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Abstract

In this thesis I have developed a model for result prediction in soccer. The model is based
on chances created being modeled as a Poisson process while goals scored is seen as a result
of first creating chances and then converting them, here modeled as a Bernoulli trial. Compared
to existing models, this one takes advantage of a number of data that previously have not been
considered. As each team is described by four parameters, teams are able to be distinguished
further allowing for better prediction of chances created and goals scored for each team in a
given matchup.

Six different models are developed gradually with the goal of improving the model fit to data
and its predictive ability. In the final model the parameters can change over time so as to explain
how a team can go through periods of good or bad form. Parameters are assumed to be correlated
to each other - reflecting how a good offensive team also often has a good defense. Red cards are
included to explain why certain surprising results took place. And lastly, the model uses shots
on target to predict goals, as this is shown to have a stronger connection than between shots and
goals.

A betting strategy is implemented where the size of the bet decreases with increasing odds,
while only placing bets when the expected return is above a certain value. The model struggles
with consistency, but is still able to make a small profit over a run of five seasons, so it should
be an excellent candidate for further development.
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Sammendrag

I denne oppgaven har jeg utviklet en prediksjonsmodell for fotball. Modellen baserer seg på at måls-
janser kan antas å følge en Poisson fordeling, og at hver målsjanse har en viss sannsynlighet for å gå
inn, altså et Bernoulli-forsøk. Sammenlignet med eksisterende modeller har jeg valgt å inkludere mer
interessante data som tidligere ikke har blitt benyttet. Ettersom hvert lag beskrives av fire parametere
blir lagene beskrevet svært forskjellige i modellen, og dette tillater bedre prediksjon av målsjanser
og mål for hvert lag i en gitt kamp.
Seks forskjellige modeller er gradvis utviklet med mål om forbedret tilpasning til data og økt treff-
sikkerhet i prediksjon av fremtidig kampers resultat. I den ferdig utviklede modellen lar jeg parame-
trene kunne endres over tid for å reflektere hvordan lag kan ha svingninger i form. Parametrene
antas korrelerte - på samme måte som et godt offensivt lag også ofte har et godt forsvar. Røde kort
er inkludert som en forklaringsvariabel ettersom det kan hjelpe modellen å forstå kamper der f.eks.
gode lag har slitt mot dårlige lag. Og modellen benytter skudd på mål for å forutse mål, ettersom det
har vist seg at skudd på mål har en sterkere tilknytning til mål enn kun skudd.
En bettingstrategi er implementert hvor innsatsen minker ved økende odds, mens man bare setter
penger på de kampene der den forventede gevinsten er over en viss verdi. Modellen sliter med å
konsekvent slå bookmakerene, men klarer å produsere en liten profitt gjennom de fem sesongene
den ble testet på, så den virker som en utmerket kandidat for videre utvikling.
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Nomenclature

α0 Goal model offset

αA Goal scoring strength of team A

βA Goal preventing strength of team A

α̂0 Chance model offset

α̂A Chance creating strength for team A

β̂A Chance preventing strength for team A

δ̂ Home field advantage for chances

λ̂i,j The estimated mean Chances Created by home team i

µ̂i,j The estimated mean Chances created by away team j

θ̂α Impact of a red card on α̂

θ̂β Impact of a red card on β̂

X̂i,j Chances Created by team i on team j

Ŷi,j Chances Created by team j on team i

ω Betting cutoff - minimum margin to place a bet

ρ Parameter Correlation

ρt Time correlation

τt Precision of ρt
θα Impact of a red card on α

θβ Impact of a red card on β

i, j Generic team names where i always is the home team and j always is the away team

p Probability of conversion for home team

q Probability of conversion for away team

r Red cards received

Xi,j Goals Scored by team i on team j

Yi,j Goals Scored by team j on team i
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As for general terms used throughout the paper, a chance refers to either a shot or a shot on target
(SOT). A teams chance creating strength is its ability to produce chances in a game, while its
chance preventing strength is its ability to keep the opposing team from producing chances. A
teams goal converting strength is its ability to turn chances into goals, while its goal preventing
strength is its ability to keep the opposing team from converting chances into goals.
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Chapter 1

Introduction

Association football (from now on referred to as soccer) is regarded as the biggest and most popular
sport in the world. In the English Premier League (EPL), the highest level of soccer in England, 20
teams from England and Wales play a total of 380 games over a season. All teams play each other
twice so that each team gets one game at home and one away, essentially all the possible permutations
of teams not including repetition. A game gives three points to the winning team and zero to the losing
team, or, in the case of a draw, one point to each team.

When all the matches have been played the points are counted and the teams are ranked based on the
amount of points gathered over the season. The one with the most points is the years winner of the
EPL. The top three get a direct qualification to the UEFA Champions League, and the team placing
4th has an opportunity to qualify through competing with other lower ranked teams from around
Europe. Likewise, the team placing 5th gets a direct qualification to compete in the UEFA Europa
League, whereas the teams placing 6th and 7th get a chance to qualify through competing with other
European lower ranked teams. Twenty-five percent of the domestic broadcasting revenue is divided
on a merit basis, meaning the higher ranked teams get more of the money. In the 2013-2014 season
this amounted to about 25 million pounds for league winners Manchester City and about one million
pounds for last placing Cardiff City, in addition to the 50 percent of the total revenue being spread
equally and 25 percent spread based on matches broadcast in the UK. [1]

Existing models for forecasting typically attempt to describe a team using two explanatory variables
(hereby referred to as the strengths of a team) - one for the offensive strength and one for the de-
fensive, and as a team faces off against another team their offensive power is put to test against the
opponents defensive power and vice versa. This difference in strength, along with a few constants
like the home field advantage and the effect of underestimating the opponent, give us the expected
goals scored for each team in a match. While some have achieved impressive results, very few fans
of soccer would agree that a team composed of 11 different players with unique abilities, playing
in their own formation and their own style with a tactic planned out for that specific match, could
all be described by two parameters. A goalkeeper could be good at stopping long range efforts, but
that wont help if the opponent excels at playing their way into the penalty area. A forward might be
a clinical finisher, but if the defense is able to completely isolate him he won’t get a single shot in.
With this in mind, I will create a more complex model that can handle teams excelling in different
aspects of attacking and defending, while taking advantage of the availability of interesting data like
shots fired and red cards.
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The approach used in this paper draws a lot of inspiration from the ones designed by Koopman,
Lit (2015)[10], Rue, Salvesen (2000)[18] etc, which again are extensions of the model first created
by Maher (1982)[12]. The biggest changes are that I am increasing the number of team-describing
variables from two to four, provided that they make a significant impact. I have a full 14 seasons
of interesting data that I want to exploit as well as possible, including looking at shots, shots on
target and red cards. I want to model a teams offensive capabilities through their ability to create
chances and later through their ability to convert chances rather than modeling goals scored directly.
I’m taking advantage of recent advancements in statistical inference in the form of Integrated Nested
Laplace Approximations (INLA), which allow for much faster approximations than Markov Chain
Monte Carlo methods (MCMC).
The remainder of this paper will be structured as follows: Chapter 2 discusses the existing literature
and the results achieved by others in the field of forecasting match results in soccer. Chapter 3 gives a
description of the various types of data recorded during a soccer match, looking at their applications
and relevance. Chapter 4 describes methods for comparing results produced by different models.
Chapter 5 starts the process of developing an efficient model for predicting goals, beginning at a
simple model where the probability of a chance becoming a goal is considered constant across all
teams and matches. It then goes on to include time dependency, correlation between parameters and
using red cards. Chapter 6 fully describes the chosen model, while discussing the advantages of using
”shots on target” instead of shots to do prediction. Chapter 7 describes a basic betting strategy, and
evaluates how well the model fares against the betting companies. Chapter 8 includes a rundown of
the results collected throughout the paper and a discussion regarding further improvements to the
model. Finally, Chapter 9 concludes the paper with an evaluation of the project as a whole along
with a quick summary.
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Chapter 2

Literature Review

Moroney (1956) - Facts From Figures [13] is the first record of statistical models being used
to model results in professional soccer. Moroney shows that the Poisson distribution is unsuitable
for describing goals scored, and that the Negative Binomial distribution is a much better fit. This is
done by looking at the match result as a variable not dependent on which teams are playing, and the
implication is that in the model every team is of the same strength.Reep, Pollard, Benjamin (1971)
- Skill and Chance in Ball Games[16] verify these results and come to the conclusion that ”chance
dominates the game”. Hill(1974) - Association Football and Statistical Inference[9] believes it
is obvious simply from watching a game of soccer that both chance and skill have impact on the
result, but that in the long run skill will be dominant. Hill attempts to prove this by comparing the
predictions of the final tables by experts to the actual final tables for 4 divisions of the 1971-1972
Football League. He shows that there is at least a positive correlation between the two, and claims
thereby to have debunked the theory that soccer is dominated by chance.

Maher (1982) - Modelling association football scores [12] shows that by giving each team an
attacking strength α and a defensive strength β he is able to model the goals scored as a Poisson
response variable with mean equal to the relative strength between the teams. He points out that
assuming all teams to be equal when they are not would give a Poisson distribution with variable
mean which indeed would look a lot like the Negative Binomial Distribution. Maher finds that the
advantage of playing at home ground δ is significant and constant across all teams. If goals scored
by home team i, x, against team j is generated by a Poisson-distributed random variable Xi,j (and
likewise for Yi,j for the away team, Xi,j and Yi,j being independent), then Pr[Xi,j = x, Yi,j = y] =
λxe−λ

x!
µye−µ

y!
, where λ = αiβjδ and µ = αjβi. Maher notes that the model underestimates scores where

a team has one or two goals, while overestimates scores where a team has zero or more than three
goals. A better distribution would be one that is slightly ”narrower” than the Poisson distribution. To
address this a bivariate Poisson model is tested and the correlation constant is estimated to be around
0.2.

Dixon, Robinson (1998) - A birth Process Model for Association Football Matches [3] looks
at the rate of goals scored over the course of a match. This is done by modeling goals scored by
both teams as interactive birth processes. An increasing number of goals are scored throughout the
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90 minutes. This could be because the scoring rates gradually increase, or because the scoring rates
are dependent on the current score.

The final score is modeled the same way as done by Maher(1982)[12] where the number of goals
scored by the teams in a game are dependent Poisson variables determined by the strength of the
attack and defense of the two sides. The actual goal scoring is modeled as a two dimensional birth
process where home and away scores are different species. Hk and Ak for home and away goal
processes at match k are modeled with λk(t) and µk(t) respectively that are allowed to vary in time,
t. This is simplified to λk(t) = λxyλk, where λxy holds the current score (x-y), λk = αi(k)βi(k)δ and
µk = αj(k)βi(k). α and β are strengths in offense and defense, i and j refer to the home team and
away team and δ is the home advantage factor. The intensities for minutes 45 and 90 are handled
separately as added time is pushed onto these themselves.

Dixon and Robinson conclude that scoring rates generally increase for both teams throughout the
match, they depend on the current score, and they generally increase when a goal is scored.

Lee 1997 - Modeling Scores in the Premier League: Is Manchester United Really the Best?
[11] employs what is essentially the exact same model as used by Maher (1982)[12], but instead of
merely looking at the goodness of fit, he goes further to simulate the season 1000 times to see what
team actually deserved to win the 95/96 season in the Premier League. A problem with the approach
is that the same estimated strengths of attack and defense are used for every simulated season, which
doesn’t consider the fact that the observed results were only one possible outcome.

Dixon, Coles (1997) - Modelling Association Football Scores and Inefficiencies in the Football
Betting Market [4] build on the model proposed by Maher(1982)[12], but make certain improve-
ments. Instead of continuing with the standard bivariate Poisson model, they make a direct modifi-
cation to the join probability distribution -

Pr[Xi,j = x, Yi,j = y] = τλ,µ(x, y)
λxe−λ

x!

