NTNU - Trondheim
Norwegian University of

Science and Technology

Towards a Parallel Multiphase Solver
Based on Potential Ordering

Henrik Vikgren

Master of Science in Physics and Mathematics
Submission date: June 2015

Supervisor: Helge Holden, MATH
Co-supervisor: Knut-Andreas Lie, SINTEF

Norwegian University of Science and Technology
Department of Mathematical Sciences

Abstract

This thesis presents our work towards developing a parallel multiphase
solver based on potential ordering [2, 4, 5, 3]. We begin the thesis by
introducing the Fast Multiphase Solver, as developed by Natvig, Lie et
al. [3]. Then we, in turn, study the parallel algorithms developed by
Fleischer et al. [9] and Bader [10]. As a part of the study we have imple-
mented the algorithms and give an overview of these implementations.
Our implementation of the algorithm due to Fleischer [9] confims the
serial complexity but are unable to achieve parallel speed-up. Results
based on our implementation of Bader’s algorithm discourage further
development with this approach. Finally we discuss further possibilities
and propose our own ideas on how to adapt the parallel algorithms for
use in a parallel multiphase solver.

Sammendrag

Denne oppgaven presenterer vart arbeid mot a utvikle en parallell mul-
tifaselpser basert pa potensiell reordning [2, 4, 5, 3]. Oppgaven begynner
med a introdusere en rask multifase lgser utviklet av Natvig og Lie [3].
Deretter studerer vi to parallelle algoritmer utviklet av Fleisher [9] og
Bader [10] etter tur. Som en del av dette studiet har vi implementert
egne versjoner av disse algoritmene, og presenterer disse. Var implemen-
tasjon av algoritmen utviklet av Flesicher [9] bekrefter den teoretiske
kompleksiteten til algoritmen, men gir ingen parallel speed-up. Resul-
tatene fra var implementasjon av Baders algoritme svekker var tro pa
den som et reelt alternativ til a utvikle en parallel multifaselgser. Avs-
luttningsvis diskuterer vi videre muligheter og kommer med egne forslag
til hvordan de overnevnte algoritmene kan tilpasses til bruk i en parallell
mulitfaselgser.

1l

Contents

1 Introduction

2 Background
2.1 Physical explanation of the problem
The problemo
Geological aspects L Lo
Fluid description oo
Oil recovery L
2.2 Mathematical model L
2.3 Discretizationo
Implicit temporal discretization
Spatial discretizationo
One dimension
Two dimensional structured grid
Two dimensional unstructured grid
Non-constant test functions
24 Reordering
Definitions
Serial FMS
2.5 Parallel computing oo
Flynn’s taxonomy
Shared memoryo L
Distributed memory
Measuring performance of parallel algorithms

3 Towards a parallel solver
3.1 Existing research Lo
3.2 Divide and Conquer Strong Components
Definitions
DCSC explained
Modified DCSC
3.3 Cycle detection due to Bader
Definitions
Bader’s algortihm oo o

4 Implementation
4.1 Parallel software

vi

4.2 Implementation of DCSC
Data structureso
Core procedures

4.3 Baders algorithm
Graph representation
Domain decomposition
Distributiono
Local cycle discovery
Pairwise merging

Results and discussion

Testing
5.1 Shared memory DCSC
5.2 Using DCSC to parallelize the FMS
5.3 Bader’s algorithm
5.4 Using Bader’s algorithm to parallelize the FMS

Handling SCCs

Topological sorting

Advanced geometries
Conclusion

A Tarjans Algorithm

Code listings for DCSC

B.1 Main program
B.2 Coreroutines
B.3 Graph utilities

Code listings for Bader’s algortihm

C.1 Discovery phase
C.2 Express graph phase
C.3 Mergephase
C.4 Graph utilites

CONTENTS

Section 1

Introduction

Fossil resources remains the world’s primary energy source. In 2012 it accounted for
81.7% of the world’s total energy consumption [1]. Even though the worlds fossil
reserves are dwindling and other sources of energy are emerging, it is reasonable to
assume that they will be a key source of energy also in the future. Since man began
using oil and gas for energy purposes, tremendous amounts have been extracted. The
dominating regulator behind this have been economic concerns. As a consequence,
the reservoirs which are easy to produce have already been developed. At the same
time the worlds energy demand continues to increase. Today’s oil and gas compa-
nies therefore have to produce more petroleum from ever more challenging locations.

The world’s petroleum reserves are found in underground reservoirs, beneath crust,
rock, and sometimes sea. Extracting it presents a number of challenges, dependent
on where it is located, and mishaps can have devastating consequences. To avoid
such mishaps, reservoir engineers are always trying to plan developments in an as
detailed manner as possible. With geological information about the reservoir, mod-
ern reservoir simulation software can be used to foresee potential danger, and take
necessary precautions. Due to the importance of good intelligence to make the right
decisions, reservoir simulation has grown into a research field of its own.

One of the contributions within this field is the Fast Multiphase Solver (FMS)
(2, 3, 4, 5] developed by Natvig, Lie et al. This is an efficient algorithm for solving
the transport equation, which draws benefits from the equations underlying prop-
erties. The method considers a discontinuous Galerkin scheme for computing the
transport of the fluid. By treating the non-linear system of equations arising out of
this as a graph, the elements can be rearranged in a fashion that makes it possible
to solve the system by a single sequential traversal of the elements. This approach
yields significant performance improvements and has received attention in the field.
Kwok an Tchelepi [6] have implemented a related method on non-linear multiphase
flow. Shahvali and Tchelepi [7] used a hybrid method to obtain a convergent scheme
while also taking counter current flow into account.

Reservoir simulations is a computationally intensive discipline that is closely linked
to the development of better and faster computers. Today, reservoir engineers usu-

2 SECTION 1. INTRODUCTION

ally have a better geological description of the reservoir than they can exploit. The
seismic data has more detail than what is feasible to use for computing. More ef-
ficient methods are therefore always being sought. Algorithms exploiting parallel
processors are a way to achieve this. In this thesis we work towards a parallel im-
plementation of the fast multiphase solver developed by Natvig, Lie et al. In a
preliminary study done by the author [8], possibilities for this implementation were
explored, and this thesis is a natural extension of that work. An important fact that
was discovered in that preliminary study was the need for a parallel implementation
of both the reordering of grid elements and the sequential solving of the elements.
If this is not achieved, the parallel algorithm will not yield satisfactory results in
regard to speed.

In our search of a new algorithm we will first take a look at two existing parallel
algorithms, with traits that we find favorable to our application. The first algorithm
we consider an algorithm developed by Fleischer et al. [9]. This algorithm uses a
split and conquer approach to achieve parallelism. It is a well tested algorithm, fully
capable of topologically sorting graphs containing cycles. Whether we are able to re-
order and solve in the same step is uncertain. We do however, study this algorithm
more closely as sorts the graph in parallel, and handles cycles in an appropriate
manner.

Furthermore we study a cycle detection algorithm developed by Bader [10]. Cycle
detection is an important step in the reordering of the elements used in the FMS. Our
interest in this particular algorithm stems partially from its good results in relation
to run speed, and partially because of the way it partitions the graphs. Transport
in reservoirs have physical features which give favor to a partitioning approach like
the one used by Bader [10]. This algorithm lack some important abilities, and the
main question is therefore whether it is adaptable to the problem at hand.

This thesis is first and foremost meant as an explanation of what we have done on
this problem. Since we were not able to finish the parallelization of the FMS we
would like it to ease the work of anyone who might be continuing this endeavor. As
a result, we have included a section about the implementation of the algorithms we
have been working on. The appendices also include well commented listings of some
of our code.

Section 2 describes the physical and mathematical background of the problem. It
also includes a short introduction to parallel programming. Section 3 presents the
two aforementioned algorithms, and puts them in the context of the FMS. In Section
4 we descirbe our work on implementing these algorithms, hopefully making it easier
for anyone wanting to continue this work. Section 5 includes performance tests of
the two implementations, and a discussion of the results as well as proposals for
further works.

