NTNU - Trondheim
Norwegian University of

Science and Technology

Deep Packet Inspection Bypass

Thomas Kjgglum

Master of Science in Communication Technology
Submission date: February 2015
Supervisor: Stig Frode Mjglsnes, ITEM

Norwegian University of Science and Technology
Department of Telematics

1

Title: Deep Packet Inspection Bypass
Student: Thomas Kjgglum

Problem description:

Authoritarian governments consistently request the network operators to censor
internet communications. Deep packet inspection systems and tools are regularly
in use for this purpose. Several techniques have been proposed to bypass these
communication restrictions. One example is the Kickstarter project titled "Operator,
a News Reader that Circumvents Internet Censorship" by Brandon Wiley. Wiley
has designed a protocol "Dust" [1] that aims to defeat a number of filtering methods
currently in active use to censor Internet communication.

Some basic questions are: How is it possible to bypass deep packet inspection filters
with high likelihood? On the other hand, could the approach of Dust and other
filtering bypass techniques be useful for masquerading malicious code?

The candidate will start out by investigating possible techniques for bypassing a
open source packet inspection tool, such as SNORT. The candidate will support
his experimentation by method of setting up and running hacker competitions
(or trials) where the participants’ challenge will be to set up, configure and run
efficient deep packet inspection systems directed against various types of "subversive
communications" generated by the organizer of the competition.

[1] WILEY, Brandon. Dust: A blocking-resistant internet transport protocol. Tech-
nical report. http://blanu.net/Dust.pdf, 2011.

Responsible professor: Stig Frode Mjglsnes, ITEM
Supervisor: Stig Frode Mjglsnes, ITEM

Abstract

Internet censorship is a problem, where governments and authorities
restricts access to what the public can read on the Internet. They use
deep packet inspection tools to conduct the censorship. An example of
such a tool is Snort. Snort is a signature-based network inspection tool
that sits on the edge of a network which is monitored and inspects packets
that passes through.

To avoid Internet censorship it is possible to bypass the deep inspection
tools, and it is multiple ways of doing this. Methods that may be used
depends on in which network layer the Internet censorship is done. This
is mainly done by changing the traffic appearance too not match the
rules written in the signature-based inspection tool. There are multiple
software solutions already proposed that are capable of doing this, two
of them are Snort and Pluggable Transport. These two solutions are
capable to masquerade network traffic to look like benign traffic, and it
is not possible to single out the traffic flow from other traffic flow.

It is possible to use these two software solutions to transfer malicious code
to a company network. This requires that a person inside the company
network downloads the malicious code using the software. Malicious code
which is downloaded using either Dust or Pluggable Transport software
would not be detected, they are designed to look like normal Internet
traffic.

Sammendrag

Internettsensur er et problem, det eksisterer regjeringer som setter
begrensninger for hva allmennheten far lov til 4 se pa Internett. Disse
regjeringene bruker pakke-inspeksjons-verktgy som kan se inn i nettverks-
pakker, eksempel pa et slikt verktgy er Snort. Snort er et signaturbasert
verktgy som befinner seg pa kanten av et overvaket nettverk og analyserer
all trafikk som passerer.

Det er mulig & unnga Internettsensur ved a unnvike disse inspeksjons-
verktgyene som kan se inn i nettverkspakker. De eksisterer mange mulig
mater a gjgre dette pa, men det avhenger av hvor i OSI modellen sen-
suren er gjennomfgrt. I hovedsak handler det om a endre trafikken slik
at den ikke passer med reglene som er skrevet i den signaturbaserte
inspeksjons-verktgyet. Det eksisterer flere program som lgser akkurat
dette, to eksempler er Snort og Pluggable Transport. Disse programmene
kan maskere trafikk som ikke er lovlig til & ligne pa lovlig trafikk, det er
da umulig & se forskjell pa den maskerte og ikke maskerte trafikken.

Snort og Pluggable Trasport kan ogsa brukes til & frakte ondsinnet kode
inn i et bedriftsnettverk, men dette krever at en person eller programvare
pa innsiden av bedriftens nettverk laster den ned. Hvis slik kode blir
lastet ned ved hjelp av enten Dust eller Pluggable Transport ville det
ikke veert mulig & se, dette pa grunn av at disse programvarene er laget
for & se ut som vanlig Internett trafikk.

Preface

This topic evolved from a number of talks with my Professor Stig Frode
Mjglsnes, at the start we were focusing on finding a topic which could
build upon my previous project. This project gave a recommendation on
how to conduct a hacker competition here at Glgshaugen, NTNU. This
is the reason why it says "the candidate will support his experimentation
by method of setting up and running hacker competitions (or trials)" in
this project description.

Stig Frode had recently read about a new protocol named Dust and
handed the paper to me. After reading about on it, and figured out that
its focus on Internet censorship, I wanted to learn more. This was the
beginning of the problem description.

I would like to express my gratitude to my Professor and supervisor
Stig Frode Mjglsnes for the discussions and help with the thesis. Also
for the help in finding relevant studies and solutions regarding Internet
censorship.

List of Figures

List of Tables

List of Listings

1 Introduction

1.1

Related Work

2 Network Intrusion Detection System (NIDS)

2.1 Whatisa NIDS.
2.2 How do NIDS locate unwanted traffic
2.2.1 Signature-based Detection
2.2.2 Anomaly Detection
3 Snort
3.1 Overview
3.2 Modes
3.3 Configuration
3.4 Writing Rules
3.4.1 RuleHeader.
3.4.2 RuleOptions

4 Filtering and Bypassing

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Physical Layer
Data Link Layer
Network Layer

Transport Layer

Session Layer,
Presentation Layer
Application Layer

5 Experiment

Contents

ix
xi

xiii

w

S Ot ot ot

© © 00 3 9N

vii

5.1 Architectural Design 21

51.1 Alternative 1 21

5.1.2 Alternative 2 22

5.1.3 Alternative 3 22

5.1.4 Alternative 4 23

5.2 Setup 24

5.2.1 Architectural Decision 24

5.2.2 Software Choices 24

53 Results. 28

5.3.1 Packet Capture Capabilities 28

5.3.2 Physical Layer and Data Link Layer 32

5.3.3 Network Layer 32

5.3.4 Transport Layer 34

5.3.5 Session Layer 36

5.3.6 Presentation Layer 36

5.3.7 Application Layer 37

5.4 Conclusion 39

6 Known Bypassing Solutions 41

6.1 Dust e 41

6.1.1 Protocolo 41

6.2 Pluggable Transport 42

7 Competition 45

7.1 Architectural Design o oL 45

7.1.1 Alternative 1 45

7.1.2 Alternative 2 46

7.1.3 Alternative 3 47

8 Discussion 49

9 Future Work 51

References 53
Appendices

A ping.py 55

1.1
1.2

4.1
4.2

4.3

4.4
4.5

5.1

5.2

5.3
5.4
5.5

5.6
5.7
5.8

5.9

6.1

6.2

7.1

List of Figures

Threat model for bypassing Internet censorship filters
Threat model for masquerading malicious code through a Deep Packet
Inspection (DPI) filter o

The Open Systems Interconnection model (OST) model displayed by layers.
Bypassing Internet Protocol (IP) filtering using either an internal or
external proxy when accessed service or content is in the home network
Bypassing IP filtering using either an internal or external proxy when
accessed service or content is in the external network
Bypassing IP filtering using a Virtual Private Network (VPN) server . .
Using a proxy to bypass User Datagram Protocol (UDP) filtering

Client and Content Server in separate networks, the networks are con-
nected with a router which runs a filtering mechanisms
Client and Content Server in same network, where the Content Server
runs filtering software L Lo
Client requests content from a Content Server through a Proxy Server .
Client requesting content from the Cloud through a Proxy Server
Average Round-Trip time (RTT) of the packets which were not lost to
the Content Server when testing the throughput.
Percentage of packets lost of the 9999 packets sent to the Content Server.
Packets registered by Snort foreach run..
Illustration of Client moving from Internal Network to External Network
to bypass IP filtering. oo
The network overview of the setup for experiment on the Transport Layer

Dust Protocol showing the invite, intro and data packet in a message
sequence diagram oo e
Representation of the Pluggable Transport proxy called obfsproxy

Network layout of the simulated Internet Service Provider (ISP) experi-
ment, where the Proxy Server acts as a gateway between the two networks

13

16

17

17
18

21

22
23
23

30
30
31

34
35

42
43

46

ix

7.2
7.3
7.4

One client running requests through multiple proxies to a content server
Number of client matches the number of proxy servers
One client making request to the Internet through the participants proxy

SCIVEIS v o o e

46

List of Tables

5.1 Packet loss and RTT of traffic to Content Server 31

5.2 Packets registered by Snort for each run

Xi

3.1
3.2
5.1
5.2

5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

5.11

5.12
5.13
5.14

5.15

5.16
5.17
5.18
5.19
5.20

5.21
5.22
5.23

List of Listings

Snort Rule Header placeholders 9
Snort Rule header example 9
Changes in /etc/network/interfaces file in the filter 25
Installation of Apache with the Secure Sockets Layer (SSL) module

activated Lo 25
Configurations of the default-ssl file in the 5.2.2 26
Activate new Virtual Host and restart the 5.2.2 26
Creating self signed certificate and key using OpenSSL 26
Installation of 5.2.2 from the Ubuntu Server repository 27
Snort start up commando L. 27
Installation of Squid from the Ubuntu Server repository 27
Restart command for the Squid software 27
Snort rule for filtering IP packets with source from internal network

and any IP as destination00 28
Snort rule for filtering IP packets with Client as the source and Content

Server as destination oL oL oL 29
Ping of Death command, 29
Route between Client and Content Server, using traceroute 29
Snort rule used to alert IP packets which originates from Internal

network 33
Snort rule used to alert Internet Control Message Protocol (ICMP)

packets . ..o 33
Ping command executed in the Network Layer experiment 33
Using traceroute to check connectivity and bypassing ICMP filtering 34
Snort rule to be used in Transport Layer experiment 35
Snort rule used in Transport Layer experiment 35

