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Abstract

Advances in information and communications technology (ICT) en-
courages the interconnection of ICT systems with traditional monolithic
systems, creating complex systems of systems. A modern variety of
such systems is the digital ecosystems, including smart grids, which are
introduced to new types of dependencies and failures not previously appli-
cable, particularly the introduction of interdependencies between systems.
Because of this, new approaches for dependability analysis are needed to
further ensure safe and reliable services.

In the first part of this thesis the presumably most relevant interde-
pendencies and failures in smart grids are identified through a study of
literature, categorized along the dimensions of type of interdependency
and type of failure, and found to be; (1) cascading failures in physical
interdependencies, (2) escalating failures in cyber interdependencies, and
(3) common cause failures in geographic interdependencies.

The second part of this thesis shows dependability modeling approach
proposals for the identified relevant combinations of interdependencies
and failures. Numerical results from the dependability models reveals
that some conceivable smart grid failures have bigger effects than others;
(1) cascading failures in power grids and (2) common cause base station
(BS) failures due to natural events like storms or human caused events like
BS disrupting construction work. In addition, it is shown that malware
in smart grids can exist and propagate without detection and should be
a legitimate concern of stakeholders.





Sammendrag

Fremskritt innenfor informasjons- og kommunikasjonsteknologi (IKT)
har oppmuntret til sammenkobling av IKT systemer og tradisjonelle
monolittiske systemer, noe som skaper komplekse systemer av systemer.
En moderne variant av slike systemer er digitale økosystemer, inkludert
smarte nett, som er introduserte til nye typer av avhengigheter og feil ikke
tidligere aktuelle, spesielt innføringen av gjensidige avhengigheter mellom
systemer. På grunn av dette er nye tilnærminger til pålitelighetsanalyse
nødvendig for å ytterligere forsikre trygge og pålitelige tjenester.

I den første delen av denne avhandlingen er de antatt mest relevante
gjensidige avhengigheter og feil i smarte nett identifisert igjennom en lit-
teraturstudie, kategorisert langs dimensjonene type gjensidig avhengighet
og type feil, og funnet til å være; (1) kaskaderende feil i gjensidige fysiske
avhengigheter, (2) eskalerende feil i gjensidige cyberavhengigheter, og (3)
feil med felles årsak i gjensidige geografiske avhengigheter.

Den andre delen av denne avhandlingen viser forslag til tilnærminger
for pålitelighetsmodellering for de identifiserte relevante kombinasjonene
av gjensidige avhengigheter og feil. De numeriske resultatene fra pålitelig-
hetsmodellene viser at noen typer feil i smarte nett har større effekter enn
andre; (1) kaskaderende feil i kraftnett og (2) basestasjonsfeil med felles
årsak som følge av naturlige hendelser som stormer eller menneskeskapte
hendelser som basestasjonsforstyrrende anleggsarbeid. I tillegg er det vist
at skadeprogrammer i smarte nett kan eksistere og propagere uten å bli
oppdaget, og bør derfor være en legitim bekymring for interessenter.
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Chapter1Introduction

Traditional dependability analysis of systems has relied on the simplifying assumption
that the systems being analysed are monolithic. With advances in information and
communications technology (ICT), systems providing new abilities and functions
have been interconnected with the previously assumed monolithic systems, creating
advanced collaborations of systems working together for a common goal. A col-
laboration of systems like this is called a system of systems, and is in many ways
qualitatively different from traditional large-scale systems [Fis06].

A system of systems that is distributed, adaptive, and open socio-technical is
sometimes referred to as a digital ecosystem. Such systems are characterized by
self-organization, autonomous subsystems, continuous evolution, scalability and
sustainability, providing both economic and social value [BC07]. An example of a
modern digital ecosystem is the smart grid, a power grid using ICT for monitoring
and managing of power transport and generation. Technologies in smart grids helps
consumers balance supply and demand, optimise the use of power grid assets, and
provides resiliency to disturbances, attacks and natural disasters [Int11].

It is clear that smart grids and other digital ecosystems have advantages compared
to traditional large-scale monolithic systems. However, with increasing ICT depen-
dencies, numerous subsystems and components, and lack of coordinated management,
the prediction and assess of the digital ecosystems’ dependability may not be of a
trivial matter. Many of the approaches of traditional systems’ dependability analy-
sis are ineffective and sometimes counterproductive for modern digital ecosystems,
therefore new ways for dependability analyses are needed in these sort of systems.

Because of the critical roles digital ecosystems like smart grids play in our society
the prediction of these systems’ dependability is of importance and in need for further
research to ensure safe and reliable services. This thesis should give the reader
insight in and awareness of how dependencies and failures behave in and affect digital
ecosystems, especially dealing with smart grids. The findings and suggestions from
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2 1. INTRODUCTION

this thesis are intended as a guideline for dependability analyses in today’s and future
digital ecosystems, both with regard to what types of dependencies and failures
stakeholders should lay focus on and what approaches for dependability modeling to
use.

1.1 Outline

Part I in this thesis first classify types of dependencies and failures that are deemed
relevant for digital ecosystems. With the classifications covered, an investigation
of possible dependencies and failures in smart grids is performed to get a better
understanding of how dependencies can manifest and failures propagate in digital
ecosystems like smart grids. The investigation will identify the presumably most
relevant types of dependencies and failures in smart grids and in this way set a focus
for further dependability analyses.

In Part II a smart grid system is first defined to ensure a common basis for all
ensuing dependability modeling and analyses. With the smart grid system defined,
six use cases are presented covering all presumed relevant types of dependencies and
failures from the investigation in Part I. The use cases are modeled and analysed one
by one, giving both insight in approaches for dependability modeling in smart grids
and the effects of dependencies and failures shown by the numerical results obtained.

With the relevant smart grid dependencies and failures analysed, a discussion of
the dependability modeling approaches made and the numerical results from the use
cases is done. Lastly, a final conclusion is presented, proposing what dependability
modeling approaches to use when different types of dependencies and failures are
present in a digital ecosystem. The conclusion will also suggest some possible future
work for this field of study.

1.2 Related Work

To get an overview of dependencies in infrastructures, [RPK01] presents a conceptual
high level framework. More relevant to power grids and ICT, [LKK07] provide models
characterizing interdependency related failures in power systems and associated ICT
systems. Further on, [KB09] proposes a framework for analysing the impact that ICT
failures can have on power systems and identifies some of the challenges posed by the
increasing reliance on ICT. For smart grids in specific, [WH13b] study dependencies
in and the influence ICT may have on dependability, and [WH13a] show an approach
for dependability analysis combining structural and dynamic models.
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Chapter2Classifications of System
Dependencies and Failures

This chapter presents definitions and classifications of dependencies and failures, and
explains the theory and concepts behind how failures can propagate in systems of
systems. The classifications and concepts gone through in this chapter build the
foundation for the following investigation, analyses, and discussion.

2.1 Dependencies and Interdependencies

A dependency is "a linkage or connection between two systems, through which the
state of one system influences or is correlated to the state of the other" [RPK01]. For
example, a power grid system could be dependent on a control system for management
of power production and transmission, and a ICT network system could be dependent
on a power grid for the continuous supply of power, illustrated in Figure 2.1. In a
case like this, if the power grid fails, the ICT network is no longer supplied with
power and thus fails as well. Also, if the control system fails, the power grid would
lose crucial management and fail, and hence the ICT network would fail too. In this
example the power grid is dependent on the control system and the ICT network is
dependent on the power grid, implying that the ICT network is dependent on the
control system as well.

An interdependency is "a bidirectional relationship between two systems through
which the state of each system influences or is correlated to the state of the other.
More generally, two systems are interdependent when each is dependent on the other"
[RPK01]. However, the relationships between systems that create interdependencies
are not necessarily direct and intuitive, but could rather be characterized by multiple
dependencies among systems. Assume, as in the example before, that a control
system is needed for managing a power grid, and power from a power grid is required
for sustaining a ICT network. In addition, assume that a ICT network is needed
for delivering information and commands to and from the control system, which
could be the same as the one mentioned ICT network dependent on the power grid.

5
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Figure 2.1: Example of system dependencies in a system of systems.

This example is illustrated in Figure 2.2 and shows how system dependencies can
create interdependencies within a system of systems. In the presented example, the
ICT network depends on power from the power grid, and the power grid is likewise
dependent on the ICT network for delivering information and commands to and from
the control system, meaning they are interdependent. Implicitly, when more systems
and dependencies are added into a system of systems the complexity grows.

Interdependencies are often between only two systems. From the previous exam-
ples one can imagine that the control system, as well as the ICT network, depends on
power from the power grid. In that case an ever simpler interdependency is perceived,
made out of only two system dependencies, the power grid depending on management
from the control system, and the control system depending on power from the power
grid. This simple form of interdependency is demonstrated and analysed in greater
detail in Part II of this thesis.

2.2 Dimensions of Interdependencies

[RPK01] has described six dimensions of interdependencies intended to facilitate
the identification, understanding and analysis of interdependencies; type of failure,
system characteristics, state of operation, type of interdependency, environment, and
coupling and response behavior.

The objective behind this thesis is to investigate what types of dependencies
that could realistically exist in digital ecosystems and look at how to model these
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Figure 2.2: Example of system dependencies creating system interdependencies in
a system of systems.

dependencies in order to analyse the system dependability. For this objective two
of the dimensions of interdependencies are particularly interesting, namely type of
failure and type of interdependency, which describe the nature of a interdependency
and how a failure behave as a consequence of interdependencies. Because of this, these
two dimensions are explicitly studied in in the following investigation of dependencies
and failures.

2.2.1 Types of Interdependencies

Besides the topology of how systems are dependent on each other with directional or
bidirectional relationships, dependencies can exist in several ways between systems.
[RPK01] has defined four principal types of interdependencies, each with its own
characteristics and effects on systems.

Physical interdependency
"Two systems are physically interdependent if the state of each is dependent on
the material output(s) of the other."

Cyber interdependency
"A system has a cyber dependency if its state depends on information or
commands transmitted through some ICT system."
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Geographic interdependency
"Systems are geographically interdependent if a local environmental event can
create state changes in all of them."

Logical interdependency
"Two systems are logically interdependent if the state of each depends on the
state of the other via a mechanism that is not a physical, cyber, or geographic
connection."

Going back to the example from Figure 2.2, the existing dependencies in the
system of systems can be classified. The power grid has a cyber dependency to the
control system as it depends on management in form of digital commands over a
ICT network, and the said ICT network has a physical dependency to the power grid
as it depends on the power grids physical output, power. For the control system to
send commands to the power grid, a physical ICT network of cables and switches is
needed, and therefore the dependency from the control system to the ICT network
could be regarded as a physical dependency. Additionally, for the control system to
make decisions on a sound basis it would need digital information from the power grid
delivered over the ICT network, meaning that the dependency to the ICT network
could also be a cyber dependency. This shows that although the described types of
dependencies have distinct characteristics, they are not necessarily mutually exclusive,
but for the sake of simplicity a dependency can often be distinctly classified based
on its dominating attributes.

2.2.2 Types of Failures

Interdependencies between systems increase the risk of errors and failures in a
system of systems. Complex topologies created by interdependencies can initiate and
propagate disturbances in a variety of ways that are unusual and difficult to foresee.
To systematize the ways in which errors and failures in systems can propagate and
disrupt the states of other systems this thesis uses the three classified types of failures
proposed by [RPK01].

Cascading failure
"A cascading failure occurs when a disruption in one system causes the failure
of a component in a second system, which subsequently causes a disruption in
the second system."

Escalating failure
"An escalating failure occurs when an existing disruption in one system exac-
erbates an independent disruption of a second system, generally in the form
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of increasing the severity or the time for recovery or restoration of the second
failure."

Common cause failure
"A common cause failure occurs when two or more systems are disrupted at
the same time; components within each system fail because of some common
cause. Components from multiple systems could be affected simultaneously,
either because the components occupy the same physical space or because the
root problem is widespread."

For the previous example from Figure 2.2 this means, if the ICT network loses
power due to an internal failure in the power grid, the power grid failure has cascaded
to the ICT network. If the power grid and ICT network where to be located in the
same geographically area they would also have a geographic interdependency. In
this case an environmental event, e.g. construction work, could disrupt both systems
simultaneously creating a common cause failure. The cyber dependency from the
power grid to the control system could conceivably give rise to both cascading and
escalating failures. If the power grid would fail without management provided by
the control system, a failure in the control system would be of a cascading type.
Alternatively, if the power grid keeps on working even if the control system fails,
an internal failure in the power grid may get more severe consequences than if the
control system had worked when the failure occurred, e.g. in the form of increased
time for failure detection and location. In this case the control system failure would
be an escalating failure.

From the definition of cascading failures and the previous examples it is understood
that if a failure in a system is to cascade, it has to cause a disruption in another system.
Consequently, a failure in a component causing a failure of a second component in the
same system is not per definition a cascading failure. In this thesis, to differentiate
between cascading failures and failures contained within a single system, the latter is
referred to as a propagating failure.





Chapter3Dependencies and Failures in
Smart Grid Systems

In this chapter a literature review is conducted to investigate possible interdependen-
cies and failures in systems of systems, specifically digital ecosystems. The considered
digital ecosystem is the future power grid, also known as smart grid. Already the
traditional power grid is dependent on ICT networks and control systems, as shown
in the examples in Chapter 2. The smart grid is going to include even more ICT
devices and services, making it on one hand smarter, but on the other hand adding
dependencies and complexity [Int11] [KB09].

Studies on ICT networks and power grid systems have indeed shown that failures
in these systems are not independent but rather correlated. To clarify what types of
interdependencies that will most realistically exist in and what types of failures that
will occur in smart grid system of systems, scenarios and examples recognized from
study of literature are presented in the following sections. The presented scenarios
and examples are sorted by the classified failure types from Section 2.2.2, where
for each failure type all relevant types of interdependencies from Section 2.2.1 are
examined, revealing how failures can affect smart grids in different ways. The logical
interdependency type is not analysed further as it is presumed to be of little relevance
for the types of failures that can occur in smart grids.