µye−µ

y!
(2.1)

where the new term τλ,µ(x, y) =



1− λµρ if x = y = 0,

1 + λρ if x = 0, y = 1,

1 + µρ if x = 1, y = 0,

1− ρ if x = y = 1,

1 otherwise.

ρ here is a dependence parameter with max(−1/λ,−1/µ) ≤ ρ ≤ min(1/ρµ, 1) and ρ = 0 would
mean total independence.

An even bigger improvement is the move from a static model with all team strengths being constant
to a dynamic model that allows the parameters to vary in time. They let the importance of each game
be decided by the weighting function ϕ(t) = e−ξt such that old results are given exponentially less
weight than recent ones. ξ = 0 represents a static model, and when used to maximize chance of
predicting correct results (home, draw, win) ξ = 0.0065 is estimated to be the optimal. The model is
tested on its ability to consistently beat the bookmakers with a simple betting strategy - put money on
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all bets that have an expected return above a certain level, and it is deemed to be adequate. Among
possible improvements they mention the need for a Bayesian structure to incorporate additional co-
variate information and a potentially profitable betting strategy based on exact match results instead
of just match outcomes.

Rue, Salvesen (2000) Prediction and Retrospective Analysis of Soccer Matches in a League
[18] use a Bayesian model for calculating the time-variation of all strengths simultaneously. While
the basis of the model resembles the ones used by bothMaher (1982)[12] and Dixon, Coles(1997)[4],
they make several changes to the underlying assumptions. A superior teamwill tend to underestimate
an inferior team, and conversely the inferior team will be more prepared against a superior team.
This is entered into the model by measuring the overall difference in strength between the two teams
∆i,j = (αi + βi − αj − βj)/2. The amount of goals scored by i against j, xi,j is connected to
αi − βj − θ0∆i,j , where θ0 is a small constant θ0 > 0 giving the magnitude of the psychological
effect. θ0 = 0 would mean that the psychological effect has no impact on the match.
Rue and Salvesen build on the modifications to the joint conditional law made by Dixon, Coles
(1997) in two ways. They make all goals scored by a team beyond five be counted as five, as they
consider such scores to be demotivating to an extent where the underlying assumptions of goals
scored being independent no longer hold up. A win of 7-5 will therefore be handled as a 5-5 draw.
π∗
g is the resulting truncated law. They also infer that the match results are not as informative on the
strengths of teams as was assumed by Dixon and Coles, and they introduce a parameter ϵ with the
interpretation that only (1− ϵ)× 100% of the information in a match result is informative. The goal
model then changes to

πg(xi,j, yi,j|λi,j, µi,j) = (1− ϵ)π∗
g(xi,j, yi,j|λi,j, µi,j)

+ϵπ∗
g(xi,j, yi,j|exp(c(x)), exp(c(y))),

(2.2)

where c(x) and c(y) are the league averages for home and away goals respectively.
To allow the parameters to vary in time, they use Brownian motion for αt′′

A , the attacking strength of
team A at time t”, and tie it to αA for t′ (≤ t′′).

αt′′

A
d
= αt′

A + (Bα,A(t
′′/K)−Bα,A(t

′/K))
σα,A√

1− θ0(1− θ0/2)
, (2.3)

where B.,.(t), t ≥ 0 is standard Brownian motion starting at level zero and K is the inverse loss of
memory rate. The strength of the teams have to follow equation 2.2 for each game, and 2.3 describes
the time development. Markov Chain Monte Carlo methods are used to handle how the strengths of
the teams are updated after a game. 1684 matches of Premier League to decide the values of constants
c(x), c(y), K, θ0 and ϵ. As a betting strategy they choose to maximize the expected profit minus the
variance of the profit. This is attempted on both single bets and combo-bets with multiple games, but
single bets is concluded to be easier and more reliable.
Rue, Salvesen bring up several possible improvements to their model. Most notably; The use of
more interesting data than simply the final match-result and that the home field advantage should
play a part. The goal-model could be improved upon by perhaps using the birth-process approach
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of Dixon and Robinson (1998)[3], and the time-model should be updated to include the local trend
(first derivative) in its predictions.

Timmaraju, Palnitkar, Knahha - Game on! Predicting English Premier League Match Out-
comes [19] take a machine learning approach where the match result is used in combination with
corners and shots on target. They test out two ways of using these parameters:

• KKP (k-past Performances) simply uses the average values for the team of the k last matches
played by that team. For instance, the goal related parameter is the sum of goals scored the
last k games divided by k. This is collected in a vector PA = [gavg; cavg; stavg] and the or-
dered difference PA − PB is what’s taken as the feature (measurable property of observed
phenomenon).

• TGKPP (Temporal Gradient k-Past Performances) uses the same k last matches, but applies
what they call a temporal differencing operator on the data. gdA = (g2−g1, g3−g2, ..., gk−kk−1,
andPdiff = [mean(gdA)−mean(gdB);mean(cdA)−mean(cdB);mean(stdA)−mean(stdB)].
The feature is the 6-element vector [PA−PB;Pdiff ]. The reasons behind these choices are not
really made clear.

From here they run the features through various standard machine learning algorithms with different
values of k. The best results appear to be using the Radial Basis Function kernel on k=7 with the
TGKPP, where they achieve an 66.67% prediction accuracy (ignoring the 2-class prediction where
they omit all games ending in draws). This looks impressive but is on a tiny sample, they have only
tested on 51 different games. There is also a clear weakness that the feature doesn’t contain any
information about the strength of the teams that were played - a decent team having played bad
teams will have a better feature than a good team having played good teams.

Owen - Dynamic Bayesian forecasting models of football match outcomes with estimation of
the evolution variance parameter (2011) [15] uses an approach very similar to the one described
by Rue, Salvesen (2000)[18], but instead uses it on the Scottish Premier League (SPL) and also
makes some alterations to the model. Firstly they discard the changes to the probability distribution
for different scores as they did not find any evidence of them applying to the SPL.

Whereas Rue and Salvesen have the prior strengths of teams spread uniformly on (-0.2, 0.2) based
on the rankings of the previous year, Owen decides them by applying the model to the previous years
data. This brings up an issue where the teams promoted from the 1st division won’t have any prior
strength. This is solved by giving them the same strength as the team they were replacing. This is
not a flawless tactic, as the whole point of having separate strengths for attack and defense is that
two teams of equal skill (i.e. expected to end up at the same rank at the end of the season) can have
their strength built on a strong attack or a strong defense or a slightly weaker combination of the
two. So while the overall strength of the team they are replacing might be similar, directly inheriting
the strength composition of an entirely different team is not necessarily the best idea. A different
approach might be to keep the overall strength (i.e. αA + βA the same) but base the relationship of
the strengths on the results from the particular teams last season. It is unclear how much better this
estimation will be, it may be sufficient to use the simple approach as long as the prior selected reflects
the uncertainty
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Instead of using continuous time, Owen concludes that using discrete time offers more or less the
same predictive probabilities. The reasoning being that the time between two matches for a team is
typically restricted to 3-4 days, 7 days or 14 days, and that this simplification speeds up the simulation.
Owen lets the evolution variance σ2 be kept as a parameter in the model, effectively allowing it to
better adapt to a team suddenly showing signs of a rapid change of skill . This is especially useful
for correcting badly estimated prior strengths, such as for promoted teams.

Koopman, Lit (2015) - A dynamic bivariate Poisson model for analyzing and forecasting match
results in the English Premier League [10] is the latest in a long line of models built on the
one first proposed by Maher (1982)[12]. The result (X,Y) of a football match between teams i(at
home) and j(away) in week t is assumed to be generated from the bivariate Poisson distribution with
probability density function

PBP (X, Y ;λi,j, µi,j, γ) = exp(−λi,j − µi,j − γ)
λXi,j
X!

µY
i,j

Y !

min(X,Y )∑
k=0

(
X

k

)(
Y

k

)
k!(

γ

λi,jµi,j

)k, (2.4)

with λi,j and µi,j being the intensities for X and Y respectively and p a coefficient for the dependency
between X and Y, Cov(X, Y ) = γ.

The correlation coefficient between X and Y is thereby ρ = γ√
(λi,j+γ)(µi,j+γ)

.

The goal intensities for home team i and away team j in week t are λi,j,t = exp(δ + αi,t − βj,t) and
µi,j,t = exp(αj,t − βi,t), where the δ is the home advantage parameter that can be unique for every
team or equal.

To allow the strengths to change over time, the strength parameters α and β are described as auto-
regressive processes αi,t = κα,i + ϕα,iαi,t−1 + ηα,i,t and βi,t = κβ,i + ϕβ,iβi,t−1 + ηβ,i,t. κ are team
specific unknown constants, ϕ are auto-regressive coefficients and η are normally distributed and
independent error terms. They implement the same modification to the joint probability distribution
as Dixon, Coles (1997), and they allow the random shocks η to vary in scale so that large changes in
strength over winter and summer breaks are accepted. To reduce the number of parameters, the home
field advantage of a team is taken from a set of two values, one for the typical top 5 teams (Arsenal,
Manchester City, Manchester United, Liverpool and Chelsea), as they are expected to have a larger
home advantage, and one for the rest.

For practicality the model is presented in general state space form. The strengths of the teams are
stored in a 2Jx1 matrix zt = (α1t, ..., αJt, β1t, ..., βJt) where J is the number of teams (20), holding
the strengths of each team at time t. In this form, zt = κ + Φzt−1 + ηt, with ηt ∼ NID(0, H) and
NID(c, d)means a normal distribution with mean c and variance d. κ,Φ andH are matrices defined
as:

κ = (κα,1, ..., κα,J , κβ,1, ..., κβ,J)

Φ = diag(ϕα,1, ..., ϕα,J , ϕβ,1, ..., ϕβJ
)

H = diag(σ2
α,1, ..., σ

2
α,J , σ

2
β,1, ..., σ

2
β,J)
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The remaining unknown parameters are placed in the parameter vector ψ = (ϕ′, h′, δ, p)′ where ϕ′

and h′ are are vectors containing the diagonal elements of Φ and H respectively.

To estimate the parameters they maximize the likelihood equation. If gt is a vector containing the
match results from one week (J/2 games), then the observation density of gt given zt is p(gt|zt;ψ) =∑J/2

k=1 pBP (λi,j,t, µi,j,t, p) The signal vector is expressed as E(gt|zt;ψ) = exp(atδ +Wtzt), where at
consists of elements of value 1 when the corresponding score in yt is for a home team and vice versa,
andWt is a matrix that selects the appropriate α, β values from zt.

For g = (g′1, ..., g
′
n) and z = (z′1, ..., z

′
n), the joint density becomes p(g, z;ψ) = p(g|z;ψ)p(z;ψ)

where p(z;ψ) = p(z1;ψ)Π
n
t=2p(zt|z1, ..., zt−1;ψ), which leads to the likelihood function

l(ψ) =

∫
p(g|z;ψ)p(z;ψ)dz (2.5)

This has no analytic solutions and as numerical integration is unfeasible Monte Carlo simulation
methods are used to evaluate for different values of ψ.

For testing the out-of-sample performance of the model, meaning how well it predicts future, unseen
games, they adopt a conservative betting strategy with slight modifications from the one used by
Rue, Salvesen(2000)[18]. They maximize expected profit, but only accept bets where the expected
value (EV) is above a threshold ω for some ω > 0. Also they consider any bet with odds higher than
7 a ”long shot”, and even for EV > ω they only bet 0.3 units on these instead of the 1.0 placed on
normal bets. For ω = 0.4 this means playing 50 bets over two seasons and an expected profit of 50%.