Snort rule used to enable the Secure Sockets Layer Dynamic Prepro-

cessor (SSLPP) 36
Simple Snort rule used to filter Transport Layer Security (TLS) traffic 36
Snort rule to detect if the index.html is accessed 37
Snort rule viewing rawbytes to detect access to index.html 37

xiii

5.24 Request to Content Server capture, using Burp Suite. Here with the

/index.html added to the Uniform Resource Locator (URL)
5.25 Request to Content Server capture, using Burp Suite
5.26 URL-encoding of index.html

Jeode/ping.py ..o

Introduction

In many places around the world there exists people who are victims of Internet
censorship, where governments and authorities censor information that they believe
the public should not have access to. The information which is censored may be
social media, political content, laws and regulations, blogs, and information on how to
circumvent Internet censorship. The examples of information which may be censored
is from the fourth report in a series of comprehensive studies of Internet freedom
around the world. The name of this study is Freedom on the Net 2013 [FH13], it
covers development regarding Internet freedom in 60 countries. The report shows
Internet censorship worldwide is declining, with 34 out of 60 countries experienced
a negative trajectory during the overall coverage period from May 2012 to April
2013. USA Today wrote an article that lists the top ten Internet censored countries
[UT14], where it is the governments and authorities which censors. The country that
tops the list is North Korea, where the government controls all websites and only 4
percent of the population has access to the Internet.

To avoid Internet censorship it is necessary to bypass the filtering mechanisms
which is used, this work will investigate how this is possible using the Snort software
as a case study. It will also investigate if it is possible to use known solutions to
masquerade malicious code, and then bypass DPI filters.

The threat model for bypassing a filtering mechanism is a government who is
trying to block an individual from retrieving content from the external network,
this threat model is shown in Figure 1.1. This scenario is only appropriate when
trying to avoid internet censorship and bypassing DPI filters. This threat model
is not applicable when trying to masquerade malicious code. A government will
probably not have any risk when letting malicious code out of their network, thus the
threat model must change. When looking at the scenario of masquerading malicious
code, the threat model will therefor be the Internet trying to send malicious code to
a company network. In this threat model the company have a Network Intrusion
Detection System (NIDS) at the edge of their internal network. This threat model is

2 1. INTRODUCTION

Country network

-
A
8 e

21N

[=]=]
Government \ l

j
i
mf/
-I

Citizen

Figure 1.1: Threat model for bypassing Internet censorship filters

-

Figure 1.2: Threat model for masquerading malicious code through a DPI filter

Company Network

Internal Server

Yy

=r;. -
Malicious coder -"l !I

m/

shown in Figure 1.2.

This work will also describe what a NIDS is and how it detects unwanted traffic
in the network, and present a specific NIDS tool named Snort. In Chapter 5 Snort
will be used to see if it is possible to bypass the rules written in it. In Chapter 4
some theoretical ways to filter network traffic and methods to bypass them will be
presented. The different filtering mechanisms and bypassing methods are presented
in the relevant OSI model layer. Some known Internet censorship avoidance solutions
will be presented, and they will be the bases of the discussion on possibility to
masquerade malicious code to avoid NIDS.

In the project description of the thesis it says that the experiment will be supported
with a hacker competition or trials, where the participants’ challenge will be to set up,

1.1. RELATED WORK 3

configure and run efficient deep packet inspection systems directed against various
types of "subversive communications" generated by the organizer. This was not
carried out because of the complexity of setting up and configuring such deep packet
inspection systems, it would have taken a long time for the participants to familiarized
them self with the configuration and rule writing. In Chapter 7 different competition
architectures are proposed.

1.1 Related Work

Brandon Wiley has started a project which he calls Operator [Will5], this is a Rich
Site Summary (RSS) news reader which will circumvent Internet censorship. The
Operator project uses a protocol named Dust, also developed by Wiley, this protocol
will be discussed further in Chapter 6. The Tor project has experienced filtering
of their Tor traffic and has therefor been looking into censoring bypassing, which
they call Pluggable Transport. A specific protocol of the Pluggable Transport will
be looked at in Chapter 6.

Network Intrusion Detection
System (NIDS)

This chapter will a give short introduction to what a NIDS is and how it discovers
unwanted traffic in the network it is supervising.

2.1 What is a NIDS

A NIDS is an Intrusion Detection System (IDS) that scans the data flowing in a
network, an alternative to NIDS is a Host Intrusion Detection System (HIDS). A
HIDS is an IDS agent which is installed on a host and detects attacks to this specific
host. The agent often use a combination of signatures, rules, and heuristics to
identify attacks and unwanted traffic. It operates as a passive agent only gathering,
identifying, logging, and alerting. A NIDS is usually installed in a important network
node where most of the traffic passes through. It uses a network tap, span port,
or hub to collect traffic that traverse the network. The collected traffic is then
analyzed, and as the HIDS, the NIDS role also is to only gather, identify, log, and
alert suspicious traffic. An IDS do not actively block network traffic, it observes.
[Reh03] [Ber]

2.2 How do NIDS locate unwanted traffic

Intrusion detection is to detect suspicious activity in the supervised area. There are
two ways a IDS detect suspicious activity, signature-based detection and anomaly
detection. Examples of signature-based IDSs is Snort and Bro, examples of anomaly-
based IDSs is SPADE, ADAM and NIDES. Each of the two detection methods are
further described below. [Mah03]

2.2.1 Signature-based Detection

A signature-based IDS uses hand written rules to detect unwanted traffic and behavior.
It collects data packets and analyze them. If the packets have contents or signatures
which matches the written rules the packet may be flagged or an alert may be raised.

5

6 2. NETWORK INTRUSION DETECTION SYSTEM (NIDS)

To be able to do this the detection system needs a set of signatures and rules. When
installing Snort a set of default rules and signatures are included.

A disadvantage of the signature-based IDS is that it needs the signature database
to be up to date. All new attacks and malicious code which is unknown to the
IDS will pass through it without raising an alert. This means that all zero-day
vulnerabilities will not be detected, and they may be undetected for a period of time
after they have been known because of the update time of the signatures and rules
in the IDS

2.2.2 Anomaly Detection

A datagram packet sent on the network is of some standard form. If a packet do
not have the standard form or if it contains some errors in the packet header, an
anomaly-based IDS will notice this and raise a concern towards this packet. [Reh03]

An anomaly-based detection system models traffic, usually the distribution of
IP addresses and ports, to learn how "normal" traffic looks like. Hostile traffic often
falls outside this distribution. One advantage of the anomaly-based detection is that
no rule writing is needed, this removes long zero day windows where harmful traffic
may go undetected. A problem with this detection method is that it may generate
false alarms. Benign traffic which deviate from normal traffic may occur, this may
cause system administrators to block legit users or traffic from the network. [Mah03]

Snort

This chapter will describe Snort, how it detects unwanted traffic, and how Snort
rules are written. This chapter is mainly based on the content of the Snort manual.
[Cis14]

3.1 Overview

Snort is a network packet sniffer and an open source lightweight NIDS. It logs packets
based on rules, these rules are crafted in such a maner that it is possible to perform
content pattern matching and detect a variety of attacks and other unwanted traffic.
Snort offer real time alerting, with multiple alternatives for logging. Because of the
rule-based content-pattern matching Snort is a IDS in the category of Signature-based
detection systems.

Snort is able to decode the Application Layer content of a network packet and
check whether the content matches with a rule it has loaded at start up. With
this feature Snort is able to detect many types of hostile activities, including buffer
overflows, Common Gateway Interface (CGI) scans, or any other data in the packet
payload that can be characterized in a unique detection fingerprint. [R199]

3.2 Modes

As mentioned in the first section, Snort is both a network packet sniffer and an open
source lightweight NIDS. Additional to these modes there is one more, the packet
logger mode. Both the NIDS mode and the packet logger mode are depended on
the network packet sniffer mode to work. The logging mode needs packets from the
network packet sniffer mode to have something to log, and the NIDS mode needs
packets to analyze against its rules.

The packet sniffer mode has three switches which may be used. these are; printing
Transmission Control Protocol (TCP)/IP packet headers to screen, display the IP

7

8 3. SNORT

and TCP/UDP/ICMP headers only, and display the packet data as well as the
headers.

The logger mode is how Snort should log the packets which are captured by the
packet sniffer mode. The most basic is just logging it to a directory. By setting the
home network switch, Snort only logs traffic which is of relevance to the specified
network. If Snort is running in a high speed network the binary mode option should
be used, this logs packets to a single binary file. The binary mode do not take the
home network mode into account when it logs packets, it logs everything regardless
of what is specified.

When using the NIDS mode, Snort requires a configuration file. This configuration
file is delivered with default configuration when installing Snort. In addition there is
one switch which may be specified, this is how Snort NIDS mode should display its
output. It has six different output definitions; fast, full, unsock, none, console, and
cmg. The fast option uses a simple format with a timestamp, alert message, source
and destination IPs and ports. The full option is default if nothing is chosen. The
unsock option sends alert to a UNIX socket that another program could listen on.
The none option turns off alerting. The console has the same simple format as the
fast option, but it prints the alert to console instead of logging them to a file. The
cmg option generates cmg style alerts.

3.3 Configuration

When configuring Snort it is possible to include files and set variables. The variables
may be a list, an integer or a string. How to configure Snort will not be discussed
any further, but some important functionality will be mentioned. [Cisl4, Chapter 2]

In Snort version 1.5 a new functionality were introduced, preprocessors. The
preprocessors allow integration of modular plugins created by users and developers.
The preprocessor code is executed before the detection engine is called but after the
packet has been decoded. Packets may be modified or analyzed in an out-of-band
manner using this integration mechanism. At this moment there are twenty four
different preprocessor modules, including; Hypertext Transfer Protocol (HTTP)
Inspect, SSL/TLS.