3.1 Cascading Failure

As smart grids highly rely on interdependent power grid, telecommunication and ICT
systems there are several ways in which failures can cascade between components
and systems within smart grid systems. Components in telecommunication and ICT
systems could be dependent on power from power grids, stress and congestion may
spread between networks, or malware in software (SW) could cascade between ICT
components in different systems [BPP+10] [WH13b].

11
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3.1.1 Physical Interdependency

In power grid, telecommunication and ICT systems disturbances can propagate
quickly through the networks. Increased stress caused by natural disasters, purposeful
attack, or unusually high demands can cause components in the systems to fail,
leading to increased stress on remaining components and eventually the failure of
whole systems. In the same way stress propagate between components, failed systems
may cascade stress to other systems [Ami00].

A cascading failure over physical interdependencies occurred in Italy on 28
September 2003, starting with a transmission line shutting down following a flashover
between a conductor cable and a tree. Because the power grid operators did not
manage to reorganize production and export capacities in time, a series of failures
in other transmission lines followed, giving rise to a blackout throughout Italy. The
failure of power grid components directly led to failures of dependent ICT network
components, which in turn caused further failures in power components [BN03]
[BPP+10].

On 8 September 2011 a power grid system disturbance happened in the Pacific
Southwest leading to cascading failures and leaving approximately 2.7 million cus-
tomers without power. The loss of a single high power transmission line started the
event, causing power flows to be instantaneously redistributed throughout the power
grid. Sizable voltage deviations and component overloads were caused due to the
redistribution, creating a ripple effect of components failing [ASC12].

3.1.2 Cyber Interdependency

An error in an ICT component may cascade errors to other ICT components by
spreading harmful configuration or malware, which could linger in components
undetected. Unless treated, ICT errors will accumulate in ICT systems and eventually
lead to failure [LKK07]. As power grid control systems relies on interconnecting ICT
systems, failures in ICT systems can lead power grid systems to a vulnerable state.
Frequency of failures cascading due to malicious intention in ICT systems has been
on the rise, including among others worm and virus attacks, and is today a legit
concern of stakeholders [RBM09].

3.1.3 Geographic Interdependency

If two or more components from different systems share a common geographic location
a failure could cascade from one system to another even though the systems do not
share resources or services besides location, e.g. if one of the systems cause a fire or
explosion [SOK+13]. If a BS belonging to a telecommunication system stands next
to a power grid transmission line, a voltage overload in the power grid could cause
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components in the transmission line to overheat and catch fire, in which case the fire
could spread to the BS.

3.2 Escalating Failure

In smart grid systems escalating failures could be failures in monitoring systems
that restrain detection of failures in power grids, failures in control systems causing
them to misbehave when dealing with other disruptions, or failures that prevent
actions being taken against critical situations. These are all examples of escalating
failures that not necessarily cause significant trouble to operators or customers
alone, but can cause a potential subsequent failure to have a worse impact than if it
had happened without the simultaneous escalating failure [LKK07] [KB09]. These
systems monitoring and controlling power grids are regularly in the ICT and SW
domain, therefore only cyber interdependencies are relevant when studying escalating
failures in smart grids.

An ICT system failure causing failure escalation happened in the U.S. and
Canada on 14 August 2003. Inaccurate input data rendered a system monitoring tool
ineffective concurrently as some power grid transmission lines failed when tripping
due to overgrown trees. The ineffective monitoring tool prevented confining the
transmission line incidents, causing heavy loading on parallel circuits, leading to a
trip of a key transmission line. The failure of the key transmission line triggered a
cascade of interruptions on the high voltage power grid system [PSO04].

3.3 Common Cause Failure

Common cause failures in smart grids can happen either because smart grid compo-
nents occupy the same physical space, components rely on a common fallible service,
or the root problem is widespread, e.g. if maintenance errors, distribution of faulty
software updates or erroneous configuration affect many components at the same
time [WH13b].

3.3.1 Physical Interdependency

If an operator is leasing from the system of another operator, e.g. if a mobile network
operator (MNO) is leasing capacity from the network of another MNO, a failure in
the system would affect both the owning and leasing operator [FH11]. Similarly, if
several systems rely on the output of a common physical system, as seen regularly
with power grids supporting everyday infrastructure, a failure in the physical system
would affect all dependent systems.
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An example of a common cause failure happened on 4 November 2006 in Northern
Germany. The disconnection of a high-voltage transmission line split the Western
European power grid into three separate areas with significant power imbalances in
each area. The power imbalance in the westernmost of the areas induced a severe
frequency drop that caused an interruption of power supply for more than 15 million
European households [FRS07].

3.3.2 Cyber Interdependency

If a failure happens in an ICT system it may lead to a common failure in other
systems relying on the services of the failed system, e.g. in the form of deficient
information, monitoring or communication. Concerning malware and cyber attacks,
in smart grids with integrated ICT systems, a failure in an ICT component could
instantaneously spread to several other ICT components if they share configuration
or SW implementation. Especially regarding cyber attacks there is a growing concern
for protection, where a well executed attack could possibly disrupt several ICT
components at once [RBM09] [CDC10].

3.3.3 Geographic Interdependency

Examples of common cause failures caused by a geographic interdependency are
flood, fire, explosions or plumes of radioactive gases. Natural disasters, accidents and
terrorism are potential initiating events for common cause failures, in which several
components in ICT, telecommunication and power grid systems could get damaged
at the same time [SOK+13]. Even if smart grid components are not vulnerable to
natural disasters themselves, cables and BSs will often be connected to or supported
by other infrastructure, like buildings or bridges, which would realistically take
damage from earthquakes and other natural disasters [CBK07].

Data from the Swedish national transmission grid shows that six power outages
between 1998 and 2003 are due to natural hazards or adverse weather, not including
lightning. 89 disturbances are caused due to lightning strikes in the same time span.
Weather related failures can be regarded as typical common cause failures, where
one natural event, e.g. a thunderstorm or hurricane, could cause several smart grid
components located in the same geographical area to fail [HM06].

3.4 Summary

Considering the investigation interdependencies and failures presented, Table 3.1
shows a summary of literature studied categorized along the dimensions of type
of dependency and type of failure. From the preceding sections and Table 3.1 it
is implied that some scenarios are more relevant than others, for instance that in
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Table 3.1: Summary of literature studied in the investigation of failures and
interdependencies relevant for smart grids.

Physical Cyber Geographic

Cascading
[BN03]

[BPP+10]
[ASC12]

[LKK07]
[RBM09] [SOK+13]

Escalating ...
[LKK07]
[KB09]
[PSO04]

...

Common [FRS07]
[FH11]

[CDC10]
[RBM09]

[CBK07]
[SOK+13]
[HM06]

the case of geographic failures, the common cause type of interdependency is more
dominating than the other types of interdependency. This observation gives an
incentive to lay focus on certain scenarios that will affect smart grids the most,
namely the scenarios that falls inn under the combinations of interdependencies
and failures marked in Table 3.1 with yellow. Because of their relevancy, these four
combinations of interdependencies and failures are studied in more details in Part II.





Part II

Interdependency Modeling
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Chapter4System Description

The system used in this analysis is a specific digital ecosystem, a smart grid. The
system is shown in Figure 4.1, and illustrates how power transmissions and power
grid monitoring in a smart grid could function. In the smart grid data is gathered
by smart units (SUs) and transferred to a control center owned by a power utility
company intending to administer the smart grid. For the communication with the
SUs there are several alternatives for platforms, which could be chosen depending
on requirements concerning latency, availability and security. Investigated in the
following is a solution based on mobile communication, an interesting candidate
because of relatively low entry costs and roll-out time. The smart grid system is
looked at from a single SU’s perspective, hence the service is considered as working
if the SU is connected to and can communicate with the power utility company’s
control center.

To sustain a connection between the SUs and the control center the smart grid
utilizes mobile communication provided by two MNOs, namely MNO A and MNO
B. The easiest and cheapest communication solution would be for each SU to have
a subscriber identity module (SIM) belonging to one of the two MNOs, allowing
the SU to communicate through only the one MNO owning the SIM. To achieve
a more stable connection between the SUs and the control center, the SUs could
apply multihoming, in which case the SUs will use two SIM cards, one for each MNO,
and thus be able to communicate through either. Even with multihoming the SUs
can only have a connection through one of the MNOs at the time, where the MNO
currently in use is called the active MNO.

If a communication failure is detected at the SU, defined as loss of connection with
the control center, the SU initiates a switch-over to the other non-active MNO and
resume operation given that a connection to the control center can be re-established
over this mobile network. If the SU can not establish a connection over either MNO
the switch-over is repeated back and forth until the smart grid is repaired and the
SU can establish a connection to the control center anew.
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Figure 4.1: The smart grid system analysed including a smart unit, a power grid
with two distribution grids, a power grid control system and two MNOs.

A working connection between the SU and the control center relies on six BSs,
with three BSs owned by each MNO. The BSs are regarded as working as long as
they are operating and able to receive data from the SU and forward this data further
on towards the power utility company’s control center. To do this the BSs need to
be provided with power, either directly from the power grid or from a local power
backup, they need to have available bandwidth capacity, and critical hardware (HW)
and SW in the BS will have to function correctly.

The BSs rely on power provided by a power grid logically separated into two
distribution grids (DGs); DG A is providing the BSs in MNO A with power and DG
B is providing the BSs in MNO B with power. All the physical power dependencies
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Figure 4.2: Illustration of the two areas of interdependencies; (1) between the
power grid and the MNOs and (2) between the two MNOs.

from the BSs to the DGs are shown in Figure 4.1 as red connections. Also, there
is a power grid control system monitoring the power grid. If working correctly and
having adequate information about the power grid’s status, the control system will
be able to locate malfunctions and assist any repair personnel in case of DG failures.

4.1 Areas of Interdependencies

The interdependencies that could exist in the smart grid from Figure 4.1 are in this
analysis categorised into two areas of interdependencies. In the following analysis
each area of interdependency is investigated separately, emphasising the different
effects that dependencies have on the two areas of the smart grid individually. The
two areas of interdependencies are listed below, and are also illustrated in Figure 4.2.

1. Interdependencies between the power grid and the MNOs.

2. Interdependencies between the two MNOs.

4.2 Values of Rates and Constants

Several use cases are presented and analysed in the following chapters. The numerical
values of all rates and constants used in the following analyses are assumed to be
exponentially distributed, and are listed in summary in Table 4.1. The rates and
constants are explained further in the use cases where they are involved. The DG
failure and repair rates are derived from Norwegian power grid interruption statistics
[AFÅ+14], while the rest of the values are estimated based on study of literature.
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Table 4.1: Values of all rates and constants used in the following use cases.

Use case Symbol Value Explanation

1

λDG 4/year Failure rate of the DGs.
µDG 1/3h Repair rate of the DGs.
λP B 1/4h BS power backup run out rate.
sDG 1.5 Constant for realising DG stress propagation.
cDG 0.5 Constant for realising inadequate telecom.

2
λC 5/year Congestion rate of the BSs.
µC 1/4h Congestion repair rate of the BSs.
lBS 30 Constant for realising congestion propagation.

3

λEr 24/year BS malware infection rate.
µEr 3/year SW repair rate of BSs in error state.
λF 12/year SW failure rate of malware infected BSs.
µF 1/7h SW repair rate of failed BSs.
mBS 2.5 Constant for realising malware propagation.

4

λCS 5/year Failure rate of the power grid control system.
µCS 1/7h Repair rate of the power grid control system.
mCS 2/3 Constant for realising escalated repair time.
+ λDG, µDG, λP B , sDG and cDG from use case 1.

5

λS 3/year Rate of BS damaging storms.
λW 2/year Failure rate of BS because of weathering.
µBS 1/10h Repair rate of failed BSs.
PS 1/6 Probability of a BS failing in a storm.

6
λD 3/year Damage rate of ditch with BS power cables.
µD 2/15h Repair rate of ditch with BS power cables.
+ λW and µBS from use case 5.



Chapter5Use Cases - Introduction

Based on the investigation from Chapter 3 it is understood that several types of
dependencies can exist and different types of failures can occur in each area of
interdependencies. To further analyse how dependencies and failures behave in and
affect the smart grid some distinct use cases are made, which are presented in this
chapter, and will be analysed one at a time in the following chapters.

From Table 3.1 in Chapter 3 some combinations of interdependencies and failures
where pointed out as the most relevant for smart grids. The following use cases
are chosen based on this observation, and covers the presumably most realistic and
relevant scenarios. Because of this, only some of the types of interdependencies
and types of failures are investigated for each of the two areas of interdependencies,
creating in all six distinctive use cases.

In each use case a specific type of failure, a specific type of interdependency and
a specific areas of interdependency is analysed. More precisely, the availability of the
smart grid system is analysed for each of the use cases through the use of dependability
modeling. To model the dependability of the system concerned, Markov processes
represented by state transition diagrams are used, also known as, and in the following
chapters referred to as, Markov dependability models. By using Markov dependability
models the asymptotic availability of the smart grid system can be obtained in each
use case, and ultimately be compared with the asymptotic availabilities obtained in
other use cases. For more information on Markov dependability models see [Hel09]
or [EHHP12], where in the following chapters the reader is assumed to have basic
knowledge of notations and topology in dependability modeling.

The use cases all build up step by step by first introducing a simple system, then
adding dependencies to the system and in this way increasing complexity. This way
of presenting the use cases allows the asymptotic availability as well as the actual
Markov dependability models of the smart grid system to be compared when various
dependencies are added. Each use case will to sum up present a discussion, analysing
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the most important parameters in that use case and how they affect the asymptotic
availability of the smart grid. In addition, a final discussion is presented after the use
cases, looking at the dependability models presented and comparing the numerical
results from the use cases.

