

Abstract

The Internet of Things consists of heterogeneous devices from a range of
uncoordinated vendors, and this causes an interoperability problem. This
thesis studies potential solutions to these challenges on the application
layer of the Internet. Different approaches are studied, including, but not
limited to: alliances, frameworks, consortia, open source projects, and
closed projects.

The thesis looks at three different strategies: standardization, code
generation, and extending the current web. These strategies are discussed
regarding the requirements of the Internet of Things as well as future
prospects. Next, the thesis presents four approaches on how to include
semantics in order to achieve interoperability. The study reveals that not
all approaches are able to solve the interoperability issue, but some can.

Based on the study, the thesis presents a tripartite division of the
application layer. Protocols, data, and semantics are regarded separate
problems that all require solutions in order to achieve an interoperable
Internet of Things. This thesis does not provide a common language for
the Internet of Things, but discusses the different requirements of such a
language. The study provides guidelines on what need to be considered
when developing an interoperable Internet of Things.

Sammendrag

Tingenes internett består av heterogene enheter fra en rekke, ukoordiner-
te leverandører og dette forårsaker et interoperabilitetsproblem. Denne
avhandlingen studerer potensielle løsninger til disse utfordringene på
applikasjonslaget i internett. Forskjellige tilnærminger studeres, inkludert,
men ikke begrenset til: allianser, rammeverk, konsortier, åpen kildekode-
prosjekter og lukkede prosjekter.

Avhandlingen ser på tre forskjellige strategier; standardisering, kode-
generering og utvidelse av den nåværende weben. Disse strategiene er
drøftet med tanke på kriteriene til tingenes internett i tillegg til fremti-
dens prospekter. Deretter presenterer avhandlingen fire tilnærminger til
hvordan semantikk kan inkluderes for å oppnå interoperabilitet. Under
studiet kommer det frem at ikke alle tilnærmingene kan løse interopera-
bilitetsproblemet, men noen kan.

Basert på studiet presenterer avhandlingen en tredeling av appli-
kasjonslaget. Protokoller, data og semantikk er ansett som separate
problemer som alle krever løsninger for å kunne oppnå et samhandlende
tingenes internett. Denne avhandlingen foreslår ikke et felles språk for
tingenes internett, men drøfter ulike krav et slikt språk må oppfylle.
Studiet foreslår ulike retningslinjer for hva som må vurderes når man
utvikler et samhandlende tingenes internett.

Preface

This document serves as my master’s thesis that marks the conclusion of
a five-year study on communications technology at Norwegian University
of Science and Technology (NTNU).

First I would like to thank my supervisor Frank Alexander Kraemer
who guided me through my research and introduced me to the Internet
of Things. I would also like to express my gratitude towards Martin
Kirkholt Melhus for serving as discussion partner, spell checker, and
moral support through the writing of this thesis. Finally I would like to
thank the project contributors that have patiently answered my questions
and provided me a better understanding for their projects: Klaus Birken
from the Franca project, Alexander Edelmann and Olaf Weinmann from
the Vorto project, and Matteo Collina from the Ponte project.

Contents

List of Figures xi

List of Tables xiii

List of Listings xv

List of Acronyms xvii

1 Introduction 1
1.1 Internet of Things . 1

1.1.1 Definition and Explanation 1
1.1.2 History . 2

1.2 Motivation . 3
1.3 Problem and Scope . 3
1.4 Method . 4
1.5 Related Work . 4
1.6 Outline . 5

2 An Internet of Things Example 7
2.1 The Device . 7
2.2 Personas . 8

2.2.1 The Vendor . 8
2.2.2 The Developer . 8
2.2.3 The Consumer . 9

3 The Internet Protocol Stack 11
3.1 Protocol Layers . 11
3.2 Application Layer . 11

3.2.1 Hypertext Transfer Protocol (HTTP) 12
3.2.2 Constrained Application Protocol (CoAP) 13
3.2.3 MQTT . 13
3.2.4 Summary . 13

3.3 Transport Layer . 14

vii

3.3.1 Transmission Control Protocol (TCP) 15
3.3.2 User Datagram Protocol (UDP) 15
3.3.3 Summary . 15

3.4 Network Layer: Internet Protocol (IP) 16
3.4.1 Internet Protocol Overview 16
3.4.2 IPv6 over Low Power Wireless Personal Area Networks (6LoW-

PAN) . 16
3.4.3 Internet Protocol in the IoT 17

3.5 Link Layer . 18
3.5.1 IEEE 802.3 (Ethernet) . 18
3.5.2 802.11 Standards (Wi-Fi) . 18
3.5.3 IEEE 802.15.4 (ZigBee, ISA100.11a, WirelessHart, MiWi) . . 19
3.5.4 IEEE 802.15.1 (Bluetooth) 19
3.5.5 Near Field Communication (NFC) 19
3.5.6 Z-Wave . 19
3.5.7 INSTEON . 20
3.5.8 Cellular . 20
3.5.9 Summary . 20

3.6 Pysical Layer . 22

4 Interoperability Initiatives 23
4.1 Alliances and Consortia . 23

4.1.1 AllSeen Alliance and AllJoyn 23
4.1.2 Open Interconnect Consortium (OIC) and IoTivity 24

4.2 Data Serialization Frameworks . 24
4.2.1 Apache Thrift . 24
4.2.2 Google Protocol Buffers . 25

4.3 Interface Definition and Code Generation 25
4.3.1 Eclipse Vorto . 25
4.3.2 Eclipse Franca . 27

4.4 Standardization . 28
4.4.1 Internet of Things - Architecture (IoT-A) 28
4.4.2 European Telecommunications Standards Institute (ETSI) Ma-

chine to Machine (M2M) Standards 28
4.4.3 Lightweight Machine to Machine (LWM2M) 29

4.5 Other Initiatives . 29
4.5.1 Eclipse Ponte . 29
4.5.2 HyperCat . 30
4.5.3 Machine-to-Machine Measurement (M3) 30
4.5.4 Google Weave . 30

4.6 Summary . 31

5 Experiments 33
5.1 LWM2M Experiment . 33
5.2 Eclipse Vorto Experiment . 35
5.3 Eclipse Franca Experiment . 37
5.4 Google Protocol Buffers Experiment 37
5.5 Summary . 39

6 Strategies 41
6.1 Creating a Common Standard . 41
6.2 Code Generation . 42
6.3 Extend the Web . 43
6.4 Summary . 44

7 Interoperability Approaches 47
7.1 Everything JSON . 47
7.2 Web Services . 49
7.3 Metamodel . 50
7.4 Ontology . 51
7.5 Summary . 52

8 Discussion 55
8.1 Dissecting the Interoperability in IoT at the Application Layer . . . 55
8.2 Data Transfer Protocols . 55
8.3 Data Representation . 56
8.4 Semantics . 57
8.5 Vendors’ Perspective . 58
8.6 Standards . 59
8.7 Centralization . 59
8.8 A Language for the IoT . 60

9 Concluding Remarks 65

References 67

List of Figures

3.1 Five-layer Internet protocol stack. 12

4.1 Overview over the Vorto project. Figure taken from the project’s web site
which can be found in [vora]. 26

5.1 Screenshot of the Object Viewer of the LWM2M Object Editor Ver 1.2.01
after making an ExampleThermostat. 34

5.2 Screenshot of the web application HTML file after making the Thermostat
and generating the web application. 36

8.1 The application layer. 56

xi

List of Tables

3.1 Summary of the application layer protocols. 13
3.2 Summary of the transport layer protocols. 15
3.3 Summary of the link layer protocols. 20

6.1 Pros and cons of the different IoT interoperability strategies. 44
6.2 What strategies the different IoT initiatives are using. IoT-A is not

providing a standard, but is guidelines from the European Union (EU). 45

8.1 Standardization efforts in the IoT. 60
8.2 Description of the different language requirements. 61
8.3 Overview over which language requirements the IoT approaches fulfill. . 61

xiii

List of Listings

5.1 .fbmodel file defining a function block for the thermostat. 36
5.2 .fidl file defining an interface for the thermostat. 38
5.3 .proto file made to represent the thermostat. 39

xv

List of Acronyms

3G Third Generation.

4G Fourth Generation.

6LoWPAN IPv6 over Low power Wireless Personal Area Networks.

AMQP Advanced Message Queuing Protocol.

API Application Programming Interface.

ARM Architectural Reference Model.

BLE Bluetooth Low Energy.

BSON Binary JSON.

CoAP Constrained Application Protocol.

CRC Cyclic Redundancy Check.

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance.

DSL Domain Specific Language.

DTLS Datagram Transport Layer Security.

EDGE Enhanced Data rates for Global System for Mobile Communications (GSM)
Evolution.

EMF Eclipse Modeling Framework.

ETSI European Telecommunications Standards Institute.

EU European Union.

EXI Efficient XML Interchange.

xvii

Gb/s Giga bit per second.

GPRS General Packet Radio Service.

GSM Global System for Mobile Communications.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

IBSG Internet Business Solutions Group.

ID Identifier.

IDL Interface Definition Language.

IEC International Electrotechnical Commission.

IEEE Institute of Electrical and Electronics Engineers.

IETF Internet Engineering Task Force.

IoE Internet of Everything.

IoT Internet of Things.

IoT-A IoT - Architecture.

IP Internet Protocol.

IPC Inter-Process Communication.

IPSO Internet Protocol for Smart Objects.

IPv4 IP version 4.

IPv6 IP version 6.

ISA International Society of Automation.

ISO International Organization for Standardization.

IT Information Technology.

ITU International Telecommunication Union.

JSON JavaScript Object Notation.

LAN Local Area Network.

LLN Low-powered and Lossy Network.

LOV Linked Open Vocabularies.

LoWPAN Low-power Wireless Personal Area Network.

LR-WPAN Low-Rate Wireless Personal Area Network.

LWM2M Lightweight M2M.

M2M Machine-to-Machine.

M3 Machine-to-Machine Measurement.

MAC Media Access Control.

Mb/s Mega bit per second.

MIB Management Information Base.

MTU Maximum Transmission Unit.

NAT Network Address Translation.

NFC Near Field Communication.

NTNU Norwegian University of Science and Technology.

OASIS Organization for the Advancement of Structured Information Standards.

OIC Open Interconnect Consortium.

OMA Open Mobile Alliance.

OMNA Open Mobile Naming Authority.

OWL Web Ontology Language.

PSM Protocol State Machine.

RDF Resource Description Framework.

REST Representational State Transfer.

RF Radio Frequency.

RFC Request for Comments.

RFID Radio-Frequency Identification.

SenML Sensor Markup Language.

S-LOR Sensor-based Linked Open Rules.

SMS Short Message Service.

SOAP Simple Object Access protocol.

SSN Semantic Sensor Network.

STAC Security Toolbox: Attack & Countermeasure.

SWoT Semantic Web of Things.

TCP Transmission Control Protocol.

TV Television.

UDP User Datagram Protocol.

UK United Kingdom.

URI Uniform Resource Identifier.

US United States.

W3C World Wide Web Consortium.

Wi-Fi Wireless Fidelity.

WLAN Wireless Local Area Network.

WoT Web of Things.

WPAN Wireless Personal Area Network.

WSD Web Services Description.

WSDL Web Services Description Language.

XML Extensible Markup Language.

XMPP Extensible Messaging and Presence Protocol.

Chapter1Introduction

In 2014 the Internet of Things (IoT) topped Gartner’s hype cycle1 [hypb], which
suggest that it is on its ‘peak of inflated expectations’. What is important for the
IoT to succeed is to find the solutions that will help the field to mature and reach
the ‘plateau of productivity’. This chapter will define the IoT and give a brief history
of the IoT up until today.

1.1 Internet of Things

1.1.1 Definition and Explanation

The Oxford dictionary [iotc] defines the term IoT as follows:

The interconnection via the Internet of computing devices embedded in
everyday objects, enabling them to send and receive data.

In other words we can say that the IoT is all everyday objects connected to the
Internet that are able to communicate with each other. Examples of such objects
can be lamps, washing machines, cars, industrial robots, food, clothes, cities, and the
list goes on. Generally the IoT can be everything people surround themselves with.

The critical part is that the objects are able to communicate. Just being connected
to the Internet does not necessarily make an object more desirable, but by being able
to communicate with other objects, they have the possibility of making everyday
life easier, more efficient, and cheaper. For instance, a coffee maker start brewing
when the alarm clock goes off in the morning or a printer orders new ink when it is
running low, it could even check where to buy the cheapest ink.

1A graphic representation of the maturity and adoption of technologies and applications, and
how they are potentially relevant to solving real business problems and exploiting new opportunities.
[hypa]

1

2 1. INTRODUCTION

Other, similar terms that appear when studying the IoT are Web of Things (WoT)
and Internet of Everything (IoE). These terms are harder to define as they are less
used, but we can say that IoE is much the same as IoT in that it is a philosophy
in which everything, objects, devices, people, animals, plants, etc., are connected to
the Internet and able to communicate with each other. The WoT is a philosophy in
which everything is integrated with the web. The WoT is considered as a subset of
the IoT and the focus is on using well-known web standards such as Representational
State Transfer (REST), Hypertext Transfer Protocol (HTTP) and Uniform Resource
Identifiers (URIs) in IoT devices.

1.1.2 History

The term ‘Internet of Things’ first appeared in a presentation held by Kevin Ashton
in 1999 [iotd], but there are many earlier examples of ‘things’ being connected to
the Internet. For instance, in 1982, at Carnegie Mellon University, they had a
Coke machine connected to the Internet [cok]. The machine was able to report
on its inventory and whether newly loaded drinks where cool; they named it ‘The
“Only” Coke Machine on the Internet’. One can find many similar examples of
computer engineers connecting coffee pots, toasters, and other everyday items to the
Internet before the Internet went commercial in 1995. There have also been many
presentations and articles before 1999 presenting the idea of things being connected
and able to communicate, without it being called the Internet of things.

However, after 1999 the term has been adopted and the technology has evolved.
In 1999 it was the idea that Radio-Frequency Identification (RFID) tags were the
connection points between the Internet and the objects. In 2000 LG announced
its plans of making an Internet refrigerator [lgf] that should be able to show prices
and availability of groceries as well as give the consumers the possibility to use
their refrigerator as a Television (TV), radio, videophone, and calendar among other
things.

In 2003-2004 the term started to be mentioned in publications such as The
Guardian [Dod03], Scientific American [GKC] and the Boston Globe [Wei04]. In
2005 the International Telecommunication Union (ITU) published the report ‘The
Internet of Things’ as the 7th report in their series of reports on the Internet [ITU05].
Between 2006 and 2008 the EU recognized the IoT and the first European IoT
conference was held [eui].

According to the Cisco Internet Business Solutions Group (IBSG), the Internet
of things was ‘born’ between 2008 and 2009 as this was the breaking point where
more objects or ‘things’ where connected to the Internet than people [Eva11].

In 2008 United States (US) made IoT one of the 6 ‘Disruptive Civil Technologies’

1.2. MOTIVATION 3

that may have an impact on the US interest out 2025 [Cou08]. In 2010 Google
introduced a self-driving vehicle project. The same year Bluetooth released the
Bluetooth Low Energy (BLE) that enabled applications in the fitness, health care,
security, and home entertainment industries. In 2011 the IP version 6 (IPv6) was
launched and made the IoT possible to realize.

After 2011 the IoT domain has grown; standards, organizations, platforms,
projects, and alliances have appeared over the years, and some of these will be
discussed in this thesis.

1.2 Motivation

The motivation behind this thesis is the need for a common language that enables
all IoT devices to communicate. The current IoT is diversified and different vendors
are using different standards. This is creating information silos and vendor lock-in.
Consumers need different applications for every device they surround themselves with
and none of the devices are able to talk together, they only talk to some server on
the Internet. This is not making everyday life easier for the consumer, rather more
complex. Silos may become the death of the IoT, and as Tan and Wang [TW10]
state in their article: ‘Only if we can solve the interoperability problem we can have
a real the Internet of Things.’