The HTTP inspect module is a generic HTTP decoder for user applications. It
can decode a data buffer, find HT'TP fields, and normalize these fields.

The SSL/TLS module analyzes SSL and TLS traffic and optionally determines if
and when Snort should stop inspecting the encrypted traffic. Snort should ignore
encrypted traffic because of performance reasons and to reduce false positives. The

3.4. WRITING RULES 9

module could be set to only inspect the SSL handshake of each connection and then
ignore the rest of the encrypted traffic.

3.4 Writing Rules

Snort rules are divided into two logical sections, the rule header and the rule options.
The rule header contains the rule’s action, protocol, source and destination. The
source and destination is a set of both the IP addresses and port number, where
the IP address could be a single IP address or a network range using the Classless
Inter-Domain Routing (CIDR) notation. The rule option section contains alert
messages and information on which parts of the packet that should be inspected to
determine if an alert should be raised. [Cis14, Chapter 3]

3.4.1 Rule Header

The rule header contains seven different place holders, these placeholders and their
positions are show in Listing 3.1. There are eight different actions, but it is possible
to define new rule types and use these as action types. In Listing 3.2 an example of
a header is given. In this example the action is set to alert.

[Actions] [Protocols] [IP Addresses] [Port Numbers]
[Direction] [IP Addresses| [Port Numbers]

Listing 3.1: Snort Rule Header placeholders

alert tcp 10.0.0.0/24 any —> any 1024:

Listing 3.2: Snort Rule header example

The eight action types already defined are:

1. alert - generate an alert using the selected alert method, and then log the
packet

2. log - log the packet

3. pass - ignore the packet

4. activate - alert and then turn on another dynamic rule

5. dynamic - remain idle until activated by an activate rule , then act as a log rule
6. drop - block and log the packet

7. reject - block the packet, log it, and then send a TCP reset if the protocol is
TCP or an ICMP port unreachable message if the protocol is UDP.

10 3. SNORT

8. sdrop - block the packet but do not log it.

The protocols field is a placeholder for different protocols. The placeholder could
be any protocol which is used to transfer data as mentioned in Chapter 4, however
Snort does only support TCP, UDP, ICMP and IP at this time. In the example in
Listing 3.2 the protocol field is set to TCP.

The first IP address field is for incoming traffic, also known as sender/source.
Only single IP addresses, or the wildcard value any, or IP address ranges using the
CIDR notation is supported. After the incoming IP address field comes incoming
port number. This port number may be a specific port, a range of ports or any port.
A range of ports have three different ways to be set, 1:10, :1000 and 1000:. The
1:10 indicates ports in the range from one to ten, including one and ten. The :1000
indicates all ports smaller than and equals to 1000, and the 71000: indicates ports
greater than and equal to 1000. In Listing 3.2 the example is alerting TCP packets
which comes from the network addresses range 10.0.0.0/24 with any port number.

The direction operator indicates which direction that the rule applies. There are
two possible direction operators -> and <>. The <> indicates that Snort should
consider the address/port pairs in either the source or destination. The -> operator
has the source on the left side, and the destination on the right side. In the example
in Listing 3.1 the -> tells Snort that traffic from 10.0.0.0/24 to any IP address
should be considered.

IP Addesses and Port Numbers on the right side of the direction operator is the
destination IP address and port number. They have the same representation options
as the source IP address and port number.

3.4.2 Rule Options

There are four major categories of rule options:

— general: These options provide information about the rule but do not have any
affect during detection

— payload: These options all look for data inside the packet payload and can be
inter-related

non-payload: These options look for non-payload data

— post-detection: These options are rule specific triggers that happen after a rule
has “fired.”

3.4. WRITING RULES 11

The rule options are separated using the semicolon (;) character, and the rule option
keywords are separated from their arguments using the colon (:) character.

There are several options underneath each rule options category, here some of
them will be mentioned. More information about rule options could be found in the
Snort Manual. [Cis14, Chapter 3.3-3.7]

General Rule Options

Some general rule options are listed below:

— msg specifies what will be logged when an alert is raised. It is used in this
format: msg: "message text';.

— sid identifies Snort rules.

— priority assigns a severity to rules.

Payload Detection Rule Options

Some payload detection rule options are listed below:

content allows the user to set rules that search for specific content in the packet
payload and trigger response based on that.

nocase allows the rule writer to specify that the Snort should look for the
specific pattern, ignoring case.

rawbytes allows rules to look at the raw packet data.

depth allows the rule writer to specify how far into a packet Snort should search
for a specific pattern.

— offset allows the rule writer to specify where to start searching for a pattern
within a packet.

hitp__encode keyword will enable alerting based on encoding type present in a
HTTP client request or a HT'TP server response.

ssl_state is used to activate the SSL/TLS preprocessor.
Some of these rule options are used in the Experiment Chapter, in this Chapter

Snort is used to filter packets. None of the non-payload or post-detection rule options
are used, and therefor not mentioned in this chapter.

Filtering and Bypassing

This chapter will describe how each layer of the OSI could be filtered and some
methods on how these filtering mechanisms may bypassed. The filtering methods
are based on the threat model in Figure 1.1. The OSI model layers are shown in
Figure 4.1

4.1 Physical Layer

The Physical Layer is the lowest layer in the OSI model. Its protocols accepts frames
from the Data Link Layer and generate signals in the Network Interface Controller
(NIC). There are multiple different materials to send these signalx through, it may
be copper, fiber, air, etc. The functionality of the Physical Layer is to detect and
accept signals and pass it to the Data Link Layer.

Application Layer

Presentation Layer

Session Layer

MNetwork Layer

Data Link Layer

Physical Layer

|
|
|
[TransportLayer
|
|
|

(. N S U S S—

Figure 4.1: The OSI model displayed by layers.

13

14 4. FILTERING AND BYPASSING

Filter mechanism

The simplest way to filter traffic in the Physical Layer is to disconnected the citizen
or group of citizens. This will remove the source of unwanted traffic, and the citizen
will not be able to access the content that the government has restricted.

Bypass method

To bypass a physical restriction, the citizen must obtain Internet access through
some other medium. This is out of scope for this work.

4.2 Data Link Layer

The Data Link Layer is used to move datagram packets over an individual link.
Units of data exchanged by a Data Link Layer protocol are called frames. Almost all
Data Link Layer protocols encapsulate each Network Layer datagram packet within
a frame before transmitting over a link. The frame consists of a data field, and a
number of header fields.

The Data Link Layer offers error detection, re-transmission, flow control, and
random access to all frames that are sent and received. Some of the most common
protocols in the Data Link Layer are Ethernet, 802.11 wireless Local Area Network
(LAN), and Point-to-Point Protocol (PPP).[Kurl0]

Filter mechanism

At the Data Link Layer it is possible to filter traffic based on the Media Access
Control (MAC) address. A challenge when filtering MAC addresses is that the MAC
address is not known to the filterer before unwanted Internet traffic is detected.
This makes it possible for the citizen to access content that the government want to
restrict. Therefore it is common practice to create a white listing of MAC addresses
which is allowed to pass the filter. This is not possible in large scale where new
devices are added to the network constantly.

Bypass method

One way to bypass a MAC address filter is to change the MAC address on the filtered
device. This is not hard to do, and there are guides on the Internet showing how to
do this on various Operating System (OS) and routers. When changing the MAC
address on routers it is called MAC address cloning.

4.3. NETWORK LAYER 15

4.3 Network Layer

The role of the Network Layer is to move packets from a sending host to a receiving
host. This gives it two important features, forwarding and routing. Upon receiving
the receiver must check if it is the destination, if that is not the case, packet must
be forwarded. The Internets Network Layer provides a service known as best-effort
service. The Network Layer is the highest OSI layer that is processed by routers
within a network, the layers higher than the Network Layer are implemented in the
end system.

One of the protocols of the Network Layer is the IP, it exists in two versions TP
version 4 (IPv4) and IP version 6 (IPv6). Each device that wants to communicate
with other devices on a network needs and IP address. An anecdote to IP addresses
is street addresses; if you want to communicate with another person, you and the
other person need a street address to send and receive mail to.

Another protocol is the ICMP, it is the Internets Network Layer error- and
information-reporting protocol. The most common way to use ICMP is to use it
for error reporting. ICMP messages have a type and a code field. An example of
a program that uses the ICMP is the ping program. The program sends an ICMP
type 8 code 0 to the specific host, and the host sends back a type 0 code 0 ICMP
echo reply. [Kurl0]

Filter mechanism

It is possible to filter traffic based on different protocol in the Network Layer. The
most common protocols are IP, ICMP and Address Resolution Protocol (ARP).
Filtering of some of the protocols in this layer will prohibit network communications,
and therefore all communication will disconnected. By filtering IP addresses it is
possible to stop traffic from parts or individual citizens in a network.

Bypass method

If protocols which evolves the network are filtered there are no way to bypass this,
a network which do not function properly has the same function as a non existing
network. Filtering of IP is possible to bypass, this could be done using a VPN or a
proxy server. The mechanism to bypass IP filtering depends on where the content is
presented. If it is an internal server where a client is filtered as an individual or as a
part of a group it is possible to bypass this in two ways. As shown in Figure 4.2,
here the blue path uses an internal proxy and the red path uses an external proxy.

If the censored content is not located in the internal network, content may be
blocked in two ways. The citizen may be singled out as an individual or group, and

16 4. FILTERING AND BYPASSING

/_ A—
. — 5 m

A— —7|
Client Proxy Server —
5 i
ontent Serve

N ™

Proxy Server

Figure 4.2: Bypassing IP filtering using either an internal or external proxy when
accessed service or content is in the home network

their IP address do not have permission to pass the filter. Or the IP address of the
server which serve the censored content may blocked. In Figure 4.3 the Filter divides
the home and external network, the red path is used when the Clients IP address is
blocked, and the blue path is used when the Content Servers IP address is blocked.

