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Problem Description

Human Computable Passwords - Design and Analysis

Managing passwords is a significant problem for most people in the modern world.
This project will be based around the paper "Human Computable Passwords" by
Blocki et al. [BBD14], proposing a method for humans to be able to re-compute
passwords from public and reliable storage. Passwords are calculated using a mem-
orized mapping from objects, typically letters or pictures, to digits; the characters
of the passwords are then calculated in the users head, using a human computable
function.

The main objectives of the project can be summarized as the following:

• Understand and compare the "Human Computable Passwords" scheme with
other related password management schemes.

• Design and implement a password management scheme applying the ideas of
the scheme.

• Analyze if the construction could be utilized to provide secure password man-
agement in practical situations.

• Validate if the scheme is feasible to use, comparing the user efforts required to
the security rewards.

[BBD14] J. Blocki, M. Blum, and A. Datta, “Human Computable Passwords,” CoRR,
vol. abs/1404.0, 2014.

Assignment given: 12 January, 2015
Student: Anders Kofoed Professor: Colin Boyd, ITEM
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Abstract

Password management is a major issue in the Internet centric world.
This project presents the human computable password management
scheme by Blocki et al., which makes it possible for human users to
calculate passwords from publicly available challenges. The scheme is
evaluated in terms of usability, and parameters affecting it discussed.
Two applications are designed and implemented, one as a Google Chrome
browser extension, and one as a web application.

The Chrome extension implements the scheme, utilizing the strengths
of browser extensions with accompanying APIs. It handles challenge
generation, management and storage, using the Google account of the
user to keep the data persistently synced. Smart functionality provided
by the Chrome extension framework makes it possible to monitor the
site users visit, allowing the application to display the correct challenges
without user interaction.

The second application is a web application built as an experiment
and demonstration site. It demonstrates the scheme and allows users to
learn the scheme by trial and error, then asks them to calculate challenges
while recording calculation times and failure rates. The gathered data
is analyzed using an exploratory approach, trying to find interesting
characteristics related to usability.

The experiment gave indications that the scheme might suffer from
high failure rates, limiting usability for some users. The failure rate was
measured to be 0.0585, approximately every one out of 17 calculations
was wrong. A measure to limit the consequences of this observation is
suggested by categorizing the accounts, having different length passwords
for different accounts.

Both applications were designed to investigate if the scheme could be
implemented in a usable way, and if so, provide strong enough security
to justify the efforts required of the users. The Chrome extension lowers
the threshold for using the scheme, solving problems related to challenge
management and presentation. The conclusion from the experiment was
that failure rates are indeed an important usability factor which should
be investigated more thoroughly, as it may limit the scheme severely.





Sammendrag

Passordhåndtering er et stort problem i den Internet-sentriske verden.
Dette prosjektet presenterer passordhånderingssystemet “human compu-
table passwords”, laget av Blocki et al. [BBD14]. Systemet gjør det mulig
for brukere å kalkulere passord ut ifra offentlig tilgjengelige objekter. Sys-
temet evalueres med hensyn til brukervennlighet, og påvirkende faktorer
diskuteres. To forskjellig applikasjoner implementeres, en Google Chrome
nettleserutvidelse og en webapplikasjon.

Chrome-utvidelsen implementerer passordhåndteringssystemet, og
drar nytte av styrkene en nettleserutvidelse tilfører. Applikasjonen tar
hånd om generering, administrasjon og lagring av objectene som brukes til
å kalkulere passord. Google-kontoen til brukerene gjør det mulig å lagre
informasjon persistent. Smarte funksjonaliteter, muliggjort av Chrome-
utvidelsesrammeverket, gjør det mulig å overvåke sider brukerene besøker.
Applikasjonen viser de riktige objektene uten brukermedvirkning.

Den andre applikasjonen er et eksperiment lagd som en webapplikasjon
og demonstrasjonsside. Passordhåndteringssystemet blir presentert og
forklart, før brukere får mulighet til å prøve det. Brukerne blir bedt om å
regne ut passord på tid. Kalkuleringstiden og feilraten blir så lagret for
hvert forsøk. Dataen blir analysert på en utforskende måte, på utkikk
etter interessante egenskaper relatert til brukervenlighet.

Eksperimentet viste at feilraten var høy, noe som kan hindre bruker-
venligheten for noen brukere. Feilraten ble målt til 0.0585, tilsvarende
sirka 1 av 17 gale utregninger. Ved å katergorisere brukerkontoer begren-
ses konsekvensene av den høye feilraten, forskjellige kontoer får forskjellig
passordlengde avhengig av sensitivitet.

Målet med begge applikasjonene er å utforske om passordhåndterings-
systemet kan implementeres på en brukervenlig måte, og om innsatsen
det koster brukeren er liten nok i forhold til sikkerheten systemet tilbyr.
Chrome-utvidelsen senker terskelen for å begynne og bruke systemet,
ved å løse problemer knyttet til administrasjon og lagring. Experimentet
konkluderer med at feilraten er en viktig del av brukervenligheten til
systemet, og bør utforskes nærmere, da en høy rate kan begrense systemet
kraftig.
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Glossary

Active site The site which the user is currently browsing.

Associative memory Lossy but secure storage. In this context it is the human
memory.

Content script A script which is injected in the page loaded in the browser, can
monitor fields and user activity, but does not have the permissions of the
browser. Used in this project to monitor the URL and password fields of active
sites.

Extensions core The core of the Google Chrome extension consisting of the ap-
plication view and a background page. Responsible for the user interface and
business logic.

HCP scheme The human computable password management scheme of Blocki et
al. [BBD14].

Human computable function A function f computable in the human mind. Can
only involve simple operations, and limited amount of terms and operations.

Password challenge A set of single digit challenges, after applying the correct
human computable function yields a complete password.

Password management scheme Scheme or technique helping users remember
passwords, without actually storing them.

Password management software Applications storing passwords for users.

Persistent memory Equal to writing something down, thus not secure and can be
assumed to be publicly available.

Rehearsal schedule A series of points in time when an object-digit relation is
rehearsed. It is deemed sufficient if a user can keep a relation in memory
without forgeting it, by following the schedule.
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Single digit challenge A challenge consisting of 13 randomly chosen objects, after
calculation, yields one charater of a password.

Visitation schedule How often users visit their accounts.



Chapter1Introduction

Passwords have come to be the one authentication method used by nearly all Internet
sites and services. Guidelines and policies instructing the users on how their passwords
should be, and how they should be maintained are seen a lot. The problem with most
of these recommendations, are that they expect too much of the users. Passwords
should be long and complicated, changed every month and not reused on more than
one account. These are all commonly seen as recommendations given by sites on the
Internet, and it is clear that no user will ever be able to fulfill them without using
some kind of scheme or by adapting their passwords to circumvent them. Password
reuse or password schemes improvised by the users lead to a major loss in security,
which, of course, is the opposite of the intentions when requiring passwords to be
long and complex.

It does not seem that passwords as authentication mechanism are falling in
popularity. This together with the obvious limitations of the human memory, means
that there is a need for strong ways of managing passwords.

1.1 Motivation

Blocki et al. [Blo14, BBD14] has proposed a scheme allowing human users to calcu-
lated passwords based on publicly available challenges and a secret mapping stored
in their own memory. This allow users to protect all online accounts using long
passwords while only remembering one set of mappings. The proposed scheme relies
on generating random challenges for each account, which then have to be visible
when users log in to the desired account. Blocki et al. propose ideas on how to make
it easy for users to both memorize the mappings and do the calculations efficiently.
Mnemonic techniques to ease the memorization process and a special layout make
the calculations more intuitive.

The scheme is designed in such a way that the passwords are safe as long as the
secret mappings stay secret. If one password is lost, all the others are unaffected, which

1



2 1. INTRODUCTION

is one of the biggest strengths compared with other password management solutions.
Security of the scheme solely relies on the secrecy of the mapping, meaning that
the challenges, which are stored, can be lost without passwords being compromised.
Passwords are thus not stored anywhere, but calculated in the mind of the users.

Usability is key for a password management scheme to even be considered by
most users. If the requirements for it to function are too high, compared to the
security rewards, no user will bother learning it. Usability is mostly related to the
time spent calculating the passwords in addition to the failure rate when calculating
and initial cost of memorizing a set of mappings.

This project investigates how the human computable passwords scheme can be
used by real users. Since the scheme is quite complex, it can be useful to have
an application taking care of all the required overhead, such as generation and
management of challenges. Such an application is designed and implemented, with a
goal of making it so that users, without too much introduction, can use it to manage
passwords. The application is presented and the usability rewards discussed.

Even if the application makes the scheme easy and feasible to use, it might still
be too demanding in regards to time spent calculating. The second part of this
project investigates how efficient and reliably human users can calculate passwords.
An experiment asking the participants to actually calculate passwords based on
randomly generated challenges, is designed. Calculation time and failure rate of the
trials are recorded through the experiment. The study is structured as an exploratory
experiment, trying to find interesting and possibly important characteristics in the
usage statistics recorded through the experiment application.

1.2 Scope and Objectives

The project first presents human computable passwords as constructed by Blocki [BBD14],
while also describing other related background material. Throughout this project
human computable passwords will be referred to as HCP, e.g. HCP application, HCP
scheme. The objectives of the project are summarized as follows:

• Study the scheme with a special focus on the usability parameters, discussing
how the different components of the scheme affect the usability.

• Design, implement and demonstrate an application realizing the password
management scheme.

• Discuss if the usability is improved through the chosen design.

• Design, implement and conduct an experiment investigating the limitations
imposed by calculation time and failure rates of average users.
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• Conclude with a hypothesis about the practical limitations or advantages of
the password management scheme.

No hypothesis will be stated in advanced, but data thought to be of intrest is
collected. Afterwards, the data is presented and analyzed. No concrete result is
given, but initial trends and characteristics are discussed.

Limitations. It is worth noting that the usability of the scheme is directly based on
two things, the calculation performance(including the failure rate) and the effort spent
memorizing and rehearsing the secret mapping. The experiment mainly investigates
the calculation times and failure rates. Efforts related to the secret mappings are
discussed, but memorizing a secret mapping is not part of the experiment trials. The
reasoning for this decision is that it would be much harder to find participants willing
to memorize a set of mappings without somehow compensating them for the efforts.

1.3 Outline

Chapter 2 presents relevant background material, mostly related to passwords and
password management. Other methods for storing passwords are presented, showing
the difference between password management software and password management
schemes.

Chapter 3 describes HCP [BBD14], including definitions and human computable
functions. Next, some new security features are presented, highlighting the relation-
ship between the security parameters of the scheme, which allows users to adjust the
scheme to their needs. A walk-through of the scheme showing how to set it up and
how to calculate passwords is given in section 3.2.

The author notes that the chapter is partially reference work presenting the
scheme of Blocki, but also new thoughts and descriptions (section 3.1.4, section 3.3)
highlighting important features of the scheme.

Chapter 4 presents the HCP Chrome extension. First, the architecture and
components of Chrome extensions are described, including important security features.
Next, the extension design and implementation are presented, including the building
blocks used to realize it. A short introduction to each of the components is given,
before the actual implementation is described, with additional explanation of the code
given in the appendix. Finally, a demonstration of the application is given, illustrating
how it would be used in practice, highlighting the strengths of the application.



4 1. INTRODUCTION

Chapter 5 describes the second part of the project, namely the usability experiment.
The experiment is conducted through a separate application, which is presented,
in addition to the experiment setup and results. This includes important choices
and assumptions made trying to mimic the actual user experience when calculating
passwords.

Chapter 6 contains concluding remarks summarizing the findings and experiences
made throughout the project. Suggestions on further work is also given in this final
chapter.



Chapter2Background

2.1 Passwords

Passwords are the common way of authenticating users upon access to sites on the
Internet. The idea is that only users and the target service know the password, and
the users have to provide the correct password before access is granted. Passwords
are a much discussed theme and claiming that passwords are not always used in
the correct manner is not an overreaction. The main problem seems to be that
good passwords and the human memory does not go well together [YBAG00]. For
passwords to be sufficient as authentication, users are forced into using long complex
passwords, or even use one generated for them, with the problem being that it is easily
forgotten. Furthermore, if users are able to memorize one “good” password, they
will probably use this for all their accounts, if one of the services are compromised
and user information leaked, all accounts may be compromised. With all of this in
mind, it is easy to say that everybody should use complex, unique passwords for each
account, but in practice this is not feasible. Florêncio and Herley [FH07] conducted
a large scale study of password habits in 2007, revealing that a user on average has
25 different accounts protected by passwords. On average these sites were protected
by about 7 distinct password, where 5 of them were rapidly re-used.

Password authentication requires the authenticating server to store something
related to the password. If this is stolen the password will in most cases be compro-
mised as well, even if the server did not store the clear text password. Attackers
will, in most cases, be able to retrieve the password eventually. After obtaining the
username and password for one service the attacker will try this user data on other
services and compromise these as well.

Ives et al. [IWS04] discuss this “domino effect”, where intrusion to one domain
can compromise several others, if users have re-used passwords. They state in their
conclusion that

5



6 2. BACKGROUND

“Like dominos, when a weak system falls prey to hackers, information
will be revealed that will aid the hackers in infiltrating other systems,
potentially leading to the fall of many other systems, including systems
with far better security than the first.”

A normal users will typically try to log in by trial-and-error [ABK13], if the first
password does not work, users will try with another password. This way passwords
might be lost through phishing attacks where a user is tricked into trying to log in
to a fake site.

2.1.1 Password Strength

How to measure the strength of passwords is a well known and discussed problem.
The naive approach says that password strength is related to how strong a password
is against brute force attacks [DMR09]. Length and complexity are the most thought
of parameters to measure such strength. A perfect password would thus be one as
long as allowed by the system, consisting of random characters, it would also be
changed frequently. All these characteristics challenge how the human brain works.

In addition to the objective strength of the password, techniques making it harder
for a computer to repeatedly try different passwords may be applied. Such techniques
include CAPTACHAS [vABL04] which are puzzles supposed to require a human to
be able to solve, making brute force attacks using a computer harder.

Yan et al. [YBAG00] investigate the trade-off between security of passwords and
memorability allowing humans to remember them. An important point to this is
that most sites apply advice and policies on how to create strong passwords, while
not taking into account if the recommended passwords are hard or easy to remember.
There is no point in having strong passwords if users are going to forget them. They
suggest that passwords should appear random but be constructed using a mnemonic
structure such as passphrases. The idea is to generate a random looking password
by memorizing a familiar sentence and using the first letters of each word as the
password. E.g using the familiar sentence “may the force be with you” as passphrase
which would yield the password mtfbwy which looks random.

