-memory signature, and write result to a file.

• patch: Read a delta from a file and apply it to a basis file.

The concept and basic operations are similar to that of rdiff, a command-line scriptable
interface to librsync [9, 10].

2.2. GNU PRIVACY GUARD 7

Algorithms such as rsync are vital to an incremental backup system, solving the hard
task of identifying the information in need backup.

2.2 GNU Privacy Guard

GnuPG is an implementation of the OpenPGP standard defined by RFC4880 [11, 12].
It is licensed under the terms of GNU General Public License, allowing it to be used
as part of other software [11, 13].

GnuPG was created to serve as a tool for other applications, and provides a cryp-
tographic engine accessible from command prompts, shell scripts and other pro-
grams [11].

GnuPG is able to provide confidentiality and integrity to messages and data files [12].
The OpenPGP standard describes how to provide confidentiality through the use of
a combination of symmetric-key encryption and public-key encryption. RFC4880
describes the process through a series of steps [12]:

1. The sender generates a random number to be used as a session key.

2. The session key is encrypted using the recipient’s public key.

3. The sender encrypts the message using the session key.

4. The recipient decrypts the session key using the recipient’s private key.

5. The recipient decrypts the message using the session key.

Encryption may also be provided without the use of public-keys. The symmetric
key is then either derived directly from a passphrase through what the OpenPGP
standard refers to as String-to-Key Specifiers, or through a two-stage process similar
to the one listed above with session keys that are encrypted with a passphrase [12].

GnuPG supports a wide array of encryption algorithms. To view the supported
algorithms in an installed GnuPG version, the following command can be run in
terminal:

$ gpg --version

Well known algorithms such as 3DES, CAST5 and AES are among the supported
cipher algorithms on the computer used in this project. Hashes can be computed
using MD5, SHA1, SHA2 or RIPEMD. Version 1.4.18 is used on the project computer.

8 2. BACKGROUND

2.3 Erasure Codes

Erasure codes are often used to increase reliability of electronic communication.
Erasure codes are closely linked to Forward Error Correction (FEC) techniques,
which provide increased reliability through the use of error detection and correction
codes [14]. An erasure code adds redundancy to a system of data to tolerate
failures [15].

James S. Plank describes the simplest form of erasure code as replication. An example
of this is RAID-1, where all bytes are stored on two disks, allowing restoration as long
as one of the disks has a surviving copy of the bytes [15]. Replication is however quite
expensive, in the example of RAID-1 doubling the required storage capacity, and
thereby doubling the storage costs. Other erasure codes, such as Reed-Solomon codes
are more complex to encode, but require less storage and may tolerate a wide range
of failure scenarios. Reed-Solomon codes will be further explained in section 2.3.1.

The key idea behind erasure codes is explained by Luigi Rizzo in [14] as using an
encoder to produce n blocks of encoded data from k blocks of source data. The
data is encoded in a way allowing any subset of k encoded blocks is sufficient to
reconstruct the source data [14]. Such an encoding allows data recovery from up to
n− k block losses. Erasure codes that allow reconstruction from n− k block losses
are called optimal erasure codes, or MDS codes. They are called optimal erasure
codes due to featuring optimal correction capability [16]. Reed-Solomon codes is an
example of MDS codes, and will be described further below.

Erasure codes that do not offer optimal space-efficiency may be used in systems that
prefer reduced computation cost [17]. One example of nonoptimal erasure codes
is flat XOR-codes. XOR-codes compute redundancy elements by performing XOR
operations on a subset of data elements, and are appealing because of the offered
computational efficiency [17, 18].

Reconstruction of encoded blocks may be simplified through the use of systematic
codes. When a systematic code scheme is used, the encoded blocks contain an
exact copy of the original, i.e. the input data is reproduced among the output
data. Systematic codes allow simple reconstruction when all original data blocks are
available, as it only has to put the original data back together, without the use of
calculations and arithmetic operations [14, 19, 20].

2.3.1 Reed-Solomon codes

Reed-Solomon codes were introduced by I. S. Reed and G. Solomon in “Polynomial
codes over certain finite fields” in 1960 [21]. By using finite field arithmetic, computer
precision problems are avoided. Ordinary arithmetic often require extra bits to be

2.4. DATA COMPRESSION 9

used to ensure representation without loss of precision [14]. The finite number of
elements in finite fields allow total precision as long as the field size is large enough
to contain enough different elements to solve the problem [14]. Reed-Solomon codes
are created using finite field arithmetic in GF (2w) [22]. Most implementations use
w = 8 due its performance, while leaving it possible to encode into 256 different
blocks [22, 23].

Encoding with Reed-Solomon codes is done through linear algebra. Codewords are
created using a generator matrix created from a Vandermonde matrix. The generator
matrix is multiplied with data words to create encoded codewords consisting of the
original data together with parity data. The encoding process is visually shown
in Figure 2.1, figure reproduced from [22]. Reed-Solomon offers optimal efficiency,
meaning that any available parity element can be substituted for any missing data
element, a property that provides a deterministic behaviour [23].

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
x00 x01 x02 x03

x10 x11 x12 x13

GT

∗

d0

d1

d2

d3

Data

=

d0

d1

d2

d3

c0

c1

Codeword

Figure 2.1: Reed-Solomon coding for k = 4 and r = 2, where k is number of blocks
containing data, and r is number of blocks that contain parity data. [22]

Reed-Solomon codes are quite expensive compared to other Erasure code tech-
niques [22, 24]. In GF (2w) addition is cheap, due to it being carried out by performing
exclusive-or (XOR) of elements. Multiplication is however much more expensive, and
is often performed through the use pre-computed look-up tables [25]. The look-up
tables size is fairly low in GF (28), which is often used in computing due to its byte
based nature [25]. The look-up tables do however grow very large for higher values
of w, making it infeasible to make tables that match word size in 32-bit or 64-bit
systems, namely GF (232) and GF (264) [25].

2.4 Data Compression

The discipline of data compression tries to decrease the size of digital data. If the
original representation of digital data contain redundancies, the data is compressed
by reducing or removing the redundant data [26]. To understand compression, it is
important to understand the difference between information and data. Information is
represented by data, and the goal of compression is to decrease the data size, without

10 2. BACKGROUND

loosing information. If it is possible to shorten the data representation without
removing any information, the data is compressible. David Salomon states that:
“Any nonrandom data is nonrandom because it has structure in the form of regular
patterns, and it is this structure that introduces redundancies into the data.” [26],
i.e. nonrandom data is compressible. The process of decompression reverses the
compression, i.e. it reconstructs the original data.

Just as nonrandom data is compressible, random data is often hard to compress, as
it has no structure. Data that has no redundancies can not be compressed. Similarly,
data that is already compressed is impossible to compress further, as the redundant
data is previously removed [26].

Data compression techniques are often used in backup solutions to decrease the
storage and bandwidth cost of backups.

Chapter3Introduction to Duplicity

Duplicity offers encrypted bandwidth-efficient backup and runs on POSIX-like oper-
ating systems such as various Linux distributions and Apple OS X [8]. The main
objective of this chapter is to investigate and report on how to use the basic features
of Duplicity. The chapter will contain general information about Duplicity, and
describe some of the most interesting options/features the software offers. The
chapter should enable readers to perform simple Duplicity usage of their own.

Duplicity is a command line tool, and commands are executed through the computers
shell terminal. Different front end solutions exist that use Duplicity as the back end.
This project tests regular Duplicity, without any form of front end extension.

This chapter will contain general information about Duplicity, describe some of the
most interesting options/features and how to set up a computer to enable backups
with Duplicity. A secondary objective of the chapter is to prepare for the use case
scenario tests described and discussed in chapter 4. Understanding the basic usage of
Duplicity should also improve the design and development of the distributed backup
system in chapter 5.

The first section of this chapter explains how to install and set up Duplicity. The
next section discusses one of Duplicity’s main features, namely incremental backup.
Section 3.3 provides information about Duplicity’s use of GnuPG, explaining the
different ways Duplicity are able to encrypt backup archives, and explores useful
options users should know about.

After the key features and concepts of Duplicity is introduced, a quick tutorial on
how to perform backups and restorations with Duplicity is given in section 3.4.

Duplicity is able to perform backup over many different file transfer protocols.
Section 3.5 and section 3.6 explain how to set up a computer to use Duplicity with
popular file transfer protocols and cloud providers.

11

12 3. INTRODUCTION TO DUPLICITY

3.1 Installation of Duplicity

Duplicity is pre-installed on many Linux distributions, so before trying to install
it is a good idea to check if Duplicity is already available on the system. One
way to check if Duplicity is installed is by executing duplicity --version in the
computers command line shell. If Duplicity is installed, it will show something similar
to “duplicity 0.7.01”, depending on the version installed.

A quite extensive list of dependencies are required to properly install and run Duplicity.
The easiest way around this obstacle is through the use of major package managers
such as apt-get (Ubuntu etc.) and homebrew (Apple OS X). It is however important
to note that package managers might not be updated with he latest version of the
software, and users should check if the version offered is the same, or similar, to the
version offered on the Duplicity home page [8]. Another positive advantage derived
from the use of package managers is easy updating of the software as new versions
are added.

Before Duplicity is manually built/installed, the following requirements have to be
met [27]:

• Python v2.4 or later

• librsync v.0.9.6 or later

• GnuPG v1.x for encryption

• python-lockfile for concurrency locking.

When the prerequisites are met, the following steps are required to install Duplicity:

1. Download the tarball containing the desired version of Duplicity from the
Duplicity homepage [8]

2. Extract the archive

3. Build and install

Extraction and installation is done by running the following commands in terminal:

$ tar -zxvf duplicity-versionNumber.tar.gz
$ cd duplicity-versionNumber
$ python setup.py install

3.2. INCREMENTAL BACKUP 13

After completion of the installation steps, Duplicity should be runnable. Users may
verify that the Duplicity command is available by executing the duplicity --version
command.

Prerequisites mentioned in this section are the ones required for the minimum setup
of Duplicity. Additional python libraries are required for running with different file
transfer protocols. Some of these prerequisites, and how to install them is explained
in section 3.5 and section 3.6

3.2 Incremental Backup

Incremental backup schemes are used to achieve faster and smaller backups on systems
with frequent backups [28]. An incremental backup scheme strives to minimize the
bandwidth and storage usage through only transmitting and storing the changes
since the last backup. By updating existing backups with altered or added data, the
use may decrease the storage capacity required greatly compared to a series of full
backups [28].

The major advantage of incremental backup schemes is easily explained through an
example:

• A user does an initial backup of a directory of 100 MB.

• One week later, the only change to the directory is a new file. The file is 4 MB.

• The incremental backup software identifies the new file as the only new/altered
information, and uploads the new file.

• If the user did a new full backup instead, a new backup of 104 MB would be
uploaded. Resulting in one backup of 100 MB and one of 104 MB.

The difficult part of incremental backup schemes is how to decide what information
to upload. The problem is solved by algorithms such as rsync, previously described in
section 2.1. The use of cryptographic hash function enables identification of changed
or new information with minimal data transportation required between the backup
client and storage host.

Duplicity stores backups as tar-format archives [8]. When Duplicity backups are
executed, it will investigate if previous backups of the same source directory exist at
the same target path. If no corresponding previous backup is found, it will create
a full backup of the directory. The next time Duplicity is executed with the same
configuration, it will discover that previous backups already exist. Metadata will be
retrieved to calculate, and create, incremental delta archives storing the required

14 3. INTRODUCTION TO DUPLICITY

changes to be able to restore the new version of the file from the chain of backup
archives [29]. A chain of backup archives is a collection of corresponding backup
archives from the previous full backup to the desired incremental backup [28].

One disadvantage with incremental backup schemes is the increased restoration time.
To restore the newest version of a backup, the software requires every incremental
backup since the last full backup [28]. The chain of archives is used to compute
the desired version of the files. A long chain of incremental archives increases the
computation required successfully restore the desired version of the files. The added
computation also increases the probability of failed restoration, due to every link in
the chain being dependent on every previous link. If one of the archives in the chain
become corrupted, it will have an impact on every other archive later in the chain.

The disadvantage of incremental backup schemes can be mitigated by periodically
doing full backups to limit the archive chain. This mitigation technique comes with
the price of increased storage capacity required together with increased bandwidth
usage. The tricky part is to find out with what frequency full backups should be
executed.

3.3 Encryption

One of Duplicity’s key properties is the ability to create encrypted backups. Du-
plicity encrypts the backup archives by default using GnuPG. All cryptographic
operations are done client-side, enabling safe transmission and storage of backed up
information [30]. The fact that encryption is done client-side allows users to store
backups even at storage providers they don’t fully trust.

As described in section 2.2, GnuPG offers both symmetric and asymmetric encryption.
By default, Duplicity utilizes symmetric encryption by prompting the user for
a passphrase, or looking for the PASSPHRASE environment variable. The use of
environment variables is essential to allow scripts to execute backups without any
user interaction.

Duplicity is also able to use public key encryption through passing the desired public
key ID to the --encrypt-key option. If the user wish to use public key encryption,
the client computer need to be set up with keys in the GnuPG keyring. If the user
does not have a set of keys from previous use, he/she needs to create keys using
gpg --gen-key.

Parts of the key generation sequence with GnuPG is shown in Figure 3.1. The user
selects the desired key type, key length and key expiry date. In addition to the
questions shown in the figure, the fields Real name, Email address and comment
needs to be filled out. GnuPG will ask for a passphrase to protect the secret key, and

3.4. TUTORIAL ON BASIC DUPLICITY USAGE 15

Please select what kind of key you want:
(1) RSA and RSA (default)
(2) DSA and Elgamal
(3) DSA (sign only)
(4) RSA (sign only)

Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)
Requested keysize is 2048 bits
Please specify how long the key should be valid.

0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years

Key is valid for? (0) 1y
Key expires at Fri May 27 11:17:34 2016 CEST
Is this correct? (y/N) y

Figure 3.1: Key generation sequence with GnuPG. User is prompted to select
desired key type, key length and expiry date

finally the keys will be created. The final output of the key generation sequence is
shown in Figure 3.2. The public key ID is the ID that should be passed to Duplicity
for public key encryption. It is marked by yellow in the figure. More information
about generating keys may be found in the GnuPG manual [31].

public and secret key created and signed.
gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 2 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 2u
gpg: next trustdb check due at 2016-05-27
pub 2048R/ 088830C6 2015-05-28 [expires: 2016-05-27]

Key fingerprint = 8604 2DC9 54C7 2FCC 9719 CDC3 B2B9 D58F 0888 30C6
gpg: conversion from ‘utf-8’ to ‘US-ASCII’ failed: Illegal byte sequence
uid Haakon Nymo Matland (Master thesis test key)

<haakon@nymomatland.com>↪→
sub 2048R/8E9A4827 2015-05-28 [expires: 2016-05-27]

Figure 3.2: Output from a successful key generation sequence with GnuPG.

3.4 Tutorial on Basic Duplicity Usage

This section will explain the basics of how to perform backups and restoration with
Duplicity. It will show how it is done with local storage as backup host. The most
basic command for performing a backup is very simple:

16 3. INTRODUCTION TO DUPLICITY

$ duplicity <path to directory that will be backed up> file://<path
to where backed should be stored>↪→

Figure 3.3 show the output from executing a full backup with Duplicity. The first
part of the output state that no previous signatures are found, and that it will execute
a full backup. Information about the directory backup up is shown in the backup
statistics starting at line 7. It contains information such as the size of the backup
and number of files backed up. Fields such as DeletedFiles and ChangedFiles are
used for incremental backup information, and contain no interesting information in
this example output.

$ duplicity master/ file://master_backup
Local and Remote metadata are synchronized, no sync needed.
Last full backup date: none
GnuPG passphrase:
Retype passphrase to confirm:
No signatures found, switching to full backup.
--------------[Backup Statistics]--------------
StartTime 1431519841.15 (Wed May 13 14:24:01 2015)
EndTime 1431519841.26 (Wed May 13 14:24:01 2015)
ElapsedTime 0.11 (0.11 seconds)
SourceFiles 15
SourceFileSize 1614383 (1.54 MB)
NewFiles 15
NewFileSize 1614383 (1.54 MB)
DeletedFiles 0
ChangedFiles 0
ChangedFileSize 0 (0 bytes)
ChangedDeltaSize 0 (0 bytes)
DeltaEntries 15
RawDeltaSize 1613703 (1.54 MB)
TotalDestinationSizeChange 1296842 (1.24 MB)
Errors 0

Figure 3.3: Example output from a full Duplicity backup

Duplicity will automatically discover that a previous backup exist if the previous
command is run again. If a previous backup exists, Duplicity will default to incremen-
tal mode and compute any source directory changes. The output of an incremental
backup is shown in Figure 3.4. As seen in the output, Duplicity found 2 new and 1
modified file, increasing the backup size by 321 bytes.

In some cases users may want to force a full backup even if a previous backup exists.
This is done by adding the full flag after duplicity:

3.4. TUTORIAL ON BASIC DUPLICITY USAGE 17

$ duplicity full <path to directory that will be backed up>
file://<path to where backed should be stored>↪→

$ duplicity master/ file://master_backup
Local and Remote metadata are synchronized, no sync needed.
Last full backup date: Wed May 13 14:23:56 2015
GnuPG passphrase:
Retype passphrase to confirm:
--------------[Backup Statistics]--------------
StartTime 1431521260.52 (Wed May 13 14:47:40 2015)
EndTime 1431521260.54 (Wed May 13 14:47:40 2015)
ElapsedTime 0.02 (0.02 seconds)
SourceFiles 16
SourceFileSize 1614470 (1.54 MB)
NewFiles 2
NewFileSize 463 (463 bytes)
DeletedFiles 0
ChangedFiles 1
ChangedFileSize 54 (54 bytes)
ChangedDeltaSize 0 (0 bytes)
DeltaEntries 3
RawDeltaSize 82 (82 bytes)
TotalDestinationSizeChange 321 (321 bytes)
Errors 0

Figure 3.4: Example output from an incremental Duplicity backup

The restoration command is very similar to the backup command. The two paths
simply change position in the command:

$ duplicity file://<path to where backed is stored> <path to store
the restored files>↪→

Duplicity will automatically discover that a protocol path is given as the first
argument, and enable the restoration mode of operations. Manual restoration is also
possible, but quite complex without the use of Duplicity. The procedure includes
manual decryption with GnuPG, extraction of files from archives and potentially
concatenation of parts split on different volumes. If trying to restore an incremental
backup, rdiff must be used to fully restore the latest version.

Restoration of a backup as it was at a specific time is enabled through the --time
or -t option. The command below would restore the backup as it was 1 week ago:

$ duplicity -t 1W file://<path to where backed is stored> <path to
store the restored files>↪→

18 3. INTRODUCTION TO DUPLICITY

Other syntax variations are found in the Duplicity manual, such as specifying a
specific date [29].