Section 2

Background

This section provides the background which the rest of the thesis builds upon. We
start of by explaining the physical realities of reservoir engineering in Section 2.1.
In Section 2.2 we describe the mathematical model governing the problem, before
we move on to its discretization in Section 2.3. Section 2.4 introduces the reordering
procedure at the core of the FMS, and Section 2.4 outlines how the serial version
of the FMS works. Finally we give a short introduction to key consepts in parallel
programming in Section 2.5.

2.1 Physical explanation of the problem

Oil production is a dangerous endeavour. Drilling wells into reservoirs, sometimes
found underneath kilometres of sea and crust, involves great risks. The forces re-
lated to this can be immense, and if things get out of control the results can be
severe. Extensive planning is therefore needed before developing a new field. An
important aspect is to identify how the fluids in the reservoir will low. Information
about fluid movement can prevent dangerous blow-outs and leaks, aside from being
used to figure out how to recover as much oil as possible. The first step in this
process is to establish an as precise as possible physical model of the reservoir and
the fluid contained within. Small differences in terms of mathematical accuracy can
have large implications. The following section describes the most important physical
parameters considered when developing this model.

Extensive models for describing reservoirs exist within the fields of fluid mechanics
and geology . These models are very detailed, and thus requires some pretty in-
volved equations. Since the aim of our work is to start developing a parallel version
of the FMS we have chosen to simplify these models some. This allows us to focus
on the core of the problem without a lot of complicated notation. We trust that it
will be possible to extend our simplified model at a later time, should it be required.
In the meantime we refer the reader to [11] for a more thorough introduction, and
ask that it be noted that the simplified model presented here would not be sufficient
in a mature solver designed for industrial purposes.

4 SECTION 2. BACKGROUND

The problem

Hydrocarbons trapped in reservoirs underground are usually recovered by drilling
one or several wells into the reservoir. As long as the pressure in the reservoir is
high enough to push the oil to the surface, oil will flow out of the well by it self.
Even so, it is often necessary to increases the pressure in the reservoir to get out
as much oil as possible. One way of doing this is to inject water into the reservoir
and thereby push the oil out. To achieve this, two types of wells are drilled into the
reservoir; injection wells for injecting water and production wells for extracting oil.
See Figure 2.2 for an illustration.

Injection of water into a reservoir is expensive and requires a certain amount of
return to be profitable. At some point, the water injected into the well will have
travelled to production wells, so that a fraction of the produced fluid consists of the
injected water. When this fraction gets substantial, profitability decreases rapidly.
Naturally we would like the water to push out as much hydrocarbons as possible
before reaching the production wells. How fast the water reaches the injection wells
is influenced by the well locations, and tools for optimizing well placements are in
high demand. The FMS is designed for this purpose. Specifically, it gives an ap-
proximate answer to the following question: How much oil and water is contained
in a small control volume around the point (z,y, z) at time 7

Mathematically speaking, the FMSr is a highly efficient numerical solver of the non-
linear porous medium equations. This is partly because it utilizes certain properties
related to the physical problem, and as such we do the same in the parallel imple-
mentation. In this section we give a brief introduction to the physical realities as
well as some of the assumptions and simplifications made.

Geological aspects

Fossil resources (oil and gas) are found in underground reservoirs. Common for such
reservoirs are that they are found in porous rock formations. A porous rock is a rock
with cavities, called pores, that can be filled with a fluid. This is usually referred to
as the porous medium. In Figure 2.1 an illustration of porous rock is shown. There
are two quantities used to characterize the porous medium;:

Porosity The porosity of the rock is the fraction of the rock volume that consists
of cavities in which fluids can reside. For a control volume V' containing pores
of volume V%, the porosity ¢ is thus defined as

Y

The compressibility of the rock can affect the porosity to a varying degree.
Here, we neglect rock compressibility.

Permeability The permeability, k, of the rock indicates its ability to transmit
a fluid. That is, it is a measure of how much resistance does a fluid flow-
ing through the porous medium meets. It is defined mathematically through

2.1. PHYSICAL EXPLANATION OF THE PROBLEM 5

Figure 2.1: Illustration of a porous rock formation. Blue indicates pores in which
fluids reside whereas black indicates solid rock. The left picture show a formation
with higher porosity than in the right picture.

Darcy’s law [12],

Vp
q=—k—, (2.1)
i
where q is the flow of the fluid, u is the fluid viscosity, and Vp is the pressure

gradient.

Fluid description

Petroleum reservoirs contains a mix of fluids. There are water typically and differ-
ent kinds of hydrocarbons present. Furthermore, the different components occur in
one of threes phases; liquid, gaseous or aqueous phase. Different components and
phases have different characteristics, and tend to flow individually, though not in-
dependently. That is, they flow with different speed but are affected by each other.
Throughout this report we will only consider water and black oil in liquid phase.
This is done for simplicity, and can easily be extended to any number of phases. To
describe the fluids we will use the saturations of water and oil. This is a dimen-
sionless quantity, that tells us the portion of water and oil contained in any given
control volume inside the reservoir. If we assume that there are no other fluids in
the reservoir and the reservoir is completely saturated, the saturation s, for phase
a € {o,w} for oil and water, respectively, has to satisfy

Sw+ S, = 1.

When calculating the saturations in the reservoir over time there are several factors
which come into play. Motivated by this thesis’ aim at finding a parallel approach
to the FMS, we have chosen to simplify the model quite extensively.

Flux and partial flux The volumetric flux, q, of a fluid is defined as the volu-
metric amount of fluid passing through a cross section of 1 m? per time. We

6 SECTION 2. BACKGROUND

use partial fluxes to describe water and oil individually, and these are defined
analogously, as the amount of water/oil passing through a cross of one square
meter per second.

Compressibility The compressibility, £, of a fluid measures its relative volumetric
change when put under pressure. It is mathematically defined as:

10V
f=-2

V op’
Compressibility affects the fluid pressure and saturations, as it has different
values in oil and water. It can also affect the porosity and permeability, since
the rock can compress when we apply additional pressure. For simplicity we
have chosen to assume no compressibility.

Gravitation Gravitational forces affect the fluid flow, and sometimes cause counter-
current flow. This factor is also ignored for simplicity.

Capillary effects Capillary effects can cause the fluid to stick to the wall of the
reservoir and hence can affect the flow. Also this effect is ignored in our
mathematical description.

Oil recovery

Petroleum reservoirs, whether subsurface or subsea, are all found underground.
These have been formed by geological activity over millions of years. For hydro-
carbons to be formed there has to be a certain pressure. Because of this, reservoirs
are usually under pressure when found in their natural equilibrium. When a well is
drilled into it, this pressure will push the oil out of the reservoir until he pressure
diminishes and an equilibrium at the top of the well is established. The recovery
of oil by means of the natural pressure in the reservoir is called primary recovery.
Normally around 5-15% of the hydrocarbons in the reservoir can be recovered during
the primary recovery.

After the primary recovery we have to force the oil out of the reservoir in order to
continue recovering oil. One technique is to inject water in the reservoir. See Figure
2.2 for a simple illustration. The technique has two effects. Firstly it causes the
pressure in the reservoir to rise. secondly it serves to displace the oil towards the
production well. The use of this technique necessitates the drilling of one or several
wells for injection of water, in addition to the wells used for production of oil. The
more usual is to have multiple injection wells and multiple production wells. This
is especially true for fields situated on land, where the cost of drilling wells are sig-
nificantly lower than off-shore.

These fields offer possibilities for parallel computations due to the potential of sev-
eral independent areas. An especially interesting question is how the flow pattern
in the reservoir develops in a field with multiple injection and production wells. We
expect the areas around the injection wells to be largely dominated by their respec-
tive injection wells. These areas should be largely independent of each other, and

2.1. PHYSICAL EXPLANATION OF THE PROBLEM 7

Figure 2.2: Illustration showing how water can be injected into a reservoir to push
out hydrocarbons. Image from [13].

Figure 2.3: Example geometry of field with several injection wells and one production
well.

8 SECTION 2. BACKGROUND

thus well suited for parallelization. Figure 2.3 illustrates how different regions with
limited dependence can arise. In a grid with millions of cells, large regions which
can be isolated from the rest of the graph can prove a significant advantage.