Of possible improvements they mention the use of more information from games, testing out other
dynamicmodels such as randomwalks longmemory processes, using BayesianMarkovChainMonte
Carlo methods for making predictions that account for parameter uncertainty, and lastly exploiting
the lack of efficiency in the betting market - i.e. using the highest odds on the market instead of the
average.

2.1 Other studies of interest

Oberstone(2009) - Differentiating the Top English Premier League Football Clubs from the
Rest of the Pack: Identifying the Keys to Success [14] seeks to uncover what separates a good
team from a bad one in the BPL - basically, what data is worth looking at. Data is collected from
the 2007-2008 season of BPL, and a regression model is devised using the amount of point gathered
over the season, Y, as the dependent variable. Starting out with 17 independent variables, this is
narrowed down to 6 statistically significant pitch interactions; (1) goals to shots ratio, (2) % goals
scored outside of the box, (3) short to long pass ratio, (4) total crosses, (5) average goals conceded
and (6) yellow cards. These values are all taken over the whole season, and only variables (5) and
(6) have negative impacts on Y. The model is used to retrodict the same season and the results are
very good with R2 = 0.990 and p < 0.0001, though I would have liked to see the model be tested
on some other season than the one the data was drawn from. By design the model will do a good job
at ’predicting’ itself, but doing well on an other season would mean that the model has uncovered
some underlying success factors of being a good team.
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Oberstone also runs an ANOVA to see if any of the pitch interactions are significant for a team
to be a part of the top 4, the bottom 4 or the middle 12. This highlighted a number of variables that
significantly have an impact on what tier a team places in. Average shots fired per game and basically
everything to do with passing (number of passes, short to long ratio, pass completion) are all higher
in the higher tiers. Crossing seems to be at an even level throughout the league and not have any real
impact. Defensively the good teams make more tackles while receiving fewer cards.

Goddard (2005) - Regression models for forecasting goals and match results in association
football [8] focuses on deciding whether (1) result modeling (H,D,A) or (2) goal modeling is the
best. One could assume that the goal-model should be better because it’s built on more extensive
data, but on the other hand league points are awarded for winning (and drawing) games and not for
scoring goals, meaning the goal data might include a lot of noise that isn’t really relevant. One also
avoids relying on models like the Poisson distribution to describe something that not everyone agrees
is Poisson distribution.
To decide which method is the best, the comparison has to be done on the basis of how to best
predict match result (H,D,A) as only the goal-focused method can predict the amount of goals. To
measure the forecasting performance, Goddard adopts the pseudo-likelihood introduced by Rue,
Salvesen(2000) - the geometric mean of the estimated probabilities of the actual results. So if the
results of matches M1 and M2 were H and D respectively and a model had probabilities for these
two results as P1(H) = 0.3 and P2(D) = 0.25 then pseudo-likelihood is 2

√
0.3 ∗ 0.25. In the study,

the best method seems to be a combination of the two - using goal data to decide the predictors and
using those predictor to forecast the match result directly. This method has the best results on the ma-
jority of the seasons tested, although it doesn’t always give the best results, and Goddard concludes
that the forecasting ability of the different approaches are rather similar.

Fong, Rue, Wakefield (2009) - Bayesian inference for generalized linear mixed models [5]
describe how Integrated Nested Laplace Approximations (INLA) has made Bayesian inference for
Generalized Linear Mixed Models (GLMM) feasible. Markov Chain Monte Carlo methods have
long been the gold standard for simulation, as they are easy to implement and one can achieve an
arbitrary accuracy by running the algorithm long enough. However, this comes at a price of severe
computational cost. INLA resolves this problem by approximating the posterior and then evaluating it
using Laplace approximations. The output is the posterior marginal distributions for each parameter.
As they time the computations, the differences in runtimes are enormous. For an example problem
with temporal smoothing, INLA used 45 seconds on a single core while MCMC required 15 hours to
achieve similar accuracy. For an example in B-spline nonparametric regression, INLA took 5 seconds
to run while MCMC required 40 hours to reach the same accuracy. So INLA has some very attractive
properties, especially if one doesn’t require a specific accuracy and if the user lacks access to a super
computer.
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Chapter 3

Presentation of data

While others have been able to forecast match results with decent success, they have, with few ex-
ceptions, only used the final score as the independent variable. Over the years, the amount of data
available has become much greater - both in terms of size and variety. For the largest soccer leagues,
anyone can download massive data sets for no charge, and this means there is room for models tak-
ing advantage of these new data. The data used in this paper are openly available at www.football-
data.co.uk. [6] I am interested in a wide variety of data, including the match result, shots by each
team, shots on target and the bookmaker odds for each of these games. All of this is available from
the season 2000-2001 until present day, meaning 14 completed seasons are available for optimizing
my model.

The actual data is a matrix where each row represents a match, and the columns group the following
statistics:

• Date

• (H) Home Team

• (A) Away Team

• (FTHG) Full Time Home Team Goals

• (FTR) Full Time Result (H, D or A)

• (HTHG) Half Time Home Team Goals

• (HTR) Half Time Results (H, D or A)

• (HS) Home Team Shots

• (HSOT) Home Team Shots on Target

• (HC) Home Team Corners

• (HF) Home Team Fouls

• (HY) Home Team Yellow Cards

• (HR) Home Team Red Cards

and similarly, FTAG, HTAG, AS, ASOT, AC, AF, AY and AR represent the corresponding values
for the away team. In addition the data includes home win, draw and away win odds collected from
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a variety of bookmakers, and the most recent seasons include maximum and average odds across the
different bookmakers as calculated by www.betbrain.com. This will prove useful for creating and
testing an effective betting strategy.
I am interesting in finding out which data have the strongest correlations to scoring and conceding
goals, which again leads to winning or losing games. I have chosen to forecast match results by
predicting the amounts of goals scored instead of directly predicting the result, so I will not be looking
for any connections directly leading to a team winning, nor will I look at the statistics recorded at
Half Time.

Effect on defense from committing fouls A foul gives the opponent a free kick, so it’s natural
to think that committing fouls has a negative effect on your defense. To look at this effect I make
three linear regression models where goals allowed, shots allowed and SOT allowed are explained
by fouls.
ShotsAllowed = 13, 435 + 0, 0004 · Fouls
SOTAllowed = 4, 477− 0, 0014 · Fouls
GoalsAllowed = 1, 362 + 0, 0021 · Fouls
First of all these effects very small. On average a team commits 10.77 fouls per game, which translates
to about 0.02 goals per game. Secondly none of the effects appear to be significant. I safely reject
that fouls committed have any real impact on a match result.

Effect on defense from receiving yellow or red cards If a team receives a yellow card (YC) they
have to play more carefully, while receiving a red card (RC) will often directly weaken their defense,
so I am interested in how they affect the defensive statistics (goals allowed, shots allowed and SOT).
GoalsAllowed = 1, 1529 + 0, 1214 · Y C + 0, 540 ·RC
ShotsAllowed = 12, 678 + 0, 325 · Y C + 3, 482 ·RC
SOTAllowed = 4, 093 + 0, 1870 · Y C + 1, 012 ·RC
Every one of these effects are significant (p<0.05). To put them in perspective, the average team
receives 1.59 YCs and 0.070 RCs per game. The three most usual amounts of YCs handed out to a
team in a game are 1, 2 and 0 in that order, and this amounts to about 80% of the matches. Overall
the effects from YCs are not that strong, and more importantly the expectation is that a team will
receive one or two YCs in a match. As a team is expected to receive one or two YCs, the effect of
those cards can be included in the expected goals/shots/SOT allowed, meaning YCs will only have
a real impact when it is abnormally high. A team receiving 6 YCs (unusually high) in a game will
only be about 4 over the expected, and this should lead to maybe 1 extra SOT, which is not that big
of an impact.
RCs on the other hand have a very strong effect in all categories, which is to be expected. RCs
appear in only about 5% of all matches, but when they do they make a clear impact. It’s interesting
that receiving an RC increases the GoalsAllowed

SOTAllowed
ratio, and this might be because the RC is sometimes

received in combination with giving away a penalty or a free kick in a dangerous position. Based on
all this I think ignoring YCs and focusing on RCs is a good strategy, and I want to keep the effect of
an RC on both goals and shots/SOT.
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(a) Scatterplot showing the connection between shots
and goals scored.

(b) Scatterplot showing the connection between SOT
and goals scored.

Effect on offense from receiving red cards Receiving a YC shouldn’t have any real impact on the
offensive strength of a team, but if a team is reduced to 10 players their offensive power definitely
takes a hit. Using the same approach as for the defense I have these formulas for explaining the
impact of red cards on the offense of a team:

GoalsScored = 1, 4285− 0, 635 ·RC

ShotsF ired = 13, 637− 2, 832 ·RC

SOTFired = 4, 5695− 1, 544 ·RC

where again all the effects are significant (p<0.05). As expected, receiving an RC makes a big
negative impact, and again the RC seems to have two separate effects on goals and SOT. The
GoalsScored
SOTFired

ratio decreases, which could be a result of attackers either being sent off or being sub-
stituted with a defender to compensate for a defender being sent off. Not only does the team fire
fewer shots, but the mixture of players will now also on average be worse at shooting, so again I
want to keep the effect on both goals and shots/SOT.

Shots/SOT and goals Shots and SOT both have the obvious connection to goals scored that (ig-
noring own goals) you can’t have a goal without both a shot and an SOT. Figures 3.1a (goals vs
shots) and 3.1b (goals vs SOT) are both plotted with noise of (+/- 0.5) to avoid points being stacked
on top of each other. Goals vs Shots has a cloud centered around the two averages (µs = 13.5 and
µg = 1.38, but there is no clear indication that a lot of shots lead to a lot of goals. Goals vs SOT has
a more distinctive trend where, as expected, more SOT is associated with more goals scored. Both
will need to be assessed further, but SOT looks to be the more useful statistic.

Correlation between shots/SOT and shots/SOT conceded A team with a good offense typically
has a good defense, so a team getting a lot of chances should not allow as many chances. And if a
team gets gets a chance then there is a significant interval of time where the other team could not
have gotten a chance as they cannot happen at the same time.

I test the correlation using Spearmans r and Pearsons ρ.
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Figure 3.2: Scatterplot showing the connection between corners and goals scored.

Shots and shots allowed have correlations r = −0.480 and ρ = −0.501, significant with p<0.001.
SOT and SOT allowed have correlations r = −0.280 and ρ = −0.273 , significant with p<0.001.

This shows that there is a clear positive correlation between α̂ and β̂.

Corners I don’t have access to goals scored by corners, so I’ll have to look at the indirect effect
of the total goals scored. Figure 3.2 shows goals scored (with noise) plotted against corners (with
noise). From this it’s pretty clear that the amount of corners a team gets has basically no impact on
goals scored.

TheHome Field Advantage (HFA) I’m interested in how the home field advantage changes goals
scored (HFAg), Shots Fired (HFAs) and SOT (HFASOT ). Testing this formally is difficult because
the data are taken frommatches with different teams so even if goals scored follows some distribution
the sample values would be drawn from 380 similarly shaped distributions with different means.
Instead I’ll simply compare the means of the data and do a graphical analysis. Figure 3.4 shows the
frequency of shots on target grouped by home and away teams . Clearly home teams have some
advantage in creating chances.

To examine HFAg I’ll look at how the goal:shot and goal:SOT ratios change by being home or
away.

µG:shot,H and µG:shot,A are the average goal:shot ratios for home and away teams, while µG:SOT,H and
µG:SOT,Aare the average goal:SOT ratios.

For my data sample I find that µG:shot,H = 0.110, µG:shot,A = 0.102 , µG:SOT,H = 0.315 and
µG:SOT,A = 0.294. There appears to be some positive effect on the ratios from being at home, but
the effect is so minuscule that I choose not to include it further.