The six use cases presented, modeled and analysed in the following chapters are
summarised in the list below. Table 5.1 sum up the area of interdependency, the
type of failure and the type of interdependency that are concerned in each use case

Use Case 1: Cascading Power Grid Failure
This use case presents a scenario where a DG in the power grid fails and causes
propagation of failure in the power grid. The failure(s) in the power grid will
further on cascade and cause a blackout in the BSs in the MNOs.

Use Case 2: Cascading Base Station Congestion Failure
All BS has a set bandwidth capacity, where if a BS experiences too much load
it will become congested. This use case investigates how BS congestion can
propagate between BSs in an MNO or cascade to BSs in the other MNO.

Use Case 3: Cascading Base Station Cyber Failure
This use case analyse how malware can infect and propagate between BSs in a
MNO, or cascade between BSs in different MNOs.

Use Case 4: Escalating Cascading Power Grid Failure
If the power grid control system is failed, potential failures in the power grid
will be more severe in the form of a longer repair time. This use case is similar
to Use Case 1, though with the addition of a power grid control system.

Use Case 5: Common Cause BS Failure with Individual Repair
A storm may potentially cause damage to several BSs in a geographical area at
once. This use case investigates how a storm could cause a common cause BS
failure in the MNOs.

Use Case 6: Common Cause BS Failure with Common Repair
This use case also investigates a common cause failure, more specifically the
damaging of a ditch containing BS power cables. Here only the ditch has to be
repaired for the BSs to work, not every BSs individually.
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Table 5.1: Overview of use cases analysed.

Use case Area of
interdependency Type of failure Type of

interdependency
1 1 Cascading Physical
2 2 Cascading Physical
3 2 Cascading Cyber
4 1 Escalating Cyber
5 2 Common cause Geographical
6 2 Common cause Geographical





Chapter6Use Case 1: Cascading Power Grid
Failure

From the investigation in Section 3.1 it is seen that there are several ways in which
components can fail and start a propagation of disruptions throughout a network.
In the case of power grids, transmission lines and other HW components could fail
due to overload, decay and flashovers among other reasons, starting a ripple effect of
power grid components failing.

A DG in the smart grid system from Figure 4.1 is defined as failed when critical
components in the DG have failed and the DG can no longer provide power to
its dependent BSs. In the same way as disruptions propagate in a network when
components fail, stress will propagate between the DGs in the power grid. Additional
stress on a DG does not necessarily cause it to fail, but will increase the chance of it
failing due to overload. In this use case, if DG A fails stress is increased on DG B,
and vice versa, if DG B fails stress is increased on DG A. Implicitly, besides failures
propagating in the power grid, a failure can cascade from the power grid to other
systems. As the BS in the MNOs rely on power from the power grid, they will fail if
the DGs on which they rely fails, if not having backup power of some kind.

Different factors affect the failure and repair rates of the DGs and how fast failures
could cascade from the power grid to the MNOs, where MNO failures contrarily can
affect the state of the power grid. Figure 6.1 illustrates the chronological steps of
how a failure cascade and affect the power grid and the MNO systems in the smart
grid from Figure 4.1. The steps from Figure 6.1 are gone through and explained
further in the following sections.

6.1 Cascading Power Grid Failure

In the simplest form the smart grid system is assumed to work such that the BSs in
the MNOs have no power backup and does not fail due to any other causes than lack
of power. A failure of DG A or DG B will immediately cascade to the BSs in MNO
A or MNO B respectively, causing them to fail.
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Figure 6.1: Steps of a cascading failure starting in the power grid; (1) failure of a
DG, (2) failure of BSs in an MNO due to power outage, (3) failure of a second DG,
(4) failure of BSs in a second MNO due to power outage, and (5) DG repair time
increases.

Figure 6.2: Markov dependability model of a single DG system.

6.1.1 Single Distribution Grid Dependency

For the sake of comprehension, a more simple system is presented first. Assuming
the SU only has one SIM card, the SU can only connect to BSs belonging to one
of the MNOs. The failure of a single DG is seen in Figure 6.1 as the first step, (1)
failure of a DG. When the one DG in this simple system without SU multihoming
fails, the failure cascades to the dependent BSs. The failure of BSs in a single MNO
is seen in Figure 6.1 as the second step, (2) failure of BSs in an MNO.

In this dependability model only one of the DGs has to be regarded, The DG power-
ing the one active MNO. The state space is defined as Ω = {DG Working, DG Failed}.
Knowing the failure rate λDG and the repair rate µDG of the DG, the dependability
model becomes as seen in Figure 6.2.

With the steady state probabilities from the dependability model in Figure 6.2,
denoted p = {pW , pF }, the asymptotic availability ADG of the DG system equals the
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Figure 6.3: Markov dependability model of the smart grid system from Figure 4.1
including stress propagation between DGs.

steady state probability of the one working state, as shown in (6.1).

ADG = pW = 0.998632 (6.1)

6.1.2 Power Grid Dependency

With multihoming the SU in the smart grid system can connect to both MNOs. The
failure of the first DG is seen in Figure 6.1 as the first step, (1) failure of a DG.
When the first DG fails the failure cascades to its dependent BSs, seen as the second
step, (2) failure of BSs in an MNO. The failure of the second DG is seen as the third
step, (3) failure of a second DG, which again cascades and causes the BSs in the
second MNO to fail, seen as step four, (4) failure of BSs in a second MNO.

When both DGs are included in the dependability model the propagating of
stress between them will also have to be regarded, realized with a DG stress constant
sDG. If a DGs fails, the failure rate of the other DG is increased with sSG and
becomes (1 + sDG)λDG. In this dependability model the state space is defined as
Ω = {{iDG Working} | i ∈ {0, 1, 2}}, where the system is defined as working when
at least one DG is working. Assuming there is only one repair crew in the power grid,
knowing the failure rate λDG and the repair rate µDG of the DGs and including the
stress propagation between the DGs, the dependability model becomes as seen in
Figure 6.3.

With the steady state probabilities from the dependability model in Figure 6.3,
denoted p = {p1, p2, p3}, the asymptotic availability ASG of the smart grid system is
obtained by adding up the steady state probabilities of the working states, as shown
in (6.2).

ASG = p1 + p2 = 0.999991 (6.2)
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Figure 6.4: Markov dependability model of the smart grid system from Figure 4.1
including stress propagation between DGs and repair crew telecommunication depen-
dency.

6.1.3 Power Grid & MNO Interdependency

Not only can the power grid affect the states of the BSs in the MNOs, but the failure
of the BSs can disrupt the state of the power grid. The DG repair crew is assumed
to use the telecommunication services provided by the MNOs for communication
between personnel and coordination of repair operations, therefore when all BSs have
failed the DG repair work will be somewhat slowed. The failure of the first DG is
seen in Figure 6.1 as the first step. When the first DG fails the failure cascades to
its dependent BSs, seen as the second step. The failure of the second DG is seen as
the third step, which again cascades and causes the BSs in the second MNO to fail,
seen as step four. Lastly, when all BSs has failed the power grid repair crew becomes
in lack of proper telecommunication services, seen as step five, (5) DG repair time
disruption.

The potential decrease in DG repair rate is realized with a communication constant
cDG. If both DGs have failed and all BSs are without power, the repair rate of the
DGs are decreased with cDG and becomes (1− cDG)µDG. The dependability model
for this system again relies on only the two DGs, giving it the same state space as
in the model from Section 6.1.2, defined as Ω = {{iDG Working} | i ∈ {0, 2}}. The
system is defined as working when at least one DG is working, and it is assumed that
there is only one repair crew in the power grid. Knowing the failure rate λDG and the
repair rate µDG of the DGs, including the stress propagation between the DGs, and
including the repair crew telecommunication dependency, the dependability model
becomes as seen in Figure 6.4.

With the steady state probabilities from the dependability model in Figure 6.4,
denoted p = {p1, p2, p3}, the asymptotic availability ASG of the smart grid system is
obtained by adding up the steady state probabilities of the working states, as shown
in (6.3).

ASG = p1 + p2 = 0.999981 (6.3)
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Figure 6.5: Markov dependability model of a single BS system.

6.2 Cascading Power Grid Failure with BS Power Backup

BSs in a real system will often have power backup of some kind, e.g. diesel generators
or batteries [Mal10]. When including power backup for the BSs in the smart grid
system there will be an extra delay between the moment a DG fails and the moment
its dependent BSs fails. This means that the smart grid asymptotic availabilities
obtained from (6.2) and (6.3) are too low if the BSs have power backup. The BSs
in this section are assumed to not fail for any other reason than lack of power and
the power run out rate for the BSs is assumed to be exponentially distributed as
the capacity of diesel generators and batteries can vary based on type, age, working
conditions and state of charge.

6.2.1 Single Base Station Dependency

First assuming the SU can only connect to a single BS, a simple dependabil-
ity model illustrating the cascading of failure from a DG to the single BS can
be made. The state space is in this model two dimensional, defined as Ω =
{{iDG Working, jBS Working} | i ∈ {0, 1}, j ∈ {0, 1}, j ≥ i}}, including both the
state of the DG and the state of the BS. For the single BS system to fail the DG
powering the BS has to fail and the BS has to run out of power backup, where the
BS power backup is assumed to run out with rate λP B . The DG failures are assumed
to happen rarely enough for the BS power backup to recharge between DG failures.
Knowing the failure rate λDG and the repair rate µDG of the DGs and the BS backup
power run out rate λP B , the dependability model becomes as seen in Figure 6.5.
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Figure 6.6: Markov dependability model of a single MNO system including BS
power backup.

With the steady state probabilities from the dependability model in Figure 6.5,
denoted p = {p1, p2, p3}, the asymptotic availability ABS of the single BS system is
obtained by adding up the steady state probabilities of the working states, as shown
in (6.4).

ABS = p1 + p2 = 0.999414 (6.4)

6.2.2 Single Distribution Grid Dependency

Assuming the SU only has one SIM card, the SU can only connect to BSs belonging
to one of the MNOs. The failure of a single DG is seen in Figure 6.1 as the first step,
(1) failure of a DG. When the one DG in this simple system without SU multihoming
fails, the failure cascades to the dependent BSs. The failure of BSs in a single MNO
is seen in Figure 6.1 as the second step, (2) failure of BSs in an MNO.

Here only one of the DGs has to be regarded in the dependability model, the
one powering the applicable MNO. A new dependability model is made extending
the model from Figure 6.5, where instead of only one BS there are three BSs
included in the model. The state space for this single MNO system is defined as
Ω = {iDG Working, jBS Working} | i ∈ {0, 1}, j ∈ {0, 1, 2, 3}, j ≥ 3i}. In this single
MNO system the DG has to fail and all three BSs has to run out of power before the
MNO system fails, each BS with power run out rate λP B . Knowing the failure rate
λDG and the repair rate µDG of the DGs, the dependability model becomes as seen
in Figure 6.6.
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Figure 6.7: Markov dependability model of a single MNO system including BS
power backup with increased DG stress.

With the steady state probabilities from the dependability model, denoted p =
{p1, p2, p3, p4, p5}, the asymptotic availability AMNO of the MNO system is obtained
by adding up the steady state probabilities of the working states, as shown in (6.5).

AMNO = p1 + p2 + p3 + p4 = 0.999756 (6.5)

6.2.3 Power Grid Dependency

Now assuming the SU is multihomed and can connect to both MNOs. The failure of
the first DG is seen in Figure 6.1 as the first step, (1) failure of a DG. When the
first DG fails the failure cascades to its dependent BSs, seen as the second step, (2)
failure of BSs in an MNO. The failure of the second DG is seen as the third step, (3)
failure of a second DG, which again cascades and causes the BSs in the second MNO
to fail, seen as step four, (4) failure of BSs in a second MNO.

As already seen from the dependability models in Figure 6.3 and Figure 6.4, when
a DG fails the failure rate of the other DG is increased with a stress constant sDG.
This means that if a DG has failed the potentially remaining working DG would
have an increased DG failure rate; more specifically the DG failure rate becomes
(1 + sDG)λDG. The dependability model of a DG and all three dependent BSs in the
case of increased DG stress is seen in Figure 6.7.

Creating a dependability model of the smart grid covering both DGs and all six
BSs is very much possible, but would be a complex model. As an alternative, by
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Figure 6.8: Markov dependability model of the smart grid system from Figure 4.1
including stress propagation between DGs and BS power backup.

finding the failure rate of the systems from Figure 6.6 and Figure 6.7, a simpler
dependability model for the smart grid system can be made. Denoting the steady
state probabilities from the model in Figure 6.7 as ps = {p1s, p2s, p3s, p4s, p5s} and
using the already denoted steady state probabilities p from the dependability model
in Figure 6.6, the failure rate λMNO of the system in Figure 6.6 and the failure rate
λMNOs of the system in Figure 6.7 are obtained in (6.6) and (6.7) respectively.

λMNO = p4

p1 + p2 + p3 + p4
λP B (6.6)

λMNOs = p4s

p1s + p2s + p3s + p4s
λP B (6.7)

A dependability model of the smart grid system is made with state space defined
as Ω = {iMNO Working} | i ∈ {0, 1, 2}}, including both the DGs and the BSs with
power backup. With the failure rates λMNO and λMNOs obtained and knowing the
repair rate µDG of the DGs, the dependability model becomes as seen in Figure 6.8.

With the steady state probabilities from the dependability model in Figure 6.8,
denoted pSG = {p1sg, p2sg, p3sg}, the asymptotic availability ASG of the smart grid
system including stress propagation between DGs and BS power backup is obtained
by adding up the steady state probabilities of the working states, as shown in (6.9).

USG = p3sg = 2.96× 10−7 (6.8)

ASG = p1sg + p2sg = 1− USG (6.9)

6.2.4 Power Grid & MNO Interdependency

Including the repair crew telecommunication interdependency, the repair time for the
DGs when all BSs have failed will be somewhat increased. With the obtained failure
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Figure 6.9: Markov dependability model of the smart grid system from Figure 4.1
including stress propagation between DGs, repair crew telecommunication dependency,
and BS power backup.

rates for the MNO systems, ΛMNO and ΛMNOs, a new dependability model of the
smart grid system including the repair crew telecommunication interdependency is
easily obtained.