Florêncio et al. [FHC07] investigate another matter; do strong passwords accom-
plish anything? The point is that no matter how long and complex passwords users
choose, they are still subject to the most dangerous and common threats (phishing,
keylogging and access attacks). Especially access attacks, which includes shoulder
surfing and direct access to a machine where an autofilling password manager is
used, are unaffected by the strength of the password. The reason for enforcing strong
passwords seems to be to protect against bulk guessing attacks.
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Password length

C
ha

ra
ct
er

se
t 4 8 12 16

10 104 108 1012 1016

26 5 · 105 2 · 1011 1017 4 · 1022

36 2 · 106 3 · 1012 5 · 1018 8 · 1024

62 107 2 · 1014 3 · 1021 5 · 1028

95 8 · 107 7 · 1015 5 · 1023 4 · 1031

Table 2.1: Table showing the possible keyspace of passwords, given length and
character set [SS09].

Table 2.1 illustrates the effects of password length and character set. The values
represents the possible values a key might have, given the length l and character
set size n. E.g. using only digits (n = 10) and length l = 4 gives 104 possible
combinations. The bigger the key space is the harder it is to perform a brute force
attack. Note that the key space increases more rapidly with increased password
length, than by increasing complexity of the characters used. Keyspace is given
by nl, which grows exponentially when n is kept constant, e.g. 10l, while it grows
polynomially with n constant, e.g. n10. If the character set is increased from 10 to
95 the key space increase 800 times given length of 4 characters, while increasing the
length from 4 to 16 increase the key space one billion times with a character set of
10. Even if both character set and password length contribute to the strength of a
password, length is the dominant factor.

The main point to take from this is that no matter how strong passwords users
choose, they are still vulnerable. It is more important to limit the consequences of
a possible password breach, by never re-using passwords on several accounts. This
way, if an attacker manage to steal one password all the other accounts are still safe.

Password strength meters are a common way used by many sites to aid their
users when selecting passwords. Common meters use colored progression bars together
with a word or short comment stating if the entered password is evaluated as “bad”,
“poor” or “strong”. Ur et al. [UKK+12] found that password meters actually lead
users into choosing longer and stronger passwords, but they also argue that enforcing
such policies might frustrate users and possibly lead them into writing passwords
down, use weak password management schemes or re-use passwords. The most
common requirements used by passwords meters of known web services can be
summarized as the following [dM14]:

• Length and character selection are part of most password meters. It is normal
to disallow passwords shorter, and sometimes longer, than a given range. A
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variation of different characters can be required, namely different kinds of
symbols and capital letters. Spaces may be allowed in between other characters,
at the start or end of the password, or not at all. Some sites check for sequences
of the same character as well.

• Personal information. Information registered by the users are evaluated by
some meters, typically name, email and date of birth are checked against in
original and transformed forms. This means that a password like "4nD3r?1991"
("anders1991" transformed) which look strong, will be evaluated as weak.

• Dictionary checks makes sure that the passwords does not include any dictionary
words by matching it with a dictionary of common words.

The conclusion on what “good” passwords are, is not clear, but the one thing
agreed upon seems to be that re-use of passwords is the biggest threat. It is a fact
that the human brain is not capable of remembering different passwords for each
account on the Internet, thus the need for an aiding application such as the one
evaluated in this project. If users are able to at least have different passwords for
each account, the consequences of a password breach is severely limited. The loss of
one account will not compromise any other accounts.

2.1.2 Password Storage

Internet services using passwords as authentication method typically have to store
information about their users, associating a username and a password. How this
information is kept secure can not be controlled by the users, but is important
for passwords to work, especially since many users tend to re-use their passwords
on several accounts [IWS04]. It is a fact that these kinds of breaches do happen
from time to time, and attackers might even post the credentials online1. If the
service stores the passwords in plain text, leakage might directly lose passwords if
the database gets lost.

Most online accounts try to make it harder for attackers to compromise the
accounts of their users. The most used technique is hashing of the passwords before
storing them, making it hard for attackers to recover passwords even if the database
is broken. Hashing means applying a one-way function on the plain text password,
producing a fixed length hash value which is stored instead of the plain text. When
users want to log in the password is sent to the server where it is hashed again
using the same one-way function and then compared to the stored hash value. If
the database where these hashes are stored is compromised by adversaries, they can

1Hackers post millions of stolen Gmail passwords - http://www.cbsnews.com/news/
russian-hackers-steal-5-million-gmail-passwords/

http://www.cbsnews.com/news/russian-hackers-steal-5-million-gmail-passwords/
http://www.cbsnews.com/news/russian-hackers-steal-5-million-gmail-passwords/
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no longer directly use the data to steal accounts. The attackers would have to first
perform an offline attack, cracking (see section 2.1.3) the hashes to recover the plain
text passwords, which requires a lot of effort and time to carry out.

The problem with only hashing the passwords is that the hash of a given password
will be the same every time, making it possible to recognize known password hashes
through the use of big tables containing the hashes of known passwords. This way
a hash might get cracked quite easily. To circumvent this problem a service might
add a random salt to the password before hashing it. This way the hash of users’
passwords will be unique even for users with the same password. A salt is a randomly
generated nonce, which is concatenated with the password before hashing, and then
stored alongside the hash value in the user database. To authenticate users, the
server concatenates the entered password with the salt from the database entry of
the individual users, then apply the hash function and compare with the stored hash
value.

Example 2.1.
Let the following be the records of a user database, and H a cryptographically strong
hash function.

Username Hash Salt
Bob 3aaF4A4PxZ wRaE3Z9oa6
. . . . . . . . .

To authenticate, Bob would enter his password, pwd = letno1in , which is sent
to the server. The server then concatenates pwd with the salt from Bob’s entry in
the database, and then applies the hash function to the result. If this is the same as
the stored hash, Bob is authenticated.

If H(letno1inwRaE3Z9oa6) = 3aaF4A4PxZ → Bob authenticated.

The hash function can be made even stronger by using a keyed hash func-
tion [BSNP96] or simply encrypting the hashes, requiring a shared secret key between
users and the server. As a user, one can not control how different services store
passwords, which is another important argument for never re-using passwords. Even
if most sites store passwords securely, one badly configured site might compromise
all the others.

2.1.3 Attacks

Passwords are often the only barrier stopping adversaries from directly accessing
the accounts of users. The combination of user name and password are the easiest
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point of attack, and thus the most valuable to break. There are several methods
used to attack password authentication, trying to retrieve passwords. The most
important attacks [SS09, FHC07], including access attacks and offline/online attacks,
are discussed in the following section.

Capturing of passwords directly from the server responsible for the authentication
involves the attacker acquiring password data through breaking into the data storage,
eavesdropping on communication channels or through monitoring users by other
means. The first, most basic threat is to simply steal the stored password from an
insecure server, this would require a weak configured server storing the passwords in
plain text. This is mitigated by storing only cryptographic hashes of passwords, which
allows the server to authenticate users while preventing attackers from determining
the actual passwords without cracking the hashes. Capturing can also be done
through direct access attacks [FHV14] such as shoulder surfing or console access on
computer with autofilling password managers or “remember me”-functions.

Online attacks are attacks directed towards the server’s public user interface.
Such attacks can be mounted simply by guessing username/password-pairs and
sending authentication requests to the server, usually automated by scripts. The
approach when carrying out such attacks are either breadth-first or depth-first.
The former involves trying one password on all accounts first, before trying a new
password. This technique would generate unusually high data load which would
trigger alarms on the server.

Depth-first involves trying a lot of different password already knowing the user-
name to attack. This would usually be blocked by lockout policies limiting the
number of attempt allowed in a given interval.

Offline attacks are directed towards the backend of sites. To carry out such
attacks, one would have to first access the system, gaining access to the password
file without being detected. If detected while gaining access to the passwords, an
system administrator might be able to force password resets by all the users, greatly
limiting the time an attacker has to crack the passwords in the file.

Cracking requires the attacker to go through several steps. First acquiring the
hash of a user account or a whole file of hashes for a site. Next, one would try to
find a sequence of strings yielding the same hash as the actual password. Cracking is
much harder if the server uses salts to randomize the hashes.

Rainbow tables [Bro11] is a technique employed by attackers to speed up this
process. Rainbow tables are precomputed table of hashes, allowing the attacker to
compute a set of hashes once and use these values several times, thus providing a
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space-time trade-off. Using more space, since all the computed hash values would
have to be stored somewhere, but allowing a much shorter computation time to
brute-force a hash. The technique stores chains of hashes as shown in figure 2.1,
storing only the first and last value of the chain. The attacker then searches for a
given hash in the set of end points, if no match is found the hash function is applied
and a new search conducted. This process continues, until a match is found, the
plain text is then computed from the start value of the chain, applying the hash
function the same amount of times it took to find a match in the chain.

Figure 2.1: Rainbow table.

2.1.4 Offline-online Gap and Classifying of Accounts.

Florêncio et al. [FHV14] show that a password has to be able to withstand at least
106 guesses to be safe against online attacks. To survive offline attacks at least 1014

would be necessary. The point highlighted is that a password able to withstand 1010

guesses, is no more likely to survive an offline attack than a password only protected
against 106 guesses.

They suggest that users should classify all accounts into categories ranging from
“Don’t-care” to “Ultra-sensitive”. The idea is that there is no point in using complex
and long passwords on an account which doesn’t contain any sensitive information. For
critical accounts related to finance, primary employment or other highly confidential
documents it is advised to use multiple factors of authentication [AMV12]. Accounts
used for e.g. social media or streaming would probably be categorized as “medium-
consequence” as loss of such accounts would be more about time and effort, than
financial loss. It is of course up to the users to categorize how critical it would be to
lose each account (see [FHV14] for an example category division).
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The important point is that accounts should be treated differently. There is
no point in using a 20 characters long password on an online chess game account,
while it would be reasonable on an online banking account. This can be utilized
to make password management more adaptable and easy to use. Especially when
using a password management scheme, as the one evaluated in this project, it is very
beneficial to lower the average length of passwords, while still having long passwords
for the important accounts. Categorizing of accounts will be utilized to improve the
usability of the scheme implemented later.

2.2 Password Management

As seen in the previous sections passwords introduce a dilemma as passwords are
supposed to be hard to “guess” and are thus hard to remember. The naive solution
to this problem is to either use one password for many accounts or to write down
passwords. To make the process of managing passwords easier, several techniques
and tools have been suggested [GF06]. Examples are reminder features including the
“I forgot my password”-function most websites implement, browser cookies allowing
users to stay logged in across browser sessions or services storing the passwords.
These are all “computer aided” tools, which will store or keep users logged in without
actually having to remember the passwords. This usually limits the users to staying
on the same machine while using the account, this way users will probably forget
passwords and be forced into using the “forgot my password”-function eventually. A
different approach is to use a technique to actually remember the passwords without
storing them.

Consider a password management scheme to be a method helping users remember
password without actually storing them. The term password management software or
password mangers are used about solutions which store the passwords in some way.

2.2.1 Password Management Schemes

Password creation and memorization techniques assist users in remembering pass-
words, trying to circumvent the limitations of the human memory [Bad97].

Blocki et al. [BBD13] consider 4 different examples of password managements
schemes to illustrate how users might choose and remember their passwords.

• Reuse Weak. When users select a random phrase or word w and reuse this as
the password pi = w for all accounts. While maybe not very strong, this is the
most simple example of a password management scheme.
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• Reuse Strong. Same as reuse weak but users chose four random words
w1, w2, w3, w4 and reuse the concatenation of these as the password pi =
w1w2w3w4 for all his accounts.

• Lifehacker. Users chose three random words w1, w2, w3 as a base password
b = w1w2w3 as well as a derivation rule d used to derive unique data from
the site names for each password 2. Example of a derivation rule could be
the first and last three letters of the service name. The password for account
Ai would then be pi = bd(Ai) with d(Ai) being the string derived from the
site name. In practice a password generated using the method might look like
"facthreerandomwordsook".

• Strong Random and Independent. Users chose new words wi1, wi2, wi3, wi4 for
each account to be used as passwords pi = wi1w

i
2w

i
3w

i
4.

It is clear that the three former schemes are much easier to use than the last one.
Most users would prefer the first ones because they do not require much, if any,
rehearsal while the one strong scheme would require too much effort in terms of
rehearsing and memorization. This trade-off between usability and security is the
main problem when designing password management schemes. For a scheme to be
popular it cannot require too much extra rehearsal, while a secure scheme most of
the time will require some.

2.2.2 Password Manager Software.

Password managers are applications meant to keep passwords safe the for users.
These applications can either be stand alone programs or, more common, browser
extensions such as LastPass 3. LastPass provide an user interface to generate and
store passwords for online services, as well as form fillers to enter them when logging in.
The passwords are encrypted using a master password protecting the user credentials
against both server leakage and insiders accessing the data. Such systems usually
provide a lot of extra features such as automatically changing of passwords and
syncing between devices.

Built-in browser password managers. Most modern browsers provide “remem-
ber password” functions. These functions act similar to software like LastPass, by
storing the users’ passwords in some fashion, then reproduce it when logging in.

These kinds of systems and applications require the users to trust that the imple-
mented systems are secure enough to prevent adversaries, both insiders and outsiders,

2How to Update Your Insecure Passwords and Make Them Easy to Use - http://lifehacker.com/
5631203/how-to-update-your-insecure-passwords-and-make-them-easy-to-use

3LastPass - https://lastpass.com/

http://lifehacker.com/5631203/how-to-update-your-insecure-passwords-and-make-them-easy-to-use
http://lifehacker.com/5631203/how-to-update-your-insecure-passwords-and-make-them-easy-to-use
https://lastpass.com/


14 2. BACKGROUND

Figure 2.2: Rouge wifi landing page containing iframes with common sites, used to
steal password from an autofilling password manager.

from stealing credentials. Software aiding the users by storing passwords often also
provide autofill-functions, automatically filling in the username and password of
the associated site. Silver et al. [SJB+14] propose attacks exploiting these autofill
functions to extract passwords from the password manager, the most basic example
attack is shown in example 2.2. Despite the obvious weaknesses in many password
managers, they still argue that password managers can strengthen credential security
if implemented correctly.

Example 2.2.
Consider users connecting to a open wifi at a coffee bar or another public place. It is
not unusual to present the users with a “landing page” asking for approval of some
usage agreement. The rogue wifi provider could include multiple iframes4 pointing
to the login pages of common sites the users probably have stored credentials for.
See figure 2.2. By injecting Javascript in the iframes the attacker can extract all the
usernames and passwords autofilled by the password manager. Note that the iframes
displayed in the figure are not visible to the users, to them it looks like a standard
landing/welcome page. Silver et al. [SJB+14] claim that six out of ten password
managers were vulnerable to this simple attack.