If we distribute this grid according to the isolated regions we get flow patterns that
have few dependencies outside the specific sub region. Exploiting this we should
be able to device an algorithm that can do efficient computations in parallel. Some
interdependence along sub domain borders will always exists, but with a good par-
titioning communication costs in these cases should be relatively low. Software
packages for partition grids so that the number of edges that have vertices on dif-
ferent processors are minimized are available [14], and should be looked into in due
course. Another advantage of this fact is that it gives us a good indication of how
we should partition our graphs. Well placements will be known before any compu-
tations and can therefore be used as preconditioning for the graph partitioning.

2.2 Mathematical model

We now move on to the mathematical description of the problem. Keep in mind
that this is a simple model, not sufficiently accurate to be used in actual simulations
for industry purposes. It does, however, convey the key principles of the problem
and is therefore sufficiently similar to a full scale model to be used as a basis for
developing a parallel solver.

To model the flow of a fluid through a reservoir, we assume conservation of mass
and that the fluid will tend two flow in the direction of decreasing pressure, i.e.,
follow Darcy’s law. For a control volume V' without any source or sink terms, with
boundary 0V and outward normal vector n, we can formulate the conservation of
mass for fluid flow through a porous medium as

ﬁ/,ogbdx: —/ pq - nds. (2.2)
ot Jy ov

where p denotes the density. In layman’s terms, Equation (2.2) states that the
change in the amount of fluid inside the control volume (the left hand side) is solely
due to the flux of the fluid across the boundary of the control volume (the right
hand side). Equation (2.2) can also be written on differential form as

2 (p) + V(pa) =0

For multiphase flow we can consider the partial flow q, of each phase o The partial
flows have to satisfy), 4. = . As mention in the previous section this paper
assumes two phases: water and oil. This is done for simplicity, but can easily be
extended to n phases. Using the saturations s, and s, we can write

O (50008) + V- (pat) =0, 0 € fo,u}. (23)

2.2. MATHEMATICAL MODEL 9

Correspondingly for Darcy’s law (2.1),

kTO[
do = —k—Vp, (2.4)
which gives
krw kro
q=—k (+ —) Vp (2.5)
Hoaw Ko

when the two phases are added together. Here we have denoted by k., and k,, the
relative permeabilities, which in general depends on s. We also introduce

Ao = km, (a € {w,0})

«

A=Ay + Ao
Equation (2.5) can now be written
q = —kAVp, (2.6)

So far we have considered a control volume without any source or sink terms. We
now add a source term r to the model, and make the simplifying assumptions that
we introduced in Section 2.1:

1. pw, Pos tw, [to are constant,
2. capillary and gravitational forces are neglible ,
3. krw = krw($), kro = kro(s) are known.

Equation (2.3) then becomes

6ar(50) + ¥ - (@) = 7o 2.1)

where 7, denotes the sources contribution to phase a. Combining (2.4) and (2.6)
we now get

0
qb&(sa) + V- (AaA1q) = 7.

If we add Equation (2.7) for the two phases together, we get

0
Qba(sw + 50) +V- (qw + qo) =Ty + To,

and since s, + s, = 1,

Vi(Qut+a)=V-q=r. (2.8)

10 SECTION 2. BACKGROUND

We then have then reached the governing equation for the transport problem:

0
o—

8t8a =rqa—q-Vf(sa) = f(Sa)Tas (2.9)

where f(so) = 2=. Note that in the complete system of equations for the entire
system the source and sink terms represent the injection and production wells, re-
spectively. As wells are only found in a few cells in the domain, these terms are
mostly zero. The physical interpretation of Equation (2.9) is that the change in
saturation of phase a, equals the amount of phase a being injected or extracted

minus the flow out across the boundaries.

To solve the coupled system consisting of (2.6), (2.8) and (2.9) we need to compute
the pressure. Utilizing that V - q = r we can write (2.6) as

—V(kAVD) = 1. (2.10)

The mathematical model we need to be able to solve is thus established through
Equations (2.9) and (2.10). To solve this coupled system operator splitting is used.
Since the FMS is an improved solver of the transport equation, we will assume that
there exists an efficient solver for the pressure equation (2.10), and focus on the
transport equation.

Properties of the transport equation

The hyperbolic nature of Equation (2.9) ensures a well-defined domain of dependence
which is essential to the FMS. In particular, the directional derivative q-V f(s,) and
the the fact that f is a strictly increasing function, ensures that the solution in cell
K only depends on the neighbouring cells with flow into K. The total flux through
cell K will then be due to the sum of the flux into K from the neighbours in the
upwind direction and the flux out of K. Hence, if we already know the saturations
of the upwind neighbours of K we can solve the transport equation directly. By
choosing an upwind-discretization we can preserve this property and thereby reduce
the global transport problem to a series of sub-problems corresponding to each cell
K.

2.3 Discretization

Implicit temporal discretization

An efficient numerical solver for equation (2.9), requires a stable and efficient dis-
cretization in both time and space. In this section we develop this discretization and
show how the resulting system of equations can be manipulated to obtain a faster
solver for the transport equation.

A standard one-point upwind scheme is used to approximate the derivative with
respect to time. Although implicit temporal discretization leads to a larger com-
putational cost, it is preferred over an explicit version, due to its better stability

2.3. DISCRETIZATION 11

and ability to take larger time steps. The method developed by Natvig and Lie [2]

provides a solver capable of solving this efficiently. We drop the phase subscripts

from here on and introduce the approximated time derivative %:
ds 8" — 51

ot At

where s" = s(n - At). For the majority of the cells, the source term r will be zero,
and Equation (2.9) can then be approximated through
s — Sn—l

Spatial discretization through the discontinous Galerkin method

We will introduce the discontinuous Galerkin method by showing four examples with
increasing complexity. First, we will look at the simple case of an one-dimensional
domain and a basis of constant test functions on a structured grid. In the second
step we extend the domain to two-dimensions, but otherwise keep everything as in
the one-dimensional case. We proceed to the third example, where we introduce an
unstructured grid and discuss how this affects the choice of solver for the pressure
equation. Finally, we conclude our discussion of the discretization by extending the
method to consider test functions of higher order.

One-dimensional domain, constant test functions

Consider a one dimensional domain. To simplify we assume a unitary porosity,
¢ =1 and flow, ¢ = 1. Equation (2.9) will in this case read

s
E + fz(S) =0. (2'12)

To find a variational formulation of (2.12) we partition the domain 2 into non-
overlapping structured elements Qx = { K;|U; K; = Q} and multiply by an arbitrary
test function, v. We then integrate by parts to obtain the weak formulation.

S0 [) 04 05) e =0

The next step is to find a finite basis of test functions V},. For this initial exam-
ple we choose the the space of element-wise constant functions and allow these
to be discontinuous across element boundaries. We denote this space by Vh(o).
Since we allow the test functions to be discontinuous across boundaries we also
need an approximate flux function f (s). We choose this to be the upwind flux
f(st,s7) = f(s*)max(v,0) + f(s~) min(v,0), in which s* and s~ denote the inner
and outer approximations at boundaries. This is a consistent and conservative ap-
proximation, which preserves the crucial directional dependency. Our problem can

12 SECTION 2. BACKGROUND

then be written:
find s;, € Vh(o) such that:

a(sp,vp) =0, vy, € Vh(o)

with a(s,v) = K%m—l—/}(f(s)wm—i-[f(s)w]

oK

As Vh(o) consists of constant functions, the second term disappears. If we use the
temporal discretization from Equation (2.11) we can write a(s,v) as:

gn Snfl

a(s,v) = _A—t K|+ fout(sn> — fin(sn)a

where | K| is the length of element K. In the special case of f(s) = s we get a linear
system As = b, where the matrix A will have a diagonal pattern shown below:

A= ° : . (2.13)

which can be solved by forward substitution. In the general case f(s) # s we have a
set of nonlinear equations A(s) = b. In this case the structure of the Jacobi matrix
of A(s) will be on the same form as that of A shown in (2.13).