Some of Duplicity’s options are listed below. For a full overview of actions and
options refer to the Duplicity manual page [29]

--full-if-older-than time: Forces a full backup if the latest full backup is older
than provided time.

--encrypt-key keyid: Encrypt with public key corresponding to keyid.

--gpg-options options: Pass GnuPG options for Duplicity to use with GnuPG.

--exclude shell_pattern: Exclude any files that match the provided shell pattern.

--exclude-filelist filename: Exclude the files listed in the provided file

--log-file filepath: Write Duplicity output to file.

--full-if-older-than time: Perform a full backup if the latest full backup is
older than the given time.

3.5 File Transfer Protocols

Duplicity comes with built in support for a large number of different file transfer
protocols. Some of the protocols work out of the box, while others require specific
back-ends to be installed in addition to Duplicity [29]. The wide support of file
transfer protocols is useful in situations where the user has limited permissions to
storage host computer. Instead of being forced to install a specific program to handle
communication with the client computer, the user may identify which protocols the
host computer already support, and set up Duplicity accordingly. Duplicity may also
be used without any form of network transmission at all. Duplicity is able to store
the backup at the local file system, making it possible to store backups to external
hard drives etc.

Security of the different file transfer protocols should be considered when using
Duplicity for backup. Even if the backup archives are encrypted, information will
leak if the communication between the client and storage host is captured and
readable. Some information that is gained by just being able to read the name of
the files:

• The files are created by duplicity.

• Date and time of the backup.

3.5. FILE TRANSFER PROTOCOLS 19

• The files are encrypted through the use of GnuPG.

• If the backup was full or incremental.

Generally, it is preferred to give away as little information about personal data as
possible, and thus secured transfer protocols should be chosen, even if the transferred
data is encrypted.

Many of the protocol require additional back-ends to be installed on the client
computer. Most of the protocol or storage provider specific back-ends may be
installed with pip, a package manager for python libraries/modules [32]. Pip provides
easy installation and updating of libraries and modules for python and is recommended
by PyPA [33].

SSH File Transfer Protocol

SSH File Transfer Protocol (SFTP) is a protocol layered on top of Secure Shell (SSH)
to provide secure transfer of files over network connections [34]. SFTP derives its
security by communicating over an SSH connection, and is thus as safe as the SSH
connection [34]. SFTP is a protocol packaged with SSH to provide secure transfer of
files over network connections. SFTP is one of the possible protocols to use with
Duplicity, and is the protocol used in this thesis when using a Ubuntu computer as
storage hosts.

To enable Duplicity backups with SFTP as file transfer protocol, the remote storage
host must have SSH capabilities installed and running. One way to solve this
requirement is through the use of OpenSSH [35]. OpenSSH is a free SSH connectivity
tool created by the OpenBSD Project that provides SSH, Secure Copy (SCP) and
SFTP capabilities.

In addition to SSH capabilities at the storage host, the client computer requires
one of the two SSH back-ends supported by Duplicity, namely the paramiko back-
end or the pexpect back-end. In this project, the paramiko back-end is used.
Paramiko is a python module that implements the SSH2 protocol, written entirely in
python [36]. Paramiko may be installed by following the directions on the project
GitHub repository [36], or through pip, the package manager previously mentioned:

$ pip install paramiko

After every dependency required to use SFTP is met, the following command may
be used to back up with Duplicity:

20 3. INTRODUCTION TO DUPLICITY

$ duplicity <path to source directory>
sftp://user[:password]@other.host[:port]//<absolute path to
backup destination>

↪→

↪→

For additional security, OpenSSH may be set up to use public key authentication
instead of password authentication [34]. Another positive effect of using public key
authentication is to avoid the password prompt when executing a duplicity backup,
easing the process of using duplicity together with for example Cron daemon.

3.6 Cloud Provider Support

Duplicity supports the use of several cloud storage providers as storage hosts. Cloud
storage is an alternative for users that either lacks a computer/server to store backups
on or prefers to have the backups accessible on high availability cloud servers. Cloud
providers often have high redundancy on the stored data, providing users with a way
to store data safely [37].

While cloud storage provides many positive properties, some users may dislike the
idea of storing their data on corporate servers. How can a user be sure the company
does not read, or use, their private data? Leaks from whistleblowers have shown how
the National Security Agency (NSA) targets inter-datacenter communications from
some of the largest cloud providers [38]. Duplicity defaults to encrypted backups,
decreasing the risk of unintended disclosure of private or sensitive information.

3.6.1 Amazon S3

Amazon offers cloud storage as part of their Amazon Web Services (AWS) portfolio. 1

The price of Amazon S3 depends on storage used, in addition to data transfer out.
Amazon offers a free trial if the user prefers to test the solution before spending
money on it.

Amazon S3 store files in what it calls a bucket. To set up duplicity to back up to an
Amazon S3 bucket, a Python package named Boto must be available on the client
computer [29, 39]. The Boto Python package provides a Python interface to many
Amazon Web Services, and among them, Amazon S3.

The Boto package can be installed from the shell terminal via pip [32]:

$ pip install boto

1 Amazon Web Services (AWS) - Cloud Computing Services: http://aws.amazon.com/

http://aws.amazon.com/

3.6. CLOUD PROVIDER SUPPORT 21

As soon as Boto is installed, Duplicity should be ready to handle backups to Amazon
S3 buckets.

The user is required to create Access Keys to use Amazon S3 together with Duplicity.
The Access Keys are used by Boto to authenticate with Amazon’s servers. Access
Keys are created at the AWS console. Begin by pressing the button in the top right
corner called “Security Credentials”. The next step is to go to “Access Keys (Access
Key ID and Secret Access Key)”, press create New Access Key, and download the
credential comma separated file. The credentials should be stored somewhere safe,
as it is not possible to download the Secret Access Key again at a later stage. If the
secret key is lost, a new set of keys must be created.

The region of the Amazon S3 bucket should be chosen carefully, as it has an impact
on the options that needs to be passed to Duplicity. For the setup used in this
thesis, a bucket in Ireland was used, requiring the options --s3-use-new-style
and --s3-european-buckets to be passed to Duplicity on backup and restoration
execution. The region selected also impacts the host Uniform Resource Locator
(URL) to use with Duplicity. A list of the different region URL’s is found in the AWS
documentation [40]. The S3 endpoint for Ireland is s3-eu-west-1.amazonaws.com.

The command below show how to execute Duplicity with S3 as storage host.

$ duplicity [region options] <path to source directory>
s3://<endpoint url>/<bucketname>/<backup directory name>↪→

3.6.2 Google Drive

Google’s cloud storage solution is named Google Drive.2 Google offers 15 GB of free
storage, which may be upgraded for a monthly sum if 15 GB is not enough. The
storage is shared across Google Drive, Gmail and Google+ Photos.

Duplicity’s Google Drive back-end requires a python library named GData Python
Client [29, 41], it is easily installed with pip:

$ pip install gdata

Google Drive authenticates the user through the FTP_PASSWORD environment variable
or the password directly in the Duplicity command. If the password is not provided in
the command or by the FTP_PASSWORD environment variable, Duplicity will prompt
the user through the terminal at command execution. The command below shows
how to execute Duplicity with Google Drive as storage host:
2 Google Drive - Cloud Storage & File Backup: https://www.google.com/drive/

s3-eu-west-1.amazonaws.com
https://www.google.com/drive/

22 3. INTRODUCTION TO DUPLICITY

$ duplicity <path to source directory>
gdocs://username[:password]@hostname/<backup directory name>↪→

hostname will normally be gmail.com for most Google accounts, but may also be
other domain names that are used with Google Apps.

3.6.3 OneDrive

Microsoft’s consumer cloud storage service is named OneDrive.3 Similar to Google,
Microsoft provide 15 GB of storage for free, with additional storage available with a
monthly paid subscription.

Duplicity’s OneDrive back-end require two Python libraries on the client computer.
The first library, Requests, is a python library for better HTTP capabilities [42]. The
second library, Requests-OAuthlib, providers OAuth capabilities for Requests [43].
The two libraries are easily installed through pip:

$ pip install requests
$ pip install requests_oauthlib

$ duplicity master onedrive:///master_backup

In order to authorize duplicity to access your OneDrive, please open
https://login.live.com/<redacted identifiers> in a browser and copy the URL of
the blank page the dialog leads to.

↪→
↪→

URL of the blank page: https://login.live.com/oauth20_desktop.srf?code=<redacted
identifiers>↪→

Local and Remote metadata are synchronized, no sync needed.
Last full backup date: none
GnuPG passphrase:
Retype passphrase to confirm:
No signatures found, switching to full backup.

Figure 3.5: Shell output from OneDrive authentication sequence.

The first time Duplicity is executed with the OneDrive back-end, the user will be
prompted with a URL in the shell window. The URL is used to authorize Duplicity
to use the OneDrive Application Programming Interface (API) to access the users
account. The shell output from an OAuth prompt is shown in Figure 3.5. Users
will be given a URL to open in a web browser, where OneDrive will ask the user if
Duplicity should be granted authorization to alter OneDrive content.
3 Microsoft OneDrive: https://onedrive.live.com

gmail.com
https://onedrive.live.com

3.6. CLOUD PROVIDER SUPPORT 23

The browser permission message is shown in Figure 3.6. When permissions are
granted, a blank page will be shown in the browser. The URL of the blank page is
pasted into the terminal window, and Duplicity stores the OAuth tokens in the file
“~/.duplicity_onedrive_oauthtoken.json”.

Because the OneDrive credentials are stored in a file, the Duplicity command with
OneDrive as storage host is very minimal:

$ duplicity <path to source directory> onedrive:///<target
directory>↪→

Figure 3.6: OneDrive prompts the user to allow Duplicity permission to access and
edit OneDrive content.

3.6.4 Dropbox

Dropbox is another popular cloud storage service.4 Dropbox offer 2 GB of free space,
which may be increased for a monthly sum.

The Dropbox duplicity back-end require the Dropbox Software Development Kit
(SDK) [29]. The Dropbox Python SDK may be downloaded and installed by following
the instructions given by Dropbox themself [44]. It is also easily installed with pip:

$ pip install dropbox

4 Dropbox: https://www.dropbox.com

https://www.dropbox.com

24 3. INTRODUCTION TO DUPLICITY

Similar to the OneDrive authentication mechanism, users will be prompted with a
URL the first time they execute Duplicity with the OneDrive back-end. The OAuth
token obtained is saved in the file “ ~/.dropbox.token_store.txt” to enable future
Duplicity executions without browser interaction [29].

Duplicity backups with Dropbox as storage host require the backups to be stored in
the “/Apps/duplicity” directory of the Dropbox account. Duplicity is also unable
to create new directories, forcing the user to manually create an empty directory
through the Dropbox web interface, a disadvantage not found with any of the other
storage host back-ends tested.

If the user has a Dropbox client installed and logged into the account he/she intend
to use with duplicity, it can be a good idea to turn off synchronization with the
duplicity backup directory. It is not very useful to keep a local version in addition
to the version stored at Dropbox storage servers. The copy stored locally by the
Dropbox client will not be used by the Duplicity Dropbox back-end, i.e Duplicity
will upload the backup to Dropbox leading to the client downloading it, leading to
unnecessary high bandwidth costs.

Because the Dropbox credentials are stored in a file, and the user is forced to
manually create the directory to host the Duplicity backup, the Duplicity command
with Dropbox as storage host is very minimal:

$ duplicity <path to source directory> dpbx:///<directory created
in /Apps/duplicity>↪→

3.7 Concluding Remarks

This chapter has investigated basic usage of Duplicity. It has shown how to perform
simple backup and restoration procedures to both local file systems and remote
storage hosts, and set up the project client computer for further tests and investiga-
tion. Duplicity comes with a wide range of different features and options, we have
introduced a few in this chapter, but to utilize the full potential of Duplicity a user
should read the documentation to know every possibility.

Duplicity enables storage provider independent secured backups through the use of
GnuPG. The backed up data is secured through cryptographic operations at the
client, making sure the data is safeguarded prior to being uploaded to the storage
host.

Duplicity struggles with fragmented software requirements. Full utilization of different
features requires additional software, giving the software a somewhat difficult learning
curve. The Duplicity manual page provides limited information about how to install

3.7. CONCLUDING REMARKS 25

different libraries, and usually direct the user to other web pages for information and
installation guidelines.

As shown throughout the chapter, the setup process of Duplicity is simplified through
the use of package managers. Package managers automatically make sure depen-
dencies are met, and allow easy installation, update and installation of software
packages.

Chapter4Testing of Duplicity in Different
Scenarios

This chapter will investigate and test some of the different possible ways of using
Duplicity. Duplicity offers incremental backup with client-side encryption of data,
enabling efficient backup to remote storage providers while denying unauthorized
disclosure of information.

The first part of this chapter, section 4.2 and 4.3), describes the setup used for testing.
It informs what hardware the tests are run at, what the test data contains, and how
the test data was created.

Section 4.4 and 4.5 investigate how different encryption options and compression
levels impact the execution time of backing up and restoring with Duplicity using
local storage. The local tests are followed by similar tests with another computer
as storage host in section 4.6. Running the same tests with both local and remote
storage provide greater insight on how the different phases of the program execution
affect the total runtime.

The execution time of backup and restoration when utilizing incremental backup is
investigated in section 4.8. The tests focus on verifying the hypothesis that restoration
time is increased when the backup is part of an incremental chain.

Duplicity with different cloud storage providers is investigated in section 4.9. The
goal is to identify differences between the different providers performance together
with Duplicity. The following cloud storage providers will be tested:

• Amazon S3

• Google Drive

• Dropbox

• OneDrive

27

28 4. TESTING OF DUPLICITY IN DIFFERENT SCENARIOS

Each of the different cloud storage provider require different back-end libraries
for Duplicity support. This chapter will investigate if the choice of cloud storage
provider has any significant impact on backup and restoration execution time. The
performance analysis of using Duplicity with different storage hosts are helpful for
users that are unsure about which storage provider they should use with Duplicity,
but also provides useful information for chapter 5; Intelligent Scheduled Backup.

The performance of the different scenarios is in general measured by the execution
time of the scenario. In this chapter, execution time is defined as the real time
provided by the time command in the clients shell. The real time provided by
the time command is the elapsed time between invocation and termination of the
command it runs1.

4.1 Related Work

Santos and Bernardino conducted interesting experiments involving Duplicity in
“Open Source Tools for Remote Incremental Backups on Linux: An Experimental
Evaluation” [45]. The study tests five different remote incremental backup tools in
the categories:

• Experiments without compression/encryption.

• Experiments with compression.

• Experiments with compression and encryption.

Duplicity is tested in the two last categories, and provided good results compared
to the other solutions tested. Santos and Bernardino concluded that rsync was the
most efficient backup tool for simple data replication, while Duplicity provided the
overall best results for tools capable of compression and encryption.

Santos’ and Bernardino’s study provide an interesting comparison between the
different incremental backup tools, but does not serve as an in-depth study of
Duplicity. The main focus of Santos and Bernardino is to find the best performing
tool, while this study tries to test the various options and settings of Duplicity against
each other. Santos and Bernardino do for example not state if the restoration times
provided are for the incremented backup set, or for the full backup set. Additionally
it is not noted if the encryption tests are conducted with symmetric or asymmetric
encryption.

1 Time command manual page: http://linux.die.net/man/1/time

http://linux.die.net/man/1/time

4.2. SYSTEM SETUP 29

The study presented in this chapter contains experiments investigating how the
restoration time of Duplicity changes with the length of incremental backup chains.
It also performs tests to see if there is any performance difference between using
Duplicity with GnuPG’s symmetric encryption scheme and Duplicity’s with GnuPG’s
asymmetric encryption scheme.

This chapter also does several tests not directly related to the experiments done by
Santos and Bernardino. Especially the experiments measuring Duplicity’s perfor-
mance with different cloud storage provider should be interesting for users interested
in utilizing Duplicity to perform incremental and encrypted backups to the cloud.

4.2 System Setup

The use cases in this chapter have been tested in Apple OS X Yosemite. The directions
given on how to set up duplicity is applicable also for other Unix operating systems.
Every benchmark/measurement is done on an Apple Macbook Pro with specifications
listed in Table 4.1. All tests are done at NTNU, granting stable high-end internet
performance.

Figure 4.1: The client computer is set up to enable backup to several different
storage options.

In addition to local file system storage, remote storage will be tested with a local
Ubuntu computer, and the cloud providers listed in the chapter’s introduction. The
setup used in the tests is shown in Figure 4.1.

Duplicity is tested using the development release 0.7.01. The last stable version is
0.6.25, but lacks back-end support for OneDrive which is one of the storage providers

30 4. TESTING OF DUPLICITY IN DIFFERENT SCENARIOS

Specification of Client Machine
CPU 2.4 GHz Intel Core i5
Memory 8 GB 1600 MHz DDR3
Harddrive 256 GB Solid State Drive
Operating system Apple OS X Yosemite
Network adapter Apple USB Ethernet Adapter

Table 4.1: Specifications of Apple Macbook Pro running the use case scenarios

tested in this project. The Duplicity web page also states “The 0.6 series is in the
process of being deprecated” [8].

4.3 Setup of Test Data

This section will describe the files used for testing, and how they were created.

The tests are done using the same data to avoid any inconsistencies in the results
due to file differences. The directories, with it’s content, were created using a bash
script shown in Appendix A. The test directory contains:

• 10 directories.

• Each directory contain another 10 directories.

• Each subdirectory contain:

◦ 200 files of size 1KB.
◦ 45 files of size 100KB.
◦ 5 files of size 1MB.

This creates a total of 110 folders, 25000 files and a total directory size of 1,07 GB.
The content of the files is described further in section 4.3.1.

A copy of the directory described above are run through another script to prepare it
for incremental backup testing. The following modifications are done:

• In each directory containing files, the following files are deleted:

◦ 40 files of size 1KB are deleted.
◦ 9 files of size 100KB are deleted.
◦ 1 file of size 1MB is deleted.

4.3. SETUP OF TEST DATA 31

• In each directory containing files, the following files are created:

◦ 40 files of size 1KB are generated.

◦ 9 files of size 100KB are generated.

◦ 1 file of size 1MB is generated.

• In each directory containing files, the following files are modified:

◦ 40 files of size 1KB have 512B random data removed, and 512B random
data appended.

◦ 9 files of size 100KB have 50KB random data removed, and 50KB random
data appended.

◦ 1 file of size 1MB has 512KB random data removed, and 512 KB random
data appended.

The modified directory will have the same size as the previously created directory,
but a significant portion of the original files have been deleted or heavily modified,
and several new files have been created.

4.3.1 Generation of test files

The content of the files are pseudo-randomly generated bytes mixed with zero byte
data. The zeroes provide the files with redundant data, and are important to gain
insight into the compression capabilities of Duplicity and the underlying technologies.
The zero-data complements the random data that gives almost no compression
possibilities. The files consist of 75% pseudo-random bytes and 25% zeroes.