4Iframe-http://www.w3schools.com/tags/tag_iframe.asp

Iframe - http://www.w3schools.com/tags/tag_iframe.asp
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Even if the password manager is secure against autofill-attacks, or if it does
not include the feature, the manager might still be at risk. If the account storing
all the usernames and passwords where to be compromised, all the sites would be
compromised, so it is important that the password manager is even more secure than
the sites themselves.

Zhao et al. [ZYS13] identified several vulnerabilities in the LastPass implementa-
tion, even though no known breaches has been reported. They investigate different
types of attacks, including attacks on local decrypted credentials; request monitoring
attacks which tries to intercept request between the password manager and related
cloud-storage; as well as brute-force attacks trying to crack the master password.
The conclusion is that password managers are double-edged swords, in theory they
help make password authentication stronger, but if implemented slightly wrong may
be a major vulnerability. Storing all the passwords at one place makes an obvious
point of attack for adversaries since breaking the manager most of the time would
break all accounts stored within.





Chapter3Human Computable Passwords

The previous chapter concludes that managing passwords for online accounts is
a major issue for modern Internet users. It seems to be impossible to remember
and maintain enough strong passwords to keep all accounts secured. The scheme
presented in this chapter is designed to help users maintain and remember multiple
strong passwords, while also protecting these after multiple password breaches. HCP
takes advantage of the human brain allowing users to calculate passwords from public
challenges, using their own mind to do so.

The HCP scheme is proposed by Blocki et al. [BBD14]. In addition to the scheme
itself, the proposal introduces security and usability notions used to analyze the
proposed scheme. This chapter describes the scheme as well as associated security
and usability concerns. The first section consists of definitions and notations as used
by Blocki [BBD14] to describe the scheme. Next, human computable functions are
introduced as this is the main component used in the password management scheme.
How these functions can be used to generate and memorize unique passwords in
practical cases is presented. Finally, usability concerns related to the scheme are
reviewed.

3.1 Password Management Scheme

The main idea of the HCP scheme is to have a set of challenges stored in persistent
memory, typically on a computer or even a piece of paper. Users then use a mapping
and a function to calculate the response to each challenge, which eventually gives
the password. It is worth emphasizing that this is different from other “traditional”
password managers, in that the passwords are not stored, only challenges helping
users remember passwords.

To create a new password, random challenges are generated, users then compute
the passwords from these. To reproduce the password later, the same challenges are

17
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displayed to the users, who then can calculate the same password. This procedure is
explained further in section 3.2, and in algorithms 3.2 and 3.3 .

3.1.1 Definitions and Notation

Memory types considered are either persistent or associative memory [Bad97].
This project follows the settings of Blocki et al. [BBD13, BBD14] where persistent
memory is equal to writing something down or somehow storing it reliably, but not
securely. When talking about persistent memory, it can be assumed that this is
publicly available, or at least that an adversary has undisclosed access to the data.
This should be emphasized since this is a strength to the scheme, nothing, except the
secret mapping, needs to be kept secret after establishing the needed prerequisites.

Associative memory is the memory of the users, namely their human memory.
This memory is different from the persistent memory in that it is totally private but
needs to be rehearsed to not lose data. In a password management scheme rehearsing
should optimally be part of the natural activity of the users. The best case would be
if users could rehearse and keep all their passwords in associative memory by simply
logging in to their accounts as normal. This is a central challenge for all password
schemes [BBD13].

The password management scheme uses a random mapping between a set of
objects to single digits which has to be memorized by the users. This mapping is
denoted as σ : [n]→ Zd. If Xk ⊆ [n]k is the space of ordered clauses of k variables, let
C be a clause chosen at random from Xk. C is now a set of k objects (e.g. (2, 4, 7, 8)).
Now σ(C) ∈ Zkd is the mapped variables corresponding to challenge C. C can consist
of any type of object, such as pictures letters or digits, with the mapping σ always
being to digits.

Example 3.1.
If σ(x) = x+ 1 mod 10, and C = (10, 25, 36), then σ(C) = (1, 6, 7).

One of these challenges, C, is referred to as a single digit challenge, which will
consist of k ordered objects chosen at random. The function f : Zkd → Zd is a human
computable function as discussed in the next section. Users respond to a challenge C
by computing f(σ(C)). A complete password challenge, ~C = (C1, . . . , Ct) ∈ (Xk)t ,
will consist of t separate, single digit challenges. The response to ~C, namely f(σ(~C)),
is the complete password.

The password management scheme works by generating one challenge, ~C, for
each user’s accounts A1, . . . , Am. The challenges ~C1, . . . , ~Cm ∈ (Xk)t are stored
in persistent memory. When users want to log in to a service they are shown the
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challenge ~Ci corresponding to account Ai, they then calculate the responses to all
the single digit challenges, producing the password.

3.1.2 Human Computable Functions

At the core of the scheme is a human computable function f and the memorized
mapping σ. The scheme requires the composite function of these two, f ◦ σ, to be
human computable, which means that the function should be easily computable by
the users without aids. To fulfill this requirement the function cannot involve many
operations, since the complexity and thus computation time would be too high. As
shown by Miller [Mil56], a human can only store 7 ± 2 pieces of information at a
given time. On the other hand humans are quite good at simple operations such as
addition modulo 10. For example “1+6+5+3+8+9+3+1+4+6+7+7+6 mod 10”
would be easy for most humans to compute by simply doing one operation at a
time, updating the answer after each addition. With this approach only one piece of
information is stored in memory of the users at any time. The problem with such an
expression is the amount of terms.

The requirements needed for a function to be human computable can thus be
summarized as the following, and formalized in requirement 3.1:

• Can only involve “simple” operations, mainly addition and recalling from
long-term memory.

• Limited amount of terms.

• Limited amount of operations.

Remark 3.1.
All operations used in the human computable functions discussed in this project are
modulo 10, as this is the most natural for most humans.

Requirement 3.1.
Function f is said to be t̂-human computable if a human can compute it in his head
in t̂ seconds.

Blocki et al. [BBD14] believe that a function f is human-computable if it can be
computed using a fast streaming algorithm, meaning that the input is presented as a
sequence of objects that only can be evaluated once. The algorithm would have to
be simple since humans are not good at storing intermediate values [Mil56]. Typical
operations fast enough for the human to compute in his head is addition modulo 10
which is natural for most humans to do quickly, and recalling a mapped value σ(i)
from memory.
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For primitive operations in P , the following are considered:

• Add takes two digits x1 and x2, and returns the sum x1 + x2 mod 10.

• Recall returns the secret value σ(i) corresponding to an input index i. The
mapping σ is memorized by the users, allowing the recall operation to be done
quickly in the users’ head.

• TableLookup involves looking up the x’th value from a table of 10 indices.

Definition 3.1.
A function f is (P, t̃, m̃)-computable if there is a space m̃ streaming algorithm
computing f using t̃ operations from P .

Remark 3.2.
Space m̃ means that the algorithm requires no more than m̃ memory slots during
calculation. Slots are typically used for storing values and executing primitive
operations such as addition [AMS99].

Example 3.2.
The function f ◦ σ(i1, . . . , i5) = σ(i1) + · · ·+ σ(i5) is (P, 9, 3)-computable, since it
requires 9 operations from P , 5 recall operations and 4 add operations. m̃ = 3 since
a sequence of additions i1 + · · ·+ in, requires one slot for storing the sum, one slot
for storing the next value in the sequence and one slot to execute the addition.

Blocki et al. [BBD14] conjecture that a user H will be able to calculate a (P, t̃, 3)-
computable function in t̂ = γH t̃ seconds. They believe that users with moderate
mathematical background should be able to achieve results yielding γH ≤ 1. This
conjecture is part of the experiment presented later in this project.

Conjecture 3.1. [BBD14] For each user H there is a small constant γH > 0 such
that any (P, t̃, 3)-computable function f is t̂-human computable with t̂ = γH t̃.

3.1.3 Secure Human Computable Functions

Blocki et al. [BBD14] suggest a family of human computable functions defined as fol-

lows. fk1,k2(x0, . . . , x9+k1+k2) = xj +
9+k1+k2∑
i=10+k1

xi mod 10,

with j =
9+k1∑
i=10

xi mod 10 and k1 > 0, k2 > 0

Definition 3.2.
f(x0, x2, . . . , x13) =

(
x((x11+x10) mod 10) + x12 + x13

)
mod 10



3.1. PASSWORD MANAGEMENT SCHEME 21

Definition 3.3.
f ◦ σ(x0, x2, . . . , x13) =

(
σ(x(σ(x11)+σ(x10) mod 10)) + σ(x12) + σ(x13)

)
mod 10

This project uses one of these functions, with k1 = k2 = 2. From now on this will
be the function referred to as f , the function is defined in definition 3.2. For an in
depth analysis of the function see "Usable Human Authentication: A Quantitative
Treatment" [Blo14].

In addition to f , a mapping function σ is used. Definition 3.3 defines the composite
function of f and σ which is used later in the password scheme. The response to a
challenge ~C is calculated using this function f ◦σ. Figure 3.1 and table 3.1 summarize
how the system works, random challenges are stored persistently in a database and
a secret mapping is stored in the associative memory of the users. A challenge is
then converted into a password by applying the mapping and a human computable
function to each single digit challenge. The combined results of these calculations
yield the complete password of the site.

Blocki argues that an adversary would have to see Ω̃(n1.5) challenge-response
pairs to be able to start recovering the secret mapping σ. A realistic mapping σ
would probably consist of no more than 100 object to digit mappings. A secret
mapping consisting of n = 100 mappings would require an attacker to steal 1000
challenge-response pairs (100 accounts given password length of 10) to recover the
secret mapping. In practice this might be the tricky part of the scheme, memorizing
a mapping of 100 object-digit mappings might be possible, but probably too hard
for a “normal” user to bother doing. It might be more reasonable to use a smaller
set of mappings which will lower the security of the scheme, while making it more
accessible for novice users.

Remark 3.3.
The analysis from hereon will use the observation from Blocki’s thesis [Blo14], claiming
that an adversary needs to see Ω̃(n1.5) challenge-response pairs before starting to
recover the secret mapping.

An example mapping which could be feasible in practice is characters to single
digits, with characters from the alphabet and digits between 1 and 10. This mapping
would yield n = 26 which would require an attacker to recover significantly less
challenge-response pairs. With n = 26 the amount is down to 133 compared to
the 1000 with n = 100. Still, this would require to fully compromise 13 or more
accounts with password lengths of 10 characters. How many objects n in the mapping
function, should be decided after evaluating how many accounts, and how sensitive
the information associated are.
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Figure 3.1: The database contains challenges indexed by domain name, which is
fetched and displayed to the users. User can then calculate the response to this
challenge by using the secret mapping σ which is only stored in their minds.

3.1.4 System Parameters

The previous section has described how the password management scheme works. The
most important characteristic that should be emphasized is that there is two possible
sources of information leakage, namely the database used to store the challenges and
the different site’s password storage. The latter is e.g. the database of facebook.com
which will consist of salted hashes of the users’ passwords. The challenges are, as
mentioned, stored in persistent memory, which is assumed to be available to an
adversary, so leaking the challenge alone is not necessarily a problem. If password
hashes are leaked from online services the password to that exact service might be
lost, but the scheme still ensures that no other passwords can be deduced from the

facebook.com
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f(x0, . . . , x13)
A human computable function used in the password
management scheme investigated in this project.
Defined in definition 3.2

σ(x)
Random mapping to be memorized by the users. It takes
in an object of some sort and returns a digit between
0 and d, d can be assumed to always be 10.

C

A single digit challenge, this is a challenge consisting of 13
randomly chosen ordered objects. A single digits challenge
in this project is a list of 13 random letters (e.g. ("B", "E", ...)).
One of these is used to compute one character of a user’s
password.

~C

A password challenge, consisting of t single digit challenges.
A password challenge yields a complete password after
calculating the response to all single digits challenges contained
in it.

Table 3.1: Summary of notation.

compromised password. An adversary attacking the scheme would try to recover the
secret mapping σ since this would allow him to compute all the passwords of a user.
Such an attack, if possible, would require a set amount of challenge-response pairs
(namely n1.5), as discussed in section 3.1.3 (see remark 3.3).

There are some interesting trade-offs related to the parameters of the HCP scheme.
A bigger set of mappings makes it increasingly hard to recover σ, but it becomes
harder to memorize and rehearse as well. It is reasonable to say that complexity of a
mapping function grows linearly with the number of mappings n, and the resistance
versus attackers grows polynomially, thus much quicker than the complexity, see
Figure 3.2. In other words, for each mapping added to σ, n is increased with one
and the security multiplied with 1.5. The trade-off which would have to be evaluated
is how much effort the users are willing to put into memorizing the mappings, versus
how secure they want it to be. This should be evaluated in regards to how “important”
the passwords and the accompanying accounts are, and how many accounts users
plan on having. It is not worth memorizing a large set of mappings only to store a
few passwords, since there would not be enough mappings to “lose” for an adversary
to recover even a small mapping set.

Another relation is between password length and number of accounts which
would have to be stolen. With n mappings, the number of accounts needed to
start recovering σ is a function of the password length as seen in Figure 3.3. If the



24 3. HUMAN COMPUTABLE PASSWORDS

passwords are very long only a few logins would have to be stolen to recover σ. This
is important to take note of since one of the main strengths of the password scheme
is that even if one account is compromised all the others are still secure since each
site has a different, “unrelated” password. If the revelation of only a few accounts
could compromise the secret mapping, all the passwords of the users might be lost.

Users requiring very secure passwords might generate very long passwords of 20+
characters for each of their accounts. If, by chance, the number of mappings was
smaller than suggested, all these “strong” passwords might be lost if only a few of
them was to be compromised through a password breach. Users are not advised to
use short passwords, but the secret mapping needs to be long enough to support the
length and number of passwords a user wants to generate using the scheme.

The number of accounts needed to recover the mapping can be used as a practical
way of describing the security of the scheme, observation 3.1 defines this parameter
as an inequality reliant on the password lengths x and the number of mappings
n. Figure 3.4 illustrates the relationship between password lengths and number of
mappings needed to achieve different levels of security. How high the parameter â
should be depends on how long and how many passwords users intend to have.

Observation 3.1.
The security of human computable function including a mapping function, f ◦ σ, as
defined in definition 3.3 and section 3.1.2, can be described through the expected
number of accounts â which needs to be compromised to start recover the secret
mapping σ, given passwords of length x and n mappings in σ. â is then

â <
n1.5

x
(3.1)

.

Example 3.3.
A user plans on having passwords of length 20 for all of his many important accounts,
and wants these to be securely stored even if it requires him to use more time
on rehearsal. In this case, assume that a user wants his accounts be secure even
if 100 accounts are leaked. Using Equation 3.1 with x = 20 and â = 100, gives
100 < n1.5

20 =⇒ n > 159. This means that the user would have to memorize at least
159 unique random mappings to achieve the desired level of security against leakages.

