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Abstract

Unordered rooted trees and B-series can be used to analyze the properties of many one-step methods for
autonomous ordinary differential equations. This thesis describes aspects of trees and B-series necessary
to use them to check whether or not a given numerical method has certain properties. This is then used
to implement a software library in Python with the ability to investigate the properties of a numerical
method given its B-series.

The library represents unordered rooted trees as nested multisets, and include some common functions
on trees including order, symmetry coefficient, density and an ordering relation. Operations such as the
Butcher product and the grafting product are also implemented. Free trees are also implemented for the
use in some of the test for properties of numerical methods.

Furthermore the library includes forests and the product, coproduct and antipode of the Hopf algebra
of Butcher, Connes and Kreimer.

B-series are represented as functions corresponding to either characters or infinitesimal characters of
the Hopf algebra. The library contains functionality to compose, invert, find the adjoint and conjugate
of the functions corresponding to the B-series of numerical methods. Since several of the properties
of numerical methods have simpler formulations for the B-series of the modified equation, the library
includes functionality to go back and forth between the B-series of a method and its modified equation.

With the help of the above, the library can find a numerical methods order of convergence as well as
the order to which a method is symplectic, energy preserving or conjugate to symplectic.
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Norsk Sammendrag

Uordnede, rotfestede trær og B-rekker kan brukes til å analysere egenskapene til mange en-skritts metoder
for autonome ordinære differensiallikninger. Denne mastergraden tar for seg sider ved trær og B-rekker
som trengs for å bruke dem til å sjekke om en gitt numerisk metode har visse egenskaper. Dette er
deretter brukt til å implementere et bibliotek i Python som kan brukes til å undersøke egenskapene til
en numerisk metode gitt B-rekken dens.

Biblioteket representerer uordnede rotfestede trær som nøstede multimengder, og inkluderer en del
funksjoner på trær, blandt annet orden, symmetrikoeffisient, tetthet og en ordningsrelasjon. Operasjoner
som Butcher-produktet og poding av trær er også implementert. Frie trær er også implementert for bruk
i noen av testene av egenskaper for numeriske metoder.

Videre håndterer biblioteket skoger samt produktet, koproduktet og antipoden i Hopf-algebraen opp-
kalt etter Butcher, Connes og Kreimer.

B-rekker representeres av funksjoner som tilsvarer karakterer eller infinitesimale karakterer i Hopf-
algebraen. Biblioteket kan finne komposisjoner, inverse, adjungerte og konjugerte til B-rekker til nu-
meriske metoder. Siden flere av egenskapene til numeriske metoder er enkere å sjekke på B-rekken til
den modifiserte likningen, inkluderer biblioteket funksjoner for å veksle mellom B-rekken til en metode
og B-rekken til den modifiserte likningen dens.

De nevnte funksjonene brukes til å finne konvergensordenen til en metode så vel som opp til hvilken
orden den er symplektisk, energibevarende eller konjugert til symplektisk.
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Chapter 1

Introduction

Ordinary differential equations (ODEs) are used to model a wide variety of problems in the natural
sciences. Common examples include mechanical problems governed by Newton’s second law of motion,
reaction rates in chemistry, and population models in biology. Some ODEs can be solved analytically, for
example the motion of two mass particles moving in each others gravity field. However, in many cases
one can not find an analytic solution and must resort to numerical approximations.

This thesis focuses on certain numerical methods for initial value problems of the form

ẏ = f(y), y(0) = y0, y : R→ Rn, f : Rn → Rn, (1.1)

that is first order autonomous ODEs.
This scope is not quite as limited as is might seem, as many non-autonomous and higher order ODEs

can be recast in this format, often by increasing the number of dimensions, n, in equation (1.1). Take for
example the non-autonomous version of equation (1.1), that is when f depends explicitly on the argument
of y, usually named t. Thus f(y) is replaced by f(t, y). It can be made autonomous by renaming t to
yn+1 and adding the equation ẏn+1 = 1.

However, when aiming to find good numerical approximations for problems that have to be coaxed
into the form (1.1), one might be better off looking for a scheme that takes this additional structure into
account. An example of this is mechanical problems where it can be sensible to approximate variables
representing position and speed by different methods.

1.1 Numerical Methods
The history of Butcher trees and B-series can be traced back to a growing interest in approximating
solutions to ODEs at the turn of the twentieth century. This led among other things, to the development
of Runge-Kutta methods (“RK methods” from now on). These are a class of methods based on evaluating
f several times per step. They were first thought of and investigated systematically by Runge, Heun and
Kutta around 1900.

By 1963 Butcher had developed both a standardized notation to specify an RK method, the Butcher
tableau, and a systematic approach to the order conditions. The approach involves rooted trees and
B-series. Today these tools are used to investigate a larger class of numerical methods called the B-series
methods. It is the wish to use B-series to analyze numerical methods that restricts the discussion to
problems on the form (1.1). Furthermore f is assumed to be C∞ throughout this thesis.

The purpose of a numerical method for (1.1) is to find an approximation to y(t∗) for some given t∗ > 0.
This is typically done by successively calculating approximations yk to y(tk) for closely spaced times tk,
basing the next approximation on the already approximated values for y from previous steps. This very
general approach allows numerous strategies for calculating the next approximation. However, they all
include the explicit Euler method as the most basic method.

1



2 CHAPTER 1. INTRODUCTION

The explicit Euler method estimates the next y-value by

yk+1 = yk + hf(yk),

where h = tk+1 − tk is called the step size and is assumed to be small. That this gives a reasonable
approximation to yk+1 is easily justified by

yk+1 − yk
h

≈ y(tk+1)− y(tk)
h

= 1
h

∫ tk+1

tk

f(y(t)) dt ≈ ẏ(tk) ≈ f(yk). (1.2)

Equation (1.2) also exposes the Euler method’s most obvious weakness, namely that f(yk) is not neces-
sarily a particularly good approximation to the average of f for t ∈ [tk, tk+1]. Another shortcoming of the
Explicit Euler method is that it tends to always err in the same direction. When applied to mechanical
problems, it inevitably causes an increase in energy over time for no physical reason. This is particularly
problematic when simulating a system over a long period of time.

According to [4], three fruitful strategies for improving on the Euler method is to use several past
values, perform more calculations per step, and to utilize derivatives of f . These all have advantages and
disadvantages, and they may be pursued alone or in combination. In any case the idea is to do somewhat
more effort in each step to get a better approximation, thus being able to use a larger step size, which
ultimately results in a reduction of the total computational effort.

1.2 One Step Methods and B-Series
RK methods and the other B-series methods are all one step methods, that is methods where yn is the
only previous step used to calculate yn+1. As a consequence yn+1 is a function of the previous value
and the step size, not unlike a Taylor expansion. This similarity is the underlying concept of B-series,
which are little more than Taylor series where the higher derivatives of y are expressed in terms of f
and its derivatives instead of y. When doing this, each derivative of y splits into a sum of more complex
derivatives of f , so called elementary differentials. These elementary differentials stand in a one-to-one
relationship with the unordered rooted trees. This makes it possible to view B-series as series indexed by
trees.

Many of the properties of a numerical method are reflected in its B-series or B-series derived from
it. Among these are convergence order, symplecticity, energy preservation and symmetry. In many cases
working with B-series is more convenient than working directly with the method. This is connected to
the fact that somewhat arbitrary formulas for calculating yn+1 from yn are brought into a standardized
form where different properties can be tested for in a systematic way.

1.3 The Goals of the Thesis
While B-series offer the convenience of standardized procedures, their use demand a considerable amount
of arithmetic operations for even the simplest applications. The goal of this master thesis is a computer
library with functionality to manipulate unordered rooted trees and B-series, and that can be used to
check the properties of B-series methods.

The usefulness of such a library is obvious to anyone who have ever checked some property of a B-
series up to an order larger than three with pen and paper. The existence of at least three more or less
ad-hoc efforts by different researchers to automate calculations with trees and B-series further underpins
this. Each of these efforts are written by a single person, Ketcheson[15], Murua and Owren respectively,
and vary somewhat in scope. It is not unlikely that other researchers have made similar scripts to deal
with B-series related tasks too.
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1.4 Downloading and Running the Code
Readers of this thesis is encouraged to download and test the code produced during the work with the
thesis, collected in a library named PyBS for “Python Butcher Series”. In addition to the classes and
functions making up the library, the source code also contains tests of many of the implemented functions.
These serve both to demonstrate that the code does what it is supposed to do, and as examples of use.

The source code for PyBS can be downloaded and installed in two different ways. The first will
automatically download PyBS and all its dependencies1 and make PyBS importable as import pybs in
any Python instance on the system. This is probably the easier and better approach for those who only
want to run PyBS.

The second approach is to download the source code from GitHub to some folder on the computer.
This is more suitable for those who need to modify or extend the library.

1.4.1 Automated Installation
PyBS has been uploaded to https://pypi.python.org/pypi. The command

$ea sy_ in s t a l l pybs

or

$pip i n s t a l l pybs

will download PyBS and install as a "site package" on a Linux based system. After this it should be
possible to import pybs in any instance of Python on the machine.

1.4.2 Manual Installation
The source for PyBS can be downloaded from https://github.com/henriksu/pybs as a zip file or
using the version control system Git. Once downloaded, the package can be run by launching the Python
interpreter from the outermost pybs directory, and writing import pybs. At this point PyBS can also
be installed in two different ways in order to make it accessible from any Python instance:

Again, starting in the outermost pybs directory,

python setup . py i n s t a l l

will copy the PyBS files to where Python is installed, resulting in an installation similar to the automated
one described above. In particular, any changes to the downloaded source files after this will not affect
the installation.

Alternatively,

python setup . py develop

will also make PyBS importable from any instance of the interpreter (or Python script). However, Python
will always use the downloaded files, ensuring any modifications are included.

The tests are found in the directory pybs/pybs/tests. An overview of the majority of the functions
and methods can be built as Sphinx documentation by running the command

sphinx−bu i ld −b html source bu i ld

in the directory pybs/docs. This overview also reveals how the functions and classes are organized in
the library, this is left out from the more mathematically oriented presentation in chapter 4.

1PyBS depends on numpy, scipy and enum34.

https://pypi.python.org/pypi
https://github.com/henriksu/pybs
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1.5 The Structure of the Report
Chapter 2 covers the theory of unordered rooted trees and B-series in a bottom up fashion. It starts with
the trees before moving on to some linear spaces based on trees and collections of trees called forests.
This is followed by sections on numerical methods and B-series in their own right before the use of B-
series to investigate numerical methods is explored. The chapter is finalized by a section presenting some
numerical methods and their B-series.

Chapter 3 is a shorter chapter describing the tools and strategies used to implement B-series. This
includes choice of programming language, program structure and other non-mathematical sides of the
implementation.

Chapter 4 describes in detail how trees and B-series are represented and manipulated as well as how
this is used to investigate the properties of numerical methods.

Chapter 5 evaluates the result, compares it to the other implementations and discusses how the library
can be developed further.

1.6 Relation to Specialization Project
This masters thesis is a continuation of the authors specialization project [24] this fall. It covered much
of the matter concerning rooted trees in their own right, forests and linear combinations. B-series of RK
methods and finding the B-series of the modified vector field were also implemented. Some of the code
and the description in the report concerning these subjects are identical to the specialization project,
while other parts are heavily modified, such as the removal of the FrozenMultiset class in favor of
objects than can be marked as immutable (this also affected forests), and the correction of the fact that
the empty tree is actually the empty forest. Furthermore, nothing regarding the ordering of trees, free
trees, and coproduct and antipode was implemented before embarking on the master’s thesis. The same
is true for all the operations and checks on B-series except for the Lie derivative, the modified equation
and checking convergence order.

The sections that are taken completely or mainly from the specialization project are marked as such.
In addition are some of the paragraphs in 1.1 identical to the introduction to the specialization report.



Chapter 2

Theory

This chapter discusses the tools needed to analyze numerical methods using B-series. Very little of the
theory in this chapter is new. However, the bottom-up ordering of the subjects differs somewhat from
what is common in the literature, where trees and B-series are defined up front, usually in connection
with Runge-Kutta methods, and the rest is introduced as necessary. The bottom-up approach is more
appealing when working on implementing B-series. Underlying structure can be made use of to get cleaner
implementations with fewer edge cases.

The chapter starts by defining unlabeled, unordered rooted trees in 2.1. The section defines many
properties of trees, as well as describing the structure of the set of trees. Free trees are described in
subsection 2.1.4, and in subsection 2.1.6 it is pointed out that the real linear space with the set of trees
as Hamel basis is the free pre-Lie algebra in one generator.

Section 2.2 concerns the algebra of forests. The algebra can be extended to a Hopf algebra in two
different ways. The one introduced by Connes and Kreimer [10] is described in some detail.

Section 2.3 deals with numerical methods and flows. It describes some properties they can have,
including symmetry, being symplectic. Conjugacy and modified equations are also introduced.

Section 2.4 defines B-series and shows how they are related to flows. Here the connection between
characters and infinitesimal characters on one side and B-series on the other is introduced. It is shown how
many manipulations of B-series can be reduced to manipulation of characters and infinitesimal characters.

Section 2.5 describes the patterns left by desirable properties of numerical flows in the B-series co-
efficients. This includes order of convergence, pseudo-symplecticity, pseudo-energy preserving and being
conjugate to symplectic.

The last section, section 2.6 gives some examples of B-series methods and their B-series. The thesis
makes no new claims about particular methods. On the contrary, the methods are included since known
properties of these common methods have been used extensively to check for flaws in the implementation.

2.1 Trees

2.1.1 The Set of Unlabeled, Unordered, Rooted Trees
The unlabeled, unordered, rooted trees1 are at the center of this thesis. Their central role in the analysis
of certain numerical methods for the equation (1.1) is due to the fact that they stand in a one-to-one
correspondence with the elementary differentials. This is explained in section 2.4.

Although the highlight of this section will be to point out that the trees constitute a basis for the free
pre-Lie algebra in one generator, we will start with two more descriptive definitions.

The following definition of a multiset will be used throughout the thesis in connection with trees and
later forests.

1From this point on ‘tree’ is taken to be unlabeled, unordered rooted tree unless otherwise specified.

5
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Definition 1. A multiset A is a set in which each element is associated to a natural number, called its
multiplicity in A. The multiplicity of a non-member is 0.
Notation: In the following, sets are denoted {. . . }, multisets [. . . ], and n-tuples (. . . ).

An example of a multiset is the well known notion of a monomial. In a monomial the variables are
the elements and the exponents are the multiplicities. In fact, the forests introduced in section 2.2.1 are
monomials in trees.

The definition and notation for trees used in this thesis is

Definition 2. Let T denote the set of (unlabeled, unordered and rooted) trees. Then

• ∈ T , and

• if τ1, . . . , τm ∈ T , then τ = [τ1, . . . , τm] ∈ T is the tree obtained by connecting the roots of each of
τ1, . . . , τm onto a new root.

A definition along the lines of definition 2 can for example be found in [12, def. III.1.1]. This formu-
lation emphasizes the unordered and recursive nature of the trees.

When looping through the child trees of a root, it is customary to denote the total number of child
trees by m and the number of distinct child trees by k, thus k ≤ m. Furthermore, µi denoted the
multiplicity of τi in τ .

While many concepts are simpler when formulated as loops over m trees, they can often be made
computationally more efficient by looping over distinct trees and account for the multiplicities directly.

A second definition, based on [20, eq. 2.14], emphasises the graph nature of the trees:

Definition 3. A unlabeled, unordered and rooted tree is an (isomorphism class of) partially ordered
sets of vertices, U , with exactly one minimal vertex, and fulfilling

x, y, z ∈ U x < z, y < z ⇒ x < y or y < x. (2.1)

In graph theory the current trees are called arborescences [26] and are typically defined as a directed
graph whose underlying undirected graph is a tree in the graph theoretical sense of the word and with a
root from which all the other nodes can be reached while respecting the direction of the edges.

In the following the graph view will reappear only in connection with free trees. These are the trees,
in the graph theoretic sense, obtained by forgetting the direction of edges, or equivalently abandoning
the concept of a distinguished root vertex.

One important operation on trees is the Butcher product. It amounts to adding one tree to the
multiset of child trees of another tree’s root, or more formally

Definition 4. For two trees u, v ∈ T where u = [τ1, τ2, . . . , τm], τi ∈ T , the Butcher product is the tree
u ◦ v = [τ1, τ2, . . . , τm, v] ∈ T .

The Butcher product is neither commutative nor associative. The pair (u ◦ v, v ◦ u) plays a role in
the symplecticity conditions. The Butcher product is also used in the algorithm for the grafting product
defined in section 2.1.6.