Two dimensional structured grid, constant test functions

We now move on to consider a two-dimensional domain. Equation (2.9) then reads
Se+q- Vf(S) =0.

With constant test functions and numerical flux as in the one-dimensional case we
find the weak formulation.
Find s, € Vh(o) such that:

a(sp,vp) =0 Yoy, € Vh(o)

Witha(s,v):/Kst'ijq'/Kf(s)-vz—l—q- 8Kf(s)v.

As in the one-dimensional case the second integrand is zero, and thus this term
disappears. Since we have moved to two dimensions this formulation will not auto-
matically lead to a lower triangular structure. Each element can be dependent of
any of its four neighbours. Based on how we number the elements we get a system

2.3. DISCRETIZATION 13

of nonlinear equations A(s) = b, where the Jacobi J4 has a structure similar to the
one below.

Jq = o o .

This system can be rearranged by finding a permutation P such that P.J,PT attains
a lower triangular structure. The permutation P can be found by a topological
ordering of the graph of elements, in which the direction of the flux is viewed as
edges. In the above example a topological sort gives a permutation P that yields:

PJ,PT = 3

The system can now be solved by forward substitution, where a scalar nonlinear
equation is solved for each step. Note that we do not need to assemble any per-
mutation matrices with this technique. The matrices shown above are presented
for illustration purposes only. With a simple traversal of the elements, in the order
given by the topological sort, we can be sure that we know the dependencies of
element K when processing it.

Two dimensional unstructured grid, constant test functions

So far we have looked at a domain divided into finite elements in a structured mat-
ter. This is not always practical. When dealing with heterogeneous domains, e.g.
large variations in material properties across the domain, one often opts to adapt
or refine the grid to fit the underlying geometry, and thus obtain a higher numerical
accuracy. This leads to unstructured grids. In the field of reservoir simulation varia-
tions in geological properties and well placements, among other things, can motivate
the need for unstructured grids.

Introducing unstructured grids adds a complication to our problem which requires
special attention. So far we have assumed that there exists an efficient and accurate
solver for the pressure equation (2.10). The most common solver for this is the

14 SECTION 2. BACKGROUND

5-point scheme. However, when introducing unstructured grids we can no longer
be sure that the 5-point scheme is convergent. To be sure of convergence we apply
multi-point flux approximation methods. These are not in the scope of this thesis
and we refer the reader to [15, 16] for an overview. Whereas 5-point schemes give
a monotonic flux, there is no guarantee of this when using multi-point flux approx-
imation methods. In the reservoir simulation setting, a non-monotonic flux means
circular flow in the domain. Circular flow corresponds to several mutually dependent
elements. The resulting system of equations can not be transformed to a strictly
lower triangular structure and solved by forward substitution. Instead, the circular
flow results in a block-triangular system, with irreducible blocks which needs to be
solved using a suitable method.

The algorithm used to obtain a topological ordering now needs to be able to handle
cycles in the graph. An example of such an algorithm is Tarjan’s algorithm [17]..
For every cycle discovered by the algorithm a supernode is created, which represents
all of the nodes in the cycle. The graph is returned in topological order.

An example showing matrix structures derived from a grid containing cycles is pre-
sented in Figure 2.4. When a topological ordering is established we can traverse
the sorted graph as we did in the previous examples, solving each cell sequentially.
When we encounter a supernode, we compute the values in the mutually dependent
elements using a suited nonlinear solver.

The resulting algorithm is shown in Algorithm 1.

Algorithm 1 Solving the coupled system containing cycles using Tarjan’s algor-
tihm.
Input: Graph G = (V| E) representing the numerical grid
Sort G using Tarjan’s algorithm.
for Vertexes v € V in sorted order do
if v is a supervertex then
Solve the group of elements with suitable solver
else
Solve v with information from previously solved vertices
end if
end for

Two dimensional unstructured grid, non constant test func-
tions

To complete our discussion of discontinuous Galerkin methods we are going to con-
sider one last case. In the previous examples the test functions have always been
constant inside each element. We now consider test functions in the polynomial
space Q" = span{zPy? : 0 < p,q < n}. Denoting our space of test functions by
Vh(") ={¢ : 9|k € Q}. To form a basis for test functions in this space, we use
products of Legendre polynomials Li(&,n) = 1.(§)ls(n). We are thus seeking an

2.3. DISCRETIZATION 15

[]
7 & 8 = 9 ¢ o 0
[] []
4 4 4 °
4 % 5 5 6 ¢
[]
Tt .
1 » 2 <« *
- . ._

b: Matrix structure correspond-

a: Grid showing circular flow. ing to the grid

¢: Matrix structure of the grid after a topological sort. Note that the elements in
the cycle are grouped together.

Figure 2.4: An example showing circular flow (a) (indicated with red), the corre-
sponding matrix structure (b) and a topological sorting which groups the cycles
together (c).

16 SECTION 2. BACKGROUND

approximate solution

_ - . <2(xA_xixi)’ 2(32;%‘)) 7

where N is the number of basis functions, (z¢,%") is the center of element K;, and
{Uix} are the unknown coefficients to be determined. The constant functions we
have used so far correspond to Vh(o) and are a first-order accurate scheme. Vh(l)
corresponds to a second-order accurate scheme, and so on. We use the notation
dG(n) to denote a discontinuous Galerkin scheme of accuracy order n + 1. The
number of unknowns per element for a dG(n) approximation is (n + 1)2. This
means that each element will correspond to an (n + 1)* x (n + 1)? block on the
diagonal of our system matrix. The blocks on the diagonal of A(s) will now consist
of a system of mutually dependent variables, dependent on the unknowns in the
upwind direction of the element K;. We can thus use the same procedure as in the
dG(0)-case, with an exception; we now have a block per element that have to be
solved using a suited non-linear solver.

If we take dG(1) as an example we will have test functions :

o =ag, ¢1=a1xr, ¢y =ay, ¢3= azTy.

In the matrix structure presented in Figure 2.4 each dot will now represent a 4 x 4
block of unknowns which has to be solved with a nonlinear solver.

The ideas presented in this and the previous sections can easily be extended to three
dimensions. The space Q" then has dimensions (n + 1)3. However, if we instead use
the space P"* = {zPy?z" : 0 < p+ q + r < n}, we reduce the number of unknowns
per element to ((n 4 1)(n + 2)(n + 3))/6, while still obtaining a valid basis.

2.4 Reordering

In Section 2.3 we showed how the matrices stemming from the transport equation
can be permuted into a block triangular structure, allowing sequential solving of the
cells in the mesh. Finding permutations can be costly, and the strength of the FMS
lies in the use of an efficient topological sorting of the finite element mesh to find the
permutation. By representing the finite element mesh as a graph we can use graph
algorithms to obtain a topological sorting. Towards that end we now introduce some
definitions that we need when working with graph problems.

Definitions

Formally stated a graph G = (V, E) is a duple consisting of vertices V' and edges
E. where an edge is a pair of vertices specifying a relation between the vertices.
When the relations have information about the direction of the relationship, it is
called a directed graph, otherwise we call it an undirected graph. To represent the
finite element mesh as a graph we consider each element as a vertex. Two adjacent

2.4. REORDERING 17

vertices, u and v, with flow going from wu across their mutual border into v, are
represented as an edge from u to v in the graph.

A topological sorting of a directed graph is an ordering of the vertices such that no
edges point backwards in the ordering. In other words, there is no edge which has a
start vertex later in the ordering than its terminal vertex. In Definition 1 we have
stated a formal definition of a topological ordering.

Definition 1 Let G = (V, E) be a directed graph and \A/: = {v1,va,...v,} an order-
ing of the vertices. If for each edge (v;,v;) € E,v;,v; € V we have thati < j we call
the ordering V' a topological ordering.

Figure 2.5 shows an example of a 3 x 3 mesh, its representation as a graph and a
topological ordering of that graph.

Definition 2 A path p is an ordering of vertices p = {uy, us, ..., u,} such that there
exist edges {(uy, uz), (uz,us), ... (Up_2,Un_1), (Un_1,Upn)}.