The distribution of shots and SOT is of interest as I want to estimate the expected amount of
chances created by a team in a game, and it would be very convenient if they were to follow the
Poisson distribution. I can’t actually test for this formally as like earlier every match would have a
unique mean to their distribution, but I can plot the count data for shots and SOT against the expected
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Figure 3.3: Histogram of goals (left) and shots (right) by home and away teams

Figure 3.4: Histogram of SOT by home and away teams
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Figure 3.5: Observed vs Expected values for shots (left) and SOT (right) for home teams

values to see if it looks plausible. To prevent the HFA from disrupting the data I only look at the data
for home teams.
By just looking at the graphs it seems like both could follow the Poisson distribution, and it seems
as though SOT has a better fit.

To recapitulate, red cards seem to affect every part of both defense and offense negatively. SOT
seems to more consistently be converted into goals than just shots, so it could be useful for describing
a teams ability to create goal-scoring opportunities. The home field advantage has a clear, positive
impact on goals scored, shots and SOT. The other statistics (fouls and corners) do not seem to be of
any big importance. Lastly, both shots and SOT seem to fit decently to the Poisson distribution.
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Chapter 4

Quality Assessment of the models

Prior to introducing the actual model, I need a way to gauge how well it works. To measure the
accuracy of themodels I’ll use three tools; DIC andWAIC - two related tools for comparing goodness
of fit while factoring in model complexity, and Second Half Pseudo-Likelihood - used for comparing
mid-season predictive power. Both WAIC and DIC are readily available in the INLA package for R,
while the Pseudo-Likelihood is implemented specifically for this project.

4.1 Likelihood

I won’t be using the likelihood directly, but it plays a big part in calculating theWAIC and DIC so it’s
natural to include a brief explanation. Essentially the likelihood is how likely an explanation is, or in
this case, how likely it is that the data could have been produced by the suggested model. Calculating
the likelihood means making a guess as to how, i.e. by what distribution, the data was generated,
and then taking the product of the probability mass function of all the data. So if my observed data
is X1, ..., Xn and I believe this is generated from the Poisson distribution with mean λ then the
likelihood function is L(λ;X) = Πn

i=1
λxie−λ

xi!
. Typically the log-likelihood l(λ;X) = log(L(λ;X) is

used as it’s easier to maximize.

4.2 Deviance Information Criterion (DIC)

The DIC [2] is a generalization of the Akaike Information Criterion (AIC) and the Bayesian Infor-
mation Criterion (BIC), designed to compare the goodness of fit (deviance) of two models while
penalizing over-parametrization. Ideally I would want to look at the predictive capabilities on out-
of-sample data. The problem is that we don’t have access to the actual data-generating model, so
the data becomes increasingly sparse the bigger the out of sample becomes. Leave-One-Out Cross
Validation is an option, but it is very computationally expensive. DIC is an attempt to work around
this by giving an adjusted within-sample predictive accuracy.

The deviance of a fit of a fit of a fit is defined as the double log-likelihood ratio between the
model and the full model where every observation has a parameter giving it perfect fit, D(y) =
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−2(log(p(y|θ0)) − log(p(y|θs))), where a smaller deviation means a better fit. θ0 is the posterior
parameters estimated by maximum likelihood, θs is the fitted parameters for the full model and y is
the observed effects. This is an insufficient statistic as it can get arbitrarily small by simply adding
more parameters, so there has to be a term that punishes having too many parameters.

AIC is an attempt to fix this by adding a linear penalty for adding parameters, meaning they have to
significantly contribute to an increased fit to be included.AIC = D(y)+2k, where k is the number of
parameters in the model and D(y) is the deviance as defined above. This is sufficient for very simple
models, but having informative priors tends to (1) reduce the amount of over-fitting (meaning the
+2 punishment per parameter is too strict), and (2) reduces the ”effective number of parameters”.

DIC makes two changes to the AIC. It replaces the Maximum Likelihood with the posterior mean
θBayes in the Deviance definition, and changes out k with a data-based correction term.

The replacement for k is referred to as the effective number of parameters, defined as pDIC =
2(log(p(y|θBayes)) − Epost(log(p(y|θ)))), where the second term is the average of the posterior pa-
rameters calculated through simulations. The posterior mean θBayes is the mean of the posterior dis-
tribution with mean square error used as risk.

The actual equation becomes DIC = −2(log(p(y|θBayes)) + 2pDIC), where a lower DIC is better.

4.3 WAIC - Watanabe Akaike Information Criterion

WAIC[20] is defined as WAIC = −2(lppd − pWAIC) where lppd is the log pointwise predictive
density calculated as

∑n
i=0 log(

1
S

∑S
s=1 p(yi|θs)) for S simulations of the posterior density. pWAIC

is the WAIC effective number of parameters pWAIC =
∑n

i=1 varpost(log(p(yi|θ))), and is a way of
expressing the amount of unconstrained parameters. Parameters having no prior information and no
constraints will count as 1, while parameters with complete prior information will count as 0.

WAIC is based on pointwise calculations, with the ambition of estimating a LOO-CV test (as this
is too computationally demanding). This is important because it means that WAIC is evaluating
predictions of actual not-seen data, a property not found in AIC and DIC. [7] I’m using the version
of WAIC implemented in the INLA package.

4.4 Second Half Pseudo-Likelihood

I want to directly test the predictive power of the models, meaning I have to attempt out of sample
prediction. Pseudo-Likelihood (PL) refers to the geometric mean of the estimated probabilities for
the actual results, as designed by Rue and Salvesen (2000)[18] and later used by Goddard (2005)[8].
For each matchMi the prediction model gives a probability distribution for the outcomes H (home
victory), D (draw) and A (away victory), for instance P(H) = 0.25, P(D) = 0.25, P(A) = 0.5. Over
a large amount of games, the model that gives me the highest probability prediction for the actual
result is the best one. Put mathematically, whereR(Mi) is the result that can either be H, D or A, and
that the actual outcome for that match is denoted by r:
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PL = N

√
ΠN

i=0P (R(Mi) = r) (4.1)

For this to test actual predictive power, I’ll only start the prediction after half the season. A season
has 38 rounds, so the first to be predicted is round 20 where the first 19 rounds are included in the
model as history, the second to be predicted is the 21st round where the first 20 rounds are included
as history, and so on. If the PL gets substantially higher by increasing the complexity of the model,
then that is a good indication that the added complexity is worth it.
Finding the probability of the outcomes H, D and A is not trivial, an estimation based on simulation is
my best option. I’ll have to generate valid samples of the parameters and use them to simulatematches
to get a general picture of the probability distribution. In all the models we have thatX ∼ bin(X̂, p),
Y ∼ bin(Ŷ , q) and X̂ ∼ Po(λ̂x), Ŷ ∼ Po(λ̂y).
The parameters are not known to an exact degree, they are estimated to best ability with an accom-
panying precision matrix quantifying the uncertainty. I can generate a large number of samples from
the posterior distribution, and for each of these I can simulate each game a large number of times
each time recording the result (x,y). After enough simulations I’ll have a good overview of the prob-
abilities for each score and by extension the result of the game. Equation 4.1 is valid for measuring
both of these predictive capabilities. PL(score) is the Pseudo-Likelihood for the match scores (i.e.
(3,2), (1,0) etc), while PL(result) is the Pseudo-Likelihood for the match result (i.e. H, D, A).
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Chapter 5

Designing a model for prediction

To make the approach apprehensible I want to start off with a simple model and gradually increase
the complexity. This will also allow me to verify that the accuracy of the model is improving. For
the simulations and testing in this chapter, what is referred to as a chance is always a shot on target
(SOT). This is done because running simulations with both versions would be too time consuming,
so I will first focus on finding a good model and leave the shots vs. SOT decision for later.
The models are implemented using the R package INLA.
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5.1 Model 1: Chances Poisson distributed and constant p of con-
version

I start with a model where each team (home team i and away team j) has two strengths (α̂ and β̂)
describing their chance creating and chance preventing abilities, and say that chances created in a
match (X̂i,j and Ŷi,j) are independently distributed Poisson processes conditioned on these strengths
with means λ̂i,j and µ̂i,j . There is also a constant home field advantage δ̂ that works in the favor the
home team. The estimatedmeans are calculated bymaximum likelihood estimation of the regressions
ln(λ̂i,j) = α̂0 + α̂i − β̂j + δ̂ ln(µ̂i,j) = α̂0 + α̂j − β̂i

where α̂0 is the intercept term.
As X̂i,j and Ŷi,j are both Poisson distributed with means λ̂i,j and µ̂i,j , together chances created by
both teams are distributed as

P (X̂i,j = x, Ŷi,j = y|λ;µ) = e−(λ+µ)λ
x

x!

µy

y!
, (5.1)

where λ = λ̂i,j and µ = µ̂i,j .

Goals scored (Xi,j and Yi,j) are Binomially distributed conditioned on chances created (X̂i,j and
Ŷi,j) and probability of conversion p, where p is assumed equal for all teams. For home team i,
Xi,j ∼ bin(X̂i,j, p), so for n = X̂i,j we have that P (X = x) =

(
n
x

)
px(1− p)n−x.

I impose the constraint that
∑J

i=0 αi = 0,
∑J

i=0 βi = 0,
∑J

i=0 α̂i = 0,
∑J

i=0 β̂i = 0, meaning that a
match result is always equally good for one team as it is bad for the other team.

5.1.1 Priors

For model 1 I have to choose suitable priors for the chance-related strengths (α̂ and β̂), the league-
wide constant probability of conversion p and the home field advantage δ̂. Using Gaussian priors are
the most reasonable choice, so I have to give expected values and precision for these priors. I do this
by running the model over 14 seasons using uninformative priors and comparing the posterior. The
mean makes an appropriate expected value, and I can calculate the sample variance to see how much
the values vary. Precision is defined as Prec(X) = 1

V ar(X)
, but I’ll be using Prec(X) = 1

2V ar(X)
as

a conservative choice as 14 samples is not enough to really judge variance.
For α̂ and β̂ I just collect all the offensive and defensive strengths observed, giving me 20∗14 = 280
values of each. By design they will be centered around 0, and both the offensive and defensive mean
have sample variances around 0.035. So my priors for α̂ and β̂ are both Gaussian with mean 0 and
precision 14.
δ̂: Sample mean 0.28, sample variance 0.001363. A variance this low would lead to the posterior
being completely dominated by the prior, so in this case I simply say that the prior for δ̂ is Gaussian
with mean 0.28 and precision 50.
p: I’m actually looking for the variance and mean of logit(p). Sample mean is -1.267 and sample
variance is 0.031. I’ll let the intercept be decided within the model, so I’m only modeling the error
term.Because of this my prior is Gaussian with mean 0 and precision 15.
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5.1.2 Performance with data

Season 00/01 01/02 02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12 12/13 13/14
Model1DIC 5388.88 5418.70 5764.27 5855.31 5644.97 5632.78 5652.16 5784.30 5815.74 5901.10 5905.48 5973.16 5963.57 5216.53

Model1WAIC 5389.38 5420.26 5772.83 5865.00 5653.14 5638.60 5660.89 5793.94 5825.73 5908.88 5912.97 5982.81 5972.71 5216.12

Table 5.1: WAIC and DIC for Model 1

WAIC and DIC for a model alone is not very useful, this is for comparison with future models.
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5.2 Model 2: Unique probability of conversion for each team

Some players are good finishers and others are bad finishers, so as a natural extension of Model 1
I here allow for teams to have a unique probability of converting a chance into a goal. This means
every team is described by three strengths (α̂, β̂ and p). Chances are predicted identically to Model
1 and goals are Binomially distributed with P (X = x) =

(
n
x

)
px(1 − p)n−x, where p is unique for

every attacking team and n = X̂i,j .