2.1.2 Properties of Trees
The trees have several intrinsic properties, perhaps the most important of which is the order of a tree:

Definition 5. The order of a tree, τ ∈ T , is the number of vertices in τ .
It is calculated recursively as r(τ) = |τ | = 1 +∑m

i=1 |τi|, with r( ) = 1 as base case.

The order function partitions T into finite subsets, each consisting of trees of the same order. T n

denotes the set of all trees of order n. Consequently

T =
⋃
n∈N

T n. (2.2)
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Number of Trees of a Given Order

It is possible to calculate the number of trees of a given order, |T n|, without counting them. The formula

|T n| = a(n) =
n if n < 2

1
n−1

∑n−1
k=1 k · a(k) · s(n− 1, k) else

with s(n, k) =
n/k∑
j=1

a(n+ 1− j · k) (2.3)

is given in [22].

Cardinality of T

The partition of T in (2.2) is among other things useful for proving the following proposition.

Proposition 1. |T | = ℵ0

Proof. The proposition is proved by showing that |T | ≥ |N| and |T | ≤ |N| separately.

1. Since the T ns are pairwise disjoint and there is at least one tree of each order, for example the tall
tree (defined later), the cardinality of T is no less that the cardinality of N.

2. Since |T n| <∞, and the union of countably many countable sets is countable, T is countable.

Thus |T | = |N| = ℵ0.

Proposition 1 implies the existence of a bijection between T and N. Such a bijection is established
by the total ordering discussed in the next section. The ordering is sometimes useful, both in theory (to
define a representative for a free tree) and in the implementation on the computer.

Ordering

The following definition is taken from [16].

Definition 6. For u, v ∈ T , u < v if one of the following is true:

1. |u| < |v|.

2. |u| = |v| and the root of u has fewer children than that of v.

3. |u| = |v| and the roots of u and v have equally many children. After sorting the child trees in
ascending order according to this order relation, at the first position where the lists of child trees
differ, the child tree of u is less than the child tree of v.

This is a strict total order relation, that is given any u, v ∈ T such that u 6= v, one is considered
smaller than the other.

In addition to being a strict total ordering, the ordering in definition 6 is a well-ordering and every
element has a unique successor (this is in contrast to Q which is also 1-to-1 with the natural numbers).

Another definition of an ordering is given in definition 6 in [19]. It is based on the standard decompo-
sition of trees and repeated almost verbatim in definition 7.

Definition 7. We say that the standard decomposition dec(u) of a tree u of order ≥ 2 is the pair
dec(u) = (dec1(τ), dec2(τ)) ∈ T × T such that dec1(τ) ◦ dec2(τ) = τ and dec2(τ) is maximal.

Maximality is defined according to the following ordering:
Given u, v ∈ T we say that u < v if one of the following conditions is fulfilled:

1. |u| < |v|,

2. |u| = |v| and dec1(u) < dec1(v),
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3. |u| = |v|, dec1(u) = dec1(v), and dec2(u) < dec2(v).

Proposition 2. The ordering relations in definition 6 and 7 are not equivalent.

Proof by counterexample: Let

u = and v =

According to definition 6.2 u < v, while according to definition 7.2 v < u.
An exhaustive search shows that these are the smallest trees for which the two definitions differ.

In the following the ordering according to definition 6 is used unless otherwise specified.
The ordering can be used to define a bijection between T and N. Analogously it can define a bijection

between any subset A of T and the |A| first natural numbers.

Definition 8. The index of τ ∈ T is defined recursively as N(τ) = N(P (τ)) + 1 with base case N( ) = 1.
P (τ) denotes the immediate predecessor of τ in the ordering in definition 6.

The ability to sort finite subsets of T turns out to be useful when implementing trees on a computer.
In particular it enables the storing of coefficients in an array and performing linear algebra.

Other Properties

The following properties are used later in connection with B-series. The first two are both functions
T → N.

Definition 9. The symmetry coefficient of τ ∈ T , denoted σ(τ), is the number of ways in which child
trees can be permuted without changing the drawing of the tree. For example σ( ) = 2 and σ( ) = 3.
The symmetry coefficient can be calculated recursively as

σ(τ) =
k∏
j=1

σ(τj)µjµj! with σ( ) = 1. (2.4)

Definition 10. The density of a tree is defined recursively as

γ(τ) = |τ | ·
k∏
i=1

γ(τi)µi with γ( ) = 1. (2.5)

Note how the density is generally higher the taller the tree is (more levels of recursion).

Definition 11. The elementary differential corresponding to a tree, τ is a function from Rn to Rn

denoted F (τ). It is defined recursively as F (τ) = f (m)(F (τ1), . . . , F (τm)), with base case F ( ) = f .

2.1.3 Special Trees
For some purposes it is useful to group trees by their shape. This subsection describes three kinds of
trees that appear in connection with B-series.

A bushy tree is a tree where all the children of the root are leaves; that is trees of the form τ = [ n].
At the other extreme are the tall trees, where every vertex, except for the last one, has exactly one child.
There are exactly one tall and one bushy tree of any given order. Further more, by both definition 6 and
7, the tall tree is the smallest and the bushy tree the largest tree among the trees of a given order.

Another special kind of trees are the binary trees. They are the trees where each vertex has at most
two children. The binary trees are connected to quadratic right hand sides of (1.1). This is explored
further in section 2.4.7.
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2.1.4 Free Trees
the concept of free trees is used in the analysis of certain properties of numerical methods.

Some rooted trees of the same order are equivalent in the sense that they can be transformed into
each other by only changing which node is the root, for example and . This is the key to the use of
free trees in the analysis of B-series methods.

Definition 12. A free tree is an equivalence class of rooted trees which only differ by which node is
denoted root. The free tree corresponding to τ ∈ T is denote π(τ). The set of free trees is denoted FT
and, analogously to rooted trees, the set of free trees of order n is denoted FT n.

It is clear from the definition that the free tree π(τ) can be thought of as the undirected graph
corresponding to τ .

The definition introduces the function π : T n → FT n, taking a rooted tree to its corresponding
free tree. Since this is a many-to-one relation, there is no true inverse. However, by abuse of notation
π−1(t) = {τ ∈ T |π(τ) = t} is called the inverse of π.

Some of the tasks needed for free trees are to

1. Check if π(τ1) = π(τ2) for τ1, τ2 ∈ T .

2. Find all the trees in the set π−1(t).

The implemented systematic approach to the two tasks above is based on the approach in [3], and
depends on choosing a particular rooted tree as the representative of a free tree. The representative rooted
tree of a free tree t, is the tree in π−1(t) where none of the children at the root contain more than half of
the vertices in the tree. This leaves some ambiguity in the sense that some trees with even order can have
two different representations fulfilling the above. The tie is broken by choosing the rooted tree whose
largest child is larger according to definition 6. The clever thing about this choice of a representative is
that it allows question 1 above to be answered by repeatedly shifting the root towards the biggest child
tree in τ1 and τ2 and see if they have the same representative.

Free trees have one property that will be important to the analysis of B-series, namely superfluousness.

Definition 13. A free tree is said to be superfluous if it has one edge such that when that edge is
removed, two identical trees remain.
Trees without such an edge are called non-superfluous.

It is obvious that all superfluous free trees have an even number of vertices. One should also note that,
with the above definition of a rooted representative, the edge which must be removed in a superfluous
tree is the edge between the root in the representative and its largest child tree.

2.1.5 Generalizations
When considering differential equations of slightly different forms from (1.1), it is in some cases possible to
develop a theory of trees and series analogous to the current one. The two most important generalizations
are briefly described below.

If the components of y are of different qualitative nature, the most typical case being position and
momentum in mechanics, one might want to split the equation and use different numerical methods for
the different kinds of components. This results in trees where each node has a label, usually called its
’color’.

The other generalization is to let the elements of y range over some other manifold than Rn. Then
the order of derivation is no longer immaterial, which corresponds to ordered trees, that is trees that are
different if their child trees are listed in a different order.
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2.1.6 The Free Pre-Lie Algebra
The following is based mainly on [17]. Consider the real linear space with T as a Hamel basis, that is
the elements are finite linear combinations of trees. This space is denoted T . The trees of a given order
make up subspaces T n = span (T n) and

T = span(T ) =
⊕
n∈N

T n. (2.6)

On this space we introduce the grafting product. It is defined as a function T × T → T and extended
to T × T → T by bilinearity.

Definition 14. For τ1, τ2 ∈ T the grafting product τ1 y τ2 is the sum of all trees resulting from
grafting the root of τ1 to nodes of τ2, multiplicities included.

"Multiplicities included" refers to that y = 2 + , where the 2 is due to being grafted to both
the left and right branch of .

An important property of the grafting product between two trees is that when grafting τ1 onto τ2
all the trees in the result is of order |τ1| + |τ2|. As a consequence, when grafting two elements in T the
coefficient in front of a given tree only depends on the coefficients of trees of smaller orders in the original
elements. This observation is key when the need for grafting objects that are effectively infinite linear
combinations of trees arises later.

A linear space endowed with a bilinear product, such as (T ,y), is called an algebra. In this case the
algebra product is neither associative nor commutative. It does however satisfy the pre-Lie property

xy (y y z)− (xy y) y z = y y (xy z)− (y y x) y z ∀x, y, z ∈ T , (2.7)

which can be thought of as being "almost associative".
The importance of equation (2.7) is that it is the necessary and sufficient condition on the algebra

product for the antisymmetrization to be a Lie bracket. The antisymmetrization is also known as the
tree commutator.

Definition 15. The tree commutator is the bilinear and antisymmetric operation [·, ·] : T × T → T
calculated as [u, v] = uy v − v y u.

Note that the commutator would be zero for all arguments if and only if the grafting product was
commutative. That the tree commutator is a Lie bracket means that, besides being bilinear and anti-
symmetric, it satisfies the Jacobi identity.

It was shown in [8] that (T ,y) is the free pre-Lie algebra in one generator, namely . The important
thing from the last sentence to the current thesis is the fact that repeated grafting of onto itself generates
all the trees. With the above observation about how the order of the product depends on the order of
the factors, it is easy to convince oneself that an element of T with exactly the trees of order n can be
constructed by

y ( y (...( y )...)) (2.8)

with a total of n repetitions of .
That the above is a way of generating all rooted trees can also bee deduced from the fact that grafting

onto some tree corresponds to taking the time derivative of its elementary differential:

dF (τ)
dt = F ( y τ) (2.9)
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At this place it is worth mentioning that instead of going on to define forests and the Hopf algebra in
the next sections, B-series could be defined with what has been done up till this point. This would
entail the ad hoc introduction of the "empty tree", an inelegant lack of distinction between characters
and infinitesimal characters, as well as a more confusing definition of the B-series of the composition of
two methods.

2.2 Forests and the Symmetric Algebra
A mainstay of the remainder of this thesis will be the symmetric algebra on T , denoted H. The elements
of H are linear combinations of monomials of trees. The empty monomial is written 1 or ∅ and called
’the empty tree’ or ’the empty forest’.

The elements of H are added, subtracted and multiplied by scalars as vectors. In addition they can be
multiplied. The product, denoted µ, corresponds to multiplication of monomials and is thus commutative
and associative. ∅ is the identity of this product.

2.2.1 Forests
The monomials of trees mentioned above are called forests since they are collections of trees. Since
the multiplication is associative and commutative, forests are finite multisets of trees, just like trees
themselves.
Definition 16. A forest is a finite multiset whose elements are trees. The set of all forests of trees is
denoted F .

Definition 16 may seem very similar to the definition of trees. It is clear that every tree has a forest of
child trees and that every forest is the forest of child trees for some tree. It is however useful to distinguish
the two when dealing with H.

Contrary to what the bijection above might indicate, when a tree is interpreted as a forest, it is
interpreted as the forest containing only that tree. This simplifies the notation for elements in H to e.g.
3 +

√
2 2.

Definition 17. The order of a forest is the sum of the orders of its trees.
Note that the definition of the order of a forest results in the order being one less than the order of

the tree having that forest as its forest of child trees.

2.2.2 Co- and Hopf Algebra Structures
Hopf algebra structures on H are important for the manipulation of B-series. This subsection introduces
Hopf algebras through coalgebras and bialgebras. The current presentation is similar to that of appendix
B of [2]. A comprehensive treatment of these structures can be found in [25].

A coalgebra is a vector space endowed with a linear coproduct, ∆ : H → H ⊗H, and a linear counit,
ε : H → R. The coproduct must be coassociativity, namely that if two or more coproducts are performed
after each other, the result is independent of whether the second coproduct is done on the left or right
part of the first coproduct. That is

(Id⊗∆) ◦∆ = (∆⊗ Id) ◦∆. (2.10)

The counit must satisfy the following counital property

(Id⊗ ε) ◦∆ = Id = (ε⊗ Id) ◦∆. (2.11)

A bialgebra is a space with both an algebra product and a coalgebra structure where the algebra and
coalgebra structures interact in the following way:
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• ∆ ◦ µ = (µ⊗ µ) ◦ (Id⊗ τ ⊗ Id) ◦ (∆⊗∆) where τ denotes reversing the order of a pair.

• ∆ ◦ u = (u ⊗ u) where u is the algebra unit u : R → H, which in general must satisfy u(a)h =
ah ∀ a ∈ R, h ∈ H. In the present case u : a 7→ a · ∅.

• ε ◦ µ = µR ◦ (ε⊗ ε) where µR denotes multiplication of real numbers.

• ε ◦ u = Id.
A Hopf algebra is a bialgebra with an addition operation, an antipode. An antipode S must have the

property that µ ◦ (S ⊗ Id) ◦∆ = µ ◦ (Id,⊗S) ◦∆, that is taking the coproduct, then the antipode of one
of the sides in the result, before taking the product must be independent of which part of the coproduct
the antipode was applied to. In additionthe result must be only the empty forest part of the original
element in H.

The algebra above can be made a Hopf algebra through two different coproducts, one named after
Butcher, Connes and Kreimer (the ’BCK’ Hopf algebra), and one named after Calaque, Ebrahim-Fard
and Manchon (the ’CEM Hopf algebra’).

The importance of the above structures to this thesis is the convolution product, µ◦(a⊗b)◦∆, between
elements of the Hopf algebra’s dual space.

2.2.3 The Hopf Algebra of Butcher, Connes and Kreimer
The coproduct in HBCK is based on a concept called ordered subtrees of a tree. The subtrees of τ ∈ T
are all possible trees that can be made by removing child trees from τ . Both the empty tree and τ are
subtrees of τ . e.g. the subtrees of are , , , , and ∅.

The coproduct of τ , ∆BCK(τ), is the linear combination of tensor products with the forest of child
trees that were cut off on the left and the corresponding subtree on the right. The coefficients in the
linear combination account for the number of ways the subtree can be made. An example is

∆BCK( ) = ∅ ⊗ + 2 ⊗ + ⊗ + ⊗ + 2 ⊗ + ⊗ + ⊗ + ⊗ ∅. (2.12)

The Antipode

The antipode for one tree is given as
S(τ) = −τ −

∑
φ⊗θ∈∆̃BCK(τ)

S(φ) · θ (2.13)

where ∆̃BCK is the coproduct except τ ⊗ ∅ and ∅ ⊗ τ . For a forest t = [τ1, . . . , τm]
S(t) =

∏
1≤i≤m

S(τi). (2.14)

2.3 Numerical Methods
In this section the focus changes from trees to numerical methods before the connections between the
two are explored in section 2.4.

All of the following focuses on numerical methods for autonomous first order ordinary differential
equations, that is equations on the form

ẏ = f(y), y(0) = y0, y : R→ Rn, f : Rn → Rn. (2.15)
This section starts by introducing the concept of flows and numerical flows used to discuss one-step
methods. It will then introduce Hamiltonian equations and discuss possible properties of the exact and
approximate solutions in terms of flows.

The goal of section 2.4 is then to show how some flows can be expressed and manipulated as B-series,
and how the properties introduced in this section manifest themselves in these B-series.
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2.3.1 Flows
When comparing a numerical method to the exact solution of an ODE on some manifold M , it is useful
to consider both as maps R ×M → M . The map for the exact solution is usually denoted ϕt, and is
the map such that ϕt(y0) = y(t), the solution to equation (2.15) at time t given the initial condition
y(0) = y0. The appealing thing about the above formulation is that any one step method represent such
a map, typically denoted Φh. In this notation one step is performed as yn+1 = Φh(yn).

The map for the exact solution has the property of being a flow.

Definition 18. From [11]: A flow is a one parameter mapping ψt : M →M such that:

1. ψt ◦ ψs = ψt+s and ψ0(y0) = y0.