1.3 Problem and Scope

The objective of this thesis is to find the road to one or more solutions to the
interoperability issue in the hope that devices from different vendors in the future
will be able to communicate. The thesis focus on how to achieve interoperability on
the application layer of the Internet and investigates initiatives that work on top of
Internet Protocol (IP) and are designed for seamless interconnection between different
devices. This is done through studying ongoing projects, frameworks, organizations,
alliances, and proposed standards for this field. These initiatives are then discussed
in combination with different strategies the IoT can take. This involves looking at
extending the existing web, creating a new standard and use code generators. What
many of the initiatives lack are semantics and a common understanding of data, thus
a chapter on different approaches on describing data is included. Semantics in the
IoT can both be described through web services, metamodels, and ontologies, as well
as other approaches that are not discussed in this thesis.

The result is a tripartite division of the application layer that enables considering
data transfer protocols, data representation, and semantics on different layers. The
thesis will show that there exist solutions enabling mapping between different proto-
cols, thus proposing a solution where data representation and semantics are the two

4 1. INTRODUCTION

aspects that need to be agreed upon when creating an interoperable IoT. The thesis
aims to conclude what are the different requirements for a common language in the
IoT and provide an insight in the ongoing interoperability initiatives. The thesis will
not have one solution to the problem, but rather focus on considerations that need
to be taken when trying to achieve interoperability.

Note that also security and privacy are big issues in the IoT, but those issues are
outside the scope of this thesis.

1.4 Method

I have collected references and strived to find relevant scientific papers and approved
standards where possible. As many of the projects are relatively new, not all have
sufficient information available. In these cases, I also tried to directly contact project
members in order to get a better understanding of their projects. I experimented
with some of the projects’ proposals. Initiatives were studied by looking at them
from different perspectives as presented in Chapter 2. This included looking at the
initiatives from the vendor’s perspective as well as from the consumer and developer’s
perspectives.

1.5 Related Work

There are many projects with similar goals as this thesis. They all want everything
in the IoT to be able to communicate across vendors. However, not all of them
concentrate on the application layer.

The Internet Protocol for Smart Objects (IPSO) [ips] alliance is working on
establishing the Internet Protocol as the basis for the connection between devices in
the IoT. They also organize interoperability tests to show that devices that use IP for
Smart Objects can work together and meet industry standards for communication.
They are performing the groundwork for this thesis as they aim for IP to be the
underlying protocol for all Smart objects.

European Telecommunications Standards Institute (ETSI) is working on making
standards for Information and Communications Technologies and is recognized by the
EU as a European Standards Organization [etsa]. They have a technical committee
working on Machine-to-Machine (M2M) communications [etsb] that aims to provide
an end-to-end view of M2M standardization. They are providing standards on all
levels, also the application level of the IoT. This is highly relevant for this thesis as
these standards are likely to be used by European vendors.

1.6. OUTLINE 5

IoT - Architecture (IoT-A) is a project initiated by the EU and it has released a
set of proposed guidelines for the architecture of the IoT. This is not a guarantee for
interoperability in the IoT, but a tool to help achieve it.

The Allseen Alliance is a cross-industry effort that wants all objects to be
connected in simple transparent ways to enable seamless sharing of information [alla].
AllSeen is managing the AllJoyn project, which is ‘an open, universal, secure, and
programmable software connectivity and services framework that enables companies
and enterprises to create interoperable products that can discover, connect and
interact directly with other AllJoyn-enabled products’ [allb].

The Open Interconnect Consortium (OIC) [oic] was made as a competitor to the
AllSeen Alliance and has a goal of defining connectivity requirements and ensuring
interoperability of the devices that makes up the IoT. The OIC is also sponsoring the
IoTivity [iota] project, which is delivering an open source reference implementation
of the OIC standard specifications.

HyperCat [hypc] is a project that is aiming for interoperability in the IoT by
using web annotations such as JavaScript Object Notation (JSON) and HTTP. It
is designed to be easy to work with and is already used for creating smart cities in
the United Kingdom (UK). They want applications to be able to discover and make
sense of data automatically. This is a developed solution to the problem studied in
this thesis and it is more about this solution in Chapter 4.

Eclipse is hosting many projects that are working in the IoT field. One of them
is Vorto, which aims to enable a global standardization by creating a repository of
IoT device meta information models and offer code generation to assist developers.
Eclipse is also hosting the Ponte project, which wants to bridge the gap between
application layer protocols such as Constrained Application Protocol (CoAP), MQTT
and HTTP.

Machine-to-Machine Measurement (M3) is a framework to semantically annotate
and interpret IoT data. This is designed to help developers develop for a Semantic
Web of Things (SWoT) without needing to know semantic web technologies. The
aim of the framework is to use ideas from the semantic web in order to create a
SWoT and an interoperable IoT.

1.6 Outline

In the eight chapters that follow I discuss initiatives in the IoT and how these can
be used in order to achieve interoperability. Chapter 2 present an example of an IoT
device and three different view points for this device. This example is referred to
through the whole thesis.

6 1. INTRODUCTION

Chapter 3 looks at the Internet protocol stack and present protocols that are
relevant to the IoT on the different layers. Chapter 4 present initiatives that are
interesting regarding interoperability in the IoT and Chapter 5 present experiments
conducted with four of these initiatives.

Chapter 6 present three different strategies for how the interoperability problem
can be solved. This includes looking at which of these strategies the initiatives in
Chapter 4 use. Chapter 7 presents four interoperability approaches that are more
specific and on a higher level than the strategies. Chapter 8 is a discussion of what
has been presented in Chapter 6 and Chapter 7. Chapter 9 contains concluding
remarks.

Chapter2An Internet of Things Example

This chapter describes some personas that are used later in this thesis to explain
how different applications and protocols work in order to better understand what
advantages and disadvantages they bring into the IoT.

The first section describes an IoT device and its functionalities. The following
section describes what different personas are expecting from this device.

2.1 The Device

The device is a smart thermostat that are learning the consumer’s usage patterns and
adapting to changes that happen in the environment it is placed. The thermostat
should have the following functionalities:

– The thermostat should be able to be controlled through dedicated remote
controllers and wall-mounted controllers as well as through smartphones, tablets
or laptops.

– The thermostat should control temperature and humidity.

– The thermostat should announce to its users when it increase or decrease
temperature due to changes it has noticed.

– The thermostat should learn the usage patterns of the consumer and be able
to adjust to them.

– The thermostat should aim to keep a stable temperature in a room and notice
if devices that may affect the temperature are turned off/on.

– The thermostat should notice if there are people present in a room.

– The thermostat should show how much time it is until a desired temperature
is reached.

7

8 2. AN INTERNET OF THINGS EXAMPLE

– The thermostat should aim to save power.

– The thermostat should guide the consumer to choose temperatures that save
energy.

– The consumer should be able to set desired temperatures and for what time he
wants them, also away from home.

– The consumer should be able to get an overview over energy use, temperature
and humidity on a smartphone, tablet or laptop.

The thermostat is to be used in a home environment and a consumer can have
many thermostats in a home, placed in different rooms and they should be able to
communicate with each other.

2.2 Personas

2.2.1 The Vendor

The vendor wants to sell the thermostat and the main selling point is the energy
savings.

The vendor does not care too much about which technologies that are used as
long as it is not expensive and everything work as expected.

The vendor does not see interoperability with other vendors’ devices as necessary.
However, the vendor would like the thermostat to be able to communicate with
devices he does not produce himself. Thus, the vendor agrees to use open technologies
that can lead to interoperability.

The main goal of the vendor is to increase his sales.

2.2.2 The Developer

For the developer it is important that the technologies that are to be used are well
documented and easy to understand. The developer is not afraid of trying new
technologies, but know that new technologies require more development time as it is
less documented and the developer has less experience. Thus, new technologies tend
to be more expensive to use.

The developer is an open source supporter and believes that open source tech-
nologies are most useful.

The developer is concerned about the speed of the thermostat’s communication,
how often it is going to fail and what consequences that will have.

2.2. PERSONAS 9

2.2.3 The Consumer

The consumer is the end-user of the thermostat and he wants it to work as soon as it
is mounted on the wall. It is important for the consumer that the thermostat works
as the specifications say and that it is easy to use it.

The consumer wants the thermostat to work perfectly at every moment and the
down time should be little to non-existing. The consumer wants the thermostat to
update itself without the need for human interaction.

The consumer wants the thermostat to work together with the rest of the IoT
products he has as well as the ones he is going to buy in the future. The consumer
does not want to perform manual configuration to make it all work together; this
should happen automatically.

Chapter3The Internet Protocol Stack

The following chapter gives a brief explanation on how the Internet is built and
provides some information about relevant protocols on the different layers. In the
end of each section the protocols are summarized regarding why they are relevant for
the IoT. This chapter also provides a reasoning for the assumption that everything
has IP as an underlying protocol.

To avoid any confusion, a definition of the term protocol from [KR10] is provided:

A protocol defines the format and the order of messages exchanged
between two or more communicating entities, as well as the actions taken
on the transmission and/or receipt of a message or other event.

3.1 Protocol Layers

In order to provide structure to the Internet, network designers organize protocols
in layers. Figure 3.1 depicts the traditional five-layer Internet protocol stack. All
protocols belong to one of the five layers and provide services to the layer above.
Several protocols inside a layer can create their own stack and provide services within
the layer. The services provided from one layer to another are called the service
model of the layer. All layers (except the physical layer) are performing their services
by using services provided by the layer below and performing actions within the
layer.

3.2 Application Layer

The application layer is the uppermost layer and the layer, which is visible to the
end-user; it is where the applications and their application-layer protocols reside.
An application-layer protocol is distributed over multiple end systems, with the
application in one end system using a protocol to exchange packets of information

11

12 3. THE INTERNET PROTOCOL STACK

Figure 3.1: Five-layer Internet protocol stack.

with the application in another end system. In this thesis, the main focus is on
application layer protocols and applications. In the following section three common
application layer protocols used in the IoT are presented.

3.2.1 Hypertext Transfer Protocol (HTTP)

HTTP is the most widely adapted application layer protocol on the World Wide Web.
The Internet Engineering Task Force (IETF) and the World Wide Web Consortium
(W3C) [FGM+99] have done the standardization of HTTP. The abstract of the
Request for Comments (RFC) says that:

The HTTP is an application-level protocol for distributed, collaborative,
hypermedia information systems. It is a generic, stateless, protocol which
can be used for many tasks beyond its use for hypertext, such as name
servers and distributed object management systems, through extension
of its request methods, error codes and headers. A feature of HTTP is
the typing and negotiation of data representation, allowing systems to be
built independently of the data being transferred.

By using the REST pattern where every resource is globally identified by a URI,
HTTP can be used to integrate different software applications. HTTP is a text-based
protocol, which means that many data types are transferred in text format. HTTP
uses Transmission Control Protocol (TCP) as the underlying transport layer protocol.

3.2. APPLICATION LAYER 13

Transport protocol Messaging
HTTP TCP Request/response
CoAP UDP Request/response
MQTT TCP Publish/subscribe

Table 3.1: Summary of the application layer protocols.

3.2.2 Constrained Application Protocol (CoAP)

CoAP is a specialized web transfer protocol for use with constrained nodes and
constrained networks in the Internet of Things [coa]. CoAP is specified in RFC 7252.
See [SHB14] for a detailed description of CoAP.

As HTTP, CoAP is an implementation of the REST pattern. However, one
important difference is that CoAP is by default implemented over User Datagram
Protocol (UDP) and not TCP like HTTP. It is also binary and not text-based. CoAP
was created in order to extend web technology to support small, constrained, and
embedded devices on Low-powered and Lossy Networks (LLNs).

3.2.3 MQTT

MQTT is a publish/subscribe protocol with a central broker, designed to be lightweight,
power efficient, and simple. It is based on TCP (like HTTP). MQTT is standardized
by Organization for the Advancement of Structured Information Standards (OASIS)
and the standard and full description of MQTT can be found in [mqt].

3.2.4 Summary

An overview of the protocols presented in this section can be found in Table 3.2.4.

There are also many more protocols, for instance Advanced Message Queuing
Protocol (AMQP), Extensible Messaging and Presence Protocol (XMPP), Simple
Object Access protocol (SOAP), etc., but they have not been widely adapted in the
IoT.

As for the three protocols mentioned, it is not obvious which is better suited for
the IoT. HTTP may be considered too extensive for many IoT devices because it
is originally developed for the web. However, because it is developed for the web
it could be favorable to use it in order to make the web and the IoT interoperable.
Developers already know HTTP and development time would be short. At the same
time, it is possible to use CoAP, which translates to HTTP. CoAP is generally very
similar to HTTP so it is easy for web developers to start using it. However, both
HTTP and CoAP are request/response patterns, which can become very complex

14 3. THE INTERNET PROTOCOL STACK

and impractical if many devices want to observe the same service. MQTT addresses
the problem by being a many-to-many protocol that is a more efficient solution than
the ‘observe’ mechanism implemented in CoAP.

Since MQTT is using TCP it is reliable and thus favorable to use in IoT environ-
ments where data is expensive and reliability is important. CoAP is using UDP and
this can be a problem in Network Address Translation (NAT) environments, this can
be solved with tunneling or port forwarding, but at the cost of added complexity.

CoAP and HTTP provide support for content negotiation and discovery, which
allow devices to examine each other in order to find ways of exchanging data. MQTT
does not provide any support for labeling messages and thus clients need to know
the message formats beforehand in order to allow communication.

All three protocols have both advantages and disadvantages; which one to choose
depends on the device and application requirements.

If we look at the thermostat from Chapter 2 it would want to subscribe to many
sensors around the house such as thermometers, moist sensors, windows, doors, and
ovens in order to have a good overview of the temperature situation in the house.
This is making MQTT the most suitable protocol as it will not require that many
one-to-one connections. The thermostat tells the broker which devices it wants to
subscribe to and the broker is responsible for communicating the information. The
thermostat will only have a few subscribers; probably some smartphones of those
living in the house, there is no need for a broker to administer this so CoAP would
be sufficient. Also the thermostat is fixed on the wall and most likely using the
power-line and not a battery. Thus the thermostat could use HTTP without being
drained of battery. This would also make it easy to make a web interface for it. But
if the thermostat is only using HTTP it would be difficult for it to communicate with
the other devices around the house that are smaller and battery driven and using
CoAP or MQTT. Thus it is not a straightforward answer to what the thermostat
should use, but because a house is small and does not (as of 2015) have thousands of
sensors and devices, it would be sufficient to use CoAP.

3.3 Transport Layer

The transport layer carry application layer messages between application endpoints.
There are two transport-layer protocols in the Internet; TCP and UDP. The transport
layer offers the application layer services such as: reliability, congestion avoidance,
flow control, multiplexing, and connection-oriented data stream support.

3.3. TRANSPORT LAYER 15

TCP UDP
Connection Connection-oriented Connectionless
Header size 20 bytes 8 bytes

Table 3.2: Summary of the transport layer protocols.

3.3.1 Transmission Control Protocol (TCP)

TCP provides a connection-oriented service to its applications that includes guar-
anteed delivery of application layer messages to the destination. TCP requires a
three-way handshake in order to set up a connection. The advantages of TCP are
obvious; it offers a reliable service, flow control, and multiplexing as well as other
services.

3.3.2 User Datagram Protocol (UDP)

The UDP protocol provides a connectionless service to its applications. It does not
offer a reliable service, so on lossy links, there is a high risk that not all packets
reaches the receiver. However, UDP has a smaller header than TCP, which requires
less computational power in the end-devices. UDP is also faster because there is no
error checking for packets.

3.3.3 Summary

Table 3.2 shows a brief overview of the transport layer protocols; TCP and UDP.

Regarding the IoT it is not clear what transport protocol should be used. CoAP
is using UDP while MQTT is using TCP. These are two application layer protocols
that are used a lot in the IoT.