For the new model of the smart grid the only rate changing from the model
in Figure 6.8 is the repair rate from the failed state, which will be decreased by
the communication constant cDG. The state space of this new model is defined as
Ω = {iMNO Working} | i ∈ {0, 2}}, giving the model as seen in Figure 6.9.

With the steady state probabilities from the dependability model in Figure 6.9,
denoted pSG = {p1sg, p2sg, p3sg}, the asymptotic availability ASG of the smart grid
system including stress propagation between DGs, repair crew telecommunication
dependency, and BS power backup is obtained by adding up the steady state proba-
bilities of the working states, as shown in (6.10).

ASG = p1sg + p2sg = 0.999999 (6.10)

6.3 Discussion

With the dependability models created for the smart grid systems with or without
multihoming, repair crew telecommunication dependency and BS power backup, a
comparison of the systems with regard to asymptotic availability can be made. First
the systems from Section 6.1 are compared, being the smart grid systems without
BS power backup. From Norwegian power grid interruption statistics it is seen that
there is an evident variation of power grid failure rate among Norwegian counties,
and on this wise the failure rate of the systems is looked at [AFÅ+14]. The plot
in Figure 6.10 shows the asymptotic availability of the systems from Figure 6.2,
Figure 6.3 and Figure 6.4 plotted with respect to DG failure rate λDG.

It is seen from the plot in Figure 6.10 that the single DG system has a notably
steeper decrease in asymptotic availability than the two other systems as the failure
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Figure 6.10: Plot of the asymptotic availability of the three smart grid systems
from Figure 6.2, Figure 6.3 and Figure 6.4 with respect to DG failure rate λDG. The
dashed grid line shows the value of the DG failure rate λDG used in use case 1.

rate λDG increases, going up to almost one DG failure every month. The asymptotic
availability of the two other smart grid systems stays approximately the same in the
failure rate range given, implying that the telecommunication repair crew dependency
as realised in this analysis does not have a significant effect on the smart grid’s
asymptotic availability.

Because the asymptotic availability of the systems from Figure 6.3 and Figure 6.4
stays relatively high with regard to increasing failure rate, comparing them to the
corresponding systems from Section 6.2 with BS power backup would give little
useful insight. For the two systems with only one DG, with and without BS power
backup, a more notable distinction can be seen. The plot in Figure 6.11 shows the
asymptotic availability of the two single DG systems from Figure 6.2 and Figure 6.6
plotted with respect to BS power backup run out rate λP B .

With a four hour mean time to BS power backup run out, shown in the plot in
Figure 6.2 as a dashed grid line, the effect of the BS power backup is noteworthy, but
quickly loses effect as λP B increases. The asymptotic availability of the single DG
system with BS power backup will eventually converge to the asymptotic availability
of the single DG system without BS power backup as λP B approaches infinity. To
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Figure 6.11: Plot of the asymptotic availability of the two single DG systems from
Figure 6.3 and Figure 6.4 with respect to BS power backup run our rate λP B . The
dashed grid line shows the value of the BS power backup run our rate λDG used the
use case 1.

uphold an adequate effect of the BS power backup in case of a single DG system, the
BS power backup should last no less than a couple hours.

Going back to the multihomed systems with two DGs, the effect of the BSs
power backup becomes more evident if the communication constant cDG is increased.
The plot in Figure 6.12 shows the asymptotic availability of the two systems from
Figure 6.3 and Figure 6.9 plotted with respect to cDG. As seen from the plot,
when cDG is increased, the smart grid system without BS power backup will have
a significant decrease in asymptotic availability before there is a big change in the
asymptotic availability of the smart grid system with BS power backup. This suggests
that for areas without alternative telecommunication services a better power backup
solution is more important.
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Figure 6.12: Plot of the asymptotic availability of the two smart grid systems from
Figure 6.3 and Figure 6.9 with respect to the communication constant cDG.



Chapter7Use Case 2: Cascading Base
Station Congestion Failure

BSs could become erroneous if experiencing a high amount of load, and in the worst
case not being able to receive and communicate calls and data from the SUs and
other users due to bandwidth capacity. User crowding in areas related to popular
events, increased data traffic due to emergency situations, or BS failures causing
higher load on remaining working BSs in a geographical area are all examples of
scenarios where BS overloads could occur [BCH+12] [Ald03] [Mei12]. In the smart
grid system from Figure 4.1, when a BS in an MNO experiences an overload and is
no longer available for new requests, the remaining BSs in that MNO has to take
all load, and thus are more subjected to overload themselves. In this way overload
failures in BSs propagate to other BSs in their system, or even to other systems, in
this case the other MNO, if users and SUs have access to both MNOs.

In the following sections the BSs can be in a normal (working) state or in a
congested (failed). In the congested state the BS can handle no extra load, and
all load is therefore redistributed to other BSs if possible, including SU requests.
Figure 7.1 illustrates the chronological steps in which a BS congestion failure in an
MNO can propagate to other BSs in the MNO, cascade to the other MNO, and again
cascade back realizing a BS interdependency between the MNOs. The steps from
Figure 7.1 are explained further in the following sections.

7.1 Single BS Congestion

For the sake of comprehension, first the SU is assumed to only be able to connect to
a single BS. The congestion of a single BS is seen in Figure 7.1 as the first step, (1)
congestion of a BS in an MNO, and the BS is assumed not to fail for any other reasons
than BS congestion. The rate of which the BS becomes congested is assumed to be
λC , where the BSs are assumed to do self-restore by reboot, remote configuration
or by change of situation (e.g. decreasing demand) in the case of congestion, giving
the BSs an independent restoration rate of µC . The state space of the single BS

39
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Figure 7.1: Steps of a cascading BS congestion failure; (1) congestion of a BS in an
MNO, (2) propagation of BS congestion in an MNO, (3) cascading of BS congestion
to a second MNO, (4) propagation of BS congestion in a second MNO, and (5)
cascading of BS congestion back to the first MNO.

Figure 7.2: Markov dependability model of a single BS system with congestion.

system is defined as Ω = {BS Working, BS Congested}, and knowing the BS failure
and restoration rates a simple dependability model of a single BS system can be
made as seen in Figure 7.2.

With the steady state probabilities from the dependability model in Figure 7.2,
denoted p = {pW , pC}, the asymptotic availability ABS of the single BS system is
simply the one working steady state probability, as shown in (7.1).

AS = pW (7.1)

7.2 Propagating BS Congestion

Assuming the SU only has one SIM card, it can only connect to BSs belonging
to one of the MNOs. It is assumed that the BSs do not fail for any other reason
than congestion. Because there are several BSs in a single MNO, propagation of
BS congestion between the BSs in that MNO has to be taken into account when
analysing the system. The congestion of a single BS is seen in Figure 7.1 as the first
step, (1) congestion of a BS in an MNO. When a BS is congested it will cause extra
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Figure 7.3: Markov dependability model of a single MNO system with congestion
propagation.

load on remaining BSs and in this way propagate congestion, seen in Figure 7.1 as
the second step, (2) propagation of BS congestion in an MNO.

The rate at which a BS in an MNO experiences congestion and goes to the
congested state is λC , and the restoration rate is µC . When a BS in an MNO is
congested it increases the rate at which other BSs in that MNO becomes congested
with a load constant lBS , i.e. the congestion rate for remaining normal working
BSs in the MNO becomes (1 + lBS)λC . Likewise, when two out of three BSs in an
MNO are congested the congestion rate for the one last normal working BS in that
MNO becomes (1 + 2lBS)λC . State space of the single MNO system is then defined
as Ω = {{iBS Congested} | i ∈ {0, 3}}, giving the dependability model as seen in
Figure 7.3.

With the steady state probabilities from the dependability model in Figure 7.3,
denoted p = {p1, p2, p3, p4}, the asymptotic availability AMNO of the MNO system
with BS congestion propagation can be obtained. The single MNO system is working
as long as at least one BS in that MNO is working, giving the system asymptotic
availability as seen in (7.2).

AMNO = p1 + p2 + p3 = 0.999978 (7.2)

7.3 Cascading BS Congestion

To obtain the asymptotic availability of the whole smart grid system from Figure 4.1
with respect to BS congestion, both MNOs and all six BSs have to be regarded.
Considering that some user agents are multihomed and can utilize BSs from both
MNOs, BS overload can cascade between the MNOs. Examples are SUs, other
multihomed services or people making emergency calls. Also, the BSs are assumed
to have a geographical interdependency, meaning that a crowding of users in an area
affecting one of the MNOs’ BSs increase the probability that crowded users will affect
the other MNO’s BSs as well.
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7.3.1 MNO Congestion Dependency

The congestion of the first BS is seen in Figure 7.1 as the first step, (1) congestion
of a BS in an MNO. When a BS is congested it will cause extra load on remaining
BSs and in this way propagate congestion inside the MNO, seen in Figure 7.1 as
the second step, (2) propagation of BS congestion in an MNO. Also, BS congestion
will cascade to the second MNO seen in Figure 7.1 as the third step, (3) cascading
of BS congestion to a second MNO. If at least one BS fails in the second MNO,
congestion will also propagate between BSs in this MNO, seen as the fourth step, (4)
propagation of BS congestion in a second MNO.

Assuming that the probability of congestion cascading from BSs in one MNO to
another increase as more BSs in an MNO are congested. Looking at the dependability
model of a single MNO system from Figure 7.3, BS congestion is cascaded from an
MNO when the MNO is any state except the first state, where no BSs are congested.
It is assumed that there is a higher threshold for cascading congestion from a BS to
a BS in another MNO than propagating congestion to a BS belonging to the same
MNO. For each congested BS in an MNO there is an increase in congestion rate with
a half load constant 1

2 lBS of BSs belonging to the other MNO. Thus, again looking
at the dependability model in Figure 7.3, the congestion rate of BSs belonging to
the other MNO is increased with 1

2 lBS , 2
2 lBS = lBS or 3

2 lBS when in system state 2,
state 3 or state 4 respectively.

Knowing the steady state probabilities from the dependability model in Figure 7.3
a mean congestion rate increase for the second MNO can be obtained. By adding
all congestion rate increases lBS multiplied with the steady state probability of the
state in which they occur, a mean congestion rate increase LBS for the second MNO
is obtained, as seen in (7.3).

LBS = (1
2pS2 + pS3 + 3

2pS4)lBS (7.3)

With the mean congestion rate increase for the second MNO obtained, a new
MNO dependability model can be made with the extra congestion rate increase. For
all congestion rates the constant LBS is added, giving the dependability model as
seen in Figure 7.4.

The smart grid system including both MNOs and BS congestion cascading from
one MNO to the other is working as long as at least one of the six BSs is working.
Using the steady state probabilities p from the system in Figure 7.3, and denoting
the steady state probabilities from the system in Figure 7.4 as pl = {p1l, p2l, p3l, p4l},



7.3. CASCADING BS CONGESTION 43

Figure 7.4: Markov dependability model of a single MNO system with congestion
propagation including cascading of congestion from the other MNO.

the smart grid system’s asymptotic availability ASG can be seen in (7.5).

USG = pS4pSl4 = 5.60× 10−10 (7.4)

ASG = 1− US (7.5)

7.3.2 MNO Congestion Interdependency

If BS congestion can cascade from one MNO to another, it will realistically cascade
the other way around as well, creating an interdependency between the MNOs.
The probability of an MNO being in a state where it can cascade BS congestion is
bigger when the MNO can experience cascaded congestion from the other MNO,
and thus the probability for cascading congestion back gets bigger as well, enlarging
the mean congestion rate increase LBS . This interdependency with BS congestion
cascading back to the first MNOs is seen as step five in Figure 7.1, (5) cascading of
BS congestion back to the first MNO.

To get a probability for BS congestion cascade as precise as possible the constant
LBS has to be recalculated repeatedly until it converges to some value. The recalcu-
lation of LBS is a manageable task with a mathematical tool, and the new numerical
value for LBS is seen in (7.6).

LBS = 0.132998 (7.6)

Using the numerically obtained congestion rate increase LBS and the dependability
model from Figure 7.4, the asymptotic availability ASG for the smart grid system
including MNO interdependency in the form of BS congestion cascading is obtained,
as seen in (7.8).

US = P 2
Sl4 = 6.48× 10−10 (7.7)
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Figure 7.5: Plot of the asymptotic availability of the two smart grid systems from
Figure 7.3 and Figure 7.4 with respect to BS congestion rate λC . The dashed grid
line shows the value of the BS congestion rate λC used in use case 2.

AS = US (7.8)

7.4 Discussion

With dependability models created for the MNO systems with BS congestion some
observations are made. In a multihomed system with two MNOs the asymptotic
availability stays positively high, both when including congestion dependency and
interdependency. On that remark, it is more interesting to look at the single MNO
system with congestion propagation, where the asymptotic availability is noticeably
lower than for the multihomed systems. The plot in Figure 7.5 shows the asymptotic
availability of the single MNO system from Figure 7.3 and the multihomed system
from Figure 7.4 plotted with respect to BS congestion rate λC .

It is seen from the plot in Figure 7.5 that the single MNO system has a steep
decrease in asymptotic availability as the BS congestion rate λC increases, going up
to almost three congestion failures per month. The asymptotic availability of the
multihomed system stays relatively high, also for an increased BS congestion rate.
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This observation suggest that for areas susceptible to BS congestion, e.g. in areas
with lots of infrastructure or social events, using multihomed SUs is preferable.





Chapter8Use Case 3: Cascading Base
Station Cyber Failure

As the smart grids of the future becomes smarter, they will rely more and more
on ICT and backbone networks, where it is quite possible that cyber failures could
cascade between SW in BSs. There are few relevant examples of malware affecting and
propagating between BSs or other MNO components per today, but the possibility
of malware doing so in the future is, and should be, a legitimate concern.