If users were to save only a few shorter passwords, for example requiring only
security allowing loss of â = 20 accounts and passwords of length x = 15, they would
need to memorize at least n = 45 mappings. Users would have to evaluate how many
mappings are realistic to memorize, and decide on a reasonable level of security.
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Figure 3.2: Number of challenge-response pairs required to start recovering mapping
σ as a function of the number of mappings in the mapping n.
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Figure 3.4: Inequality plot of 3 different values for â

3.2 Practical Usage

This section illustrates how the HCP scheme works in practice, using the principles
described in the previous sections. Before using the scheme a user has to go through
a setup procedure involving memorization of a randomly generated mapping as
well as setting up all accounts with passwords calculated from challenges. Section
3.1.4 discussed how the scheme can be tweaked to fit different needs a user may
have, depending on the required level of security and the amount of accounts and
passwords a user may have. A summary of the setup and authentication procedures
are presented next.

3.2.1 Setup Procedure.

1. A secret mapping is the first prerequisite required before the scheme can be
used. A random mapping of length n is generated from a set of objects chosen
by the users, to digits in {0, 1, . . . , d}. Users will typically choose what type
of objects to use, this can be an alphabet or a user chosen set of pictures. A
system will then choose n of these objects and assign a random digit between
0 and d, d is normally 10. Algorithm 3.1 shows how the mapping would be
generated from a set of objects by assigning random digits to each object.
Remember that this mapping function is supposed to only be stored in the
memory of the users, and can thus not be evaluated anywhere else than in the
mind of each individual user.
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2. Memorization of the mapping is the next, and most costly procedure. Users
have to learn the mappings by heart, and be comfortable they will not forget
them. After memorizing, the mapping is deleted and not stored anywhere else
than in the mind of the users. After finishing this step, there is no way to
recover the mapping if users forget it. This might seem like a barrier, but the
fact is that the memorization is a one time cost for many users. Active users
will naturally rehearse and thus not forget their mappings as long as they keep
using the scheme and regularly calculate passwords.

3. Passwords can now be generated for all the users’ accounts. Algorithm 3.2
describes the process of creating new passwords for all accounts.

a) First users choose the desired length of the password, t, to be generated.
In practice this length is not static for all accounts, when adding a new
account to the system users will categorize the account, which will decide
the length of the password, and thus the number of challenges generated.

b) t random challenges are generated and shown one by one to the users,
which calculate the responses to these. Each of the responses are one
character in the new password.

c) The calculated password is then sent to the server typically through a
“change password”-form.

4. the same procedure (1-3) can be done for all the accounts users want to include
in the password scheme.

Algorithm 3.1 Generate mapping σ.
Input:

• Base d.
• O1, . . . , On objects, typically letters or pictures.

1: for i = 1→ n do
2: k ∈R [0, d] . k is a random integer between 0 and d
3: ~S ← ~S + (Oi, k)

4: function σ(Ox)
5: search(Ox in ~S)
6: return (Ox, i)

Output: σ
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3.2.2 Authentication Procedure.

1. Authenticating with a site, which password was previously generated using the
scheme, start of by selecting the correct site. The corresponding challenges will
then be displayed starting with the first one.

2. Users calculate the response to each challenge, the same way they did when
generating the password. If the calculations are done correctly, the result should
be the same.

3. After calculating the response to all t challenges, the password can be submitted
to the server which checks if the hashed value is the same as the stored one. If
it is, the user is authenticated.

Remark 3.4.
The notation f(σ(~C)), as used in the algorithms, is equal to the composite function
f ◦ σ(x0, . . . , x13) as used in definition 3.3.

Algorithm 3.2 Create new challenge for account Aj ∈ (A1, . . . , Am)
Input:

• t desired length of password.
• σ secret mapping memorized by the user.
• f a human computable function.
• O1, . . . , On objects, typically letters or pictures.

1: for i = 1→ t do
2: k ∈R [0, n]
3: ~Ci ← ~C + {Ok}14

4: ~C ← (~C1, . . . , ~Ct)
5: (User) Computes (p1, . . . , pt) = f(σ(~C))
6: (Server) Store hj = H(p1, . . . , pt)
7:
8:
Output: ~C

3.3 Usability

Blocki et al. [BBD14] consider three usability parameters defining the usability of a
human computable function, namely calculation time, memorizing σ and rehearsing
σ. In addition to these, another influencing factor is introduced, failure rate. This
section discusses these requirements and how to influence them.
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Algorithm 3.3 Authentication process for account Aj ∈ (A1, . . . , Am)
Input:

• Account Aj ∈ (A1, . . . , Am)

• Challenges ~C = (~C1, . . . , ~Ct) from account Aj .
• Hash hj and hash function H.

1: for i = 1→ t do
2: Display Ci to the user
3: User Compute pi ← f(σ(Ci))
4: . pi is the i’th character of the password for account A
5: ~P = (p1, . . . , pt)
6: if hj = H(~P ) then . (Server)
7: Authenticated on account Aj
8: else
9: Authentication failed

• The effort required to memorize the secret mapping.

• The extra rehearsal required of the users to not forget the secret mapping.

• How long it takes a human user to calculate the responses to a set of challenges,
eventually producing the password.

• How reliably a human user can calculate password without mistakes.

All of these requirements might limit the usability of the scheme, and are thus worth
discussing. This project focuses mostly on the last two requirements, related to
computation time and failure rates. These parameters are later tested (see chapter 5)
through implementing the scheme as a web app and having participants try it out
while timing their efforts.

3.3.1 Memorizing the Secret Mapping.

As seen in the previous section, users have to memorize a random mapping from
object to digits before starting to use the scheme. This is most likely the biggest and
most frightening barrier for any user considering to use the scheme. There are several
techniques supposed to help memorizing relations easier, examples are the method
of loci [Bad97] which is supposed to enhance memory by visualization. Mnemonic
helpers showing objects merged together might help memorize relations as in the
case of this project. Blocki et al. [BBD14] propose using mnemonic helpers if the
mapping consist of letters to digits. These helpers would typically be a set of pictures
showing a visual transition from a letter to a digit. This way might make it easier for
users to remember it instead of only being shown “A=1” etc. Some user might also
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feel that it is easier to memorize other things than letters, such as pictures. Users
might even get to choose the set of pictures to be used themselves as long as the
corresponding digits are chosen at random.

3.3.2 Rehearsing the Secret Mapping.

After memorizing the mappings, the users have to rehearse it frequently enough to
not forget them. Blocki et al. [BBD13] define a model estimating the cost of this
rehearsal. Applying this model to the password management scheme gives insight to
how much different types of users have to rehearse. The model predicts how long a
user will remember an association between i and corresponding mapping σ(i) without
further rehearsal.

Definition 3.4. [BBD14]
A rehearsal schedule for an object-mapping association is a series of points in
time t0 < t1 < . . . . A rehearsal requirement says that all object-mapping association
pairs must be rehearsed at least once in the time interval [ti, ti+1), to not forget
them.

Requirement 3.2. [BBD13]
Constant Rehearsal Assumption (CR) says that a rehearsal schedule where
users rehearse every i’th day, e.g. day 1, 2, 3 etc., is sufficient to remember the
mappings.

Requirement 3.3. [BBD13]
Expanding Rehearsal Assumption (ER) assumes that users will become better
at remembering the mapping for each consecutive rehearsal, thus only needing to
rehearse every 2i days. E.g. day 2, 4, 8, 16 etc.

The difference between these two assumptions about human memory is that CR
assumes that users have to keep rehearsing every i’th day for as long as they want to
make sure to not forget anything. This might be too pessimistic since it is reasonable
to assume that it gets easier to rehearse for each rehearsal. This is what ER assumes,
if a relation has been rehearsed i times it does not have to be rehearsed again in 2i
days. ER is the most intuitive assumption to make and is backed up by experiments
on how the human brain forgets over time [Squ89, Bad97].

Visitation Schedule

Every user will eventually have a unique visitation schedule which will vary greatly
from user to user. The model uses a Poisson process to model the visitations schedule
for a given site Ai, with parameter λi. The average time between visits, 1

λi
, is assumed

to be known for each visitation schedule. A site visited every day would yield λi = 1
day, and λi = 1

365 days for a site visited annually.
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Next, the model uses four different types of users which may have accounts of 5
different account types based on visitation frequency. The users can be: very active,
typical, occasional or infrequent, while an account can be visited daily, every three
days, every week, every month or annually. Table 3.2 defines how many of each
type the users have respectively. For example, very active users are said to have 10
accounts they visit daily and 35 visited annually.

Visitation schedule λi 1 1
3

1
7

1
31

1
365

Very Active 10 10 10 10 35
Typical 5 10 10 10 40

Occasional 2 10 20 20 23
Infrequent 0 2 5 10 58

Table 3.2: Visitation schedules. λi is the average time between visits to an account.

Extra Rehearsals

Users will visit their accounts according to their visitation schedules, and every
time the user will rehearse a set of object-mappings naturally by computing their
passwords.If an object-mapping association is not rehearsed through normal usage
users would have to rehearse the association to prevent forgetting it. Blocki et
al. [BBD13] predict how much extra rehearsal, E(ERt), is required in addition to
natural usage. In the context of a password management scheme it is clear that
smaller values for E[ERt] yield less effort required by the users.

Table 3.3 shows the expected number of extra rehearsals required by the different
types of user given the length of the mapping function n, during the first year. It is
computed given the visitation schedules in table 3.2 and uses the expanding rehearsal
assumption as defined in definition 3.3. Details on how the table was computed
and proofs of the theorems used can be seen in appendix H of “Human Computable
Passwords” [BBD14].

User n = 100 n = 50 n = 30
Very Active 0.396 0.001 ≈ 0
Typical 2.14 0.039 ≈ 0
Occasional 2.50 0.053 ≈ 0
Infrequent 70.7 22.3 6.1

Table 3.3: Extra rehearsals required of the users during the first year to remember
σ [BBD14].
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The results in table 3.3 clearly demonstrates that the HCP scheme does not
require much rehearsal at all if used frequently. In fact, for very active, typical and
occasional users, memorizing the mapping is a one time cost. After memorizing it at
the beginning, using the scheme will provide enough natural rehearsal to maintain the
mapping in memory. When users compute the response to a challenge ~C, they will
have to recall the mapping of up to 5 ((σ(x11), σ(x10), σ(x12), σ(x13), σ(xj)) values
of i for each character of the password. A password length of 10 would yield recalling,
and thus rehearsing, 50 values of i. The same trade-off as discussed in section 3.1.4
can be observed here. The more complex the mapping is (larger values of n), the
more effort is required when memorizing, but no extra rehearsals are necessary even
with a larger number of mappings.

3.3.3 Computation Time and Failure Rates.

The final requirement which may limit the usability of the scheme is calculation
time. If users can not compute the response to a challenge correctly in a reasonably
short amount of time the scheme would not be usable. How much time users can
tolerate is of course individual, but a too long computation time will directly effect
the usability. In addition to the time spent calculating, it is important that the users
are able to consistently compute the correct responses. If the failure rate is too high,
in respect to the password length, the scheme will not function at all. It is thus more
important to have a low enough failure rate than a short calculation time.

Improving Usability.

To make the computation as easy as possible the challenges are presented to the
users in a practical way, facilitating fast and reliable calculation. Using the human
computable function from definition 3.3, a challenge C = (x0, x1, . . . , x13) could be
displayed as shown in Table 3.4.

f ◦ σ(x0, x2, . . . , x13) =(
σ(x(σ(x11) + σ(x10)) mod 10︸ ︷︷ ︸

Step 1, 2, & 3

)

︸ ︷︷ ︸
Step 4 & 5

+σ(x12) + σ(x13)
)

mod 10︸ ︷︷ ︸
Step 6 & 7

.

To evaluate a challenge using this function and the layout template from Table 3.4
users goes through the following steps:

1. Recall the mapping x10

2. Recall the mapping x11

3. Add the values from the two previous steps j = σ(x10) + σ(x11).
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4. Locate the element xj from the table.

5. Recall the mapping σ(xi).

6. Recall the mapping σ(x12) and add this to the previous value, z = σ(xi)+σ(x12).

7. Finally recall the mapping σ(x13) and add it to the previous value, obtaining
the final sum y = z + σ(x13)k.

8. y is the response to challenge C.

x10 x11 x12 x13

0 : x0 5 : x5

1 : x1 6 : x6

2 : x2 7 : x7

3 : x3 8 : x8

4 : x4 9 : x9

Table 3.4: Layout template for displaying challenges.

Each step depends on at most two earlier steps, allowing users to do the calculation
without having to store more than two values in memory at any time. After finishing
steps 1-3 they will only keep one value in memory, the previous intermediate results
are now irrelevant and can be forgotten.

Example 3.4.
Table 3.5 shows the same layout using example objects. The example challenge is
C = {A,B,C,D,E, F,G,H, I, J,K,L,M,N}. Let the mapping function σ be the
position in the alphabet mod10, σ(A) = 1, σ(B) = 2, σ(J) = 0 etc. The evaluation
of this challenge would be the following.

1. σ(K) = 1, σ(L) = 2 (K is the 11th letter in the alphabet, thus 11 mod 10 = 1)

2. (11 + 12) mod 10 = 3

3. x3 = D

4. σ(D) = 4 , σ(M) = 3, σ(N) = 4

5. (4 + 3 + 4) mod 10 = 1
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K L M N

0 : A 5 : F
1 : B 6 : G
2 : C 7 : H
3 : D 8 : I
4 : E 9 : J

Table 3.5: Layout template for displaying challenges.

Classification of accounts. Section 2.1.4 discussed how different accounts should
be treated differently depending on the consequences of compromise of the accounts.
This can be utilized to limit the number of single digit challenges a user needs to
calculate when logging into each account. When adding an account to the system
users have to classify the account in terms of how big consequences a breach would
have. This way the users are in control of how much effort is spent calculating
passwords versus how strong the passwords are. This will essentially lower both the
average total calculation time and attempts needed to calculate each password.

This chapter has presented the ideas behind the HCP management scheme. It
has shown how the scheme works with a secret mapping memorized by the users
and a human computable function, which together allow users to compute passwords
from challenges stored in persistent memory. Algorithms describing the procedures
has been shown and described, as well as discussing the usability challenges of such
a scheme.



Chapter4Application

This chapter describes how browser extensions are built in the Google Chrome web
browser, focusing on architecture and security features. Browser extensions can
be utilized to build an application implementing the HCP scheme as described
in chapter 3. The scheme is different from other traditional password managers
since it does not store the password, but the challenges help the user to remember
strong passwords. The idea by using browser extensions to implement this is to
have an extension monitor the password fields of the sites a user visits and update
the challenges depending on the current state of the active site. This technique is
described and a prototype extension demonstrated.