Straightforward topological sorting fails if there exists one or more strongly connected
components (SCC) in the graph we are trying to sort. An SCC is a group of vertices
where all vertices are reachable from all the other vertices in the group. In Figure
2.6a we show an example of a graph with a strongly connected component.

Definition 3 Let G be a directed graph. If, for any pair of vertices (u,v), there
exists paths py : uw — v and py : v — u, we say that the graph is strongly connected.

If a strongly connected component exists in a graph, a normal topological sorting is
not possible to obtain. As described in Section 2.3, topological ordering is crucial for
the FMS. The definite serial algorithm for obtaining a topological ordering for graphs
with strongly connected components is Tarjan’s algorithm[17]. Built around depth-
first search, Tarjan’s algorithm marks vertices with a discovery number according
to when it was discovered, and uses these numbers to identify vertices which are
part of a strongly connected component. Once a strongly connected component is
discovered, it is collapsed into a super-vertex, see Figure 2.6b for an illustration. In
the resulting topological ordering the super-vertices will contain information about
their internal vertices and edges. It is thus possible to obtain a topological ordering
without losing any of the information in the graph. See Appendix A for pseudo code
of Tarjan’s algorithm.

Serial FMS

The Fast Multiphase Solver was developed by Natvig, Lie and co-workers [3] at
SINTEF and collaborators from other institutions. The program uses the Matlab
Reservoir Simulation Toolbox [18] to set up a geometry with corresponding physical
quantities described and injection and production wells in place. The reordering
procedure and the sequential solver is implemented in C, and MEX is used to inte-
grate with MATLAB. Before the topological solving of the elements can be started,

18 SECTION 2. BACKGROUND

T 8 s 9 (D00

1+ 1 1

4 = 5 = 6 AN i\ e
@/ o) x@

+ + +

1 - 2 - 3

O——O

(a) 3 x 3 example grid. Flow (b) Example grid from Figure 2.5a
across the cell interfaces is repre- represented as a directed graph.
sented with blue arrows.

p/

(c) A valid topological ordering of the grid in figure 2.5b

Figure 2.5: An example of a transport problem and its topological sorting.

O——© O

0 () f) C
O &) \8 !
o o (3) <>/
O———0C
(a) The vertices coloured red con- The strongly connected com-
stitutes a strongly connected com- ponent from 2.6a collapsed into a
ponent. super-vertex.

Figure 2.6: Example of a graph with a SCC and how it is collapsed. The sequence
1,4,2,7,8,9 is a valid topological ordering after the collapse of vertices 2,3,5,6 into
one super-vertex.

2.5. PARALLEL COMPUTING 19

the pressure equation (2.10) is solved. With a pressure field in place, flow directions
can be used to represent the numerical grid as a graph. Then Tarjan’s algorithm
is used to obtain a topological ordering of the resulting graph, collapsing strongly
connected components as it goes. Once a topological ordering is established, its
elements are sequentially traversed, solving the transport equation (2.9) for each
element as it goes. Whenever a super-vertex is encountered, a suitable solver is used
to solve the system of equations corresponding to its contained vertices.

2.5 Parallel computing

So far we have presented the problem at hand and its mathematical formulation.
Furthermore, we have introduced a fast serial implementation [3]. Although this im-
plementation has shown very good timing results, and outperforms similar solvers
by several orders of magnitude, our focus remains on exploiting parallel computation
power to further improve the performance of the solver. Before we move on to de-
scribing existing parallel algorithms that we propose as candidates for parallelizing
the FMS, we introduce some useful notions concerning parallel computation that
we will refer to in our later discussions. For a more detailed introduction of parallel
programming we refer the reader to [19].

Computation in parallel has such a wide definition that a lot of different approaches
fall into this category. A lot of different hardware has been designed with parallel
capabilities and a variety of programming techniques exists for exploiting these.
Which hardware and programming model one chooses depends on the problem at
hand.

Flynn’s taxonomy

Categorisation of different computer architectures becomes necessary when working
with parallel algorithms. Flynn’s taxonomy [20], proposed in 1972, labels machines
into one of four categories and is widely used today. It now incorporates two more
definitions than when it was first introduced, to better encompass all models of
parallel architectures.

SISD Single Instruction Single Data stream. Serial computers with a single stream
of instructions working on a single data stream. This architecture exploits
no parallelism, essentially doing "one thing at a time”. Traditional serial
processors fall into this category.

SIMD Single Instruction Multiple Data stream. Exploits parallelism in the data by
issuing the same instruction to multiple data at a time. Array processors and
GPU’s fall into this category. Most modern processors exploit this in some
way.

MISD Multiple Instruction Single Data stream. Several different instructions are
issued in parallel on the same stream of data. Usually used for systems de-

20 SECTION 2. BACKGROUND

signed for high fault tolerance. An uncommon architecture unsuitable for high
performance computing.

MIMD Multiple Instruction Multiple Data stream. Parallel instructions are issued
to multiple streams of data. Distributed systems, either with shared memory
or distributed memory, fall into this category. Modern multi-core processors
also fall into this category.

Further division of the MIMD category

This thesis focuses on algorithms meant for MIMD architectures, and we will there-
fore elaborate with a further distinction within this category. Note that these dis-
tinctions do not imply anything about the hardware architecture, but rather about
how the software is designed.

SPMD Single Program Multiple Data. Used to categorize implementations for
which the same program is executed on different data for different processors.
Most distributed programs are written in this way.

MPMD Multiple Program Multiple Data. Less common way to design distributed
programs. At least two different programs are run on different processors,
which then does different tasks for the program. An approach can be to have
one or more "manager processors” which control the flow of the program, and
distribute tasks to the remaining processors, which run a different program.

Within the MIMD category there are two main ways to handle communication
between processors, either by shared memory or distributed memory

Shared memory

Shared memory machines have several processors working on the same memory.
All processors can access any memory location, and explicit message passing is
abundant. Avoiding message passing makes this architecture easier to program and
usually faster too. Downsides are vulnerability to race-conditions and bad scalability.
Modern multi-core processors usually have shared memory.

Distributed memory

Clusters of processors where each processor has its own private memory location
are called distributed memory machines. These machines, or clusters of machines,
rely on explicit message passing to achieve parallelism. Such machines are organized
into nodes, which consists of one or several processors. All the nodes are connected
through a high bandwidth, low latency network which facilities the message passing
between nodes. Most distributed machines/clusters today also incorporates the ad-
vantages of shared memory by having nodes of 4-16 processors which share memory.

Although more tedious to program they are extremely scalable. This allows such
machines to operate on data too big to fit on shared memory machines. Programs,

2.5. PARALLEL COMPUTING 21

more often than not, have to be completely rewritten to work on distributed mem-
ory systems. This facilitates the need for skilled programmers, and a significant
improvement has to be plausible for the effort to be worth it.

Measuring performance of parallel algorithms

High performance computing is motivated by the need for faster methods of han-
dling increasingly large problems. To measure how successful a parallel algorithm
is, good metrics are needed. Measuring performance of a parallel algorithm based
on complexity alone is unsuitable. Parallel programs have the advantage of more
resources than their serial counterparts, and can thus do more complex work in the
same amount of time.

The primary measure of parallel performance is the speed-up. By comparing the
time T the best serial algorithm needs to solve a given problem, to the time 7}, the
parallel computer with p processors needs to solve the same problem, the speed-up
S, can be found by the following formula:

In other words, it answers the question: how much faster is the parallel algorithm,
when run on p processors, than the best serial algorithm? The ideal case is if the
parallel implementation is able to execute the problem p times faster than the serial
version, this fully utilizing all of the extra resources. This is called linear speed-up.

Parallel algorithms normally require a certain degree of communication between the
processors. Because of this close to linear speed-up is usually only possible when the
problem size is big enough to diminish communication costs in the total run-time.
As a consequence, parallel programs only benefit from added computing resources
up to a certain point. Since the number of processors are usually limited, it is inter-
esting to note how well a parallel algorithm utilizes the resources available to it. By
dividing the speed-up on the number of processors we get a number between 0 and
1, telling us how well the parallel algorithm has made use of the extra processors.
This number is called the efficiency. Note that linear speed-up corresponds to an
efficiency of 1.