5.2.1 Priors

α̂, β̂ and δ̂ are treated identically to model 1. Here every team has a unique parameter logit(p), and
I’m looking at the variation of the values(+ intercept) across the 14 seasons. The sample mean is
at -1.29 and sample variance is 0.0767. The intercept is again decided within the model, I’m only
interested in the variance term. Therefore my prior for p is Gaussian with mean 0 and precision 6.

5.2.2 Performance with data

Season 00/01 01/02 02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12 12/13 13/14
Model2DIC 5398.08 5402.98 5762.15 5862.17 5649.14 5629.84 5650.69 5773.62 5810.38 5881.42 5920.98 5980.19 5964.18 5202.39

Model2WAIC 5399.62 5406.59 5773.08 5877.24 5659.96 5640.43 5662.85 5787.51 5823.87 5893.31 5931.33 5992.61 5976.16 5203.97

Table 5.2: WAIC and DIC for Model 2

Table 5.2 WAIC and DIC results for Model 2. As mentioned earlier they have no use on their own,
so table 5.3 contains DIC(Model2) - DIC(Model1) and WAIC(Model2) - WAIC(Model1). As the
goal is a low DIC and WAIC, a negative number means that Model 2 is better.

Season 00/01 01/02 02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12 12/13 13/14
DIC 9.20 -15.72 -2.12 6.86 4.17 -2.94 -1.47 -10.67 -5.35 -19.68 15.50 7.03 0.60 -14.14

WAIC 10.25 -13.68 0.26 12.24 6.82 1.83 1.96 -6.44 -1.86 -15.58 18.36 9.81 3.45 -12.15

Table 5.3: Difference in WAIC and DIC between Model 1 and Model 2. Negative number means
Model 2 performs better.

Overall the results indicate that Model 2 is better than Model 1, though for some seasons the increase
in complexity is not worth it.

5.2.3 Validity of Model 2 over Model 1

I’m interested in the validity in going from Model 1 to Model 2 - going from a single value p that is
equal for all teams to letting each team have their own p.

In Model 1, the average logit(p) value is -1.267, which translates to a scoring probability of p =
0.2197399 for every team. The sample variance is 0.031.
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Figure 5.1: Histogram showing the range of probability values in Model 2 for all seasons

Now forModel 2, the average logit(p) is -1.287, so prettymuch the same. The sample variance here is
0.067, so more than double. Looking at the max/min values, we havemax(logit(p)) = −0.3182 and
min(logit(p)) = −1.9869 which corresponds to probabilities max(p) = 0.42 and min(p) = 0.12.
This means teams that convert about 12% and 42% of their shots would both be treated as converting
22% of them. Because of this it seems very justified to let every team have their own probability
value. Figure 5.1 shows the range of different probability values observed.
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5.3 Model 3: Probability of conversion depends on the opposi-
tion

Similarly to how some players are good finishers and some are bad, not all keepers hold the same
quality. I want the probability of conversion to be dependent on both the finishing-strength of the
attacking team and the shotstopping-strength of the defensive team. Each team is therefore described
by four strengths (α̂, β̂, the goal converting strength α, and the goal preventing strength β ). The
probability of conversion for the home team in a match is pi,j = 1

1+eα0−αi+βj
and for the away team

qi,j =
1

1+eα0−αj+βi
, where α0 is the model offset.

5.3.1 Priors

α̂, β̂ and δ̂ are again treated identically to model 1 and 2. Here every team has two unique parameter
α and β and I’m looking at the variation of the values(+ intercept) across the 14 seasons. For α the
sample mean is at -1.30 while the sample variance is 0.0776. For β the sample mean is -1.32 and the
sample variance is 0.0740. The variances are basically the same, and as again I’m only interested in
the variance term I can use the same prior for both parameters. Therefore my prior is Gaussian with
mean 0 and precision 6.

5.3.2 Performance with data

Season 00/01 01/02 02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12 12/13 13/14
Model3DIC 5415.15 5413.12 5773.76 5861.77 5652.99 5643.01 5647.89 5765.94 5805.30 5866.15 5928.82 5976.21 5955.25 5213.31

Model3WAIC 5418.47 5419.51 5788.26 5882.05 5667.51 5659.22 5663.85 5783.50 5822.44 5881.51 5942.59 5991.92 5969.75 5217.41

Table 5.4: WAIC and DIC for Model 3

Table 5.4 shows the WAIC and DIC scores for Model 3 across the seasons.

Season 00/01 01/02 02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12 12/13 13/14
DIC 17.07 10.13 11.61 -0.40 3.85 13.17 -2.80 -7.68 -5.08 -15.27 7.85 -3.98 -8.93 10.92

WAIC 18.85 12.93 15.17 4.81 7.55 18.79 0.99 -4.01 -1.43 -11.80 11.26 -0.70 -6.41 13.44

Table 5.5: Difference in WAIC and DIC between Model 2 and Model 3. Negative number means
Model 3 performs better.

Table 5.5 shows the change in WAIC and DIC when moving from Model 2 to Model 3, where a
negative number means an improvement. Overall the benchmark seems to favor Model 2, though 5
of the 14 seasons have an improved WAIC for Model 3.

5.3.3 Validity of Model 3 over Model 2

I’m interested in the validity in going from Model 2 to Model 3 - from each team having a unique
probability p of conversion to letting p be unique to each match - decided by the parameters α and β
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Figure 5.2: Range of goal converting strength α in Model 3 all seasons

of the attacking and defending team respectively.

Figure 5.3: Range of goal defending strength β in Model 3 all seasons

As shown in figures 5.2 and 5.3, both parameters are estimated to have widely different values for
different teams, so there is definitely a case for having both parameters for each team.
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Summary Model 1-3

Figures 5.4 to 5.7 demonstrate how the models compare to each other. DIC prefers Model 3 in the
majority of the cases. WAIC seems to value the 3 models rather evenly. Season 14 (actually season
13/14) seems to be an something of an outlier in that it was very consistent and therefore gets low
scores in WAIC and DIC.
For the Pseudo-Likelihood I ran prediction for seasons 05/06 until 11/12. I run 1000 samples from
the posterior and for each of these the games are simulated 1000 times. This means that running
one season with one model takes about 20 minutes, but it is necessary to make sure every possible
outcome of every match is being simulated, especially for looking at the Pseudo-Likelihood of the
score.
The results of the prediction testing is not really conclusive. For PL(result) - Model 3 does the best
of all models in 4 of the 7 seasons, but also performs the worst of all for season 10/11. For PL(score)
- Model 3 is only the best in two of the seasons, and Model 2 is generally the worst.
Overall model 3 seems to be an improvement on Model 1 and especially Model 2, but I think the
Model can be improved upon significantly.

Figure 5.4: DIC for all seasons Model 1-3
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Figure 5.5: WAIC for all seasons Model 1-3

Figure 5.6: PL(score) (y-axis) seasons 03/04 and 08/09 Model 1-3

Figure 5.7: PL(result) (y-axis) seasons 03/04 and 08/09 Model 1-3
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Further Improvements on Model 3

5.3.4 Correlation between parameters

So far the models have assumed that all parameters are uncorrelated. A natural assumption is that,
while a team does not have to be equally good at producing shots and at converting shots into goals,
a good offense is most likely good at both. Also, a team with a good offense most likely has a good
defense, as good teams tend to be good in all aspects of the game and conversely for bad teams. This
does not mean that I can reduce the amount of parameters, but if α, β, α̂ and β̂ are correlated to some
degree then that puts constraints on the values that reduces variance and the number of effective
parameters.
I am looking for correlations between α and α̂, between β and β̂, and between α̂ and β̂. This is
because α̂ and β̂ both refer to the overall defensive and offensive skills of the team. The most natural
way of exploring the correlations is to plot the values against each other and see graphically if there
is a connection.
Figures 5.8, 5.9 and 5.10 show consistent positive correlations between these parameters. The
correlation is especially strong between α̂ and β̂.
In addition to this, as shown by figure 5.11 there is a small positive correlation observed between
α and β. These are more player-specific skills referring to the shot-stopping of the keeper and the
quality of shots made by the forwards. There is no reason to think that these would be strongly
correlated, except for the general idea that good teams have good players.

Figure 5.8: Scatter plot α against α̂
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Figure 5.9: Scatter plot β against β̂

Figure 5.10: Scatter plot α̂ against β̂

Figure 5.11: Scatter plot α against β
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5.3.5 Parameters change over time

A natural progression would be to let the parameters change over time. This would allow for changes
in short-term form, such as a player getting injured or suspended, a tightly packed schedule or
other temporary changes to a teams performance. It would allow for the recent history of games
to be weighted more heavily than those from a long time ago. This would allow for more long-term
changes, as when a team buys/sells a player. Letting parameters change a lot during longer breaks
should make so I can look at multiple seasons together instead of always starting fresh when a new
season begins.
Figure 5.12 shows how Arsenals parameters change as the season goes on. The calculations start
after half the season is finished, but still the values change drastically going through tops and dips. I
clearly need a model that accounts for these changes to predict accurately.

Figure 5.12: Arsenals parameters over time for season 08/09
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5.4 Model 4: Team-specific strengths change over time

As mentioned in the previous chapter, a natural extension of model 3 would be to let the parameters
be time-variant. This makes the computation a lot more time demanding, so to keep it at a workable
level I find it necessary to introduce certain simplifications. Firstly, the time unit will be the week
the match takes place, counting from 0 for the first match of the season. Secondly I no longer impose
the constraints

∑20
i=1 αi = 0,

∑20
i=1 α̂i = 0,

∑20
i=1 βi = 0 and

∑20
i=1 β̂i = 0. The latter in particular

reduces the time of one model fitting from half an hour to about a minute.
The strengths α, α̂, β and β̂ are now modeled as 1st order autoregressive parameters. This means
that αi = ρtαi−1 + ϵi, with |ρt| < 1 being the time correlation, and ϵi the error term ∼ N(0, τ−1

t )
with precision τt, and similarly for the other strengths.

5.4.1 Priors

For the home advantage I keep the same prior as for the previous models, Gaussian with mean 0.28
and precision 50.
For the parameters that now are autoregressive I use the PC prior for correlation ρt, with (mean, α) =
(0.5, 0.75). The previous models have been with ρt = 1, meaning constant through time, so this prior
suggests that ρt > 0.5with a 75% certainty. This seems reasonable, as it is to be expected that at least
half of the quality in a team is constant within a season. The home advantage remains unchanged, so
I use the Gaussian prior with parameters (mean,α) = (0.28,50).

5.4.2 Performance with data

Season 00/01 01/02 02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12 12/13 13/14
Model4DIC 5390.55 5384.52 5747.46 5834.44 5634.92 5610.59 5615.65 5720.39 5786.37 5831.13 5898.37 5946.69 5920.56 5195.54

Model4WAIC 5391.76 5386.87 5761.46 5853.94 5648.98 5624.09 5632.75 5739.54 5804.29 5847.12 5910.31 5964.49 5936.89 5195.83

Table 5.6: WAIC and DIC for Model 4

TheWAIC and DIC values for model 4 are much better than either of the previous models. Table 5.7
shows how much lower the values are for model 4 compared to model 3.

(a) Comparison of DIC values for model 3 and 4 (b) Comparison of WAIC values for model 3 and 4
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Season 00/01 01/02 02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12 12/13 13/14
DIC -24.60 -28.60 -26.30 -27.32 -18.07 -32.42 -32.25 -45.55 -18.93 -35.03 -30.45 -29.52 -34.69 -17.77

WAIC -26.71 -32.64 -26.80 -28.11 -18.52 -35.14 -31.10 -43.95 -18.15 -34.38 -32.28 -27.43 -32.86 -21.58

Table 5.7: Difference in WAIC and DIC between Model 3 and Model 4. Negative number means
Model 4 performs better.