When using a Proxy Server, all traffic passes through this server. The Content
Server therefore believes that it is the Proxy Server which is requesting the data and
not the Client. The Client do not change IP address, it just redirect all its traffic
through the Proxy Server.

Another way to bypass IP address filtering when content is outside the internal
network is by using a VPN. This will work in the same way as the Proxy Server, but
the Client needs to run a VPN client on its machine. This is shown in Figure 4.4.
The Client requests a connection to the VPN server and a tunnel is created between
the Client and the VPN server. The Filter do not see what is inside this tunnel, this
is because the VPN tunnel encrypts all traffic. The Content Server thinks it delivers
content to the VPN server and not the Client. The only IP address that crosses the
Filter is the Client glsip address and the VPN server IP address.

4.4. TRANSPORT LAYER 17

Filter

Figure 4.3: Bypassing IP filtering using either an internal or external proxy when
accessed service or content is in the external network

—
Client with VPN client

Figure 4.4: Bypassing IP filtering using a VPN server

4.4 Transport Layer

The Transport Layer protocols provides the logical communication between applica-
tion processes running on different hosts. The protocols in the Transport Layer are
implemented in the end systems, not in routers and switches. Two of the best known
protocols is TCP and UDP. The UDP provides unreliable, connection-less service to
the applications implementing it. TCP provides reliable, connection-oriented service
to the application which uses this protocol. [Kurl0]

Filter mechanism

At the transport layer it is possible to filter based on protocols, examples of protocols
in the Transport Layer are TCP and UDP.

18 4. FILTERING AND BYPASSING

B

.i
Proxy Server

@DF‘ traffic
i

Content Server

f

l

Client

f

Filter, filtering UDP traffic

T

Figure 4.5: Using a proxy to bypass UDP filtering

Bypass method

To be able to serve a service or some content one of the protocols in the Transport
Layer must to be able to pass through the filter. If all protocols are filtered this is
equal to a disconnected server or network. If the content which the citizen would
access is in an external network, the government may set filtering rules to block the
protocol that the censored content is served with. To bypass this it is necessary to
use a proxy which changes the protocol, in Figure 4.5 the filter blocks UDP traffic,
or use a VPN tunnel which uses a TCP connection. In Figure 4.5 the Proxy Server
sends and receives traffic from the Content Server using UDP and transmits it back
to the Client using a TCP connection, then the content passes through the filter
without raising a concern.

4.5 Session Layer

The Session Layer allows devices to establish, manage, and end session. A session is
a persistent logical linking of two software application processes, to allow them to
exchange data over a prolonged period of time. [Koz05]

Filter mechanism

At the Session Layer there are multiple protocols, the most common protocols are
used as support when creating tunnels in the network. The Layer 2 Tunneling
Protocol (L2TP) protocol is used to support VPNs, by filtering this protocols it
prohibits some VPNs. Another protocol which could be useful to block is the SOCKS
protocol, it is used when connecting to a proxy server.

4.6. PRESENTATION LAYER 19

Bypass method

To bypass filtering of the L2TP protocol it is necessary to not use this protocol, if a
VPN is needed it is possible to set up a VPN that uses a different protocol.

If the SOCKS protocol is filtered a VPN could be used to get access to a SOCKS
proxy. It is also possible to use another type of Proxy Server, such as a HT'TP Proxy.

4.6 Presentation Layer

The Presentation Layer has three functions; translation, compression and encryption.
The translation function is used when different types of computers are communicating,
it helps with translation between the different data representation. Compression
and decompression may be used to improve throughput of data. The encryption
function ensures the security of the data as it traverse the network, the most common
encryption schemes in the presentation layer is the SSL and TLS protocols. [Koz05]

Filter mechanism

Filtering in the Presentation Layer will most likely be by blocking the security
protocol s SSL and TLS or the media protocols Joint Photographic Experts Group
(JPEG), Moving Picture Experts Group Layer-3 Audio (MP3) and Moving Picture
Experts Group (MPEG). Filtering the media protocols will remove pictures and
audio which are presented using the protocols mentioned above. By filtering the
SSL and TLS protocols, this will remove encrypted traffic flows in the network and
protocols such as HT'TP Secure (HTTPS) and File Transfer Protocol (FTP) Secure
(FTPS) are unsupported. A weakness in the SSL and TLS protocols is that the
handshake is not encrypted, this makes it possible to see the source and destination
of the encrypted traffic. Because of this weakness, censorship may be conducted on
traffic from individuals who are not allowed to access specific content on the Internet.

Bypass method

To bypass the filtering of protocols in the Presentation Layer all the previous methods
may be used, proxy and a VPN servers. Changing the different media types would
also bypass the filtering of the media protocols.

4.7 Application Layer

All network applications uses the Application Layer, it provides services for user
application to employ. A widely used protocol is the HT'TP, another is the Simple
Mail Transfer Protocol (SMTP) used for e-mail. [Koz05]

20 4. FILTERING AND BYPASSING

Filter mechanism

It is possible to filter traffic based on protocols and data content in the Application
Layer. Filtering content which uses the SSL or TLS protocols is not possible, because
the data is encrypted. The most used protocol in the Internet is the HTTP.

Bypass method

To bypass protocol filtering it is necessary to use other protocol types, this requires
a proxy or VPN server on the other side of the filter. If the filter is filtering on data
content, the a bypassing method would be to encode or encrypt the data content.

Experiment

The purpose of this experiment is to see if it is possible to bypass Snort rules with
high likelihood. at the beginning of this chapter, several architectural designs that
could be used in the experiment will be proposed. Then some software which is
used will be described. Experiment procedures and results are divided in a common
sections for each layer in the OSI model.

5.1 Architectural Design

In this section some architectural design proposals that could be used in the experi-
ment will be proposed and discussed.

5.1.1 Alternative 1

The first architectural alternative is shown in Figure 5.1, a Client requesting contents
from a Content Server, where the Client and the Content Server are located in
separate networks, a router is used to connect the two networks. The Router will be
running a filtering mechanism to stop unwanted traffic.

)
=

Cllent TI' Content Server

Figure 5.1: Client and Content Server in separate networks, the networks are
connected with a router which runs a filtering mechanisms

21

22 5. EXPERIMENT

) < i
’ I
]
A—
Client Content Server

Figure 5.2: Client and Content Server in same network, where the Content Server
runs filtering software

Benefits

The network architecture is close to real life architecture.

Restrictions

This alternative needs a router which run a filtering mechanism. This requires
extensive configuration or expensive hardware.

5.1.2 Alternative 2

In architectural design alternative two the Client accesses the Content Server directly
without any intermediate connections. In this alternative the Content Server will
run a filtering software, discarding unwanted traffic itself. This architecture is shown
in Figure 5.2

Benefits

This alternative has an easy setup. It can run in any internal network or virtual
environment, and do not require additional servers, proxies or routers.
Restrictions

This architecture do net represent the Internet architecture.

5.1.3 Alternative 3

Client requests content from a Content Server, where all traffic passes through a
Proxy Server. This alternative is shown in Figure 5.3. The Proxy Server will run the
filtering mechanism.

Benefits

This alternative is possible to create in a virtual environment.

5.1. ARCHITECTURAL DESIGN 23

Gllent Froxy Server Content Server

Figure 5.3: Client requests content from a Content Server through a Proxy Server

-l
Cllent Proxy Server

Figure 5.4: Client requesting content from the Cloud through a Proxy Server

Restrictions

Bypassing methods in the Network Layer and Transport Layer uses a Proxy Server.
It is not possible for the Client to connect to two different Proxy Server at the same
time. So this means that traffic would not go through the Proxy Server which run
the filtering software.

5.1.4 Alternative 4

Client doing requests to the Cloud, where all traffic too and from the Client will pass
through a Proxy Server. As in Alternative 3 the Proxy Server will run the filtering
mechanisms. This alternative is shown in Figure 5.4.

Benefits

This architecture gives an enormous possibility for destinations and applications to
access.

Restrictions

The restrictions in this architecture is the same as the restrictions in Alternative 3.
Additional there will not be any control of the content of the Internet.

24 5. EXPERIMENT

5.2 Setup

5.2.1 Architectural Decision

Out of the four architectural designs two of them will be used. The two alternatives
is Alternative 2 and Alternative 3. Alternative 2 will be used when doing experiments
in the Network Layer, the Presentation Layer and the Application Layer. This is
because of the simple setup. The Alternative 3 will be used in the Transport Layer.

5.2.2 Software Choices

This section describes which software that is used in the Experiment, and why they
were selected. The software used in the experiment is:

— VirtualBox

— Ubuntu Server 14.04.1 Long Term Support (LTS)
— Apache Web-Server version 2.4.7

— OpenSSL 1.0.1f

— Snort 2.9.6.0

— Squid 3.3.8

— Burp Suite Free Edition v1.6

VirtualBox

The Content Server in Figure 5.2 and Figure 5.3 is created as a Virtual Network
(VM) using VirtualBox. It is setup with a bridged network adapter. This Content
Server will run Ubuntu Server, Apache Web-Server and OpenSSL, in Figure Client
and Content Server in same network, where the Content Server runs filtering software
it will also run Snort.

The Proxy Server in Figure 5.3 is also created as a VM using VirtualBox. The
Proxy Server will run Ubuntu Server, Squid and Snort. It is setup with two network
adapters, they are configured as listed below:

— Adapter 1

o Host-only Adapter
o vboxnetl

o Promiscuous Mode: Allow VMs

5.2. SETUP 25

— Adapter 2

o NAT
o Promiscuous Mode: Allow VMs

Ubuntu Server

The Content Server will be installed with Ubuntu Server 14.04.1 LTS as the OS.

The Proxy Server in Figure 5.3 will also be installed with Ubuntu Server 14.04.1
LTS as the OS. To get the network interface configuration correct the /etc/net-
work/interfaces needs to be changed as shown in Listing 5.1.