4.1 Browser Extensions

Modern computer users shift towards doing more and more work through their web
browsers. Web applications have become popular due to the ubiquity of browsers,
thus allowing web apps to run anywhere. A web app can run on any platform running
a web browser. Updates can be applied quickly without having to distribute patches
to a possibly huge amount of devices.

Browser extensions add additional features to the web browser allowing users
to tweak the experience of the web pages visited. Typical examples are extensions
adding to, or tweaking already present features of the browser such as changing
how bookmarks are managed, or adding additional features such as blocking ad-
vertisements. Lately browser extensions have been extended even further allowing
standalone applications to be developed running as native applications 1. This allow
developers to create desktop apps using the same technology as in web apps, mainly
HMTL5, Javascript and CCS.

1A new breed of Chrome apps - http://chrome.blogspot.no/2013/09/
a-new-breed-of-chrome-apps.html - accessed: 2015-03-02
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This section presents Google Chrome browser extensions, including architecture
and security mechanisms.

4.1.1 Extension Security

Browser extensions introduce some security concerns which must not be forgotten
while developing applications using this environment. Chrome extensions run in the
browser with access to both the DOM (Document Object Model) of the active page
as well as the native file system and connected devices. The overall architecture of a
Chrome extension is summarized in Figure 4.1 and described in the chrome extension
documentation2. This section describes the architecture considering security concerns
relevant when developing chrome extensions which handle sensitive data such as
passwords.

Figure 4.1: Chrome extension architecture.

Earlier extensions written for IE and Firefox ran in the same process as the
browser and shared the same privileges. This made extensions an attractive entry

2What are extensions? - https://developer.chrome.com/extensions/overview - accessed 2015-03-
02

https://developer.chrome.com/extensions/overview
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point for attackers, since a buggy extension could leave security holes leaking sensitive
information or even provide an entry point to the underlying operating system. For
these browsers several frameworks for security have been proposed [LLV08, DG09],
trying to mitigate vulnerabilities is browser extensions.

The Chrome extensions architecture is built from scratch with security in mind.
Chrome uses a permission system following three principles [LZC+]; least privileges,
privilege separation and process isolation.

Least privilege specifies that extensions should only have the privileges they need
to function, not share those of the browser. The privileges of each extension are
requested in the manifest file3. This json file needs to be included in all Chrome
extensions, and consist of all the permissions needed by the extension as well as some
meta data and version information. This is done to prevent compromised extensions
from exploiting other permissions than those available at runtime. An example of a
manifest file can look like this:

{
"name": "Example extensions",
"description": "An example extensions to demonstrate how the

manifest file works.",
"version": "1.2",
"manifest_version": "2"
"background_page": "main.hmtl",
"permissions": [

"bookmarks",
"storage",
"https://*.ntnu.no"

]
}

This extension has specified access to the bookmarks API, Chrome local storage
and all sub domains of ntnu.no. Extensions can request different permissions in
the manifest file including web site access, API access and native messaging. If
an extension contains weaknesses it will not compromise any other parts of the
system not covered by the specified privileges. For the least privileges approach to
work properly each developer should only request the permissions needed. Barth
et al. [BFSB10] examined this behavior and concluded that developers of Chrome
extensions usually limit the origins requested to the ones needed.

3Manifest file format - https://developer.chrome.com/apps/manifest - accessed 2015-03-04

https://developer.chrome.com/apps/manifest
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Privilege separation. Chrome extensions are, as mentioned, divided into com-
ponents; content scripts, extension core and native binaries. The addition of native
binaries allows extensions to run arbitrary code on the host computer, thus posing a
serious security threat. This project does not use this permission, and does not have
the accompanying problems neither.

Content scripts are Javascript files allowing extensions to communicate with
untrusted web content of the active web page. These scripts are instantiated for
each visited web page and has direct access to the DOM of these, allowing both
monitoring and editing of DOM elements. To be able to inject content scripts to a
visited page, the origin of the site has to be added to the manifest file. Other than
this permission, content script are only allowed to communicate with the extension
core. It is important that the privileges of these scripts are at the minimum level
since they are at high risk of being attacked by malicious web sites [BCJ+14], due to
the direct interaction with the DOM.

The extension core is the application interface responsible for interaction with
the user as well as long running background jobs and business logic. The core is
written in HTML and Javascript and is responsible for spawning popups and panels,
as well as listening for browser action. The typical way to activate an extension is
by clicking an icon in the navigation bar, which then activates either a popup or
a detached panel. The core is the component with the most privileges as it does
not interact with any insecure content directly, only through direct messaging to a
content script or using http requests if the target origin is defined in the manifest.

In addition to this, the core has access to the extension APIs, these are special-
purpose interfaces providing additional features such as alarms, bookmarks, cookie
and file storage. The APIs are made available through the manifest file and only
those specified there can be used. Figure 4.2 illustrates the interaction between the
background page, content scripts, panels and active web page. The information
flow starts by clicking the extension’s icon in the navigation bar which launches the
background page spawning a panel in the browser. A content script is injected in the
current web site (google.no in the example), the script now have access to the DOM
of this site and can communicate with the background which in turn can update the
panel.

Process isolation is a set of mechanisms shielding the component from each other
and from the web. Usually when Javascript is loaded from the web the authority of
the script is limited to the origin from where the script is loaded [BFSB10]. Since
the scripts used by the extensions are loaded from the file system, they do not have
an origin in the same sense, and thus need to be assigned one. This is done by
including a public key in the url of the extension, allowing a packaged extension
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Figure 4.2: Chrome extensions browser action and content scripts.

to sign itself, freeing it from any naming authority or similar. The public key also
enables usage of persistent data storage, since the origin of the extension can stay the
same throughout updates and patches. This would not be possible otherwise since
the Chrome local storage API relies on origin. Each extension has a private/public
key pair, a hash of the public key is used as ID and each updated version uploaded
will be sign with the private key. By doing this the ID stays the same throughout
versions and can be verified by when uploading and by Chrome storage after releasing
a new version.

The different components also run in different processes. The content scripts are
injected and ran in the same process as the active web page, while the core run in its
own process started when the extension is initiated. This protects against Javascript
injections from malicious web sites [BZW13]. Since the content script executes in the
same environment as the active web page, users may visit websites hosting content
meant to exploit extensions [CFW12], possibly stealing sensitive information or issue
fake requests.

Finally content scripts are ran in a separate Javascript environment isolating
it from the possibly insecure environment of the web site. The environment of
the content scripts are called isolated world, which in practice is a separate set of
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Javascript objects reflecting the ones of the underlying DOM of the web page. This
means that the content script can read and edit the DOM of the page it is injected
into, but not access variables or Javascript functions present in the web page. Both
the page and the content scripts sees no other Javascript executing in their own
isolated world, but they share the same DOM4.

4.2 Human Computable Passwords Chrome Extension

Chrome extensions are very useful in that they can be run from any computer with
Google Chrome installed, thus on any operating system and on any computer. An
extension makes it possible to run applications while browsing the web, which in the
case of a password management scheme is very useful. An application meant to help
the user recall complex passwords should preferably be visible simultaneously with
the password field. Popular password management software today are usually web
applications, mobile applications or native desktop applications5, some of these might
include plug-ins in from of browser extensions. All of these password managers are
reliably storing all the passwords as described in section 2.2.2, then they are either
auto-filled into the login fields or through copy pasting manually, which introduce
several security issues [BFSB10, BZW13, BCJ+14, CFW12, LZC+, SJB+14]

This section presents the design and prototype implementation of the HCP scheme
as presented in chapter 3. The design evolves around the fact that the scheme does
not have to store anything securely, though it is important to make it as easy as
possible for the user. The architecture is similar to the one explained in section 4.1
using content scripts to monitor the password fields of the active browser session.
The user interface is presented through a “panel” in the browser. Panels are windows
that stay in focus while interacting with other windows or applications 6.

The application implementing the HCP scheme is an extension helping users with
storage and management of challenges for their accounts. The generation of secret
mappings is not part of the application, this should be done through a separate
program on the users’ local computers. Such a program would follow algorithm 3.1.
The requirements and key components of the design are described next.

4.2.1 System Requirements.

• Provide users interface making it easy for the user to calculate their password.

4Content Scripts - https://developer.chrome.com/extensions/content_scripts - accessed: 2015-
03-05

5Five Best Password Managers - http://lifehacker.com/5529133/five-best-password-managers
6"Panels"- The Chromium Project. https://www.chromium.org/developers/design-documents/

extensions/proposed-changes/apis-under-development/panels

https://developer.chrome.com/extensions/content_scripts
 http://lifehacker.com/5529133/five-best-password-managers 
https://www.chromium.org/developers/design-documents/extensions/proposed-changes/apis-under-development/panels
https://www.chromium.org/developers/design-documents/extensions/proposed-changes/apis-under-development/panels
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• The application should keep track of the active site, displaying challenges for
the correct site without user interaction.

• Add new sites to the system easily.

• The displayed challenge should update seamlessly while typing the password.

• Users should be able to type their passwords directly in the password field of
the active site.

• When adding a new site to the system, users should be able to classify the
account (see section 2.1.4), affecting the number of single digit challenges
created.

4.2.2 Key Components

AngularJS.

The front-end is built and updated using AngularJS7, which is an open source,
client-side Javascript framework. Angular is built using a variation of the model-view-
controller architecture [Dea09], though the creators of Angular state that Angular is
a model-view-whatever framework8, the point being that what the architecture is
called is not important.

The views in Angular are templates written entirely in HTML, making it easy
to read and update. The controller contains all the business logic used by the view.
The views and controllers are connected using a shared object called $scope, variables
or functions on this object is usually defined in the controller and accessed by the
view using double curly brackets (e.g. {{name}} to access the name variable on
$scope). Figure 4.3 shows how scope is used to share variables between the controller
and the view. See “Angular Essentials - Rodrigo Branas”[Bra14] for a step-by-step
introduction to AngularJS.

The main benefits of using Angular in this project is the data-binding which
makes it easy to update the HTML shown to the user. The extension takes advantage
of this when updating the challenges seamlessly while the user calculates his password.
The content of the extension changes according to the data filled in the password
field without reloading the extension.

Chrome Storage.

Local storage9 is a way for applications to store data persistently and securely in the
browser of clients. It is meant as an improvement of cookies which is the usual way

7AngularJS - https://angularjs.org/
8Model-View-Whatever - https://plus.google.com/+AngularJS/posts/aZNVhj355G2
9Local storage - http://diveintohtml5.info/storage.html

https://angularjs.org/
 https://plus.google.com/+AngularJS/posts/aZNVhj355G2 
 http://diveintohtml5.info/storage.html 
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Figure 4.3: Angular data binding with controller, view and scope. Figure from
AngularJs developer guide.

of storing user data across sessions. The biggest problem with cookies is that they
are sent with every HTTP request and thus slow down the applications using them.
Local storage allows applications to store (key, value)-pairs in the browser.

Chrome storage10 is close to the same as local storage, differences being that
Chrome local storage allows applications to store data in what is called “chrome.storage.sync”.
This specific storage saves data locally, but also syncs it with the currently active
Chrome account, allowing users to log into their accounts in any chrome browser
and access the same application data. Chrome storage also allows storage of objects
compared to local storage which only allows storing strings. This project is using
Chrome storage to persistently store challenges across sessions, and also provide
backup. This way each user is able to keep challenges for all their accounts within
the storage of their Google account. This is a important feature since it allows access
to the challenges from remote locations as well.

Content Scripts.

Content scripts are Javascript files running in the context of the active web page, as
browsed by the user. These scripts have direct access to the content of the active
site and can thus monitor and attach event listeners to the content of the page. The

10chrome.storage - https://developer.chrome.com/extensions/storage

https://developer.chrome.com/extensions/storage
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content scripts are isolated from the extension itself as describe in section 4.1.1, thus
protecting the extension from possibly harmful sites trying to exploit weaknesses
in the content script. Because of this the content scripts has to communicate with
the extension through Google Chrome’s built-in message passing system. Chrome
message passing11 allows scripts to listen for and respond to messages. One side sets
up an event listener listening for messages, when a message is sent from the other
side this event triggers and the message can be received and parsed.

The content scripts and the message passing system are likely points of attack
for adversaries. The content script can monitor the value of the password field and
thus, in theory, steal passwords if a malicious script was able to trick it into leaking
them. The communication channel is not particularly prone to attacks since even if
an adversary eavesdropped all data sent on it, the only information leaked would be
the current length of the password. It is though important that the design is like
this since the mistake of sending the whole password string, which might seem like a
solution, would be potentially dangerous.

Typical usage of content scripts in this application is to attach event listeners to
the password fields of the pages visited by users, and message the extension when
the value of the password field changes. When a change happens, the content script
sends a message containing the current length of the typed password, so that the
extension can display the correct challenge. In example if the user has entered 4
characters of his password the extension should display the 5th challenge etc. The
content script also keeps the extension updated on the URL of the current page,
by sending a message every time a page is loaded. The extension then displays
the challenges corresponding to the password of that site. If the site does not have
challenges stored by the application, users can generate new ones and store these in
the system through clicking a button.

4.2.3 User Interface

The user interface is very simple, two possible screens are displayed to the user.
Either, challenges associated with the current active page, or a dialog asking users
to generate new challenges. When adding a new site, users are asked to categorize
the site as low, medium or highly sensitive. Depending on this choice a set amount
of challenges are generated and stored. The most important feature of the user
interface is that it automatically updates depending on what site the user is currently
browsing, and displays the correct challenge while typing passwords. Wireframes
illustrating the page schematics of the extension are shown in figures 4.4a and 4.4b.

11Chrome message passing - https://developer.chrome.com/extensions/messaging

https://developer.chrome.com/extensions/messaging
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(a) Screen seen by the user when launch-
ing the extension while visiting a page
that is not stored in the system.

(b) Screen seen by the user when loading a
site with challenges stored in the system.

Figure 4.4: Wireframes illustrating the page schematics of the extension.

4.2.4 Implementation

The implementation follows the design described in the previous section, this section
describes how the extension is implemented and demonstrates the actual application
in action.

Figure 4.5 shows the complete architecture of the system. The content script
attaches an event listener to the password field of the active site. If the content
of the password field changes, the script sends a message using Chrome message
passing containing the current length of the password. The controller receives the
new password length from the content script, and updates the challenges displayed.
When users visit a new site, the URL is sent to the controller, which then updates
the view with new challenges associated with that site.

The classes seen in figure 4.5 are all represented in the implemented version of
the extension. The construction and responsibilities of the classes are summarized in
the following list. The code of the implementation for each component is explained
in more detail in appendix A.