Most practical problems consist of different parts that can be solved individually
with specific algorithms. If we can parallelize all parts perfectly and get a linear
speed-up we have achieved perfect parallelism. However, in many cases there are
parts of a problem that are not possible to execute in parallel, or there exists a
specific order in which the different parts have to be executed. Amdahl [21] showed
that the possible speed-up S,, of a program with a serial portion of P; is limited by

1

= 2.14
% P+ (1= P,)’ (2.14)

where p is the number of processors. Observe that as the number of processors goes
towards infinity, the speed-up goes towards P%. Analysing a problem to identify

22 SECTION 2. BACKGROUND

inherently serial parts can give a good indication of how much speed-up is to be
expected from parallelism.

Amdahl’s law puts an unfortunate limitation on the possibilities of parallel program-
ming. However, it has been pointed out that the assumption of a fixed problem size is
a weakness in Amdahl’s law. Gustafson [22] argued that programmers and scientists
decide problem sizes depending on how much computing power they have available.
He formulated a law, called Gustafson’s law: a program with serial portion P, can
achieve a speed-up of

Sp=p—Pip—1).

The law proposes that parallel computing is not only about solving existing problems
faster, but just as much about being able to solve bigger problems in the same
amount of time as before. This makes the limitations of Amdahl’s law less severe.

Section 3

Towards a parallel solver

Our aim is to develop a parallel method for solving the transport equation based
on reordering, using the same approach as the FMS. Preliminary tests of the serial
FMS [8] indicate that the reordering of the elements usually constitutes a small part
of the total execution time. Test done on systems using constant test functions show
a fractio of 8-15% of the total run time [8]. Potential speed-up is thus limited to 1,1-
1,2, according to Amdahl’s law (2.14). Systems using test functions of higher order
will In other words, if the reordering of the elements is the only thing we are able to
run in parallel, we might as well stick to the serial version. The sequential solving
of the elements amounted to over 50% of the run time in all the preliminary tests,
which means that with no parallelism on this part, we can at best hope for a speed
up of 2, according to Amdahl’s law. For our algorithm to be successful we therefore
have to achieve parallelism on both the topological sorting and the sequential solving.

In Section 2.4 we described how the FMS by Natvig and Lie [2] is able to numeri-
cally solve the transport equation with a significant improvement in computational
efficiency. The ability to obtain a topological ordering of the elements is of vital
importance to their method. In the sequential version this was done using Tarjan’s
algorithm. Unfortunately Tarjan’s algorithm will have to be replaced in a parallel
implementation. It is based on depth-first search, which is probably impossible to
parallelize [23].

In the current design of the FMS, there is no room for parallelism in the sequen-
tial solver. Tarjan’s algorithm returns a topologically sorted graph, but gives no
information of potentially independent instances. We therefore search for a new
approach to the entire FMS. Ideally we would like an algorithm that sorts the graph
in parallel and immediately solves the transport equation for vertices whose order
has been determined. Since this would require a new approach to both the sorting
and the solving, we have approached the problem through finding a new topological
solver capable of solving elements simultaneously as sorting the graph, and thus
achieving a high degree of parallelism.

Usually there will exist more than one valid topological sort of a graph, implicating
that there are instances in the graph whose order does not matter. This opens the

23

24 SECTION 3. TOWARDS A PARALLEL SOLVER

problem up for parallelism. In other words, a graph with sub graphs whose order
are irrelevant can be solved in parallel if there are no dependence between them.

3.1 Existing research

The need for fast graph algorithms is evident in a wide range of fields. Modelling of
social networks, finite-element meshes, and transport networks are just some exam-
ples of relevant fields. Whenever problem sizes get large enough, the use of parallel
computing to keep computation times reasonable can become a necessity. Varia-
tions of our problem of finding a topological sorting of a directed graph in parallel
have already been the subject of some research. Gazit et al. [24, 25] described an
algorithm for finding strongly connected components using matrix multiplication,
which later was improved by Cole and Vishkin [26], and Amato [27]. Although these
algorithms report O(log®n) time, they require an impractical O(n*37%) processors.
Kao [28] presents an algorithm using O(n/logn) processors in O(log® n) time for a
planar directed graphs.

Bader developed a distributed algorithm for detecting strongly connected compo-
nents in planar directed graphs [10]. This algorithm, though lacking some important
features, is appealing first and foremost because of its highly scalable domain de-
composition. If successfully adapted to incorporate the needs of the FMS this is a
viable candidate for our parallel FMS.

Fleischer et al. [9] have devised a simple but effective algorithm that finds the topo-
logical sorting of a graph containing strongly connected components. The simplicity
of this algorithm combined with its adequate treatment of the strongly connected
components has made the findings relevant. McLendon et al. [29] developed [9]
furter for an implementation on a radiation transport problem. Algorithms by Orzan
and Barnat also builds on the work done by Fleischer [9] and [29]. Orzan [30] has
devised an algorithm for identifying strongly connected components in parallel used
for model checking. Whereas Barnat et al. [31] have modified the latter to work
on GPUs. Experiments on GPUs show that it can outperform Tarjan’s algorithm
by a magnitude of 40 on sufficiently large problem sizes. To limit the scope of this
thesis, we have not looked into the use of GPUs, but Barnat’s results indicate that
this could indeed be the way to go.

The rest of this thesis studies the algorithms developed by Bader [10] and Fleischer
et al. [9]. The following sections introduce the algorithms in depth, and discuss
possible alterations to meet the FMS’ need. After this a detailed account of our
own implementation of these algorithms follows. It is our hope that this will help
anyone wishing to continue this work.

3.2. DIVIDE AND CONQUER STRONG COMPONENTS 25

3.2 Divide and Conquer Strong Components

We now introduce the algorithm called Divide and Conquer Strong Components
(DCSC), developed by Fleischer et al. [9]. DCSC is an algorithm that finds the
topological sort of a directed graph in parallel, with treatment of strongly con-
nected components. The algorithm is built around two lemmas. Simple and power-
ful, these lemmas have been used in other research, e.g., the CUDA version proposed
in [31]. Furthermore, the algorithm is motivated by finite element meshes, making
it a natural candidate for parallelization of the FMS [3]. McLendon et al. [29]
have implemented DCSC on a radiation transport problem, which has structural
similarities with the porous medium problem. The implementation achieved very
good results and in some cases they report linear speed up. Their modified version
of the DCSC, fittingly named ModifiedDCSC, includes trimming steps that remove
vertices without incoming edges, further improving the efficiency of the algorithm.

Our study includes explanations of Fleischer’s [9] original algorithm and McLendon’s
[29] modified version, as well as a performance study based on our own implemen-
tation of the original algorithm.

Detfinitions

The key to the DCSC is two lemmas presented in [9] which we will repeat here.
To do so we have to introduce some definitions, which will help us structure the
explanation.

Recall from Section 2.4 that a dipath from v to u is a sequence of edges p such that
p = [(v,v1), (v1,09), ..., (v, u)]. We say that u is reachable from v if there exists
a dipath from v to u. For a graph G = (V, E) and a v in V| we say that the de-
scendants of v in G, denoted by Desc(G,v), is the set of all vertices in G which are
reachable from v. Correspondingly, we say that the predecessors of v in G, denoted
by Pred(G,v), is the set of all vertices in G which v is reachable from. The set
of vertices in G that belong to neither the predecessors nor the descendants of v is
called the remainder of G, denoted by Rem(G,v). The set of all strongly connected
components of G is denoted by SCC(G). A specific strongly connected component
can be defined through any one of the vertices contained in it, and is denoted by

SCC(G,v).
With this established we can state the lemmas proved by Fleischer [9].
Lemma 1 Let G = (V, E) be a directed graph, with v € V a vertex in G. Then

Desc(G,v) N Pred(G,v) = SCC(G,v).