The primary network interfaces

Internal network configuration

auto ethO

iface ethO inet static
address 10.0.1.101
network 10.0.1.0
netmask 255.255.255.0
broadcast 10.0.1.255

External network configuration (Internet)
auto ethl
iface ethl inet dhcp

Listing 5.1: Changes in /etc/network/interfaces file in the filter

Apache Web-Server

Apache Web-Server is an open-source HT'TP server for modern operating systems.
[Foul5)

Apache will be installed on the Content Server using the default Ubuntu Server
repositories. To have the Apache Server serve HTTPS content some additional
installation steps are necessary. The installation and configuration commands are
listed in Listing 5.2

sudo apt—get install apache2
sudo a2enmod ssl
sudo service apache2 restart

Listing 5.2: Installation of Apache with the SSL module activated

Then a certificate has to be created, this is described in the OpenSSL section.
To setup the Apache Web-Server to use HTTPS some further configurations are

26 5. EXPERIMENT

needed. The SSL configuration has to be changed, this configuration file is in the
/etc/apache2/sites-available/ folder and is called default-ssl. Edit this file and add
the lines listed in Listing 5.3, where the IP or Domain_ Name is replaced with either
the TP address that the server will serve content from or the Domain Name of the
server.

ServerName IP or Domain_Name:443

SSLEngine on
SSLCertificateFile /etc/apache2/ssl/apache.crt
SSLCertificateKeyFile /etc/apache2/ssl/apache.key

Listing 5.3: Configurations of the default-ssl file in the 5.2.2

The only thing that is remaining is to activate the new Virtual Host, this is done
by executing the commands listed in Listing 5.4

sudo a2ensite default—ssl
sudo service apache2 reload

Listing 5.4: Activate new Virtual Host and restart the 5.2.2

OpenSSL

OpenSSL is an open-source toolkit to implement the SSL and TLS protocols. [Prol5a]

OpenSSL is pre-installed in the Ubuntu Server. There are no necessary configura-
tions to the OpenSSL software. The OpenSSL software is used to create a self signed
certificates to the Apache web server. This is done by executing the command listed
in Listing 5.5. A precondition for this to work is that there exists a folder inside the
/ete/apache2/ directory that is named ssl.

sudo openssl req —x509 —nodes —days 365 —newkey rsa:2048 \
—keyout /etc/apache2/ssl/apache.key \
—out /etc/apache2/ssl/apache.crt

Listing 5.5: Creating self signed certificate and key using OpenSSL

Now the Apache Web-Server should be up and running, this may be verified by
accessing the TP address of the Content Server on port 80 and 443 through a web
browser. A default web page will be displayed, served over HT'TP and HTTPS.

Snort

Snort is presented in Chapter 3.

5.2. SETUP 27

Snort will be setup in alert mode, so that it is possible to look at access logs on
the server, instead of using the drop mode where packets are discarded. Snort will
be installed from the default Ubuntu Server repository. This is done by executing
the command listed in Listing 5.6.

sudo apt—get install snort

Listing 5.6: Installation of 5.2.2 from the Ubuntu Server repository

To verify that Snort is working the command listed in Listing 5.7 is executed,
where IP is the IP-range of the network that the Content Server is located on. This
will display all network traffic within the IP-range that it detects, in the terminal.

snort —d —A console —h IP

Listing 5.7: Snort start up commando

Squid

Squid is a caching proxy.[sc13] The Squid software could be used to protect hosts, by
setting up the software to act as a firewall and proxying internal traffic.[Wes04]

Squid will be installed on the Proxy Server shown in Figure 5.3. The Squid
software is installed from the Ubuntu Server repository by running the command
listed in Listing 5.8. Then the configuration file is edited by adding the following
lines in the /etc/squid3/squid.conf.

— acl localnet src 10.0.1.0/24

— http__access allow localnet

The line which contains the http_ port 3128 must be changed to hitp_ port 3128
transparent, this is to setup the Squid as a transparent proxy.

sudo apt—get install squid3

Listing 5.8: Installation of Squid from the Ubuntu Server repository

To load the the changes in the configuration of the Squid software, the Squid
software must be restarted. This is done using the command listed in Listing 5.9.

sudo service squid3 restart

Listing 5.9: Restart command for the Squid software

28 5. EXPERIMENT

Burp Suite

Burp Suite is a tool for performing security testing of web applications. It comes
with various tools, but only the Proxy tool will be used. [Ltd15]

Burp Suite will be installed on the Client to gain more control of the packets
sent to the Content Server. The installation process is minimal, this is because the
Burp Suite comes as a Java Archive (JAR) file and is a portable application. This
means that as long as Java is installed on the machine it could be executed. Burp
Suite is setup to capture and hold packets between the web browser and the NIC of
the Client. This makes it possible to modify the packets before they are sent to the
network.

5.3 Results

This section contains five experiment with their procedures and results. Throughout
the experiments Snort is started with 5 options. These options are -d, -A fast, -h IP
address, -1 /var/log/snort and -c /etc/snort/snort.conf.

5.3.1 Packet Capture Capabilities

To check if the Snort software is capable of detecting and alerting packets that passes
through the NIC of the Content Server a stress test is conducted. This will show
whether Snort is capable of detecting all packets or if some passes through without
being analyzed.

Procedure This experiment will be conducted using a Snort rule that collects all
traffic that arrives to the Content Server. 9999 packets will be sent to the Content
Server within a short period of time, and this will be repeated 100 times to get
representative data to analyze.

Result The first rule that were written was the one in Listing 5.10, this was a
simple rule that looked for IP packets which originated from the internal network
of Norwegian University of Science and Technology (NTNU). This rule created a
lot of alerts that did not originate from the Client in Figure 5.4, and therefor it
was changed to the one in Listing 5.11. This rule raises an alert for any IP packet
which comes from the IP of the Client, and with destination as the IP address of the
Content Server.

alert ip 129.241.208/23 any —> any any
(msg:"IP packets from Client to the
Content Server detected'; sid:10000)

5.3. RESULTS 29

Listing 5.10: Snort rule for filtering IP packets with source from internal network
and any IP as destination

alert ip 129.241.209.185 any —> 129.241.209.152 any
(msg:"IP packets from Client to the
Content Server detected'; sid:10000)

Listing 5.11: Snort rule for filtering IP packets with Client as the source and
Content Server as destination

By doing a Ping of Death from the Client to the Content Server with 9999 packets,
it is possible to see how many of these packets Snort do register. The Ping of Death
command is shown in Listing 5.12. This command were executed 100 times without
Snort active and a 100 times with Snort active.

sudo ping —c 9999 —1 65550 129.241.209.152

Listing 5.12: Ping of Death command

The number of packets lost is almost identical, this implies that Snort does not
affect the throughput to the Content Server. The graphical representation of this
in Figure 5.6, shows that the highest number of packets lost were when Snort was
not active. When looking at the numbers in Table 5.1 it looks like Snort actually do
slow down traffic to and from the server. The RTT min, max and avg are all lower
both on average and median. This is also the case when looking at the graphical
representation of the average RTT in Figure 5.5. The red points in the figure is
average RTT when Snort is active, and the black points are the average RTT when
Snort is not running on the Content Server. The red points are visually higher up in
the graph than the black points, which indicates that Snort increase the latency of
the packets.

Next thing to look at is if Snort raises warnings of all packets sent to the Content
Server. The Client and the Content Server are on the same Ethernet network, with
no intermediate routers as shown in Listing 5.13. This is to reduce the probability
for that packets being dropped in router queues, and other traffic restrictions.

traceroute to 129.241.209.152 (129.241.209.152), 64 hops max, \
52 byte packets

1 dhcp209 —152.ed.ntnu.no (129.241.209.152) \
1.393 ms 0.753 ms 0.417 ms

Listing 5.13: Route between Client and Content Server, using traceroute

30 5. EXPERIMENT

150 . on «Snort inactive ||
s e "o, o%, =7 = o|* Snort active
100 ’ .
\8)
S
& n
P - T
~. . o: : [” ° . ..:.:..0.. ..l... .. J$. ..-:.o
0b_1 ! ! ! !

RunNr

Figure 5.5: Average RTT of the packets which were not lost to the Content Server
when testing the throughput.

94 |- . Snort inactive ||
* Snort active
93 - . |
8]
(=) °
S .
§ 92 - . |
e . .
QO
Qﬂ [] . ° o
91 [. ° .- ° . .
00| L ahimaiatn o vt o Ta |
| | | | |

|
0 20 40 60 80 100
RunNr

Figure 5.6: Percentage of packets lost of the 9999 packets sent to the Content
Server.

5.3. RESULTS 31
Description | Packet loss | RTT min | RTT avg | RTT max | RTT stddev
Snort inactive
Average 90.266 0.862 69.702 86.542 20.229
Median 90.0 0.842 46.471 59.595 14.382
Snort active with options mentioned in 5.3.3
Average 89.994 0.877 79.906 104.301 22.579
Median 89.8 0.856 57.409 71.593 17.655

Table 5.1: The average and median packet loss and RTT of traffic to Content
Server, when executing the Ping of Death command 100 times, RTT is in ms

8,000 . . .
E ® oo o oo @ L] e o ... - .. L] ..
&\) 7’000 | . ° oo °« ° B
S
S .
A
6,000 | . . .
5,000 L—! ! ! ! ! [
0 20 40 60 80 100
RunNr

Figure 5.7: Packets registered by Snort for each run.

Snort alerted a total of 699504 IP packets which were sent from the IP of the
Client to the IP of the Content Server. The average packet loss of the packets to and
from the Content Server were approximate 90%. The percentage of packets which
did travel back and forth is thus 10%, this makes 999900 x 0.10 = 99990 packets.
Snort raised a warning for gggggg x 100 = 69.95739 of the packets. In Appendix A the
script which were used to execute the ping of death are shown. There it is shown that
the script have a sleep period of two seconds before it executes the next ping request.
This makes it possible to see how many packets Snort registered and alerted for each

of the hundred runs. The individual runs with the number of packets registered are

shown in Figure 5.7.