2. It is smooth as a mapping R×M →M .

The mapping corresponding to a numerical method is not a flow, but is called a numerical flow. In
particular, a numerical flow will not satisfy property 1 in the above definition. If it did the step size
would not matter.

The analysis of a particular one-step method can be thought of as the study of similarities and
differences between ϕh and that methods numerical flow, often denoted Φh. It is worth keeping in mind
that numerical flows are often derived from idealized versions of methods. In particular, rounding errors
are ignored and for implicit methods one assumes that the implicit equation is solved exactly.

Definition 19. Whenever it exists, the inverse of a method Φh is denoted Φ−1
h . It is defined to be

Φ−1
h (yn+1) = yn if yn+1 = Φh(yn).

In other words, the inverse answers the question: If I got to y by taking one-step with method Φh,
where did I start out?

Definition 20. The adjoint of a method Φh is denoted Φ∗h and is defined to be Φ∗h = Φ−1
−h.

One important property of the exact flow is symmetry or self-adjointness. Symmetric numerical
methods are associated with reversible differential equations. Many differential equations describing
mechanical systems have the property that reversing all velocity vectors of an initial condition results
in the same solution trajectory with the time reversed. A precise and general definition of reversible
equations is taken from [12]:

Definition 21. Let ρ ba an invertible linear transformation in the phase space of ẏ = f(y). This
differential equation and the vector field f(y) are called ρ-reversible if ρf(y) = −f(ρy) for all y.

A numerical method Φh is ρ-reversible if it is symmetric and ρ ◦ Φh = Φ−h ◦ ρ. It turns out that the
latter requirement is met by most methods, including all Runge-Kutta methods.

An interesting operation with numerical flows is to compose them, for two numerical methods Φh and
Ψh this corresponds to taking one step of the first one followed by one step of the other: (Φh2 ◦Ψh1)(y0) =
Φh2(Ψh1(y0)). This operation is associative and non-commutative. It is also worth noting that the step
length of the composed method (Φh2 ◦ Ψh1) is h1 + h2, making constructions like Φh

2
◦ Ψh

2
appropriate

when constructing new methods by composition.
Since the adjoint satisfies (Φ∗)∗ = Φ and (Φ ◦ Ψ)∗ = Ψ∗ ◦ Φ∗, a simple way of making a symmetric

method from a non-symmetric one is Φh
2
◦ Φ∗h

2
.

2.3.2 Hamiltonian Systems
A large and important class of ODEs on the form (2.15) are the Hamiltonian systems. Some of the
concepts and conditions in the following are only defined for Hamiltonian systems.



14 CHAPTER 2. THEORY

Hamiltonian systems were discovered as a particularly nice way of expressing the equations of motion
for certain mechanical problems. In order to understand it, recall that the state of a mechanical system
with n degrees of freedom is typically defined by specifying the position and speed for each of the degrees.
This leads to 2n initial conditions. The Lagrangian formulation of mechanical problems describe the de-
velopment through n second order differential equations, each needing two initial conditions. Hamiltonian
mechanics describe the same problems through 2n first order differential equations, each demanding one
initial condition.

Although Hamilton’s equations can be written on the form of equation (2.15), when derived from
mechanics the following canonical formulation is more common. Hamiltonian systems can also be defined
in a more general setting, described in for example part II of [1].

Let q be an n-vector of position coordinates, p be an n-vector of conjugate momenta and H(p, q) a
function called the Hamiltonian of the system. The Hamiltonian is a constant of motion (first integral)
often corresponding to the total energy2. The motions are described by the differential equations

ṗk = −∂H(p, q)
∂qk

, q̇k = ∂H(p, q)
∂pk

with 1 ≤ k ≤ n. (2.16)

In the notation of equation (2.15) the system in equation (2.16) can be written

ẏ = J−1∇H(y) (2.17)

where
y =

(
p
q

)
∈ R2n and J =

(
0 I
−I 0

)
∈ R2n×2n. (2.18)

From a mathematical point of view, a system is considered Hamiltonian if it can be written on the form
(2.17).

Symplecticity

As described in [12, Ch. VI.2], an important property of the flow of a Hamiltonian system is its symplec-
ticity. For one degree of freedom symplecticity corresponds to conservation of area. That is for B ⊂ R2

the exact flow of a Hamiltonian system has the property that the area of ϕt(B) is equal to the area of B.
For systems with more degrees of freedom, symplecticity corresponds to preservation of the sum of

oriented areas, one area per degree of freedom in a mechanical system. For two R2n-vectors x and y,
the sum of the areas of the two dimensional parallelograms spanned out by the vectors (xi, xn+i) and
(yi, yn+i) is calculated as:

ω(x, y) =
n∑
i

(xiyn+i − xn+iyi) = xTJy. (2.19)

The function ω : R2n × R2n → R is an example of a symplectic bilinear form. That is, it is bilinear,
alternating (ω(v, v) = 0 ∀ v) and nondegenerate (if ω(v, w) = 0 ∀ w then v = 0). If equation (2.15) was
on a more general manifold than R2n, symplecticity would be based on another symplectic bilinear form
than (2.19).

A linear mapping A ∈ R2n×2n is symplectic if

AJA = J ⇔ ω(Ax,Ay) = ω(x, y). (2.20)

A general differentiable mapping g : R2n → R2n is called symplectic if the linearization, the Jacobian g′,
is symplectic.

It is known that the flow, ϕt, of any Hamiltonian system with twice differentiable Hamiltonian function
is symplectic [12, Thm. VI.2.4]. Conversely, if the exact flow of a differential equation ẏ = f(y) is
symplectic, the equation is at locally Hamiltonian [12, (Thm. VI.2.6].

2If H depends on time, this is not necessarily true. This possibility is not considered in this thesis.
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The numerical flow of a method can also be symplectic. That implies, by the aforementioned theorem,
that it is locally the solution of some Hamiltonian system and thus conserves the Hamiltonian in question.
Since the numerical flow is an approximation of the exact flow, it is reasonable to consider the Hamiltonian
it conserves as a perturbation of the Hamiltonian of the exact flow.

Another approach is to search for methods conserving the original Hamiltonian without involving
symplecticity. These are called energy preserving methods.

2.3.3 Conjugacy
Some numercal methods are connected through an equivalence relation called conjugacy.

Definition 22. [12, p. 222]
Two numerical methods Φh and Ψh are mutually conjugate if there exists a method χh satisfying

χh = y +O(h) such that
Φh = χh ◦Ψh ◦ χ−1

h (2.21)

The importance of conjugacy is that since Φn
h = χh ◦ Ψn

h ◦ χ−1
h the long time behaviors of the two

methods are very similar. This again means that being conjugate to a method with a desirable property
is enough to almost have that same property in the long run.

Conjugacy is interesting with respect to all the different desirable properties discussed in this thesis:
order of convergence, symplecticity and energy conservation.

2.3.4 The Modified Equation
A useful approach when analyzing a numerical method is to ask the question:

Does it solve some differential equation exactly, and if so what?
Such an equation (or rather its right hand side in (2.15)) is called the modified equation. It is in

general a perturbation depending on h of the exact equation. We will see that for B-series methods the
modified equation can also be written as a B-series.

As one might expect, the modified equation is a useful tool for drawing conclusions about the qualities
of the numerical solution. For example, the modified equation of the exact flow is f , while the modified
equation of a method of order p is an O(hp) perturbation of f [12, Thm. IX.1.2].

Another result is that the O(hp) perturbation in the modified equation of the adjoint method is (−1)p
times the corresponding term in the modified equation of the method [12, Thm. IX.2.1]. This leads to
the fact that the modified equation of symmetric methods do not have perturbation terms of odd order
[12, Thm. IX.2.2]. Consequently, all symmetric methods are of an even order.

The two previous paragraphs are examples of the tendency for properties that have quite intricate
definitions for flows to have simpler definitions in the language of modified equations.

In a similar fashion as above, the modified equation of a symplectic method is again Hamiltonian
provided the differential equation in question is Hamiltonian [12, Thm. IX.3.1].

An idea similar to that of modified equations is to ask what right hand side should have been fed into a
particular method for the numerical solution to be the exact solution. This is called modifying integrators
[9]. It is an easy way of utilizing knowledge of the derivative of f to make an improved method from an
existing one. This approach is not pursued further in this thesis.

2.4 B-Series
This section discusses how the exact flow can be thought of as a series in trees, that is a B-series. We
will also see that whenever the flow of a particular numerical method can be written as a B-series, many
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interesting properties can be deduced from it. Many, but not all, numerical methods have a B-series
expansion. Those who do are called B-series methods.

We will then turn to the details of manipulating B-series and draw conclusions about the numerical
method they represent. An important part of this will be to realize that the set of B-series should be
split in two, corresponding to the characters and the infinitesimal characters of H.

The nature of B-series will be treated more thoroughly in 2.4.2. Until then, the following definition
is sufficient.

Definition 23. The series
Bhf (a, y) = a(∅)y +

∑
τ∈T

h|τ |

σ(τ)a(τ)F (τ)(y)

is called a B-series.

A B-series is called consistent if a(∅) = 1. This is not the same as saying that the numerical method
is consistent, since the latter amounts to being at least of order 1.

2.4.1 The B-Series Expansion of the Exact Solution
The following outlines how ϕt, the flow of the exact solution, can be expressed as a B-series. It is taken
almost verbatim from the authors specialization project, but is included for completeness.

The connection between equation (2.15) and trees is established by considering the Maclaurin series
of y(h). As pointed out in for example [12], the derivatives involved can be expressed in terms of f and
its derivatives, rather than y and its derivatives. The first derivative of y with respect to t is obviously

ẏ = f(y). (2.22)

The next two derivatives can be written

ÿ = dẏ
dt = f ′(y)ẏ = f ′(y)f(y) (2.23)

...
y = dÿ

dt = d
dt (f ′(y)f(y)) = f ′′(y) (f(y), f(y)) + f ′(y)f ′(y)f(y). (2.24)

Here f ′ is the Jacobian matrix and f ′′ is a bilinear map. In general the nth derivative of f is a n-linear
map. Even more insight is gained by writing equation (2.23) and (2.24) on component form. This is
done in the equations below, where superscript denotes component and subscripts partial derivatives with
respect to a y-component.

ÿk = dfk
dt =

∑
i

fki f
i

...
y k = dÿk

dt =
∑
i

(
d
dt
(
fki
)
f i + fki

d
dt
(
f i
))

=
∑
i

∑
j

(
fki,jf

j
)
f i + fki

∑
j

(
f ijf

j
) =

∑
i,j

fki,jf
jf i + fki f

i
jf

j

From the above it is easy to convince oneself that the interaction of the product rule and the chain
rule will cause an ever increasing number of terms of ever increasing complexity. To see the pattern more
clearly, it is useful to consider the fourth derivative:

y(4) = f ′′′ (f, f, f) + 3f ′′ (f ′f, f) + f ′f ′′ (f, f) + f ′f ′f ′f

First, one should note that the number 3 comes from the fact that the term following it is arrived at by
three different ways from the third derivative. Secondly, and more importantly, note that each term starts
with a derivative of f . The order of this derivative is always equal to the number of factors following,
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each of which corresponds to one of the terms in a previous derivative of y. This is exactly what leads to
the recursive structure of the trees.

It is also important to note that since the order in which partial derivatives are taken is irrelevant
(recall the assumption f ∈ C∞), the ordering of the arguments to a derivative of f is irrelevant. This is
the reason that unordered trees are appropriate representatives for these derivatives.

If Rn in (2.15) is exchanged for a more general manifold this may no longer be true, leading to ordered
trees. This path is not pursued further in this thesis.

As this suggests, the Maclaurin series can be expressed as a B-series. One obvious difference, that
h|τ | os divided by σ(τ) instead of |τ |! is a matter of convention. Since

σ(τ) = |τ |!
α(τ) · γ(τ) (2.25)

the difference is just a factor, which is absorbed by a(τ). The meaning of α(τ) is explained below.
The rule in this B-series is denoted e and happens to be

e(τ) = 1
γ(τ) . (2.26)

By comparing equation (2.26) to equation (2.25) one can see that α(τ) will be the actual factor in front
of F (τ) when the B-series is written out.

Special B-series

In addition to the B-series of the exact solution, at least two other B-series are worth mentioning here.
The first one if the B-series of the modified equation of the exact solution. It is denoted

δ (τ) =
1 if τ =

0 otherwise
. (2.27)

The other one is found for example in [20]. It is defined as

1(τ) = δ∅(τ) =
1 if τ = ∅

0 otherwise
, (2.28)

and is used in the logarithm in section 2.4.5.

2.4.2 B-Series as Characters
Considering definition 23 with the previous subsection in mind, it is clear that what distinguishes the
B-series of the exact solution from those of numerical methods are the coefficients a(τ). Since B-series are
in general infinite, the coefficients must be specified as a function a : T → R based on an algorithm that
calculates the coefficient for any particular tree. Thus, ignoring a(∅) and the less interesting parameters
h, f and y, the B-series stand in a one-to-one relationship with the dual space T ∗.

Regarding a(∅) only two values are of interest, namely 0 and 1. All B-series representing the flow of a
numerical method has a(∅) = 1, since a(∅) 6= 1 corresponds to non-consistent methods. All the B-series
with a(∅) = 0 represent right hand sides of the differential equation, such as modified equations and
modifying integrators.

It turns out that it is appropriate to extend the functions’ domain from T to F , thus considering
elements in the dual space of H instead of T ∗, see [17].

For B-series representing methods, that is a(∅) = 1, this is done by demanding that if t is the forest
containing the trees τ1, τ2, . . . , τm, then

a(t) =
m∏
i=1

a(τi). (2.29)
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For B-series representing vector fields, that is a(∅) = 0, the extension to forests is done by defining a
to be zero for all forest except those containing exactly one tree.

These definitions make the flow and right hand sides the characters and infinitesimal characters of H
respectively.

2.4.3 Composition
For B-series that represent numerical methods one can consider their composition, inverse and adjoint as
described in subsection 2.3.1. In all three cases the resulting is again a B-series.

Starting with composition, consider two B-series methods Φh(y) = Bhf (a, y) and Ψh(y) = Bhf (b, y)
and their composition Ψh ◦ Φh. The B-series of the composition is Bhf (b, Bhf (a, y)). To see this, pick
a y0 and let ỹ1 = Φh(y0). Then the result of the composite step is y1 = Ψh(ỹ1) and Bhf (b, Bhf (a, y)) is
found by substitution.

Theorem III.1.10 in [12] shows that the composite method is a B-series method, denoted Bhf (ab, y),
and how the value of the new rule ab at any given tree can be calculated from the value of a on certain
forests and the value of b on certain trees. Thus the product ab is consistent for a consistent a and any b.

The composition of a and b is actually a group operation on the characters of H. The resulting group
is called the Butcher group. The value of ab can be calculated as:

ab = µR ◦ (a⊗ b) ◦∆BCK, (2.30)

where µR is ordinary multiplication in R.
The coproduct in any Hopf algebra gives rise to such a group on its characters. The inverse of an

element in such a group is known to be
a−1 = a ◦ SBCK, (2.31)

where S is the antipode as described in 2.2.3. Since this is the inverse of composition of methods,
Bhf (a−1, y) is the B-series of the inverse of the numerical flow corresponding to Bhf (a, y) in the sense
described in definition 19.

Note that equation (2.31) depends on a being a character operating on forests in accordance with
equation (2.29).

Special Case

In the special case that b is

b(τ) =
1 if τ =

0 else
(2.32)

lemma 1.9 in [12, Ch. III] states that the composition can be calculated in a particularly simple way. In
this case ab(∅) = 0 and

ab(τ) =
k∏
j=1

a(τj)µj , τ = [τµ1
1 , . . . , τµk

k ].

2.4.4 Adjoint and Symmetry
At this point, the only new operation needed to obtain the B-series of the adjoint method is to reverse
the time step of a B-series. By inspecting definition 23, it is clear that all that is needed is to reverse the
sign of a(τ) whenever |τ | is odd.

Since the adjoint method is the inverse of the time-reversed method, this allows the construction of
the B-series of the adjoint method for any B-series method.

An important use of the adjoint method is to check for symmetry (self-adjointness). With the above
functionality in place, it is trivial to check for symmetry up to any finite order by the pattern outlined
in 2.5.
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2.4.5 Modified Equations and the Lie Derivative
Much of the content of this subsection was explored in the authors specialization project. However, the
text is rewritten to incorporate the concept of infinitesimal characters and the use of log and exp.