To decide how to generate the pseudo-random bytes, a quick test were done with
the OpenSSL rand tool [46] and dd with /dev/urandom as input [47]. The test
were done using the time command for timing statistics about the program runs.
This test showed a significant difference in the execution time of file generation. The
result is showed in Table 4.2, and the script used to measure is found in Appendix B.

The results show that dd with infile /dev/urandom is quicker on very small files,
while the OpenSSL approach is a lot quicker on bigger files. For consistency, all
further file generation in this project is generated with the OpenSSL approach.

The zeroes part of the files are generated through the use of dd with /dev/zero as
input [47].

32 4. TESTING OF DUPLICITY IN DIFFERENT SCENARIOS

Filesize OpenSSL Rand dd with if=/dev/urandom
1KB 0.008s 0.006s
10KB 0.008s 0.005s
512KB 0.024s 0.043s
1MB 0.040s 0.089s
100MB 3.512s 8.683s
1GB 34.831s 85.849s

Table 4.2: Timing statistics of creating random files with OpenSSL and dd with
infile /dev/urandom

4.4 Encryption’s Impact on Execution Time

As discussed in chapter 3, duplicity has built in encryption capabilities. This section
will report the result of tests done to investigate the impact encryption has on the
backup and restoration process.

The goal of this test is to investigate to what degree it is preferable to disable
encryption when storing the backup on a trusted storage provider. Both backup
and restoration is tested with and without encryption. The tests are done storing
the backup on the local file system, to avoid any external bottlenecks to impact the
result.

The same folder was backed up using GnuPG symmetric encryption, GnuPG asym-
metric encryption and with encryption disabled. The tests are done with fresh full
backups. The effect encryption has on incremental backups is not tested in this
section. Each full backup was run 5 times, to mitigate inconsistent result due to
other processes on the client machine.

The following commands were ran to execute the tests in this section:

1 #Symmetric encryption enabled (default settings):
2 duplicity testDirectory/ file://<target path>
3 #Asymmetric encryption enabled:
4 duplicity --encrypt-key <gpg pub key id> testDirectory/

file://<target path>↪→

5 #Disabled encryption:
6 duplicity --no-encryption testDirectory/ file://<target path>

The backup execution time result, shown in Table 4.3 yield very similar execution
time in all three cases. The small impact encryption has on the backup execution

4.5. COMPRESSION’S IMPACT ON EXECUTION TIME 33

Encryption Backup time Restoration time Directory size
Symmetric 57.73s 47.23s 761.7 MB
Asymmetric 56.27s 49.88s 760.6 MB
Disabled 56.10s 24.38s 786.9 MB

Table 4.3: Average execution time of duplicity with symmetric, asymmetric and
disabled encryption

time led to an investigation to find out if there might be other differences that make
this result as it is. One reason for this might be that when encryption is enabled,
duplicity uses gpg to compress the files. In the case with encryption disabled, the
compression job is instead given to the GzipWriteFile function in gpg.py [48], which
in turn use the gzip library of python. A possible reason for the lower than expected
decrease in execution time may be the use of different compression modules. It is
also a possible explanation of why the backup directory size with encryption disabled
is higher than with encryption.

The difference in restoration time with the different encryption options is quite large.
The restoration time with encryption disabled is around half of the restoration time
of the encrypted backups. To verify that this result is not due to different compres-
sion libraries and algorithms, an extra test was done with GnuPG told to disable
compression by passing the command --gpg-options "--compress-algo=none" to
Duplicity. The restoration execution time on the backup with GnuPG told to not
compress was 49.66s, a slightly higher value than the 47.23 with default settings.
With these settings, some extra time is used to decrypt the extra data from not
compressing, some extra time is from the additional input and output operations,
while some time is removed due to removing the decompression stage.

The impact of compression on Duplicity execution time is further investigated in
section 4.5.

4.5 Compression’s Impact on Execution Time

As described in section 2.4, the discipline of data compression tries to remove
redundant data without loosing any information. By default, Duplicity compresses
the backup archives. This section will run a similar test to the one in section 4.4,
but with compression level set to zero. This proved to be harder than expected,
as the --no-compression option listed at the Duplicity manual page [29] does not
do what it should according to tests done as part of this project, and according to
the “Duplicity-talk” mail-list [49]. At the GzipWriteFile function in gpg.py of the
duplicity source code [48] the compression level is hardcoded to 6, disabling the

34 4. TESTING OF DUPLICITY IN DIFFERENT SCENARIOS

possibility to set the compression level with encryption disabled from command line
tools.

The compression level done by GnuPG with encryption enabled is possible to set
through the use of --gpg-options when running duplicity. To make a comparison
possible, the local version of duplicity was patched to enable a new --compress-level
option from the command line. The patch, and how it was implemented, is described
in Appendix C.

The following commands were ran to execute the tests in this section:

1 #Symmetric encryption. Compress level 0:
2 duplicity --compress-level 0 testDirectory/ file://<target path>
3 #Disabled encryption. Compress level 0:
4 duplicity --compress-level 0 --no-encryption testDirectory/

file://<target path>↪→

Encryption Backup time Restoration time Directory size
Symmetric 38.78s 58.79s 1049.67 MB
Disabled 34.66s 35.77s 1047.22 MB

Table 4.4: Average execution time of duplicity with compression level 0.

The results with compression level set to 0 is shown in Table 4.4. The result provides
an interesting insight into how the compression process of Duplicity affects the total
execution time. Disabling compression has the potential to significantly decrease
the backup execution time, and may be something to consider in situations where
backup execution time is of more importance than the size of the backup. At the
same time, the restoration execution time of an uncompressed backup is slower than
the restoration execution time of the compressed backup. This is likely due to the
added input/output operations as a result of the increased backup size.

Another interesting finding is that the difference between the two restoration times
is almost the same difference as found in section 4.4. This clearly indicates that the
time difference indeed stems from the decrypt stage of restoration.

The results in this test are achieved with local storage only, giving a limited view on
how compression affects Duplicity used with remote storage. With remote storage
providers, the network throughput adds another factor to Duplicity’s performance. It
is also important to note that a large part of the test data is random, without much
redundancy. The next section will investigate how the additional data in need of
transportation influence the backup and restoration execution time. The additional

4.6. BACKUP AND RESTORATION WITH UBUNTU AS STORAGE HOST 35

data in need of transportation will decrease, perhaps even remove, any execution
time decrease achieved by disabling compression.

4.6 Backup and Restoration with Ubuntu as Storage Host

This section will investigate the backup and restoration execution time of Duplicity
when backing up to a Ubuntu computer on the same local network. While the
previous tests have been done with the same computer as Duplicity client and storage
host, these tests introduce a new bottleneck: the network bandwidth. In section 4.5,
Duplicity with different compression levels were tested. Similarly, the tests in this
section will be done with the same combinations of encryption and compression
settings to investigate how the execution time changes with the new storage host. The
investigation will uncover if the decrease in backup time with compression disabled
is removed when network bandwidth limits the performance of the backup.

The following commands were run to execute the tests in this section:

1 #Symmetric encryption enabled, default compression level:
2 duplicity testDirectory/ sftp://username@hostname/<target path>
3 #Disabled encryption, default compression level:
4 duplicity --no-encryption testDirectory/

sftp://username@hostname/<target path>↪→

5 #Symmetric encryption. Compress level 0:
6 duplicity --compress-level 0 testDirectory/

sftp://username@hostname/<target path>↪→

7 #Disabled encryption. Compress level 0:
8 duplicity --no-encryption --compress-level 0 testDirectory/

sftp://username@hostname/<target path>↪→

Encryption Compression Backup Restoration Directory size
Symmetric default 122.04s 122.44s 761.68 MB
Disabled default 116.55s 103.20s 758.76 MB
Symmetric zero 131.56s 146.59s 1049.6 MB
Disabled zero 118.78s 121.56s 1047.11 MB

Table 4.5: Average execution time of full duplicity backup to local Ubuntu desktop
computer

The results of running a full Duplicity backup transmitted to an Ubuntu desktop
computer using SFTP is shown in Table 4.5. This is the first tests done to a remote
storage location, where network traffic impacts the execution time of Duplicity.

36 4. TESTING OF DUPLICITY IN DIFFERENT SCENARIOS

As expected, the execution time is increased with all the tested options compared to
the previous tests where the client and host machine was the same. The difference in
execution time with symmetric encryption and disabled encryption is very similar to
the differences found in section 4.4: Encryption’s Impact on Execution Time.

In section 4.5 the impact of disabling compression level was investigated. However,
in that test, a fast Solid State Drive (SSD) acted as both the backup source disk and
storage destination disk. In this test, the backup and restorations are done between
two computers on the same local network. The decreased execution time of disabling
compression is lost, and both backup and restoration execution times are higher with
compression disabled than with compression level at the default value.

The Central Processing Unit (CPU) times in the tests with compression are still
higher than in the tests with compression level set to zero, clearly indicating that the
increased execution time comes from additional network traffic. This information
may be used to a user’s advantage depending on the system properties he/she prefers.
On clients with a low network bandwidth, compression may save a lot of time, at
the cost of CPU resources spent. If the user is in a situation where he prefers that
Duplicity spends as little CPU resources as possible, and execution time or network
bandwidth is not an issue, decreasing the compression level may be the preferred
solution. The CPU time divided by total execution time in the different backup
scenarios is shown in Table 4.6

Encryption Compression CPU time CPU time as %
Symmetric default 97.20s 0.79
Disabled default 86.56s 0.74
Symmetric zero 91.10s 0.69
Disabled zero 68.47s 0.58

Table 4.6: Average CPU time of full duplicity backup to local Ubuntu desktop
computer

The users preference of compression level should also take into consideration the files
that will be backed up. As previously described in section 2.4, Gzip/GnuPG should
be unable to do much more compression on previously compressed data. If the files
the user intends to use is already in a highly compressed format, a lot of system
resources are spent without actually saving any storage capacity or bandwidth.

These claims are verified by a test done with the Macbook as the client machine,
and the local Ubuntu desktop computer as the storage host. The test was done
with an encoded MPEG-4 movie file. The results of the test, shown in Table 4.7,
shows that with this kind of encoded/compressed data, it is a lot quicker to back

4.7. BACKUP WITH ASYNCHRONOUS UPLOAD 37

up with the compression level set to zero. The decreased execution time was over
one minute, and Duplicity used less CPU resources measured in CPU time spent.
The compression done by Duplicity saved less than 0.5 % of the storage capacity
required by the uncompressed version. This test clearly shows how users may benefit
of thinking about what kind of compression level they should choose when backing
up with Duplicity.

Compression level Backup time CPU time/total time
Default (6) 295.23s 0.72
Disabled (0) 221.74s 0.64

Table 4.7: Backup execution time of H.264 encoded MPEG-4 movie file with default
and disabled compression level

4.7 Backup with Asynchronous Upload

The Duplicity manual mention an experimental option that enables asynchronous
upload of backup archives [29]. The CPU time in the tests done with local storage
was significantly higher than in the Ubuntu tests, giving a strong indication that the
increased backup execution time is a result of network limitations. In this test, full
encrypted backup will be tested with the Ubuntu computer as storage host. The only
difference between the two scenarios is that the --asynchronous-upload option is
enabled.

The --asynchronous-upload option make Duplicity perform file uploads asyn-
chronously in the background. By default, Duplicity finished upload of a volume
before it begins to process the next volume for upload [29]. By enabling asynchronous
upload, Duplicity allows two volumes to be prepared and uploaded simultaneously,
with the goal to utilize both bandwidth and CPU more consistently. Use of the option
should increase backup execution time, at the cost of increased required temporary
storage.

This section will investigate if the experimental option provides better performance
than the default setting. The hypothesis is that the backup execution time is
decreased, while the CPU time divided by total time is increased. The asynchronous
option has no effect on restoration, and only backup time is covered in this section.

The following commands was run in the test done in this section:

1 #Async upload enabled. Default encryption and compression:
2 duplicity --asynchronous-upload testDirectory/

sftp://username@hostname/<target path>↪→

38 4. TESTING OF DUPLICITY IN DIFFERENT SCENARIOS

Encryption Compression Backup time CPU time/total time
Symmetric default 83.98s 1.30

Table 4.8: Average execution time of full duplicity backup to local Ubuntu desktop
computer with asynchronous upload enabled

The result of the test is shown in Table 4.8. As predicted, the backup execution time
is significantly decreased compared to the similar test in section 4.6. The backup
execution time is decreased by 31%, while the CPU time to total time ratio is heavily
decreased. The CPU time is actually higher than the total time, a result only possible
with multiprocessing, such as performing asynchronous preparation of volumes. The
asynchronous upload option clearly shows very promising results as a mechanism to
decrease backup execution time.

4.8 Incremental Backup’s Impact on Execution Time

This section will test incremental backup with the previously used local Ubuntu
desktop computer as storage host. It will perform a backup update with the data
changes described in section 4.3. The test will investigate how backup and restoration
time changes with incremental backups. The main hypothesis is that restoration will
be slower when consulting a chain of backup archives [28].

Encryption Compression Time Directory size Dir Increase
Symmetric default 47.40s 1016.84 MB 255.16 MB
Disabled default 47.76s 1012.96 MB 254.2 MB
Symmetric zero 43.22s 1377.87 MB 328.27 MB
Disabled zero 43.09s 1374.80 MB 327.69 MB

Table 4.9: Average execution time of incremental duplicity backup to local Ubuntu
desktop computer

The average execution time of incremental backup with different combinations of
encryption options and compression level is shown in Table 4.9. The low backup
execution time with compression level set to zero was at first a bit surprising, as it
does not follow the pattern of the full backup done with the same setup. However,
the low values are likely due to how the source directory has been altered. The
files that have been modified, have only altered the randomly generated content.
The randomly generated content has very poor compression capabilities, and thus,
the tests with default compression level spent a lot of CPU resources on trying
to compress incompressible content. The main advantage of incremental backup

4.8. INCREMENTAL BACKUP’S IMPACT ON EXECUTION TIME 39

schemes is seen in the test results. While a new full backup would require 761 MB of
the storage capacity, the directory increase with incremental backup was only 254
MB.

Encryption Compression Restoration time
Symmetric default 160.07s
Disabled default 144.20s
Symmetric zero 198.23s
Disabled zero 168.29s

Table 4.10: Average restoration time of incremental Duplicity backup from local
Ubuntu desktop computer

The average restoration time of the incremental backups done is shown in Table 4.10.
The restored directory is the same size as the previous full tests done, making the
results comparable to the restoration times in section 4.6. In other words, the results
in section 4.6 should mimic the restoration time if the incremental data set was
backed up with duplicity in full backup mode. The results show a significant increase
in restoration time when the backup is part of an incremental backup chain. The
amount of data that needs to be downloaded from the storage host is increased,
and additional computation is required to reconstruct the original data from the
incremental chain.

Figure 4.2: Comparison of the restoration time of full and incremental backups

40 4. TESTING OF DUPLICITY IN DIFFERENT SCENARIOS

The restoration times from the incremental tests in this section is compared with the
results from section 4.6 in Figure 4.2. As shown, the restoration time is significantly
increased for every combination of encryption and compression option.

Some additional verifications test were done to investigate if the restoration time
further increased with a longer backup chain. The incremental data set was changed
another time through the changes described in section 4.3, backed up as an incremental
backup to the previously incremental backup completed. The test was done with
default compression and symmetric encryption. The backup execution time was
similar to the backup time in Table 4.9. As predicted, the restoration time is
further increased due to a longer incremental backup chain. After two incremental
updates, the average restoration time was 209.57 seconds, an increase of almost 50
seconds compared to the restoration time with one incremental update. The increase
compared to the restoration of a full backup is 87.53s. The results clearly show how
the restoration time increases with longer incremental backup chains.

4.9 Backup and Restoration with Cloud Storage Providers

Chapter 3 gave instructions on how to prepare the Duplicity client machine for
use with cloud storage providers as backup hosts. This section will investigate the
backup and restoration speed of four different cloud storage providers. Amazon S3,
Google Drive, Dropbox and OneDrive will be tested with the test-data described in
section 4.3: Setup of Test Data. Each test is run 5 times to give a broader spectrum
of results to analyse.

The results from the test with a Ubuntu computer as storage host showed that
disabling compression made the execution of Duplicity backup and restoration slower
with the test data of this chapter. In the tests towards cloud storage providers, the
throughput of data over the network is lower than between two computers on the
same local network. Because of this, only encrypted backup with compression level
at default is tested in this section.

Setup of tests with Amazon S3

As mentioned in section 3.6.1, duplicity requires some extra setup to be used
with Amazon S3 buckets. Before execution of Duplicity the two AWS authenti-
cation keys were added as the two environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY.

The following commands were used in the Amazon S3 tests:

Backup:

4.9. BACKUP AND RESTORATION WITH CLOUD STORAGE PROVIDERS 41

$ duplicity --s3-european-buckets --s3-use-new-style testDirectory/
s3://s3-eu-west-1.amazonaws.com/bucketname/backup↪→

Restoration:
$ duplicity --s3-european-buckets --s3-use-new-style

s3://s3-eu-west-1.amazonaws.com/bucketname/backup <local path>/↪→

Setup of Tests with Google Drive

Before execution of Duplicity the authors Google account password was set as the
FTP_PASSWORD environment variable. The following command was run to backup
and restoration tests with Google Drive:

Backup:
$ duplicity testDirectory/ gdocs://haakon@nymomatland.com/backup
Restoration:
$ duplicity gdocs://haakon@nymomatland.com/backup <local path>/

Setup of Tests with Dropbox

Before execution of the tests with Dropbox as storage provider, the client computer
authenticated through the browser as described in section 3.6.4. It also seems that
Duplicity is unable to create new directories on Dropbox, and empty test folders
were created through the Dropbox web interface prior to the tests.

Because the authentication is done through URL prompting, saving the credentials
in a file on the client machine, the Duplicity commands become quite simple:

Backup: $ duplicity testDirectory/ dpbx:///backup
Restoration: $ duplicity dpbx:///backup <local_path>

Setup of Tests with OneDrive

Similarly as when setting up Dropbox, the client computer authenticated through
the browser as described in section 3.6.3. After giving Duplicity authorization to
change OneDrive content, the commands to run Duplicity with OneDrive as storage
host is:

Backup: $ duplicity testDirectory/ onedrive:///backup
Restoration: $ duplicity duplicity onedrive:///backup <local_path>

42 4. TESTING OF DUPLICITY IN DIFFERENT SCENARIOS

4.9.1 Backup execution time

The mean execution time of the initial full backup to the four different cloud storage
providers is shown in Table 4.11. As expected, the execution time of backing up
to cloud storage is increased with all four providers compared to the tests using a
computer on the same local network. The standard deviation of the tests is also
provided to show how inconsistent the execution time is with the different providers.