It is assumed that a SW error in a BS caused by malware can propagate to other
BSs in the MNO. Given that the affected ICT system of the MNO is connected
somehow to other ICT systems, e.g. if the two MNOs share ICT resources of some
kind, the error can cascade to the other systems, i.e. to a BS in another MNO. The
more BSs that are affected, the more likely the error will propagate to other BSs,
though the threshold for cascading from a BS in one MNO to a BS in the other
MNO is presumably higher than for the error to propagate between BSs within the
same MNO.

In the following sections BSs could be in a working state, an error state or in a
failed state [ALRL04], where both BSs in the error state and in the failed state are
assumed to be able to propagate SW errors to other BSs. Also, the BSs are assumed
not to fail for any other reasons than failure caused by SW errors. Figure 8.1 shows
the steps in which an error or failure in a BS can propagate to other BSs in an MNO
and cascade to BSs in the other MNO. The steps from Figure 8.1 are gone through
and explained further in the following sections.

8.1 Single BS Cyber Failure

First the SU is assumed to only be able to connect to a single BS prone to SW errors
because of malware. A BS error is not the same as a BS failure, but can lead to
a failure if left untreated. The rate of which a BS gets infected with malware and
enters the error state is assumed to be λEr, and if a BS is in the error state, the
failure rate is assumed to be λF . The malware infection of a single BS is seen in
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Figure 8.1: Steps of a cascading BS cyber failure; (1) malware infection of a BS in
an MNO, (2) propagation of BS malware in an MNO, (3) cascading of BS malware to
a second MNO, (4) propagation of BS malware in a second MNO, and (5) cascading
of BS malware back to the first MNO.

Figure 8.2 as the first step, (1) malware infection of a BS in an MNO. The BSs are
assumed to self-restore by reboot or remote configuration in the case of a malware
error or failure, giving the BSs an independent repair rate of µEr from the error state
and µF from the failed state. However, as SW errors can be hard to detect before
they manifest as a failure, the repair rate from error state is relatively low compared
to the repair rate from the failed state. With these rates known and assuming the
SU can only connect to a single BS, a simple dependability model of a single BS
system can be made as seen in Figure 7.2.

With the steady state probabilities from the dependability model in Figure 8.2,
denoted p = {pW , pE , pF }, the probability of the BS being in the error or failed state
where it can possibly propagate malware to other BSs is obtained by adding up
the steady state probabilities of the error and failure states, as shown in (8.1). The
asymptotic availability ABS of the single BS system is obtained by adding up steady
state probabilities of the working and error states, as shown in (6.2).

P{BS Malware} = PM = pE + pF (8.1)

ABS = pW + pE (8.2)

8.2 Propagating BS Cyber Failure

Assuming the SU only has one SIM card, it can only connect to BSs belonging to one
of the MNOs, and the propagation of BS malware in that MNO has to be regarded
when doing a availability analysis. The malware infection of a single BS is seen in
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Figure 8.2: Markov dependability model of cyber error and failure in single BS.

Figure 8.1 as the first step, (1) malware infection of a BS in an MNO. When a BS
gets infected it will propagation malware to remaining uninfected BSs in the MNO,
seen in Figure 7.1 as the second step, (2) propagation of BS malware in an MNO.

The rate at which a BS in an MNO gets infected with malware and goes to
the error state is λEr. When a BS in an MNO is infected with malware, implicitly
being in either the error or the failure state, the BS increases the rate at which
other BSs in the MNO gets infected malware realized with a malware constant
mBS , i.e. the error rate for remaining normal working BSs becomes (1 +mBS)λEr.
Likewise, when two out of three BSs in an MNO are infected with malware the error
rate for the last normal working BS becomes (1 + 2mBS)λEr. Still the failure rate
when in BS error state is λF . State space of the single MNO system is defined as
Ω = {{iBS Error, jBS Failed} | i ∈ {0, 1, 2, 3}, j ∈ {0, 1, 2, 3}, i+ j ≤ 3}, giving the
dependability model as seen in Figure 8.3.

With the steady state probabilities from the dependability model in Figure 8.3,
denoted p = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10}, the asymptotic availability of the
single MNO system with BS malware propagation can be obtained. The MNO system
is working as long as at least one BS in that MNO is working, giving the system
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Figure 8.3: Markov dependability model of a single MNO system with malware
propagation between BSs.

asymptotic availability AMNO as seen in (8.3).

AMNO = p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9 = 0.999999 (8.3)

8.3 Cascading BS Cyber Failure

To obtain the asymptotic availability of the whole smart grid system from Figure 4.1
both MNOs and all six BSs have to be regarded. Considering MNO could use
third-party network or component providers, or use common maintenance services
moving between BSs from both MNOs, malware could in this way cascade between
BSs in different MNOs. Depending on what services that is shared or commonly
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used by the MNOs, the rate at which malware can cascade between MNOs will vary,
where in this analysis it is assumed that there is a threshold for cascading malware
to the other MNO higher than that of malware propagating between BSs inside a
single MNO.

8.3.1 MNO Cyber Dependency

The infection of the first BS is seen in Figure 8.1 as the first step, (1) malware
infection of a BS in an MNO. When a BS is infected it will propagate malware inside
the MNO, seen in Figure 8.1 as the second step, (2) propagation of BS malware in
an MNO. Also, BS malware will cascade to the second MNO seen in Figure 8.1 as
the third step, (3) cascading of BS malware to a second MNO. If at least one BS
gets infected in the second MNO, malware will also propagate between BSs in this
MNO, seen as the fourth step, (4) propagation of BS malware in a second MNO.

Assuming that for each BS infected with malware in an MNO there is an increase
in the rate at which BSs in the other MNO gets malware infected with a third of
the malware constant mBS . The increase in BS error rate due to malware cascading
from BSs in the other MNO is in addition to any error rate increase caused by
malware propagation already existing in between BSs in the MNO. Thus, looking at
the dependability model from Figure 8.3, BS malware cascading happen when the
MNO system is any state but state 1. When an MNO is in state 2 or state 5 the
error rate of the BSs in the other MNO is increased with 1

3mBS , when the MNO is
in state 3, state 6 or state 8 the other MNO’s BS error rate is increased by 2

3mBS ,
and when the MNO is in state 4, state 7, state 9 or state 10 the other MNO’s BS
error rate is increased by 3

3mBS = mBS .

With the steady state probabilities from the dependability model seen in Figure 8.3
a mean error rate increase for the second MNO can be obtained. By adding all error
rate increases mBS multiplied with the steady state probability of the state in which
they occur, a mean error rate increase MBS for the second MNO is obtained, as seen
in (8.4).

MBS = (1
3(p2 + p5) + 2

3(p3 + p6 + p8) + (p4 + p7 + p9 + p10))mBS (8.4)

With the mean error rate increase for the second MNO obtained, a new MNO
dependability model can be made with the extra error rate increase. For all error rates
the constant MBS is added, giving the dependability model as seen in Figure 8.4.

The smart grid system including both MNOs and BS malware cascading from
one MNO to a the other dis working as long as at least one of the six BSs are
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Figure 8.4: Markov dependability model of a single MNO system with malware
propagation between BSs and including cascading of malware from the other MNO.

working. Using the steady state probabilities p from the system in Figure 8.3,
and denoting the steady state probabilities from the system in Figure 8.4 as
pm = {p1m, p2m, p3m, p4m, p5m, p6m, p7m, p8m, p9m, p10m}, the smart grid system’s
asymptotic availability ASG can be seen in (8.6).

USG = PS10PSm10 = 4.26× 10−13 (8.5)

ASG = 1− USG (8.6)
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8.3.2 MNO Interdependency

If BS malware can cascade from one MNO to another, it will realistically cascade
the other way around as well, thus creating a interdependency between the MNOs.
The probability of an MNO being in a state where it can cascade malware is bigger
when the MNO can experience cascaded malware from the other MNO, and thus the
probability for cascading malware back gets bigger as well, enlarging the mean error
rate increase MBS . This interdependency with BS malware cascading back to the
first MNO is seen as step five in Figure 8.1, (5) cascading of BS malware back to the
first MNO.

To get a probability for BS malware cascade as precise as possible the constant
MBS has to be recalculated repeatedly until it converges to some value. The
recalculation of MBS is a manageable task with a mathematical tool, and the new
numerical value for MBS is seen in (8.7).

MBS = 2.317115 (8.7)

Using the numerically obtained error rate increase MBS and the dependability
model from Figure 8.4, the asymptotic availability ASG for the smart grid system
including MNO interdependency in the form of BS malware cascading is obtained,
seen in (8.9).

USG = P 2
Sm10 = 4.71× 10−13 (8.8)

ASG = 1− USG (8.9)

8.4 Discussion

With dependability models created for the MNO systems with BS malware infection
some observations are made. Like in use case 2 with BS congestion, when analysing BS
malware infection the asymptotic availability of the single MNO system is remarkably
lower than the asymptotic availability of the multihomed systems. What separates
BS malware from congestion is that BS malware may lay dormant in BSs unnoticed,
hypothetically being undetectable until causing the BS to fail. The plot in Figure 8.5
shows the asymptotic availability of the single MNO system from Figure 8.3 with
mBS = 2.5, mBS = 5 and mBS = 10 plotted with respect to BS error repair rate
µEr.
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Figure 8.5: Plot of the asymptotic availability of the single MNO system from
Figure 8.3 with mBS = 2.5, mBS = 5 and mBS = 10 with respect to BS error repair
rate µEr. The dashed grid line shows the value of the BS error repair rate µEr used
in use case 2.

It is seen from the plot in Figure 8.5 that the asymptotic availability of the single
MNO system stays incredibly high even when µEr = 0, meaning that all errors are
undetectable, and mBS = 10, meaning that errors propagate quickly between BS in
the MNO. However, malware existing in BS may not have the intention of causing
BSs to fail, but rather exist to e.g. record sensitive data or intentionally lay dormant
until activated [KC06]. On that note, it is interesting to look at the probability that
malware infection exists in the MNO. The plot in Figure 8.6 shows the probability
of that at least one of the BSs in the single MNO system from Figure 8.3 with
mBS = 2.5, mBS = 5 and mBS = 10 are infected with malware, plotted with respect
to BS error repair rate µEr.

Even in the system with the smallest malware constant, mBS = 2.5, and the BS
error repair rate µEr being at almost one error repair per week, the probability of
having malware in the MNO is still over 80%. This goes to show that in future smart
grids malware could accumulate and propagate, and that one should have procedures
to avoid malware infection, e.g. by having up-to-date firewalls, and have procedures
to detect and remove malware in BSs.
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Figure 8.6: Plot of the probability of that at least one of the BSs in the single
MNO system from Figure 8.3 with mBS = 2.5, mBS = 5 and mBS = 10 are infected
with malware with respect to BS error repair rate µEr. The dashed grid line shows
the value of the BS error repair rate µEr used in use case 2.





Chapter9Use Case 4: Escalating Cascading
Power Grid Failure

Realistically, a power grid will have some sort of power grid control system monitoring
and controlling the power grid. With a failed control system the repair personnel
may not be notified about a power grid failure in an adequate short amount of
time, or they will have to use additional time on locating the failure, which in either
situation causes longer repair time. Also, if the potentially failed control system
handles critical events in the power grid improperly, e.g. if data from the power grid
is incorrect when received or if the control system is treating the data wrong, the
control system could handle critical events in the power grid in a non-optimal way,
leading to bigger damages than if the control system had worked. With more severe
damages to any failed components in the power grid, the longer it takes to repair
them.

In Chapter 6 the power grid was assumed to not be dependent on any control
system, while in this chapter an additional dimension is added; the states of the
power grid control system. Simply put, there are four different states in which the
power grid and control system could coexist, with both the power grid and the control
system being in either a working or failed state, as seen in Figure 9.1.

Different factors affect the failure and repair rates of the DGs and how fast failures
could cascade to the MNOs, where MNO failures contrarily can affect the state of the
power grid. For reference, Figure 6.1 in Chapter 6 illustrates the chronological steps
of how a failure may cascade and have effect on the power grid and the MNO systems
in the smart grid from Figure 4.1. The steps from Figure 6.1 are gone through
and explained in the sections in Chapter 6, where this use case follows the same
chronological steps and will therefore not explain the steps further in the following
sections.

57
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Figure 9.1: Comparison of dimensions analysed in Use Case 1 and Use Case 4. In
state 1 both the power grid and control system are working, in state 2 the power grid
has failed while the control system is working, in state 4 the power grid is working
while the control system has failed, and in state 4 both the power grid and control
system has failed.

Figure 9.2: Markov dependability model of the power grid control system.

9.1 Control System Failure

The power grid control system can be regarded as either working or failed, and
having a failure rate λCS and a repair rate µCS . The state space of the model is
then defined as Ω = {Control System Working, Control System Failed}, giving rise
to a simple Markov dependability model as seen in Figure 9.2.

The power grid control system has only two states, working and failed, letting
the availability, i.e. probability that the power grid control system is working, be
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obtained as seen in (9.1) [KB09].

ACS = PCS = λ−1
CS

µ−1
CS + λ−1

CS

(9.1)

9.2 Escalated Cascading Power Grid Failure

In this section the BSs are assumed to be without any power backup and they do
not fail due to any other reasons than lack of power. A failure of DG A or DG B will
immediately cascade to the BSs in MNO A or MNO B respectively, causing them to
fail.

The power grid control system is assumed to work such that when the control
system is working the smart grid system behaves as in Use Case 1 in Chapter 6,
while if the control system is in failed state the repair times of DG A and DG B are
increased. The increase in repair time is realized with a managing constant mCS ,
where if the control system has failed the repair rates µDG of the DGs are reduced
with mCS and becomes (1−mCS)µDG.