• Controller is responsible for the business logic related to the information
shown to the users in the extension. The controller first tries to load the user
data stored in Chrome storage, if no user has been created, typically if it is
the first time the extension is loaded, a new user is created. The controller
keeps track of the URL of the current active page and the current length of
the password field. It listens for messages from the content scripts and updates
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the URL and password length variables with the info received. The controller
class used in the extension is described in appendix A.2.

• ChromeStorage12 is a utility resource used to access Chrome local storage
(see section 4.2.2). This module is essentially a wrapper making it easier to
retrieve data from Chrome storage, while also providing useful debugging and
cache management functions.

• Content script is responsible for attaching event listeners to the password
field of the currently active page.. It also listens to the onload event13, sending
URL updates to the controller every time a new page is loaded. The content
script of the extension built in this project can be seen appendix A.1.

• main.html is the view of the application, responsible for the user interface.
The view receives updates from the controller through the $scope variable.
When the controller updates in example the current password length, this is
reflected in the view where different objects are shown. If the current URL is
not in the user’s list of saved sites, the view shows a dialog allowing the user
to add it. When adding a new site the user should update the password of
that site by calculating the response to the challenges. A snippet of the view is
shown in appendix A.4.

• app.js is the focal point of the application, responsible for initializing the
Angular app and routing of views. In this project this file also includes some
helper functions which can be seen in appendix A.3.

Random numbers are an important component of the application since all the
security relies on the fact that the secret mapping and the challenges are chosen
at random. As for this application, the only concern is the challenges, since the
secret mapping would be generated using a separate program on each client’s ma-
chines. Javascript provide a function called Math.random which is not considered
cryptographically secure [SHB09] and should thus not be used. New browsers now
support a new method which are considered to be the best suited random source for
cryptographic purposes, the method is called window.crypto.getRandomValues()14.
The application uses this function as the source of randomness to generate challenges.
The random number generator used can be seen in appendix A.3.

Mapping objects. The application as implemented and demonstrated in this
chapter uses the alphabet as mapping objects. As explained in chapter 3, these

12angular-chrome-storage - https://github.com/infomofo/angular-chrome-storage
13Event triggered when a new page is loaded in the browser.
14RandomSource.getRandomValues() - https://developer.mozilla.org/en-US/docs/Web/API/

RandomSource/getRandomValues

https://github.com/infomofo/angular-chrome-storage
https://developer.mozilla.org/en-US/docs/Web/API/RandomSource/getRandomValues
https://developer.mozilla.org/en-US/docs/Web/API/RandomSource/getRandomValues
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objects could be anything and are fixed in this presentation for simplicity. There is a
folder in the implementation where all the pictures are kept, these could easily be
exchanged with other pictures to better suite the user.

Launching the application is done by clicking an icon in the browser toolbar which
launches the extension in a panel floating on top of the other browser windows and
tabs. This behavior is specified in the background page15. The background page is
the “launcher” of the extension, it waits for users to click the extension icon, firing
a browser action event. On catching this event, the script spawns a panel, with
the Angular application as content. Listing 4.1 shows the background page of this
extension. After spawning the panel, the background page is standby doing nothing,
everything now happens through the Angular application running inside the panel.

1 chrome . browserAction . onCl icked . addLis tener ( function ( ) {
2 chrome . windows . c r e a t e ({
3 u r l : chrome . ex tens i on . getURL( ’ main . html ’ ) ,
4 type : ’ panel ’ ,
5 focused : true ,
6 he ight : 520 ,
7 width : 400 ,
8 } ) ;
9 } ) ;

Listing 4.1: Background page.

4.2.5 Demonstration

After launching the extension, as previously explained, users are presented with the
window shown in figure 4.6. In this example the active site does not have a record in
the user’s challenge database, thus the “add new” dialog. By clicking the button,
new challenges are generated and stored in the database as a new site. The site is
automatically added with the current site domain as key together with randomly
generated challenges. Before adding the site, users can specify which category they
rate the site in (low, medium or high), depending on this choice, 5, 10 or 15 challenges
are generated. Next time the user visits the same page, challenges will appear. After
adding a new site, it is the users responsibility to change the password of this site so
it matches the challenges.

Figures 4.7a-d shows how users would use the extension when logging in to a site.
When launching it, the system receives the current sites domain and loads the first
challenge associated wit that site. Users then calculates the first character using

15Background pages - https://developer.chrome.com/extensions/background_pages

https://developer.chrome.com/extensions/background_pages
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the challenges displayed. When this is entered in the password field, new challenges
appear until the whole password is calculated.

Data Flow

Figure 4.8 illustrates the life cycle of the application. When users visit a site, an event
is triggered and caught by the content script, which in turn informs the controller
about the newly loaded site. The controller then tries to load challenges for that site
from the storage; if there is a record, the view is updated with the first challenge,
if not the “add new”-dialog is loaded. Next event is triggered when the user enters
a character in the password field, on receiving notice from the content script the
controller updates the view with a new challenge depending on the length of the
password. This then goes on until the entire password is calculated, eventually closing
the extension panel.

4.2.6 Discussion

The approach of this project when designing the HCP extension was to make a clean
and intuitive application, making the password management scheme feasible to use.
The extension does not require any user interaction, except from when adding new
sites, this was done so users could focus on doing the calculation correctly without
having to keep track of the challenges. The scheme itself is also quit complicated so
it is important for users to focus on as few operations as possible. (I.e. the simplest
approach would be to have a “next”-button for users to click between every character
calculated.)

The choice of a browser extension was made with the same mind set, making
the application helpful and not distracting. It should be easy to start using the
application, requiring as little configuration and managing as possible. The design
and construction make it so that the only configuration required is the changing
of passwords when adding sites, which essentially can not be circumvent. Panels
is another very useful feature, since the panels float on top of the other browser
windows and keep focus while typing. Without panels the user would have to switch
between windows when calculating a character and typing it in the password field,
which would be a huge drawback both in terms of time and usability.

One apparent problem with using extensions is that they are not supported in
mobile browsers, and probably will never be16. The solution to this would be to make
an additional application for mobile, and sync the data to another service available
on mobile as well. This could be done quite easily since the data is stored as text,
the only change needed would be to substitute the storage module with some other

16Multidevice FAQ - https://developer.chrome.com/multidevice/faq

https://developer.chrome.com/multidevice/faq
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cloud storage service. The problem if the application was built for mobile would be
the lack of space to display challenges while typing the password.

As mentioned in section 2.1.1, some sites may enforce password policies [SBSB07],
forcing users to include different types of characters. HCP does only produce digits
which might be a problem on some sites. A solution to this is to either have an option
in the application to mark accounts where policies are enforced and append dummy
characters to the password produces by the scheme. E.g if the application displayed
challenges producing the password “234554675687856”, and the site requires a symbol
and upper/lower case letters, a user would append “Xa*” to the calculated password
to circumvent the policy.

The decision to make a browser extension was made on behalf of the mentioned
pros and cons, with the most important parameter being disturbance. Only extensions
allow a seamless, non-interfering user interface. The other options, namely web
application and mobile application, would require switching between windows or at
least switching of focus, as well as requiring the user to manually chose the correct
site and browse through the different challenges. This is all done automatically
with the construction presented in this chapter. The main goal of the design was
to include the least amount of unnecessary features, with a clean and unobstructive
interface. A summary of the strengths of the chosen design is listed next.

• Easy to use, require little to no user interaction after configuration.

• Panel that stays on top while entering the password allows for quick and easy
calculation without stopping to update and manage challenges.

• Chrome.storage.sync automatically synchronize the stored challenges to the
users’ Google accounts allowing persistent usage across devices and accounts.

• All data is stored as text strings, this makes it easy to integrate with other
services in the future. Users could also store the challenges elsewhere if need
be, e.g. as text locally or even print the challenges on paper in the extreme
case.



4.2. HUMAN COMPUTABLE PASSWORDS CHROME EXTENSION 49

Figure 4.5: Class diagram of the HCP Chrome extension.
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Figure 4.6: Screen as seen by the user after launching the extensions while on a page
without stored challenges. After clicking the “Add site”-button, the view updates,
showing the newly generate challenges. Users should then calculate the response and
change the password of the site to match it. Next time the same user wants to log in
to the site, they will calculate the response again as seen in figure 4.7.
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(a) (b)

(c) (d)

Figure 4.7: Challenge screens as seen by the user while entering password. The
challenges update when the user enter a new character in the password field.
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Controller Content Script Chrome Storage Web Page User

Visit page
pageLoadEvent

newUrl
loadChallenges()

update view

New char
inputChangedEvent

newPwLength
update view

LoopLoop

Figure 4.8: Sequence diagram showing the flow in the system when a page is loaded
and characters typed in a password field.



Chapter5Usability Experiment

This chapter presents the design and execution of an experiment trying to measure
the performance of the HCP scheme. The experiment is designed as a web application
implementing the scheme, allowing participants to test how the scheme would work
in practice while measuring how fast and reliable the computation is performed. The
application acts as both a demonstration app and a tool for gathering performance
data. It has four sections designed to help the participants understand the scheme
and get familiar with the computation technique. First, a demonstration video
is shown explaining how to compute a password from a challenge, then users are
asked to enter some demographic data. Next is the practice section, where users are
supposed to practice doing the calculation until feeling comfortable solving challenges
without error. Finally is the experiment part, where the calculations are timed and
correctness monitored. After finishing the calculations user submit the data and can
choose to continue doing more experiments now, or later.

5.1 Experiment Objective

The goal of the experiment is to measure how hard it is for a user to learn the scheme,
i.e. how fast and reliable users do the calculations. The experiment measures the
calculation times of the participants, and also monitor their progression after several
trials. Users should also be able to calculate passwords without too many mistakes.
The failure rate is maybe the most important variable to measure; if a user averages
more than one mistake for each password calculated the scheme would not work in
practice, since most passwords calculated would be wrong.

It is important to note that this project does not see the HCP scheme as a
replacement for the widely used standard password managers. It is regarded as a
solution for users interested in a secure and reliable way of keeping track of strong
passwords, without having to trust a password management service or application.
This experiment tests if it is even possible, for users willing to go through the trouble

53
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of learning a secret mapping, to use the scheme as an everyday solution.

The objectives of the experiment can be summarized as the following.

• Measure the average calculation times, both for each participant and for the
whole population.

• Measure how much users improve after several trials.

• Measure the average failure rate for each participant.

5.2 Method

The experiment does not try to test any preset hypothesis as it is not clear what to
expect regarding either of the tested values. It is not known how hard it is do to the
calculations, neither regarding calculation times or failure rates. The results of the
experiment does not give an answer, but rather a basis for further data collection
through larger scale experiments, for example using crowd sourcing or social medias.

Exploratory data analysis (EDA) was introduced by John W. Turkey [Tuk77]
and involves analysis of data without a prior hypothesis to test. The technique
promotes exploration of data to possible find characteristics not previously considered,
and essentially suggesting hypotheses to be tested in later surveys or experiments.
Velleman and Hoaglin [HD79] describe EDA as a contrast to the formal scientific
method involving stating a hypothesis, collecting data and applying a statistical
test of the hypothesis. EDA often involves making graphical representations of the
data, and then trying to find interesting characteristics and relations. EDA does not
conclude with a hypothesis test based on the collected data, but is the first step of
an iterative process trying to reveal facts.

Remark 5.1.
The project does not store any personal information about the participants, and is
thus not subject to notification to the "Norwegian Social Science Data Service"1. The
experiment only records an anonymous id plus the experiment results consisting of
computation time and correctness of the calculations done. Some demographic data
is also recorded (age, area of study), but the data can not be connected to person
and are thus not regarded as personal information.

After conducting the experiment, the data is examined and significant charac-
teristics discussed. There are some obvious parameters to explore, including means

1Is my research project subject to notification? - http://www.nsd.uib.no/nsd/english/pvo.html

http://www.nsd.uib.no/nsd/english/pvo.html
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and standard deviation of the calculation times and failure rate, as well as how these
change with practice.

The usability of the scheme directly relies on the calculation time and failure
rate as discussed in section 3.3. This can be discussed further after obtaining some
numbers giving a picture of what is normal and possible in terms of speed and
reliability.

A result showing that more than 95% of all calculations are correct would be
promising, since it would mean that approximately 60% of the passwords calculated
would be correct, given length 10 passwords. If the failure rate is significantly worse,
the scheme would more often than not be useless since most users would obtain a
faulty password when trying to log in. The conclusion of the experiment presented
in this project will either way have to be tested more thoroughly, possibly using the
same experiment setup or preferably with a throughly random mapping as well.

5.3 Experiment Setup

The experiment presents and demonstrates the calculation technique to the users,
which then is given a chance to practice until fairly familiar with the mechanics.
Finally users are asked to calculate a complete password challenge, from which the
time spent on each single digit challenge is recorded, as well as if the calculation was
correct or not. The practice section allows users to learn through trial and error,
using backspace to go back and forth between challenges while also given feedback on
the correctness. The experiment view on the other hand does not give any feedback
and does not allow user to go back after entering a character. This is done to make
sure all mistakes are recorded, even if it is only a miss click.

5.3.1 Secret Mapping

The biggest decision made in regards to the experiment design was how to simulate
the operation “recall” i.e. recalling from memory. It would not be feasible to ask
all the participants to memorize a secret mapping beforehand as this would make
it very hard to find volunteers. The chosen solution to this problem is to include
a “cheat sheet” in addition to the displayed challenges, i.e. a list of object to digit
mappings shown separately but in the same view as the challenge.

After some testing it became apparent that there was a big difference between
recalling from memory and actually “reading” from a list, which this approach
eventually is. To make the operation more similar to the desired recall operation, the
mapping was changed from random alphabet positions (e.g A=1, B=2, C=3). This
way one does not always have to read in the table to know the mapping. Most users
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will be able to know instantly what the mapping for at least the first and eventually,
after some practice, all the letters, much easier than with a random mapping. The
is the closest way of mimicking the actual operations of the scheme without having
the participants memorize an actual mapping. It is not in any way certain that this
shortcut reflect the real world act of recalling from memory, but it is assumed to be
“close enough” for the experiment.

Remark 5.2.
The author of this project did memorize a mapping of both 10 and later 20 mappings
without significantly different calculation times compared to using the alphabet
positions.

5.3.2 Participants

The participants for the experiment were chosen mostly from people known by
the author, this limits the number of participants somewhat. This was done to
ensure the quality of the data samples. The experiment could have been distributed
through crowd sourcing services or social media, probably increasing the number
of participants drastically. The problem with this approach, and the reason for not
doing it, is that the experiment requires absolute concentration which can not be
assured from “casual” participants accessing the experiment through a link posted
on facebook. Since every participant calculates 10 single digit challenges for each
trial of the experiment, there is still a decent amount of data samples, even with
relatively few participants.