Cloud provider Backup time Standard deviation
Amazon S3 184.07s 35.95s
Google Drive 241.89s 8.02s
Dropbox 445.11s 101.59s
OneDrive 448.59s 65.00s

Table 4.11: Average execution time and standard deviation of duplicity backup
with symmetric encryption to cloud storage providers

Amazon S3 has the lowest mean execution time, almost a minute faster than the
nearest competitor. Only one of the runs with Amazon S3 was slower than any of
the other test runs in this section. Even if Amazon S3 outperform the other cloud
providers, it gave some inconsistent results, with a difference between the fastest and
slowest execution of 103.06s.

Google Drive had this scenarios lowest standard deviation, with a 21.89s difference
between its fastest and slowest execution. Even though it is slower on average than
Amazon S3, it was able to outpace Amazon S3’s slowest run once.

Backing up to Dropbox was very slow, spending over 7 minutes to finish on average.
The execution time also varied a lot, with a 257.6s difference between the fastest and
slowest run. Dropbox had the slowest run of every backup run of every run tested in
this section, taking over 10 minutes to finish.

The slowest average backup execution time in this series of tests is with OneDrive as
storage host. It’s average performance is quite similar to that of the Dropbox runs.
It has a lower deviation of results compared to Dropbox, but still performed quite a
lot more inconsistent than Amazon S3 and Google Drive.

The result shows us a vast difference between the four providers. Some key points
from the test results:

• Amazon S3 gave by far the quickest execution times. Only one of the runs
were slower than any of the other cloud providers runs.

4.9. BACKUP AND RESTORATION WITH CLOUD STORAGE PROVIDERS 43

• Google Drive gave very consistent results. Only 20.89s differed between the
fastest and slowest run.

• Both Dropbox and OneDrive gave very slow results. The mean backup execution
time with these two were more than twice as high as the mean backup execution
time with Amazon S3.

• The slowest backup with Dropbox was 464s, close to 8 minutes, slower than
the fastest Amazon S3 backup.

The CPU time used when backing up to the different providers does not differ much.
The large difference in backup time with the different cloud storage providers is likely
due to different upload bandwidth granted. The difference may also partially stem
from the different Duplicity back ends used, and how they implement the protocols
and API used by the cloud providers for upload and download of files.

4.9.2 Restoration execution time

The mean execution time of restoration of the test directory from the four different
cloud storage providers is shown in Table 4.12. As with the backup tests, the
restoration time is increased compared to the scenario using a local Ubuntu desktop
computer. However, the difference is lower in these tests than it was in the backup
tests. The standard deviation is also provided to show the consistency of the
restoration times with the different providers.

Cloud provider Restoration time Standard deviation
Amazon S3 148.05s 3.70s
Google Drive 162.81s 1.35s
Dropbox 207.09s 6.16s
OneDrive 327.71s 10.12s

Table 4.12: Average execution time and standard deviation of duplicity restoration
symmetric encryption from cloud storage providers

Once again, Amazon S3 provides the fastest results. The results are also very
consistent, with a difference of 8.00s between the fastest and slowest restoration. On
average it takes 25,61 extra seconds to restore the test data from Amazon compared
to restoring from the local Ubuntu desktop computer.

Google Drive provides the second best results. The standard deviation was also very
low, with only a 3.17 second difference between the fastest and slowest restoration.

44 4. TESTING OF DUPLICITY IN DIFFERENT SCENARIOS

In general, the gap in performance between the different providers is greatly decreased
when performing restoration compared to the performance difference in the backup
tests. OneDrive gives the slowest results once again, spending twice the time of
Amazon S3 to complete a restoration.

4.10 Guidelines for Backing up with Duplicity

Duplicity is an open source software, with limited documentation and recommendation
for correct usage. This section will discuss some of the potential pitfalls users should
avoid when using Duplicity for backup, and propose some simple guidelines based on
the analysis of use case scenario results.

Encryption has limited impact on backup execution time

The performance gain from disabling encryption is very limited. As the drawback
in execution time is minimal, users should look into other options to improve
performance instead of potentially disclose information to unauthorized parties. The
backup execution time with encryption disabled decreased the execution time by less
than 5%. The best way to preserve the confidentiality of backups with Duplicity is
through using asymmetric encryption with properly set up GnuPG keys. Keys with
a large enough length make it infeasible for attackers to guess the key required to
decrypt the backup archives.

Store private keys safely somewhere in addition to the backed up
machine

If Duplicity is used with asymmetric encryption, users should ensure that their
private key is stored safely. If the private key is only stored on the computer doing
backups, problems will arise if the computer is lost or has a fatal crash leaving the
key corrupted or unusable. Without the private key, the user is unable to decrypt
and restore backups, leaving the backups worthless.

Choose a secure file transfer protocol

Even if the backup is encrypted, metadata about the backup is disclosed by transport-
ing the backup in an insecure way. As discussed in section 3.5, an eavesdropper may
gain a lot of information about the communication, even though the main content is
encrypted.

Analyse the compression capabilities of the data set

The compression level of backups has the possibility to greatly decrease backup
and restoration time if used correctly. The file type has a large impact on which

4.11. CONCLUDING REMARKS AND FUTURE WORK 45

compression level should be used. If the file are mainly compressed audio or video,
performance may be gained without any additional storage or bandwidth cost.
Compression level is also a possible mechanism to control which resource is used.
On data with compression capabilities, CPU usage may be decreased at the cost of
increased storage and bandwidth requirements. Similarly, if CPU usage is not an
issue, an increased compression level may save bandwidth and storage costs. Users
actively analysis the data set of a backup may use compression capabilities and
properties to use more/less of the resources they value the most.

Limit incremental backup chains

Doing full backups every now and then is positive for both the flexibility and
performance of Duplicity backups. While incremental backup is a great way to limit
storage and bandwidth cost, it also increase the probability of data corruption and
computation cost.

Limiting the incremental backup chain will increase the bandwidth cost due to
additional data in need of transportation. A similar increase will be seen in storage
cost, but may be mitigated by removing old snapshots no longer required. One
alternative is to keep every full backup, but remove old incremental archives. This
approach allows old snapshots to be restorable, but at a decreased time interval
between snapshots.

4.11 Concluding Remarks and Future work

This chapter has investigated duplicity used with various encryption and compression
settings. The use of different settings may tune Duplicity’s performance to suit better
for specific usage patterns.

In section 4.4 and 4.6 the impact of encryption on backup and restoration time was
investigated. The tests showed a minor decrease in execution time when disabling
encryption. The decrease was so low, that the author would consider it bad practice
to disable encryption for performance gain.

Section 4.6 showed some of the potential of changing the compression level of Duplicity
backups. Compression has the possibility to greatly impact the overall performance of
Duplicity. If the data is in a highly compressed format prior to backup, decreasing the
compression-level may significantly decrease the system resources spent. Analysing
the content of the directory to be backed up has the potential to greatly decrease the
system resources spent, at the cost of limited increase of network and storage usage.

Section 4.8 investigate the impact on restoration time when the backup consists of
an incremental backup chain. The tests show a significant restoration time increase,

46 4. TESTING OF DUPLICITY IN DIFFERENT SCENARIOS

showing one of the disadvantages of incremental backup schemes. Future work should
benchmark the bandwidth spent with different incremental backup scenarios, to
investigate how much extra bandwidth is spent when restoring incremental backups.

Duplicity offers a lot of different options, and this chapter only touches a few of
them. Experimental options such as --asynchronous-upload is techniques that
potentially greatly improves Duplicity’s performance. The option makes Duplicity
perform file uploads asynchronously in the background, giving a great potential for
better utilization of resources to decrease total execution time. The tests done in
section 4.7 showed a significant decrease in backup execution time with the option
enabled. Future work should test how the asynchronous upload option affect the
backup execution time with the different cloud storage providers.

The results from the tests with cloud storage providers, section 4.9, show the major
execution time decrease that may be gained through using specific cloud providers.
Amazon S3 gave significantly better results than the other tested providers. For
users where execution time is of great importance, the correct choice of cloud storage
will impact the total execution time a lot more than any gain through disabling
encryption or compression.

The major difference in performance with different cloud storage providers is some-
thing that would benefit from further work. Additional tests could investigate where
the difference stems from, if using professional accounts has any difference and how
experimental options such as asynchronous upload affect cloud storage usage.

Chapter5Intelligent Scheduled Backup

This chapter describes a new original system for intelligent distributed backup to be
used together with Duplicity. A proof of concept prototype is presented along with
an in depth availability analysis of the proposed system.

The chapter begins with section 5.1, which discuss the motivation behind creating a
distributed backup system, what the system should achieve, and the specifications
of the system. Related work done on distributed storage systems utilizing erasure
codes is presented, giving a quick overview on some similar projects and systems.

A system overview is offered in section 5.2. The overview includes a potential system
architecture, clearly defining a set of components solving the different objectives and
specifications identified in the system introduction.

Section 5.3 describes a proof of concept prototype implementation of the system. A
potential implementation is discussed for every component of the system architecture.

An availability and reliability analysis of the proposed system is presented in sec-
tion 5.4. Through a series of logical thinking and statistical calculations, the system’s
key properties are examined.

5.1 System Introduction

The goal of the intelligent distributed backup system is to increase availability
and reliability, while preserving Duplicity’s key features. Increased availability and
reliability often come at the cost of increased resource overhead, such as computing
power and storage capacity required. Consequently, the system should strive to
minimize the overhead while accomplishing the desired availability increase. The
required properties are summed up:

1. Increased availability compared to a backup at a single storage provider.

47

48 5. INTELLIGENT SCHEDULED BACKUP

2. Decreased probability of restoration failure compared to a backup at a single
storage provider.

3. Decreased probability of data corruption compared to a backup at a single
storage provider.

4. Decrease the overhead of having several copies of the same data.

Utilizing several different storage providers to host the backup data will decrease the
backups dependence on a specific storage provider being available to allow successful
restoration of data. The same line of thought is used for the probability of restoration
failure and data corruption. Allowing parts of the backup data to be missing or
unusable without disabling restoration is the key objective of the solution. The
challenge of this system is how to achieve the first three properties, while decreasing
the overhead caused by redundant data.

This chapter will investigate if the availability and reliability of backups may be
increased through the use of erasure code encoding and distribution of partial data
blocks. As discussed in section 2.3, erasure codes are a possible mechanism to increase
the reliability of electronic communication. The key property of erasure codes is
the ability to reconstruct the original data even if some of the partial data blocks
are missing. This property will be used as the cornerstone of the proposed system.
Figure 5.1 shows the idea of encoding every file in a directory into partial data
files, followed by distribution of corresponding partial files to different storage hosts,
allowing restoration even though a subset of the storage providers are unavailable.

Readers are referred to chapter 2 and chapter 3 for background information on
Duplicity and erasure codes.

5.1.1 Availability

The primary goal of the system is to have a higher availability than a regular duplicity
backup to a single storage host. The obvious, and simplest, solution to this problem
is to store the backup at several different storage providers, creating redundancy
through several exact copies of the data. In that kind of solution, restoration is
possible as long as one storage provider is available. The disadvantage of such a
backup scheme is that the storage and network traffic required for backup is multiplied
by the number of copies stored.

In the proposed system, the data is distributed in a way requiring more than one
storage host available to successfully restore the backed up data, making the thought
process about availability a bit different. Availability in this system can be viewed in

5.1. SYSTEM INTRODUCTION 49

Distributed backup-
Directory Path

-
Partial 1

Dropbox

-
Partial 2

Drive

-
Partial 3

S3

Figure 5.1: The system distribute erasure coded partial blocks to different storage
host.

two different scenarios. The scenario where a user wishes to perform a backup, and
the scenario where a user wished to restore backed up files.

The availability in the restoration scenario is calculated by finding the probability
that enough storage providers are available to reconstruct the data back to its original
state. In the proposed system, where it is not sufficient that one provider is available,
the availability will be determined by how the data blocks are distributed, and the
number of data blocks required to decode the data. It is also important to note that
if a storage provider was unavailable at the time of the backup, it will affect the
restoration availability greatly. Some scenarios will require every uploaded block to
be available for download to enable successful restoration and reconstruction of the
original data. Other scenarios will disable the possibility to reconstruct completely,
as the number of uploaded partials may be lower than the number of partials required
for reconstruction.

In the scenario of a user performing backup, things quickly become even more
complicated. If the backup scheme is simply storing a full data copy to each storage
provider, it is not an issue if one of many providers is unavailable. However, in a
setup distributing the data between different storage providers, it may cause several
problems if only parts of the distribution succeed. As already mention, it may
temporarily leave the system in a vulnerable state, where each of the uploaded blocks
holds greater importance than intended.

50 5. INTELLIGENT SCHEDULED BACKUP

Availability of the proposed system is analysed in depth in section 5.4.

5.1.2 Restoration failure and data corruption

As with all electronic communication and storage, there is a chance that the data
stored is corrupted, leaving it in a unrepairable state. As discussed in section 2.3,
erasure codes enable reconstruction even if only a subset of the encoded blocks
are required to decode back to the original state. Because of this property, the
consequences of data corruption is reduced. If one block is corrupted, reconstruction
may still be possible. At the same time, similar concerns as with availability arise:
what happens to the likelihood of restoration failure due to data corruption if one
or more storage providers are unavailable? If only the number of blocks required
to decode the erasure code is available, and one of the blocks becomes corrupted,
restoration is not possible. On the other hand, if all blocks are available, restoration
is possible even if some of the data is corrupted.

To ensure reconstruction of the original data is not done with corrupted partial
blocks, the system need to be able to discover if data has become corrupted. If
reconstruction is done with incorrect partial files, the reconstructed file will contain
errors, and the restoration has failed. The system is required to have mechanisms to
detect if data reconstruction was successful.

5.1.3 Related work

The topic of distributed backup has seen a large increase in popularity as the
general public has gained faster and better internet connection. Some distributed
backup systems use a peer-to-peer model, where very user are storage hosts for other
users [50, 51]. The system presented in this report is not a peer-to-peer system,
but still share several properties and techniques with the peer-to-peer systems, such
as erasure coding. In “iDIBS: an improved distributed backup system”, data is
encoded with erasure codes and distributed to available peers. Through the use
of erasure code, restoration is possible even if some of the peers are unavailable or
offline, increasing the reliability of the backup solution [51].

Slamanig and Hanser provides an overview of different strategies to realize reliable
distributed storage systems in “On Cloud Storage and the Cloud of Cloud Ap-
proach” [52]. The paper discuss ten different system, and their approaches to realize
distributed cloud storage. Of the ten, RACS in particular is very related to the
system proposed in this project [53]. RACS is an abbreviation for Redundant Array
of Cloud Storage, and is a cloud storage proxy that stripes data across multiple cloud
storage providers. RACS use erasure coding to create redundancy, and enabling
toleration of unavailable storage providers without losing data.

5.2. SYSTEM ARCHITECTURE 51

The open source system Tahoe-LAFS provides distributed storage with confidentiality
and integrity capabilities [54, 55]. Similar to the system presented in this report,
Tahoe-LAFS uses a library named zfec for erasure coding [56]. Tahoe-LAFS uses a
gateway to perform all cryptographic functionality such as encryption and integrity
check [52].

This project report presents a system enabling distributed storage of backup with
a simple client application. It is storage independent, in the sense that Duplicity
uses standard file transfer protocols to enable remote storage of backups. It does
not require any additional server software, and strives to keep the application simple
without any additional communication overhead in addition to what is provided by
Duplicity.

5.2 System Architecture

This section will describe the planned architecture of the distributed backup system.
The architecture should address, and solve, the properties introduced previously.
This section will describe how different components of the architecture solve different
key tasks. The different components are responsible for distinctive and independent
tasks that together enable distributed backup with the use of erasure codes and
Duplicity.

The key tasks of the system are identified as:

1. Identify all files in need of encoding/decoding

2. Encoding/decoding of identified files

3. Distribution/collection of encoded partial files

The system should, as with regular use of Duplicity, back up a directory and its
content. The first key task is solved by identifying files and directory structure
through directory traversal. In the backup scenario, it will identify files, and prepare
them for encoding with erasure codes to create easily distributable partial files. In
the restoration scenario partial files need to be identified, and matched with other
partial files that stem from the same original file, to permit reconstruction of the
original file.

The third key task is distribution/collection of encoded partial files. In the backup
scenario, the encoded partial files are distributed to different storage hosts through
several instances of Duplicity. In the restoration scenario, Duplicity is used to restore
partial files from enough storage hosts to enable reconstruction of the original data.

52 5. INTELLIGENT SCHEDULED BACKUP

The system will strive to keep a modular design. A modular design allows each
software component to be easily defined, as well as providing the possibility to use
the different components individually. For example, the component responsible for
encoding should be usable without encrypting, compressing and distributing the
partial files. A well designed modular system makes it easier to change certain parts
of the software, without it having any impact on the other components. One example
could be to provide different erasure code schemes, allowing the user to use the
scheme of his/hers preference.

If the system architecture is broken down to small modules, each responsible for
a special task, testing and debugging becomes easier and more well defined. The
main idea is to decouple parts of the software that are likely to change, so that they
can be changed independently. The idea was introduced as “information hiding” by
Parnas in “On the Criteria To Be Used in Decomposing Systems into Modules” [57].
In “The structure and value of modularity in software design” the information hiding
design is predicted by Sullivan et al. to be superior to modularization that are based
on sequencing steps based on input to the output [58].

The system architecture of the proposed system is quite simple, and thus makes
it hard to differentiate between the parts that are most likely to change, and the
sequence of steps required by the software. The general plan is that it should
be possible to exchange the encoder/decoder or the distributor/collector without
changing other parts of the software.

The next subsections will describe the different core modules of the system, the tasks
they solve, and how they solve them.

5.2.1 Erasure code modules

The erasure code modules are listed together, even though they are two separate
modules. The two components have to correspond, as the decoder has to be able
to decode the output of the encoder. The decoder should decode according to the
encoder in use.

The erasure code modules show one of the positive effects of using a modular design,
as it is possible to change coding technique without it making any impact on the
rest of the system. If several different coding modules are implemented, the modular
design allows the user to select the coding technique of his preference.

The encoder and decoder description below is if the system utilizes a MDS code such
as Reed-Solomon. As previously discussed in chapter 2, non-optimal erasure codes
may require more than k partial files to enable successful reconstruction.

5.2. SYSTEM ARCHITECTURE 53

The encoder and decoder is largely influenced by Luigi Rizzo’s explanation of erasure
codes in “Effective Erasure Codes for Reliable Computer Communication Proto-
cols” [14]. In this system, partial files correspond to the blocks of encoded data, and
the blocks of source data are all gathered from one file.

Erasure code encoder

The erasure code encoder component is responsible for encoding the files it receives
as input. As shown in Figure 5.2, the encoder takes a file as input, and encodes it
into k + r = n partial files, where k partial files are required to enable restoration of
the original file through the use of a decoder.

erasure code encoder-

-

-

-

-

File

Partial 1

Partial 2

Partial 3

...