For a given B-series method with B-series Bhf (a, y), its modified equation is the differential equation

h ˙̃y = Bhf (b, ỹ) (2.33)

such that the exact solution of (2.33) at time h is given by the method in question. The h on the left
hand side of (2.33) corresponds to reducing the exponent of h in the terms by one (see definition 23).
This is necessary since it is supposed to be a perturbation of the exact equation, f . From the requirement
that the modified equation is a perturbation of the original differential equation, one can also establish
that b(∅) = 0 and b( ) = 1. Note that unlike the B-series of the method, the B-series of the modified
equation is of the type b(∅) = 0, or in the words of 2.4.2, b is an infinitesimal character of H.

The rule for the B-series of the modified equation can be derived from that of the flow of the method
in at least two different ways:

1. Through the Lie derivative.

2. By a construction similar to the Taylor series of log(x) at x = 1.

The rest of this subsection is devoted to explaining the two methods.

The Lie Derivative

Given two vector fields b and c on Rn it is possible to take the derivative of c with respect to b. That is,
the directional derivative of c in the direction of b at every point. The result is again a vector field and
is called the Lie Derivative of c with respect to b.

Given a B-series rule b such that b(∅) = 0 and an arbitrary c, lemma IX.9.1 in [12] gives the equation

∂bc(τ) =
0 if τ = ∅∑

θ∈SP (τ) c(θ) · b(τ \ θ) else
(2.34)

for the Lie derivative. The set SP (τ) is called the splittings of τ . They are defined to be all the trees
found as what remains of τ after one child tree has been cut off. τ \ θ denotes the child tree which has
to be cut off to get θ.

Note that if b act on forests as an infinitesimal character 2.4.2, the summation can be taken over the
coproduct since SP (τ) corresponds to exactly those terms of ∆BCK(τ) where the left element consists of
a forest with one tree. That is ∑

θ∈SP (τ)
c(θ) · b(τ \ θ) =

∑
φ⊗θ∈∆BCK(τ)

c(θ) · b(φ). (2.35)

The Modified Equation by Lie Derivative

As Lemma IX.9.2 in [12] gives the formula for the B-series rule b for the modified equation given a B-series
with rule a, where a satisfies a(∅) = 1 and a( ) = 1. As pointed out above b(∅) = 0 and b( ) = 1. For the
remaining trees

b(τ) = a(τ)−
|τ |∑
j=2

1
j!∂

j−1
b b(τ), (2.36)

where ∂kb denotes k repeated Lie derivations.
At first glance equation (2.36) seems self referring. However, it does allow b(τ) to be calculated

recursively.
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Modified Equation by Logarithm

The definition of the logarithm of a B-series rule is modeled on the logarithm of a real number. The
Taylor expansion at x = 1 of the logarithm of a real number is

log(x) =
∞∑
n=1

(−1)n+1 (x− 1)n
n

(2.37)

The logarithm of an element a ∈ H∗ s.t. a(∅) = 1 is defined in [21] to be

log(a) =
∞∑
n=1

(−1)n+1 (a− 1)∗n
n

and log(a)(∅) = 0, (2.38)

where 1 = δ∅ denotes the identity element of the composition product, and (·)∗n denotes composition n
times.

The sum in equation (2.38) turns out to be finite with |τ | terms when evaluated on a concrete tree
τ . This makes the definition suitable for actual calculations. It is well known, e.g. according to [9], that
the logarithm of the rule of the B-series of a numerical method, is the rule of the modified equation.

Numerical Flow from a Modified Equation by Exponentiation

Just like the logarithm is defined by extending the definition of the Taylor series, the exponential function
can be defined in an analogous manner by mimicking

ex =
∞∑
n=0

xn

n! . (2.39)

According to [21], for any α ∈ H∗ with α(∅) = 0 the exponential is defined as

exp(α) =
∞∑
n=0

α∗n

n! and exp(α)(∅) = 1. (2.40)

This is the inverse of the logarithm and provides a way of finding the B-series of a numerical method from
the B-series of its modified equation. It is worth noting that the exponential and logarithm are defined
for any elements of the dual space satisfying the requirements on the value at ∅, not just the characters
and infinitesimal characters. However, the logarithm of a character is an infinitesimal character, and the
exponential of an infinitesimal character is a character.

2.4.6 Conjugacy
In section 2.3.3 the conjugate of a method Φh = B(a, y) with respect to some other given method
χh = B(c, y) such that χ(∅) = 1 is defined to be

Ψh = χh ◦ Φh ◦ χ−1
h (2.41)

Since it has been shown how B-series can be composed and inverted, it is in principle possible to find
the rule for the conjugate in this way. However, the conjugate of a with respect to c can also be computed
by a series of commutators. This is in principle the same commutator as for T . However, two problems
arises:

1. a and c must be corrected by σ since σ is factored out in definition 23.

2. B-series are infinite, so the coefficients of the resulting series must be computed in some systematic
way on demand.
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The conjugate of a with respect to c is computed in a way resembling the Taylor expansion

∞∑
n=0

(−1)nx
n

n! , (2.42)

but with "raising to the power n" replaced by n nestings of [c, ·]. Thus

conj(a, c) = a− [c, a] + 1
2[c, [c, a]] + 1

6[c, [c, [c, a]]]− . . . (2.43)

As above, this does not seem to give a finite algorithm, but it turns out that for trees of order m all
terms with more than m nested commutators evaluates to 0.

Note that this approach depends on an a priori known χ, which is rarely the case. In most cases were
conjugacy appears, the question is if Φ is conjugate to a method with some desirable property. Under
such circumstances neither χ or Ψ are known nor sought. This calls for quite different approaches, one
of which is discussed in section 2.5.4.

2.4.7 Simplifications from Additional Knowledge About the Right Hand
Side

Up to this point the only assumption on f , the right hand side of equation (2.15), has been sufficient
differentiability. However, certain properties of f results in B-series with additional properties. This can
reduce the complexity of calculations with B-series, and, more importantly, result in certain methods
having better properties than when they are applied to general problems.

The author is aware of two such properties, problems in only one dimension and quadratic right hand
side. The former will not be discussed further in this thesis.

A right hand side is said to be quadratic when f is on the form

f(y) = Q(y) +By + c, (2.44)

where c is a vector, B a square matrix and Q a quadratic form. The ith component of a quadratic form
Q is on the form Qi(y) = yTAiy where Ai is a symmetric matrix.

For quadratic vector fields all elementary differentials corresponding to non-binary trees disappear.
This means that both the B-series of the flow and the B-series of the modified equation contain terms
with a proper subset of T . However, this is a result of the elementary differentials being zero due to the
particular ODE under consideration, and not due to the B-series rule, which is derived form the method
(The method may apply to more general ODEs). A consequence is that the property must be taken
explicitly into account during the transition to modified equation.

2.5 Checking Properties
While the last section focused on manipulating B-series, this section concerns investigating the proper-
ties of numerical methods through their B-series. The properties of interest are order of convergence,
symplecticity and energy preservation as well as being conjugate to these. As already mentioned, many
properties can be investigated more conveniently by considering the modified equation instead of the flow.

While demonstrating that a method is sympletic or energy preserving can be done in the language of
B-series, the proofs depends on novel arguments involving an understanding of the B-series rule and no
attempt has been made to automate it. However, properties can hold and be verified up to a finite order,
and this can be done with a finite effort. The approach to checking properties will be to do tests on trees
of increasing order until the test fails or a predetermined maximal order is reached.
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2.5.1 Order of Convergence
The most basic property of a numerical method is its order of convergence. It is also the simplest property
to check. At the end of this subsection we will argue that the investigation of other properties can benefit
significantly from knowing the order of convergence.

Definition 24. [12, p. II.1.2] A numerical method Φh has order p if p is the largest integer such that

y(h)− Φh(y(0)) = O(hp+1) as h→ 0. (2.45)

The term y(h)−Φh(y(0)) is called the local error. The global error is y(nh)−φnh(y(0)). For a numerical
one-step method of order p the global error is O(hp) for nh = const.

The above implies that for a numerical one-step method of order p, a halving of the step size will
result in the global error shrinking by a factor of approximately 2p.

The following theorem reveals how the order of a method manifests itself in its B-series and the
B-series of the modified equation.

Proposition 3. Given a B-setiies method of order p with B-series Bhf (a, y) and modified equation hỹ =
B(b, ỹ), then p is the larges integer such that

a(τ) = e(τ) ∀ τ ∈ {τ ∈ T : |τ | ≤ p}. (2.46)

p is also the largest integer such that

b(τ) = 0 ∀ τ ∈ {τ ∈ T : 1 < |τ | ≤ p}. (2.47)

The first part of the preceding theorem is a well known fact about B-series, a proof can be found in
[12, Ch. III.1]. The second part is a consequence of the fact that the modified equation of a p-th order
method is O(hp+1) close to f and can for example be found in [9, Ch. 4.2].

A useful consequence of equation (2.46) is that it is often sufficient to check favorable properties for
trees of higher order than the methods order of convergence. This follows directly from the fact that the
B-series is identical to the exact solution up to its order of convergence, and thus all properties of the
exact solution holds for these coefficients. Since comparing the coefficients of a B-series to the B-series
of the exact solution is simpler than the other tests that follows, this leads to a useful simplification of
the test and an increase in computation speed.

2.5.2 Symplecticity
Most of the following theorem is from [12, Thm. VI.7.6]. The statement about the modified equation can
be found in [12, Thm. IX.9.3].

Proposition 4. Consider a B-series method Φh(y) = Bhf (a, y)for equation (2.15). The following state-
ments are equivalent:

• the coefficients a(τ)satisfies

a(u ◦ v) + a(v ◦ u) = a(u) · a(v) ∀ u, v ∈ T. (2.48)

• the coefficients b(τ) of the B-series of the modified equation satisfies

b(u ◦ v) + b(v ◦ u) = 0 ∀ u, v ∈ T. (2.49)

• quadratic first integrals of the form Q(y) = yTCy, where C is symmetric, are exactly conserved.

• The method is symplectic if the differential equation is Hamiltonian.
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Since equation (2.48) and (2.49) amounts countably infinitely many conditions, they cannot be check
exhaustively. This is however not necessary in many cases, since they often do not hold for all τ ∈ T .
This results in a new concept, namely pseudo-symplecticness.

The following theorem is a result of [12, Thm. IX.7.6] and [12, Thm. I.9.3].

Proposition 5. A B-series method is of pseudo-symplectic order q iff q is the larges integer such that

a(u ◦ v) + a(v ◦ u) = a(u) · a(v) ∀ u, v ∈ T s.t. |u|+ |v| ≤ q (2.50)

holds. For modified equations the equivalent condition is

a(u ◦ v) + a(v ◦ u) = 0 ∀ u, v ∈ T s.t. |u|+ |v| ≤ q. (2.51)

From the above it is clear that one can think of a symplectic method as a method of pseudo-symplectic
order ∞. Theorem 5 suggests an algorithm for finding the pseudo-symplectic order of an arbitrary B-
series method by checking (2.50) or (2.51) for all pairs such that |u|+ |v| = n before moving to the next
larger integer. Implementations along these lines are described in 4.9.3.

2.5.3 Properties as Subspaces
The article [5] describes how the modified equations of symplectic and energy preserving B-series methods
form linear subspaces of the B-series. It also describes how a basis for each of these spaces can be formed
such that each basis vector is a linear combination of trees of the same order.

The subspace of T n in which the nth order part of any energy preserving B-series lies is denoted T nH .
Analogously T nΩ is the subspace of T n in which the nth order part of any Hamiltonian B-series lies.

The above allows for an algorithm where looping over u, v-pairs described above is replaced by deter-
mining whether or not the vector of all coefficients of trees of a given order can be expressed as a linear
combination of certain other vectors. Obviously, if this can be done for all trees of order less than or
equal n in a given B-series, the B-series has the property up to and including order n.

Note that this approach with linear subspaces is only possible in the domain of modified equations,
not the B-series of methods directly. Also worth mentioning is that in [5] the factor in front of trees is
taken to be the B-series rule divided by σ(τ) when checking for membership of T nH or T nΩ . For practical
reasons the following presentation accounts for the symmetry when setting up the vectors, making the
comparison with a given B-series rule simpler. In case of Hamiltonian B-series this results in σ not
appearing at all, while in the case of energy preserving B-series the result is that σ appears although it
does not appear in equation (4) of [5].

The Hamiltonian Property as a Subspace

Theorem 1 in [5] states that a basis for T nΩ can be indexed by the non-superfluous free trees of order n and
each basis vector is a linear combination of the rooted trees corresponding to the same free tree. The basis
vector corresponding to a free tree is a linear combination of all its rooted representative. The coefficients
are determined by choosing one of the rooted trees and set its coefficient in the linear combination to 1.
The coefficients for the other rooted trees are −1 for trees whose root is an odd number of edges away
from the root of the chosen representative, and 1 for trees whose root is an even number of edges away
from the root of the chosen representative.

Energy Preservation as a Subspace

Theorem 3 in [5] describes how to construct a basis for T nH .
Some trees are basis vectors by them self. Thus no particular investigation of their coefficients in

B-series is necessary. These are trees such that the free tree resulting from grafting it onto a new node,
π(τ y ), is superfluous.
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Another group of trees are trees that does not appear in the B-series of the modified equation of any
energy preserving method. These are the trees such that π(τ y ) is symmetric and non-superfluous.

The reminding trees in T n are part of basis vectors with two trees. Theorem 2 in [5] describes these
pairs. Given a tree, τ1, there is some freedom to choose another tree with witch a basis vector for T nH can
be made. In particular, the other tree, τ2, must satisfy π(τ1 y ) = π(τ2 y ). The basis vector is then
σ(τ1)τ1 ± σ(τ2)τ2 where the sign is determined by the number of edges between the root of τ1 y and
that of τ2 y . If this number is even, the sign is negative, if it is odd, the sign is positive.

In order to bring forth a complete basis of T nH one can collect all the trees τ mapping to the same free
tree π(τ y ). Then an arbitrary of these nth order trees is picked and pair with each of the other trees
to form basis vectors for T nH as described above.

2.5.4 Conjugate to Symplectic
As mentioned in section 2.4.6, problems concerning conjugacy are often regarding whether or not a given
method is conjugate to another one with a desirable property, without seeking to construct the other one.
The paper [13, chapter 3] describes conditions for a method of order p to be conjugate to a symplectic
method up to order 2p. The approach is to derive a number of conditions on the change of variables
series, denoted χh in section 2.4.6, and check whether or not they can be satisfied simultaneously.

The conditions uses a subset of the splittings of a tree, SP (τ), namely those resulting from removing
one leaf. This subset is denoted SP∗(τ).

In addition, for any B-series rule, a, the notation a(u, v) with u, v ∈ T is taken to mean a(u◦v)+a(v◦u).
Note that the function is symmetric in the sense that the order of the two arguments is irrelevant.

Theorem 3.6 in [13] states that necessary and sufficient conditions for a method of order p, whose
modified equation has B-series rule α, to be conjugate to symplectic up to order p+ r ≤ 2p, is that there
exists a symmetric function c on two trees satisfying

α(u, v) = −
∑
v̂

c(u, v̂)−
∑
û

c(û, v) (2.52)

for all unordered tree pairs u, v such that p < |u|+ |v| ≤ p+ r. Furthermore, if the method is symmetric,
the conditions are always satisfied for even |u|+ |v|.

The function c is connected to a change of variables series, but that is irrelevant to the use of the
theorem.

If it is known that the conditions are satisfied for r−1, the new conditions that have to be checked for
r are unordered pairs such that |u|+ |v| = p + r. In this case equation (2.52) turns into a linear system
of equations for the values of c(u, v) for all pairs such that |u|+ |v| = p+ r − 1.

2.6 Some B-series Methods
This section describes some well known B-series methods. They are included since they have been used
to verify the correctness of the implementation.

2.6.1 Runge-Kutta Methods
The following is mainly from the authors specialization project.

RK methods can be thought of as an attempt to improve on the explicit Euler method by approxi-
mating the average of f by a weighted average of s approximations, ki (i = 1, 2, . . . , s), at different points
in the interval [tk, tk+1]. The approximations, called the stages, are computed as

ki = f(yk + h
s∑
j=1

aijkj), (2.53)
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and the final approximation as
yk+1 = yk + h

s∑
i=1

biki. (2.54)

The coefficients aij and bi are typically written

c A
bT

where A is the s-by-s matrix of aij coefficients, b is the vector of bi coefficients, and c is a vector such
that ci = ∑s

j=1 aij represents the point in the interval [tk, tk+1] where stage i is evaluated. c does not play
any role for autonomous equations.

[20, Thm 2.5], attributed to Butcher, states that given any finite number of B-series coefficients, an
RK method can be constructed so that its B-series has the prescribed coefficients.