9.2.1 Single Distribution Grid Dependency

First looking at a system where the SU is not multihomed and can only connect to
BSs belonging to one MNO. In this dependability model only one of the DGs has to
be regarded, the DG powering the one active MNO, with two possible scenarios for
DG repair, one where the control system is working and one where it is not.

Knowing the failure and repair rates of both the control system and the DG, a
dependability model of the DG system can be modeled. State space of the DG system
is defined as Ω = {{iDG Working, jCS Working} | i, j ∈ {0, 1}}, and the system is
defined as working when the DG is working, giving the dependability model as seen
in Figure 9.3.

With the steady state probabilities from the dependability model in Figure 9.3,
denoted p = {p1, p2, p3, p4}, the asymptotic availability ADG of the DG system
including the power grid control system can be obtained by adding the steady state
probabilities of the working states, as seen in (9.2).

AS = p1 + p3 = 0.998625 (9.2)

With the asymptotic availability, or working probability PCS , for the power grid
control system, the dependability model seen in Figure 9.3 can be made simpler and



60 9. USE CASE 4: ESCALATING CASCADING POWER GRID FAILURE

Figure 9.3: Markov dependability model of a single DG system including a power
grid control system.

Figure 9.4: Markov dependability model of a single DG system including a power
grid control system.

modelled as a simple two-state Markov chain. The DG has a repair rate µDG for when
the control system is working with probability PCS and a repair rate (1−mCS)µDG

for when the control system is failed with probability (1− PCS), thus giving the DG
a total repair rate of (PCS + (1−PCS)(1−mCS))µDG. State space of the DG system
is then defined as Ω = {{iDG Working} | i ∈ {0, 1}}, giving the dependability model
as seen in Figure 9.4.
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Figure 9.5: Markov dependability model of the smart grid including a power grid
control system.

9.2.2 Power Grid Dependency

With multihoming the SU in the smart grid system can connect to both MNOs, and
both DGs have to be regarded in the dependability model of the smart grid system.
With both DGs regarded the propagation of stress between them will also have to
be regarded, realized with a DG stress constant sDG as in Use Case 1 in Chapter 6.
The state space of the power grid system including the control system is defined as
Ω = {{iDG Working, jCS Working} | i ∈ {0, 1, 2}, j ∈ {0, 1}}. Knowing the failure
rate λDG and repair rate µDG of the DGs, the failure rate λCS and repair rate µCS

of the control system, and including the stress propagation between the DGs, the
dependability model becomes as seen in Figure 9.5.

With the steady state probabilities from the dependability model in Figure 9.5,
denoted p = {p1, p2, p3, p4, p5, p6}, the asymptotic availability ASG of the smart grid
system including the power grid control system is obtained by adding the steady
state probabilities of the working states, as seen in (9.3).

ASG = p1 + p2 + p4 + p5 = 0.999991 (9.3)

With the working probability PCS for the power grid control system, the de-
pendability model seen in Figure 9.5 can be made simpler and modelled as a simple
three-state Markov chain. The DGs have a repair rate µDG for when the control
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Figure 9.6: Markov dependability model of the smart grid including a power grid
control system and stress propagation between DGs.

system is working with probability PCS and a repair rate (1−mCS)µDG for when
the control system is failed with probability (1− PCS), thus giving the DG a total
repair rate of (PCS + (1−PCS)(1−mCS))µDG. State space of the power grid system
is then defined as Ω = {{iDG Working} | i ∈ {0, 1, 2}}, giving the dependability
model as seen in Figure 9.6.

9.2.3 Power Grid & MNO Interdependency

Including the repair crew telecommunication dependency to the smart grid system
introduces potentially increased repair time, as already looked at in Section 6.1.3
and Section 6.2.4. Decreasing the repair rate µDG of the DGs with a commu-
nication constant cDG when all BSs have failed gives a more realistic depend-
ability model, having a smaller asymptotic availability than a model not includ-
ing the repair crew telecommunication dependency. Defining the state space as
Ω = {{iDG Working, jCS Working} | i ∈ {0, 1, 2}, j ∈ {0, 1}}, the model becomes
as seen in Figure 9.7.

With the steady state probabilities from the dependability model in Figure 9.7,
denoted p = {p1, p2, p3, p4, p5, p6}, the asymptotic availability ASG of the smart grid
system including a power grid control system, stress propagation between DGs and
repair crew telecommunication dependency is obtained by adding the steady state
probabilities of the working states, as seen in (9.4).

ASG = p1 + p2 = 0.999981 (9.4)

Again, with the working probability PCS for the power grid control system, the
dependability model seen in Figure 9.5 can be made simpler and modelled as a simple
three-state Markov chain. The DGs have a repair rate µDG for when the control
system is working with probability PCS and a repair rate (1−mCS)µDG for when
the control system is failed with probability (1− PCS), thus giving the DG a total
repair rate of (PCS + (1− PCS)(1−mCS))µDG if at least one DG is still working.
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Figure 9.7: Markov dependability model of the smart grid including a power grid
control system, stress propagation between DGs and repair crew telecommunication
dependency.

Figure 9.8: Markov dependability model of the smart grid including a power grid
control system, stress propagation between DGs and repair crew telecommunication
dependency.

If both DGs have failed the repair rate is also decreased with the communication
constant cDG and becomes (PCS + (1− PCS)(1−mCS))(1− cDG)µDG. State space
of the power grid system is then defined as Ω = {{iDG Working} | i ∈ {0, 1, 2}},
giving the dependability model as seen in Figure 9.8.

9.3 Escalated Cascading Power Grid Failure with BS Power
Backup

BSs in a real system will often have power backup of some kind, e.g. diesel generators
or batteries [Mal10]. When introducing power backup for the BSs there will be an
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extra delay between the moment a DG fails and the moment its dependent BSs fails,
which means that the smart grid system asymptotic availabilities obtained from (9.3)
and (9.4) are too low if the BSs have power backup.

When BS power backup is included in the dependability models an extra state
space dimension is formed. Because the complexity of Markov dependability models
grows exponentially when adding dimensions to the state space, a state space with
fewer dimensions is preferable. Since the power grid control system is assumed to be
independent from the power grid and BSs, the control system can be represented
in the dependability models with the control system’s working probability PCS ,
as already seen from the dependability models in Figure 9.6 and Figure 9.8. The
dependability models of the smart grid system including BS power backup will all
use the probability PCS instead of the power grid control system dimension.

9.3.1 Single Distribution Grid Dependency

Assuming that the SU has only one SIM card and can only connect to BSs be-
longing to one MNO, only one of the DGs has to be regarded, the one powering
the applicable MNO. The state space for this single MNO system is defined as
Ω = {{iTL Working, jBS Working} | i ∈ {0, 1}, j ∈ {0, 1, 2, 3}, j ≥ 3i}}, including
the state of the one DG and the BSs. In this single MNO system, if the DG, all
three BSs has to run out of power before the MNO system fails, each BS with power
run out rate λP B. Knowing the failure rate λDG and the repair rate µDG of the
DGs, assuming that DG failures happen rarely enough for the BSs power backup
to recharge between DG failures, and including the repair crew telecommunication
dependency using the control system’s working probability PCS , the dependability
model becomes as seen in Figure 9.9.

With the steady state probabilities from the dependability model, denoted p =
{p1, p2, p3, p4, p5}, the asymptotic availability AMNO of the MNO system is obtained
by adding up the steady state probabilities of the working states from, as shown in
(9.5).

AMNO = p1 + p2 + p3 + p4 = 0.999756 (9.5)

9.3.2 Power Grid Dependency

Assuming the SU is multihomed and can connect to both MNOs, when a DGs fails
the failure rate of the other DG is increased with a stress constant sDG. This means
that if a DG has failed the potentially remaining working DG would have an increased
DG failure rate; more specifically the DG failure rate becomes (1 + sDG)λDG. Also,
the DGs have an increased repair time if the power grid control system is failed,
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Figure 9.9: Markov dependability model of a single MNO system including BS
power backup and a power grid control system.

Figure 9.10: Markov dependability model of a single MNO system including BS
power backup and a power grid control system with increased DG stress.

realized with the managing constant mCS . The dependability model of a DG and all
three dependent BSs in the case of increased DG stress is seen in Figure 9.10.

The dependability models from Figure 9.9 and Figure 9.10 can be used to
make a new model for calculating the smart grid system asymptotic availability.
Denoting the steady state probabilities from the dependability model in Figure 9.10 as
ps = {p1s, p2s, p3s, p4s, p5s}, and using the already denoted steady state probabilities
p from the dependability model in Figure 9.9, the failure rate λMNO of the system
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Figure 9.11: Markov dependability model of the smart grid system from Figure 4.1
including stress propagation between DGs, BS power backup, a power grid control
system and repair crew telecommunication dependency.

in Figure 9.9 and the failure rate λMNOs of the system in Figure 9.10 are obtained
in (9.6) and (9.7) respectively.

λMNO = p4

p1 + p2 + p3 + p4
λP B (9.6)

λMNOs = p4s

p1s + p2s + p3s + p4s
λP B (9.7)

A dependability model of the smart grid system is made with state space defined
as Ω = {iMNO Working} | i ∈ {0, 2}}, including both the DGs and the BSs with
power backup. With the failure rates λMNO and λMNOs obtained and knowing the
repair rate µDG of the DGs and the control system’s working probability PCS , the
dependability model becomes as seen in Figure 9.11.

With the steady state probabilities from the dependability model in Figure 9.11,
denoted pSG = {p1sg, p2sg, p3sg}, the asymptotic availability ASG of the smart grid
system including stress propagation between DGs, BS power backup and the repair
crew telecommunication dependency is obtained by adding up the e steady state
probabilities of the working states, as shown in (9.9).

USG = p3sg = 2.98× 10−7 (9.8)

ASG = p1sg + p2sg = 1− USG (9.9)

9.3.3 Power Grid & MNO Interdependency

Including the repair crew interdependency, the repair time for the DGs when all BSs
have failed will be somewhat increased. With the obtained failure rates for the MNO
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Figure 9.12: Model of the smart grid system from Figure 4.1 including redirection
of load when transmission line failures occur, MNO dependency, BS power backup
and the power grid control system.

systems λMNO and λMNOs, a new dependability model of the smart grid system
including the repair crew interdependency is easily obtained.

For the new model of the smart grid the only rate changing from the model
in Figure 9.11 is the repair rate from the failed state, which will be decreased by
the communication constant cDG. The state space of this new model is defined as
Ω = {iMNO Working} | i ∈ {0, 2}}, giving the model as seen in Figure 9.12.

With the steady state probabilities from the dependability model in Figure 9.12,
denoted pSG = {p1sg, p2sg, p3sg}, the asymptotic availability ASG of the smart grid
system including stress propagation between DGs, repair crew telecommunication
dependency, the control system’s working probability PCS and BS power backup is
obtained by adding up the steady state probabilities of the working states, as shown
in (9.10).

AS = pS1 + pS2 = 0.999999 (9.10)

9.4 Discussion

With the dependability models created for the smart grid systems with or without
multihoming, repair crew telecommunication dependency and BS power backup, a
comparison of the systems with regard to asymptotic availability can be made. In
the discussion from Chapter 6 the smart grid systems was plotted with respect to
DG failure rate λDG, BS power backup run out rate λP B and the communication
constant cDG, while in this use case an additional factor is added to the systems, the
power grid control system. Plotting the systems from this use case with respect to
λDG, λP B or cDG would reveal little new insight besides what is seen in Chapter 6,
analysing the effects of the power grid control system’s asymptotic availability is of
more interest.

The plot in Figure 9.13 shows the asymptotic availability of the single DG system
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Figure 9.13: Plot of the asymptotic availability of the single DG systems from
Figure 6.2, Figure 9.3 with mCS = 2

3 and Figure 9.3 with mCS = 1 with respect to
power grid control system failure rate λCS . The dashed grid line shows the value of
the failure rate λCS used in use case 4.

from Chapter 6 and the single DG system from this use case, shown in Figure 6.2
and Figure 9.3 respectively, plotted with respect to the power grid control system
failure rate λCS . In addition there is a third system, the same as the system from
Figure 9.3 but with mCS = 1, meaning that the repair rate of the system’s DG is
zero as long as the power grid control system is failed.

It is seen from the plot in Figure 9.13 that the asymptotic availability of the
single DG systems takes little effect from a higher power grid control system failure
rate λCS , even with mCS = 1 and λCS increasing to almost two failures per month.
Based on the observation from the plot in Figure 9.13, the control system’s effect
on the multihomed smart grid systems asymptotic availability is presumably very
small. Because of this, rather than looking at the multihomed smart grid systems’
asymptotic availability with respect to λCS , they are plotted with respect to the
control system’s asymptotic availability ACS . The smart grid systems’ asymptotic
availability plotted are the ones from the multihomed systems with telecommunication
repair crew dependency, with and without BS power backup, mCS = 2

3 and mCS = 1,
as seen in Figure 9.14.
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Figure 9.14: Plot of the asymptotic availability of the smart grid systems from
Figure 9.7 with mCS = 2

3 , Figure 9.7 with mCS = 1, Figure 9.12 with mCS = 2
3 and

Figure 9.12 with mCS = 1 with respect to the power grid control system’s asymptotic
availability ACS .

Naturally, for the two systems where mCS = 1, the asymptotic availability
decreases drastically when the asymptotic availability of the power grid control
system approaches zero. Still, the multihomed system with BS power backup and
mCS = 1 keep a high asymptotic availability longer than the corresponding system
without BS power backup, indicating that in a critical situation where the power grid
control system operates on an asymptotic availability of about 0.15 or less (not being
zero), having a BS power backup makes a big difference. Also, it’s worth noting that
he asymptotic availability of the system with BS power backup and mCS = 1 catch
up with the asymptotic availability of the system without BS power backup and
mCS = 2

3 on a low value of ACS , clarifying the benefit of BS power backup.