Looking at the values for PL(score) and PL(result), the results are not so clear. Figure 5.17 shows the
pseudo likelihood for predicting the correct scoreline, and model 4 is mostly a clear improvement
even if it gets beaten by model 1 for some of the seasons. Figure 5.18 shows the pseudo likelihood
for predicting the correct result, and in the seven season sample model 4 is only an improvement on
models 1-3 in two of the seasons.

5.4.3 Validity of model 4

I’ve chosen to look at the 2013/2014 season for Liverpool FC, to see if the variations in the strengths
agree with the performance of the team. This was an interesting Liverpool season for a lot of reasons.
They finished second in the league, scoring 101 goals in the process - the most goals ever scored by
a Premier League runner-up. This means they had the second best attack in the league, while also
conceding 50 goals making them the leagues 13th worst defense. And interestingly for this analysis,
Liverpool went streaks without some of their most important players (Daniel Sturridge and Luis
Suarez) because of injuries and bans.
Figure 5.14 shows how the strengths develop in time. The first interesting thing is that the chance
creating strength has a steady decline. This could be explained by the fact that Liverpool started the
season without Luis Suarez because of a 10-game ban, and this meant they were playing with more
traditional midfielders than real forwards. This also explains why the goal converting strength is
increasing with time, as having two forwards typically will give you a better finishing rate but lower
possession and thereby lower chances created.
Simon Mignolet played as a goalkeeper every single minute of the season, so that explains the goal
defending strength being basically constant through time. The chance preventing skill however got
much better toward the end of the season. The defense changed a lot during the season, but one clear
change is that Jon Flanagan was included as fullback (rotating between a right back and a left back
depending on the rest of his team) for most of the games from gameweek 11, and this coincides with
the positive change in trend.
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Figure 5.14: Liverpool strengths for the season 2013/2014
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5.5 Model 5: Correlation between parameters

Just from looking at the final table it is easy to see that a team with a good offense typically also
has a good defense, as these qualities depend on the players of the team which are typically bought
from other clubs. As rich clubs tend to do well in all aspects of the game, it is natural to assume that
the teams’ strengths are all correlated in some way. By saying that the strengths are correlated I’m
essentially making them less random by tying them loosely together. This should lower the effective
number of parameters in the model.
The parameter correlation ρ is implemented so that for a team A with generic team parameters e and
e′ (being either α, β, α̂ or β̂) and time t we have that

Corr((eA, t), (e
′
A, t

′)) = ρρ
(t−t′)
t ,

where t > t′.
This means that the correlation ρ is constant across all parameters, so the correlation between (β, β̂)
is assumed to be the same as, for instance, (α, β). This is not ideal, as the former correlation seems to
be much stronger than the latter, but helps with keeping computation times down. I’ve experimented
with only having a correlation between α̂ and β̂, as this was supposed to be the strongest of the
correlations, but the WAIC/DIC remain basically unchanged and it effectively doubles the runtime
while increasing the effective number of parameters.
Looking specifically at the 2008/2009 season estimated by models 4 and 5, the main difference is
that model 5 has an extra hyperparameter ρ. The runtime increases from 30 seconds to 90 seconds,
while the number of effective parameters according to the WAIC is reduced from 108.62 to 97.5.
The correlation is estimated at ρ = 0.3785 with a standard deviation of 0.1458, so the correlation is
different from zero significant on a 95% level, but the variation is still a bit high.

5.5.1 Performance with data

Season 00/01 01/02 02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12 12/13 13/14
Model5DIC 5388.10 5389.43 5747.65 5838.26 5637.86 5614.03 5620.89 5733.50 5786.78 5837.54 5901.85 5950.37 5923.39 5190.52

Model4WAIC 5389.31 5392.31 5759.93 5856.25 5651.06 5625.65 5637.25 5749.55 5803.26 5852.70 5913.36 5967.41 5939.81 5190.99

Table 5.8: WAIC and DIC for Model 5

Season 00/01 01/02 02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12 12/13 13/14
DIC -2.44 4.91 0.18 3.82 2.94 3.44 5.25 13.11 0.41 6.42 3.48 3.68 2.84 -5.02

WAIC -2.45 5.45 -1.54 2.31 2.07 1.56 4.51 10.01 -1.03 5.57 3.05 2.93 2.91 -4.84

Table 5.9: Difference in WAIC and DIC between Model 4 and Model 5. Negative number means
Model 5 performs better.

Compared to model 4, model 5 performs at the same level or slightly worse in WAIC and DIC.
Figures 5.17 shows that model 5 outperforms model 4 at predicting the correct score every season.
For predicting the result, figure 5.18 shows that model 5 is the better model at 4 out of 7 seasons,
and on average it does much better.
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(a) Comparison of DIC values for model 4 and 5

(b) Comparison of WAIC values for model 4 and 5

5.6 Model 6: Effect of red cards included

Receiving a red card puts a team at a serious disadvantage, so it’s natural to assume that this would
improve the descriptive and predictive properties of my model. As a red card only appears in about
one out of twenty matches, I’ve chosen to not use it for simulation and simply assume that the game
being simulated will not have any red cards in it.

To do this I simply add to the model four new parameters describing the effects of red cards on the
defense and offense, and I let these be constant across all teams. The model then becomes

ln(λ̂i,j) = α̂0 + α̂i − β̂j + θ̂αri + θ̂βrj + δ̂

ln(µ̂i,j) = α̂0 + α̂j − β̂i + θ̂αrj + θ̂βri

p = 1
1+exp(−α0−αi+βj−θαri−θβrj)

, q = 1
1+exp(−α0−αj+βi−θαrj−θβri)

,

where θ̂α is the effect on the chance creating ability, θ̂β is the effect on the chance defending ability,
θα is the effect on the goal converting ability and θβ is the effect on the goal stopping ability. ri and
rj are the red cards received by the home team and the away team, respectively.

5.6.1 Performance with data

Season 00/01 01/02 02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12 12/13 13/14
Model6DIC 5378.55 5362.83 5740.52 5835.15 5636.48 5605.61 5623.52 5726.18 5766.76 5834.32 5881.11 5933.20 5908.36 5166.92

Model6WAIC 5378.98 5363.90 5752.68 5855.00 5650.55 5617.15 5640.58 5742.75 5781.14 5849.60 5891.24 5949.69 5922.13 5166.59

Table 5.10: WAIC and DIC for Model 6

For WAIC and DIC, model 6 is an improvement on every other model for every season except for
the 2006/2007 season where model 4 does even better. Despite this, these are very strong results for
model 6.
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(a) Comparison of DIC values for model 5 and 6 (b) Comparison of WAIC values for model 5 and 6

Season 00/01 01/02 02/03 03/04 04/05 05/06 06/07 07/08 08/09 09/10 10/11 11/12 12/13 13/14
DIC -9.56 -26.60 -7.13 -3.11 -1.38 -8.41 2.63 -7.32 -20.03 -3.23 -20.74 -17.18 -15.03 -23.60

WAIC -10.33 -28.41 -7.25 -1.25 -0.50 -8.49 3.33 -6.80 -22.12 -3.10 -22.12 -17.72 -17.68 -24.41

Table 5.11: Difference in WAIC and DIC between Model 5 and Model 6. Negative number means
Model 6 performs better.

For PL(score), model 6 does generally well except for season 2005/2006 where model 1(!) performs
the best. All other seasons model 6 is either the best or among the best.
For PL(result), model 6 again has strong results but is inexplicably the worst model in 2011/2012.
Overall though it seems to be one of the best, if not the best.

Summary Model 4-6

Figures 5.20 and 5.19 are exactly what I was hope to achieve. The models are consistently getting
better WAIC and DIC results for all seasons as I make them more complex, and is a good indication
that using all this extra data is actually worth it.
Figures 5.17 and 5.18 are not as easy to interpret. For some reason model 1 does really well for a lot
of the seasons, especially season 2010/2011 where it is the clear winner at predicting results. Model 3
does very well some seasons and very poorly in others. And the last three models are rated similarly,
though model 6 seems to come out on top.
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Figure 5.17: PL(score) (y-axis) seasons 05/06 through 11/12 all models

Figure 5.18: PL(result) (y-axis) seasons 05/06 through 11/12 all models

Figure 5.19: DIC values for all models, all seasons
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Figure 5.20: WAIC values for all models, all seasons
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Chapter 6

The prediction model

The previous two sections have concluded with model 6 being the best at both describing the data
(WAIC/DIC) and predicting unseen results (PL(score) and PL(result)). In this section I want to de-
scribe the model as a whole and then determine whether or not using SOT gives better results than
shots.

6.1 Chance model

Chances are Poisson distributed with interaction models

ln(λ̂i,j) = α̂0 + α̂i − β̂j + θ̂αri + θ̂βrj + δ̂

ln(µ̂i,j) = α̂0 + α̂j − β̂i + θ̂αrj + θ̂βri

Together they follow a Poisson distribution,

P (X̂i,j = x, Ŷi,j = y|λ;µ) = e−(λ+µ)λ
x

x!

µy

y!
, (6.1)

for λ = λ̂i,j and µ = µ̂i,j .

As this is a Poisson distributionwe have thatE(X̂i,j) = V ar(X̂i,j) = λ̂i,j andE(Ŷi,j) = V ar(Ŷi,j) =
µ̂i,j .

6.2 Goal model

Goals are Binomially distributed with interaction models

pi,j =
1

1+exp(−α0−αi+βj−θαri−θβrj)
, qi,j = 1

1+exp(−α0−αj+βi−θαrj−θβri)

Xi,j and Yi,j are two independent Binomially distributed random variables,

P (Xi,j = x|n = X̂i,j) =
(
n
x

)
px(1 − p)n−x, and likewise P (Yi,j = y|n = Ŷi,j) =

(
n
y

)
qy(1 − q)n−y

with
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E(Xi,j) = X̂i,jpi,j , V ar(Xi,j) = X̂i,jpi,j(1− pi,j)

and
E(Yi,j) = Ŷi,j · qi,j , V ar(Yi,j) = Ŷi,j · qi,j(1− qi,j).

6.3 Parameter Properties

The parameters α̂, β̂, α and β are first order auto-regressive with time correlation ρt, and group
correlated with correlation ρ. The fixed effects δ̂, α̂0, θ̂α, θ̂β ,α0, θα and θβ are determined in the
model. The model has four hyperparameters - ρ, ρt, its precision τt, and the precision for the home
field advantage τδ.

6.4 Chances - Shot or SOT?

The last thing to decide is whether to use shots on SOT as a chance. There are more shots than shots
on target, so that gives us more data and probably lower uncertainty. But shots can be taken from
anywhere and may have an incredibly small chance of becoming a goal depending on where it is
taken from. A SOT thereby probably has a more consistent connection to goals scored.
I’ve run the second half Pseudo-Likelihood prediction analysis for model 6 using shots and SOT.
Figures 6.1a and 6.1b show the results where the model with SOT is in blue and shots is in red. SOT
does better at PL(result) in 5 of 7 seasons, while shots does better at PL(score) in 5 of 7 seasons. This
is a somewhat ambiguous, but as I’m primarily interested in predicting match results it seems like
using SOT is the best option.

(a) PL(Score) for model 6 with shots and SOT (b) PL(result) for model 6 with shots and SOT

52



Chapter 7

Prediction model vs betting companies

The best way of testing a prediction model is to see if it’s able to gain a profit on the betting market.
This would mean that the model is significantly better at predicting than the models used by the
betting companies, and most importantly if it consistently beats the odds then it would give you a
potentially bottomless source of income.