Since every RK method is a B-series method (proof: For any RK method the corresponding B-series
can be constructed by the method below), the above makes the RK methods dense in the B-series under
some suitable metric, for example d(a, b) = 1

n
where a and b are B-series (characters) and n is the largest

integer such that a and b are equal for all trees of order less than n.
Considering the above, it is not surprising that many B-series methods are RK methods. Given a

Butcher tableau, the B-series rule of an RK method can be calculated as follows [12]:
The rule in the B-series corresponding to one step of a given RK method, µ, is typically denoted φµ

and its values are called elementary weights. The derivation of φµ is most elegantly done by applying
the composition rule in section 2.4.3 to (2.53) and (2.54). Here we will make do with citing the formulas
used in the implementation.

In the following A and b are the coefficient matrix and weight vector respectively of the RK method
µ. Following the notation in [12] g and u are vector functions on trees (also depending on µ). The ∏-sign
denotes Hadamard products.

φµ(τ) =
∑
i

bigi(τ) = bTg(τ) (2.55)

g(τ) =
m∏
i=1

u(τi) (2.56)

u(τ) = Ag(τ) (2.57)

2.6.2 Kahan’s Method
Kahan’s method is a numerical method whose properties depend on f being quadratic [7]. When applied
to a quadratic problem it is an RK method with B-series rule

a(τ) = 1
2|τ |−1σ(τ) (2.58)

for tall trees and 0 otherwise.
When applied to quadratic problems it is a second order method, conjugate to a symplectic method

up to order 4 [7, prop 2].

2.6.3 The Average Vector Field Method
The Average Vector Field Method (’AVF method’) is an example of a B-series method that is not an RK
method. It is defined as

yn+1 − yn
h

=
∫ 1

0
f ((1− ξ)yn + ξyn+1) dξ. (2.59)
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For a tree τ = [τ1, τ2, . . . , τm] its B-series is given by

a(τ) = 1
m+ 1Πm

i=1a(τi). (2.60)

The above formulas as well as the following facts can be found in [6]. The AVF method is energy
preserving, symmetric and of order 2. It is conjugate to symplectic up to order 4.



Chapter 3

Method

This chapter describes some of the non-mathematical sides of the implementation.

3.1 Programming Language

The implementation is written in the programing language Python. This is a high level language, that is it
allows a fair amount of abstraction at the cost of slightly longer running times than lower level languages
such as C or Fortran. This trade-off is well suited for the task at hand, where implementing a large
number of different functionality is more important than optimizing the running time. This assertion is
based on the assumption that the alternative to doing it on the computer is to perform the calculations
with pen and paper. It is obviously better to have a computer implementation of one more thing than to
halve the running time of something that is already implemented. Another important reason for choosing
Python is the current authors knowledge of and experience with the language, saving the time needed to
acquaint oneself with a new language.

Other alternatives included Maple, Mathematica and Sage. Attempts to use Sage were undertaken
both during the project in the fall and during the work on this master’s thesis. Sage is an open-source
computer algebra system which aims to become an alternative to the commercial software packages widely
used for mathematical computations today. Sage organizes mathematics with the help of categories (in the
mathematical sense of the word). This has the advantage of a mathematically very correct representation
of elements and relations between different concepts, as well as standardization. Sage also has a Notebook
for web browsers which can print objects in a way more similar to ordinary mathematical notation.

The potential advantages of implementing trees and B-series in Sage are obvious from the above.
The attempts to gain sufficient proficiency with Sage stranded on the current authors lack of knowledge
of category theory, as well as the fact that no one with a deep knowledge of Sage could be found at
NTNU. Another potential disadvantage with Sage is that the advantages are only available as long as
things are done the way they are meant to. An example of this being a potential problem was the task of
representing forests as monomials of trees. It turned out that, to the best of out knowledge, monomials in
Sage are either in a finite a-priori give set of variables, or at the most in variables automatically indexed
by the natural numbers (x1, x2, x3, . . . ). This would leave the choice between writing a fully fledged
implementation of monomials in arbitrary variables or to make some lash-up that does not really fit in
with the rest of Sage.

In the end, the lack of support from an experienced Sage programmer as well as the fear to run
into other concepts that would have to be programmed very carefully to comply with Sage’s category
theoretical framework, Sage was abandoned.

27
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3.2 Programming Strategy
Trees and B-series were unknown to the author before embarking on the project. New knowledge has
been implemented continuously, and the correctness, of both understanding and implementation, has
been tested by automated tests.

This approach allowed a stepwise refinement of the implementation. The use of tests is crucial to
that end, as tests provide some assurance that the implementation is correct by comparing it to well
known or hand calculated results when it is first written. However, a just as important result of this is
the accumulation of a large number of tests that can be run in seconds at the click of a button. Frequent
testing allows unintended side-effects of new code to be noticed and corrected early. The existence of
tests covering most aspects of the code also allows changes to old code without tracing all consequences
manually.

3.3 Focus of the Implementation
The implementation is based on taking a function, supplied by the user, that calculates the coefficient
for any given tree. The properties of the B-series implied by that function is then investigated. Although
there is a way of producing the B-series rule for an arbitrary Butcher tableau, the Butcher tableau is
never used explicitly to investigate the properties of a method. This was omitted, even though certain
properties can be showed to hold exactly by performing a finite number of checks on the Butcher tableau,
in order to focus on B-series.

Analogously no attempt was made to allow the user to tell the implementation that a method has a
certain property, e.g. symplecticity, and exploit this knowledge when checking other properties, or track
it through composition (e.g. the composition of two symplectic methods is again symplectic).

Another thing that was omitted was to allow methods to contain free parameters and calculate condi-
tions they must satisfy in order to achieve a certain order, a certain pseudo-symplectic order or something
else. This limits the scope of the package to investigating already known methods, not searching for new
promising ones.

3.4 Odds and Ends of the Implementaiton

3.4.1 Exact Arithmetic
Most of the implementation is based on exact arithmetic. With some methods being highly recursive,
they might introduce significant rounding errors if floating point numbers were used, or at least make
it non-trivial to choose a cut off. On the other hand side, it might pose a problem for methods whose
B-series coefficients are irrational.

3.4.2 Memoization
From chapter 2 it is clear that many functions are defined recursively on the unordered rooted trees.
Recursive algorithms are often elegant, intuitive and easier to implement that the alternatives. However,
they are known for causing significant overhead, in terms of both memory and computation, compared
to iterative algorithms for the same problem1. Another issue with recursive algorithms is that the same
sub problem might appear many times over.

A solution, which does not really affect the apparent structure of the calculations, is to evaluate a
function only the first time it is called with a particular set of arguments, and store the result along with
the argument. The next time the function is called with equal arguments, it is not evaluated, but instead

1Many, but not all problems that can be solved recursively can also be solved iteratively.
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the stored result is returned. This is called memoization. Of course the expected or average reduction in
computational effort hinges upon the number of times the same problem appears.

Considering that the number of trees of a given order grows exponentially, and that every tree is a
forests of smaller trees, it is clear that memoization is very well suited for formulas that depend recursively
on a tree’s child trees.

3.4.3 Other Libraries
Some tasks are generic and common, and for some of these existing solutions have been used. Some
calculations are done by calls numpy and scipy [14], in particular the few linear algebra calculations that
are done.

Memoization is realized with a Python construct called a decorator. Decorators is a convenient
way of altering the behavior of a function in a specific way. The memoization decorator used in the
implementation is taken from https://wiki.python.org/moin/PythonDecoratorLibrary#Memoize.

For drawing trees graphically, the packages Planarforest [18] and tikz2svg2 were used.

2Found at https://gist.github.com/jbenet/9449155.

https://wiki.python.org/moin/PythonDecoratorLibrary#Memoize
https://gist.github.com/jbenet/9449155
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Chapter 4

Implementation

This chapter describes the main result of the thesis work, the implementation of the mathematical
structures introduced in chapter 2. The focus of this presentation is on how the mathematical objects are
realized, how they interact and which algorithms are used for the calculations. Details on the syntax is
deferred to the overview described in section 1.4.2. The tests also provide many examples of actual use.

Any implementation of B-series depends on a sound implementation of trees that are unordered,
rooted and unlabeled. Although various tree structures are abundant in computer science, unordered
trees are not. This calls for the construction of a data structure carefully designed to facilitate the
various calculations needed in a reasonably efficient way. Since the cardinality of T n grows rapidly with
n, memory efficiency is also a potential issue. Everything related to trees, including free trees and how
to loop over all trees, is treated in section 4.1.

Section 4.2 deals with algebraic structures on trees, in particular everything connected to T , F and
the Hopf algebra. This is the section with the largest deviations from theory. Only what’s needed for
analyzing B-series is implemented.

Section 4.3 deals with the manipulation of characters and infinitesimal characters of H, and section
4.9 describes how properties of B-series are investigated.

Thus the structure of this chapter is similar to that of chapter 2.

4.1 Trees
There are several ways of representing trees. The most important consideration when implementing
unordered rooted trees on a computer is how the unorderedness of the children is handled. An important
requirement in that respect is a reasonable algorithm for deciding whether or not two trees are equal.

The implementation of trees is motivated by definition 2. It utilizes the implementation of multisets
described next.

4.1.1 Multisets
Concepts similar to mathematical multisets are known and used in computer science, often called “bags”
or “multisets”. However, the current author has not found implementations in Python of the mathematical
concept of multisets. Admittedly Python has a built-in class named collections.Counter with behavior
similar to a multiset. It is however not suitable to represent a mathematical multiset as it allows negative
and non-integer multiplicities and does not offer typical multiset operations.

Instead of using a Counter, a multiset-class was created. It is based around a Pyhton dict-object1.
The elements in the multiset are stored as keys and the multiplicities as the accompanying values. An
advantage of using a hash table is that, from a users point of view, the elements are unordered. Another
advantage is that equality of multisets is reduced to the built-in equality tests for dictionaries.

1dict is the built-in hash table in Python.
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A technical point is that since trees are nested multisets, the multiset objects must be valid dictionary
keys. That is being immutable, supporting hashing and comparing for equality (the == operator). The
problem in this respect is that Python’s dictionaries are mutable and consequently does not have a hash-
function. On the other hand mutable multisets are necessary, or at least useful, when constructing new
multisets from old ones.

An obvious solution is to make two multiset classes, one mutable and one immutable, and cast
explicitly back and forth. The implemented solution, picked up from the cloning protocol in [23], is
to make a class with a boolean variable to indicate whether an object is mutable or not. This allows
initiating a mutable object, manipulate it and then mark it as immutable.

There are more operations that can be performed on multisets than on ordinary sets. Only those
needed for the manipulation of trees are described here, the rest are described in the documentation
(described in section 1.4.2). The functionality needed from multisets by PyBS is quite limited. The most
used operations are:

Initiate A new multiset can be made from an old one (copying), another mapping2, or a list or tuple of
elements.

Add an element If m is a multiset and elem some element m[elem] +=1 and m[elem] = a increases
the multiplicity and sets it to a respectively. This works independently of whether elem is already
in the multiset. This is the operation that underlies the Butcher product.

Remove a tree m[elem] -=1 and del m[elem] respectively decreases the multiplicity by one and re-
moves an element. In the first case, if the multiplicity reaches 0, the element is removed from the
multiset altogether.

Iteration A multiset, m, can be iterated over in three different ways:

1. m.iterkeys() will iterate over the distinct elements of m.
2. m.iteritems() will iterate over element-multiplicity-pairs.
3. m.elements() will iterate over the elements, each repeated according to its multiplicity.

The two first are well known from Python’s dictionaries, the third is based on the second.

Multiset sum of two multisets A and B is the multiset where the multiplicity of each element is the sum
of its multiplicities in A and B. It is calculated by looping through the elements of B and increasing
the corresponding multiplicities in A accordingly. This corresponds to the product between forests.

The hash function is not used explicitly, but is used when a multiset is stored in another multiset or
dictionary. The hash value of a ClonableMultiset is calculated as
r e s u l t = 0
for pa i r in s e l f ._ms. i t e r i t em s ( ) :

r e s u l t ^= hash ( pa i r )
return r e s u l t
The variable pair will be a tuple containing an element and its multiplicity. Note how the hashes of
these pairs are combined into the hash of the multiset as a whole by xor-ing them (the =̂-symbol). The
choice of operator is somewhat arbitrary, but it must be commutative and associative to ensure that
equal multisets have the same hash, independent of the ordering produced by iteritems().

Any good hash function returns values evenly distributed in the range and such that similar objects
have wildly different hashes. The above algorithm meets this standard, assuming that the built-in hash
function for tuples meets it.

2Python’s collections.Mapping
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4.1.2 Rooted Trees
With an implementation of multisets in place, the implementation of the unordered rooted trees is
straight forward. The class UnorderedTree inherits from ClonableMultiset and adds some new meth-
ods. Among the added features are initiating from and printing a string representation of a tree, and
code to produce graph representations of trees.

An important method on UnorderedTree-objects is the Butcher product, u.butcher_product(v),
which returns a new tree object corresponding to u ◦ v. Furthermore, the ordering in definition 6 is
implemented as the ordinary comparison operators < and >.

The basic properties of trees defined in section 2.1.2 are also implemented. The implementations
follow the definitions, but exploits multiplicities wherever possible. In the following brief descriptions
t = τ is an UnorderedTree, k is the number of different child trees of t, and µ denotes multiplicities:

Order is calculated as |τ | = 1 +∑k
i=1 µi|τi| by the method t.order().

Density is calculated as γ(τ) = |τ | ·∏k
i=1 γ(τi)µi by the method t.density().

Symmetry is calculated as σ(τ) = ∏k
i=1 σ(τi)µiµi!by the method t.symmetry().

Alpha is calculated as α(τ) = |τ |!
γ(τ)·σ(τ) by the method t.alpha().

Elementary differentials are returned as a string by t.F(). For example if t is , t.F() returns
f”(f,f).

The number of different children, k, is found by a direct call to the underlying dictionary, it is
returned by t.no_uniques().

The total number of children, m, is calculated as ∑k
i=1 µi by t.number_of_children().

One might expect the base cases | | = γ( ) = σ( ) = 1 need particular attention, but the properties of
the empty sum and the empty product ensures this is actually not necessary. The implementations are
carefully made to mimic this and thus avoid testing for special cases.

The methods t.is_tall(), t.is_bushy() and t.is_binary() can be used to tell whether the tree t
has the properties described in 2.1.3. The first and last check that the number of children is allowed (less
than two and less than three respectively) and that the children recursively satisfy the same criterium.
Bushyness is tested by verifying that the list of child trees of the root, multiplicities not included, is a
list containing only the tree with one node (or that it is empty, since is considered to be bushy).

In the following is denoted leaf in code excerpts and examples. It has no children, and is thus
represented by an empty multiset. More complicated trees can be derived in different ways, the simplest
being to specify the forest of child trees.

The following code example demonstrates how trees can be made from simpler trees.

t = UnorderedTree ( )
f o r e s t = Forest ( [ t , t ] )
t2 = UnorderedTree ( f o r e s t )

The above results in t2 = .

4.1.3 Free Trees
Free trees are represented by objects the FreeTree-class. These objects contain the rooted tree repre-
sentative of the free tree as it is defined in 2.1.4. They also contain a dictionary to hold the rooted trees
for which it is the free tree. The value at each rooted tree is 1 or −1 depending on whether its root is
an even or odd number of vertices away from the root of the representative. Last they contain boolean
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variables to indicate whether the dictionary is complete, and whether or not the free tree is superfluous
or symmetric.

The comparison operators compare free trees by applying definition 6 to their representatives. In
addition t.order() returns the order of the free tree. The other properties of rooted trees are not
defined.

Finding the free tree corresponding to a given rooted tree is implemented as the method get_free_tree()
on UnorderedTree-elements. The algorithm works as one would expect from the description in 2.1.4. It
is worth noting that this approach will not identify the entire set π−1(π(τ)). Since all uses of this set in
PyBS needs the partition of an entire T n into sets of trees corresponding to the same free tree at once,
completing the above mentioned dictionary for π−1 is done for all trees of the same order at once. This
is described in the next subsection.

4.1.4 The Tree Pool
Explicit use of trees is mostly done by the part of PyBS concerned with checking properties. These
functions typically needs all the trees in order of increasing order, or they need all the trees of a given
order, either sorted in a repeatable order or in an arbitrary order.

Since this is a reoccuring pattern, a class for creating, caching and returning trees was created. It
is not mandatory in order to use UnorderedTrees, but is the default way of providing trees to B-series
related parts of the library.

The pool of trees is one instance called the_trees,created at startup, of a class called Trees.
the_trees contains a dicitonary of TreeOrder-objects. The TreeOrder-object for order n is accessed as
the_trees[n] and contain all the trees of a given order. Furthermore, the first time the trees of that
order are required sorted by the rule in definition 6, it does so and changes it internal collection of the
trees from a set to a tuple. Thus the sorting is only performed once.