Partial n

Figure 5.2: The erasure code encoder module takes a file as input, and outputs
k + r = n partial files

Erasure code decoder

The erasure code decoder component is responsible for decoding the partial file set
it receives as input. As shown in Figure 5.3, The decoder takes at least k partial
files as input, and outputs the decoded file. In other words, the decoder is able to
reconstruct with up to r missing partial files.

5.2.2 Traversal component

Duplicity backs up entire directories, while the erasure code encoder/decoder takes
files as input. The traversal component is needed to identify and feed the directory
files to the encoder/decoder. The traversal component has slightly different tasks in
the backup scenario and the restoration scenario:

54 5. INTELLIGENT SCHEDULED BACKUP

erasure code decoder -

-

-

-

-

File

Partial 1

Partial 2

Partial 3

...

Partial k

Figure 5.3: The erasure code decoder module takes k to n partial files as input,
and outputs to original file

Encode phase

In the encode phase, the traversal component is responsible to find every file in the
directory tree, and feed them to the encoder. When the traversal is complete, the
component moves the partial files to a file structure that allows efficient use together
with duplicity. The file structure contains n directories. Each directory has the same
directory structure as the source directory structure, but includes one partial block
of each file, instead of the actual file.

Decode phase

In the decode phase, the traversal component is responsible to find every partial
file in the restored directory, including any sub directories. After the traversal is
complete, the traversal component has mapped every partial file that belong together,
enabling decoding through the decoder module.

5.2.3 Duplicity backup component

The Duplicity backup component is responsible for invoking one Duplicity command
for each storage host. The command should be invoked with options according to
the settings set in the configuration file, including any environment variable required
to authenticate with the storage hosts, or to encrypt the backup archives.

5.2.4 Duplicity restoration component

The Duplicity restoration component is similarly to the backup component responsible
for invoking Duplicity commands according to the configuration file. It should set

5.2. SYSTEM ARCHITECTURE 55

up any environment variables required for authentication or decrypting of files.

The restoration component also has some extra responsibility that the backup
component does not have. The component should only restore data parts from
storage hosts that hold the same, most recent version of the original source data. If
the host was unavailable when he last backup procedures were run, the data it holds
is outdated, and should not be used for decoding as it will create incorrect files.

Ideally, it should only restore enough parts to enable reconstruction of the original
data. Bandwidth may be saved by limiting the number of parts that are restored.
If a systematic erasure code is used, i.e. the original data is reproduced among the
encoded data, the parts that contain reproduced data should be prioritized to reduce
reconstruction cost.

5.2.5 Argument parser and configuration file

Different user provider parameters are required to set up the system properly. Direct
user input is received through the argument parser. In addition to the arguments, a
configuration file is used to define how the different components work. As the setup
of several different Duplicity storage host quickly become quite complex, the system
uses a configuration file to hold most of the information.

5.2.6 Detection of corrupted backups

Data that is corrupted at the storage host, or during transfer to the restoration
client may cause the decoder to fail at successfully reconstruct the original data.
Thankfully, Duplicity will automatically detect if the content of the backup archive
is changed or corrupted.

Duplicity utilizes SHA-1 to calculate a hash for every backup archive it creates. The
hash is stored in the Duplicity manifest file, which is also uploaded to the storage
host. When Duplicity restores a backup, it will compare the hash of the downloaded
archives with the hash stored in the manifest file. If the two hashes mismatch, the
restoration is aborted. The shell output from a restoration that was aborted because
of a mismatch is shown in Figure 5.4

Invalid data - SHA1 hash mismatch for file:
duplicity-full.20150324T100427Z.vol1.difftar.gpg
Calculated hash: 85d1bb65be20e253f3997d03240554231361180f
Manifest hash: 0868122b23d613b5b089a7ca0623891f47b018ca

Figure 5.4: Shell output from Duplicity restoration with altered/corrupted data.

56 5. INTELLIGENT SCHEDULED BACKUP

Because Duplicity aborts restorations with wrong checksums, any successfully restored
partial file is assumed to be without any data corruption.

5.3 Implementation of Prototype

After the initial draft of system architecture, implementation of a prototype started.
The prototype is written in the Python programming language. The prototype
was implemented according the specification and system architecture described in
section 5.2. The implementation was done with focus on modularization to allow
different FEC/erasure code schemes to be utilized.

Git was used for revision control of the implementation. Git is an open source
distributed version control system that gives the user a great revision history of
the code changes between commits [59]. The source code of the prototype may be
viewed or downloaded from the authors web-based Git repository at the hosting site
GitHub [60].

The system architecture/overview previously described allowed each component to
be developed and tested separately. In addition to the previous architecture planning,
the flow of different key tasks was sketched to envision how the flow of the code
should look like.

files
Identify -

files
Encode -

distribution
dir for
Prepare

-

commands
Duplicity
Prepare

-

Duplicity
with

Distribute

Figure 5.5: Flow of key tasks when performing distributed backup

Figure 5.5 show the flow of key tasks when performing a distributed backup. The
first key task, further discussed in section 5.3.1, is to identify the files that should be
encoded. The next step, described in section 5.3.2, is to encode the files with erasure
codes to enable distribution of partial files. The last three steps consist of preparing
the files for distribution, creating the duplicity commands required for distribution
and finally execute the commands that uploads backup archives with duplicity.

As shown in Figure 5.6 flow of the restoration scenario looks a little bit different
than the backup scenario. In this scenario, preparing and running duplicity are the
first tasks to be run. The program need to set up duplicity commands correctly
according the configuration file, and restore the distributed archives containing the

5.3. IMPLEMENTATION OF PROTOTYPE 57

commands
Duplicity
Prepare

-

Duplicity
with

Restore
-

partials
and match
Identify

-
partials
Decode

Figure 5.6: Flow of key tasks when performing restoration of distributed backup

partial files. After Duplicity has done its part of the job, partial files need to be
found and matched to enable decoding to the original source files.

5.3.1 Directory traversal

A key part of the distribution system is to identify files, and prepare them for
encoding through the erasure code modules. Directory traversal is solved through
the use of Python’s os.walk function. The Python code shown in Listing 5.1 does a
top down directory walk starting at the path parameter. Every file path found in
the walk is appended to the result list, and when the directory walk is complete, the
list is returned to the caller of the function.

Listing 5.1 Top down directory walk that returns a list of the paths to every file
encountered.

1 def traverse_and_identify_files(path):
2 file_paths = []
3 for root, dirs, files in os.walk(path):
4 for file_name in files:
5 file_paths.append(os.path.join(root, file_name))
6 return file_paths

Python’s yield statement could also be used to return the paths. The function
would then work as a generator, but the list version was preferred as it allows easier
multiprocessing usage in other parts of the code. The use of a generator could
save memory spent on the client computer, but the memory used is insignificant
compared to the gain in execution speed gained by enabling multiprocessing of
encoding/decoding later.

The result from the directory walk is further used together with a pool of workers
from the multiprocessing library of Python. This allows several files to be encoded
at the same time, using different processes/threads on the computer. Early tests

58 5. INTELLIGENT SCHEDULED BACKUP

showed a significant reduction in execution time of encoding directories through the
use of multiprocessing.

Identification of partial files is done in a similar manner. However, some extra
processing is required, as the partial files that belong together need to be mapped
before being sent to the decoder. Partial file mapping is done through analysing the
file paths. Additional file extensions are appended to the file name to allow easier
recognition and matching.

5.3.2 Erasure codes

The modular design allows easy replacement of single modules. The prototype is
implemented with two different erasure codes, one provided by a Reed-Solomon
based library and one self-implemented XOR-based coding scheme provided by this
project’s supervisor Danilo Gligoroski.

Zfec library

The Reed-Solomon based encoding and decoding used in the distributed backup
prototype is provided by the software library zfec [56]. It is licenced under GNU
General Public License version 2 and largely based on Luigi Rizzo’s FEC library [13,
56]. The software library can be used directly from the command line, or through
APIs in Python, C or Haskell.

Zfec is based on Reed-Solomon coding with Vandermonde matrices when w = 8. The
implementation of RS coding is heavily tuned, and utilizes pre-computed multiplica-
tion and division tables for GF (28) [22]. Reed-Solomon coding has previously been
described in section 2.3.1.

The python API solves the tasks of the erasure code modules in the system. In
filefec.py the two functions encode_to_files and decode_from_files are defined,
solving the tasks of the erasure code encoder and erasure code decoder described in
section 5.2.1.

Zfec is able to encode with a large variation of user provided k and n values, where k
is number of blocks number of blocks required to reconstruct the original data, and
n is the total number of blocks. This allows easy encoding of partial files into the
format required by the distribution components of the prototype.

XOR encoder and decoder

The system prototype was also tested with a systematic (10, 6) XOR scheme provided
by Danilo Gligoroski, this projects supervisor. The equations of the scheme is showed
in Table 5.1. As seen from the set of calculations, the first 6 output parts contain

5.3. IMPLEMENTATION OF PROTOTYPE 59

the 6 input parts. The last four output parts contain redundant information created
by performing XOR operation on the input data parts.

y[1] = x[1]
y[2] = x[2]
y[3] = x[3]
y[4] = x[4]
y[5] = x[5]
y[6] = x[6]
y[7] = x[3]⊕ x[5]⊕ x[6]
y[8] = x[2]⊕ x[4]⊕ x[6]
y[9] = x[1]⊕ x[4]⊕ x[5]
y[10] = x[1]⊕ x[2]⊕ x[3]

Table 5.1: Encoding equations of a systematic (10, 6) XOR scheme, i.e. with 6 data
parts and 4 redundant parts.

If any of the data parts are lost, they may be reconstructed through the use of the
redundant data blocks. For example if y[3] is lost, it may be reconstructed through
the redundancy data in y[7] or y[10]. Because y[7] = x[3]⊕ x[5]⊕ x[6], it is known
that x[3] = y[7] ⊕ x[5] ⊕ x[6]. To allow easier implementation of the erasure code
scheme, the different ways of calculating the 6 data blocks were identified. The
different possible ways to calculate the data blocks is shown in Table 5.2.

y[1] = y[2]⊕ y[3]⊕ y[10] = y[4]⊕ y[5]⊕ y[9]
y[2] = y[1]⊕ y[3]⊕ y[10] = y[4]⊕ y[6]⊕ y[8]
y[3] = y[5]⊕ y[6]⊕ y[7] = y[1]⊕ y[2]⊕ y[10]
y[4] = y[2]⊕ y[6]⊕ y[8] = y[1]⊕ y[5]⊕ y[9]
y[5] = y[3]⊕ y[6]⊕ y[7] = y[1]⊕ y[4]⊕ y[9]
y[6] = y[3]⊕ y[5]⊕ y[7] = y[2]⊕ y[4]⊕ y[8]
y[7] = y[3]⊕ y[5]⊕ y[6]
y[8] = y[2]⊕ y[4]⊕ y[6]
y[9] = y[1]⊕ y[4]⊕ y[5]
y[10] = y[1]⊕ y[2]⊕ y[3]

Table 5.2: Decoding equations of a systematic (10, 6) XOR scheme

One of the primary goals of non-optimal XOR erasure code schemes is to provide fast
encoding and decoding, as the only computations required are XOR operations [17].

60 5. INTELLIGENT SCHEDULED BACKUP

The XOR erasure code scheme was implemented to allow encoding and reconstruction
of files, to fit with the distributed backup system.

The implementation of the encoder is quite simple. The six data parts are created
by splitting the original file into six equally sized parts. The six data parts are
subsequently used to encode the redundancy blocks. The encode function, shown
in Listing 5.2, takes a list containing data parts, and calculates the four redundant
parts. The strxor function of Python’s crypto library is used to perform the actual
XOR operations. Several different XOR techniques for python was tested, but the
function provided by the Crypto library outperformed every other tested approach.

Listing 5.2 The encode function of the XOR scheme implementation takes a list
containing 6 elements, and returns a list with the 4 calculated redundant parts.

1 def sxor(s1, s2):
2 if len(s1) > len(s2):
3 s2 = s2.ljust(len(s1),’ ’)
4 elif len(s2) > len(s1):
5 s1 = s1.ljust(len(s2),’ ’)
6 return Crypto.Util.strxor.strxor(s1,s2)
7

8 def encode(data):
9 y7 = sxor(sxor(data[2],data[4]),data[5])

10 y8 = sxor(sxor(data[1],data[3]),data[5])
11 y9 = sxor(sxor(data[0],data[3]),data[4])
12 y10= sxor(sxor(data[0],data[1]),data[2])
13 return [y7,y8,y9,y10]

Every detail of the XOR encoder implementation may be viewed in Listing D.2 in
Appendix D, or in the xor_encode.py file at the projects GitHub repository [60].

Additional logic is required in the decoder implementation due to the need to identify
missing parts, and compute how to reconstruct them. Because the coding scheme
is systematic, the decoder needs to ensure that the six data parts are available to
enable reconstruction of the original file. In this implementation, the data parts are
the original file divided into six pieces, and simple concatenation of the data parts is
enough to reconstruct as soon as the data parts are available.

An algorithm was created to identify and compute missing data parts. A simplified
version of the algorithm is shown in Algorithm 5.1. The algorithm continues as
long as a data part is missing, or it is unable to reconstruct any missing data or
redundancy part. When the algorithm is complete, it is certain that either every
data part is available or reconstruction of the original file is impossible.

5.3. IMPLEMENTATION OF PROTOTYPE 61

Algorithm 5.1 Simplified algorithm that tries to reconstruct encoded parts until
every data part is available.
function Decode if possible

while data part is missing do
for every missing part do

if reconstruction of missing part is possible then
reconstruct missing part

end if
end for
if no part was reconstructed in this iteration then

return False
end if

end while
return True

end function

The equations listed previously in Table 5.2 is used to identify if reconstruction of
a partial file is possible. If every other partial file in the equation is available, it
restores the partial file, which subsequently may be used to reconstruct other missing
parts. The full python implementation of the XOR decoder is shown in Listing D.3
and Listing D.4 in Appendix D.

Further performance increase is possible through the use precomputed tables of recov-
erable combinations. The precomputed possible combinations are used as a lookup
table, quickly determining if further resources should be spent on reconstruction. The
lookup table only requires 95 entries to contain every combination of missing parts
where reconstruction is impossible. Utilization of a lookup table may potentially
significantly decrease the execution time when reconstruction is impossible. At the
same time, it is for some unrecoverable situations possible to reconstruct some data.
A partially constructed file may in some cases be valuable. Consequently, users
should be able to choose if they want to abort decoding if insufficient data is available,
or if the decoder should reconstruct what it can.

Pre-calculation of reconstruction sequence is another possible mechanism to achieve
decreased computation cost. The 6 data parts are required to successfully reconstruct,
and thus further improvements to the implementation are gained if the decoder already
know the ideal sequence of equation solving. The scheme is deterministic, and it is
possible to identify the best approach for every possible scenario.

The XOR erasure code implemented always outputs 10 partial files, and is only
suited for use with the distributed backup prototype with 10 hosts. The erasure code
scheme is not optimal, and does not promise reconstruction with n − k = 6 data
parts available. An in-depth availability and performance analysis is performed in

62 5. INTELLIGENT SCHEDULED BACKUP

section 5.4.

Encoder and decoder class

The encoder and decoder class is implemented to allow both the zfec library, and
the XOR-based erasure code implementation. The code examples in this section are
shown with the functions from zfec’s filefec.py. Only minor changes are required
change the erasure code scheme to the self-written XOR implementation.

Listing 5.3 contain the wrapper function that prepares the variables requried for
zfec’s encode_to_files function. The code shows how the path the partial files
should be stored at is calculated through the a series of os.path operations. The
variables not calculated are self values set at initiation of the encoder class instance.
The code also opens the source file for reading, as zfec’s function takes an open file as
parameter. The only change required to encode with the XOR scheme is to comment
the filefec line (line 8), and uncomment the xor line (line 9). If the XOR encoder is
used, the different k and n values are not used, as the encoder always encodes into
10 partial files.

Listing 5.3 Encode function that prepares the variables required for the file encoding
functions

1 def encode_file(self,file_path):
2 prefix = os.path.basename(file_path)
3 relative_path = os.path.dirname(os.path.relpath(file_path,

self.root_source_path))↪→

4 output_path = os.path.join(self.target_root_path, relative_path)
5 utility.make_sure_directory_exists(output_path)
6 filesize = os.stat(file_path).st_size
7 with open(file_path, ’rb’) as f:
8 filefec.encode_to_files(f, filesize, output_path, prefix, self.k,

self.n, self.suffix, False, False)↪→

9 #xor.encode_to_files(f, filesize, output_path)

The function parameters are set up as simplistic as possible to work well with
the multiprocessing Pool class mentioned in the section about directory traversal
(section 5.3.1). Listing 5.4 shows how the encode_directory function utilize the Pool
class. The code gets all file paths through the use of the function showed in Listing 5.1,
and proceeds by feeding that list into the Pool.map function. The Pool.map function
takes two parameters, the function it should execute and a list of arguments for that
function to run. In the prototype implementation, the unwrap_self_f function is
called, which is a unwrap shell to allow class instance functions work with the Pool
class.

5.3. IMPLEMENTATION OF PROTOTYPE 63

Listing 5.4 Example of Pool class enabling encoding of several files in parallel
1 from multiprocessing import Pool
2 def encode_directory(self):
3 utility.make_sure_directory_exists(self.target_root_path)
4 files = self.traverse_and_identify_files()
5 p = Pool(5)
6 p.map(unwrap_self_f, zip([self]*len(files), files))

The same general idea is used when decoding files. Some extra processing is required
prior to using multiprocessing as the different partial files needs to be mapped to the
other matching partial files. Because most modern computers has several cores in the
CPU, this approach greatly decreases the execution time required to encode/decode
a directory.

Discrepancy with file permissions between Duplicity and erasure code
implementations

Throughout the system implementation it was discover an important lack of a specific
feature in zfec. File permissions are not preserved when files are encoded and decoded.
Consequently, the file permissions of a reconstructed file may not be the same as the
original file had. Similarly, the same flaw is found int he XOR scheme implemented.

File permission preservation is one of Duplicity’s key features. Consequently, Duplic-
ity’s file permission preservation feature is removed through encoding of files. Users
on systems with multiple user accounts may run into problems if the restored files
does not share the same permissions as the original files had.

In the current prototype, file permissions are not preserved.

5.3.3 Execution of duplicity instances

Initially, the idea was to use Duplicity through its Python code. However, the
Duplicity source code is quite complex, with dozens of options/arguments that
undergo parsing and verification. To enable easier implementation of this prototype,
Duplicity is executed as a subprocess with the built in Python function call.

Python’s call function allow the software to run Duplicity as it would in shell. While
it is a very simple solution, the solution has drawbacks, such as poor error handling,
that would have to be addressed with further development.