32 5. EXPERIMENT

Lowest | Average | Highest
5303 6995 8525

Table 5.2: Packets registered by Snort for each run

In Table 5.2 the lowest and the highest number of packets registered by Snort are
shown, additional the average number of packets is listed. Based on the numbers in
Table 5.2 it is most likely that Snort actually registers all packets that are entering the
NIC of the Content Server, and that the packets are lost earlier. When Snort registers
a number of packets as high as 8525 packets out of 9999 this is $522 x 100 = 85.26%,

9999
with a packet capture % x 100 = 53.04% as the lowest and an average packet
6995

capture detection of x 100 = 69.96%. The number of packets missing from a

9999
perfect capture at the highest capture run is only 9999 — 8528 = 1471, and with
a total of 9999 — 5303 = 4696 missing packets at the worst, the missing packets
from the lowest up to the highest covers the missing packets; 4696 — 1471 = 3225,

3225 > 1471.

When Snort is capable of capture all packets passing through it, and when taking
into account that it is an Signature-based Detection IDS, all talk about high likelihood
in bypassing a filter is excess. If the packet matches the rule that is loaded into Snort
it will be analyzed and an alert will be raised.

5.3.2 Physical Layer and Data Link Layer

There will not be any filtering in the Physical Layer and the Data Link Layer. A
physical filter would restrict the Client of any connection to the server, this is not
wanted and would not give any results. In the Data Link Layer it is possible to filter
on MAC addresses, when the Clients are new to a network the MAC address is not
known. Thus they are not in the filtering rules and are not filtered. Additional the
Snort software do not support MAC address filtering.

5.3.3 Network Layer

In the Network Layer layer it is possible to filter based on multiple protocols, but
Snort do only support IP address filtering and ICMP filtering. This restricts the
filtering done in the Network Layer to only include IP addresses and ICMP. In the
experiment all ICMP packets, and traffic from IP addresses that originates from the
same network as the server will be filtered.

The Snort rules that are used in this experiment is shown in Listing 5.14 and
Listing 5.15. Here Snort will be filtering on IP addresses within the range of
129.241.208.0/23, and the protocol type ICMP.

5.3. RESULTS 33

alert ip 129.241.208.0/23 any —> 129.241.209.152 any
(msg:"IP packet from Internal network detected'; sid:10000)

Listing 5.14: Snort rule used to alert IP packets which originates from Internal
network

alert icmp any any —> 129.241.209.152 any
(msg:"ICMP packet detected"; sid:10001)

Listing 5.15: Snort rule used to alert ICMP packets

Procedure First to verify that the rule is alerting when it should, five ping request
are executed from a Client which are on the Internal network. This should trigger
both rules. The ping request is shown in Listing 5.16. Then the Content of the
Server will be accessed using a web browser, this will generate a TCP connection
to the Server and should only trigger the rule in Listing 5.14. When the Client has
jumped to another network, by using a proxy or moving physically, the command in
Listing 5.16 is executed once more. This should only trigger the rule in Listing 5.15.
After the ping command result is registered the content of the Content Server are
accessed once more via a web browser, and this should not raise any alerts. This
experiment is shown in Figure 5.8.

Result In the first run where the ping command in Listing 5.16 are executed from
the Client when it is on the same network as the Content Server, Snort do alert with
both IP packet from Internal network detected and ICMP packet detected. When the
Content Server is accessed using a web browser, Snort only alerts IP packet form
Internal network detected as expected. After the Client has moved to an External
network the ping command is once more executed. Snort raises five alerts: "ICMP
packets detected” from the Client. When accessing the Content Server with a web
browser Snort do not raise any alerts. This is the result which were expected, when
the Client moves to another network it changes its IP address, in this case the IP
address of the Client is 78.91.65.8. Snort do only check for IP addresses within the
range of 129.241.208.0 to 129.241.209.255.

An alternative way to bypass IP address filtering is by using an HyperText
Markup Language (HTML) iframe as a browser. Then the Client will be viewing
content on another Server than the one which are not filtered, and this Server will
request content from the Content Server via its iframe.

ping —c 5 129.241.209.152

Listing 5.16: Ping command executed in the Network Layer experiment

34 5. EXPERIMENT

Internal Network
129 241.208.0/23

A
- Ping and access =
—
2

Client Content Server
129.241.209.170
'\-. 7 Ping and access
W
L/

—’
r— 2 External Metwork
Client 78.81.00M16
78.81.65.8

Figure 5.8: Illustration of Client moving from Internal Network to External Network
to bypass IP filtering.

To be able to bypass the Snort rule in Listing 5.15 the protocol can not be
ICMP. The traceroute tool used in the Packet Capture Capabilities Chapter uses the
UDP protocol to send packets. The ping command is a way to check connectivity.
By using traceroute as shown in Listing 5.17 the connectivity is also checked, but
now running over UDP instead of ICMP. A benefit with this tool is that all the
intermediate routers are shown as well. When using traceroute instead of ping to
check connectivity to the Content Server, Snort do not raise any alert. This means
that the ICMP rule is bypassed.

traceroute 129.241.209.152

Listing 5.17: Using traceroute to check connectivity and bypassing ICMP filtering

5.3.4 Transport Layer

When entering the Transport Layer there are multiple protocols to filter on, but also
here the Snort software limits the number of protocols. Snort only supports the TCP
and UDP protocol filtering. The experiment will therefor only include filtering of
one of these protocols.

The Snort rules which are used in the Transport Layer experiments are listed in
Listing 5.18. In this experiment the Snort rule will filter data packets that runs over

5.3. RESULTS 35

10.0.1.0/24 129.241.208.0/23

@|,<:>i<::>i|

Client Proxy perver Content Server
10.0.1.100 10.0.1.101 -1129.241. 209170 129241 209153

Figure 5.9: The network overview of the setup for experiment on the Transport
Layer

TCP. In this experiment the architecture presented in 5.1.3 is used. The environment
overview with network IP addresses are shown in Figure 5.9

alert tcp any any —> 129.241.209.152 any
(msg:"TCP packet detected"; sid:10010)

Listing 5.18: Snort rule to be used in Transport Layer experiment

Procedure Using a Client that connects to the internet through a proxy, were the
proxy is running Snort with the rule listed in Listing 5.18. The Client will try to
retrieve content from the Content Server via a web browser and this should raise
a TCP alert. When this is verified the Client will connect to a VPN server using
a VPN plugin in the browser. This VPN plugin will send traffic over UDP to the
VPN server, and then the VPN requests content from the Content Server using TCP.
This should not raise any alerts and the Client should be able to gain access to the
content of the Content Server.

Result To verify that the Snort rule works, the Client requests the web content
on the Content Server. This did not generate an alert as it should have done. The
reason was that the Client was setup to use the Proxy Server, and the packets that
was sent through the Proxy did not have the IP address of the Content Server as
the destination address. Therefor the Snort rule had to be modified, instead of
filtering on the destination, the source were filtered instead. The new rule is shown
in Listing 5.19.

alert tcp 10.0.1.100 any —> any any
(msg:"TCP packet detected"; sid:10010)

Listing 5.19: Snort rule used in Transport Layer experiment

When the rule was changed the expected results were obtained. Then another
unexpected error occurred, it is not possible to connect to a VPN if the Client uses a
Proxy to gain Internet access. This is because of the Proxy software used, Squid do

36 5. EXPERIMENT

only support protocols in OSI layer seven and up, the VPN requires access to OSI
layer three to establish a connection.

In theory a VPN connection using UDP will not raise an alert when passing
through the Proxy Server, but this was not verified.

5.3.5 Session Layer

Filtering in the Session Layer will not be a part of this experiment. To filter packets
in the Session Layer it is necessary to filter packets based on their contents which
match with the contents of the different protocols headers in the Session Layer. There
are seven different protocols, none of them are commonly used to access web servers.
And content matching will be covered in the Application Layer experiment.

5.3.6 Presentation Layer

In the Presentation Layer layer there is one protocol which will be filtered, it is the
TLS protocol. The TLS protocol offers encryption for the most common protocols in
the Application Layer layer and encrypts the content of them.

The experiment in the Presentation Layer will consist of filtering of the TLS
protocol, where it is used to encrypt HTTP traffic. Snort has a preprocessor called
SSLPP, it analyzes SSL and TCP traffic and optional determines if and when Snort
should stop inspection of it. By enabling the SSLPP and the noinspect_ encryption
options, only the SSL handshake of each connection will be inspected. The SSLPP is
activated by writing rules that uses it. One of the rules used in this experiment uses
this and is listed in Listing 5.20. In addition the rule listed in Listing 5.21 will be
applied to the Snort software.

alert tcp any any —> 129.241.209.152 any
(msg:"HTTPS client hello detected"; ssl_state:client_hello; sid:10021)

Listing 5.20: Snort rule used to enable the SSLPP

alert tcp any any —> 129.241.209.152 443
(msg:"HTTPS traffic detected"; sid:10020)

Listing 5.21: Simple Snort rule used to filter TLS traffic

Procedure To verify that the Snort rules are working, content from the Content
Server are to be accessed without using any bypassing methods. This should raise
an alert from the SSLPP enabled rule and the other rule in Listing 5.21. Then
the HTTPS traffic will be moved to an expected TLS traffic port, which is listed
in the Snort preprocessor SSL list. This should not raise an alert from the rule

5.3. RESULTS 37

in Listing 5.21, but it should raise a warning from the rule listed in Listing 5.20.
Then the traffic will be moved to a port number which is not listed in the Snort
preprocessor SSL list, this should also raise an alert.