Even if the experiment might be limited by the number of participants, the results
are still considered to be interesting. Since the scheme tested is not supposed to be a
widely-deployed password manager, it might be sufficient if the experiment can show
that some users are able achieve what is considered sufficient usability. It should also
be noted that most of the participants are regarded above average in mathematics.
This might be a strength or a weakness of the experiment as it does not represent a
wide range of the population, but the calculation times should at least be stronger
than average.

5.4 Web Application

The experiment application is similar in design to the Chrome extension presented
in chapter 4, but implemented as a web application. It is implemented using the
AngularJS framework (as described in chapter 4) and a mongoDB2 database to store
the results, a cookie in the users’ browser is used to keep track of users across trials.

2mongoDB - https://www.mongodb.org/

https://www.mongodb.org/
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The application consists of four sections to flip through, with the last one being
the actual experiment. First, users are presented with a video demonstration of the
scheme and instructions on how to calculate passwords. The slides used to instruct
users can be seen in Appendix B. After watching the demo, users are asked to enter
some demographic data (age and occupation). Next, is a section which looks the
same as the experiment, but without the actual recording of data, this is the practice
section. The purpose of this section is to give users a chance to verify that they have
understood the scheme and are actually able to calculate passwords. When users
are ready to start the experiment, they can continue on to the actual experiment,
which is the final view. The experiment is exactly like the practice section, without
response on correctness and redo capabilities, with backspace deactivated. The first
sample of the experiment is not counted towards the results, allowing users to get
ready and start when they feel like it.

Section 3.3.3 discusses how a single digit challenge can be presented to users in a
logical way, possibly making it more efficient to calculate. The experiment uses a
similar layout to the one shown in Table 3.4 and also as in the Chrome extension
in chapter 4. The challenges update in the same way as in the chrome extension so
users should be able to calculate the responses continuously. The calculation time
is recorded for each single digit challenge computed, together with a boolean value
representing if the result was correct or not.

Figure 5.1 shows the screen after completing a trial of the experiment, next users
will push the submit button and the sample would be saved in the database together
with a random identification stored in a cookie in the users’ browsers. Users can
then redo the experiment several times keeping the same id, making it possible to
track each participant’s development.

As for the storage of results a noSQL database called MongoDB is used. After
completing a trial of the experiment a Javascript object is stored in the database,
Table 5.1 shows an example of this object. Note the hcp_id field which is fetched
from a cookie in the participants’ browsers, making it persist across several trials.

The views of the web application can be seen in Appendix C or by visiting the
hosted experiment site at hcp.sp1nakr.com.

5.5 Results

This section presents the results of the conducted experiment and investigate the
characteristics of the data recorded. The focus is on the calculation times and failure
rates, which both are important factors in the resulting usability of the scheme, as
discussed in section 3.3.

hcp.sp1nakr.com
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hcp_id 1b7aa17ea0
occupation Technology student

age 27
results [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

calcTimes [12.047, 7.115, 8.022, 9.283, 10.544, 8.807, 9.925, 9.78, 7.11, 8.187]

Table 5.1: Experiment object after completing a trial, as stored in the database.

The observations made are not necessarily representative for all users, because
of the relatively small number of samples (467 single digit challenges), but it is still
interesting to investigate the consequences of the results. Even if the results show that
the scheme achieves a lower level of usability than what are considered acceptable,
it might still function well for some users with the right amount of practice. The
limitations of the experiment is discussed, in addition to results and the consequences
of these.

5.5.1 Calculation Times.

How fast a user is able to calculate the response to a single digit challenge is a
concrete measure of the usability of the scheme. Figure 5.2 shows the distribution of
calculation times of all the experiment samples, the calculated average off all the 467
trials are 10.296 seconds. The median value is 9.406 with standard deviation of 3.64
which also can be observed in the figure.

Recall conjecture 3.1 from section 3.1.2. The function f (see definition 3.3) used
in this project is (P, 9, 3)-computable. The conjecture then defines the variable γH
for user H as γH = t̂

9 .

The average γ of all the participants are γ̃ = 10.104
9 = 1.227. This is slightly higher

than the 7.5 seconds (γH ≤ 1) Blocki [BBD14] predicts that users with moderate
mathematical backgrounds should achieve. It is still not unreasonably high, and
should not be a direct hindrance. Calculating a 10 character password would for
example take 10 · 10 = 100 seconds, just above 1.5 minutes, to calculate, 15 character
would take 2.5 minutes. On average spending 2-3 minutes calculating a password
might seem like a lot, but users concerned about the security of their accounts,
might be willing to make this trade-off. Especially if users are worried about putting
passwords in the hands of a online service to store persistently (e.g. lastpass.com),
might be willing to put quite some time into calculating passwords instead.

It is also relevant to study the evolution of each user in terms calculation times.
Figure 5.3 illustrates the average calculation time for each ith trail per user. i = 1
represent the average of the first calculation done by each user, i = 2 the second
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calculation etc. The figure clearly illustrates that the averages decrease with practice.
This could have been expected, since users will be more and more familiar with the
calculation procedure for each trial. The consequence of this observation is that
the average calculation time, and consequently γ, would be significantly lower if the
participants got more practice with the scheme before their results was recorded.
Each participant averaged 33 samples each, so it is not feasible to e.g. calculate the
average after removing the 20 first calculations from each participant, as this would
leave very few trials. The important goal of the experiment is though not to find an
accurate average calculation time, but to verify that γH ≤ 1 is achievable. It seems
that the average most likely is somewhere between 9 and 11 seconds, depending on
how long users have been using the scheme, which is not severely limiting.

Figure 5.4 and table 5.2 shows the 7 participants with the most samples, the
same effect can be observed, all except from one participant have a downward going
trend (see SCT in table 5.2).

SMP MCT SDCT SCT MFR
72 9.02 2.38 −0.015 0.0695
36 10.06 3.24 0.038 0.1944
72 9.62 2.79 −0.373 0.0278
45 10.33 3.33 −0.115 0.044
45 10.06 3.31 −0.068 0.089
36 9.89 3.34 −0.143 0.083
45 9.88 3.33 −0.023 0.022

Table 5.2: Table of the 7 best participants. SMP=sample size, MCT=mean calcu-
lation time, SDCT=standard deviation of calculation time, SCT=slope calculation
time, MFR=mean failure rate.

5.5.2 Failure rate.

Failure rate is a key characteristic of the scheme. As mentioned it is essential that a
user is able to calculate passwords correctly for the scheme to function. How high the
failure rate can be depends on how long passwords are used and how often a user can
enter the wrong password without locking the account. A typical password protected
site will allow a minimum of three strikes before the account is locked [BS03]. It is
thus important that the probability of being “locked out” is small enough for it not
to happen often, how often is of course subject to discussion.

Observation 5.1.
Average failure rate for all samples recorded in the experiment was measured to be
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λ̃ = 0.0584795321637, approximately every one out of 17 single digit challenge was
calculated wrong.

This observation might not seem very unusual, but since a password consists
of a sequence of calculations, it is required that users calculate a given number
of challenges consecutively without failure. It is thus more interesting to evaluate
the probability of having at least one mistake in a complete password calculation
sequence. It is also not unusual to enforce a password policy using a three-strike
policy which locks the account if three consecutive mistakes are made. Next, these
probabilities are presented and discussed.

The probability of having at least one mistake in a length l password given the
failure rate λ is given by

P (fail) = 1− (1− λ)l (5.1)

Next, the probability of getting the account locked given a three-strike policy
with the same password and failure rate is

P (lock) = (1− (1− λ)l)3 (5.2)

Password length l 3 5 10 15
P (fail) 0.1654 0.2601 0.4526 0.5959
P (lock) 0.0045 0.0176 0.0927 0.2107

Table 5.3: Probability of having at least one mistake in a length l password given
failure rate λ = 0.0584795321637 for each single digit challenge.

Observation 5.3 shows the probabilities of calculating a password wrong once
and three times in a row. If users want to use a password of 15 characters, which
is reasonable to assume since the scheme only produce digits, they will compute a
faulty password nearly 60% of the time. This limits the usability severely, since users
will more often than not, be unable to log in.

The probability of actually locking the account by miscalculating three passwords
in a row, is lower but not significantly. With the same failure rate and password
length, users would break the three-strike rule approximately one out of five login
attempts.

To illustrate this consequence in a extreme case, consider the very active user
from table 3.2 in section 3.3 who visits 10 different accounts every day. Such an user
would eventually lock two accounts every day with password lengths of 15 characters,
which of course is not acceptable.
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As discussed in section 3.3.3 (and as implemented in chapter 4), the password
length needed for different accounts may vary. By using shorter password for
noncritical accounts, and only generating long passwords for the most critical, the
average password length will be much lower than in the examples above. The scheme
could then be tweaked by users to fit specific needs, instead of requiring 10 or 15
characters in all passwords generated. For less sensitive accounts users may have
passwords of lengths 5, which would make for a mistake in approximately every 4th
password, and only locking an account every 57th login attempt. This way users can
calculate passwords with significantly less effort and lower failure rates.

The experiment did not find any significant correlation between failure rates and
calculation times. Users calculating fast do not have a higher failure rate than slower
users, which some might have expected.

Remark 5.3.
The author remarks that the findings related to failure rates might be too harsh since
the participants was asked to calculate the challenges “as fast as possible”, which
might be the wrong approach. In a real world scenario it would be more important
to calculate correctly. Though, the results clearly show that the failure rate is a
relevant attribute worth investigating closer, as it might limit the reliability of the
scheme in real usecases.
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Figure 5.1: The experiment screen seen after completing an experiment sample, ready
to be submitted.
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Figure 5.2: Histogram showing the distribution of calculation times of all the recorded
experiments. Sample size 467 single digit challenges.
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Figure 5.3: Average calculation time of all participants’ i′th calculation sample, and
the regression line of the averages. Sample size 467, average samples per participant
33.
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Figure 5.4: Regression lines for the 7 participants with the most samples. A clear
downward sloping trend in terms of calculation time is observed.





Chapter6Concluding Remarks and Further
Work

This project has presented the human computable password management scheme
by Blocki et al. [BBD14], as well as the design and construction of two applications
implementing the HCP scheme with different purposes. How different characteristics
and parameters affect the usability of the scheme was discussed, as well as how
password length and number of secret mappings affect the security. Failure rate was
introduced as an important factor affecting the usability of the scheme.

6.1 Application and Usability Remarks.

The first application is a Google Chrome browser extension, making it easy for users
to employ the scheme without too much trouble. It is a fact that the scheme is
quite complex and requires a lot dedication from the users for it to work. It is thus
important to have a tool minimizing extra work required, including management and
generation of challenges. Without a tool to take care of these obstacles, the scheme
would be very hard to use in practice. With the application created in this project,
users only have to worry about memorizing and rehearsing the secret mapping, all
the overhead related to generation, storing and fetching of challenges is handled by
the extension. The one choice users have to make is what category to put their
accounts in, either low, medium or high sensitivity. This measure was introduced
to increase the usability by lowering the average number of single digit challenges,
while still keeping the important accounts secured.

The application is available in the browser, making it very accessible in situations
where passwords are needed. The extension monitors the active page browsed by
the users and fetches information from DOM allowing it to display the correct
challenge at all times, both in regards to which page users are visiting and how
many characters are entered in the password field. E.g. if users visit google.com
the extension will get notice about this and bring up the challenges associated with
google.com. If the site is not part of the system, users will get the chance to add

67

google.com
google.com


68 6. CONCLUDING REMARKS AND FURTHER WORK

it. When calculating passwords, the challenge on display updates for each entered
character in the password field.

Blocki et al. [BBD14] define usability as a combination of calculation time, effort
spent memorizing σ and extra rehearsal in addition to natural usage. This project
has introduced failure rate as another influential factor. It is apparent that it does
not matter how fast users calculate if the calculations are not correct. It can also be
observed in the experiment that failures do happen, and thus should be part of the
usability analysis.

6.2 Experiment and Findings.

The second application is a web application functioning as a demonstration platform
as well as an experiment, gathering usage data. The experiment gathers data related
to calculation time and failure rates. It was created to investigate how the scheme
performs, with usability characteristics in focus. The participants in the experiment
get a short introduction and the chance to practice until fairly familiar with the
scheme. They are then asked to calculate a complete password consisting of 10 single
digit challenges, while getting timed.

The experiment measured a average calculation time of 10.296 seconds, with a
standard deviation of 3.64. This is considered to be reasonably good, as it should
not limit the usability of the scheme severely. It could also be observed that users
improved over time so that average calculation time would probably be even lower
after some practice.

A more unanticipated result was the failure rate, which was measured to be 0.058,
meaning that every 17 single digit challenge would be calculated wrong. This result
should not be interpreted as a dismissal of the scheme, since different users will
achieve different failure rates, and many will be able to calculate correctly most of
the time. What should be emphasized though, is that the failure rate should be
investigated closer, to verify that a general user average a low enough failure rate.

6.3 Further Work

6.3.1 Additional Applications.

This project showed how browser extensions can be used to create an easy to use
password management application. This choice was made with a goal of making a
quite complex scheme usable without too much overhead and practice. A possible
way to make the scheme even more accessible, would be by creating an accompanying
web application and possibly a mobile application. These applications could use
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the same storage, while still syncing to chrome storage for the browser extension
and to mobile storage for the mobile application. It would be useful to have a user
management page to overview user data and challenges. The construction presented
here does not allow users to manually configure the account which some users might
dislike.

6.3.2 Larger Scale Experiments

It is, as mentioned, clear that the failure rate of the scheme is important for it to
function in practice. The experiment conducted in this project did not aim to verify
a hypothesis, which should be the next step. A typical setup would could be similar
to the one presented here, but in a larger scale, possibly using a crowd sourcing
service or social media, asking the participants to calculate challenges. It would be
important to get more samples from each participant, making it easier to calculate
different averages after more practice.