64 5. INTELLIGENT SCHEDULED BACKUP

Storage host configuration is done in duplicity_conf.py. In this prototype, users
should set up n hosts, i.e. equal number of hosts as encoded partial parts. To set up
a host, the following variables need to be added:

remote_host Protocol+address, e.g. “sftp://matland@192.168.0.1”.

remote_host_options Duplicity options the user want to pass, e.g. “–s3-european-
buckets”.

remote_path The path to where the data should be stored at storage host, e.g.
“backup/”.

Users may also set environment variables such as PASSPHRASE(used as symmetric
encryption key by GnuPG through Duplicity), FTP_PASSPHRASE (used to authenticate
with for example Google Drive) and AWS authentication keys.

The logic for setting up hosts for backup and executing the commands is in the
Duplicity_distributer class. The class is responsible for generating the duplicity
commands based on the configuration file, setting up any environment variables
end execute the duplicity commands. Similarly, the class Duplicity_restorer is
responsible for setting up hosts for restoration and executing the commands. Some of
the source code is found in Appendix D, but for the full source, readers are referred
to the project’s GitHub repository [60], or in Appendix D.

Local and Remote metadata are synchronized, no sync needed.
Last full backup date: Tue Mar 24 14:31:32 2015
Collection Status

Connecting with backend: BackendWrapper
Archive dir: /Users/Matland/.cache/duplicity/3c0b0a7c636e27ac4e2876e6267ef4b9

Found 0 secondary backup chains.

Found primary backup chain with matching signature chain:

Chain start time: Tue Mar 24 14:31:32 2015
Chain end time: Mon May 18 14:56:00 2015

Number of contained backup sets: 2
Total number of contained volumes: 53
Type of backup set: Time: Num volumes:

Full Tue Mar 24 14:31:32 2015 40
Incremental Mon May 18 14:56:00 2015 13

No orphaned or incomplete backup sets found.

Figure 5.7: Example output from the collection-status option of Duplicity

5.3. IMPLEMENTATION OF PROTOTYPE 65

Duplicity’s collection-status action is used to only allow restoration from hosts
that has the latest version of the backup. The Duplicity_restorer class will invoke
collection status commands, retrieving metadata about the backup. Example output
from the collection-status action is shown in Figure 5.7. Particularly the “Chain
end time” is of interest, and is used to verify that the different hosts have the same
version of the original data stored. Comparisons of the hosts chain end time equip
the class with means to verify that the time difference between the different backup
archives is acceptable. Only the host with a timestamp close enough the most recent
timestamp will be restored, and ready for decoding.

5.3.4 Limitations of the prototype

While the goal of the prototype is to prove some of the potential of the system, it has
some clear limitations and problems that should be addressed in further development.

Additional data corruption detection is not included in the prototype. Necessarily,
it is assumed that partial files successfully restored by Duplicity is correct. Further
investigation and testing should be done to verify that this presumption is correct.

Additionally, the prototype is not able to detect erasure code errors. One idea could
be to utilize a hash function on every file prior to encoding, and store it as metadata
with the backup. This would allow the system to verify if the decoded file’s hash
match the hash that was computed before encoding.

As mentioned in section 5.3.2, the prototype does not preserve file permissions.
Restored files may have different file permissions compared to the original files,
causing potential problems. Future improvements should include metadata in some
way storing details about the files permissions, enabling the system to not only
restore the data of a file, but also the file’s permissions.

Future potential improvements should include improved scheduling of restoration.
Ideally, the system should only restore from the number of hosts required for recon-
struction. If systematic erasure codes are used, the verbatim data partials should be
prioritized, as it decreases reconstruction computation cost. If the XOR scheme is
used, different recoverable combinations may have different bandwidth requirements.
The system should have an option allowing users to minimize the bandwidth cost
of restoration, even if it comes at the cost of increased computation required. In
the current implementation, every available part is restored, regardless of how many
parts are required for reconstruction.

66 5. INTELLIGENT SCHEDULED BACKUP

5.4 Analysis of the Distributed Backup System

The first part of this section is an availability analysis of the system when the
Reed-Solomon based zfec library is used. The second part performs an availability
analysis of the system with the less configurable, non-optimal XOR scheme presented
in section 5.3.2.

Two different erasure codes schemes are tested with the system. Because one of the
key properties of sub-optimal erasure codes usually is decreased computation cost, a
performance evaluation of the two codes is conducted. The performance evaluation
tests zfec and the XOR scheme implementation on different files, and reports on the
execution time of encoding and decoding.

The storage overhead of the system quickly rounds up the section, providing insight
into how different erasure code parameters affect the total backup storage cost.

5.4.1 Availability with optimal erasure codes

The total number of data blocks is described with n, and the number of redundant
data blocks is r. With optimal erasure codes, such as Reed-Solomon codes, k = n− r
data blocks are required for reconstruction. x is used as the symbol for number of
hosts available at time of backup, and y is used as the symbol for number of hosts
available at time of restoration.

Availability of restoration for a distributed backup is quite complex to calculate, as
it depends on the availability of the different storage providers used, in addition
to the chosen values k and n. In this prototype the number of storage hosts equal
the chosen n value, making it easier to analyse the availability compared to cases
where some hosts might store more than one partial file. This section will analyse
the availability in one specific setup, in addition to showing how calculations may be
done in a more mathematical way for any (n, k) MDS code.

The calculations and thought processes in this section are done with one important
assumption: the availability of a host at the time of restoration is independent of
the availability of the host at time of backup. The assumption is fair because it
is presumed that a backup set is not restored very shortly after the backup was
executed.

In a situation with k = 2, n = 3 and 3 hosts (H1, H2 and H3), a minimum of two
hosts are required to be available to enable decoding of the partial files. Each host
has stored one partial file of every original file. Consequently, it exists 8 different
possible states, or combinations, of available and unavailable hosts.

5.4. ANALYSIS OF THE DISTRIBUTED BACKUP SYSTEM 67

State H1 H2 H3 Probability
s1 0 0 0 0.013

s2 0 0 1 0.012 ∗ 0.99
s3 0 1 0 0.012 ∗ 0.99
s4 0 1 1 0.01 ∗ 0.992

s5 1 0 0 0.012 ∗ 0.99
s6 1 0 1 0.01 ∗ 0.992

s7 1 1 0 0.01 ∗ 0.992

s8 1 1 1 0.993

Table 5.3: Probability of being in the different states with 3 hosts, each host has
availability of 0.99. A state is a unique combination of available and unavailable
hosts.

Table 5.3 show the probability of being in the 8 different possible states, assuming
every host has an availability of 0.99. Four states exist where restoration is possible
(s1, s6, s7 and s8). The probability of being in one of these four states is 3 ∗ (0.01 ∗
0.992) + 0.993 = 0.999702, a significant higher availability compared to using regular
duplicity with one host providing 99% availability. However, this result is only valid
if it is certain every part was successfully backed up to the corresponding storage
host.

Consider the following example:

• At the time of backup, H1 is unavailable (state s4).

• Accordingly, H2 and H3 must be available for restoration to be possible (state
s4 and s8).

This example shows some of the complexity that comes with a distributed backup
solution. With the scenario above, only state 4 and state 8 enables restoration. The
probability of being in state 4 or state 8 at time of restoration is 0.01∗0.992 +0.993 =
0.9801. Obviously, the probability of being in state 4 at backup and not state 4 or
state 8 at restoration is quite low, but shows the complexity a distributed backup
solution has when it comes to considering availability.

The scenario with 3 hosts, and a (3, 2) erasure code scheme is analysed further.
The probability/availability of different scenario/availability pairs is quite easily
calculated, especially in this example where every host has the same availability.
Table 5.4 shows the four different scenarios at time of restoration. The second column
shows the probability of being in that scenario (which depends on available hosts at

68 5. INTELLIGENT SCHEDULED BACKUP

Scenario Probability of scenario Availability of restoration
Sc1 : 3

3 backed up P (s8) = 0.970299 s4 + s6 + s7 + s8 = 0.999702
Sc2 : 2

3 backed up P (s4 ∪ s6 ∪ s7) = 0.029403 s8 + sbackup = 0.9801
Sc3 : 1

3 backed up P (s2 ∪ s3 ∪ s5) = 0.000297 0
Sc4 : 0

3 backed up P (s1) = 0.000001 0

Table 5.4: Different scenarios with 3 hosts and a (3, 2) erasure code scheme. Each
host has an availability of 0.99. si notates the states given in Table 5.3

time of backup). The third column shows the calculated availability of restoration
given that you are in a specific scenario.

Because the decoder requires a minimum of k = 2 file parts, restoration is impossible
in the last two scenarios since less than 2 parts are backed up. The total availability
of the system, where probability of the different scenarios is taken into account is
quite simple:

Atotal = P (Sc1) ∗ASc1 + P (Sc2) ∗ASc2 = 0.998827731 (5.1)

The total availability, Atotal, is still significantly higher than the one host scenario
previously compared against, but not as high as the initial analysis where it was
assumed every part was successfully backed up.

The possible states and scenario combinations increase greatly for higher values of
n, increasing the complexity of calculating the total availability. Luckily, the total
availability may also be calculated through a series of mathematical calculations.

Formula 5.2 calculate the availability of a specific scenario with x parts backed
up, and y hosts available for restoration. It is based on Weatherspoon and Kubi-
atowicz availability formula in “Erasure Coding Vs. Replication: A Quantitative
Comparison” [61].

Ax,y =
x−k∑
i=0

(
n−y
i

)
·
(
y
x−i
)(

n
x

) (5.2)

The formula is tweaked slightly to take into account both hosts down at time of
backup, and hosts down at time of restoration. Ax,y is the probability that a block
is available. x is the number of hosts available at time of backup. y is the number of
hosts available at time of restoration. n is total number of hosts in the system, and
k is the number of parts required for reconstruction.

5.4. ANALYSIS OF THE DISTRIBUTED BACKUP SYSTEM 69

The availability of the scenario is equal to the number of ways the unavailable parts
can be arranged on unavailable hosts, multiplied by the number of ways the available
parts can be arranged on available hosts, divided by the number of ways every backed
up part can be arranged on every host.

Ax,y is used to calculate the availability for x ∈ {0, 1, ..., n} and 0 ≤ y ≤ n, i.e. the
availability when it is certain x parts are backed up, independent of how many hosts y
that are available hosts at time of restoration. Formula 5.3 calculates the Availability
when the backup was successfully uploaded to x hosts.

Ax =
n∑
y=0

Ax,y ·
(
n

y

)
·Ayh · (1−Ah)n−y (5.3)

Ax is calculated by summarizing Ax,y multiplied by
(
n
y

)
(Possible combinations with

y hosts) multiplied by Ayh ∗ (1−Ah)n−y (the probability of y servers being available
and n− y being unavailable) for 0 ≤ y ≤ n.

The final step is to calculate Atotal, the total availability of the system. Formula 5.4
sums the availability with x backed up, Ax, multiplied by the probability of x servers
being backed up and the possible combinations with x hosts.

Atotal =
n∑
x=0

Ax ·
(
n

x

)
·Axh · (1−Ah)n−x (5.4)

n = 3 n = 4 n = 5 n = 6
k = 2 0.9988277312 0.9999689481 0.9999992284 0.9999999816
k = 3 0.9414801494 0.9976865143 0.9999235276 0.9999977219
k = 4 0 0.9227446944 0.9961951721 0.9998493334
k = 5 0 0 0.904382075 0.9943680915
k = 6 0 0 0 0.8863848717

Table 5.5: Total availability for system with (n, k) erasure code scheme and n = k+r
hosts. Each host has the availability of 0.99.

Table 5.5 shows the calculated availability for for 3 to 6 hosts, and different values
k. As expected, the availability increases for lower values of k. The increased
availability comes at the cost of increased storage capacity required, further discussed
in section 5.4.4. Setting k = n is in general a bad idea, as the encoding will give
the same functionality as splitting the data into k equal parts. If k = n, every part
needs to be successfully backed up, and every part is required to be available for

70 5. INTELLIGENT SCHEDULED BACKUP

restoration to reconstruct the original data, making the total availability worse than
when backing up a full backup to a single storage provider.

In the case k = 1, the result of the system is the same as regular replication. Because
a single partial is enough to reconstruct, the single partial is required to contain all
original data.

Listing D.5 in Appendix D may be used to further analyse the availability properties
of different (n, k) values, and help the user gain the number of nines he desires.

Some of the calculations were also verified by a simulation script. The simulator
uses python’s random generator to determine backed up hosts and restorable hosts.
The hosts are used to check if restoration is possible or not. With a large number
of trials, the results of the simulator give availability values that differ with such
small values from the calculated availability that it is concluded that the calculations
above are correct. The simulation script is listed in Listing D.6 in Appendix D.

5.4.2 Availability with sub-optimal XOR scheme

The (10, 6) XOR erasure code scheme is not optimal, and does not promise recon-
struction with n− k = 6 data parts available. The erasure code scheme is able to
promise reconstruction with up to two missing parts.

The set of solvable equations with specific parts missing determine if reconstruction
is possible. With three parts missing, the scheme is able to reconstruct in 110 of the
120 possible ways to choose 7 parts from 10, i.e. the probability of reconstruction
with three parts missing is 110

120 . If four parts are missing, the scheme is able to
reconstruct in 125 of the 210 possible ways to choose 6 parts from 10 parts, i.e. the
probability of reconstruction with four parts missing is 125

210 .

Parts missing Probability of reconstruction
[0,1,2] 1.0
3 110

120
4 125

210
[5,6,7,8,9,10] 0.0

Table 5.6: Probability of XOR scheme being able to reconstruct the original data

The availability calculation is done with a similar line of though as with the MDS
codes preciously analysed.

The first calculations find the probability of reconstruction for specific x and y

values, namely Ax,y, where x is number of hosts available at time of backup, and y is

5.4. ANALYSIS OF THE DISTRIBUTED BACKUP SYSTEM 71

number of hosts available at time of restoration. Because the XOR scheme provide
uncertainty of reconstruction capabilities with different number of missing parts,
Formula 5.5 is a bit different than the previous Ax,y formula. The probabilities of
successful reconstruction with parts missing are defined in Table 5.6.

Ax,y =
α∑
i=0

P (2n− x− y − i) ·
(
n−y
i

)
·
(

y
n−x−i

)(
n
x

) {
α = 10− x for x > y

α = 10− y for x ≤ y
(5.5)

The formula sums the different combinations of missing pieces multiplied by the
probability of reconstruction with that amount of missing pieces. The formula
matches every possible way for the unavailable hosts at time of backup to be the
same as unavailable hosts at time of restoration. If 8 parts were backed up, and 9
hosts are available for restoration, the maximum number of available parts is 8, and
minimum number of available parts is 7, i.e. one missing part may be the same at
both backup and restoration. With the described scenario, the formula produces:

A8,9 = P (3) ·
(10−9

0
)
·
(9

10−8−0
)(10

8
) + P (2) ·

(10−9
1
)
·
(9

10−8−1
)(10

8
) = 0.933333333333 (5.6)

The first part of the equation determines the probability that 3 parts is missing,
and multiplies it with the reconstruction probability with three parts missing. The
second part determines the probability that 2 parts are missing, i.e. that the part not
available for restoration is one of the parts that was not backed up, and multiplies it
with the probability of reconstruction with 2 parts missing.

Further calculations required to find Atotal is equal Formula 5.3 and Formula 5.4. The
formulas first sums the result for any value of y hosts available at time of restoration,
and then makes the final calculation for any x and y.

The total availability Atotal of the system when using the (10, 6) XOR scheme is
0.999918998669. Accordingly, The total availability of the system with zfec, and the
same storage overhead is 0.999999276582. As expected, the system utilizing the XOR
scheme offers lower availability than the system using zfec with n = 10 and k = 6.
While Reed-Solomon based codes achieve a higher availability, the XOR scheme is
faster, and sub-optimal schemes should be considered in storage systems to increase
computation performance.

Every Ax,y calculation was verified by a python script testing if reconstruction is
possible for every combination of backed up hosts and restorable hosts. The script is
listed as Listing D.7 in Appendix D.

72 5. INTELLIGENT SCHEDULED BACKUP

5.4.3 Performance of zfec and XOR implementation

Generally, the primary objective of XOR-schemes is to provide faster encoding and
decoding of partial files. The implemented scheme is programmed in Python, and
would likely be faster if implemented in a lower level programming language such as
C.

Filesize Mode XOR zfec

100KB Encode 0.065s 0.138s
Decode 0.040s 0.152s

1MB Encode 0.068s 0.140s
Decode 0.049s 0.171s

1GB Encode 5,663s 9.474s
Decode 4.912s 5.172s

Table 5.7: Average execution time of encoding and decoding with the implemented
XOR scheme and zfec with parameters n = 10 and k = 6. Decoding is done with
two of the data parts missing.

Table 5.7 shows the result of an execution time test done with the XOR implementa-
tion and the zfec python library. As expected, the XOR library performs better than
the Reed-Solomon based library. The difference in execution time for smaller file
sizes is very small, likely because a lot of the execution time stems from other tasks
than the actual encoding and decoding. The memory was purged between each test,
and each test was executed by running a minimalistic python file. The similarity
of the results with 100KB and 1MB is probably due to python specific tasks and
library imports.

It should be noted that zfec includes a lot of different error handling not found in
the XOR implementation. Subsequently, the effort to increase the reliability of the
software is responsible for some of the increased execution time.

5.4.4 Storage overhead of encoded data

Encoding of files with erasure codes comes at the cost of increased required storage
to store all the partial files.

The zfec library used as part of this prototype, provides n partial files, where k is
required for reconstruction. Each partial file is 1

k times the size of the original data.
The original data is encoded into n partial files, making the total storage capacity
required to store all the partial files n

k . In addition, each partial file also uses one to
four bytes of additional storage for metadata added to the start of the share file [56].
Correspondingly, a use case with 3 hosts and a (3, 2) erasure code scheme will require

5.5. CONCLUDING REMARKS AND FUTURE WORK 73

3
2 · original size. Similarly, a (4, 2) scheme would require twice the amount of storage
as a single copy.

At the same time, a replication scheme with two copies at two different storage host
also require twice the amount of storage capacity. The total availability of backing
up to two different hosts is 0.99960399, one number of nines less than the optimal
(4, 2) erasure code scheme achieves.

The implemented XOR scheme always outputs 4 redundancy parts in addition to the
6 data parts. Similarly as above, the required storage capacity to hold the encoded
files is 10

6 · original size.

5.5 Concluding Remarks and Future Work

This chapter has shown how distributed backup is possible through the use of
Duplicity and erasure codes. Erasure codes enable the possibility of restoration of
backed up data, even though a subset of the storage host are unavailable at the
time of backup or restoration. The proposed system resulted in a proof a concept
prototype, solving the key tasks to achieve increased availability and reliability.