Lemma 1 allows us to reduce the problem of finding strongly connected components
to finding unions of descendants and predecessors for the vertices in the graph.
Alone, this lemma is not very useful, since finding descendant and predecessor sets

26 SECTION 3. TOWARDS A PARALLEL SOLVER

for all vertices would be far slower than alternative algorithms for finding strongly
connected components. However, when combined with Lemma 2 we get a very
powerful combination:

Lemma 2 Let G be a graph with a vertex v. Any strongly connected component of
G is a subset of Desc(G,v), of Pred(Gv), or of Rem(G,v).

The problem of finding descendant and predecessor set can now be limited to the
three separate instances described in Lemma 2, remarkably reducing the problem
size. Here the possibility of parallel recursion also arises, which gives this algorithm
its power.

To facilitate the topological sort, we need one more fact.

Lemma 3 For a directed graph G there exists a numbering m of the vertices from 1
to n for for which the following is true. All elements u € Pred(G,v) \ Desc(G,v)
satisfy m(u) < 7(v); and all elements u € Desc(G,v) \ Pred(G,v) satisfy m(u) >

7(v).

Through Lemma 3 we are able to not only find the strongly connected components,
but also topologically sort them. For the proofs of the lemmas we refer the reader
to the original article by Fleischer [9].

DCSC explained

With these lemmas established we can explain the DCSC in detail. First a pivot
vertex v is chosen at random from the graph. The rest of the graph is sorted into
three subsets: descendants of v, predecessors of v and the remainder of the graph.
Figure 3.1 shows how a 5 x 5 grid containing an SSC is divided into predecessor and
descendant sets. Due to Lemma 1, vertices belonging to both the predecessors and
descendants of v constitute a strongly connected component.

Extracting the union of the descendant and predecessor sets yields one out of two
cases. If the pivot vertex alone v makes up the union, we have the trivial case that
v is not part of a SCC. If v is part of an SCC we will get all the vertices in the SCC
as the union, due to Lemma 1.

In any case, we save the union and then call the algorithm recursively on the three
subsets. If the routine is called on an empty graph, it will return immediately. This
ensures termination of the algorithm when all vertices have been checked. Pseudo
code for DCSC can be found in Algorithm 2.

Divide and Conquer Strong Connect is open to parallelism in two ways. First,
the three recursive calls stemming from each identified SCC are fully independent
problems, which can be solved on different processors. Secondly, the traversal of the
graph to identify predecessors and descendants are open to parallelism [32], however
this comes at an extra factor of logn in run time.

3.2. DIVIDE AND CONQUER STRONG COMPONENTS 27

Algorithm 2 The Divide-and-Conquer Strong Connect algorithm, as developed by
Fleischer et al.
function DCSC(G)
if G is empty then
return
end if
v = random vertex from G
SCC = Pred(G,v) N Desc(G,v)
Output SCC
DCSC(Pred(G,v)\SCC)
DCSC(Desc(G,v)\SCC)
DCSC(G\(Pred(G,v) U Desc(G,v)))
end function

Desc

() —~(2)~(2)~()

Pred 7 ‘ '

ONORGIGS
@@@@@

Figure 3.1: Example graph showing predecessor and descendant sets. Pivot vertex
is 18.

@

%

28 SECTION 3. TOWARDS A PARALLEL SOLVER

Modified DCSC

McLendon et al. [29] modified the DCSC by adding a trimming step. Trimming
of vertices is especially efficient in graphs where a small portion of the vertices are
contained in strongly connected components, which is often the case with reservoir
simulation, as mentioned in [2]. Another advantage of the trimming step, is that
it allows us to compute the solution in trimmed vertices immediately after having
removed them, allowing for further parallelization.

Before the pivot vertex is chosen, the graph is traversed, looking for vertices with no
incoming edges. From the definition of a SCC we can conclude that these vertices
are not part of any SCCs, and can safely be removed. Analogously we can remove
any edges with no outgoing edges. This reduces the problem size, and can have
large impacts on run time, especially for problem instances where vertices included
in SCCs constitutes a small portion of the total graph.

3.3 Cycle detection due to Bader

The next algorithm we will study is an algorithm due to Bader [10]. This algorithm
relies on domain decomposition of a large directed graph, and does a local depth-first
search of each sub-domain before merging graphs iteratively to determine whether a
cycle exists. It has achieved linear speed-up in previous implementations, and scales
very well with respect to both graph size and number of processors.

We have chosen this particular algorithm as a main candidate for developing a
parallel version of the FMS because of its use of domain decomposition, as well as
its scalable speed-up. Our hope is that we will be able to adapt it to also treat
cycles, and sort the graph topologically. If this is successful, it will be perfectly
suited to solve the transport equation in parallel with reordering of elements. Before
introducing the algorithm, we state some definitions that will make things easier to
explain. We also give a brief account of our graph representation and how we
partition the graph.

Definitions

For the distributed graphs we define GG, to be the local sub graph assigned to pro-
cessor p,, with vertices V, and edges F.. Let f(v,) be a function mapping each
vertex v € V to a processor p,. All edges can now be categorize as either local
arcs or trans arcs. A local arc is an edge that has both its initial and terminal
vertex on the same processor, f(v;) = f(v;), whereas a trans arc has the initial and
terminal vertices on different processors, f(v;) # f(v;). In Figure 3.2 we show an ex-
ample of trans-arcs and local arcs using 18 vertices distributed across two processors.

The second phase of Bader’s algorithm builds a new digraph, called an ezpress
graph, on each processor p,. These graphs will hold ezit vertices (one for each

3.3. CYCLE DETECTION DUE TO BADER 29

Po y41

OaO0R0

0S0%0
OS0%0

Figure 3.2: Example configuration of 18 nodes distributed across two processors.
Black arrows represent local arcs, red arrows represent trans arcs.

(W
()
(&)

18

15

OO0

11 12
N

(1)

Figure 3.3: The express-graph of the example shown in Figure 3.2. Red arrows
represent trans arcs, black arrows represent express arcs.

initial-vertex), and entrance vertices (one for each terminal vertex) with respect to
the processor p,. The arcs in the express-graph can be categorised as either trans
arcs, corresponding to trans arcs in the original graph, or express arcs with initial
and terminal vertices corresponding to exit- and entrance-vertices. The express
graph is explained in detail in Section 3.3 An example of an express graph is shown
in Figure 3.3.

Bader’s algortihm

Once the graph has been partioned and distributed we can apply Bader’s algo-
rithm. The algorithm consists of three steps. A discovery phase, in which the sub
graphs are searched for local cycles using depth first search; an express phase, where
edges spanning across processor boundaries are indentified and communicated; and
a merge phase, where two and two sub-graphs are merged together while looking for
cycles. If a cycle is found, the algorithm halts, otherwise it runs until the graph is
again located on the root processor and it has been determined that no cycles exist.

30 SECTION 3. TOWARDS A PARALLEL SOLVER

Discovery phase

This phase has two goals: to find any local cycles, and to identify edges spanning
across subgraphs. In the first case the algorithm halts, and in the latter case the
edge is stored as a so-called trans arcs, to be communicated at the end of the phase.

The discovery phase consists of a recursive search of the vertices on each processor.
This is done by using a color-coding scheme: all vertices are first coded as white

(not visited). Then all of the vertices are visited in turn.
When a vertex v is visited, the following steps are conducted:

1. v is color coded red, indicating that it is currently being visited.
2. All of the neighbouring vertices of v are traversed.

e If a neighbour is not yet visited (color-coded white), a recursive visit is
made immediately. Any descendants found in this visit are added to the
descendants of v.

e [f a neighbour has already been visited previously, its descendants are
added to the descendants of v.

e [f a neighbour is color coded red, it means that a predecessor of v is also
a descendant of v, implying a cycle. The algorithm halts.

e [f a neighbour of v does not belong to this sub graph, a special trans-arc
is saved for later communication, and the neighbour is also saved as a
descendant.

3. After all neighbours have been checked, v is color coded green if it has no de-
scendants and black if it has descendants. The method returns the descendants
of v.

After all the vertices have been visited, the trans-arcs are exchanged with the neigh-
bouring processes. Since this thesis only considers Cartesian 2D domains, each
processor needs to do at most four exchanges (north, south, west, east).