If we look at the thermostat from Chapter 2 we see that it is supposed to
continuously control the temperature and have to send and receive messages with
the temperature several times in the minute. For this task UDP would be sufficient,
as it would not be critical if a temperature measurement was lost. However, the
thermostat is also supposed to take orders from consumers and a consumer would not
be satisfied if he had to set the temperature several times because the information
got lost on the way. Thus, TCP could be a good solution. One problem with the IoT
is that it often uses LLNs and would still like to have both a fast service and no loss.

TCP is the most adopted protocol in the Internet, except for real time services
such as video and audio, and thus many developers tend to use it because that is
what they are used to. However, as we have seen here, both transport layer protocols

16 3. THE INTERNET PROTOCOL STACK

clearly have both advantages and disadvantages and it really depends on the tasks
the IoT device are going to do.

3.4 Network Layer: Internet Protocol (IP)

The network layer is responsible for moving network layer packets from one host to
another. The Internet’s network layer includes the IP.

3.4.1 Internet Protocol Overview

The main network layer protocol is IP and there are two versions of IP in use, IP
version 4 (IPv4) and IPv6. IPv4 is most used, but Internet has grown bigger than
first anticipated, causing a depletion of IPv4 addresses. An IPv4 address is 32-bit
(or 4 bytes) long and on the form a.b.c.d. In 2011, IPv6 was launched providing
128-bit addresses, which should be sufficient to address every grain of sand in the
world [KR10]. IPv6 addresses are written as eight groups of four hexadecimal digits
separated by colons, for instance: 0000:1111:2222:3333:4444:5555:6666:7777.
In addition to addressing, IPv6 have fixed some of the problems of IPv4, including
faster processing of the IP datagrams, a new definition of flow allowing video to be
sent as a flow while for instance e-mail will not, hierarchical address allocation limits
the expansion of routing tables; multicast addressing is expanded and simplified
and thus provides additional optimization for the delivery of services. Also device
mobility, security, and configuration aspects have been considered.

IPv6 addressed many problems in the Internet, but in the IoT, devices are getting
smaller and having less computational power, thus making IPv6 too memory- and
bandwidth-intensive for the IoT devices. Therefore IPv6 over Low power Wireless
Personal Area Networks (6LoWPAN) was created.

3.4.2 IPv6 over Low Power Wireless Personal Area Networks
(6LoWPAN)

Low-power Wireless Personal Area Networks (LoWPANs) comprise devices that
conform to the Institute of Electrical and Electronics Engineers (IEEE) 802.15.4-
2003 standard [802] by the IEEE (see Section 3.5.3). IEEE 802.15.4 devices are
characterized by short range, low bit rate, low power, and low cost, similar to the
devices in the IoT [KMS07].

6LoWPAN is an IPv6-based LoWPAN. The goal is to reduce packet overhead,
bandwidth consumption, processing requirements, and power consumption. Since
IPv6 requires support for packet sizes much larger than the largest IEEE 802.15.4
frame size (127 octets), an adaption layer between the link and network layers is

3.4. NETWORK LAYER: INTERNET PROTOCOL (IP) 17

defined to enable efficient transmission of IPv6 datagrams over 802.15.4 links [HCC09].
This adaption layer provides three main services:

– Packet fragmentation and reassembly. Fragmentation is done when the payload
size exceeds the Maximum Transmission Unit (MTU) size and cannot be carried
within a single IEEE 802.15.4 frame. Breaking the link frame into multiple link
fragments does this.

– Header compression. Header compression is done by assuming the use of com-
mon values on the network and link layer. This will avoid needless information
duplication.

– The link layer uses link layer forwarding when multi-hop.

3.4.3 Internet Protocol in the IoT

This thesis assumes that everything is working over IP and this section present the
advantages IoT devices can get from IP.

One big advantage with IP is that it already has proven to be long-lived and
stable. The ability to evolve is important, but many IoT devices are designed to be
long-lived, often up to ten years. Thus, it is important to know that the underlying
protocols are stable and still available when the system is reaching the end of its life
cycle. Because IP is the core of today’s public Internet, it will continue to exist well
into the future.

IP has also proven to be scalable and supports a range of applications, devices,
and underlying technologies, something that is important in the IoT. The IoT is
composed of a variety of link layer protocols and transmission mechanisms and
because many devices have different properties, it is unlikely that they will share
a single link layer protocol. By supporting a range of link layer technologies, IP
is already providing interoperability between existing networks, applications and
protocols [VD10].

The network layer does not care about the application layer applications. Thus,
the network layer is just about sending a string of bits. As is stated in [VD10]:

The network does not know if it is transporting a temperature reading
from a temperature sensor, a piece of sound from a voice conversation, a
control command, or a piece of a larger file. It only knows that it has
been given a string of bits to transport from one end of the network to
another. It is up to the applications running at the end points to make
sense of the bits.

18 3. THE INTERNET PROTOCOL STACK

I will also mention that it is important with a small footprint as most IoT
devices have low energy consumption, small physical size and low cost. IP is
a heavyweight protocol and does not fit into these requirements, but by using
lightweight implementations of IP such as 6LoWPAN this is not a problem.

3.5 Link Layer

The link layer is the layer that provides services to the network layer, what services
it provides depends on the specific link layer protocol that is used. Examples of
link layer protocols include Ethernet and Wireless Fidelity (Wi-Fi). As datagrams
typically need to traverse several links to travel from source to destination, a datagram
may be handled by different link layer protocols at different links along its route
[KR10].

3.5.1 IEEE 802.3 (Ethernet)

Ethernet is the most common wired Local Area Network (LAN) technology. It is
standardized in [IEE12a]. It can operate with speeds in a range from 1 Mega bit per
second (Mb/s) to 100 Giga bit per second (Gb/s) and there is a different Ethernet
version for each speed. Ethernet is using a common Media Access Control (MAC)
specification and Management Information Base (MIB).

Ethernet is providing a connectionless and unreliable service to the network
layer. Ethernet also offers a Cyclic Redundancy Check (CRC), thus bit errors in a
transmission can be detected.

3.5.2 802.11 Standards (Wi-Fi)

IEEE 802.11 Wireless Local Area Network (WLAN) [IEE12b] is a group of standards
developed by the IEEE and Wi-Fi is based on these standards. Wi-Fi is used in
general as a synonym for WLAN since most WLANs are based on these standards
and Wi-Fi is a very common wireless technology. As Ethernet, Wi-Fi is also a MAC
specification. There are several 802.11 standards for WLAN technology, including
802.11a, 802.11b, and 802.11g. A number of dual-mode (802.11a/g) and tri-mode
(802.11a/b/g) standards are also available and there is ongoing work on creating
more [KR10]. Wi-Fi is a trademark of the Wi-Fi Alliance [wif] and the ‘Wi-Fi
CERTIFIED’ trademark can only be used by products that successfully complete
the Wi-Fi Alliance interoperability certification testing.

Wi-Fi uses a link-layer acknowledgement scheme in order to avoid failure. If the
destination receives a frame that passes the CRC, it waits a short period and sends
back an acknowledgement frame. Thus, Wi-Fi can offer a reliable service. Wi-Fi is

3.5. LINK LAYER 19

also using Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) in
order to avoid collisions that may appear in the wireless network.

3.5.3 IEEE 802.15.4 (ZigBee, ISA100.11a, WirelessHart, MiWi)

IEEE 802.15.4 is a standard specified in [IEE11]. It specifies the physical layer and
media access control for Low-Rate Wireless Personal Area Networks (LR-WPANs).
Wireless Personal Area Networks (WPANs) are used to transfer information over
relatively short distances. Unlike WLANs, connections done via WPANs involve
little or no infrastructure. This feature allows small, power-efficient, inexpensive
solutions to be implemented for a wide range of devices. The main objectives of an
LR-WPAN such as described in [IEE11] are ease of installation, reliable data transfer,
extremely low cost, and a reasonable battery life, while maintaining a simple and
flexible protocol.

This standard is also the basis for specifications such as ZigBee, International
Society of Automation (ISA) 100.11a, WirelessHART, and MiWi. All are wireless
networking technologies designed for low data transmission rates and short distances.

3.5.4 IEEE 802.15.1 (Bluetooth)

IEEE 802.15.1 is standardized in [IEE05] and is more commonly known as Bluetooth.
Bluetooth networks operate over a short range, at low power, and at low cost. 802.15.1
networks are sometimes referred to as WPANs. Bluetooth has with the latest version
(4.0) data rates up to 24 Mb/s. 802.15.1 are ad hoc networks, i.e., no network
infrastructure is needed to interconnect 802.15.1 devices.

3.5.5 Near Field Communication (NFC)

Near Field Communication (NFC) is a form of contactless communication between
devices like smartphones or tablets. NFC is an offshoot of RFID with the exception
that NFC is designed for use by devices within close proximity to each other. NFC
maintains interoperability between different wireless communication methods like
Bluetooth and other NFC standards [nfc]. NFC is standardized in International
Organization for Standardization (ISO)/International Electrotechnical Commission
(IEC) 18092 which can be found in [nfc13].

3.5.6 Z-Wave

The Z-Wave protocol is an interoperable, wireless, Radio Frequency (RF)-based
communications technology designed specifically for control, monitoring, and status
reading applications in residential (homes) and light commercial environments [zwa].
It is short range and is a MAC specification. It is standardized by ITU [zwa15].

20 3. THE INTERNET PROTOCOL STACK

Wired/wireless Physical layer Data rates Topology
Ethernet Wired Fiber, copper, etc. 1 Mbps - 100 Gbps Bus or star
Wi-Fi Wireless RF 11 - 54 Mbps Star
ZigBee Wireless RF 250 kbps Star or mesh
Bluetooth Wireless RF 1 - 24 Mbps Star
NFC Wireless RF 106 - 424 kbps Point-to-point
Z-Wave Wireless RF < 100 kbps Mesh
INSTEON Wired / wireless RF, power-line 13 - 38 kbps Mesh
Cellular Wireless RF < 1 Gbps Cellular

Table 3.3: Summary of the link layer protocols.

3.5.7 INSTEON

As Z-Wave, INSTEON also focuses its technology on home control. INSTEON is a
cost-effective, dual-band network technology optimized for home management and
control [ins]. INSTEON connects devices by using the power-line, RF, or both. All
INSTEON devices are peers, meaning that any device can transmit, receive, or repeat
other messages. Adding more devices makes an INSTEON network more robust.

3.5.8 Cellular

Today people connect to the Internet via their smart phones through Third Generation
(3G) and Fourth Generation (4G) connections as well as older and slower connections
such as Enhanced Data rates for GSM Evolution (EDGE) and General Packet Radio
Service (GPRS). The technology behind these varies from generation to generation,
but they have in common that they allow mobility of their users.

3.5.9 Summary

Table 3.3 shows a brief summary of the link layer protocols presented in this section.

Most of the protocols are wireless and using RF on the physical layer. This is a
sign of well-proven technologies that will continue to exist into the future, which is
an important thing for the IoT.

If we look at the example thermostat from Chapter 2, we can say that Ethernet
is not suitable in this case. This is because it would require physical wiring through
the wall to where the consumer wants his thermostat, or it would impose restrictions
on where the consumer could place its thermostat since it requires a wire. Ethernet
is offering very high data rates which is not needed for the thermostat that only will
send a few bits with temperature measurements. However, Ethernet could be useful

3.5. LINK LAYER 21

in other areas of the IoT such as in industry environments where devices are made
to last longer and it will not appear new devices without it being planned for.

Wi-Fi seems like a good solution for the thermostat. Most homes in the western
world today already have Wi-Fi in the home thus should not require much effort to
connect a thermostat to the network. However, this requires the thermostat to run
on electrical power rather than batteries. The thermostat may be connected to the
power-line, but for other home appliances such as remote controllers or alarm clocks,
it might be a problem that Wi-Fi use too much power that will drain the batteries
very quickly. Wi-Fi may also be a bit overkill to use as it offers very high data rates
where that is not necessary. However, in time it may happen that we need higher
data rates and the batteries will evolve and get better so Wi-Fi may be the future
answer for the IoT.

ZigBee and Bluetooth would be good alternatives for the thermostat as they
offer lower data rates and are specializing on low power networks such as in the IoT.
However, a problem with both these protocols is that they are highly diversified.
Both have several profiles and the developer have to know which profiles to use when
developing the devices. This requires planning, and in order to have interoperability
with other devices, the same profiles need to be used.

NFC is not a good solution for the thermostat. It would not allow the consumer
to contact it from outside the home and even inside the home, it requires standing
very close in order to get contact. However, NFC supports low data rates and is
not draining devices of battery. Even if NFC does not work very well in a home
environment it can be useful other places in the IoT. NFC is already being used for
payment and NFC tags are stored in posters so that consumers can scan the tag and
get the information on their phones. This can be done for everything that can have
additional information. It can for instance be in clothes that can communicate with
the washing machine what program it should use.

Z-Wave and INSTEON are specializing in home environments and could be good
choices for the thermostat. However, these technologies are not that old and adopted
as many of the other technologies that have been presented. This may lead to
problems with implementation because the developers do not know the technology
well enough. However, in order for the technologies to be able to evolve, they need
someone to use it. Since these technologies are specializing on smart homes and
smaller environments it may be difficult to adopt them to other areas of the IoT.

Cellular networks are good for moving things such as cars, pets or health moni-
toring devices. Cellular networks are usually developed and already available, but
with IoT there will be many more devices online and the networks need to be further
developed. In San Francisco there is even talk about making a cellular network only

22 3. THE INTERNET PROTOCOL STACK

for things [Sim14]. It may not be the best alternative for the thermostat since that
will be mounted on the wall, but for moving things and especially things that move
outside the confinements of a home this is a good solution.

As can be seen, it is not easy to find a solution on which technology to use in the
IoT, it depends on the requirements of the IoT device. For the thermostat it seems
like Wi-Fi may be the best choice, but also Bluetooth, ZigBee, Z-Wave or INSTEON
could be used. For other areas in the IoT this may not be suitable at all.

3.6 Pysical Layer

The job of the physical layer is to move each individual bit from the link layer from
one node to the next. The protocols in this layer are dependent on the transmission
medium of the link. Examples of transmission mediums on the physical layer are
twisted-pair copper wire and single-mode fiber optics. Many of the link layer protocols
have different protocols for different physical-layer protocols. In each case, a bit is
moved across the link in a different way [KR10].

Chapter4Interoperability Initiatives

This chapter presents some initiatives that either aim to solve the interoperability
issue in the IoT or that have interesting ideas that can be part of such solution. How
a solution can be reached will be further discussed in Chapter 8.

All initiatives presented are free to use and most of them are open source. The
initiatives rely on top of the application layer protocols presented in Section 3.2 and
they focus on how data should be structured, communicated, and used by IoT devices.
Some of the initiatives also include semantics in order to give the data meaning. How
the IoT can incorporate semantics will be further discussed in Chapter 7.

4.1 Alliances and Consortia

The following section presents two initiatives that have resulted in frameworks for
vendors to create interoperable products.

4.1.1 AllSeen Alliance and AllJoyn

AllSeen Alliance is an open, cross-industry consortium that aims to make an open,
universal development framework to support the IoE. They believe that no single
company can accomplish the level of interoperability required and thus a cross-
industry effort is needed [alla].

AllJoyn The framework the AllSeen Alliance is working on is based on the AllJoyn
open source project and is expanded with contributions from both the alliance’s
members as well a the open source community. AllJoyn is a framework that en-
ables companies and enterprises to create interoperable products that can discover,
connect and interact directly with other AllJoyn-enabled products [allb]. Products,
applications and services created with this framework can communicate over various
network layers, regardless of manufacturer or operating system. It does not require

23

24 4. INTEROPERABILITY INITIATIVES

Internet access. This enables creation of products that can easily communicate and
interact.