Result Snort do alert the HTTPS traffic as expected. It do not raise an alert
when the Content Server is accessed using HTTP, but raises an alert from both
rules when accessing using HT'TPS. When moving the TLS connection to port 4433
instead of the default port 443, and making sure that the 4433 port is listed in the
preprocessor ssl: ports bulk. The expected result is obtained, now only the rule listed
in Listing 5.20 gives a warning of "HTTPS client hello detected". When changing
the port to something that is not in the preprocessor ssl: ports bulk, choosing 4333,
the result is not as expected. The Snort software do not alert of any TLS traffic to
the Content Server. The Snort rule is set to listen on any port number, and there is
a TLS handshake setup. This implies that the preprocessor overrules the ports that
will be inspected.

5.3.7 Application Layer

In the Application Layer, filtering will be done on HTTP traffic. Here the content of
packets will be inspected and filtered.

alert tcp any any —> 129.241.209.152 any
(msg:"index.html accessed"; sid:10030;

content :"index";)

Listing 5.22: Snort rule to detect if the index.html is accessed

Procedure First, to understanding how Snort detects content of packets, a filter
that raises an alert when the index.html page is accessed is used. This rule is listed
in Listing 5.22. The Content Server will be accessed using a web browser in the
Client, using the IP address as the URL. Then adding a trailing /index.html to the
URL. When the rule alerts a specific URL, the /index.html will be URL-encoded to
see if Snort understands this.

Then the same process will be executed against another rule, this rule will look
at the packets rawbytes. This rule is listed in Listing 5.23. Here the 69 6F 64 65 78
is the hexadecimal representation of index.

alert tcp any any —> 129.241.209.152 any
(msg:"index.html accessed, rawbytes"; sid:10031;
content:"|69 6E 64 65 78|"; rawbytes;)

Listing 5.23: Snort rule viewing rawbytes to detect access to index.html

38 5. EXPERIMENT

Result Snort do not raise an alert when accessing the Content Server without the
trailing /indez.html, but it do when this is added. When looking in the packet that
is sent to the Content Server using Burp Suite, we see what the Client sends. The
packet sent from the Client to the Content Server is shown in Listing 5.24. In this
request the /index.html was appended to the URL. When requesting the Content
Server without the extended URL the request looks like the on in Listing 5.25

GET /index.html HITTP/1.1

Host: 129.241.209.152

User—Agent: Mozilla /5.0 (Macintosh; Intel Mac OS X 10.10; rv:32.0)
Gecko /20100101 Firefox /32.0

Accept: text/html,application/xhtml+xml, application/xml;q=0.9,%/x;
q=0.8

Accept—Language: nb—no,nb;q=0.9,no—no;q=0.8,n0;qg=0.6,nn—no;
q=0.5,nn;q9q=0.4,en—us;q=0.3,en;q=0.1

Accept—Encoding: gzip, deflate

Connection: keep—alive

If —Modified —Since: Wed, 28 Jan 2015 11:15:56 GMT

If -None—Match: "250—-50db47ecb69f7—gzip"

Cache—Control: max—age=0

Listing 5.24: Request to Content Server capture, using Burp Suite. Here with the
/index.html added to the URL

GET / HTTP/1.1

Host: 129.241.209.152

User—Agent: Mozilla /5.0 (Macintosh; Intel Mac OS X 10.10; rv:32.0)
Gecko /20100101 Firefox /32.0

Accept: text/html,application/xhtml4xml, application/xml;q=0.9,x/x;
q=0.8

Accept—Language: nb—no,nb;q=0.9,no—no;q=0.8,n0;q=0.6,nn—no;
q=0.5,nn;q=0.4,en—us;q=0.3,en;q=0.1

Accept—Encoding: gzip, deflate

Connection: keep—alive

If —Modified—Since: Wed, 28 Jan 2015 11:15:56 GMT

If -None—Match: "250—-50db47ecb69f7—gzip"

Listing 5.25: Request to Content Server capture, using Burp Suite

It is the first line of the two requests which is of interest, Snort does seem to
only inspect what actually is in this requests. In Listing 5.24 the word index is not
present, thus this packet do not raise an alert.

Now the index.html will be URL-encoded, the encoding of index.html is shown in
Listing 5.26. When inspecting the request packet using Burp Suite, the GET request
has changed. Instead of the index.html it is replaced with the text in Listing 5.26.
This packet do not raise an alert when passing through the Snort rule in Listing 5.22,
but it do load the web page on the Content Server.

5.4. CONCLUSION 39

/ %669%6E%64%65%78%2E%68%74%6D%6C

Listing 5.26: URL-encoding of index.html

When testing with the Snort rule in Listing 5.23 the same results are obtained.
Snort do not raise an alert when accessing the URL without the trailing index.html
path, nor when URL-encoding index.html to the string in Listing 5.26. The rule is
verified to be working, when accessing the Content Server with /index.html appended
to the IP address it do raise an alert.

5.4 Conclusion

Snort do not affect the throughput to a Server, but it do increases traffic latency.
This indicates that the Snort do not allow packets through itself before the packets
are inspected. This is wanted behavior when trying to block access of a service or
censored content.

The rules written in Snort is possible to bypass. Using underlying network
protocols or by changing the layout of the traffic. An interesting finding was that the
SSL and TLS preprocessor overruled the port listed in the Snort rule header. The
rule header implies that is should detect traffic on any ports, but it do only analyze
traffic on ports which are listed in the preprocessor ssl: ports list.

Known Bypassing Solutions

In this chapter two solutions which cover some areas of how to avoid censorship will
be presented. One of the solutions is developed by Brandon Wiley a PhD student at
University of Texas at Austin, and the other is from the Tor Project. Brandon Wiley
has started a project which he calls Operator [Will5], this is a RSS news reader
which uses the Dust engine to bypass filtering mechanisms. To use the Dust protocol
it requires two entities, a client and a server which understands the protocol.

The Tor Project has a project which they call Pluggable Transport, this project
is mostly to prohibit censoring of Tor traffic flows.

6.1 Dust

Dust is a protocol designed to protect against censoring mechanism which uses DPI
to fingerprint protocols for the purpose of blocking or rate limiting connections. The
protocol creates packets which consists entirely of encrypted or random single-use
bytes, this is to be indistinguishable from each other and random packets. The Dust
protocol do not anonymize the sender or receiver, this apply to both the TP address
and port. All Dust packets can be chained inside either a TCP or UDP packet,
making the protocol agile and applicable. [Willl]

6.1.1 Protocol

Dust uses a two way handshake. The first message is an initial out-of-band invite
packet, it contains the server’s IP address, port number, public key, the id, and the
secret. This invite message is encrypted with a password, this makes it indistinguish-
able from random bytes. The invite message and the password is then sent to a peer,
using communication channels such as email and instant messaging. The second
message, which completes the handshake, is a intro packet. The peer uses the IP
address and port number from the invite packet to send the intro packet back to
the server, this packet is encrypted using the secret sent in the invite packet and

41

42 6. KNOWN BYPASSING SOLUTIONS

Server Client

Tuinitiate ot of-pand message

2: invite : 3: invite

— 4:intro

-+
DS: decrypt

44— G sendand receive——

Figure 6.1: Dust Protocol showing the invite, intro and data packet in a message
sequence diagram

contains the public key of the peer. The server then decrypts the intro packet with
its initial secret, and then generates a shared session key and ads this key to the
known hosts list. This two way handshake is shown in Figure 6.1. The server and
peer are now able to send and receive encrypted data packets freely.

6.2 Pluggable Transport

The mission of the Tor Project is to be the global resource for technology, advocacy,
research and education on the ongoing pursuit of freedom of speech, privacy rights
online, and censorship circumvention. They have been widely concerned about
anonymity, but lately they have experienced censorship of their traffic. This have
resulted in a new product which they call Pluggable Transport, the Pluggable
Transport avoids censorship by changing tor traffic flows to look like nothing or
something which is expected. A simple representation of a Pluggable Transport
proxy called obfsprozy is shown in Figure 6.2. Censors who monitor traffic between a
Tor Client and a Tor Bridge will now see innocent-looking transformed traffic instead
of Tor traffic.

The obfsprory supports transformation of Tor traffic to look like regular traffic,
it supports multiple protocols one of them being HTTP. This proxy is one out of

6.2. PLUGGABLE TRANSPORT 43

=
. obfsproxy =I’I obfsproxy .
[Tor Client H Client =r’|4[Sorver H Tor Bridge]
—1/]
—1

Censor

Figure 6.2: Representation of the Pluggable Transport proxy called obfsproxy

ten mentioned on the Tor: Pluggable Transports page[Prol5b], where also Snort is
listed.

Competition

This work were originally meant to be supported by giving participants of a competi-
tions the possibility to act as a censoring authority, but after much struggling with
configuration of both Snort and Squid for the experiment, and pages of configuration
pages read. The decision to not go through with the competition and trial was made.
It would have taken too long for the participants to get familiar with the software,
and the challenges with scoring the participants are also difficult.

The intended participants were students at NTNU ranging from first to fifth class
students. There are no tuition of IDS at NTNU, and this is not something which
individuals are likely to do on their own.

Before the decision of not complete the competition was made, alternative com-
petition setups was proposed. The rest of this Chapter will be a description of the
proposed architectures.

In Figure 7.1 a simple network layout of the competition is shown. Where the
participants should restrict traffic passing the Proxy Server that connects the two
networks. The participants gain points when an unwanted flow of data is stopped,
and lose points if they stop all or benign data.

7.1 Architectural Design

In this section some architectural design proposals that could have be used in the
competition proposed and discussed.

7.1.1 Alternative 1

The first proposal is shown in Figure 7.2, having one client which request content
from a server. Here all requests goes through the participants proxy server. This

45

46 7. COMPETITION

Internal Metwork

A
il External Metwork

Proxy Server

Figure 7.1: Network layout of the simulated ISP experiment, where the Proxy
Server acts as a gateway between the two networks

B —ig =il

i Content Server
Client Proxy Server

Figure 7.2: One client running requests through multiple proxies to a content server

requires the Client to have some software that connects to each proxy, and requests
multiple sources from the Content Server.