Existing open source software is utilized in the prototype to show how easily a
distributed backup solution may be implemented. While the proof of concept
prototype has some clear limitation such as error handling and decoding failure
detection, it shows how such a solution may be used to safely store sensitive backup
in an encrypted archive in the cloud. Future work should focus on error detection
and error handling, as it is of high importance to a solution who’s main purpose is
to safeguard data.

Mathematical analysis was performed on the system to investigate the offered avail-
ability. The calculations show that availability may be greatly increased through
using the proposed solution. The storage overhead of the encoded data is lower than
when several copies of the same data are redundantly stored to increase availability,
one of the key objectives of the solution.

Chapter6Conclusion

This project has investigated the open source software Duplicity.

Duplicity is an advanced solution, suitable in many different use case scenarios. The
software may have a somewhat difficult learning curve for users that are not used to
using the shell of their Unix operating system.

The project consisted of different, quite fragmented phases. The first phase consisted
of setting up Duplicity, and enable testing with different settings and options. The
tests uncovered how different settings may greatly influence the execution time of
Duplicity backups and restorations.

Chapter 3 gave background information on Duplicity, and show how to install and
set up Duplicity for usage with SSH/SFTP, Google Drive, Dropbox, OneDrive and
Amazon S3. Throughout the chapter, the fragmentation of software requirements
is identified as one reason Duplicity may be difficult to use for new users. Different
software libraries are required for different file transfer protocols and cloud storage
providers, and limited documentation exist on how to set up Duplicity with different
types of storage.

Performance evaluation of different use case scenarios

The introduction to Duplicity is followed by a series of different scenario tests in
chapter 4. The execution time of backups and restorations with Duplicity is measured
with a wide variety of options and storage hosts. The goal of the chapter was to
gain some insight into how features such as encryption and compression affect the
performance of Duplicity. The chapter concludes that the confidentiality of backed
up data is worth much more than the performance gain from disabling encryption. If
a user wishes to speed up Duplicity backups, he/she should rather analyse the data,
to see if any performance may be gained through setting the compression level to
something more suitable. The experimental option enabling asynchronous upload
also has the ability to greatly decrease the backup execution time.

75

76 6. CONCLUSION

The chapter also investigates incremental backups, and show how the restoration
time increases greatly when the backup snapshot is at the end of an incremental
backup chain. Users of Duplicity should limit their incremental backup chain, mainly
to decrease the risk of data corruption or restoration failure, but also to reduce
restoration execution time. By limiting backup chains, additional storage will be
required at the storage host. The additional storage may be mitigated through
decreasing the frequency of old restorable snapshots.

The last tests done in chapter 4 study Duplicity’s performance with different cloud
storage providers. The tests show a significant difference in execution time with the
different cloud providers, with some options spending twice the time as the best
options. Amazon S3 provides by far the best result at both backup and restoration
execution time. The result is important because it shows a major performance
difference between what may seem like similar products.

Distributed backup system with Duplicity

Chapter 5 designs, implements and analyses a distributed backup system. The system
utilizes erasure codes, Duplicity and directory traversal to enable distribution of
partial files to different storage hosts. The major benefit gained through using the
system is increased availability due to the ability to successfully restore, even if parts
of the backup is unavailable or corrupted.

The last part of chapter 5 does a statistical analysis of the systems availability.
Through a series of calculations, the total availability of the system is calculated. The
calculations consider both hosts unavailable at time of backup, and hosts unavailable
at time of restoration.

The chapter shows that a distributed backup system using Duplicity is a viable
scheme for users in need of increased reliability and availability. The proof of concept
prototype show how simple an implementation may be, but a proper implementation
should taker greater consideration to error-handling, and investigate if other security
mechanisms are required. Scheduling of restoration is another possible addition to
the system, based on the properties of the system, it may be an advantage if specific
hosts are prioritized to increase overall system performance.

References

[1] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud Computing: State-of-the-Art and
Research Challenges,” Journal of internet services and applications, vol. 1, no. 1,
pp. 7–18, 2010.

[2] “Proofs of Ownership in Remote Storage Systems, author=Halevi, Shai and
Harnik, Danny and Pinkas, Benny and Shulman-Peleg, Alexandra, bookti-
tle=Proceedings of the 18th ACM conference on Computer and communications
security, pages=491–500, year=2011, organization=ACM,”

[3] A. Tridgell and P. Mackerras, “The rsync algorithm,” Joint Computer Science
Technical Report Series, vol. TR-CS-96-0, p. 6, 1996.

[4] A. Tridgell, Efficient Algorithms for Sorting and Synchronization. PhD thesis,
The Australian National University, 1999.

[5] A. Tridgell, P. Mackerras, et al., “Rsync - an utility that provides fast incremental
file transfer..” https://rsync.samba.org. Accessed: 2015-02-15.

[6] M. Pool et al., “librsync.” GitHub repository: https://github.com/librsync/
librsync. Accessed: 2015-02-17.

[7] I. Drago, M. Mellia, M. M Munafo, A. Sperotto, R. Sadre, and A. Pras, “Inside
Dropbox: Understanding Personal Cloud Storage Services,” in Proceedings of the
2012 ACM conference on Internet measurement conference, pp. 481–494, ACM,
2012.

[8] B. Escoto, K. Loafman, et al., “Duplicity.” http://duplicity.nongnu.org/. Accessed:
2015-02-14.

[9] M. Pool, “librsync Programmer’s Manual.” http://librsync.sourcefrog.net/doc/
librsync.html. Accessed: 2015-02-17.

[10] M. Pool, “rdiff - Linux man page.” http://linux.die.net/man/1/rdiff. Accessed:
2015-02-20.

[11] W. Koch et al., “The GNU privacy guard.” https://gnupg.org. Accessed: 2015-
02-27.

77

https://rsync.samba.org
https://github.com/librsync/librsync
https://github.com/librsync/librsync
http://duplicity.nongnu.org/
http://librsync.sourcefrog.net/doc/librsync.html
http://librsync.sourcefrog.net/doc/librsync.html
http://linux.die.net/man/1/rdiff
https://gnupg.org

78 REFERENCES

[12] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, “OpenPGP
Message Format,” RFC 4880, RFC Editor, November 2007. http://www.rfc-editor.
org/rfc/rfc4880.txt.

[13] Free Software Foundation, Inc., “GNU General Public License.” http://www.gnu.
org/copyleft/gpl.html. Accessed: 2015-02-27.

[14] L. Rizzo, “Effective Erasure Codes for Reliable Computer Communication Proto-
cols,” Computer Communication Review, vol. 27, no. 2, pp. 24–36, 1997.

[15] J. S. Plank, “Erasure codes for storage systems: A brief primer,” ;login: the
Usenix magazine, vol. 38, December 2013.

[16] J. Lacan and J. Fimes, “Systematic MDS Erasure Codes Based on Vandermonde
Matrices,” IEEE Communications Letters, vol. 8, no. 9, pp. 570–572, 2004.

[17] K. M. Greenan, X. Li, and J. J. Wylie, “Flat XOR-based Erasure Codes in
Storage Systems: Constructions, Efficient Recovery, and Tradeoffs,” in IEEE 26th
Symposium on Mass Storage Systems and Technologies, MSST 2012, Lake Tahoe,
Nevada, USA, May 3-7, 2010, pp. 1–14, 2010.

[18] J. J. Wylie and R. Swaminathan, “Determining Fault Tolerance of XOR-Based
Erasure Codes Efficiently,” in The 37th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, DSN 2007, 25-28 June 2007,
Edinburgh, UK, Proceedings, pp. 206–215, 2007.

[19] A. Shokrollahi, “Raptor Codes,” IEEE Transactions on Information Theory,
vol. 52, no. 6, pp. 2551–2567, 2006.

[20] N. Alon, J. Edmonds, and M. Luby, “Linear Time Erasure Codes with Nearly Op-
timal Recovery (Extended Abstract),” in 36th Annual Symposium on Foundations
of Computer Science, Milwaukee, Wisconsin, 23-25 October 1995, pp. 512–519,
1995.

[21] I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,” Journal
of the Society for Industrial & Applied Mathematics, vol. 8, no. 2, pp. 300–304,
1960.

[22] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, and Z. Wilcox-O’Hearn, “A Perfor-
mance Evaluation and Examination of Open-Source Erasure Coding Libraries for
Storage,” in 7th USENIX Conference on File and Storage Technologies, February
24-27, 2009, San Francisco, CA, USA. Proceedings, pp. 253–265, 2009.

[23] J. A. Cooley, J. L. Mineweaser, L. D. Servi, and E. T. Tsung, “Software-Based
Erasure Codes for Scalable Distributed Storage,” in IEEE Symposium on Mass
Storage Systems, pp. 157–164, 2003.

[24] J. Luo, M. Shrestha, L. Xu, and J. S. Plank, “Efficient Encoding Schedules for
XOR-Based Erasure Codes,” IEEE Trans. Computers, vol. 63, no. 9, pp. 2259–
2272, 2014.

http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

REFERENCES 79

[25] K. M. Greenan, E. L. Miller, and T. J. E. Schwarz, “Optimizing Galois Field Arith-
metic for Diverse Processor Architectures and Applications,” in 16th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS 2008), Baltimore, Maryland, USA, September
8-10, 2008, pp. 257–266, 2008.

[26] D. Salomon, A Concise Introduction to Data Compression. Undergraduate Topics
in Computer Science, Springer, 2008.

[27] B. Escoto, K. Loafman, et al., “Duplicity readme file.” http://duplicity.nongnu.
org/README. Accessed: 2015-02-15.

[28] A. Chervenak, V. Vellanki, and Z. Kurmas, “Protecting File Systems: A Survey
of Backup Techniques,” in Joint NASA and IEEE Mass Storage Conference, 1998.

[29] B. Escoto, K. Loafman, et al., “Duplicity manual.” http://duplicity.nongnu.org/
duplicity.1.html. Accessed: 2015-02-14.

[30] “Duplicity features list.” http://duplicity.nongnu.org/features.html. Accessed:
2015-02-20.

[31] “GnuPG Manuals.” https://www.gnupg.org/documentation/manuals.html. Ac-
cessed: 2015-05-28.

[32] “pip - The PyPA Recommended Tool for Installing Python Packages.” https:
//pip.pypa.io. Accessed: 2015-03-01.

[33] “PyPA Tool Recommendations.” https://python-packaging-user-guide.
readthedocs.org/en/latest/current.html. note = Accessed: 2015-04-15.

[34] D. J. Barrett and R. E. Silverman, SSH, the Secure Shell: The Definitive Guide.
O’Reilly Media, 2001.

[35] OpenBSD Project, “OpenSSH.” http://www.openssh.com/. Accessed: 2015-03-15.

[36] R. Pointer and J. Forcier, “paramiko: Python SSH module.” GitHub repository:
https://github.com/paramiko/paramiko. Accessed: 2015-02-18.

[37] J. Wu, L. Ping, X. Ge, Y. Wang, and J. Fu, “Cloud storage as the infrastructure of
cloud computing,” in Intelligent Computing and Cognitive Informatics (ICICCI),
2010 International Conference on, pp. 380–383, IEEE, 2010.

[38] S. Landau, “Highlights from making sense of snowden, part II: what’s significant
in the NSA revelations,” IEEE Security & Privacy, vol. 12, no. 1, pp. 62–64, 2014.

[39] M. Garnaat et al., “Boto - Python interface to Amazon Web Services.” GitHub
repository: https://github.com/boto/boto. Accessed: 2015-03-01.

[40] Amazon.com, Inc., “Amazon Web Services: Regions and Endpoints.” http://docs.
aws.amazon.com/general/latest/gr/rande.html#s3_region. Accessed: 2015-03-
29.

http://duplicity.nongnu.org/README
http://duplicity.nongnu.org/README
http://duplicity.nongnu.org/duplicity.1.html
http://duplicity.nongnu.org/duplicity.1.html
http://duplicity.nongnu.org/features.html
https://www.gnupg.org/documentation/manuals.html
https://pip.pypa.io
https://pip.pypa.io
https://python-packaging-user-guide.readthedocs.org/en/latest/current.html
https://python-packaging-user-guide.readthedocs.org/en/latest/current.html
http://www.openssh.com/
https://github.com/paramiko/paramiko
https://github.com/boto/boto
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

80 REFERENCES

[41] Google Inc., “GData Python Client.” GitHub repository: https://github.com/
google/gdata-python-client. Accessed: 2015-03-02.

[42] K. Reitz, “Requests: HTTP for Humans.” http://docs.python-requests.org/.
Accessed: 2015-03-12.

[43] K. Reitz, “Requests-OAuthlib.” GitHub repository: https://github.com/requests/
requests-oauthlib. Accessed: 2015-03-12.

[44] Dropbox Inc., “Dropbox Python SDK.” https://www.dropbox.com/developers/
core/sdks/python. Accessed: 2015-03-03],.

[45] A. Santos and J. Bernardino, “Open Source Tools for Remote Incremental Backups
on Linux: An Experimental Evaluation,” Journal of Systems Integration, vol. 5,
no. 3, pp. 3–13, 2014.

[46] The OpenSSL Project, “OpenSSL rand tool.” https://www.openssl.org/docs/
apps/rand.html. Accessed: 2015-03-05.

[47] P. Rubin, D. MacKenzie, and S. Kemp, “dd(1) - Linux man page.” http://linux.
die.net/man/1/dd. Accessed: 2015-03-05.

[48] B. escoto, K. Loafman, et al., “Duplicity Source Code: gpg.py, line
388.” http://bazaar.launchpad.net/~duplicity-team/duplicity/0.7-series/view/
head:/duplicity/gpg.py#L388. Accessed: 2015-03-20.

[49] C. Coager, “[Duplicity-talk] no-compression still compresses?.” Archived email
thread: https://lists.nongnu.org/archive/html/duplicity-talk/2013-03/msg00011.
html. Accessed: 2015-03-20.

[50] A. Khan, M. Shahriar, S. K. A. Imon, M. D. Francesco, and S. K. Das, “PeerVault:
A Distributed Peer-to-Peer Platform for Reliable Data Backup,” in Distributed
Computing and Networking, 14th International Conference, ICDCN 2013, Mumbai,
India, January 3-6, 2013. Proceedings, pp. 315–329, 2013.

[51] F. Morcos, T. Chantem, P. Little, T. Gasiba, and D. Thain, “iDIBS: An Improved
Distributed Backup System,” in 12th International Conference on Parallel and
Distributed Systems, ICPADS 2006, Minneapolis, Minnesota, USA, July 12-15,
2006, pp. 58–67, 2006.

[52] D. Slamanig and C. Hanser, “On Cloud Storage and the Cloud of Clouds Ap-
proach,” in 7th International Conference for Internet Technology and Secured
Transactions, ICITST 2012, London, United Kingdom, December 10-12, 2012,
pp. 649–655, 2012.

[53] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon, “RACS: a Case for
Cloud Storage Diversity,” in Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC 2010, Indianapolis, Indiana, USA, June 10-11, 2010, pp. 229–
240, 2010.

https://github.com/google/gdata-python-client
https://github.com/google/gdata-python-client
http://docs.python-requests.org/
https://github.com/requests/requests-oauthlib
https://github.com/requests/requests-oauthlib
https://www.dropbox.com/developers/core/sdks/python
https://www.dropbox.com/developers/core/sdks/python
https://www.openssl.org/docs/apps/rand.html
https://www.openssl.org/docs/apps/rand.html
http://linux.die.net/man/1/dd
http://linux.die.net/man/1/dd
http://bazaar.launchpad.net/~duplicity-team/duplicity/0.7-series/view/head:/duplicity/gpg.py#L388
http://bazaar.launchpad.net/~duplicity-team/duplicity/0.7-series/view/head:/duplicity/gpg.py#L388
https://lists.nongnu.org/archive/html/duplicity-talk/2013-03/msg00011.html
https://lists.nongnu.org/archive/html/duplicity-talk/2013-03/msg00011.html

REFERENCES 81

[54] Z. Wilcox-O’Hearn and B. Warner, “Tahoe: the least-authority filesystem,” in
Proceedings of the 4th ACM international workshop on Storage security and
survivability, pp. 21–26, ACM, 2008.

[55] “Tahoe-LAFS: The least-Authority File Store.” https://www.tahoe-lafs.org. Ac-
cessed: 2015-02-27.

[56] Z. Wilcox-O’Hearn et al., “zfec: a fast erasure codec.” https://pypi.python.org/
pypi/zfec. Accessed:2015-03-30.

[57] D. L. Parnas, “On the Criteria To Be Used in Decomposing Systems into Modules,”
Commun. ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

[58] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen, “The Structure and Value
of Modularity in Software Design,” in Proceedings of the 8th European Software
Engineering Conference Held Jointly with 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ESEC/FSE-9, (New York,
NY, USA), pp. 99–108, ACM, 2001.

[59] L. Torvalds et al., “Git: Free and open source version control system.” http:
//git-scm.com/. Accessed: 2015-04-25.

[60] H. N. Matland, “Distributed Duplicity Prototype.” GitHub repository: https:
//github.com/hmatland/distributed_duplicity. Accessed: 2015-06-7.