The framework has an open source codebase that ensures interoperability and
contains various modular services that enable fundamental activities. The initial ca-
pabilities planned for the codebase include: device discovery to exchange information
and configurations; onboarding to join the user’s network of connected devices; user
notifications; a common control panel for creating rich user experiences; and audio
streaming for simultaneous playback on multiple speakers [alla].

4.1.2 Open Interconnect Consortium (OIC) and IoTivity

The OIC is, as AllSeen Alliance, a cross-industry consortium. They aim to promote
an open source implementation to improve interoperability between the devices that
are making up the IoT [oic].

IoTivity The framework that the OIC makes is called IoTivity and is based
on industry standard technologies in order to wirelessly connect and manage the
information flow between devices regardless of form factor, operating system or
service provider [oic]. The framework is open source and the goal is to be compliant
with OIC specifications and pass the OIC certification testing.

The framework has four essential building blocks: discovery, data transmission,
data management, and device management. Discovery supports multiple discovery
mechanisms, data transmission is based on a messaging and streaming model and
supports information exchange and control, data management supports collection,
storage, and analysis of data from various resources and device management supports
configuration, provisioning and diagnostics of devices [iotb].

4.2 Data Serialization Frameworks

This section look at two data serialization frameworks; one open source and one
closed but free solution. Data serialization frameworks provide a data structure that
enables developers to define data once. This data can then be serialized to different
programming languages, enabling developers to use the data in their preferred
programming language.

4.2.1 Apache Thrift

Thift is the name of an open source software project with a goal of making reliable,
high performance communication and data serialization across languages as efficient
and seamless as possible [thr]. Thrift offers code generation that is used to define
and create services for several programming languages in a simple and approachable

4.3. INTERFACE DEFINITION AND CODE GENERATION 25

way. It conforms the most common idioms of most programming languages and is
thus transparent. Language-specific features are placed in extensions instead of in
the core library, making it consistent. Thrift is easy to use and at the same time
it offers high performance. Thrift was first developed at Facebook, but made open
source in 2007 and part of Apache Incubator in 2008.

4.2.2 Google Protocol Buffers

Protocol Buffers is similar to Apache Thrift, both offer serialization of structured
data. A developer defines a data structure once and use generated source code to
read and write the structured data to and from a variety of data streams and using a
variety of languages [Pro]. Protocol Buffers aims to be small, simple and fast as well
as language- and platform neutral. Protocol Buffers is serialized to a binary format
that is compact and enables updating the data structure while still being compatible
with deployed programs that use the ‘old’ format.

4.3 Interface Definition and Code Generation

This section presents initiatives that focus on creating common interfaces to be used
across vendors. These projects can be compared to the data serialization frameworks
as they offer their own way of structuring data and code generation. However, the
code generation in this case is more industry specified and does not only concern
programming languages, but also Interface Definition Languages (IDLs), data formats
and domain specific code.

4.3.1 Eclipse Vorto

Vorto is a project with a goal of enabling a global standardization by creating a
repository of IoT device meta information models and helping distribute code by
offering code generation and an IoT tool set [vorc]. Both the tool set and the meta
information model are based on the Eclipse Modeling Framework (EMF). EMF is,
as the name states, a modeling framework and a code generation facility for building
tools and other applications based on a structured model [EMF]. Figure 4.1 shows
an overview over the Vorto project.

The meta information model describes how information models are structured.
Function blocks are describing the capabilities of a device, exposing properties,
operations and events. These function blocks can be re-used for devices sharing the
same functionalities.

The tool set provides the developer with options for creating information models
based on the described meta-model. It can either be done by using a graphical
environment with drag-and-drop mechanisms, or by using a Domain Specific Language

26 4. INTEROPERABILITY INITIATIVES

Figure 4.1: Overview over the Vorto project. Figure taken from the project’s web
site which can be found in [vora].

(DSL) that has been designed for creating the information models. This allows both
developers with an Information Technology (IT) background as well as business users
to use the tool set. The tool set also allows importing existing information models.

The information model repository is used as a centralized storage location for
information models. During development the repository is allowing developers to
access standardized information models and integrating them into applications.

The code generators allow developers to include described concepts into their
applications. The tool set provides an extension point to include new code generators
without effort. This allows for usage of the information models in various environments
and device ecosystems. This part of Vorto is not intuitive to understand. In Figure 4.1
the code generators are not a part of Vorto and it is thus not clear what code generating
Vorto does provide and how this can give more interoperability. Despite talking to
representatives from Vorto I have not managed to get a proper understanding of
what the generated code does and where it runs.

As in this thesis Vorto also concern consumer, developer and vendor. Vorto have
the same goals for the different user groups as described in Chapter 2. The biggest

4.3. INTERFACE DEFINITION AND CODE GENERATION 27

difference is that they differ between vendors of IoT devices and vendors of IoT
platforms while these are treated as a single unit in this thesis. In Vorto’s case, the
consumer still wish to be able to buy devices from different vendors and flexibility
and ease of use are important factors. The vendors of IoT platforms want to increase
sales and number of ecosystems their devices can be integrated in. The vendors of
IoT platforms also want to increase sales, but in addition they have something to
gain by standardization and by being able to integrate as many devices as possible
into their ecosystem. The application developers want to support a broad range of
devices without a need to develop vendor specific code and thus increase sales and
reduce complexity.

4.3.2 Eclipse Franca

Franca is not an IoT project, but it has interesting aspects that could be expanded
to the IoT. Franca is a framework for definition and transformation of software
interfaces and is underneath the modeling technology of Eclipse projects. It is
intended for integrating software components from different suppliers, which are built
based on various runtime frameworks, platforms and Inter-Process Communication
(IPC) mechanisms [frab]. It is primarily aimed for the automotive and infotainment
industries.

The problem Franca is trying to solve is mapping interfaces that use different
IDLs as well as the lack of formality in modeling the dynamics of interfaces. Most
IDLs only model static aspects of the interface. Franca wants to serve as a hub for
IDL transformations and allow specification of dynamic behavior.

The Franca framework has five aspects: (1) An IDL and feature-rich editor, (2)
transformations and generation, (3) specification of dynamic behavior, (4) flexible
deployment models, and (5) rapid interface prototyping. These aspects make it
possible for Franca to have a textual language for specification of Application
Programming Interfaces (APIs), a framework for building transformations to/from
other IDLs and model-based interface descriptions. Franca supports code generation
with open-source code generators and specifies the dynamic behavior of client/server
interactions using protocol state machines. Franca also makes it possible to extend
interface specifications by platform- or target-specific information as well as having
an executable test environment for an interface definition that can be generated
instantly, allowing users to see the interface in action.

Franca can be useful for the IoT because it allows code to be translated and
executed easily and if everything is using Franca or there is a Franca hub, everything
can communicate even though the vendors use different languages. The biggest
advantage of Franca is that the dynamic behavior can be specified. However, from

28 4. INTEROPERABILITY INITIATIVES

talking to projects contributors of Franca, currently it seems like, the interfaces
creators have to talk together in order to get the interfaces to understand each other.

4.4 Standardization

This section concerns standardization initiatives in the IoT that includes guide-
lines and standards approved by the EU as well as a data management protocol
standardized by the Open Mobile Alliance (OMA).

4.4.1 Internet of Things - Architecture (IoT-A)

IoT-A is a project initiated by the EU and is a proposed architectural reference model
and a definition of an initial set of key building blocks. The idea is that together,
they are the foundations for fostering the emerging of IoT. They have created an
Architectural Reference Model (ARM) to use as the common ground for the IoT.
The IoT ARM should provide a common structure and guidelines for dealing with
core aspects of developing, using and analyzing IoT systems [BBF+13].

The IoT-A allows developers to make choices that make the architecture fit the
device they are developing and are at the same time providing them with guidelines to
follow. The IoT ARM does not guarantee interoperability between any two concrete
architectures, but it is a tool in helping to achieve interoperability between IoT
systems.

4.4.2 European Telecommunications Standards Institute (ETSI)
Machine to Machine (M2M) Standards

ETSI M2M is a technical committee that is developing standards for M2M Communi-
cations [etsb]. They create standards on all layers and aim to provide an end-to-end
view of M2M standardization. They publish technical reports and technical specifica-
tions that include studies and test specifications.

Especially two documents are relevant for this thesis. They are the technical
specification on functional architecture and the technical report that studies seman-
tic support for M2M data. The functional architecture is end-to-end and includes
descriptions of the functional entities, the related reference points and the service
capabilities, information model, security, and management, charging and imple-
mentation guidance. This is helpful for developers wanting to make their devices
interoperable [ets13b]. The study on semantic support for M2M data is motivated
by the fact that semantics need to be available for M2M data that is transferred
within a M2M system [ets13a]. Through semantics applications can discover M2M
data that they previously did not know about. They find the ability of applications

4.5. OTHER INITIATIVES 29

to discover, interpret and use M2M data from different sources essential for creating
high-level M2M services and to develop open markets for M2M data.

4.4.3 Lightweight Machine to Machine (LWM2M)

Lightweight M2M (LWM2M) is a device management1 protocol specialized to fit the
requirements of the IoT. It considers factors as low bandwidth and lossy networks.
LWM2M is not restricted to device management; it should also be able transfer
service/application data. The protocol implements the interface between M2M device
and M2M Server [lwmb]. LWM2M is standardized by OMA and it is based on CoAP
and Datagram Transport Layer Security (DTLS) and is bound up to UDP and Short
Message Service (SMS). LWM2M defines a simple object model by using the CoAP
REST API, a device management architecture using REST objects, and system
features including control of asynchronous notifications. There is also a project
working on making LWM2M work over MQTT [LWMa].

4.5 Other Initiatives

This section presents other initiatives that focus on interoperability.

4.5.1 Eclipse Ponte

Ponte is a project that aims to make a bridge between CoAP, MQTT and HTTP.
Ponte is defining a simple REST API to expose the machines’ need through REST
[pon]. Ponte should also be able to convert between different data formats such as
JSON, MsgPack, Byson, Binary JSON (BSON) and Extensible Markup Language
(XML) as well as offering security and authentication, but this is yet to be supported.

Ponte is replacing the broker in MQTT and making devices using either of the
protocols MQTT, CoAP, or HTTP able to communicate with each other. Since most
IoT devices are using CoAP or MQTT, Ponte is a step in the right direction in terms
of intercommunication. Ponte provide the possibility to chose the best protocol for
the device, while allowing communication with other devices over other protocols if
desired. Another advantage is that web applications that already use HTTP can be
used in the IoT.

If Ponte is combined with translation between different data formats, Ponte could
be a good solution for the IoT. The developers would not only be able to select the
most appropriate protocol, but also which data format that would be best. However,
this requires Ponte to be able to do the translations efficiently so that the consumer
do not notice any delay.

1Device management includes provisioning, configuration, software upgrades as well as fault
management.

30 4. INTEROPERABILITY INITIATIVES

4.5.2 HyperCat

HyperCat is an open interoperability layer for the IoT that allows applications
to explore what data and resources are available. All devices use the JSON data
format and HyperCat help to find the right URIs for resources. HyperCat requires
semantics in order to understand what resources are being requested and what the
data represent. HyperCat is running over HTTP.

The idea is that all devices interact with a hub and a hub can communicate with
other hubs. Each hub has a catalog that allows the other hubs to access, search,
and understand the data it can provide. A catalog is a specific type of resource
representing an unordered collection of resource items. Each item in a catalog refers
to a single resource by its URI [HCs].

4.5.3 Machine-to-Machine Measurement (M3)

M3 is a framework to semantically annotate and interpret IoT data. M3 enables
designing interoperable domain-specific or cross-domain SWoT applications. The
M3 framework is helping IoT developers accomplish four tasks: (1) design SWoT
applications, (2) semantically annotate IoT data, (3) interpret IoT data, and (4)
secure IoT applications. The goal is to enable developers to create SWoT applications
without needing to learn semantic web technologies as M3 automatically generates
the code for these four tasks [Gyr15].

For each of the four tasks the framework have a tool for helping accomplishing the
task. (1) A SWoT generator that enables designing SWoT applications to interpret
IoT data, (2) a M3 converter that is used to semantically annotate IoT data, (3)
Sensor-based Linked Open Rules (S-LOR) which is interpreting IoT data, and (4)
Security Toolbox: Attack & Countermeasure (STAC) which is assisting developers
in designing secure applications and architectures.

The aim of the M3 framework is to use ideas from the semantic web to create a
semantic web of things and a interoperable IoT. The framework is compliant with
ETSI M2M standards.

4.5.4 Google Weave

In the end of May 2015, Google announced that they are introducing a common
language for IoT devices called Weave. Weave is created to achieve a shared un-
derstanding and make devices, humans, and smartphones talk to each other. It is
based on standardized schemas that are used to describe devices’ properties. Google
is going to offer Weave certification in order to ensure quality and that all devices
are interacting seamlessly. Weave is also cross-platform, meaning that a smartphone

4.6. SUMMARY 31

running Brillo2 can turn on an oven on another platform, like Samsung’s SmartThings.
Weave can be used both on existing software stacks as well as over Android stacks.
Weave will not become available before the fourth quarter of 2015 [YTW, Bri].

4.6 Summary

This chapter has presented 13 different initiatives that can contribute to solving
the interoperability issue in the IoT. Frameworks made by powerful members of
consortia and alliances, data serialization frameworks, standards, projects focusing
on interface definition and code generation have been mentioned along with projects
and frameworks concerning protocols, data, and semantics.

The initiatives offer the IoT a way of structuring data. IoTivity and AllJoyn both
offer APIs while the data serialization frameworks provide their own data formats.
These frameworks also offer code generation in order to make the data formats used
compatible with several programming languages. The interface definition and code
generation projects offer their own data format and structured data can be used to
create domain specific code or usual data formats such as XML or JSON. LWM2M
uses XML to structure data while HyperCat is using JSON. M3 is using Sensor
Markup Language (SenML) while Ponte is aiming to be able to translate between the
most used data formats. There is not much information about Weave, but because
Google makes it, we can guess they are using Protocol Buffers as their data format.

By structuring data in the IoT we are one step closer to interoperability. Teaching
devices to work with structured data is easy, but we still need to decide on a common
data format so that all devices are able to work with the same data. In addition,
some semantics are required in order to understand the data. Vorto is solving this
by using metamodels stored in a public repository while M3 is using ontologies to
do the same. Weave offers semantics in form of standardized schemas. How the
initiatives can be used to gain interoperability in the IoT will be further discussed in
the following chapters.

2Brillo is an operating system based on the lower levels of Android made to suit the requirements
of the IoT. Brillo is going to be released in the third quarter of 2015.

Chapter5Experiments

This chapter describes experiments done with four of the initiatives mentioned in the
previous chapter. The goal of the experiments is to better understand the initiatives,
and their capabilities.

The experiments have been trying to create the thermostat presented in Chap-
ter 2. However, because of limited documentation and initiatives that are under
development, the requirements of the thermostat were limited to being able to show
the current temperature, humidity, if people are present in the room, and to set and
display a target temperature.

5.1 LWM2M Experiment

The experiment was done with the LWM2M Object Editor Ver 1.2.01 [lwmc], which
is a tool for creating, editing and viewing OMA LWM2M objects. An object can
have several resources and can be downloaded and used to request Open Mobile
Naming Authority (OMNA) to register the Object Identifier (ID) and Resource IDs.
The IDs can be approved and listed in the OMNA website [OMA]. The IDs on this
site can be re-used by other developers.

The tool offers public LWM2M objects that can be loaded into the tool and used
as a template for creating an object. In this experiment the ‘Device’ object was
chosen as a starting point for creating the thermostat object. The ‘Device’ already
had many resources such as manufacturer, model number, serial number, etc. Three
new resources were defined in this experiment: Temperature, Humidity, and People
present.