This solution makes it possible to score the participants in two ways. The response
from the Content Server could be checked on the Client, and requests from the Client
could be checked on the Content Server. A restriction to this architecture is that the
filtering would only be possible in OSI layer seven and eight.

7.1.2 Alternative 2

To be able to filter traffic in the lower network layers, the clients can not set the
proxy settings in software. In this case it is necessary to duplicate clients in a one to
one ratio to the proxy servers. This is illustrated in Figure 7.3, here the number of
clients mach the number of proxy servers. This alternative is also possible to do with
two teams playing against each other, where one of the teams controls the proxy
filters, and the other team will try to bypass the filters.

After doing the experiment this architecture, if using the same software as in the
experiment (Squid), would not solve the problem with the possibility to only filter in
two highest network layers.

7.1. ARCHITECTURAL DESIGN 47

ﬁ

Content Server

A
Client

Figure 7.3: Number of client matches the number of proxy servers

A
—
L =]
S
Client Proxy Server

Figure 7.4: One client making request to the Internet through the participants
Proxy servers

7.1.3 Alternative 3

The previous alternatives have a Content Server, this alternative is a variant of 7.1.1
without the Content Server. Here the Client requests content from the Internet.
This would remove the work of creating the content of the Content Server, and
possible increase the complexity of the traffic flowing through the Proxy Server. An
illustration is shown in Figure 7.4.

Discussion

In the Experiment chapter it was shown that Snort did analyze all the packets which
passed the NIC of the computer where Snort was running. This means that all traffic
is analyzed and it is not possible to bypass the Snort software if it has a rule that
matches the content of the packet. This makes it impossible to circumvent filters
by using on statistics, all traffic is analyzed or detained until resources are available,
thus the packet will either circumvent the filter or not. So to bypass an IDS such as
Snort it is necessary to "fool" the rules of the tool. In the Experiment all experiments
were conducted with knowledge of how the rules, and what the rules were looking
for in the network traffic. This is likely not the case in real life, when considering the
threat model in this work, where a citizen of a country is censored by the government.
This makes it more difficult to change the traffic behavior, and it might not be as
easy to discover if traffic is filtered or if something else is the root to the problem.
Another problem is that the citizens who is being censored probably is not technical
skilled, and most likely not aware of the different methods of circumvent censorship.
However within a network as large as a country network, it would be difficult for the
government to have knowledge of all the computers in the network. This would make
it possible to setup a server inside the network without the government noticing it.
This server could be a vpn server, proxy server, or one of the solutions mentioned in
Chapter 6.

In the Experiment all the rules were bypassed in some way, except the Transport
Layer experiment. Bypassing of the rules in the Transport Layer experiment works
in theory, and would most likely have been successful t in practice as well. This
shows that it is possible to bypass a DPI if the right method is used. All layers
could be bypassed using a bypassing method that is effective in a lower layer. As
shown in Figure 4.1, the application layer is higher up in the OSI model than the
network layer. This means that if some data in the application layer is filtered, then
a bypass method in in the network layer would have the same affect as if the rule in
the application layer were bypassed.

49

50 8. DISCUSSION

Is it possible to use Dust or Pluggable Transport to hide malicious attacks? When
malicious contents are delivered, they need to pass into an internal network and a
host. In the threat model for this scenario the internal network is a company, where
the attacker is in the Internet. To be able to deliver the code to the company network,
the attacker has to fool a system or individual to request the malicious code and
download it. This is not impossible, but the system or individual must use either the
Dust or Pluggable Transport software. If this is the case it is possible to use Dust
and Pluggable Transport software to masquerade malicious code to bypass NIDS.
This would be difficult for a system administrator to detect, because the purpose of
these solutions is to look like normal benign Internet traffic. The conclusion must be
to not use such software when located in a sensitive environmental.

A problem with Signature-based Detection IDS such as Snort is that they rely on
signatures and rules from databases. These rules and signatures may be written by a
community or by a system administrator, a restriction of this is that new hacks or
malicious content and behavior will not be detected. If an attacker has a malicious
code and it is detected and put in a signature database, then the attacker could just
change some lines of code, or payload content and the fingerprint of the malicious
code has changed. This would cause the rules of the Signature-based Detection IDS
to be noneffective, the "new" malicious code would pass the IDS without raising an
alert.

Future Work

Internet censorship is important and awareness of it should be spread.

A way to spread the word and enlighten students would be to complete the com-
petition, but change the perspective. Creating a competition where the participants
were censored and will try to bypass Internet censorship.

By supporting the solutions mentioned in Chapter 6 and other similar solution,
Internet censorship might be a word which only existing in history books.

51

[Ber]

[Cis14]

[FH13]

[Fouls]

[Koz05]

[Kur10]

[Ltd15]

[Mah03]

[Prolbal

[Prol5b)

[R*99]

[Reh03]

References

Matthew Berge. Intrusion detection faq: What is intrusion detection? http:
//www.sans.org/security-resources/idfaq/what_is_id.php. Accessed: 2015-02-01.

Cisco. Snort users manual 2.9.7. http://manual.snort.org/, 2014. Accessed:
2015-02-01.

Freedom-House. Freedom on the net. https://freedomhouse.org/report/
freedom-net /freedom-net-2013, 2013. Accessed: 2015-02-01.

The Apache Software Foundation. Apache http server project. http://httpd.
apache.org/, 2015. Accessed: 2015-02-01.

Charles M Kozierok. The TCP/IP guide: a comprehensive, illustrated Internet
protocols reference. No Starch Press, 2005.

Ross Kurose. Computer networking: a top-down approach. Pearson Addison-
Wesley, 2010.

PortSwigger Ltd. Burp suite. http://portswigger.net/burp/, 2015. Accessed:
2015-02-01.

Matthew V Mahoney. Network traffic anomaly detection based on packet bytes.
In Proceedings of the 2008 ACM symposium on Applied computing, pages 346-350.
ACM, 2003.

OpenSSL Project. About the openssl project. http://openssl.org/about/, 2015.
Accessed: 2015-02-01.

The Tor Project. Tor: Pluggable transport. https://www.torproject.org/docs/
pluggable-transports.html.en, 2015. Accessed: 2015-02-01.

Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In
LISA, volume 99, pages 229238, 1999.

Rafeeq Ur Rehman. Intrusion detection systems with Snort: advanced IDS tech-
niques using Snort, Apache, MySQL, PHP, and ACID. Prentice Hall Professional,
2003.

53

http://www.sans.org/security-resources/idfaq/what_is_id.php
http://www.sans.org/security-resources/idfaq/what_is_id.php
http://manual.snort.org/
https://freedomhouse.org/report/freedom-net/freedom-net-2013
https://freedomhouse.org/report/freedom-net/freedom-net-2013
http://httpd.apache.org/
http://httpd.apache.org/
http://portswigger.net/burp/
http://openssl.org/about/
https://www.torproject.org/docs/pluggable-transports.html.en
https://www.torproject.org/docs/pluggable-transports.html.en

54 REFERENCES

[sc13]

[UT14]

[Wes04]

[Will1]

[Wil15)]

squid cache.org. Squid: Optimising web delivery. http://www.squid-cache.org/,
2013. Accessed: 2015-02-01.

USA-Today. Top 10 internet-censored countries. http://www.usatoday.com/story/
news/world/2014/02/05/top-ten-internet-censors/5222385/, note=Accessed:
2015-02-01, February 2014.

Duane Wessels. Squid: The Definitive Guide: The Definitive Guide. " O’Reilly
Media, Inc.", 2004.

Brandon Wiley. Dust: A blocking-resistant internet transport protocol. Technical
report. http://blanu.net/ Dust.pdf, 2011.

Brandon Wiley. Operator. http://operatorrss.org/, 2015. Accessed: 2015-02-01.

http://www.squid-cache.org/
http://www.usatoday.com/story/news/world/2014/02/05/top-ten-internet-censors/5222385/
http://www.usatoday.com/story/news/world/2014/02/05/top-ten-internet-censors/5222385/
http://blanu.net/Dust.pdf
http://operatorrss.org/

ping.py

import os, time

def executePing ():
for x in xrange(1,101):
filename = "run_%s.txt" %(x)

os.system ("sudo, ping —c,9999,—1,65550,,129.241.209.152,>,,"
+ filename)
time . sleep (2)

def carveResults ():

results = ""

for x in xrange(1,101):
results 4= "

fffff " %(x)
filename = "run %s.txt" %(x)
with open(filename) as f:
for line in f:
if ’packets’ in line:
results += line
elif ’round—trip’ in line:
results += line
f.close ()

f = open(’results.txt’, ’wt’)
f.write(results)

f.close()

)

if _ name __main__ :
executePing ()

carveResults ()

55

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Related Work

	Network Intrusion Detection System (NIDS)
	What is a NIDS
	How do NIDS locate unwanted traffic
	Signature-based Detection
	Anomaly Detection

	Snort
	Overview
	Modes
	Configuration
	Writing Rules
	Rule Header
	Rule Options

	Filtering and Bypassing
	Physical Layer
	Data Link Layer
	Network Layer
	Transport Layer
	Session Layer
	Presentation Layer
	Application Layer

	Experiment
	Architectural Design
	Alternative 1
	Alternative 2
	Alternative 3
	Alternative 4

	Setup
	Architectural Decision
	Software Choices

	Results
	Packet Capture Capabilities
	Physical Layer and Data Link Layer
	Network Layer
	Transport Layer
	Session Layer
	Presentation Layer
	Application Layer

	Conclusion

	Known Bypassing Solutions
	Dust
	Protocol

	Pluggable Transport

	Competition
	Architectural Design
	Alternative 1
	Alternative 2
	Alternative 3

	Discussion
	Future Work
	References
	ping.py