Chapter10Use Case 5: Common Cause BS
Failure with Individual Repair

Erosion of BSs due to weathering will eventually cause them to break down if the
BSs are not continuously and properly maintained. In addition, a natural disaster
like a hurricane, earthquake or tsunami could potentially knock out several BSs
at the same time if they share a common geographical area. In Norway the most
realistic natural events for causing common BS failure are drastic weather events like
hurricanes, blizzards and thunderstorms.

10.1 Common Cause MNO Failure

Assuming the SU is not multihomed and can solely connect to one of the MNOs,
only three BSs have to be regarded. The BSs in the MNO are assumed to be located
in such a way that a storm has an equal chance of knocking out one, two or all three
of the BSs, where each BS has to be repaired individually by a repair crew. There
is only one repair crew belonging to the MNO which can only repair one BS at a
time. Also, besides common cause BS failures, the BSs will fail individually because
of normal weathering.

First looking at a dependability model not including storms causing common
cause BS failure, but only normal weathering, the state space is defined as Ω =
{{iBS Working} | i ∈ {0, 1, 2, 3}}. Knowing the failure rate of BSs due to weather-
ing λW and the BS repair rate µBS , the dependability model becomes as seen in
Figure 10.1.

Looking at a dependability model not including normal weathering, but only
storms causing common cause BS failure, the state space is still defined as Ω =
{{iBS Working} | i ∈ {0, 1, 2, 3}}. The rate of BS damaging storms is λS , and the
BSs are assumed to be located in such a way that a storm has an equal chance of
damaging one, two or three BSs with a probability PS = 1

6 . The MNO system is
defined as working when at least one BS is working, and the storms are assumed to
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Figure 10.1: Markov dependability model of a single MNO system with BS failures
caused by normal weathering.

Figure 10.2: Markov dependability model of a single MNO system with common
cause BS failures caused by storms.

happen rarely enough for all BSs to be repaired between storms, giving the model as
seen in Figure 10.2.

By combining the two dependability models from Figure 10.1 and Figure 10.2 a
final MNO dependability model is made including both BS failures caused by normal
weathering and common cause BS failures caused by storms. The state space is still
defined as Ω = {{iBS Working} | i ∈ {0, 1, 2, 3}}, giving the dependability model
seen in Figure 10.3.

With the steady state probabilities from the dependability model in Figure 10.3,
denoted p = {p1, p2, p3, p4}, the asymptotic availability AMNO of the single MNO
system with BS failures caused by weathering and storms is obtained by adding up
the steady state probabilities of the working states, as seen in (10.1).

AMNO = p1 + p2 + p3 = 0.999432 (10.1)
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Figure 10.3: Markov dependability model of a single MNO system with BS failures
caused by normal weathering and common cause BS failures caused by storms.

10.2 Common Cause Smart Grid Failure

Assuming the SU is multihomed and can connect to both MNOs, all six BSs have to
be regarded when modeling. The BSs in the MNOs are assumed to be located in such
a way that a storm has an equal chance of knocking out one, two three, four, five or
six BSs with a probability PS = 1

6 , where each BS has to be repaired individually by
a repair crew, with one repair crew for each MNO. The BSs in MNO A are in this
section referred to as BSA, while the BSs in MNO B are referred to as BSB.

First looking at a dependability model not including storms causing common
cause BS failure, but only normal weathering, the state space is defined as Ω =
{{iBSA Working, jBSB Working} | i ∈ {0, . . . , 3}, j ∈ {0, . . . , 3}}. Knowing the
failure rate of BSs due to weathering λW and the repair rate µBS , the dependability
model becomes as seen in Figure 10.4.

Looking at a dependability model not including normal weathering, but only
storms causing common cause BS failure, the state space is still defined as Ω =
{{iBSA Working, jBSB Working} | i ∈ {0, . . . , 3}, j ∈ {0, . . . , 3}}. The rate of BS
damaging storms is λS , and the MNO system is defined as working when at least
one BS is working. The storms are assumed to happen rarely enough for all BSs to
be repaired between storms, with one repair crew for each MNO, giving the model
as seen in Figure 10.5.

Including BS failures caused by both normal weathering and storms causing
common cause BS failure into the dependability model, the state space is again
defined as Ω = {{iBSA Working, jBSB Working} | i ∈ {0, . . . , 3}, j ∈ {0, . . . , 3}}.
Knowing the rate of BS damaging storms λS , the rate of BS failure due to normal
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Figure 10.4: Markov dependability model of the smart grid from Figure 4.1 with
BS failures caused by normal weathering.
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Figure 10.5: Markov dependability model of the smart grid from Figure 4.1 with
common cause BS failures caused by storms.

weathering λW , and the repair rate of damaged BSs µBS , defined the smart grid as
working when at least one BS is working, and assuming the storms are happening
rarely enough for all BSs to be repaired between storms, the dependability model
becomes as seen in Figure 10.6.

With the steady state probabilities from the dependability model in Figure 10.6,
denoted p = {p1, . . . , p16}, the asymptotic availability ASG of the smart grid system
with BS failures caused by normal weathering and common cause BS failures caused
by storms is obtained by adding up the steady state probabilities of the working
states, as seen in (10.2).
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Figure 10.6: Markov dependability model of the smart grid from Figure 4.1 with
BS failures caused by normal weathering and common cause BS failures caused by
storms.
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Figure 10.7: Plot of the asymptotic availability of the single MNO system from
Figure 10.3 and the smart grid system from Figure 10.6 with respect to the probability
of BS failure in case of a storm PS . The dashed grid line shows the value of PS used
in use case 5.

ASG = p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9

+ p10 + p11 + p12 + p13 + p14 + p15 + p16 = 0.999720 (10.2)

10.3 Discussion

With dependability models created for the smart grid systems vulnerable to weather-
ing and common cause BS failures caused by storms, a comparison of the systems
with regard to asymptotic availability can be made. In the smart grids systems with
common cause BS failures caused by storms the probability PS affects how many
BSs that will fail in case of a storm. Theoretically, if all the BSs in the system are
vulnerable to common cause failure, e.g. if the storms are generally more destructive
than portrayed in this use case or if the BSs have little protection against such
hazards, that probability PS would be higher. The plot in Figure 10.7 shows the
asymptotic availability of the single MNO system from Figure 10.3 and the smart
grid system from Figure 10.6 plotted with respect to the probability PS .
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Figure 10.8: Plot of the asymptotic availability of the smart grid systems from
Figure 10.3 with PS = 1

6 , Figure 10.3 with PS = 1
3 , Figure 10.6 with PS = 1

6 , and
Figure 10.6 with PS = 1

3 with respect to the BS damaging storm rate λS . The dashed
grid line shows the value of λS used in use case 5.

It is seen from the plot in Figure 10.7 that the asymptotic availability of the two
smart grid systems vulnerable to weathering and common cause BS failures has an
apparent decrease in asymptotic availability if PS is increased. Still, the difference in
dependability of the two systems is relatively small. To get a better understanding
of how the systems’ asymptotic availability is affected by weathering and storms, the
rate at which storms happen should also be regarded. The plot in Figure 10.8 shows
the asymptotic availability of the same single MNO system from Figure 10.3 and the
smart grid system from Figure 10.6, both with PS = 1

6 , and PS = 1
3 , plotted with

respect to the rate of BS damaging storms λS .

The plot in Figure 10.8 shows that difference in asymptotic availability expand
with an increased probability PS and BS damaging storm rate λS . With PS = 1

3 ,
meaning two failed BSs per storm in average, the difference between the single MNO
system from Figure 10.3 and the smart grid system from Figure 10.6 stays about
twice as big as when PS = 1

6 . This observation gives an incentive to use multihomed
SUs in areas especially prone to BS damaging storms.



Chapter11Use Case 6: Common Cause BS
Failure with Common Repair

Presumably some BSs will have a stronger dependency to one another if they share
a common weather exposed location or service, meaning they are more likely to
fail together. Examples are BSs that are connected to the same mast or BSs that
have power cables going through a common ditch prone to disturbances from road
and construction work. In scenarios like this, when a common cause failure does
not cause damage to the components failing themselves (the BSs), but a system
the components are relying on (the ditch with power cables), only the one damaged
system need to be repaired for all dependent components to be repaired. A scenario
with several BSs failing due to a commonly used ditch is therefore a different type of
common cause failure than BSs taking damage from a storm, where all BSs will have
to be repaired independently.

In this use case the SUs are assumed to only be able to connect to two BSs. Both
BSs will be subjected to normal failures from erosion due to weathering, and are in
addition sharing a common ditch for power and ICT cables. The ditch is subjected
to disturbances from road and construction work, potentially causing the power and
ICT cables to take damage, again causing the BSs to fail. It is assumed that BS
failures due to ditch disturbances do not occur at the same time as BS failures due
to weathering because of the relatively low failure rates and high repair rates.

11.1 Single Base Station

For the sake of comprehension, a system where the SU can only connect to one single
BS having cables through a ditch is presented first. The state space is defined as
Ω = {{iBS Working, jDitch Intact} | i ∈ {0, 1 j ∈ {0, 1}. The rates at which the
ditch gets damaged so that the BS fails is λD, the repair rate of the ditch with cables
is µD, and failure and repair rate for the BS are λW and µBS . Knowing all rates the
dependability model becomes as seen in Figure 11.1.

With the steady state probabilities from the dependability model in Figure 11.1,
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Figure 11.1: Markov dependability model of a single BS system with BS failures
caused by normal weathering and a cable ditch for the BS.

Figure 11.2: Markov dependability model of a BS system with two BSs from the
same MNO, BS failures caused by normal weathering and a common cable ditch for
the BSs.

denoted p = {p1, p2, p3}, the asymptotic availability ABS of the single BS system
with BS failures from erosion due to weathering and cable ditch disturbances is
simply the same as the one steady state probability of the one working state, as seen
in (11.1).

ABS = p1 = 0.992635 (11.1)

11.2 Base Stations from a Single MNO

Now looking at a system assuming the SU can connect to two BSs sharing a cable
ditch, where both BSs belongs to the same MNO and sharing one repair crew. The
state space of the system is defined as Ω = {{iBS Working, jDitch Intact} | i ∈
{0, 1, 2 j ∈ {0, 1}}. The rate at which the ditch gets damaged so that the BSs fails
is λD, and the repair rate of the ditch with cables is µD. Knowing the failure and
repair rate for the BSs, λW and µBS , the dependability model becomes as seen in
Figure 11.2.

With the steady state probabilities from the dependability model in Figure 11.2,
denoted p = {p1, p2, p3, p4}, the asymptotic availability A of the MNO system with
BS failures from erosion and weathering and common cause BS failures from cable
ditch damage is obtained by adding up the steady state probabilities of the working
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Figure 11.3: Markov dependability model of a BS system with two BSs from
different MNOs, BS failures caused by normal weathering and a common cable ditch
for the BSs.

states, as seen in (11.2).

A = p1 + p2 = 0.994902 (11.2)

11.3 Base Stations from Both MNOs

Now looking at a system where the SU is multihomed and is able to connect to two
BSs sharing a cable ditch. The two accessible BSs belong to different MNOs, MNO
A and MNO B, with one repair crew per MNO. The state space of the system is
defined as Ω = {{iBS Working, jDitch Intact} | i ∈ {0, 1, 2 j ∈ {0, 1}}. The rate at
which the ditch gets damaged so that the BSs fails is λD, and the repair rate for the
ditch with cables is µD. Knowing the failure and repair rate for the BSs, λW and
µBS , the dependability model becomes as seen in Figure 11.3.

With the steady state probabilities from the dependability model in Figure 11.3,
denoted p = {p1, p2, p3, p4}, the asymptotic availability A of the system with BS
failures from erosion due to weathering and common cause BS failures from cable
ditch damage is obtained by adding up the steady state probabilities of the working
states, as seen in (11.3).

A = p1 + p2 = 0.994907 (11.3)

11.4 Discussion

With dependability models created for the BS systems with BS failures due to
weathering and damaged cables because of ditch disturbances, the systems can be
compared with regard to asymptotic availability. The plot in Figure 11.4 shows the
asymptotic availability of the BS system with two BSs from the same MNO, as seen
in Figure 11.2, and the BS system with two BSs from different MNOs, as seen in
Figure 11.3, plotted with respect to the BS failure rate due to weathering λW .
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Figure 11.4: Plot of the asymptotic availability of the BS system with two BSs
from the same MNO from Figure 11.2 and the BS system with two BS from different
MNOs from Figure 11.3 with respect to the BS failure rate due to weathering λW .
The dashed grid line shows the value of λW used in use case 5.

As expected, the system with BSs from both MNOs, and thus two repair crews,
manages the increase in BS failure rate due to weathering λW better than the system
with BSs from only one MNO, with λW going up to almost two BS failures per
month. Looking at the asymptotic availability of the same two systems plotted with
respect to the ditch damage rate λD reveals another observation. The plot with
regard to λD is seen in Figure 11.5, where both systems are labeled BS system.

It is seen from the plot in Figure 11.5 that an increase in ditch damage rate λD

has a much bigger effect on the systems than an increase in the BS failure rate due
to weathering λW . The two systems’ asymptotic availability stays approximately
the same when plotting with respect to λD, giving an incentive for stakeholders in
either system to focus on common cause BS failures, like damage to cables in ditches,
rather than focusing on individual BS failures due to e.g. weathering.
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Figure 11.5: Plot of the asymptotic availability of the BS system with two BSs
from the same MNO or from different MNOs with respect to the ditch damage rate
λD. The dashed grid line shows the value of λD used in use case 5.





Chapter12Use Case Discussion

In the six use cases presented the asymptotic availability of several systems have been
analysed, including systems with just a single BS, a single MNO and systems with
two MNOs by using multihoming. Obviously smart grid systems can and will exist
in a various of ways with different levels of complexity, and hence interdependencies
in smart grid systems will exist in several ways as well. The six use cases presented
shows proposals of how to make dependability models covering the presumably most
realistic smart grid interdependencies and failures, and are meant as a basis for
making dependability models of other and possibly more complex smart grids.