Figure 5.1 shows the Object Viewer of the LWM2M Object Editor Ver 1.2.01
after making an ExampleThermostat. In order to make it fit into a single page some
of the pre-defined resources that came with the public XML file were deleted and
the descriptions were shortened. If one wish to register the resource IDs, one would

33

34 5. EXPERIMENTS

Figure 5.1: Screenshot of the Object Viewer of the LWM2M Object Editor Ver
1.2.01 after making an ExampleThermostat.

need to pre-register which resource IDs one want, and then receive pre-allocated IDs
from OMNA. The object with these new IDs would be admitted if OMNA did not
find any issues and it would be displayed in the OMNA web page [OMA].

The documentation gives the impression that objects should be smaller than a
thermostat. There exist objects for temperature-, humidity-, and presence sensors
which, if put together, make up a thermostat’s sensors. By providing objects as
small as sensors, actuators, and tags, it allows vendors to build their products as a
combination of these objects, instead of providing objects for complete products. It
is easier for OMNA to create objects for sensor, actuators, and tags as these are the
smallest components used and they do not need to consider all possible combinations
of these.

5.2. ECLIPSE VORTO EXPERIMENT 35

From the experiment we can conclude that the LWM2M Object Editor allows a
vendor or developer to:

– Create an OMA LWM2M object.

◦ Use pre-defined IDs for objects and/or resources.

◦ Define their own object and/or resource IDs.

– Download the created LWM2M object as an XML file.

– Request OMNA to register the used IDs.

5.2 Eclipse Vorto Experiment

The experiment was done with the initial code contribution of Vorto, which can be
found in [Vorb]. This version allows the user to create function blocks that are used
to describe the functionalities of a device. These function blocks can also be used to
generate a web application.

Listing 5.1 shows how the .fbmodel file that makes up the Thermostat function
block. Figure 5.2 shows how the Hypertext Markup Language (HTML) file Vorto
generated from this function block looked. All values are written directly in the
HTML file and the buttons do not work.

With the available version of Vorto, vendors and developers can:

– Create a function block that allows them to:

◦ Define configuration details.

◦ Define status details.

◦ Define fault details.

◦ Define operations details.

– Auto generate code for a Web Device Application

Notice that status and fault details are not included in the available documentation
and is the reason why the thermostat from the experiment is lacking such details.
This is also far from all the functionalities Vorto are planning to offer. Having a
public repository for these function blocks and being able to re-use them would be a
step towards a solution to the interoperability issue in the IoT.

36 5. EXPERIMENTS

1 functionblock Thermostat {
2 displayname "Thermostat"
3 description "Thermostats␣keeps␣the␣home␣varm"
4 vendor www.bosch.com
5 category demo
6 version 1.0.0
7
8 configuration{
9 mandatory temperature as double "temperature␣in␣the␣room"
10 mandatory targetTemp as double "target␣temperature␣in␣the␣room"
11 mandatory humidity as double "humidity␣in␣the␣room"
12 mandatory peoplePresent as boolean "true␣if␣there␣is␣people␣

present␣in␣the␣room"
13 }
14
15 status{ }
16
17 fault{ }
18
19 operations{
20 setTemperature(targetTemp as int)
21 getTemperature () returns int
22 getHumidity () returns int
23 areTherePeopleInTheRoom () returns boolean
24 }
25 }

Listing 5.1: .fbmodel file defining a function block for the thermostat.

Figure 5.2: Screenshot of the web application HTML file after making the Ther-
mostat and generating the web application.

5.3. ECLIPSE FRANCA EXPERIMENT 37

5.3 Eclipse Franca Experiment

The experiment was done with Franca version 0.9.1, which can be found in [fraa]. This
version allows definition of interfaces consisting of attributes, methods, and broadcasts
in addition to the possibility to define the dynamic behavior of the interface. It
should also be possible to build generators for creating code and documentation from
the interfaces.

The interface in the experiment was defined in a .fidl file which can be seen in
Listing 5.2. The contract part is what is defining the dynamic behavior of the thermo-
stat by using a Protocol State Machine (PSM). The idea here is to create a working
and an idle state where the working state means that the thermostat is heating or
cooling while in the idle state, the targetTemperature and the currentTemperature
is the same.

Franca allows vendors and developers to:

– Define an interface. This involves the capability to:

◦ Define attributes that are properties on the provider side defined with
type and name.

◦ Define methods that can be called by one of the clients using the interface;
the server will send the response.

◦ Define broadcasts that are sent by the server and will be received by the
clients using the interface.

◦ Define contracts that describe the dynamic behavior of the interface.

– Build generators for creating code and documentation from the interfaces.

Notice that building generators for creating code and documentation from the
interfaces has not been tested in this experiment.

5.4 Google Protocol Buffers Experiment

The experiment was done with Google Protocol Buffers version 2.6.1, which can be
found in [GPB]. With this version it is possible to define a data structure, generate
code from it and then read and write data to and from a variety of data streams
using a variety of languages. Java, C++, and Python can be used.

The data format for the thermostat was defined by making a .proto file that
can be seen in Listing 5.3. After having defined a data structure the protocol buffer
compiler for Python was run and it generated a data access class. Then this class

38 5. EXPERIMENTS

1 interface Thermostat {
2 version {
3 major 0
4 minor 1
5 }
6 attribute Double currentTemperature readonly
7 attribute Double targetTemperature
8 attribute Double humidity readonly
9 attribute Boolean peoplePresent
10
11 method getCurrentTemperature {
12 out {
13 Double currentTemperature
14 }
15 }
16 method setTargetTemperature {
17 in {
18 Double targetTemperature
19 }
20 }
21 method getHumidity {
22 out{
23 Double humidity
24 }
25 }
26 method checkPeoplePresence {
27 out {
28 Boolean peoplePresent
29 }
30 }
31 broadcast targetTemperatureReached {
32 out {
33 Double currentTemperature
34 }
35 }
36
37 contract {
38 PSM {
39 initial idle
40 state idle {
41 on call setTargetTemperature -> working
42 }
43 state working {
44 on signal targetTemperatureReached -> idle
45 }
46 }
47 }
48 }

Listing 5.2: .fidl file defining an interface for the thermostat.

5.5. SUMMARY 39

1 message Thermostat {
2 enum Degree {
3 CELCIUS = 0;
4 FARENHEIT = 1;
5 KELVIN = 2;
6 }
7
8 message Temperature {
9 required double temp = 1;
10 required Degree deg = 2 [default = CELCIUS];
11 }
12
13 required Temperature currentTemperature = 1;
14 optional Temperature targetTemperature = 2;
15 required double humidity = 3;
16 required bool peoplePresent = 4;
17 }

Listing 5.3: .proto file made to represent the thermostat.

was used as the data format when creating a small program that made it possible
to change a target temperature. The program was very basic, but showed that it is
possible to use the .proto file to represent data.

From this we can see that Protocol Buffers offers vendors and developers the
possibility to:

– Create a data structure that allows hierarchically structuring.

◦ Create own Protocol Buffers message types.

– Generate data access classes for Java, C++, and Python.

Notice that in this experiment it was only made one data access class for Python.

5.5 Summary

What can be seen from these experiments is that it is easy to define data. All the
tested initiatives allow defining a data structure for the thermostat and it looks
similar in three of them. The object created with the LWM2M is a bit more complex
than the rest due to use of XML and being more focused on creating objects than
creating a readable interface. However, the web interface the editor uses is easy to
understand and make it more usable for non-programmers. Franca allows its users to
define dynamic behavior, which is unique for Franca. If we could agree on one way
of defining interfaces, everyone could make devices that use compatible interfaces.

Chapter6Strategies

This chapter describes three strategies that can be used to solve the interoperability
challenges in the IoT. These strategies are used in some of the initiatives presented
in Chapter 4.

6.1 Creating a Common Standard

ETSI [Std] provides the following definition of a standard:

In simple terms, a standard is a document that provides rules or guidelines
to achieve order in a given context.

A new standard that fit the IoT and makes it more interoperable would thus
require a document that can provide rules and guidelines on how to make IoT devices.
It does exist standards for the IoT and M2M. We saw in Section 4.4.2 that ETSI have
made several M2M standards and the EU has made a book about the IoT-A and
guidelines on how to implement an architecture to apply in the IoT [BBF+13]. Still,
this has not made the IoT more interoperable, as it lacks a common standard that
everyone agrees to use. The existing standards tend to be too wide or too narrow
and not suitable to what the vendors are trying to make.

A common standard would be favorable, as it would provide the IoT with order
and certainty. Some argue that this can be achieved by creating an open standard
where everyone can contribute. However, one of the problems that often appear with
open source work is that they are poorly documented and often favors the developers
instead of the consumers. Thus, a standardization organization would be the best
suited to create a standard. These organizations have experience and are trusted.
Trust is important for a standard as few would use a standard from a unknown
organization where there are uncertainties regarding testing and documentation.

41

42 6. STRATEGIES

A problem that will appear if a standard strategy is adapted in the IoT is that
it should be forwards-compatible, meaning that for devices and technologies that
appear in near and distant future, it should be easy to add them to the standard:
after they have been added, the standard should be backwards-compatible. This is a
problem with any strategy, but in this specific case there are no dynamic updates as
changes are all documented in a standards document and as the standard is updated,
devices are using different versions of the standard.

In an ideal world, we would be able to create a standard that covers every aspect
of the IoT and is trusted and used by everyone. However, it is more likely that
there will be several smaller standards that can be combined in order to create
desired IoT devices. This introduces the problem of making these smaller standards
interoperable.

The standards strategy can help solve the interoperability issue only if everyone
agree on which standards to use and where to use them.

6.2 Code Generation

What is meant by code generation is a program that enables developers or vendors to
structure data in one way and then is able to compile it to different (programming)
languages. By doing this, the developers do not need to agree on one language to
use. The vendor can specify the structure of the data and then developers can use
generated source code (the code generator) to easily read and write structured data
to and from a variety of data streams and using a variety of languages.

Code generation can be done with software frameworks such as Apache Thrift or
Google Protocol Buffers, as well as Eclipse Vorto and Eclipse Franca. They allow
developers to specify a schema for their data using a specification language. By doing
this, developers only have to specify semantics for objects once, this will eliminate
the problem of inconsistency that may happen if things need to be specified several
times in different formats.

One advantage of using this strategy is that if the data structure need to be
updated it can be changed once, and then recompiled for all applications where it
is used. The creators of Protocol Buffers also argue that their solution is forwards-
and backwards-compatible. Another advantage is that even though applications may
be written in different languages, they have the same data structure and are able to
understand each other.

The problems that arise when using code generators are that the code may not be
as efficient as it could have been if it was written natively or that compiling requires
more power and thus devices live for a shorter time.

6.3. EXTEND THE WEB 43

In order for the code generation to help solve the interoperability issue the data
structures that are used need to be available so that everyone can use them. If the
data structures are not available, it will not solve any problems, as only ‘insiders’
will be able to understand the data. However, if they are publicly available, different
vendors can build devices that are able to understand the same data formats. i.e.
become interoperable.

6.3 Extend the Web

A third potential strategy is to extend the existing web. Since the IoT devices will
also be connected to the Internet, why do there need to be a difference between the
web and the IoT? This is the idea behind the WoT. The web has been developed
over many years and offers a range of standards, protocols, and solutions to the IoT.
However, the web is also wide in the sense that it includes many complex solutions
that may not be suitable for the IoT. In [BBF+13] they say that:

. . . It was noted that most people use the same concepts when discussing
IoT as when discussing the Internet in general. There is a significant
difference, however. IoT involves objects talking to each other without
user consent, with possibly un-envisaged functionalities. Cameras, for
example, might take on functions that are different from their overt
primary functions. These possibilities, once perceived, may cause user
anxieties to rise. Moreover, what is the role of user consent if objects
may be able to talk to each other spontaneously? It will be very difficult
to backtrack after the deployment of million of chips employing a passive
approach to connectivity. . . .

In other words: on the web, people are giving orders and giving consent before
things happen, in the IoT devices are talking to each other and sometimes this
happens without the consumer’s consent. Thus, it is not necessarily a good idea to
extend the web to include the IoT.

The advantage of extending the web to include the IoT is that many devices in
the IoT will also have a web interface. By extending the web this will be trivial to
realize, but other applications in the IoT may be more difficult to make. The web
could be extended to include IoT devices, but most likely that would also lead to
increased complexity and make implementations harder for developers.

The main argument against using web technologies in the IoT is that they have too
much overhead to fit the requirements of the constrained devices in the IoT. However,
it is likely that devices in the future will be capable of handle these complexities. The

44 6. STRATEGIES

Pros Cons
New standard Done before

Available for everyone
Tested and documented

Requires trust

Code Generation Write once, share, and re-use
Many choices
Backwards-compatible

Less efficient (?)
Use more power (?)
Proprietary data structure

Extend the Web Done before
Easy for developers

IoT and the web are different
More complexity
Less efficient (?)

Table 6.1: Pros and cons of the different IoT interoperability strategies.

technologies are moving forward and even though the batteries as of today cannot
handle web technologies, batteries in the future will be smaller and last longer and
thus feasible. This is not helping solving the problem today, but we should be aware
that the IoT may adapt to technologies as complex as web technologies in the future.

In order for the web strategy to help solve the interoperability problem, the web
need to include more lightweight standards and protocols that are interoperable with
existing standards and protocols.

6.4 Summary

Table 6.1 provides a brief summary of the three strategies presented in this chapter,
and Table 6.2 shows which strategies are used by the initiatives presented in Chapter 4.
We can see that many of the initiatives do not use any of these strategies and that
code generation and standards are the most popular of the ones presented here. This
table is interesting as it shows that all the presented strategies are used, both alone
and in combination. It can also be noticed that there are only two initiatives that
are not using any of the three, presented strategies.

Since all strategies are used in initiatives in the IoT we cannot conclude that one
is better than the other. It can even turn out to be a combination of all that is the
best solution in the end.

The Internet and the web is built on standards, from standards for the link layer
protocols to standards for web design. Thus, one could think that extending the web
by adding additional standards would be sufficient for the IoT. In this way we can
use two strategies: both making a new standard and extending the web. However,
adding more standards to the web may only make it more complex.

6.4. SUMMARY 45

Initiative Standard Code generation WoT Other
AllJoyn x
IoTivity x x
Apache Thrift x
Google Protocol Buffers x
Eclipse Vorto x x
Eclipse Franca x x
IoT-A x
ETSI M2M x
LWM2M x
Eclipse Ponte x x x
HyperCat x
M3 x x
Weave x

Table 6.2: What strategies the different IoT initiatives are using. IoT-A is not
providing a standard, but is guidelines from the EU.

Both standards and code generation are popular among the initiatives, but never
used together. This indicates that there are no standards in the code generation area.
This again is an indication that everyone working on code generation do it their
own way. Maybe the next step should be making standards that could be used by
projects that include code generation. One of the problems with the code generation
is that all of them have their own way of structuring data. This makes it difficult to
achieve interoperability between different code generators. This is something Franca
is working on, to provide their own IDL, while at the same time being able to build
transformations between other IDLs. This could be a good solution to the code
generation problem if different vendors want to use different code generators. By
combining standards and code generators we could be looking at the best strategy
for the IoT.

If we look at the thermostat from Chapter 2 it is no obvious strategy that is
the best one. The thermostat needs a web interface to show overview of energy
use, temperature, etc. This could lead us to think that extending the web to be
able to talk to the thermostat is the best strategy. However, since HTTP was not
the best protocol for it, heavier applications on top of that will not make it better.
Using a standard is usually a safe choice if it is well tested and documented, but this
requires that it have been used for a while. Thus, the developer would likely prefer
to use code generation if it were to be implemented today. With code generation the

46 6. STRATEGIES

data only need to be defined once and the developer can chose desired language to
implement the applications with. This allows fast development, which is cheaper for
the vendor and in the end also cheaper for the consumer. If we also look at future
costs we can see that code generation makes it easy to make compatible devices that
understand the same data model, also in the future. If the data format is developed
for the thermostat, this can be re-used by other devices that want to communicate
with it. A standard may not make the future development cost lower as the standard
not necessarily enable re-use. However, even if the code generation strategy is the
best here, the standards strategy may be just as good if the standard is tested and
documented.