For gamblers there is a myriad of options for placing bets - this could be anything from betting on
which team will receive the most yellow cards to specific players scoring from specific positions or
using specific body parts. Most frequently the bets revolve around predicting whether the game will
be a home victory (H), a draw (D) or an away victory (A). The betting company will decide their odds
based on what they consider the probabilities of the different outcomes to be, and they will make the
odds slightly worse so that their expected return on any bet is above zero (a betting margin). For a
given match between two teams with odds (H,D,A), the number 1

H
is essentially the probability that

the home team will win according to the model of the betting company, though with a small padding.
For example, a game betweenChelsea andBurnley is given the odds (H,D,A) = (1.20, 6.75, 17.00).
If this bet were ”fair” then 1

H
+ 1

D
+ 1

A
−1would be exactly 0. In this case 1

1.20
+ 1

6.75
+ 1

17
−1 = 0.0403,

meaning the company has chosen odds such that if their probabilities of (H,D,A) are correct then their
expected return should be about 4%. For the season of 2013-2014 the average betting margin for all
games across more than 35 bookmakers was 5.5%, using data collected by www.betbrain.com.

If there were no betting margin a bettor could place money on whichever result and the expected
return would be 0. The goal of the bettor is therefore to calculate the probabilities of each outcome
that much better than the bookmaker such that the expected return is above zero. Tomake this slightly
safer, I’ll require my expected return to be above a certain cutoff ω, and I’ll experiment with different
values of this cutoff to maximize the return.

Of course if the bettors largely favor the odds of one of the options then the betting company could
still end up losing money. As a result the odds are typically adjusted over time so that the betting
company ends up winning no matter what result comes in. This is actually in the favor of the bettor
as it can skew the odds so that they are no longer optimally decided.

Luckily a bettor is not constricted to dealing with only one betting company, which lets us bet using
the highest odds we can find. There are also betting promotions that may be exploited for further
improved returns, and various interesting betting strategies could conceivably be profitable.
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7.1 The betting model

My betting model is fairly simple; simulations are run in the same way as for calculating the second
half Pseudo-Likelihood for predictions, using the first half of the season only for training the model.
This gives me a matrix with values (H,D,A) denoting my simulated probabilities of the different
outcomes for each match. For cutoff value ω, I put money on every bet that satisfies the requirement

p(r) ∗ odds(r)− 1 > ω, (7.1)

where p(r) is my estimated probability of a result occurring and odds(r) is the odds given by a betting
company for a result.
The next question is how much money to bet - the risk strategy. One option (flat) is to just put the
same amount on every single bet, but this ends up being very volatile as a lot of the bets that qualify
the above requirement are bets with very high odds. Koopman, Lit(2012)[10] suggested lowering the
bet from 1.0 to 0.3 for all bets with odds higher than 7. My solution (scaled) has been to always bet

1
odds(r)

, as this risk adjustment scales with increasing odds, and also has the attractive property that
winning a bet always rewards 1.0 ”money”. In the long run any betting strategy with an expected
return > 0 should be fruitful, but this lowers the chance of bankruptcy which would be an absorbing
state for the bettor. I’ve decided to also compare how methods flat and scaled differ in results.

7.2 Results from betting

I’ve run betting for all seasons from 07/08 until 11/12 with both shots and SOT used as chances, with
both risk strategies flat and scaled, and with cutoff values ω from 0 to 1 with 0.01 increments. I had to
divide this all into 5 different figures, so figures 7.1 to 7.5 all show the betting results for the seasons
from 07/08 until 11/12. The colors represents the combination of risk strategy and whether shots or
SOT are being used - for instance the purple line (scaledSOT) shows the betting results using SOT
and the scaled risk strategy. As the scaled versions have variable bet size, I’ve normalized the results
for those models so that the mean bet size is the same for all models (=1).
If youwant to use this model on the bettingmarket you can’t retroactively choose the options that give
the best results, so we need to make a selection that is consistently among the best for all seasons. This
is surprisingly hard as different choices seem to do better for different seasons. In general, Scaled-
SOT and Scaled-shots do the best, with Scaled-SOT being the overall winner. As for the choice of
cutoff value there are a few candidates. Figure 7.6 shows how the final balance varies depending
on the choice of ω. A higher cutoff value means placing bets that the model feels are safer, which
reduces the amount of bets placed and centralizes the balance around zero. There are still a few
standout candidates for the best cutoff value - which are even clearer from looking at figure 7.7
showing the mean balance by cutoff value. The two best values seem to be ω = 0.11 and ω = 0.34.
Figure 7.8 shows how the amount of bets placed by the models (SOT and shot) in season 10/11
depends on the cutoff value chosen. For ω = 0 with shots, a bet is placed on essentially every
possible match (203 out of 208). For ω = 0.10 this is lowered to 150 bets placed. For ω = 0.60 about
30 bets are placed. For ω = 0.96 and above, only 9 bets are placed. Shots and SOT will typically
choose the same candidate, but they value the bets slightly differently which keeps the two graphs
from overlapping perfectly.
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Figure 7.1: Betting results season 07/08

Figure 7.2: Betting results season 08/09
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Figure 7.3: Betting results season 09/10

Figure 7.4: Betting results season 10/11
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Figure 7.5: Betting results season 11/12

Figure 7.6: End of season balance for different cutoff values ω, all seasons, Scaled-SOT
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Figure 7.7: Mean end of season balance for all seasons, Scaled-SOT by cutoff value ω

Figure 7.8: Number of bets placed by cutoff value, season 10/11
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Chapter 8

Results and discussion

8.1 Results

For the results section I thought it would be interesting to look at an entirely unseen season: the
2014/2015 season of Premier League. This season saw a dominant Chelsea at times struggle with
creativity, often scraping by with narrow 1 goal wins, but only losing three games. Southampton
started off looking like a surprise candidate for placing top 4, but slowly drifted down to seventh
place being replaced by the usual suspects. Manchester United returned to at least some of its old
glory after a disastrous season 13/14. And Liverpool struggled for consistency despite spending more
than 110 million GBP on new players.[21]
After all teams had played half of their games the table looked like figure 8.1. Figures 8.2a and 8.2b
show the predicted final table and the actual final table. The two tables are quite similar, but according
to the model teams like Queens Park Rangers and Aston Villa underperformed while Leicester City
and Crystal Palace got more points than they deserved. Within the top 8 the prediction is largely in
line with reality, the exception being West Ham United that got 10 points less than they ”deserved”
and lost 4 places because of that.
Figure 8.3 shows how the model does with betting on season 14/15 for cutoff values ω = 0.11 and
ω = 0.34. ω = 0.11 places 115 bets and is the only one that actually has a positive balance at some
point, but ω = 0.34 placing 36 bets does better in the end.
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Figure 8.1: Table after half of season 14/15. Source: www.premierleague.com
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(a) Predicted final table, season 14/15 (b) Actual final table, season 14/15. Source: www.premierleague.com

Figure 8.3: Season 14/15 Balance through time, Scaled-SOT with ω = 0.11 and ω = 0.34
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8.2 How to improve the model

8.2.1 Initial value for teams

I mentioned in chapter 7 how increasing time used to train the model further could improve the
results. This was because the model seemed to be better at betting after about three quarters of the
season had been played. The problem with this is that it reduces the amount of games we are able
to bet on. A more sensible approach is to include an initial value for the teams in the informative
priors, so that the model already has an idea to what the strengths of the teams are relative to each
other. Different ways of implementing this was mentioned in my summary of Owen (2011) [15], but
because of time limitations I was not able to implement either of these. This could potentially make
a huge improvement, especially if the model were to be used before the halfway of the season had
been played.

8.2.2 Home Field Advantage for goal converting or goal preventing

Playing on home ground appeared to have some positive effect for converting shots and SOT into
goals, as the goal:shot and goal:SOT ratios are slightly higher for the home team. I chose to ignore
this effect as it seemed not to be very large, but including it in the model and running prediction is
the only way to test if it actually could improve performance. As the models becomes increasingly
accurate, an effect like this that at first seemed irrelevant could turn out to be significant enough
to warrant including, and it would only add one more parameter so the decrease in performance is
negligible.

8.2.3 Different correlations between parameters

A limitation brought up in chapter 5 is that in moving from model 4 to model 5 I enforce the same
correlation between all parameters - despite the fact that certain parameters were showed to have
stronger relations than others in chapter 3. In adding the correlation I limit how freely two parameters
are allowed to move away from each other, which is great for the connection between α̂ and β̂ which
clearly are strongly correlated, but not so great when non-correlated parameters like α and β are
influenced tomove in the same direction. I attempted to keep the correlations specific between certain
parameters, but the implementation proved problematic and the result was mostly just a big increase
in computation time. If anyone were to properly implement this, however, I believe it could make a
big improvement for the model.

8.2.4 Including non-quantitative information

The fact that this model only used quantitative data for prediction is both a strength and a weakness.
In one way it keeps the model objective and unbiased, and any long term changes in a team should
anyway be caught up in the changing parameters. However, some times qualitative information could
greatly impact how the odds are seen. For instance, a team totally reliant on a single player the way
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Liverpool was dependent on Suarez for the 2013/2014 season would be severely crippled if that
player were to get injured or suspended, and the model would not pick up on that instantly.
As a hypothetical example, say that Wayne Rooney (an important player for Manchester United,
a strong team) gets a red card in the very end of a game versus Arsenal (another strong team) for
violent misconduct - resulting in a three game ban. Now if Manchester United were to win this game,
their strengths would probably be valued very highly as they beat a strong team despite receiving a
red card. In reality their value should be lowered as they just lost their best player for the next three
games. So for these games,Manchester United will probably struggle and themodel will slowly catch
up and eventually lower their strengths. Now after these three games of struggling Wayne Rooney
will be back which should give them a big boost, but they are now rated poorly and will probably
perform at a level better than what the model considers them, and again the model will spend a few
games to catch up.
This whole period the model is rating Manchester United wrongly, and because of that it will recom-
mend bets based on faulty information, bets you are likely to lose. Including qualitative information
like that directly into the model seems tricky, but I believe it is important to look at what the model
provides in the context of the real world instead of blindly following its recommendations.

8.2.5 Other risk strategies for betting

I chose here to go with a scaled betting model, a strategy where the bets placed are inversely propor-
tional to the odds. The ideal goal is to have steady growth, not volatile spikes in balance. Koopman,
Lit (2012) [10] lowered the bets from 1.0 to 0.3 for all bets with odds higher than seven, but there
are other possible approaches. Betting more on bets where the expected return is greater seems like
a logical strategy, though it might favor high-odds bets too much as they tend to be unnaturally high
to draw in bettors. Perhaps a combination of the strategies that increase with the expected return and
decreases with increasing odds could be a good idea.
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Chapter 9

Conclusion

In this project I have given a review of existing literature in Soccer result-prediction, and I have
expanded on existing models by including data that previously were not considered. I have developed
6 different models for prediction with increasing complexity. All models have been tested in how
well they fit already seen data and how well they predict unseen, out-of-sample data. Lastly, the final
model has been applied in a betting scheme and tested across several seasons.

As we are no longer limited to knowing only goals scored by each team in a match, including more
interesting data was a natural way to evolve prediction models. I did this by foregoing the standard
model of goals following the Poisson distribution, and instead focused on a model where goals are a
result of chances created which in turn are Poisson distributed.

Assuming that a chance becoming a goal can be modeled as a Bernoulli trial, I was able to describe
teams with 4 different parameters each having a real world interpretation: the offensive players’
ability to create chances, the offensive players’ ability to convert chances into goals, the defensive
players ability to prevent the opposition from getting to chances, and the defensive players’ ability
to prevent chances from becoming goals. It turns out that while these skillsets are often correlated -
they are not the same, and this allows teams to stand out in different ways in the model.