Another important feature of the TreeOrder class is the method free_trees(). The first time it is
run, it loops through all the rooted trees to partition them according to their corresponding free tree.
Note that this is the only implemented way of making sure the dictionary of rooted trees in the FreeTree
objects are complete.

Furthermore, non superfluous free trees are provided in a similar fashion. The first time the method
non_superfluous_trees() is called, it loops through the free trees and sorts out the non-superfluus
ones.

Since some of the code is dealing with vectors whose elements correspond to coefficients in front of
the trees of a given order, the following methods are provided by TreeOrder objects: index(tree) where
tree is either an UnorderedTree or a FreeTree. The result is the trees index in a zero-indexed list of the
trees or free trees of that order. non_superfluous_index(tree) does the analogous thing for FreeTree
objects that are non-superfluous.

The methods tree_with_index(i), free_tree_with_index(i) and
non_superfluous_tree_with_index(i) are the inverses of the above (given an integer they return the
appropriate tree object).

As one might imagine, the TreeOrder-class contains a fair amount of internal logic to generate, store,
and sort various trees. This is mostly book-keeping to make sure that all the rooted trees are known
before the free trees are generated, that all the free trees are known before the non-superfluous ones are
filtered out, and to keep track of whether or not some collection of trees have already been sorted.

The only process to be discussed in detail is the generation of rooted trees. The operation of producing
all unordered rooted trees with n nodes is based on the way the one vertex tree, , generates T by the
method shown in equation (2.8). Note that any tree of order n can be obtained by grafting onto some
tree of order n − 1. Thus if previous_trees is the set of trees of order n − 1 the following code will
generate all trees of order n:
new_trees = set ( )
for t r e e in prev ious_tree s :
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new_trees . update ( _gra f t_lea f ( t r e e ) )

The update method on Python’s built-in set-objects will add any elements in its argument that are not
already in new_trees to new_trees. This is important since most trees can be made by grafting to
different trees of order n− 1.

The _graft_leaf() function above does not perform grafting as it is defined in definition 14, but
rather a simplified version returning a set instead of a linear combination with coefficients counting in
how many ways any given tree was constructed. The code for _graft_leaf() is
def _gra f t_lea f ( t r e e ) :

r e s u l t = set ( )
r e s u l t . add ( t r e e . butcher_product ( l e a f ) )
for subt ree in t r e e . keys ( ) :

amputated_tree = t r e e . sub ( subt ree )
rep lacements = _gra f t_lea f ( subt ree )
for replacement in rep lacements :

with amputated_tree . c l one ( ) as tmp :
tmp . inplace_add ( replacement )

r e s u l t . add (tmp)
return r e s u l t

The ordinary grafting product is discussed in section 4.2.2.
The function number_of_trees_of_order(n) returns the corresponding integer, while

number_of_trees_up_to_order(n) returns the number of trees up to and including order n. These two
functions are based on the algorithm in equation 2.3.

4.2 Combinations and Forests
The previous section focuses on implementing representations and ways of constructing trees, along with
some functions involving one tree at a time. This section on the other hand focuses on the linear spaces
involving trees, that is mostly T and H, along with some functions and operations associated with these.
The unifying theme is the need for the class LinearCombination.

The following sections are laid out as follows: Linear combinations are discussed in 4.2.1. Then
forests are introduced in 4.2.4. Grafting and the commutator is treated in 4.2.2 and 4.2.3, before forests,
splittings, the coproduct and the antipode are explained in 4.2.4 to 4.2.7.

Of these only the coproduct and the antipode was not treated in [24]. The user should be aware that
several of the concepts discussed in this section are only implemented to cope with what is needed for
B-series later.

4.2.1 Linear Combinations
The elements of T and H are finite linear combinations of trees and forests respectively. However, unlike
Rn the sets of basis vectors are (countably) infinite. This makes it impractical to represent vectors as
arrays where each index of the array is taken to be the coefficient in front of some basis vector.

The solution to this in the implementation is the class LinearCombination. Just like the multiset it
uses a dictionary. The basis vectors are used as keys and the coefficients are stored as the corresponding
values. This ensures each basis vector is only stored once (duplicate keys are forbidden).

LinearCombination shares the multisets ability to delete keys once their coefficient is set to 0, and to
return 0 as the coefficient of keys not present. Furthermore the operators +, +=, -, -= and multiplication
by scalars are all implemented. The method dimensions() returns the number of distinct trees.

It is important to note that LinearCombination objects do not care about the type of the keys/basis
vectors they are given, not even that they are all the same type. Thus the same class is used to hold the
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result of grafting as the result of the coproduct, and there is also nothing stopping the used from adding
two such objects together.

An example of how to use the LinerarConbination class is given below. tree1 and tree2 are two
different rooted trees.
theSum = LinearCombination ( )
theSum [ t r e e1 ] += 2
theSum [ t r e e2 ] = 3 .14

The above would result in a linear combination of two trees, 2 · τ1 + 3.14 · τ2. And
theSum ∗ 2 .5

would return 5 · τ1 + 7.85 · τ2 as a new LinearCombination object.

4.2.2 Grafting
The function graft(other, base) returns the sum of all trees resulting from grafting the tree other
onto the tree base. The following code demonstrates how the grafting product is performed recursively.
The approach is to remove one child tree from the base and replace it with the trees resulting from
grafting the other tree onto the child tree. The factor in front of such a tree in the final result is the
factor in front of the tree added in as a “replacement” for the child tree that was cut off in the recursive
grafting. In addition, in order to save time, the above procedure is prerformed once for each distinct child
tree of the root, and the result is multiplied by the child trees multiplicity in base.
def g r a f t ( other , base ) :

r e s u l t = LinearCombination ( )
i f base == empty_tree :

r e s u l t += other
e l i f other == empty_tree :

r e s u l t += base
else :

r e s u l t += base . butcher_product ( other )
for subtree , mu l t i p l i c i t y 1 in base . i tems ( ) :

amputated_tree = base . sub ( subt ree )
rep lacements = g r a f t ( other , subt ree )
for replacement , mu l t i p l i c i t y 2 in rep lacements . i tems ( ) :

new_tree = amputated_tree . add ( replacement )
r e s u l t [ new_tree ] += mu l t i p l i c i t y 1 ∗ mu l t i p l i c i t y 2

return r e s u l t

4.2.3 The Commutator
With the above implementations of LinearCombination and graft(), the implementation of the tree
commutator is simply:
def TreeCommutator ( op1 , op2 ) :

return g r a f t ( op1 , op2 ) − g r a f t ( op2 , op1 )

The implementation of the commutator for linear combinations of trees is
def linCombCommutator ( op1 , op2 , max_order=None ) :

. . . # Cast ing op1 , op2 to LinearCombination here i f necessary .
r e s u l t = LinearCombination ( )
for t ree1 , f a c t o r 1 in op1 . i tems ( ) :
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for t ree2 , f a c t o r 2 in op2 . i tems ( ) :
i f (not max_order ) or order ( t r e e1 ) + order ( t r e e2 ) <= max_order :

r e s u l t += ( f a c t o r 1 ∗ f a c t o r 2 ) ∗ TreeCommutator ( t ree1 , t r e e2 )
return r e s u l t

The option max_order truncates the result. This may be useful if the arguments are truncated B-series.
The commutator for entire B-series can also be calculated. This is described in 4.6.

4.2.4 Forests
The implementation of forests is straight forward, and quite similar to that of trees. The class Forest
inherits ClonableMultiset. A Forest-object can be initiated from a list of trees and it provides some
basic methods to investigate and manipulate it. These include getting the order (as in definition 17),
getting the number of trees (both different trees and total), comparing for equality, and multiplying two
forest (by multiset sum). In addition a simple string representation based on the string representation of
trees is provided.

The forest with no trees, ∅, often needs to be treated as a special case in the code. Whenever it
occurs, it is denoted empty_tree due to its role as the first term in B-series representing numerical flows.

4.2.5 Splittings
The implementation of the splitting of a tree described in 2.4.5 returns a LinearCombination of pairs.
The pairs are represented by Python tuples. The first element is the tree cut off, and the second one is
the subtree.

The implementation uses two functions, split() and _split(), in order to get the multiplicity of
the edge case (τ ⊗ ∅), where τ is the tree whose splitting is calculated, right. The majority of the work
is done by the _split()-function. Again, the approach is to call itself recursively for each different child
tree. The details of the algorithm is clear from the following code excerpts:
def s p l i t ( t ree , t runcate=False ) :

r e s u l t = _sp l i t ( t r e e )
i f not t runcate :

r e s u l t [ ( t ree , empty_tree ) ] = 1
return r e s u l t

def _sp l i t ( t r e e ) :
r e s u l t = LinearCombination ( )
for ch i l d t r e e , mu l t i p l i c i t y in t r e e . i tems ( ) :

amputated_tree = t r e e . sub ( c h i l d t r e e )
r e s u l t [ ( c h i l d t r e e , amputated_tree ) ] = mu l t i p l i c i t y
c h i l d S p l i t s = _sp l i t ( c h i l d t r e e )
for pair , mu l t i p l i c i t y 2 in c h i l d S p l i t s . i tems ( ) :

new_tree = amputated_tree . add ( pa i r [ 1 ] )
new_pair = ( pa i r [ 0 ] , new_tree )
r e s u l t [ new_pair ] = mu l t i p l i c i t y ∗ mu l t i p l i c i t y 2

return r e s u l t
The boolean variable truncated is explained in connection with the function for the modified equation
in 4.8.

4.2.6 Coproduct
Similar to the alogrithms for grafitng and splitting, the implemented algorithm for finding coproducts is
reursive. However, the additional machinery needed on each level of the recursion is more elaborate than
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for splittings and grafting.
The approach is to find the coproduct of all child trees by recursive calls to subtrees(). Then

one tensor product from each of the resulting linear combinations is chosen in all possible ways by
itertools.product(). The subtrees are then grafted together and the forests of cuttings collected to a
new forest. In addition the multiplicities are multiplied to find the multiplicity of the new tensor product
which is added to the final result. This procedure is carried out by the code snippet below.
def sub t r e e s ( t r e e ) :

r e s u l t = LinearCombination ( )
. . . # Code dea l i n g wi th f o r e s t s go here . See next code exce rp t .

r e s u l t [ ( Forest ( ( t ree , ) ) , empty_tree ) ] = 1
i f t r e e == l e a f :

r e s u l t [ ( empty_tree , t r e e ) ] = 1
return r e s u l t

tmp = [ subt r e e s ( ch i l d_t r e e ) for ch i l d_t r e e in t r e e . e lements ( ) ]
tmp = [ elem . items ( ) for elem in tmp ]
for item in product (∗tmp ) : # i t e r a t o r over a l l combinat ions .

tensorproducts , f a c t o r s = zip (∗ item )
mu l t i p l i c i t y = 1
for f a c t o r in f a c t o r s :

mu l t i p l i c i t y ∗= fa c t o r
cut t ings , to_be_grafted = zip (∗ t enso rproduct s )
with Forest ( ) . c l one ( ) as f o r e s t_o f_cut t ing s :

for f o r e s t in cu t t i n g s :
f o r e s t_o f_cut t ing s . inplace_multiset_sum ( f o r e s t )

r e s u l t [ ( f o r e s t_o f_cut t ings , UnorderedTree ( to_be_grafted ) ) ] += \
mu l t i p l i c i t y

return r e s u l t
It is interesting to note that the above algorithm is completely devoid of procedures and arguments
explicitly using ordered trees as is common in the definition of this coproduct.

The code omitted in the above code excerpt deals with extending the coproduct to forests. The
approach is to recursively find the copropduct of one of the trees and the rest of the forest, and combine
the results accordingly:

i f t r e e == empty_tree :
r e s u l t += ( empty_tree , empty_tree )
return r e s u l t

e l i f isinstance ( t ree , Forest ) :
i f t r e e . number_of_trees ( ) == 1 :

for elem in t r e e :
return sub t r e e s ( elem )

else :
for elem in t r e e :

amputated_forest = t r e e . sub ( elem )
break

for pair1 , mu l t i p l i c i t y 1 in sub t r e e s ( elem ) . i tems ( ) :
for pair2 , mu l t i p l i c i t y 2 in sub t r e e s ( amputated_forest ) . i tems ( ) :

i f isinstance ( pa i r1 [ 1 ] , UnorderedTree ) :
pair1_1 = Forest ( ( pa i r1 [ 1 ] , ) )

else :
pair1_1 = pa i r1 [ 1 ]

i f isinstance ( pa i r2 [ 1 ] , UnorderedTree ) :
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pair2_1 = Forest ( ( pa i r2 [ 1 ] , ) )
else :

pair2_1 = pa i r2 [ 1 ]
pa i r = ( pa i r1 [ 0 ] ∗ pa i r2 [ 0 ] , pair1_1 ∗ pair2_1 )
r e s u l t [ pa i r ] += mu l t i p l i c i t y 1 ∗ mu l t i p l i c i t y 2

return r e s u l t

4.2.7 Antipode
The antipode is implemented as suggested by equation 2.13 and 2.14.
def antipode_ck ( t r e e ) :

r e s u l t = LinearCombination ( )
i f t r e e == empty_tree :

r e s u l t [ empty_tree ] = 1
return r e s u l t

e l i f isinstance ( t ree , Forest ) :
r e s u l t [ empty_tree ] = 1
for t ree1 , mu l t i p l i c i t y in t r e e . i tems ( ) :

for i in range ( mu l t i p l i c i t y ) :
tmp = LinearCombination ( )
for f o r e s t 1 , mu l t i p l i c i t y 1 in antipode_ck ( t r e e1 ) . i tems ( ) :

for f o r e s t 2 , mu l t i p l i c i t y 2 in r e s u l t . i tems ( ) :
tmp [ f o r e s t 1 ∗ f o r e s t 2 ] += mu l t i p l i c i t y 1 ∗ mu l t i p l i c i t y 2

r e s u l t = tmp
return r e s u l t

r e s u l t [ Forest ( ( t ree , ) ) ] −= 1
for ( f o r e s t , subt ree ) , mu l t i p l i c i t y in _subtrees_for_antipode ( t r e e ) . i tems ( ) :

for f o r e s t 2 , c o e f f i c i e n t in antipode_ck ( f o r e s t ) . i tems ( ) :
r e s u l t [ f o r e s t 2 . add ( subt ree ) ] −= c o e f f i c i e n t ∗ mu l t i p l i c i t y

return r e s u l t

The above relies on the function _subtrees_for_antipode(), which corresponds to ∆̃BCK, that is the
coproduct except τ ⊗ ∅ and ∅ ⊗ τ .

4.3 B-Series
The implementation does not treat B-series directly. Instead objects representing elements of the dual
space of H, H∗, are used. This might be impractical, but it has the advantage of separating the manip-
ulation of characters and infinitesimal characters from the consequences of particular properties of the
right hand side of the ODE, such as being Hamiltonian, quadratic, and so forth. For instance, whether
f is Hamiltonian or not does not affect the calculations

The implementation uses three classes BseriesRule, VectorfieldRule and ForestRule whose in-
stances are callable. That means the objects can be used as functions, in this case with elements of H as
input.

The two classes BseriesRule and VectorfieldRule can be initialized with a function T → R.
Instances of BseriesRule extends the domain of the given function to H in accordance with the rules
for characters (equation (2.29)). This means the resulting object will accept UnorderedTrees, Forests
and LinearConbinations of trees and forests as input.

Alternatively BseriesRule and VectorfieldRule can be initiated with a LinearCombination object
containing trees. The coefficient of a particular tree in the linear combination is then treated as value of
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the rule at that tree. The extension to forests and linear combinations is still the same.
Last, but not least, if BseriesRule or VectorfieldRule are initiated with no argument, the result

is the rule returning zero for any input.
A trivial example of the above is

t r e e = UnorderedTree ( )
theRule = Bser i e sRu le ( )
c o e f f i c i e n t_o f_ t r e e = theRule ( t r e e )
where coefficient_of_tree will be 0.

The class ForestRule works much like the two others, but the supplied function must accept forests.
This kind of rule is necessary in the internals of the exp and log functions 2.4.5.

4.3.1 Some B-Series
For convenience and testing purposes, some B-series rules have been implemented. In addition, the next
subsection describes how the implementation derives the B-series of an arbitrary RK method from its
Butcher tableau.

In addition to the zero-series one gets by not providing anything to the constructor of the above
classes, the special B-series the implementation knows are:

• The B-series of the exact solution, a(τ) = 1
γ(τ) , as exponential. This is the unit element of the

Butcher group.

• The B-series a(τ) =
1 if τ = ∅

0 else
as ’unit’.