Regardless which of these strategies get adopted, they all need some semantics in
order to solve the interoperability issue. How this can be achieved will be further
discussed in Chapter 7.

Chapter7Interoperability Approaches

This chapter presents four approaches on how to achieve interoperability in the IoT.
These should be considered in addition to the strategies discussed in the previous
chapter.

The approaches concentrate on semantics needed in the IoT. As mentioned before,
semantics are necessary in order to understand the meaning of data. According to
Euzenat [ES07], semantics “provides the rules for interpreting the syntax which do
not provide the meaning directly but constrains the possible interpretations of what
is declared.” In other words, semantics gives the machines rules so that they can
understand the data in a given data format.

7.1 Everything JSON

This approach aims to find out how the IoT will look if everything uses the data
format JSON. The reason for looking at JSON is that it is more lightweight than for
instance XML. It is also easy for humans to understand and thus understandable for
the developers unlike for instance BSON or Efficient XML Interchange (EXI) which
are binary data formats. The advantage of binary formats is that they are even more
lightweight than JSON, but because they are difficult for humans to understand they
are also difficult to debug.

JSON is a text format for serialization of structured data. It is derived from the
object literals of JavaScript and information about it can be found in [Cro06]. JSON
can represent four primitive types; strings, numbers, Booleans, and null, and two
structured types; objects and arrays. A string is a sequence of zero or more Unicode
characters. An object is an unordered collection of zero or more name/value pairs,
where a name is a string and a value is a string, number, Boolean, null, object, or
array. An array is an ordered sequence of zero or more values. The terms ‘object’
and ‘array’ come from the conventions of JavaScript. JSON’s design goals were for it
to be minimal, portable, textual, and a subset of JavaScript.

47

48 7. INTEROPERABILITY APPROACHES

One of JSON’s limitations is that it only has four primitive types and two
structured types. This is a help to create simple data formats, but it can be a
problem in the IoT if machines are going to be to be self learning and understand
the data format. Objects and arrays can be used to make more complex types, but
without common, agreed upon data types it is likely that everyone using JSON does
it differently. Another limitation JSON has is that it has to conform the same naming
conventions regarding use of language specific keywords and other rules as JavaScript.
JavaScript is used in the web, but is not necessarily the best for use in IoT devices.
However, by having the same conventions it is easier to translate between the web
and the IoT.

One advantage of using JSON is that there are no versions and no need for
validation. By having no versioning there is no backwards-compatibility problems
and there should not be any problem with updating devices. Regarding validation it
can be a problem as different vendors are using different conventions, but if there
exists common guidelines this should not be a problem. Regarding simplicity it is
good that JSON is not extensible. This means that no organization can come in
and make own definitions. Everyone needs to use the four primitive types and the
two structured types. This is also an advantage regarding backwards-compatibility
as if there is added extra information the ones that do not understand it can safely
ignore it. Another advantage with JSON is, as mentioned earlier, that it is easy to
understand both for humans and for machines. This is helpful for developers as well
as for the machines that need to read it.

One possible solution for IoT that include JSON is HyperCat. In order to use
JSON the developer need to read and understand the documentation and then
implement different things for all applications and services. This is difficult to make
work between different vendors. HyperCat has a solution where an application asks
another application what services it offers and then it can use the ones it understands.
For instance can the application understand temperature, but cannot know what
the URI in the other application is to get temperature. Therefore it asks for what
it understands and gets back the URI so it can fetch the temperatures. This is a
beginning for a good solution for the IoT where everything uses JSON, but it is still
necessary with some common agreement about semantics.

If everything uses JSON, we still need a common way of making the devices
understand data. Data may have a format of JSON, but that does not mean that the
devices understand what data is. Thus, JSON as a common way of data structuring,
is not sufficient to solve the interoperability issue, we still need more.

7.2. WEB SERVICES 49

7.2 Web Services

W3C [W3Wb] defines a web service as:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically Web Services
Description Language (WSDL)). Other systems interact with the Web
service in a manner prescribed by its description using SOAP-messages,
typically conveyed using HTTP with an XML serialization in conjunction
with other Web-related standards.

The definition says that web services are designed to support interoperable M2M
interaction, which makes this highly relevant for this thesis. However, web services
are designed for the web and not the IoT which, include a level of complexity and
protocol overhead that can create problems in the IoT.

In order for message exchange to work, the two devices that want to communicate
need to agree both on the semantics and on the mechanics of the message exchange.
The mechanics are documented in a Web Services Description (WSD), which is a
machine-processable specification of the web service’s interface, written in WSDL.
This WSD defines the message formats, data types, transport protocols, and transport
serialization formats that should be used between the communicating devices. It can
also contain information on expected message exchange patterns. While the service
description represents a contract that concerns the mechanics of interacting with a
particular service, the semantics represents a contract governing the meaning and
purpose of that interaction. The dividing line between these two is not necessarily
definite. As more semantically rich languages are used to describe the mechanics of
the interaction, more of the essential information may migrate from the informal
semantics to the service description. As this transformation occurs, more of the work
required to achieve successful interaction can be automated [W3Wa].

From this is seems like web services are solving the interoperability problem
by making devices agree on the data they are sending and on message exchange.
However, there is one limitation. Web services are using SOAP, which is a heavy
and complex protocol, using XML, which, as previously mentioned, is not suited for
the IoT. However, the web services can possibly be adapted to fit the requirements
of the IoT in the future. By using CoAP instead of HTTP and JSON instead of
XML some of the immediate problems could be solved.

Another limitation is that someone need define the WSD and the semantics so
that the devices can agree on common data formats and other mechanics. If all

50 7. INTEROPERABILITY APPROACHES

vendors only implement a single data format, it has to be the same for all vendors in
order for all devices to be able to communicate. Hence, someone has to create rules
for these mechanics and semantics.

Even though web services in the traditional sense is too complex for the IoT, the
idea of using a WSD for the devices to negotiate and agree on the communication
can be applied in the IoT.

7.3 Metamodel

A metamodel is a model that explains a set of related models and is usually a
simplified version of the original models. In this case the metamodel would be used
as part of a language to express resources in a device. Metamodels are related to
ontologies (see Section 7.4) as both are often used to describe and analyze the relations
between concepts. Metamodels can be seen as a strict rule set while ontologies are
vocabularies.

From the initiatives outlined Chapter 4, it can be seen that Eclipse Vorto and
Eclipse Franca mention using metamodels in order to achieve interoperability.

Eclipse also has a group working on an M2M application metamodel [EMe] and
they emphasize that such a model need to be able to model configuration capabilities
as well as communication capabilities. This includes description of the variables and
events, and the actions that can be invoked on the system. There should also be
descriptions of the different communication channels a given element of a system
exposes to others, or depends on for communication.

Also the IoT-A project mentions applying metamodel-based architectural styles
to achieve interoperability on the architectural level.

In order for the concept of metamodeling to work for the IoT someone need to
create the models and thus decide what is important to include. Vorto is solving
this by letting all vendors create their own model for each device. These models are
then stored in a repository. The problem with this is that all vendors are making
their own model. This leads to hundreds of different models for the same devices
and developers have to implement applications specifically for each device. However,
with a metamodel for each device type instead of all vendors having their own,
this could work. With one metamodel for each device type, vendors could still add
additional functionalities offered by their devices and at the same time being able
to communicate with other devices for the common functionalities. However, this
would require someone to make such metamodels for different device types.

7.4. ONTOLOGY 51

Metamodels can help solve the interoperability issue, but as with all other
initiatives someone need to organize it.

7.4 Ontology

The last approach explored is to use ontologies in the IoT in order to agree on
semantics. In 1992, Tom Gruber defined an ontology as [Gru92]:

An ontology is a formal specification of a shared conceptualization.

An ontology consist of four components: classes, relations, attributes and individ-
uals. Classes are describing concepts; they can have one or more children, which are
used to define more specific concepts. They have attributes and these can represent
the classes’ properties and characteristics. Individuals are instances of classes or their
properties while relations are the edges that connect all the components.

Web Ontology Language (OWL) is a Semantic Web language designed to represent
rich and complex knowledge about things, groups of things and relations between
things. The language is a computational logic-based language such that the knowledge
expressed with OWL can be understood and used by computer programs. OWL
documents are what is known as ontologies [OWL]. One such ontology is the Semantic
Sensor Network (SSN) ontology [SSN]. This ontology is relevant for the IoT as it
describes sensors and sensor observations, and related concepts. It does not cover
every thinkable aspect of the IoT, but what it does not cover can be included from
other ontologies via OWL imports. However, it is not necessarily intuitive to know
which ontologies to include.

The advantage of ontologies is that they can be expanded to include new devices
and made backwards-compatible. Ontologies would not only allow devices from
different vendors to communicate, but would also make it easier for third party
developers to develop applications for IoT devices.

One of the problems the semantic web has been facing is that there are too many
ontologies that contains synonymous classes. This makes it necessary to have a
mapping between the ontologies. This is likely to be a problem in the IoT as well.
One could argue that making a single ontology that covers everything would be ideal.
The problem with making this big ontology is that it may be too abstract and hard
to understand, as it is difficult to define everything. Some argue that one should
rather make several, simple ontologies that cover very small areas. This could be a
solution, but then remains the problem of finding the most suitable ontologies and
make everyone use the same ontologies for the same kind of devices. If everyone use

52 7. INTEROPERABILITY APPROACHES

different ontologies for the same types of devices, it will not help on interoperability
since the devices will not necessarily know that they are dealing with equal data.
Thus we need some mapping service or a standardization organ that can create
guidelines for the ontologies.

The M3 framework use ontologies to describe data in the IoT and they have
looked at over 270 ontology based projects relevant for the IoT and used them to
create a dataset. They emphasize the need for publishing domain knowledge online
so that everyone can find it, have good documentation and labels in English to
enable easy re-use. The ontologies should also follow semantic web best practices
and preferably be in the Linked Open Vocabularies (LOV) catalogue that references
more than 400 well-designed ontologies [Gyr15]. These are definitely considerations
that need to be taken when designing ontologies. Since there already exists hundreds
of ontologies it is unlikely that the most feasible solution is a single big ontology.

To make the IoT work with ontologies it would be necessary with some organ
to be responsible for the ontologies. Both in order to organize them and create
guidelines on which ones to use where, but also to create mappings between them in
order to know which ones covers the same.

7.5 Summary

Four approaches have been presented and of them, the first one was not sufficient to
solve our problem. The following three can be used, however, it is not necessarily
clear what the difference between them are. It has been mentioned that metamodels
and ontologies are related; Metamodels can be seen as a strict rule set while an
ontology is a vocabulary. Both these solutions need to be used together with other
approaches in order to work. The web services are the most complex solution. This
covers the whole application layer including protocols, data, and semantics. SOAP
runs over HTTP and uses XML and a WSD defines the semantics using a WSDL.
By using web services the devices can have different mechanics and negotiate which
ones to use. That is not possible with ontologies and metamodels. In ontologies
and metamodels there are a fixed language or a model that should be used. Web
services are designed for the web and need some alterations in order to suit the IoT
while metamodels and ontologies already exist for the IoT. A valid metamodel is an
ontology, but not all ontologies are modeled as metamodels. Ontologies usually use
Resource Description Framework (RDF) schemas; this is similar to XML and may
be too extensive to the IoT.

What is common for all three solutions is that they need the semantics to be
stored or presented somewhere so that everyone can understand it and re-use it. For
instance a repository as Vorto is planning on or a website with explanations such as

7.5. SUMMARY 53

can be found in [SSN] for the SSN ontology.

Chapter8Discussion

In this chapter I discuss initiatives, strategies, and approaches presented in previous
chapters.

8.1 Dissecting the Interoperability in IoT at the Application
Layer

Figure 8.1 gives an overview of what have been presented in this thesis and how
an application layer could be built from these parts. The application layer can be
divided into three separate layers: a protocol layer, a data layer, and a semantics
layer. The protocol layer is responsible for transporting data from one device to
another. In the IoT it is natural that not all devices will support the same protocol,
thus translation between the protocols are required and represented by Ponte in the
figure. The data layer concerns the structuring of messages that are being transferred
between devices. The uppermost layer is the semantics layer, which enables devices
to understand data that is sent and received.

Interoperability can be achieved by a global agreement on one combination of
a semantics approach and a data approach, built upon interchangeable protocols.
Combining the two topmost layers results in a language for the IoT, by agreeing on
a single language, the selected combination can serve as a common language for the
IoT.

8.2 Data Transfer Protocols

The thesis has previously presented three application layer protocols; HTTP, CoAP,
and MQTT, but in Figure 8.1 also SOAP is included because it is used with WSD
in web services. SOAP lies on top of HTTP, but reside among the protocols in the
figure because its specifications have more similarities with the other protocols in
the figure than of the data structures on the layer above.

55

56 8. DISCUSSION

Figure 8.1: The application layer.

HTTP suits devices that send and receive considerable amounts of data and are
connected to the power-line. However, HTTP is not appropriate for small, battery
powered devices because it has more overhead than CoAP and MQTT which suggests
that it will drain the device for battery in a shorter amount of time. MQTT has
a publish/subscribe pattern unlike HTTP and CoAP and is thus more suitable in
environments with many subscribing devices. HTTP and MQTT lie on top of TCP,
which is not necessary for all devices as TCP have more protocol overhead than
UDP, which is used by CoAP. HTTP can also be useful for devices that require a
web interface, since HTTP is the most common web protocol. If the devices are
constrained, CoAP can easily be mapped to HTTP.

There is not one single suitable application layer protocol for the IoT. Thus a
mapping between them is needed. Ponte provides a solution to this by replacing the
broker in MQTT and acting as both client and server in CoAP and HTTP. Desai et al.
[DSA14] have a similar solution, but they perform the mapping between CoAP and
MQTT by adding an additional broker. The IoT needs to support several application
layer protocols and Ponte is an available solution that makes this possible.

8.3 Data Representation

The middle layer in Figure 8.1 concerns data representation. How data is structured
is important in order to make machines understand it. There exist many data
formats, and JSON and XML have been mentioned previously in this thesis. XML
is a widely adopted format and is used in several of the discussed initiatives. The
problem with XML is that it introduces big overhead, which is a problem in the

8.4. SEMANTICS 57

IoT where devices are constrained and often only need to transfer small amounts
of data. JSON provides less overhead than XML, but is still more extensive than
binary formats such as BSON, EXI, or Google Protocol Buffers. The advantages of
JSON and XML is that they are easy to understand for humans and widely adopted
in the web, thus developers already know how to use them. However, JSON is not
extensible which can be a problem since it only offers six data types. By relying on
JSON as the data format, the IoT language will require more semantics in order to
meet future requirements.

The ‘data serialization framework’ in the figure refers to Google Protocol Buffers,
Apache Thrift, and other such frameworks. They offer binary data formats and are
able to serialize the formats to different programming languages. The data formats
are binary and thus fast on the wire and to process, which is an advantage in the
IoT. The serialization to different programming languages gives the developers more
choices regarding implementation as they can choose what they are more familiar with.
Also, not all devices in the IoT may support higher level programming languages;
hence multiple programming languages have to be supported.

What data representation to use is not trivial since all the alternatives have
their advantages and disadvantages. For the IoT language not to be too extensive
it is important that the representation does not introduce unnecessary overhead.
The data representation should also be extensible; as the IoT will grow, so will the
language, introducing the need for new data types.

8.4 Semantics

Being able to transfer data with a common format is not enough to achieve interop-
erability in the IoT, as an understanding of the data is necessary. This is where the
semantics come in. This thesis has previously presented three possible solutions for
this layer: ontologies, metamodels, or WSDs and web services.