To get a better understanding of how to use the dependability modeling approaches
proposed, in what scenarios they are fit, and where they fall short, this discussion
chapter further analyse the modeling approaches from the use cases, elucidating
potential shortcomings to avoid wrong use. Also, the numerical results from the use
cases are compared to get an overview of the effect the investigated dependencies
and failures have on smart grid systems’ asymptotic availability.

12.1 Dependability Modeling

How the dependability models are created for the systems in the use cases is significant
for the calculation of the systems’ asymptotic availability. Making assumptions about
and simplifications to the smart grid system is necessary when making dependability
models, but can also lead to overly optimistic system dependabilities. Moreover,
how the modeling approaches proposed scale to bigger and more advanced smart
grid systems may be ambiguous. Some of the relatively simple modeling approaches
presented could either not scale well with respect to smart grid system complexity, or
the way in which disruptions propagate in the dependability models created may not
work adequately on bigger smart grid systems. This section look at and discuss the
assumptions made for the use cases and the dependability models created, and how
the modeling approaches could be applied on other and potentially more complex
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smart grid systems.

12.1.1 Use Case 1

In the first use case the issue of stress propagation between the DGs is solved with a
DG stress constant sDG, where if one of the DGs are failed the failure rate of the
other DG is increased by sDG becomes (1 + sDG)λDG. If a system including more
DGs are to be modelled by the same approach there are two sensible ways in which
the stress propagation solution with sDG can scale; either by adding stress to all
other DGs in the system when a DG is failed, or from a failed DG only adding stress
to a number of adjacent DGs.

If choosing the stress propagation solution where stress is added to all other DGs
when a DG fails, the DG failure rate including the added stress constant(s) sDG must
not become greater than the DG repair rate. For example, if five DGs have failed
in a smart grid system and (1 + 5sDG)λDG > µDG, other DGs will fail faster than
already failed DGs are repaired, ending in the system being more or less trapped in
a failed state. This problem can be solved by making it so that lesser DG stress is
added by each new failed DG, e.g. the first failed DG add sDG to the failure rate of
the other DGs, the next failed DG add 1

2sDG, then 1
4sDG, and so on. Alternatively

a failed DG can be assumed to only propagate stress to a number of adjacent DGs,
effectively setting an upper limit for total stress added to DGs in the system.

12.1.2 Use Case 2

In the same way as the stress constant sDG in the first use case, this use case utilize
a load constant lBS to realise propagation of congestion between the BSs. Again, if
a system with more BSs is to be modelled by the same approach as used in this use
case there are two ways in which the load propagation solution with lBS can scale;
either by adding load to all other BSs in the system when a BS is congested, or from
a congested BS only adding load to a number of adjacent BSs.

Unlike with DGs, the propagation of congestion between BSs has clear bounds
with regard to geographic distance between the BSs. If a BS becomes congested due
to user crowding, only other nearby BSs will experience added load from the same
crowd. In this way the most suitable way of scaling up the congestion propagation
modeling approach is to only allow BSs to propagate congestion to other nearby BSs,
and in this way also setting an upper limit for total load added to BSs in the system.

12.1.3 Use Case 3

As done with DG stress propagation in use case 1 and BS congestion propagation use
case 2, this use cases realises propagation of BS malware with a malware constant
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mBS . Here the error rate of the BSs, not the BS failure rate, is increased as more
BSs in the system get infected with malware. Because of this, the system is not
subject to a situation where the system failure rate has become higher than the
system repair rate, but could nonetheless end up in a situation where the system
error rate is higher than the system error repair rate. This is not an inconceivable
situation, where malware could indeed spread to, and exist at, all BS in a system.

If the dependability model of a smart grid system shows that the system could
reasonably reach a state where all BSs are infected with malware, there are two ways
of stabilising the system to a less infected state. Either the system can be assumed
to run a periodic malware scan and removal by adding a low rate transition from all
states to the one state with no BS malware infection, or the system can be assumed
to upgrade its security SW and in this way decreasing the BS error rates and/or
increasing the BS error repair rates.

12.1.4 Use Case 4

In use case 4 the issue of stress propagation between the DGs is solved with a DG
stress constant sDG in the same way as in use case 1, but here including a power
grid control system in the smart grid. The up scaling of the modelling approach used
in this use case can be done in the same manner as proposed for use case 1, with two
ways in which the stress propagation solution with sDG can scale; either by adding
stress to all other DGs in the system when a DG is failed, or from a failed DG only
adding stress to a number of adjacent DGs.

12.1.5 Use Case 5

This use case reveals some of the more complex dependability models among all the
dependability models presented. Adding dimensions to a state space, e.g. by having
the BSs in MNO A and the BSs in MNO B as two separate state space dimensions,
adds complexity and possibly state space explosion. However, adding allowed values
to the dimensions, e.g. by adding BSs to MNO A and/or MNO B, does add new
states to the dependability model, but does not cause more complexity per se. In this
way, using the modeling approaches presented will work fine for systems with only
one or two MNOs, which are reasonable amounts of MNOs that a SU can connect to.

12.1.6 Use Case 6

In use case 6 a clear assumption made is that the system is assumed to never have
BS failures due to weathering at the same time as BS failures due to ditch damage.
In a small system like the one presented in use case 6, with only one or two BSs, this
is a fair assumption because the chance of the two types of BS failures happening
at the same time is negligible. However, if more BSs are added to the system the
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chance of overlapping BS failures increase. The problem is easily solved by modeling
the ditch dimension as done with the power grid control system dimension in use
case 4, giving a two dimensional dependability model.

12.2 Numerical Results

The asymptotic availabilities obtained from the use cases give an indication on what
dependencies and failures that are the most critical for smart grid systems. These
observations give stakeholders an incentive to remove or loosen certain dependencies
and to make barriers for certain failures. With targeted measures like this, resources
for improving the dependability of smart grid systems can be used more wisely and
with bigger effect.

Because some of the asymptotic availabilities A obtained from the use cases are
very small they are presented as asymptotic unavailabilities U , computed U = 1−A.
Because of this, all numerical values from the use cases are in this section presented
as asymptotic unavailabilities for easier comparison. Table 12.1 list the asymptotic
unavailabilities obtained for all single MNO systems and smart grid systems utilizing
both MNOs in the use cases. It is seen from the table that the single MNO systems
have in general a higher asymptotic unavailability than the smart grid systems where
both MNOs are utilized.

Some systems will presumably have a bigger incentive to utilize SU multihoming
than others. What systems get the most benefit from utilizing multihoming can
be obtained by computing the percentage difference dr between the asymptotic
availability of the single MNO systems A1 and the smart grid systems utilizing both
MNOs A2 by using (12.1). Table 12.2 lists all percentage differences between the
corresponding single MNO systems and smart grid systems utilizing both MNOs in
the use cases.

dr = |∆A|∑
A
2
× 100 = |A1 −A2|

( A1+A2
2 )

× 100 (12.1)

From Table 12.1 it is seen that besides from the systems in use case 6, the single
MNO systems in Section 6.1.1 and Section 9.2.1, from use case 1 and use case 4
respectively, have the lowest asymptotic availability of the single MNO systems
presented. These systems also have the biggest increase in asymptotic availability if
the SU is granted multihoming, as seen in Table 12.2 marked in red.

The second worst asymptotic availabilities belongs to the single MNO systems
with BS power backup from Section 6.2.2 and Section 9.3.1, from use case 1 and
use case 4 respectively, and the two systems from use case 5. Besides from these
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Table 12.1: Overview of the asymptotic unavailabilities of the systems from the use
cases. The red cells show the systems with the highest asymptotic unavailabilities,
orange the next highest and yellow the third highest.

Use case Section Asymptotic unavailability

1

6.1.1 1.38× 10−3

6.1.2 9.00× 10−6

6.1.3 1.90× 10−5

6.2.2 2.44× 10−4

6.2.3 2.96× 10−7

6.2.4 1.00× 10−6

2
7.2 2.20× 10−5

7.3.1 5.60× 10−10

7.3.2 6.48× 10−10

3
8.2 1.00× 10−6

8.3.1 4.26× 10−13

8.3.2 4.71× 10−13

4

9.2.1 1.38× 10−3

9.2.2 9.00× 10−6

9.2.3 1.90× 10−5

9.3.1 2.44× 10−4

9.3.2 2.98× 10−7

9.3.3 1.00× 10−6

5 10.1 5.68× 10−4

10.2 2.80× 10−4

6 11.2 5.10× 10−3

11.3 5.10× 10−3
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Table 12.2: Overview of the percentage differences dr between the corresponding
single MNO systems and smart grid systems utilizing both MNOs in the use cases.
The red cells show the systems with the biggest percentage differences and yellow
the next biggest.

Use case Sections compared dr

1

6.1.1 - 6.1.2 0.1360%
6.1.1 - 6.1.3 0.1350%
6.2.2 - 6.2.3 0.0244%
6.2.2 - 6.2.4 0.0243%

2 7.2 - 7.3.1 0.0022%
7.2 - 7.3.2 0.0022%

3 8.2 - 8.3.1 0.0001%
8.2 - 8.3.2 0.0001%

4

9.2.1 - 9.2.2 0.1367%
9.2.1 - 9.2.3 0.1357%
9.3.1 - 9.3.2 0.0244%
9.3.1 - 9.3.3 0.0243%

5 10.1 - 10.2 0.0288%
6 11.2 - 11.3 0.0005%

systems having the second worst asymptotic availabilities, they have the second
biggest increase in asymptotic availability if the SU is granted multihoming, as seen
in Table 12.2 marked in yellow.

Even though the two systems from use case 6 has the two worst asymptotic
availabilities of all the systems, then can not be directly compared with the systems
from the rest of the use cases as they only utilize two BSs. Still, an observation from
the numerical results from this use case stand, that using multihoming only minimally
increases the system’s asymptotic availability. Compared to the systems from use
case 5 which also model common cause failures, it is seen that for common cause
failures that allows individual repair of BSs multihoming gives a more noticeable
effect.
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In the investigation in Part I, it was deduced that certain type combinations of
dependencies and failures are more likely to happen in smart grids than others. More
specific, cascading failures over physical interdependencies, escalating failures over
cyber interdependencies and common cause failures over geographic interdependencies
was deduced to be the most relevant sort of smart grid disturbances. Besides the
three combinations of failure and dependency types mentioned, cascading failures
over cyber interdependencies and common cause failures over physical and cyber
interdependencies where found to be relatively relevant for smart grids as well.

Six use cases was presented, modeled and analysed in Part II. Using a defined
smart grid system and Markov dependability modeling, all relevant combinations of
dependencies and failures found in the investigation Part I was modeled and used
to compute numerical results for the smart grid system’s asymptotic availability.
The use cases revealed that some combinations of dependencies and failures had
probably bigger effects on the smart grid than others, namely cascading failures in
the power grid and common cause BS failures due to natural events like storms or
human caused events like maintenance disturbing the operation of the BSs indirectly.

Besides pointing out what types of dependencies and failures in digital ecosys-
tem that should be in focus for stakeholders, the use cases and the dependability
models made are intended as a guideline for dependability modeling in future digital
ecosystems like smart grids. Based on the findings from the use cases Table 13.1 lists
realistic dependencies in smart grids and suggest what modeling that should be used
to deal with them.

The findings and insights from the investigation and use cases presented have
answered to the objective behind this thesis, but have also revealed some new
questions to be answered; how does Markov dependability modeling in smart grids
hold up against other modeling approaches, how accurate are the results obtained,
and what vulnerabilities are brought into smart grids with added ICT?
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Table 13.1: Relevant dependencies and failures in smart grids and suggested
dependability modeling approaches for analysing them.

System Suggested modeling approach

Cascading power
grid failure

Have the power grid components or subsystems failing as a
dimension in the state space, use a constant for increasing
failure rates to realize propagation of failure in the power
grid and if relevant, use a constant for decreasing repair
rate in case of telecommunication interdependency.

BS power backup

Assume negative exponential distribution on power backup
and make dependability models for single BSs. Use the
failure rate of the single BS dependability models to create
a dependability model for the smart grid.

Cascading BS
congestion

Have the BSs failing as a dimension in the state space
and use a constant for increasing failure rates to realize
propagation of BS congestion failure in the smart grid.

Cascading BS
malware

Have the components getting infected as a dimension in
the state space and use a constant for increasing failure
rates to realize propagation of malware in the smart grid.
Remember that malware can exist and propagate without
components failing per se.

Power grid control
system

Obtain the asymptotic availability of the power grid con-
trol system and use it to set up new failure rates for the
components or subsystems being controlled; normal fail-
ure rate times the control system asymptotic availability
plus escalated failure rate times control system asymptotic
unavailability.

Storm causing
common cause BS

failure

If realistic, assume all BS are repaired between common
cause failures and add a transition from the OK state to
all states with failed BSs. The transition rate is the rate
of common cause failures times the probability that the
failure leads to the specific state pointed to.

BS dependent on a
common system

If realistic, assume all BS are repaired between failures in
the common system and let the common system have its
own failure and repair rate.
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In the use case analysis done here, Markov modeling have been used for computing
numerical results. To get an even better understanding of how dependencies and
failures affect digital ecosystems, a proper discrete-event simulation of the dependency
and failure types could have been done, which would also work as a quality control
of the results obtained from the Markov dependability models. A discrete-event
simulation has less restrictions than Markov models, allowing the smart grid system
to be analysed with fewer assumptions and, if needed, more state space dimensions,
where Markov models are often subjected to state space explosion.

The threat of malware in smart grids is uncertain, where the more ICT solutions
that are integrated into smart grids, the more ways the smart grid can be affected
by malware. To be prepared for possible cyber attacks and malware in future smart
grids a thorough study on ICT dependencies and failures in future smart grids should
be performed.
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