By letting parameters change over time and introducing a correlation between them, the fit and predic-
tive ability of the model was further improved. Lastly, including red cards gave the model a possible
explanation for outliers where good teams struggled versus bad.

The model was tested on the betting market using both shots and shots on target to predict goals, and
the conclusion is that shots on target have a more consistent connection to goals scored and as such
works better in prediction. The model somewhat disappoints in the betting market - with the right
choice of betting cutoff the model breaks even or makes a small profit, thought the results are a little
generous as the betting cutoff is chosen to maximize profits. Furthermore the results were helped a
lot by a very successful season 2011/2012.

So while the model still isn’t ready to consistently make money on the betting market, the results as a
whole are very encouraging. By gradually increasing the complexity of the model, I have shown that
incorporating shots on target and red cards significantly improves predictive accuracy and describes
the data better than modeling goals scored directly.

Working on this project has been challenging, but ultimately very rewarding.I hope the capabilities
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of the model are further improved by implementing modifications such as pre-season initial values
for parameters and a more robust betting strategy.
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Appendix A

INLA

Integrated Nested Laplace Approximation (INLA) is an approach for doing inference by the use of
latent Gaussian Markov Random Fields. As an alternative to Markov Chain Monte Carlo (MCMC)
methods, its main advantage is its speed, though the error can not be made arbitrarily small like
MCMC allows for. This will provide a superficial explanation of the method, for further details see
Rue et al. (2009) [17].
A Latent Gaussian Model is a hierarchical structure consisting of three stages. The first stage is a
likelihood function with the response y assumed conditionally independent on the latent parameters
z and additional parameters θ,
π(y|z, θ = Πjπ(yj|ηj,θ)
The second stage is formed by the latent Gaussian field by attributing a Gaussian distribution on the
latent field η with mean µ(θ) and precision matrix Q(θ),
zt|θ ∼ N(µ(θ), Q−1(θ)).
The third stage is formed by the prior distribution assigned to the hyperparameters,
θ ∼ π(θ).
The INLA package in R provides an interface for this that supports use of different models, likeli-
hoods and priors in a language akin to theGLMpackage for Generalized LinearModels. The response
is stored in a vector Y, the formula contains the latent parameters with informative or uninforma-
tive priors, and the inla() call contains the family and link function used. The output is the posterior
marginal distribution of each parameter with expected value, quantiles and covariance matrix.
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Appendix B

R Code

## Load packages and s e t c o r r e c t work d i r e c t o r y
l i b r a r y ( INLA)
l i b r a r y ( boo t )
setwd ( ”C : / User s / j i h a d / Documents / i n l a s k i t ” )

## Load t h e da ta from t h e season I want t o work w i t h
source ( ” d a t a r e a d e r .R” )
r = ge tSea son ( ” 0809 ” )

## Use f u l v a l u e s
## n . t im e s f i n d s gameweek number
n . t ime s = (max ( r $Date )%/%7)
teams = unique ( s o r t ( c ( r $HomeTeam , r $AwayTeam ) ) )
n . teams = l eng th ( teams )
n . matches = nrow ( r )

## S e t p r i o r s
hyperh = l i s t ( p r e c = l i s t ( p r i o r = ” g a u s s i a n ” , param = c ( 0 . 2 8 , 5 0 ) ) )
h y p e r t = l i s t ( rho = l i s t ( p r i o r = ” pc . rho1 ” , param = c ( 0 . 5 , 0 . 7 5 ) ) )

## Formula f o r t h e model .
## t ime and t ime2 ho ld t h e 4 parame t e r s per team
## prop have a t t a c k i n g ( 1 ) and d e f e n d i n g ( 2 ) chance s t r e n g t h s
## prop2 have a t t a c k i n g ( 3 ) and d e f e n d i n g ( 4 ) goa l s t r e n g t h s
## team i s a lways a t t a c k i n g team , team2 always d e f e n d i n g
## red . a , red . d are a t t a c k i n g and d e f e n s i v e goal−impac t
## o f r e c e i v i n g a red card
## red . a . c , red . d . c − same bu t f o r chances
f o rmu la1 = Y ~

−1 + i n t e r c e p t 1 + i n t e r c e p t 2 +
r ed . a+ r ed . d+ r ed . a . c+ red . d . c+
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f ( i dx . home . advan tage , model=” i i d ” , hype r = hyperh ) +
f ( t ime2 , weight , model=” a r1 ” , r e p l i c a t e = team2 , group = prop2 ,
v a l u e s = 0 : n . t imes , c on t r o l . g roup = l i s t (model = ” exchangeab l e ” ) ,
hype r = h yp e r t )+
f ( time , weight1 , copy=” t ime2 ” , r e p l i c a t e = team , group = prop )

## Bu i l d i n g t h e p a r t s o f
## Y1 po i s s o n − chances
## Y2 b i nom ia l − goa l s
## . t s u f f i x means temporary , mo s t l y j u s t s eman t i c s
Y1 = matrix (NA, n . matches * 4 , 1 )
Y2 = matrix (NA, n . matches * 4 , 1 )
N t r i a l s . t = c ( )
i dx . home . a dvan t ag e . t = c ( )
we igh t . t = c ( )
t ime . t = c ( )
team . t = c ( )
prop . t = c ( )
prop2 . t = c ( )
team2 . t = c ( )
r ed . a . t = c ( )
r ed . a . c . t = c ( )
r ed . d . t = c ( )
r ed . d . c . t = c ( )
i n t e r c e p t 1 . t = c ( )
i n t e r c e p t 2 . t = c ( )
we igh t1 = rep ( 1 , 4*n . matches )

count = 0
## Each match g e t s f o u r l i n e s i n Y1 / Y2 .
## A t t−chance − Def−chance − At t−Goal − Def−Goal
f o r ( g i n 1 : n . matches ) {
## cx / cy are chances . HST means Sho t s on Targe t .
## Rep lace w i t h HS i f you want j u s t s h o t s

x = r $FTHG[ g ]
y = r $FTAG[ g ]
cx = r $HST[ g ]
cy = r $AST[ g ]
rx = r $HR[ g ]
ry = r $AR[ g ]
home = r $HomeTeam[ g ]
away = r $AwayTeam [ g ]
date = r $Date [ g ]

## cx
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count = count + 1
Y1[ count ] = cx
idx . home . a dvan t age . t = c ( i dx . home . a dvan t ag e . t , ”home . advan t age ” )
we igh t . t = c ( we igh t . t , −1)
N t r i a l s . t = c ( N t r i a l s . t , NA)
t ime . t = c ( t ime . t , date )
team . t = c ( team . t , which ( teams == home ) )
prop . t = c ( prop . t , 1 )
team2 . t = c ( team2 . t , which ( teams == away ) )
prop2 . t = c ( prop2 . t , 2 )
r ed . a . t = c ( r ed . a . t , NA)
r ed . a . c . t = c ( r ed . a . c . t , r x )
r ed . d . t = c ( r ed . d . t , NA)
r ed . d . c . t = c ( r ed . d . c . t , r y )
i n t e r c e p t 1 . t = c ( i n t e r c e p t 1 . t , 1 )
i n t e r c e p t 2 . t = c ( i n t e r c e p t 2 . t , NA)

## cy
count = count + 1
Y1[ count ] = cy
idx . home . a dvan t age . t = c ( i dx . home . a dvan t ag e . t , NA)
we igh t . t = c ( we igh t . t , −1)
N t r i a l s . t = c ( N t r i a l s . t , NA)
t ime . t = c ( t ime . t , date )
team . t = c ( team . t , which ( teams == away ) )
prop . t = c ( prop . t , 1 )
team2 . t = c ( team2 . t , which ( teams == home ) )
prop2 . t = c ( prop2 . t , 2 )
r ed . a . t = c ( r ed . a . t , NA)
r ed . a . c . t = c ( r ed . a . c . t , r y )
r ed . d . t = c ( r ed . d . t , NA)
r ed . d . c . t = c ( r ed . d . c . t , r x )
i n t e r c e p t 1 . t = c ( i n t e r c e p t 1 . t , 1 )
i n t e r c e p t 2 . t = c ( i n t e r c e p t 2 . t , NA)

## x
count = count + 1
Y2[ count ] = x
idx . home . a dvan t age . t = c ( i dx . home . a dvan t ag e . t , NA)
we igh t . t = c ( we igh t . t , −1)
N t r i a l s . t = c ( N t r i a l s . t , cx )
t ime . t = c ( t ime . t , date )
team . t = c ( team . t , which ( teams == home ) )
prop . t = c ( prop . t , 3 )
team2 . t = c ( team2 . t , which ( teams == away ) )

73



prop2 . t = c ( prop2 . t , 4 )
r ed . a . t = c ( r ed . a . t , r x )
r ed . d . t = c ( r ed . d . t , r y )
r ed . a . c . t = c ( r ed . a . c . t , NA)
r ed . d . c . t = c ( r ed . d . c . t , NA)
i n t e r c e p t 1 . t = c ( i n t e r c e p t 1 . t , NA)
i n t e r c e p t 2 . t = c ( i n t e r c e p t 2 . t , 1 )

## y
count = count + 1
Y2[ count ] = y
idx . home . a dvan t age . t = c ( i dx . home . a dvan t ag e . t , NA)
we igh t . t = c ( we igh t . t , −1)
N t r i a l s . t = c ( N t r i a l s . t , cy )
t ime . t = c ( t ime . t , date )
team . t = c ( team . t , which ( teams == away ) )
prop . t = c ( prop . t , 3 )
team2 . t = c ( team2 . t , which ( teams == home ) )
prop2 . t = c ( prop2 . t , 4 )
r ed . a . t = c ( r ed . a . t , r y )
r ed . d . t = c ( r ed . d . t , r x )
r ed . a . c . t = c ( r ed . a . c . t , NA)
r ed . d . c . t = c ( r ed . d . c . t , NA)
i n t e r c e p t 1 . t = c ( i n t e r c e p t 1 . t , NA)
i n t e r c e p t 2 . t = c ( i n t e r c e p t 2 . t , 1 )

}

N t r i a l s = N t r i a l s . t
t ime . t = t ime . t %/% 7

## The c a l l t o i n l a , f i t s t h e da ta t o a model , e s t i m a t e s pa rame t e r s
r e s u l t 1 = i n l a ( formula1 ,

data = l i s t (
Y = cbind (Y1 , Y2 ) ,
i dx . home . a dvan t ag e = as . f a c t o r ( i dx . home . a dvan t ag e . t ) ,
t ime = t ime . t ,
team = team . t ,
prop = prop . t ,
t ime2 = t ime . t ,
team2 = team2 . t ,
p rop2 = prop2 . t ,
we igh t = we igh t . t ,
r e d . a = r ed . a . t ,
r e d . d = r ed . d . t ,
r e d . a . c = red . a . c . t ,
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r ed . d . c = red . d . c . t ,
i n t e r c e p t 1 = i n t e r c e p t 1 . t ,
i n t e r c e p t 2 = i n t e r c e p t 2 . t ) ,

f ami ly = c ( ” p o i s s o n ” , ” b i nom i a l ” ) ,
N t r i a l s = N t r i a l s ,
c on t r o l . compute = l i s t ( d i c = TRUE, waic = TRUE)

)

## E x t r a c t i n g parme t e r v a l u e s :
## So r t e d by team −> parame te r −> t ime
t ime s = r e s u l t 1 $summary . random$ t ime2 $mean
#To f i n d team a , parame te r b , t ime c : 392* ( a−1) + ( b−1)*98 + c
perLag = s p l i t ( t imes , c e i l i n g ( seq _ a l ong ( t ime s ) / (4 * ( n . t ime s + 1 ) ) ) )
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