Web services concern the whole application layer and include protocol and data
representation as well as semantics. They use protocols that already are widely
adopted in the Internet. However, as web services are created for the web, they
have overhead which is not appreciated in the IoT. Thus, web services need some
adaption in order to comply with the requirements of the IoT. A version of SOAP
that use JSON or a binary format with CoAP as the underlying protocol have to
be developed if web services are to meet the needs of the IoT. The idea of using a
definition of mechanics and letting devices agree on what data formats and semantics
to use is good. This allows developers more choices during implementation, which
may result in better solutions. If the web services are adapted, a common agreement
on how to make WSDs is required.

58 8. DISCUSSION

Metamodels and ontologies are already made for the IoT, but in order for them
to be part of a common language, someone needs to develop, maintain, and store
them in a public place where developers and vendors can brows for suitable models
meeting their needs. There should also be rules or guidelines in order to know where
different classes or models should be used.

A problem with ontologies used in the semantic web is that they use long URIs
that are represented by RDF serialization formats similar to XML. This can be a
problem for the IoT especially if the data format underneath only has standard data
types, as this would require the URI describing field types to be contained in the
conveyed data. Thus ontologies coupled together with JSON could provide more
overhead than desired.

The semantic model used has to be stored on devices. A device may ask a server
or another device when its knowledge of the semantic model does not cover messages
observed by the device. This way the device can extend its semantic model to be able
to expand its understanding of the language. It is unlikely that the whole language
will be saved on individual devices as they can be constrained and should contain as
little as possible. Devices can be self-learning and only have to ask one time for each
unknown concept. This can create a slow start for the device as it has to send many
requests when it is newly installed, but this is only a installation problem.

Today, many existing ontologies, metamodels and WSDs cover the same concepts,
and it would be more ideal to combine the ones that covers the same. Regardless
if the solution is to create many small semantic models, or a single model covering
everything, it should be well documented so that developers and vendors are able to
use it correctly.

8.5 Vendors’ Perspective

Despite the IoT being relatively young, many vendors have already tried to enter
the market with their products. However, existing IoT devices do not provide
interoperability with other vendors and usually require special skills to set up.
However, from a vendor’s perspective, interoperability with other vendors’ devices
may not be a goal. A vendor is likely to look for a standard, as standards with
good reputations are usually well tested. However, many of the current standards
organizations are still working on their application layer standards and vendors do
not like to wait for formal standards. Thus, if a vendor is big enough, they could
create proprietary solutions. This has the side effect of creating lock-in effects that
are undesirable to customers while good for the vendor. If a vendor’s goal is to make
their customers satisfied by providing interoperability they may join an alliance, such
as the AllSeen Alliance, or a consortium, such as the OIC. These organizations help

8.6. STANDARDS 59

to motivate cooperation among its members, thus motivating interoperability.

For startups and smaller companies it may not be feasible to be part of such
an organization. At the same time, these are the companies that have the most to
gain from interoperability. However, for interoperability to be possible, the smaller
vendors require knowledge of how other devices are working. Some organizations
offer their frameworks for free while others charge a fee.

Vendors that find suitable standards may execute the ‘embrace, extend and
extinguish’ strategy [EEE] in order to exclude competitors. This is a strategy
Microsoft has executed in the past; they found standards and developed software that
was compatible with the standards and competing products. Then they extended
the standards by adding features that were not supported by competing products
and thus created interoperability problems. Since Microsoft is a big company, their
products gained a big market share and their extensions to the standards thus became
the new standards. This lead to winning market shares from the competitors that
did not support these extensions. This is an example of a undesired move by vendors
and is something that should be avoided when creating standards in the IoT. By
being aware of this, it is easier to avoid. However, vendors should still be able to
offer additional functionalities to their costumers that other vendors do not offer to
ensure competition and innovation.

8.6 Standards

Vendors like standards, but many standardization efforts are in progress and others
are already completed. In this thesis we have seen standards from IEEE, ETSI, and
OMA; in addition, ITU are making standards to be used in the application layer of
the IoT. These standardization efforts are summarized in Table 8.1.

All these standards are open and royalty-free, allowing all vendors to use these
standards in their devices. Many standards developed by industry consortia and
individual companies charge royalty-fees. This is undesirable as it may exclude small
companies and potentially cause more expensive devices.

8.7 Centralization

It is not necessarily a good idea to centralize the IoT in a single repository. Someone
would need to manage the information without bias and create a feeling of ‘insiders’
and ‘outsiders’. AllJoyn is open source, and everyone is allowed to contribute, but
those who are not members of the AllSeen Alliance will likely feel like outsiders. The
voice of the outsiders may be ignored favoring vendors who pay a fee to be part of

60 8. DISCUSSION

Organization Standards
IEEE Provides standards for health informatics, smart transducers, smart

grid interoperability as well as many of the standards describing
network layer protocols.

ETSI Provides a functional architecture specification for M2M communi-
cation as well as test specifications, use cases, service requirements
and studies.

OMA Provides the standard for the LWM2M protocol as well as work
in progress on device management, device classification, firmware
update management, and an open connection manager API.

ITU Provides a recommendation that explains IoT and its requirements.
They have many working groups in the IoT field, but currently few
standards and recommendations.

Table 8.1: Standardization efforts in the IoT.

the alliance. Thus, the outsiders may be inclined to look for an open source solution
where everyone is equal.

A premise for interoperability in the IoT is that it has to be easy to find information
about the technologies used by others, and thus a centralized repository or web site
hosting this information would be a good solution. The centralized information hub
may be in the form of an organization collecting information provided by others and
thus not excluding any innovation from outsiders. The M3 framework takes this
approach for ontologies and provides information on which ontologies are suitable
and relevant for their devices.

8.8 A Language for the IoT

Say the world is able to agree on semantics and data representation and create a
common IoT language. Such language would need the ability to convey a device’s
status, for instance if a thermostat is heating or cooling. The language should be
able to describe the functionalities provided by a given device, as well as properties
of the device. It would also be desirable if the language were able to describe the
communication patterns and dynamic behaviors of a device. Table 8.2 provides
descriptions of these language requirements and Table 8.3 shows an overview of which
of the requirements are fulfilled by the different initiatives.

As can be seen in Table 8.3 some of the data initiatives support status, function
and properties as well as message and dynamic behavior and one could think that
they offer some semantics. However, these initiatives do not have a common way of

8.8. A LANGUAGE FOR THE IOT 61

Requirement Description
Status The language should be able to describe the status of a device, tell

what a device is doing at a given time as well as being able to tell if
a device is ready to receive requests or if it is working and a request
has to wait.

Function The language should be able to describe the functionalities of a
device and describe what a device is able to do.

Properties The language should be able to describe the properties of a de-
vice included, but not limited to: serial number, model number,
manufacturer, etc.

Messages The language should be able to describe what messages a device
can send and receive and describe the message formats as well as
what messages a device is can understand.

Dynamic behavior The language should be able to describe in what order messages can
be sent and received and describe the dynamic behavior of a device
and allowed sequences of events.

Table 8.2: Description of the different language requirements.

Initiative Status Function Properties Messages Dynamic behavior
WSD x x x x
Ontology x x x
Metamodel x x x
AllJoyn / IoTiv-
ity

x x x x

Data serializa-
tion framework

x x

JSON or other
data format

x x

Eclipse Vorto x x x x
Eclipse Franca x x x x x
LWM2M x x
HyperCat x x x
M3 x x x x
Weave x x x ? ?

Table 8.3: Overview over which language requirements the IoT approaches fulfill.

62 8. DISCUSSION

expressing these requirements. Semantics require a set of rules or guidelines so that
everyone can understand and use data the same way.

We can see that Franca is the only initiative that fulfills all the requirements,
including being able to describe dynamic behavior. From Franca’s Eclipse proposal
[frac] we can read that:

. . .many severe bugs in complex software systems are caused by mis-
matches of the dynamic aspects of interfaces. These bugs will occur
especially in late project phases (during system integration or even after
customer delivery), are hard to identify and expensive to fix. Thus, it
is necessary that the dynamic aspects should be part of the original
interface definition, allowing extensive formal validation of the interface’s
implementations and usage.

Thus being able to describe dynamic behavior is a desired requirement for a IoT
language. However, because there are no other initiatives pursuing this, one could
argue that this is not necessary for creating an interoperable IoT. Notice that there
is not enough information available regarding Google’s Weave, and they may support
description of dynamic behavior.

If dynamic behavior is a requirement of the language, Franca may be a natural
part of a solution. A proper language could be constructed by Franca coupled with
ontologies or with a metamodel. Franca coupled with a WSD would not work as
WSDs are made for a specific data format and these data formats are not supported
by Franca. It is also noteworthy that Franca is not made for the IoT suggesting that
it will introduce too much overhead to fit the requirements of IoT. Thus, in addition
to being coupled with a semantic solution, Franca would need to be adapted to the
IoT in order to become a language.

If it is agreed that being able to describe dynamic behavior is not a language
requirement, there are more possible solutions available. Vorto, M3, and possibly
Weave could become languages under these constraints. AllJoyn, IoTivity or Hy-
perCat coupled with ontologies or metamodels could be sufficient, and web services
also potentially fill the requirements of a language. Data serialization frameworks,
traditional data frameworks and LWM2M lack support for message description in
order to meet all requirements on their own. However, these are often used as parts
of the other initiatives.

It has already been established that web services as it is today cannot be a proper
language for the IoT as they are too heavyweight. The same can be said for HyperCat,
even though it is made for the IoT, it uses HTTP as the data transport protocol and

8.8. A LANGUAGE FOR THE IOT 63

JSON as the data format. The M3 framework is working on extending the semantic
web to include concepts from the IoT, but existing semantic web technologies can be
too extensive to fit the IoT requirements. With these observations it seems like Vorto,
AllJoyn, IoTivity or Weave are the only actual candidates to becoming a language.

Vorto is a highly relevant project that is supported by Bosch, a big actor in the
IoT. Vorto is open source and can attract many contributors, but for this to happen
it needs to attract the attention of vendors and developers. As of today, Vorto is
not well documented. The framework should be further developed before drawing
conclusions as to if it is suitable for the purpose of being the language for the IoT.

AllJoyn and IoTivity are frameworks supported by several powerful industry
members. This makes it likely that members will use these frameworks in the future.
However, it is not certain that the member companies will use these frameworks;
Cisco is a member of both AllSeen Alliance and OIC, giving them the advantage of
choosing which framework to use, or decide on using their own.

We do not know much yet about Google’s Weave project, but Google is a powerful
actor in the IT industry. Since we have limited information about Weave it is difficult
to say if it will be a good solution for interoperability in the IoT, but because Google
is behind it, it is likely to attract the attention of developers. The information
released on Weave suggests that it is a highly relevant project, but we have to wait
and see how it turns out before we know how useful it will be.

Google is not producing devices for the IoT.1 Thus, their Weave solution can
be appreciated because they are not focusing on making the language work with
a given set of devices. This suggests a strategy where the language is made first,
then the products that go with it. With such an approach it may be easier to
make an extensible language that is forward-compatible. Many vendors are members
of alliances, and may be strictly motivated by making their own product catalog
interoperable. However, by starting with a language that provides interoperability,
all future devices using the language can be interoperable, not only devices from a
specific vendor. Hence an approach where the focus is making a language providing
interoperability rather than focus on making interoperable devices is the desired
approach to this problem.

If one of the initiatives providing an alternative language for the IoT, and this
language attracts a lot of vendors and developers, value is added to the language.
Hence before we end up with an agreement on a single language, many languages may
compete for popularity. Such language is required to be long lived, thus it should be
easy to add new functionalities and devices to the language.

1Google owns the IoT device vendor Nest.

64 8. DISCUSSION

All the discussed initiatives are free to use, but many of them are in development
and more lack documentation. Thus, as of today, it is not feasible to use the current
state of the initiatives as a common language. However, the ideas they represent can
make the IoT interoperable in the future. What is required to achieve interoperability
is to agree on semantics and data as well as encourage re-use and sharing.

Chapter9Concluding Remarks

This thesis has presented several different strategies and solutions that can be used
in order to solve the issue of interoperability in the IoT. We have looked at 13 more
or less different initiatives that all aim to improve the IoT, or have ideas that can be
used in the IoT. We have also looked at three strategies used by the initiatives, and
four approaches to fill the gaps in terms of achieving interoperability.

During this thesis I have mainly focused on the home environment and smart
homes. However, the IoT is much bigger, and all its different areas have different
requirements. Thus, the solution that is suitable in one area may not necessarily
the best for another area. This is something to consider when developing a common
language.

Regardless of area, there need to be a common agreement on how the application
layer is built. This thesis divides the application layer into three sub-layers: one
for data transfer protocols, one for data representation, and one for semantics and
understanding of data. For the lowest layer, there already exist solutions that enable
IoT vendors to choose the protocols that best suit their devices. Thus, it is the
approaches on the two uppermost layers that need a common agreement in order
to achieve an interoperable IoT. Not all studied data representations fulfill the
requirements of the IoT. We can conclude that if a single data format was to be
chosen for this purpose, it should be a binary format that is fast to process and
transfer. For the semantics layer we saw that web services were not suitable for the
IoT, while metamodels and ontologies would be appropriate.

A language consisting of initiatives from the data and semantics layers needs to
be long lived. New functionalities and concepts will appear in both near and distant
future and should be easy to add. The language should encourage re-use and sharing
as well as being able to represent status, functionalities, properties, and messages.

It is not unthinkable that the solution will come from a powerful company such

65

66 9. CONCLUDING REMARKS

as Google or an organization such as AllSeen Alliance or OIC. This is because these
powerful organizations are able to attract many vendors and developers and thus
also consumers. A language requires many users in order for it to have value, and a
language created by someone with a large market share is more likely to succeed.

In the end, the result will likely be several language standards, possibly two or
three. This has been seen in other technology areas before. There are several popular
operating systems for personal computers and there are two main operating systems
for smartphones. We see that many companies are joining alliances and consortia in
the hope of being able to achieve interoperability. Also Google have showed that they
want to offer a solution to the interoperability issue by introducing Weave. Several
big companies are working for interoperability in the IoT, but there have not yet
been presented a solution that the IoT community has agreed upon.

The thesis studies many initiatives, but there still exist several initiatives and
approaches that were not discussed due to lack of information and to retain a
manageable scope of this thesis. These alternatives should also be considered when
wanting to build an interoperable IoT.

Notice that security was an issue out of scope of this thesis. Security is a big
issue in the IoT and should also be an important factor in a language. This makes
finding a solution to the interoperability issue even harder.

References

[802] Part 15.4: Wireless medium access control (mac) and physical layer (phy)
specifications for low-rate wireless personal area networks (lr-wpans). http:
//user.engineering.uiowa.edu/~mcover/lab4/802.15.4-2003.pdf. Accessed: 2015-
03-03.

[alla] About. https://allseenalliance.org/about. Accessed: 2015-04-20.

[allb] Allseen faqs. https://allseenalliance.org/about/faqs. Accessed: 2015-04-20.

[BBF+13] Alessandro Bassi, Martin Bauer, Martin Fiedler, Thorsten Kramp, Rob van
Kranenburg, Sebastian Lange, and Stefan Meissner. Enabling Things to Talk.
Springer, first edition, 2013.

[Bri] Project brillo. https://developers.google.com/brillo/. Accessed: 2015-06-01.

[coa] Coap. http://coap.technology/. Accessed: 2015-02-16.

[cok] The "only" coke machine on the internet. https://www.cs.cmu.edu/~coke/history_
long.txt. Accessed: 2015-04-20.

[Cou08] US National Intelligence Council. Disruptive civil technologies. April 2008.
Accessed: 2015-04-20.

[Cro06] D. Crockford. The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627, Internet Engineering Task Force, July 2006.

[Dod03] Sean Dodson. The internet of things. The Guardian, October 2003. Accessed:
2015-04-20.

[DSA14] Pratikkumar Desai, Amit Sheth, and Pramod Anantharam. Semantic gateway as
a service architecture for iot interoperability. October 2014.