It would also be interesting to conduct a survey gathering data about how users
rate their account. Typically asking how many they regard as “highly sensitive”,
“don’t-care” etc. This would make it possible calculate an average password length
which again could be used to measure failure rates and calculation times more
thoroughly. By knowing how many accounts users have of each type, it would be
possible to say something about how many mappings would be sufficient to have in
σ.
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AppendixAExtension Class Files

A.1 Content Script
1 window . onload = setTimeout ( updateUrl ( ) , 5 0 0 ) ;
2 var passwords = getPwdInputs ( ) ;
3 var pwField = passwords [ 0 ] ;
4
5 i f ( pwField ){
6 pwField . addEventListener ( ’ input ’ ,
7 function ( c a l l b a c k ){
8
9 c o n s o l e . l o g ( " input content : " + pwField . va lue . l e n g t h ) ;

10 chrome . runtime . sendMessage ({ pwValue : pwField . va lue . l e n g t h +1},
11 function ( respons ){
12 c o n s o l e . l o g ( " Respons pw changed : " + respons ) ;
13 } ) ;
14
15 } ) ;
16 }
17
18 function getPwdInputs ( ) {
19 var ary = [ ] ;
20 var i np u ts = document . getElementsByTagName ( " input " ) ;
21 for ( var i =0; i<in p ut s . l e n g t h ; i ++) {
22 i f ( i n pu t s [ i ] . type . toLowerCase ( ) === " password " ) {
23 ary . push ( in p ut s [ i ] ) ;
24 }
25 }
26 return ary ;
27 }
28
29 function updateUrl ( ) {
30 chrome . runtime . sendMessage ({ newUrl : window . l o c a t i o n . hostname } ,
31 function ( respons ){
32 c o n s o l e . l o g ( "URL changed to : "+ window . l o c a t i o n . hostname ) ;
33 } ) ;
34 }

Listing A.1: Content script file.

The content script listens for the onload event triggered by the window object
when a new page is loaded. When receiving this event the updateUrl function(line
29) is called, which sends an update containing window.location.hostname which is
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the hostname of the currently active page. Hostname is used since login forms may
be located at different locations at different domains.

Next the script searches the DOM for input fields of type “password” using
the getPwdInputs function(line 18). This function iterates through all the input
fields looking for password fields. If a password field is found, an event listener is
attached to the field, listening for events of type “input” which are sent when the
field changes1. When the password field changes a message containing the new length
of the password is sent to the controller.

A.2 Controller
1 angular . module ( ’human−computable−pws . c o n t r o l l e r s ’ , [ ] )
2 . c o n t r o l l e r ( " MainContro l ler " ,
3 function ( $timeout , $scope , chromeStorage ){
4 // i n i t i a l v a lues
5 $scope . user = " " ;
6 $scope . pw=0;
7 $scope . s e l e c t e d S i t e=n u l l ;
8 $scope . s i t e C l a s s = ’ 10 ’ ;
9

10 // funct ion adding new s i t e to the user
11 $scope . newSite = function ( ) {
12 var newSite = new S i t e ( $scope . ur l , $scope . s i t e C l a s s ) ;
13 $scope . user . s i t e s . push ( newSite ) ;
14 $scope . s e l e c t e d S i t e = newSite ;
15 chromeStorage . s e t ( " user " , $scope . user ) ;
16 $scope . newSiteButton = f a l s e ;
17 }
18
19 // t r y to load the user o b j e c t from storage ,
20 // i f no user i s present , create new .
21 try{
22 chromeStorage . getOrElse ( " user " ,
23 function ( ) {
24 var newUser = {
25 name : " user " ,
26 s i t e s : [
27 new S i t e ( " accounts . g o o g l e . com" ) ,
28 ]
29 } ;
30 chromeStorage . s e t ( " user " , newUser ) ;
31 return newUser ;
32 } ) . then ( function ( keyValue ){
33 $scope . user = keyValue ;
34 } ) ;
35 }
36 catch ( e r r ){
37 c o n s o l e . l o g ( " Not run as e x t e n s i o n " )
38 }
39
40 // r e c e i v e messages sent from the content s c r i p t
41 // i f u r l or password l e n g t h changes
42 var tmp ;
43 function handleMessage ( ) {
44 i f (tmp . pwValue ){

1https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener
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45 $scope . pw = tmp . pwValue−1;
46 c o n s o l e . l o g ( "pw : %o " , $scope . pw ) ;
47 c o n s o l e . l o g ( " ombjects : %o " , $scope . user )
48 }
49 i f (tmp . newUrl ){
50 $scope . u r l = tmp . newUrl ;
51 var s i t e = s e a r c h L i s t ( $scope . ur l , $scope . user . s i t e s ) ;
52 i f ( ! s i t e ){
53 $scope . newSiteButton=t rue ;
54 $scope . s e l e c t e d S i t e = n u l l ;
55 } else {
56 $scope . newSiteButton=f a l s e ;
57 $scope . s e l e c t e d S i t e = s i t e ;
58 }
59 }
60 }
61 //add eventhandler l i s t e n i n g f o r messages from content s c r i p t
62 try{
63 chrome . runtime . onMessage . addLis tener (
64 function ( message , sender ){
65 tmp = message ;
66 $timeout ( handleMessage ) ;
67 } ) ;
68 }
69 catch ( e r r ){
70 c o n s o l e . l o g ( " not e x t e n s i o n " )
71 }
72 } ) ;

Listing A.2: Angular controller.

The controller is responsible for all the business logic, keeping the storage updated
with new users and new sites. The newSite method on line 11 is called when then
“new site”-button is clicked by the user, it then generates a new object of type Site
with the domain name and selected site class (essentially the number of single digit
challenges to be generated). The site is then added to the user object which is stored
in the database to keep the storage persistent in case of disconnection.

When the controller is loaded the first action executed is trying to load the user
object from the storage (line 21), if no user object is found, the controller creates
a new one. In the code presented here, a new user is initiated with a dummy site
for demonstration purposes. All the storage specific methods are called from the
chromeStorage object, which makes it easy to do operations accessing the Chrome
storage. The getOrElse is used, which checks for a user object and creates a new if
none is present.

The controller also listens for messages from the content script, this event listener
can be seen at line 62. When a message is received the handleMessage is called
to process the data, distinguishing between a changes in the URL and changes in
password length. When data is received, the corresponding variable in the controller
is updated. If a new site was added, the view is also updated, hiding the "new
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site"-button.

A.3 App.js File

1 var hcp = angular . module ( ’human−computable−pws ’ , [
2 ’human−computable−pws . c o n t r o l l e r s ’ ,
3 ’ ngAnimate ’ ,
4 ’ chromeStorage ’ ,
5 ’ ngRoute ’ ,
6 ] ) ;
7
8 hcp . c o n f i g ( [ ’ $compi leProvider ’ ,
9 function ( $compi leProvider ) {

10 var c u r r e n t I m g S r c S a n i t i z a t i o n W h i t e l i s t =
11 $compi leProvider . i m g S r c S a n i t i z a t i o n W h i t e l i s t ( ) ;
12 var newImgSrcSanit izat ionWhiteList =
13 c u r r e n t I m g S r c S a n i t i z a t i o n W h i t e l i s t . t o S t r i n g ( ) . s l i c e (0 ,−1)
14 + ’ | chrome−e x t e n s i o n : ’ +c u r r e n t I m g S r c S a n i t i z a t i o n W h i t e l i s t .
15 t o S t r i n g ( ) . s l i c e (−1);
16
17 c o n s o l e . l o g ( " Changing i m g S r c S a n i t i z a t i o n W h i t e L i s t from "+
18 c u r r e n t I m g S r c S a n i t i z a t i o n W h i t e l i s t+" to "+
19 newImgSrcSanit izat ionWhiteList ) ;
20 $compi leProvider . i m g S r c S a n i t i z a t i o n W h i t e l i s t (
21 newImgSrcSanit izat ionWhiteList ) ;
22 }
23 ] ) ;
24
25 hcp . c o n f i g ( [ ’ $ rou tePr ov id er ’ ,
26 function ( $ro utePr ov i der ){
27 $ rout ePro v ide r .
28 when ( ’ / ’ ,{
29 templateUrl : ’ p a r t i a l s / content . html ’ ,
30 c o n t r o l l e r : ’ MainContro l ler ’
31 } ) .
32 o t h e r w i s e ({
33 r e d i r e c t T o : ’ / ’
34 } ) ;
35 } ] ) ;
36
37 function s e a r c h L i s t ( s i t e , s i t e s ){
38 i f ( s i t e s == undef ined ) return f a l s e ;
39 for ( var i = 0 ; i<s i t e s . l e n g t h ; i ++){
40 i f ( s i t e s [ i ] . name == s i t e ){
41 return s i t e s [ i ] ;
42 }
43 }
44 return f a l s e ;
45 }
46
47
48
49 function S i t e (name , s i t e c l a s s ){
50 this . name = name ;
51 this . c h a l l e n g e s = [ ] ;
52
53 for ( var j =0; j<s i t e c l a s s ; j ++){
54 this . c h a l l e n g e s . push ( randomChallenge ( ) ) ;
55 }
56 }
57
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58 function getRandInt ( ) {
59 var intArr = new Uint8Array ( 1 ) ;
60 window . crypto . getRandomValues ( intArr ) ;
61 i f ( intArr [0]>=Math . f l o o r (256/26) ∗ 26)
62 return getRandInt ( ) ;
63 return ( intArr [ 0 ] % 2 6 ) ;
64 }
65
66 function randomChallenge ( ) {
67 var l e t t e r s = " abcdefghi jklmnopqrstuvwxyz " ;
68 var ch = [ ] ;
69 for ( var z =0; z <14; z++){
70 ch . push ( l e t t e r s . charAt ( getRandInt ( ) ) ) ;
71 }
72 return ch ;
73 }

Listing A.3: Angular launcher file.

The app.js file initiates the application, specifying the modules used, as well as
some helper functions, including the function responsible for generating the random
challenges(line 66).

A.4 View File (partial file)
1 <div c l a s s=" conta iner−f l u i d ">
2 <div id=" form−c o n t a i n e r ">
3
4 <hr c l a s s=" d i v i d e r ">
5
6 <div a l i g n=" c e n t e r ">
7 <s e l e c t ng−model=" s e l e c t e d S i t e "
8 ng−o p t i o n s=" s i t e . name f o r s i t e in user . s i t e s "
9 c l a s s=" dropDownColor " >

10 </ s e l e c t >
11 </div>
12 <hr c l a s s=" d i v i d e r " s t y l e=" margin−bottom : 0 ; ">
13 <div id=" c h a l l e n g e s ">
14 <div a l i g n =" c e n t e r " c l a s s=" newSiteButton " ng−show=" newSiteButton ">
15 <div c l a s s=" infoBox " >
16 The c u r r e n t s i t e does not have c h a l l e n g e s s t o r e d in the system .
17 <hr>
18 <form name=" s i t e C l a s s " c l a s s=" s i t e C l a s s ">
19 <l a b e l for=" r a d i o 1 ">Low
20 <input type=" r a d i o "
21 ng−model=" s i t e C l a s s "
22 value=6
23 id=" r a d i o 1 ">
24 </l a b e l >
25 <l a b e l for=" r a d i o 2 ">Med
26 <input type=" r a d i o "
27 ng−model=" s i t e C l a s s "
28 value=10
29 id=" r a d i o 2 ">
30 </l a b e l >
31 <l a b e l for=" r a d i o 3 ">High
32 <input type=" r a d i o "
33 ng−model=" s i t e C l a s s "
34 value=15
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35 id=" r a d i o 3 ">
36 </l a b e l >
37 </form>
38 <button ng−c l i c k=" newSite ( ) "
39 c l a s s=" btn btn−i n f o "
40 ng−show=" tru e " >Add s i t e </button>
41 </div>
42 </div>
43 <div ng−hide=" newSiteButton ">
44 <t a b l e
45 a l i g n=" c e n t e r " c l a s s=" c h a l l e n g e s "
46 ng−i n i t=" s i t e = user . s i t e s [ user . s i t e s . indexOf ( s e l e c t e d S i t e ) ] ">
47 <tr>
48 <td>
49 <img ng−s r c=" l e t t e r s / l e t t e r _ {{ s i t e . c h a l l e n g e s [ pw ] [ 1 0 ] } } . png "/>
50 <img ng−s r c=" l e t t e r s / l e t t e r _ {{ s i t e . c h a l l e n g e s [ pw ] [ 1 1 ] } } . png "/>
51 </td>
52 <td>
53 <img ng−s r c=" l e t t e r s / l e t t e r _ {{ s i t e . c h a l l e n g e s [ pw ] [ 1 2 ] } } . png "/>
54 </td>
55 <td>
56 <img ng−s r c=" l e t t e r s / l e t t e r _ {{ s i t e . c h a l l e n g e s [ pw ] [ 1 3 ] } } . png "/>
57 </td>
58 <td></td>
59 </tr>
60 </table >
61 <hr c l a s s=" d i v i d e r " s t y l e=" margin : 0 ; ">
62 <t a b l e a l i g n=" c e n t e r " c l a s s=" c h a l l e n g e s ">
63 <tr>
64 <td>
65 0<img ng−s r c=" l e t t e r s / l e t t e r _ {{ s i t e . c h a l l e n g e s [ pw ] [ 0 ] } } . png "/>
66 </td>
67 <td>
68 5<img ng−s r c=" l e t t e r s / l e t t e r _ {{ s i t e . c h a l l e n g e s [ pw ] [ 5 ] } } . png "/>
69 </td>
70 </tr>
71 <tr>
72 <td>
73 1<img ng−s r c=" l e t t e r s / l e t t e r _ {{ s i t e . c h a l l e n g e s [ pw ] [ 1 ] } } . png "/>
74 </td>
75 <td>
76 6<img ng−s r c=" l e t t e r s / l e t t e r _ {{ s i t e . c h a l l e n g e s [ pw ] [ 6 ] } } . png "/>
77 </td>
78 </tr>
79 <tr>
80 <td>

Listing A.4: Angular view. Only included the table showing the challenges for
readability.

The code shown in this listing contains the view where the challenges are presented,
as well as the new site button and site classification radio buttons. Notice the ng-show
directive on line 14, this decides if the "new site"-functionality should be shown or
not. If newSiteButton is true it will appearer and vice versa, the same goes for the
challenges which starts on line 34 with a similar directive, ng-hide, which hides the
challenges div if new site is visible.
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The challenges div is essentially a table containing an element of the challenge in
each cell. Notice the double bracket notation, where each of the challenge objects are
referred. {{site.challenges[pw][i]}} refers to the $scope.site.challenges which contains
the challenges associated with the current active page. pw is at any given time the
length of the password field of the active web page, if pw changes the challenge on
display will automatically change through the two-way data binding. This way, the
correct challenge will always be the one seen by the user.
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Figure B.1: Demo slide 1.
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Figure B.2: Demo slide 2.

Figure B.3: Demo slide 3.
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Figure B.4: Demo slide 4.

Figure B.5: Demo slide 5.
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Figure B.6: Demo slide 6.
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Figure C.1: First view shown to the user, containing a demonstration video. Created
using wideo.co.

wideo.co
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Figure C.2: Second view shown to the user, gathering some basic demographic data
which might be relevant.
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Figure C.3: Third view of the web application. Practice section used by the user
before entering the actual experiment.
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Figure C.4: Final view, containing the experiment form. The user will calculate
the response to the challenge on display and enter the answer in the password field.
When finished the results can be submitted. And eventually stored in the database.
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