[61] H. Weatherspoon and J. D. Kubiatowicz, “Erasure Coding vs. Replication: A
Quantitative Comparison,” in Peer-to-Peer Systems, pp. 328–337, Springer, 2002.

https://www.tahoe-lafs.org
https://pypi.python.org/pypi/zfec
https://pypi.python.org/pypi/zfec
http://git-scm.com/
http://git-scm.com/
https://github.com/hmatland/distributed_duplicity
https://github.com/hmatland/distributed_duplicity

AppendixATest File Creation

Listing A.1 Bash script used to create the test directory used in chapter 4
1 #!/bin/bash
2 for l in {0..9}
3 do
4 #Create 1 empty folders named dir_0 through dir_9
5 mkdir full1/dir_$l
6 for i in {0..9}
7 do
8 #Create 10 empty folders, named dir_0 through dir_9
9 mkdir full1/dir_$l/dir_$i

10 for j in {0..199}
11 do
12 #In each of the 10 folders, create 100 files approx. 1KB each
13 openssl rand -out full1/dir_$l/dir_$i/1KB_$j 768
14 dd if=/dev/zero count=1 bs=256 >> full1/dir_$l/dir_$i/1KB_$j
15 done
16 for k in {0..44}
17 do
18 #In each of the 10 folders, create 45 files approx 100KB each
19 openssl rand -out full1/dir_$l/dir_$i/100KB_$k $((2**10 * 75))
20 dd if=/dev/zero count=25 bs=$((2**10)) >> full1/dir_$l/dir_$i/100KB_$k
21 done
22 for m in {0..4}
23 do
24 #In each of the 10 folders, create 5 files approx 1MB each
25 openssl rand -out full1/dir_$l/dir_$i/1MB_$m $((2**10 * 768))
26 dd if=/dev/zero count=256 bs=$((2**10)) >> full1/dir_$l/dir_$i/1MB_$m
27 done
28 done
29 done
30 exit 0

83

AppendixBTiming test between openssl rand
and dd if=/dev/urandom

Listing B.1 Timing test script between openssl rand and dd with interface /dev/u-
random

1 echo ’dd with 1024: 1KB’
2 time dd if=/dev/urandom count=1 bs=1024 of=test
3 echo ’openssl with 1024: 1KB’
4 time openssl rand -out test2 $((1024))
5 echo ’dd with 1024*10: 10KB’
6 time dd if=/dev/urandom count=10 bs=1024 of=test13
7 echo ’openssl with 1024*10: 10KB’
8 time openssl rand -out test14 $((1024*10))
9 echo ’dd with 1024*128: 128KB’

10 time dd if=/dev/urandom count=128 bs=1024 of=test3
11 echo ’openssl with 1024*128: 128KB’
12 time openssl rand -out test4 $((1024*128))
13 echo ’dd with 1024*512: 512KB’
14 time dd if=/dev/urandom count=512 bs=1024 of=test5
15 echo ’openssl with 1024*512: 512KB’
16 time openssl rand -out test6 $((1024 * 512))
17 echo ’dd with 1024*1024: 1MB’
18 time dd if=/dev/urandom count=1024 bs=1024 of=test7
19 echo ’openssl with 1024*1024: 1MB’
20 time openssl rand -out test8 $((1024*1024))
21 echo ’dd with count:1024*100, bs=1024: 100MB’
22 time dd if=/dev/urandom count=$((1024*100)) bs=1024 of=test9
23 echo ’openssl with 1024*1024*100: 100MB’
24 time openssl rand -out test10 $((1024*1024*100))
25 echo ’dd with count=1024*1024, bs=1024: 1GB’
26 time dd if=/dev/urandom count=$((1024*1024)) bs=1024 of=test11
27 echo ’openssl with 1024*1024*1024: 1GB’
28 time openssl rand -out test12 $((1024*1024*1024))

85

AppendixCDuplicity Patch to Set
Compression Level

This appendix describe how duplicity was patched to enable compression-level setting
through command line options.

In commandline.py the following two line were added to enable modification of
compression level through the command line options:

Listing C.1 The new option is accessible as an argument when executing Duplcity
from shell.

429 # Compression-level used by gpg and GzipWriteFile
430 parser.add_option("--compress-level", type="int",

metavar="compress_level")↪→

The new option needs a corresponding value in globals.py. This is also were the
default value used when the –compress-level option is not used. The default value is
set to 6.

Listing C.2 Variable for storing the parsed compression level option. Default value
is 6.

154 #Compression level used with both GPG and GzipWriteFile.
155 compress_level = 6

The changes that actually utilize the new option possibility is found in gpg.py. The
following lines are added to the GPGFile class.

87

88 C. DUPLICITY PATCH TO SET COMPRESSION LEVEL

Listing C.3 The newly created --compress-level option is not used if compress
level is set through GnuPG options

114 if(’--compress-level’ not in globals.gpg_options):
115 gnupg.options.extra_args.append(’--compress-level=’

+str(globals.compress_level))↪→

The if-statement avoids problems if the compression level is also set through the use
of −gpg−options. −−gpg−options is given precedence.

The hardcoded compression level in the GzipWriteFile function of gpg.py is
replaced with the newly created globals.compress_level.

Listing C.4 New global variable used instead of hardcoded value 6.
385 #gzip_file = gzip.GzipFile(None, "wb", 6, file_counted)
386 gzip_file = gzip.GzipFile(None, "wb", globals.compress_level,

file_counted)↪→

AppendixDCode From Distributed Duplicity
prototype

This appendix contain various source code listings from the distributed backup system
prototype. The full project may be viewed or downloaded from the authors GitHub
repository. 1

Listing D.1 shows the Duplicity_distributer class. It is the class responsible for
setting up the different hosts according the the settings set in duplicity_conf. The
code use the Pool class from python’s multiprocessing library to execute several
Duplicity instances simultaneously.

Listing D.2 contains the source code for the (10, 6) XOR encoder described in
section 5.3.2. The implemented decoder is shown in Listing D.3 and D.4.

Listing D.5 and D.6 show two availability scripts that are used to calculate and
simulate the availability of the system using the zfec library.

1 Distributed-Duplicity at GitHub: https://github.com/hmatland/distributed_duplicity

89

https://github.com/hmatland/distributed_duplicity

90 D. CODE FROM DISTRIBUTED DUPLICITY PROTOTYPE

Listing D.1 duplicity_distributer.py with the Duplicity_distributer class
1 from subprocess import call
2 import os
3 from multiprocessing import Pool
4 import duplicity_conf as conf
5
6 def execute_duplicity_command(host):
7 print ’Running: ’
8 print host
9 call(host.split())

10
11 class Duplicity_distributer:
12 def __init__(self, path):
13 self.path = path
14
15 def set_up_hosts(self):
16 source=os.path.join(self.path,’distdup’)
17 self.hosts = [None]*len(conf.remote_hosts)
18 #Format every duplicity command based on configuration variables
19 for i in xrange(0,len(conf.remote_hosts)):
20 self.hosts[i] = ’duplicity --allow-source-mismatch {options} {source_path}{i}

{host}/{remote_path}/distdup{i}’.format(source_path=source,
host=conf.remote_hosts[i], remote_path=conf.remote_paths[i],
options=conf.remote_host_options[i], i = i)

↪→
↪→
↪→

21
22 #Set up any environment variables set in conf
23 for env_var in conf.env_vars:
24 os.environ[env_var[0]] = env_var[1]
25
26 def run_backup(self):
27 Pool().map(execute_duplicity_command, self.hosts)
28
29 def remove_env_var(self):
30 #Delete any environment variables set in conf
31 for env_var in conf.env_vars:
32 del os.environ[env_var[0]]

91

Listing D.2 The XOR encoder for the (10, 6) systematic erasure code scheme.
1 import Crypto.Util.strxor
2 from os import path, stat
3 from math import ceil
4
5 def sxor(s1, s2):
6 s1_len = len(s1)
7 s2_len = len(s2)
8 if s1_len > s2_len:
9 s2 = s2.ljust(s1_len,’ ’)

10 elif s2_len > s1_len:
11 s1 = s1.ljust(s2_len,’ ’)
12 return Crypto.Util.strxor.strxor(s1,s2)
13
14 def encode(data):
15 y7 = sxor(sxor(data[2],data[4]),data[5])
16 y8 = sxor(sxor(data[1],data[3]),data[5])
17 y9 = sxor(sxor(data[0],data[3]),data[4])
18 y10= sxor(sxor(data[0],data[1]),data[2])
19 return [y7,y8,y9,y10]
20
21 def create_part_files(part_path):
22 files = [None]*10
23 for i in xrange(0,10):
24 files[i] = open(part_path+’.’+str(i)+’_10.partial’,’a’)
25 return files
26
27 def split_file(path, path_size, files):
28 with open(path,’rb’) as f:
29 part_size = int(ceil(path_size/6.0))
30 for i in xrange(0,6):
31 part = f.read(part_size)
32 files[i].write(part)
33
34 def encode_file(inf, to_path):
35 data = None
36 filename = path.basename(inf)
37 part_path = path.join(to_path, filename)
38 path_size = stat(inf).st_size
39 part_size = int(ceil(path_size/6.0))
40 files = create_part_files(part_path)
41 split_file(inf, path_size, files)
42
43 for f in xrange(0,6):
44 files[f].close()
45 files[f] = open(part_path+’.’+str(f)+’_10.partial’,’r’)
46
47 while part_size > 0:
48 array = [’’]*6
49 for f in xrange(0,6):
50 array[f] = files[f].read(4096)
51 data = encode(array)
52 for f in xrange(0,4):
53 files[6+f].write(data[f])
54 part_size -= 4096
55 for f in files:
56 f.close()

92 D. CODE FROM DISTRIBUTED DUPLICITY PROTOTYPE

Listing D.3 The XOR decoder for the (10, 6) systematic erasure code scheme.
1 import Crypto.Util.strxor
2 rec_equation = [None] * 10
3 rec_equation[0] = [[10,2,3],[9,4,5]]
4 rec_equation[1] = [[10,1,3],[8,4,6]]
5 rec_equation[2] = [[7,5,6],[1,2,10]]
6 rec_equation[3] = [[2,8,6],[1,9,5]]
7 rec_equation[4] = [[3,7,6],[1,4,9]]
8 rec_equation[5] = [[3,5,7],[2,4,8]]
9 rec_equation[6] = [[3,5,6]]

10 rec_equation[7] = [[2,4,6]]
11 rec_equation[8] = [[1,4,5]]
12 rec_equation[9] = [[1,2,3]]
13
14 def sxor(s1, s2):
15 s1_len = len(s1)
16 s2_len = len(s2)
17 if s1_len > s2_len:
18 s2 = s2.ljust(s1_len,’ ’)
19 elif s2_len > s1_len:
20 s1 = s1.ljust(s2_len,’ ’)
21 return Crypto.Util.strxor.strxor(s1,s2)
22
23 def merge_files(outfile, files):
24 for x in xrange(0,6):
25 for f in files:
26 if int(f.name[-12]) is x:
27 byte = f.read(4096)
28 while byte != ’’:
29 outfile.write(byte)
30 byte = f.read(4096)
31
32 def restore_partial_file(outfile, files, eq):
33 req_files = []
34 # print eq
35 for i in eq:
36 for f in files:
37 if int(f.name[-12]) is (i-1):
38 req_files.append(f)
39 for f in req_files:
40 f.seek(0,0)
41 b_a = req_files[0].read(4096)
42 b_b = req_files[1].read(4096)
43 b_c = req_files[2].read(4096)
44 while b_a != ’’ or b_b!=’’ or b_c!=’’:
45 res = sxor(sxor(b_a, b_b),b_c)
46 outfile.write(res)
47 b_a = req_files[0].read(4096)
48 b_b = req_files[1].read(4096)
49 b_c = req_files[2].read(4096)
50 for f in files:
51 f.seek(0,0)

93

Listing D.4 Continuation of the XOR decoder for the (10, 6) systematic erasure
code scheme.

52 def decode_from_files(outfile,files,verbose):
53 files_indices = [None]*10
54 for f in files:
55 files_indices[(int(f.name[-12]))] = True
56 if(not None in files_indices[0:6]):
57 merge_files(outfile, files)
58 else:
59 previousIndices = -1
60 while(None in files_indices[0:6]):
61 indices = [i for i, x in enumerate(files_indices) if x == None]
62 if(previousIndices==indices):
63 break
64 for missing in indices:
65 for eq in rec_equation[missing]:
66 possible = True
67 for i in eq:
68 if files_indices[i-1] == None:
69 possible = False
70 if possible:
71 filepath = list(files[0].name)
72 filepath[-12] = str(missing)
73 filepath = ’’.join(filepath)
74 with open(filepath,’w’) as tempfile:
75 restore_partial_file(tempfile, files, eq)
76 newfile = open(filepath,’r’)
77 files.append(newfile)
78 files_indices[missing] = True
79 break
80 if None in files_indices[0:6]:
81 print ’Reconstruction of file :’ + str(outfile.name) + ’ not possible. Too few

partial files available.’↪→
82 else:
83 merge_files(outfile, files)

94 D. CODE FROM DISTRIBUTED DUPLICITY PROTOTYPE

Listing D.5 Script that calculates Atotal, the total availability of the system, when
Reed-Solomon is used with number of hosts equal n, and every host has the same
availability

1 from operator import mul
2 from fractions import Fraction
3 import math
4 import argparse
5
6 #Parser of arguments left out for readability in pdf version
7
8 def nCk(n,k):
9 return int(reduce(mul, (Fraction(n-i, i+1) for i in range(k)), 1))

10
11 def calculate_availability(k,n, avail_hosts):
12 avail_tot = 0
13 for x in xrange(0,n+1):
14 avail_x = 0
15 for y in xrange(0,n+1):
16 prob_restoration_xy = 0
17 for i in xrange(0,x-k+1):
18 prob_restoration_xy += nCk(n-y,i)*nCk(n-(n-y),x-i)
19 prob_restoration_xy = prob_restoration_xy/float(nCk(n, x))
20 avail_x += prob_restoration_xy * nCk(n,y)*(avail_hosts**y *

(1-avail_hosts)**(n-y))↪→
21 avail_tot += nCk(n,x)*(avail_hosts**x)*((1-avail_hosts)**(n-x)) * avail_x
22 return avail_tot
23
24 k= args.k
25 n= args.n
26 availability_of_hosts = args.a
27
28 if k == -1:
29 for k in xrange(2,n):
30 print ’Availability for system with optimal (’ +str(n) +’,’+str(k) + ’) erasure

code scheme’↪→
31 print ’One partial part per host. Each host has availability of ’ +

str(availability_of_hosts)↪→
32 print calculate_availability(k,m,availability_of_hosts)
33 else:
34 print ’Availability for system with optimal (’ + str(n)+’,’+str(k) + ’) erasure

code scheme’↪→
35 print ’One partial part per host. Each host has availability of ’ +

str(availability_of_hosts)↪→
36 print calculate_availability(k,n,availability_of_hosts)
37 print calculate_availability(k,m,availability_of_hosts)

95

Listing D.6 Script that simulates availability of hosts at backup and restoration,
and checks if restoration is possible with the current combination. A large number
of trials should be done to get a good estimate of the total availability. The script is
when MDS erasure codes, as provided by the zfec library, is used.

1 parser = argparse.ArgumentParser(description=’Simulate availability of distdup
prototype’)↪→

2 parser.add_argument(’-k’,’--k’, type=int, help=’Number of blocks necessary to
reconstruct the original data’, required=True)↪→

3 parser.add_argument(’-n’,’--n’, type=int, help=’Total number of total blocks’,
required=True)↪→

4 parser.add_argument(’-a’,’--a’, type=float, help=’Availability of the hosts’,
required=True)↪→

5 parser.add_argument(’-t’,’--trials’, type=int, help=’Number of trials’,
required=True)↪→

6 args = parser.parse_args()
7
8 k= args.k
9 n= args.n

10 availability_of_hosts = args.a
11 trials = args.trials
12
13 def restoration_possible(backed_up_hosts, restorable_hosts, k):
14 counter = 0
15 for server in restorable_hosts:
16 if server in backed_up_hosts:
17 counter += 1
18 if counter >= k:
19 return True
20 else:
21 return False
22
23 failed_counter = 0
24 for i in xrange(0,trials):
25 backed_up_hosts = []
26 restorable_hosts = []
27 for host in xrange(0,n):
28 if random() < availability_of_hosts:
29 backed_up_hosts.append(host)
30 if random() < availability_of_hosts:
31 restorable_hosts.append(host)
32 if not restoration_possible(backed_up_hosts, restorable_hosts, k):
33 failed_counter += 1
34
35 print 1-(float(failed_counter)/trials)

96 D. CODE FROM DISTRIBUTED DUPLICITY PROTOTYPE

Listing D.7 Script that calculates Atotal, the total availability of the system when
the (10, 6) XOR scheme is used with 10 hosts, every host has the same availability

1 import itertools
2 from operator import mul
3 from fractions import Fraction
4 import math
5
6 p= [1,1,1,110.0/120,125.0/210,0,0,0,0,0,0,0,0,0,0,0,0]
7
8 def nCk(n,k):
9 return int(reduce(mul, (Fraction(n-i, i+1) for i in range(k)), 1))

10
11 def probabilityOfRestoration(backed_up_hosts, restorable_hosts):
12 counter = 0
13 for server in restorable_hosts:
14 if server in backed_up_hosts:
15 counter +=1
16 if counter >= 8:
17 return 1
18 elif counter == 7:
19 return 110.0/120
20 elif counter == 6:
21 return 125.0/210
22 else:
23 return 0
24
25 def calculateAvailability(n, availability_of_host):
26 hosts =[]
27 for i in xrange(1,n+1):
28 hosts.append(i)
29 avail_total = 0
30 for x in xrange(0,n+1):
31 avail_x = 0
32 backed_up_combinations = None
33 for y in xrange(0,n+1):
34 backed_up_combinations = itertools.combinations(hosts, x)
35 restorable_servers_combinations =

itertools.combinations(hosts,y)↪→
36
37 possible_counter = 0
38 total_counter = 0
39
40 for backed_up_servers in backed_up_combinations:
41 for restorable_servers in

restorable_servers_combinations:↪→
42 total_counter += 1
43 possible_counter +=

probabilityOfRestoration(backed_up_servers,
restorable_servers)

↪→
↪→

44 avail_x_y = float(possible_counter)/(total_counter)
45 avail_x += avail_x_y * nCk(n,y)*(availability_of_host**y *

(1-availability_of_host)**(n-y))↪→
46 avail_total +=

nCk(n,x)*(availability_of_host**x)*((1-availability_of_host)**(n-x))
* avail_x

↪→
↪→

47 return avail_total
48 print calculateAvailability(10,0.99)

	List of Figures
	List of Tables
	List of Source Code Examples
	List of Abbreviations
	Introduction
	Motivation
	Scope and Objectives
	Method
	Outline

	Background
	rsync
	librsync

	GNU Privacy Guard
	Erasure Codes
	Reed-Solomon codes

	Data Compression

	Introduction to Duplicity
	Installation of Duplicity
	Incremental Backup
	Encryption
	Tutorial on Basic Duplicity Usage
	File Transfer Protocols
	Cloud Provider Support
	Amazon S3
	Google Drive
	OneDrive
	Dropbox

	Concluding Remarks

	Testing of Duplicity in Different Scenarios
	Related Work
	System Setup
	Setup of Test Data
	Generation of test files

	Encryption's Impact on Execution Time
	Compression's Impact on Execution Time
	Backup and Restoration with Ubuntu as Storage Host
	Backup with Asynchronous Upload
	Incremental Backup's Impact on Execution Time
	Backup and Restoration with Cloud Storage Providers
	Backup execution time
	Restoration execution time

	Guidelines for Backing up with Duplicity
	Concluding Remarks and Future work

	Intelligent Scheduled Backup
	System Introduction
	Availability
	Restoration failure and data corruption
	Related work

	System Architecture
	Erasure code modules
	Traversal component
	Duplicity backup component
	Duplicity restoration component
	Argument parser and configuration file
	Detection of corrupted backups

	Implementation of Prototype
	Directory traversal
	Erasure codes
	Execution of duplicity instances
	Limitations of the prototype

	Analysis of the Distributed Backup System
	Availability with optimal erasure codes
	Availability with sub-optimal XOR scheme
	Performance of zfec and XOR implementation
	Storage overhead of encoded data

	Concluding Remarks and Future Work

	Conclusion
	References
	Test File Creation
	Timing test between openssl rand and dd if=/dev/urandom
	Duplicity Patch to Set Compression Level
	Code From Distributed Duplicity prototype