[EEE] Embrace, extend, extinguish (it vendor strategies). http://www.hr.com/
SITEFORUM?&t=/Default/gateway&i=1116423256281&application=story&
active=no&ParentID=1119278077613&StoryID=1119649742078&xref=https%
3A//www.google.no/. Accessed: 2015-05-31.

[EMe] Iot/m2miwg/m2m meta-model. https://wiki.eclipse.org/IoT/M2MIWG/M2M_
meta-model. Accessed: 2015-06-03.

67

http://user.engineering.uiowa.edu/~mcover/lab4/802.15.4-2003.pdf
http://user.engineering.uiowa.edu/~mcover/lab4/802.15.4-2003.pdf
https://allseenalliance.org/about
https://allseenalliance.org/about/faqs
https://developers.google.com/brillo/
http://coap.technology/
https://www.cs.cmu.edu/~coke/history_long.txt
https://www.cs.cmu.edu/~coke/history_long.txt
http://www.hr.com/SITEFORUM?&t=/Default/gateway&i=1116423256281&application=story&active=no&ParentID=1119278077613&StoryID=1119649742078&xref=https%3A//www.google.no/
http://www.hr.com/SITEFORUM?&t=/Default/gateway&i=1116423256281&application=story&active=no&ParentID=1119278077613&StoryID=1119649742078&xref=https%3A//www.google.no/
http://www.hr.com/SITEFORUM?&t=/Default/gateway&i=1116423256281&application=story&active=no&ParentID=1119278077613&StoryID=1119649742078&xref=https%3A//www.google.no/
http://www.hr.com/SITEFORUM?&t=/Default/gateway&i=1116423256281&application=story&active=no&ParentID=1119278077613&StoryID=1119649742078&xref=https%3A//www.google.no/
https://wiki.eclipse.org/IoT/M2MIWG/M2M_meta-model
https://wiki.eclipse.org/IoT/M2MIWG/M2M_meta-model

68 REFERENCES

[EMF] Eclipse modeling framework (emf). http://www.eclipse.org/modeling/emf/. Ac-
cessed: 2015-05-11.

[ES07] Jerome Euzenat and Pavel Shvaiko. Ontology matching. Springer, 2007.

[etsa] About etsi. http://www.etsi.org/about. Accessed: 2015-04-20.

[etsb] Machine to machine communications. http://www.etsi.org/technologies-clusters/
technologies/m2m. Accessed: 2015-04-20.

[ets13a] Etsi ts 101 584 v2.1.1 (2013-12) machine-to-mahine communications (m2m);
study on semantic support for m2m data. http://www.etsi.org/deliver/etsi_tr/
101500_101599/101584/02.01.01_60/tr_101584v020101p.pdf, 2013. Accessed:
2015-05-12.

[ets13b] Etsi ts 102 690 v2.2.1 (2013-10) machine-to-mahine communications (m2m);
functional architecture. http://www.etsi.org/deliver/etsi_ts/102600_102699/
102690/02.01.01_60/ts_102690v020101p.pdf, 2013. Accessed: 2015-05-12.

[eui] Internet of things 2008. http://www.the-internet-of-things.org/iot2008/. Accessed:
2015-04-20.

[Eva11] Dave Evans. The internet of things. April 2011. Accessed: 2015-04-20.

[FGM+99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, Internet Engineering
Task Force, June 1999.

[fraa] 0.9. https://a29eed10a342ed44b9242976382a23bbd1389fd3.googledrive.com/host/
0B7JseVbR6jvhazEtRDVsSk9mX1k/Releases/0.9/. Accessed: 2015-05-20.

[frab] Franca. https://www.eclipse.org/proposals/modeling.franca/. Accessed: 2015-05-
11.

[frac] Franca. http://eclipse.org/proposals/modeling.franca/. Accessed: 2015-04-19.

[GKC] Neil Gershenfeld, Raffi Krikorian, and Danny Cohen. The internet of things.

[GPB] Download protocol buffers. https://developers.google.com/protocol-buffers/docs/
downloads. Accessed: 2015-05-21.

[Gru92] Tom Gruber. What is an ontology? http://www-ksl.stanford.edu/kst/
what-is-an-ontology.html, 1992. Accessed: 2015-05-18.

[Gyr15] Amèlie Gyrard. PhD thesis, TELECOM ParisTech, 2015.

[HCC09] Jonathan Hui, David Culle, and Samita Chakrabarti. 6lowpan: Incorporating
ieee 802.15.4 into the ip architecture. Technical report, IPSO Alliance, January
2009.

[HCs] Hyper/cat. https://drive.google.com/file/d/0B5JKRgbs8OyldnVMbTFOc0xpZDg/
edit. Accessed: 2015-05-12.

http://www.eclipse.org/modeling/emf/
http://www.etsi.org/about
http://www.etsi.org/technologies-clusters/technologies/m2m
http://www.etsi.org/technologies-clusters/technologies/m2m
http://www.etsi.org/deliver/etsi_tr/101500_101599/101584/02.01.01_60/tr_101584v020101p.pdf
http://www.etsi.org/deliver/etsi_tr/101500_101599/101584/02.01.01_60/tr_101584v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf
http://www.etsi.org/deliver/etsi_ts/102600_102699/102690/02.01.01_60/ts_102690v020101p.pdf
http://www.the-internet-of-things.org/iot2008/
https://a29eed10a342ed44b9242976382a23bbd1389fd3.googledrive.com/host/0B7JseVbR6jvhazEtRDVsSk9mX1k/Releases/0.9/
https://a29eed10a342ed44b9242976382a23bbd1389fd3.googledrive.com/host/0B7JseVbR6jvhazEtRDVsSk9mX1k/Releases/0.9/
https://www.eclipse.org/proposals/modeling.franca/
http://eclipse.org/proposals/modeling.franca/
https://developers.google.com/protocol-buffers/docs/downloads
https://developers.google.com/protocol-buffers/docs/downloads
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
https://drive.google.com/file/d/0B5JKRgbs8OyldnVMbTFOc0xpZDg/edit
https://drive.google.com/file/d/0B5JKRgbs8OyldnVMbTFOc0xpZDg/edit

REFERENCES 69

[hypa] Gartner hype cycle. http://www.gartner.com/technology/research/
methodologies/hype-cycle.jsp. Accessed: 2015-04-20.

[hypb] Gartner’s 2014 hype cycle for emerging technologies maps the journey to digital
business. http://www.gartner.com/newsroom/id/2819918. Accessed: 2015-04-20.

[hypc] Hypercat. http://www.hypercat.io/. Accessed: 2015-04-19.

[IEE05] Ieee standard for information technology - telecommunications and information
exchange between systems - local and metropolitan area networks - specific
requirements. - part 15.1: Wireless medium access control (mac) and physical
layer (phy) specifications for wireless personal area networks (wpans). IEEE Std
802.15.1-2005 (Revision of IEEE Std 802.15.1-2002), pages 1–580, 2005.

[IEE11] Ieee standard for local and metropolitan area networks–part 15.4: Low-rate
wireless personal area networks (lr-wpans). IEEE Std 802.15.4-2011 (Revision of
IEEE Std 802.15.4-2006), pages 1–314, Sept 2011.

[IEE12a] Ieee standard for ethernet - section 1. IEEE Std 802.3-2012 (Revision to IEEE
Std 802.3-2008), pages 1–634, Dec 2012.

[IEE12b] Ieee standard for information technology–telecommunications and information
exchange between systems local and metropolitan area networks–specific require-
ments part 11: Wireless lan medium access control (mac) and physical layer (phy)
specifications. IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), pages
1–2793, March 2012.

[ins] Insteon details. http://cache.insteon.com/documentation/insteon_details.pdf.
Accessed: 2015-03-12.

[iota] About. https://www.iotivity.org/about. Accessed: 2015-04-19.

[iotb] Architecture overview. https://www.iotivity.org/documentation/
architecture-overview. Accessed: 2015-05-06.

[iotc] Internet of things. http://www.oxforddictionaries.com/definition/american_
english/Internet-of-things. Accessed: 2015-04-18.

[iotd] That ’internet of things’ thing. http://www.rfidjournal.com/articles/view?4986.
Accessed: 2015-04-20.

[ips] About ipso. http://www.ipso-alliance.org/about/mission. Accessed: 2015-04-19.

[ITU05] ITU. The internet of things. November 2005. Accessed: 2015-04-20.

[KMS07] N. Kushalnagar, G. Montenegro, and C. Schumacher. IPv6 over Low-Power
Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem
Statement, and Goals. RFC 4919, Internet Engineering Task Force, August 2007.

[KR10] James F. Kurose and Keith W. Ross. Computer Networking A Top-down Approach.
Pearson Education, Boston, MA 02116, fifth edition, 2010.

http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://www.gartner.com/newsroom/id/2819918
http://www.hypercat.io/
http://cache.insteon.com/documentation/insteon_details.pdf
https://www.iotivity.org/about
https://www.iotivity.org/documentation/architecture-overview
https://www.iotivity.org/documentation/architecture-overview
http://www.oxforddictionaries.com/definition/american_english/Internet-of-things
http://www.oxforddictionaries.com/definition/american_english/Internet-of-things
http://www.rfidjournal.com/articles/view?4986
http://www.ipso-alliance.org/about/mission

70 REFERENCES

[lgf] Lg internet refrigerator is at the heart of the digital
home network. http://www.prnewswire.com/news-releases/
lg-internet-refrigerator-is-at-the-heart-of-the-digital-home-network-75420177.
html. Accessed: 2015-04-20.

[LWMa] Lwm2m over mqtt. http://openiotchallenge.tumblr.com/post/110888019710/
lwm2m-over-mqtt. Accessed: 2015-06-05.

[lwmb] Oma lightweightm2m v1.0. http://technical.openmobilealliance.
org/Technical/technical-information/release-program/current-releases/
oma-lightweightm2m-v1-0. Accessed: 2015-05-11.

[lwmc] Oma lwm2m managemnet object editor ver: 1.2.01. http://dev01.alnas.com/
OMA/Default. Accessed: 2015-05-19.

[mqt] Mqtt version 3.1.1. http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.
1-os.pdf. Accessed: 2015-02-18.

[nfc] About near field communication. http://www.nearfieldcommunication.org/
about-nfc.html. Accessed: 2015-03-12.

[nfc13] Information technology - telecommunications and information exchange between
systems - near field communication - interface and protocol (nfcip-1). https:
//www.iso.org/obp/ui/#iso:std:iso-iec:18092:ed-2:v1:en, 2013. Accessed: 2015-
04-21.

[oic] Open interconnect consortium. http://openinterconnect.org/. Accessed: 2015-04-
19.

[OMA] Omna lightweight m2m (lwm2m) object & resource registry. http:
//technical.openmobilealliance.org/Technical/technical-information/omna/
lightweight-m2m-lwm2m-object-registry. Accessed: 2015-05-25.

[OWL] Owl. http://www.w3.org/2001/sw/wiki/OWL. Accessed: 2015-05-23.

[pon] Ponte - m2m bridge framework for rest developers. http://eclipse.org/proposals/
technology.ponte/. Accessed: 2015-05-11.

[Pro] Protocol buffers. https://developers.google.com/protocol-buffers/. Accessed:
2015-05-13.

[SHB14] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol
(CoAP). RFC 7252, Internet Engineering Task Force, June 2014.

[Sim14] Tom Simonite. Silicon valley to get a cellular network, just for things. MIT
Technology Review, May 2014. Accessed: 2015-04-29.

[SSN] Semantic sensor network ontology. http://www.w3.org/2005/Incubator/ssn/ssnx/
ssn. Accessed: 2015-06-03.

http://www.prnewswire.com/news-releases/lg-internet-refrigerator-is-at-the-heart-of-the-digital-home-network-75420177.html
http://www.prnewswire.com/news-releases/lg-internet-refrigerator-is-at-the-heart-of-the-digital-home-network-75420177.html
http://www.prnewswire.com/news-releases/lg-internet-refrigerator-is-at-the-heart-of-the-digital-home-network-75420177.html
http://openiotchallenge.tumblr.com/post/110888019710/lwm2m-over-mqtt
http://openiotchallenge.tumblr.com/post/110888019710/lwm2m-over-mqtt
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://technical.openmobilealliance.org/Technical/technical-information/release-program/current-releases/oma-lightweightm2m-v1-0
http://dev01.alnas.com/OMA/Default
http://dev01.alnas.com/OMA/Default
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://www.nearfieldcommunication.org/about-nfc.html
http://www.nearfieldcommunication.org/about-nfc.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:18092:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:18092:ed-2:v1:en
http://openinterconnect.org/
http://technical.openmobilealliance.org/Technical/technical-information/omna/lightweight-m2m-lwm2m-object-registry
http://technical.openmobilealliance.org/Technical/technical-information/omna/lightweight-m2m-lwm2m-object-registry
http://technical.openmobilealliance.org/Technical/technical-information/omna/lightweight-m2m-lwm2m-object-registry
http://www.w3.org/2001/sw/wiki/OWL
http://eclipse.org/proposals/technology.ponte/
http://eclipse.org/proposals/technology.ponte/
https://developers.google.com/protocol-buffers/
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

REFERENCES 71

[Std] What are standards? http://www.etsi.org/standards/what-are-standards. Ac-
cessed: 2015-06-02.

[thr] Apache thrift. https://thrift.apache.org/about. Accessed: 2015-05-07.

[TW10] Lu Tan and Neng Wang. Future internet: The internet of things. In Advanced
Computer Theory and Engineering (ICACTE), 2010 3rd International Conference
on, volume 5, pages V5–376–V5–380, Aug 2010.

[VD10] Jean-Philippe Vasseur and Adam Dunkels. Interconnecting Smart Objects with
IP. Morgan Kaufmann, 30 Corporate Drive, Suite 400, Burlington, MA 01803,
USA, 2010.

[vora] About vorto. https://eclipse.org/vorto/about.html. Accessed: 2015-06-05.

[Vorb] index : org.eclipse.vorto.git. http://git.eclipse.org/c/vorto/org.eclipse.vorto.git/.
Accessed: 2015-05-21.

[vorc] Vorto. https://projects.eclipse.org/proposals/vorto. Accessed: 2015-05-11.

[W3Wa] Web services architecture. http://www.w3.org/TR/ws-arch/. Accessed: 2015-05-
21.

[W3Wb] Web services glossaries. http://www.w3.org/TR/2004/
NOTE-ws-gloss-20040211/. Accessed: 2015-05-19.

[Wei04] Robert Weisman. The internet of things. Boston Globe, October 2004. Accessed:
2015-04-20.

[wif] Certification. http://www.wi-fi.org/certification. Accessed: 2015-04-21.

[YTW] Google i/o 2015 - keynote. https://www.youtube.com/watch?v=7V-fIGMDsmE&
feature=youtu.be&t=2265. Accessed: 2015-06-01.

[zwa] About z-wave technology. http://z-wavealliance.org/about_z-wave_technology/.
Accessed: 2015-03-12.

[zwa15] Short range narrow-band digital radiocommunication transceivers - phy and mac
layer specifications. http://www.itu.int/rec/T-REC-G.9959-201501-P/en, 2015.
Accessed: 2015-04-21.

http://www.etsi.org/standards/what-are-standards
https://thrift.apache.org/about
https://eclipse.org/vorto/about.html
http://git.eclipse.org/c/vorto/org.eclipse.vorto.git/
https://projects.eclipse.org/proposals/vorto
http://www.w3.org/TR/ws-arch/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/
http://www.wi-fi.org/certification
https://www.youtube.com/watch?v=7V-fIGMDsmE&feature=youtu.be&t=2265
https://www.youtube.com/watch?v=7V-fIGMDsmE&feature=youtu.be&t=2265
http://z-wavealliance.org/about_z-wave_technology/
http://www.itu.int/rec/T-REC-G.9959-201501-P/en

	
	
	
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	
	
	
	
	
	
	

	

	
	
	
	

	
	
	

	
	
	

	
	
	
	

	
	
	
	
	

	

	
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	