• The B-series a(τ) =
1 if τ =

0 else
as unit_field. This is the modified equation of the exact

solution.

• The B-series of the average vector field method described in 2.6.3 as AVF.

4.4 The B-Series of a RK Method
The class RK_method is included in the implementation in order to be able to work with RK methods. Its
instances stores a Butcher tableau as a matrix A and a vector b. The method phi, whose implementation
is cited below, returns a BseriesRule-object based on the formulas in equation (2.55).

The implementation is a fairly straight forward application of the formulas, except for the explicit use
of multiplicities to reduce the number of computations. The implementation uses Numpy [14], abbreviated
to np, both for the matrix format and for some of the operations.
def phi ( s e l f ) :

def r u l e ( t r e e ) :
i f t r e e == empty_tree :

return 1
return np . dot ( s e l f . b , s e l f . g_vector ( t r e e ) ) [ 0 ]

return Bser i e sRu le ( r u l e )

def g_vector ( s e l f , t r e e ) :
g_vector = np . ones ( ( s e l f . _s , 1 ) , dtype=object )

def u_vector ( ( subtree , mu l t i p l i c i t y ) ) :
return np . dot ( s e l f .A,
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s e l f . g_vector ( subt ree ) ) ∗∗ mu l t i p l i c i t y
return reduce ( operator .__mul__, map( u_vector , t r e e . i tems ( ) ) , g_vector )

4.5 The Butcher Group
This and the following section describe some operations on B-series. They are implemented as functions
with one or more B-series rules as arguments and they return a new B-series rule. When the new B-series
rule is evaluated on a tree, the result is found by calls to the underlying rule(s). This has the advantage
that one must not decide in advance for what trees the new rule shall be evaluated. It also means that
the construction of the new rule, e.g. the composition, is fast, while the evaluation on trees of moderate
size can be computationally expensive.

4.5.1 Composition

The implementation of composition of two B-series rules, a and b, is based on equation (2.30). Since the
coproduct is already described, the implementation is straightforward.

def compos it ion (a , b ) :
def new\_rule ( arg ) :

r e s u l t = 0
for pair , mu l t i p l i c i t y in sub t r e e s ( arg ) . i tems ( ) :

r e s u l t += a ( pa i r [ 0 ] ) ∗ b( pa i r [ 1 ] ) ∗ mu l t i p l i c i t y
return r e s u l t

i f a ( empty\_tree ) != 1 :
return ForestRule (new\_rule )

else :
return Bser i e sRu le (new\_rule )

The if-else statement is the result of the fact that the composition of non-consistent methods is necessary
in the exponential and logarithm described later.

Special Case

The especially simple formula for the case b(τ) =
1 if τ =

0 else
is available as

def hf_composit ion ( a ) :
i f a ( empty_tree ) != 1 :

raise ValueError ( ' . . . ' )
def new_rule ( t r e e ) :

i f t r e e == empty_tree :
return 0

else :
r e s u l t = 1
for subtree , mu l t i p l i c i t y in t r e e . i tems ( ) :

r e s u l t ∗= a ( subt ree ) ∗∗ mu l t i p l i c i t y
return r e s u l t

return Bser i e sRu le ( new_rule )
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4.5.2 Inverse
The implementation of the inverse of a consistent B-series rule is based on equation (2.31). The imple-
mentation is a straightforward application of the antipode:
def i n v e r s e ( a ) :

def new_rule ( t r e e ) :
return a ( antipode_ck ( t r e e ) )

return Bser i e sRu le ( new_rule )

4.5.3 Step Size Adjustment
Although the step size h is not specified, it is sometimes necessary to change it. This is typically needed
when several methods are composed to one new method. If nothing is done, the step size of the new
method will be a multiple of the nominal step size.

By inspecting definition 23 it is easy to see that multiplying h by A corresponds to substituting a(τ)
by A|τ |a(τ). The following function does that.
def s teps ize_adjustment (a , A) :

base_rule = a . _ca l l
def new_rule ( t r e e ) :

return A∗∗ t r e e . order ( ) ∗ base_rule ( t r e e )
return Bser i e sRu le ( new_rule )

When combining two methods to form a new one, say explicit and implicit Euler to get the implicit
midpoint rule, it is more efficient to halve the step size after the composition than doing it twice before.
The following function combines composition and step size halving for convenience.
def composit ion_ssa (a , b ) :

i f a ( empty_tree ) != 1 :
raise ValueError ( ' . . . ' )

def new_rule ( t r e e ) :
sub_trees = subt r e e s ( t r e e )
r e s u l t = 0
for pair , mu l t i p l i c i t y in sub_trees . i tems ( ) :

r e s u l t += a ( pa i r [ 0 ] ) ∗ b( pa i r [ 1 ] ) ∗ mu l t i p l i c i t y
return Fract ion ( r e su l t , 2∗∗ t r e e . order ( ) )

return Bser i e sRu le ( new_rule )

4.5.4 Adjoint
As described in definition 20 the adjoint is the inverse with reversed time step. By looking at definition
23 again, and let h → −h it is clear that time reversal corresponds to reversing the sign of B-series
coefficients for trees of odd order. This is is what the following code excerpt does.
def ad j o i n t ( a ) :

def new_rule ( t r e e ) :
return (−1)∗∗ t r e e . order ( ) ∗ i n v e r s e ( a ) ( t r e e )

return Bser i e sRu le ( new_rule )

4.5.5 Conjugate
With composition and inversion of B-series, the conjugate c−1ac is easily implemented as:
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def conjugate ( a , c ) :
return compos it ion ( i nv e r s e ( c ) , compos it ion (a , c ) )

4.6 Series Commutator
As described in section 2.4.6 the the commutator for elements in T can be extended to B-series. The clue
is to observe that the coefficient in front of a given tree in the result of the commutator only depends on
the coefficients in front of trees of lower in the arguments. In particular, to find the coefficients of the
trees of order n one only needs to consider the grafting of trees such that the sum of the orders of the
arguments is n. On the other hand side, it is impossible to choose trees such that when they are grafted
a given tree is in the result. The solution is to calculate the coefficients for all trees of a given order at
once and store the result. This is the purpose of the new_rule.order and new_rule.storage variables
in the code below.
def series_commutator ( a , b ) :

def new_rule ( t r e e ) :
order = t r e e . order ( )
i f order in new_rule . o rde r s :

return new_rule . s t o rage [ t r e e ] ∗ t r e e . symmetry ( )
else :

r e s u l t = LinearCombination ( )
for t ree1 , t r e e2 in tree_tuples_of_order ( order ) :

r e s u l t += \
Fract ion ( a ( t r e e1 ) ∗ b( t r e e2 ) ,

t r e e1 . symmetry ( ) ∗ t r e e2 . symmetry ( ) ) ∗ \
tree_commutator ( t ree1 , t r e e2 )

new_rule . o rde r s . add ( order )
new_rule . s t o rage += r e s u l t
return new_rule . s t o rage [ t r e e ] ∗ t r e e . symmetry ( )

new_rule . s t o rage = LinearCombination ( )
new_rule . o rde r s = set ( ( 0 , ) )
return Bser i e sRu le ( new_rule )

In the above code excerpt the for-loop loops over the generator3 tree_tuples_of_order(order).
It loops through all the possible (ordered) tuples of trees such that the sum of their orders is a given
number, as shown below. It should not be confused with the function tree_pairs_of_order(), which
loops over all possible unordered pairs of trees whose order sum up to a given number.
def tree_tuples_of_order ( order ) :

for order1 in range (1 , order ) :
order2 = order − order1
for t r e e1 in t rees_of_order ( order1 ) :

for t r e e2 in t rees_of_order ( order2 ) :
y i e l d ( tree1 , t r e e2 )

4.6.1 The Conjugate by Series Commutator
As described in section 2.4.6 the conjugate c−1ac can be evaluated for a given tree by a finite series of
commutators. This is implemented in the below code excerpt:

3In Python a generator is like a list that can be iterated through, but whose elements are not actually stored. Instead
they are created when they are needed.
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def conjugate_by_commutator ( a , c ) :
def new_rule ( t r e e ) :

i f t r e e == empty_tree :
return 0

tmp = a
r e s u l t = 0
for n in range ( t r e e . order ( ) + 1 ) :

r e s u l t += Fract ion ((−1)∗∗n , f a c t o r i a l (n ) ) ∗ tmp( t r e e )
tmp = series_commutator ( c , tmp)

return r e s u l t
return Bser i e sRu le ( new_rule )

4.7 The Lie Derivative
Using the split()-function described in section 4.2.5, the implementation of a function returning the
rule corresponding to equation (2.34) is:
def l i e_d e r i v a t i v e ( c , b , t runcate=False ) :

i f b( empty_tree ) != 0 :
raise ValueError ( ' . . . ' )

def new_rule ( t r e e ) :
r e s u l t = 0
i f t r e e == empty_tree :

return r e s u l t
p a i r s = s p l i t ( t ree , t runcate )
for pair , mu l t i p l i c i t y in pa i r s . i tems ( ) :

r e s u l t += mu l t i p l i c i t y ∗ b( pa i r [ 0 ] ) ∗ c ( pa i r [ 1 ] )
return r e s u l t

return Vec to r f i e l dRu l e ( new_rule )

The boolean argument truncate is necessary when the Lie derivative is used for the modified equation
and is explained in the next section.

4.8 The Modified Equation
As pointed out in the theory chapter, the equation for the B-series of the modified equation,

b(τ) = a(τ)−
|τ |∑
j=2

1
j!∂

j−1
b b(τ), (4.1)

seems to be self referring, but does allow a recursive evaluation. It is however very close to self referring,
and a naive implementation will run into infinite recursion. The problem arises when b(∅)·b(τ) is evaluated
by the Lie derivative. The fact that b(∅) = 0 resolves the problem as it causes the above product to always
be zero. In the implementation reproduced below the issue is addressed by passing truncate=True to
the split()-function which causes it to skip the problematic pair ∅ ⊗ τ .
def modif ied_equation (a , quad r a t i c_ve c t o r f i e l d=Fal se ) :

i f a ( empty_tree ) != 1 or a ( l e a f ) != 1 :
raise ValueError ( ' . . . ' )

def new_rule ( t r e e ) :
i f t r e e == empty_tree :
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return 0
r e s u l t = a ( t r e e )
c = new_rule
for j in range (2 , t r e e . order ( ) + 1 ) :

c = l i e_d e r i v a t i v e ( c , new_rule , True )
r e s u l t −= Fract ion ( c ( t r e e ) , f a c t o r i a l ( j ) )

return r e s u l t
r e s u l t = Vec to r f i e l dRu l e ( new_rule )
i f quad ra t i c_ve c t o r f i e l d :

r e s u l t = remove_non_binary ( r e s u l t )
return r e s u l t

The if-statement at the end is necessary to keep the property that only terms with binary trees are
non-zero when the right hand side of the ODE is quadratic. The function remove_non_binary returns a
new rule where the coefficients of all non-binary trees are set to zero.

4.8.1 The Logarithm and Exponential Maps
As pointed out in the theory chapter, the modified equation can also be calculated with the logarithm
map. The code excerpt below implements equation (2.38) in a straightforward way. This method of
finding the modified equation runs much slower than the one presented above.

def l og ( a , quad r a t i c_ve c t o r f i e l d=Fal se ) :
i f a ( empty_tree ) != 1 :

raise ValueError ( ' . . . ' )
def new_rule ( t r e e ) :

i f t r e e == empty_tree :
return 0

a_2 = remove_empty_tree ( a )
r e s u l t = a_2( t r e e )
b = a_2
for n in range (2 , t r e e . order ( ) + 1 ) :

b = compos it ion (b , a_2)
r e s u l t += ((−1)∗∗(n+1)) ∗ Fract ion (b( t r e e ) , n )

return r e s u l t
r e s u l t = Vec to r f i e l dRu l e ( new_rule )
i f quad ra t i c_ve c t o r f i e l d :

r e s u l t = remove_non_binary ( r e s u l t )
return r e s u l t

The remove_empty_tree-function returns a rule with 0 as the coefficient of the empty tree.
The exponential function, the inverse of the logarithm, is implemented in line with equation (2.40) in

the theory chapter.

def exp (a , quad ra t i c_ve c t o r f i e l d=False ) :
i f a ( empty_tree ) != 0 :

raise ValueError ( ' . . . ' )
def new_rule ( t r e e ) :

i f t r e e == empty_tree :
return 1

r e s u l t = a ( t r e e )
b = a
for n in range (2 , t r e e . order ( ) + 1 ) :
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b = compos it ion (b , a )
r e s u l t += Fract ion (b( t r e e ) , f a c t o r i a l (n ) )

return r e s u l t
r e s u l t = Bser i e sRu le ( new_rule )
i f quad ra t i c_ve c t o r f i e l d :

r e s u l t = remove_non_binary ( r e s u l t )
return r e s u l t

The if-statements at the end serve the same purpose as above.

4.9 Investigating Properties of B-series
The tests in this section all follow a general pattern of checking whether some property holds for the
coefficients in a B-series for trees of increasing order, one order at at time. The goal is to identify the
first order for which the property does not hold. In many cases an integer variable max_order can be
given to ensure that the test terminates in a reasonable amount of time even if the property holds for all
trees or to some very high order.

4.9.1 Order of Convergence
Finding the order of convergence is the simplest test since it amounts to comparing the B-series of the
numerical flow to that of the exact solution, or in Python code:
def convergence_order ( a ) :

return equal_up_to_order ( a , exponent i a l )
where equal_up_to_order is what one would expect it to be:
def equal_up_to_order ( a , b , max_order=None ) :

i f not a ( empty_tree ) == b( empty_tree ) :
return None

for t r e e in t ree_generator ( ) :
i f max_order and t r e e . order ( ) > max_order :

return max_order
e l i f not a ( t r e e ) == b( t r e e ) :

return t r e e . order ( ) − 1
It would also be possible to test the convergence order by comparing the modified equation to the

B-series called unit_field (from section 4.3.1). However, one usually starts with the B-series of the
numerical flow of a method, and finding the modified equation is more work than computing γ(τ).

4.9.2 Symmetry
With the implementation of the adjoint from section 4.5.4, symmetry is checked in much the same way
as order of convergence:
def symmetric_up_to_order ( a , max_order=None ) :

b = ad jo i n t ( a )
return equal_up_to_order ( a , b , max_order )

4.9.3 Symplectic and Hamiltonian
Determining to which order a numerical method is symplectic or, equivalently, to which order its vector
field is Hamiltonian, is more involved. Both tests involve checking a condition for all unordered pairs
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of trees τ1, τ2 such that |τ1| + |τ2| equals the order to which one wants to check whether the property is
satisfied. This is done in the following way.
def _sat i s f i ed_for_tree_pa i r s_of_order ( cond i t ion , order ) :

max_check_order = order / 2 # In t en t i o n a l t runca t i on in d i v i s i o n .
for order1 in range (1 , max_check_order + 1 ) :

order2 = order − order1
for t r e e1 in t rees_of_order ( order1 ) :

for t r e e2 in t rees_of_order ( order2 ) :
i f not cond i t i on ( tree1 , t r e e2 ) :

return False
return True

With this in place checking whether a flow is symplectic is done by
def symplectic_up_to_order ( a , max_order=None ) :

i f a ( empty_tree ) != 1 :
return None

orde r s = count ( s t a r t =2)
i f max_order :

o rde r s = i s l i c e ( orders , max_order − 1)
_symp_cond = pa r t i a l ( _symplect ic i ty_condit ion , a )
for order in orde r s :

i f not _sat i s f i ed_for_tree_pa i r s_of_order (_symp_cond , order ) :
return order − 1

return max_order
where _symplecticity_condition() is
def _symplect i c i ty_condi t ion (a , t ree1 , t r e e2 ) :

return a ( t r e e1 . butcher_product ( t r e e2 ) ) + a ( t r e e2 . butcher_product ( t r e e1 ) ) \
== a ( t r e e1 ) ∗ a ( t r e e2 )

The implementation for determining whether a vector field is Hamiltonian is analogous:
def hamiltonian_up_to_order ( a , max_order=None ) :

i f a ( empty_tree ) != 0 or a ( l e a f ) == 0 :
return None

orde r s = count ( s t a r t =2)
i f max_order :

o rde r s = i s l i c e ( orders , max_order − 1)
_ham_cond = pa r t i a l ( _hamilton_condition , a )
for order in orde r s :

i f not _sat i s f i ed_for_tree_pa i r s_of_order (_ham_cond , order ) :
return order − 1

return max_order
with
def _hamilton_condition (a , t ree1 , t r e e2 ) :

return a ( t r e e1 . butcher_product ( t r e e2 ) ) + \
a ( t r e e2 . butcher_product ( t r e e1 ) ) == 0

4.9.4 Properties as Subspaces
The remaining properties are tested for by asserting whether or not the B-series of the modified equation
is in a certain subspace, as described in 2.5.3. The tests are also performed order by order. For each
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order an ordering of the trees is chosen in order to represent a part of the B-series as an array. The choice
is arbitrary, but the implementation uses definition 6.

Then a matrix A, whose columns form a basis of the subspace in question, is constructed. Since the
subspace is necessarily a subspace of T n, A is taller than it is wide. The coefficients of the B-series under
consideration are stored in a vector b and the problem

Ax = b (4.2)

is solved with least squares solver lsqr() from scipy.sparse.linalg.
The following code excerpt shows how the result of the least square algorithm is used to deduce

whether or not b is in the colspan of A.
def not_in_colspan (A, b ) :

try :
r e s u l t = l s q r (A, b)

except ZeroDiv i s i onErro r :
return False # Happens i f i t e r a t i o n h i t s the exac t s o l u t i o n .

return r e s u l t [ 1 ] != 1 and ( r e s u l t [ 1 ] == 2 or r e s u l t [ 3 ] > 10.0∗∗(−10))
The return value from lsqr() is a tuple. Its value at 1 is an integer revealing why the algorithm
terminated, while the value at 3 is the norm of the residual vector. More important is the fact that this
algorithm is done in floating point arithmetic, while all other computations in the library are done in
exact arithmetic.

The next subsections goes through how this is done when determining to what order the modified
equation is Hamiltonian and energy preserving. The important difference between the two is the matrix
A.

4.9.5 Hamiltonian as Subspace
The basis for the Hamiltonian sub space of a given order is constructed using free trees as described in
section 2.5.3. The rather straightforward algorithm is placed in an own function:
def hamiltonian_matrix ( order ) :

n s f t = the_trees [ order ] . non_super f luous_trees ( s o r t=True )
m = number_of_trees_of_order ( order )
n = len ( n s f t )
r e s u l t = spar s e . l i l_mat r i x ( (m, n ) , dtype=np . in t8 )
for f r e e_t r e e in n s f t :

j = the_trees [ order ] . non_superf luous_index ( f r e e_t r e e )
for t ree , s i gn in f r e e_t r e e . _rooted_trees . i tems ( ) :

i = the_trees [ order ] . index ( t r e e )
r e s u l t [ i , j ] = s i gn

return r e s u l t
The rest of the implementation is given below. There are a few shortcuts which are discussed below the
code excerpt.
def subspace_hamiltonian_up_to_order ( a , max_order=None ) :

i f a ( empty_tree ) != 0 or a ( l e a f ) == 0 :
return None

orde r s = count ( s t a r t =2)
i f max_order :

o rde r s = i s l i c e ( orders , max_order − 1)
for order in orde r s :

b = np . asar ray (map( a , t rees_of_order ( order , s o r t=True ) ) ,
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dtype=np . f l o a t 6 4 )
i f not np .any(b ) :

continue
i f order == 2 :

return 1
A = hamiltonian_matrix ( order )
i f not_in_colspan (A, b ) :

return order − 1
return max_order

The two first if-clauses in the for-loop test for some simple cases that does not need to be resolved by
not_in_colspan(). The first one checks if all the coefficients of that order are zero, and if they are the
rest of that loop-iteration is skipped. This can be done since the zero vector is in every subspace.

The second if-clause uses the fact that the tree of order two never appears in a Hamiltonian B-series.

4.9.6 Energy Preservation
Energy preservation is checked in a slightly different way. The trees that can have any coefficient is simply
ignored. Before any intricate computations, the coefficient in front of the trees that never appears in
energy preserving B-series are checked. If this check is passed, the function goes on to check independently
for each of the free trees of order n + 1. This last part has the advantage of solving several small least
squares problems instead of one large problem.

For each order the implementation does the following:

def _is_energy_preserving_of_order ( a , order ) :
fo rb idden_trees , i n t e r e s t i n g_ t r e e s = _get_tree_sets ( order )
for t r e e in f o rb idden_tree s :

i f a ( t r e e ) != 0 :
return False

for f r e e_tree , c o l l e c t i o n in i n t e r e s t i n g_ t r e e s . i tems ( ) :
c o l l e c t i o n = sorted ( c o l l e c t i o n )
A = get_energy_matrix ( f r ee_tree , c o l l e c t i o n )
b = np . asar ray (map( a , c o l l e c t i o n ) , dtype=np . f l o a t 6 4 )
i f not_in_colspan (A, b ) :

return False
return True

where _get_tree_sets is

def _get_tree_sets ( order ) :
f o rb idden_tree s = set ( ) # Never found in energy p r e s e r v ing s e r i e s .
i n t e r e s t i n g_ t r e e s = dict ( ) # inc luded in a non t r i v i a l b a s i s v e c t o r .
for t r e e in the_trees [ order ] . t r e e s ( ) :

f r e e_t r e e = l e a f . butcher_product ( t r e e ) . ge t_free_tree ( )
i f f r e e_t r e e . supe r f l uou s :

pass # Don ' t s t o r e them
e l i f f r e e_t r e e . is_symmetric ( ) :

f o rb idden_tree s . add ( t r e e )
e l i f f r e e_t r e e in i n t e r e s t i n g_ t r e e s :

i n t e r e s t i n g_ t r e e s [ f r e e_t r e e ] . add ( t r e e )
else :

i n t e r e s t i n g_ t r e e s [ f r e e_t r e e ] = set ( ( t ree , ) )
return fo rb idden_trees , i n t e r e s t i n g_ t r e e s
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For each free tree the matrix is constructed as suggested by the last paragraph of the section on energy
conservation in the theory chapter:
def get_energy_matrix ( f r ee_tree , c o l l e c t i o n ) :

l e = len ( c o l l e c t i o n )
A = spar s e . l i l_mat r i x ( ( l e , l e −1) , dtype=np . in t64 )
A[ 0 , : ] = Fract ion(− c o l l e c t i o n [ 0 ] . symmetry ( ) ,

f r e e_t r e e . _rooted_trees [
l e a f . butcher_product ( c o l l e c t i o n [ 0 ] ) ] )

for t r e e in c o l l e c t i o n [ 1 : ] :
i = c o l l e c t i o n . index ( t r e e )
A[ i , i −1] = Fract ion ( t r e e . symmetry ( ) ,

f r e e_t r e e . _rooted_trees [
l e a f . butcher_product ( t r e e ) ] )

return A
Note how the height of the matrix is only the number of rooted trees corresponding to the free tree,
resulting in a relatively small least squares problem.

The function tying the above together is similar to subspace_hamiltonian_up_to_order():
def energy_preserving_upto_order ( a , max_order=None ) :

i f a ( empty_tree ) != 0 or a ( l e a f ) != 1 :
return None

orde r s = count ( s t a r t =2)
i f max_order :

o rde r s = i s l i c e ( orders , max_order − 1)
for order in orde r s :

i f not _is_energy_preserving_of_order ( a , order ) :
return order − 1

return max_order

4.9.7 Conjugate to Symplectic
The implementation to check whether a method is conjugate to symplectic up to at most twice its
convergence order uses the conditions in section 2.5.4. The system of linear equations is set up as a
rectangular matrix by the function _conjugate_symplecticity_matrix.
def _conjugate_symplect ic ity_matr ix ( order ) :

A = [ ]
l i s t_o f_pa i r s 1 = tree_pairs_of_order ( order , s o r t=True )
l i s t_o f_pa i r s 2 = tree_pairs_of_order ( order −1, s o r t=True )
for pa i r in l i s t_o f_pa i r s 1 :

tmp = [ 0 ] ∗ m( order−1)
for t ree , mu l t i p l i c i t y in symp_split ( pa i r [ 0 ] ) . i tems ( ) :

try :
the_number = l i s t_o f_pa i r s 2 . index ( ( t ree , pa i r [ 1 ] ) )

except ValueError :
the_number = l i s t_o f_pa i r s 2 . index ( ( pa i r [ 1 ] , t r e e ) )

tmp [ the_number ] += mu l t i p l i c i t y

for t ree , mu l t i p l i c i t y in symp_split ( pa i r [ 1 ] ) . i tems ( ) :
try :

the_number = l i s t_o f_pa i r s 2 . index ( ( pa i r [ 0 ] , t r e e ) )
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except ValueError :
the_number = l i s t_o f_pa i r s 2 . index ( ( t ree , pa i r [ 0 ] ) )

tmp [ the_number ] += mu l t i p l i c i t y
A. append (tmp)

A = np . asar ray (A)
return A

The function tree_pairs_of_order() returns a list of tuples of trees, but in such a way that each
unordered pair only appears once.

The following function iterates through orders and perfoms the check. It takes care to utilize symmetric
methods whenever possible, and to stop at p+ r.

def conjugate_to_symplect ic ( a , max_order=f loat ( " i n f " ) ,
quad ra t i c_ve c t o r f i e l d=False ) :

conv_order = convergence_order ( a )
f i r s t_order_checked = conv_order + 1 + ( conv_order == 2)
max_order = min(max_order , 2∗ conv_order )
o rde r s = xrange ( f i r s t_order_checked , max_order+1)
_alpha = modif ied_equation (a , quad r a t i c_ve c t o r f i e l d )
def alpha (u , v ) :

return _alpha (u . butcher_product ( v ) ) − _alpha (v . butcher_product (u ) )
for order in orde r s :

i f symmetric_up_to_order ( a , order ) == order and order % 2 == 0 :
continue

A = _conjugate_symplect ic ity_matr ix ( order )
b = np . asar ray (

[ alpha (u , v ) for u , v in tree_pairs_of_order ( order , s o r t=True ) ] ,
dtype=np . f l o a t 6 4 )

i f not_in_colspan (A, b ) :
return order − 1

return max_order

4.10 Quadratic Vector Fields

As pointed out in section 2.4.7, quadratic right hand sides of equation (2.15) ensures that certain trees
are absent in the B-series. Since this is a result of the elementary differentials disappearing, rather than
the coefficients of the method, the property is not automatically respected when going back and forth
between BseriesRules and VectorfieldRules. Instead modified_equation(), log() and exp() takes
an optional boolean arguments, quadratic, and ensures the coefficients of all non-binary trees are set to
zero with the help of the following code when necessary.

def remove_non_binary ( a ) :
base_rule = a . _ca l l
def new_rule ( t r e e ) :

i f t r e e == empty_tree or t r e e . i s_binary ( ) :
return base_rule ( t r e e )

else :
return 0

return type ( a ) ( new_rule )
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4.11 Printing Trees
This section does not concern mathematics, but the issue of printing trees in a human readable way.
This includes both a reasonable string representation that can be output on the command line, as well
as producing drawings of trees in a graphical user interface.

4.11.1 String Representation
Although the intended output from the library is information on to what extent a given method has
certain properties, being able to print trees as string is invaluable in any attempt to track the actions
of the program for debugging purposes. To this end a simple scheme for representing trees, forests and
linear combinations as strings has been implemented.

• UnorderedTrees are printed as nested multisets using square brackets. For example, the one node
tree, , is '[]' and is represented as '[[],[]]'. The child trees are printed in no particular
order. In addition the constructor of UnorderedTree will accept and parse strings on this format.

• A free trees is printed as its rooted tree representative.

• A forest is printed as comma separated list of its trees, with multiplicities as exponentials. For
example could be printed as '([]^2, [[],[]]^1)'.

• A linear combination is printed with the factor in front of the term, then a ’*‘, then the term itself
(a tree or a forest). The terms are separated by +-signs. For example would 2 · + be printed
'2*[[]] + 1*[]'.

The implementations of all the above are straightforward. The string representation of a Python object,
say a tree called t, is obtained by calling the str(t), or it can be printed directly with print t.

BseriesRules, VectorfieldRules and ForestRules do not have any meaningful string representa-
tion. The main reason for this is that they are initiated from an arbitrary Python-function supposed to
return real numbers for any tree, and there is no obvious way of representing this as a string. A possibility
would have been to allow the initialization to accept an explanatory string, and make sure composition,
the logarithm, the exponential, the Lie derivative and all the simpler operations on B-series rules created
appropriate strings. However this would have been a considerable amount of work.

4.11.2 Drawings in IPython
For UnorderedTree-objects, and only them, a method _repr_svg_() has been implemented. It allows
IPython to print trees as drawings, much like the way trees are drawn in this report. The method uses
the planarforest [18] package to cretate a tikz-representation of the tree, then tikz2svg is used to convert
it to an svg-image that can be displayed by the IPyhton notebook.
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Conclusion

This chapter reviews some of the decisions made and their effect on the product, the PyBS library. In
doing this it is natural to compare the current implementation to the ones previously mentioned, as well
as the library’s aptitude for investigating B-series methods. Suggestions for further work is included at
the end.

Programming Language and Strategy

The principal choice in regards of what programming language to use was between Python as a general
purpose programming language and a computer algebra system, Sage in particular. Other alternatives
include Maple and Mathematica. The choice in favor of Python was made mainly due to the lack of
experience (or support from someone with experience) with implementing new algebraic structures in
Sage.

As the work progressed it became clear that a CAS’s ability to deal with common mathematical
concepts could have saved some work and ensured a sound and rigorous implementation. An example is
the class LinearCombination.

That being said, the use of Python did not cause any major problems. The practice of writing and
running tests allowed for timely discovery of bugs. It also gave the opportunity to make changes to
existing code and with high probability discover all unfavorable consequences.

Tree Structure

The way trees are represented is one of the choices with the most far-reaching consequences. It is thus
interesting to note how PyBS and the three other implementations mentioned in section 1.3 does this.

Nodepy represents trees as strings in a format not unlike the way PyBS prints trees (see section
4.11.1). The main difference is that curly brackets are used and that if a vertex has leaves, they are
written as T n at the beginning of the list of child trees. The advantage of this is that it is immediately
readable to a human. The disadvantage is that any function or operation on trees must do a fair amount
of parsing.

The Maple script provided by Owren stores trees as nested lists of lists. This necessitates the use of
an arbitrary but consistent sorting of these lists each time a tree is created or modified. This approach
has the disadvantage that multiplicities must be recovered by counting.

The Mathematica scripts provided by Murua stores trees as the standard decomposition described in
definition 7. This is memory efficient, and since the standard decomposition is unique, comparing for
equality is simple. The main objection to this approach is probably that parsing the trees results in much
deeper recursions than the other methods described here. This might have an impact on running times,
since the overhead of recursive function calls are known to affect running times.

One notable advantage of the approach used in PyBS over the above is the way it facilitates the use of
multiplicities explicitly in the calculations. This encourages faster algorithms looping over distinct child
trees instead of all child trees with repetitions. On the other hand side, the use of dictionaries (hash

53



54 CHAPTER 5. CONCLUSION

tables) adds an unnecessary layer of abstraction. In retrospect the current author believes a modified
edition of Owren’s approach might be simpler than the one used in PyBS. A tree could store a sorted list
of tuples of its distinct child trees and their multiplicity. If the list is sorted based on the distinct child
trees ordering according to some definition, lookups can be done with efficient binary searches.

B-series as Functions

Since B-series are infinite, it is impossible to calculate all coefficients and store them in memory. In PyBS
this is addressed by representing the B-series rules as functions and let operations on series produce new
functions depending on the original series whenever they are evaluated.

Another approach, used in the implementations by Owren and Murua, is to decide the size of the
largest tree needed before any calculations and analyze what is effectively truncated series. At least in
principle relieving the user of this responsibility has some advantage and few disadvantages. However, in
practice the user will often know, or be able to make an educated guess of, the larges tree needed.

Suggestions for Further Work

The PyBS library is focused on functionality needed to analyze B-series methods. Due to this focus,
some desirable operations on trees have been ignored. This includes the Grossmann-Larson product and
grafting a forest onto a tree. The latter is somewhat involved since once a tree has been grafted onto the
target, the remaining trees in the forest may not be grafted on top of it.

Another area in which much work can be done is the use of simplifying assumptions such as quadratic
vector fields and one dimensional ODEs. The current practice of forcing the coefficients of non-binary
trees to be zero is not optimal. A better solution might be to modify the set of trees returned by the
iterators supplying trees to the functions testing for properties. An idea to create instances only supplying
e.g. binary trees was some of the motivation for creating the Trees-class (in addition to handle free trees).

Other possible expansions are to include checks for conjugate to energy preserving and effective
order, to implement the Hopf algebra by Calaque, Ebrahim-Fard and Manchon, or calculating modifying
integrators as B-series. It is also perceivable to implement colored and ordered trees, but that would
require much of the current implementation to be modified.
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