Express-graph phase

During this phase the express-graph is constructed. The express-graph is a compact
data-structure designed to hold information about the trans-arcs, spanning processor
boundaries, and their dependants. As described in the above definitions the express-
graph consists of an exit vertex wherever there exists an edge to a node contained
on another processor. This exit vertex points two an entrance vertex, representing
the node on which the edge enters another process. In addition to the trans-arcs,
express-arcs are added wherever there exist a dipath between an exit vertex and an
entrance vertex. See Figure 3.3 for an illustration.

3.3. CYCLE DETECTION DUE TO BADER 31

Merge phase

The last phase iteratively merges pairs of subgraphs until one of two things happen:
e a cycle is found, in which case the algorithm halts.

e the entire graph is left on the root process, in which case we have determined
that no cycles exists.

Which processors merge in what order is in the original implementation governed
by a bit-wise manipulation of processor ranks. This approach makes sense for a
graph that is not mapped over a specific geometry. For our problem, an approach
using the spatial locality in the Cartesian mesh that the processors are organized in
could prove more sensible, as there will only be trans-arcs between cells that lie in
adjacent processors in this grid.

Merging of two sub-graphs FxG1 and ExG2 starts by creating a new express-graph
EzG0 from the union of vertices in the two existing express-graphs. All express-arcs
are also transferred directly to this new express-graph. Next, all the trans-arcs in
the two original express-graphs are traversed. For each initial trans-arc v; we have
two possibilities:

vy ¢ V(ExG0) This means that the trans-arc ends on another process. The corre-
sponding trans-arc is then transferred to ExGO.

v € V(ExG0) This means the trans-arc ends on one of the two processes being
merged. We now have to do one of the following:

If an express-arc exist between the two: a cycle has been found. The
algorithm halts.

If an express-arc does not exist between the two: Create express-arcs be-
tween all pairs of predecessors and descendants of v; and v;, then remove
v; and v; from ExGO.

The merge phase ends when either all the express-graphs have been merged into one,
or one of the processors discovers a cycle, in which case the algorithm terminates.

Section 4

Implementation

The following section describes choices we have made when implementing the two
algorithms described in Section 3. Fleischer’s divide-and-conquer approach [9] has
been implemented and tested on a shared memory architecture. Bader’s algorithm
for identifying strongly connected components [10] has been implemented using an
explicit message passing approach. This section describes technicalities around our
work towards this, with the aim that someone wishing to continue this work will
have an easier start than we did.

4.1 Parallel software

OpenMP

OpenMP is an API for C, C++ and Fortran built for ease of use multi-threading
on shared memory architecture. OpenMP consists of compiler directive, run time
library functions and environment variables. To do simple parallelization only a few
are needed, but the API is powerful enough to support a wide array of functionali-
ties, although we do not go into depth on that functionality here. However, we do
take time to dwell over some key features that are of importance to our implemen-
tation. For a more thorough introduction we refer the reader to [33]. Introduced in
OpenMP 3.0 [34], the task clause makes it possibility to parallelize tasks instead of
the traditional thread approach. Tasks are independent instances of a program. If
several tasks do not have to be performed in any specific order the possibility for
parallel execution of these tasks arises. The task clause in OpenMP takes care of
this for the programmer.

MPI

Message Passing Interface (MPI) is a standardized portable library for message
passing. It can be used in programs written in C/C++, Fortran and Java, on both
shared and distributed systems. We have used the Open-MPI implementation [35].

As with OpenMP we give no detailed account of the inner workings of MPI, but
introduce some key routines. For the interested reader Pacheco gives a good in-

33

34 SECTION 4. IMPLEMENTATION

troduction to MPI [19]. For a more comprehensive text, see [36]. MPI send is the
basic routine for sending a message from one processor to another, MPI recv is the
corresponding receive routine. MPI is developed for SPMD programming, and the
programmer has to make sure that if a processor calls a send routine, the receiving
processor calls a receive routine. As MPI send defines a unique sender and receiver
of the message, it is categorized as so called one-to-one communication. MPI in-
cludes a wide range of sending routines, including one-to-all, all-to-one and all-to-all.
We will not describe them all here, and refer to the above mentioned literature for
further details.

4.2 Implementation of DCSC

We have implemented DCSC in C using our own data-structures. Although this
was a tedious endeavour, it gave us better control over the process than if we had
used an existing library. Source files for the program can be found on
https://github.com/henvik/DCSC.git. In Appendix B we have included parts of the
program for quick referencing while reading.

Data structures

As the DCSC requires forward and backward traversals of the graph, as well as the
ability to easily add and remove vertices, we chose linked list. In the implementation
this consists of three separate structures that together make up the linked list.

Node is the meat and bone of the lists. Each node has an unique vertex number,
identifying it. It also holds pointers to the previous and next nodes in the
linked list. Note that the previous and next nodes only point to the nodes
which lie adjacent in the linked list, and have nothing to do with the actual
structure of the graph. To keep track of the structure of the graph, each node
contains a pointer to two sets of edges: children edges and parent edges, rep-
resenting edges directed out and in of the node, respectively. The children and
parent edges are implemented as linked lists.

In addition, the node has three statuses that are used in the descendant and
predecessor search. These statuses are pointers, which are also used for storing
addresses of copies made of the node. Null pointers mean not visited yet.

Arc holds information about the destination node of the arc, in the form of a pointer
to the node’s memory location. It also holds a pointer to the next arc in the
children/parent list. The initial vertex of the arc is implicitly saved in the
node which the arc belongs to.

Linkedlist is a container for all the nodes in the list. It holds information about
the number of nodes in the graph, and pointers to the first and last node in
the list.

4.2. IMPLEMENTATION OF DCSC

@

@

(a) Example graph.

parents

Node 1

Node 2

children

children parents

Node 2 Node 1

ok Bede 3 children
Node 3

Node 4

Node 4

parents

35

Node 2

Node 3

(b) Illustration of the data structures used for implementing the DCSC. Nodes are blue

and arcs are green.

* Memory structure. To store the information in the list and allow for easy insertion and

removal.

** Graph structure. Represents the geometry of the graph. Allows for forward and

backwards traversal.

Figure 4.1: Example graph (4.1a) and its representation in the implementation of

the DCSC (4.1b).

36 SECTION 4. IMPLEMENTATION

Around these three structures, the program is built. The choice of graph repre-
sentation stems from our need to efficiently traverse the graph both forwards and
backwards. We also need to be able to remove and add vertices quite frequently,
without a high cost. This does however, come at cost. Search and access will cost
more than if we were to use a adjacency list.

Core procedures

Our implementation of Divide and Conquer Strongly Connect is build around a few
core procedures.

DCSC is the main procedure. It finds a pivot vertex, randomly chosen from all of
the vertices in the graph, and in turn finds the descendant and predecessor sets
as wells as the union of theses The search for descendants and predecessors is
done in parallel.

Once the graph is divided into three sub graphs according to descendants,
predecessors, and the remainder of the graph, DCSC is called recursively on
each of the three sets. To parallelize these three independent sub-problems, we
use the parallel task clause in OpenMP. Available processors will then work
in parallel on the tasks being created by the recursion.

When the graphs get sufficiently small, executing the recursion in parallel
creates more overhead than it gains. Therefore, at a given cutoff, the recursive
calls are done serially on one processor.

Find descendants traverses the descendants of a specified pivot vertex. For each
descendant found it marks the descendant status of that node, indicating that
this node has been identified as a descendant of the pivot. If it is the first time
that descendant has been visited, it is copied into the graph of descendants.
The status is also a pointer to the copy in the descendant graph. This is used
when encountering a descendant that we have already visited. The status of
that node is then used to create an arc to it in the descendant graph.

Find predecessors traverses the predecessors of the pivot vertex. The same pro-
cedure as in the descendant search is used to avoid adding more than one copy
of each predecessor, and to add the necessary arcs.

Remove marked removes the marked nodes from graph. We use this procedure to
remove descendants or predecessors of the pivot node from the original graph.
Any vertices found in both graphs are copied to a new graph, as they make
up a strongly connected component.

Topological ordering of the sub graphs are obtained by the order in which we returns
the graph. Due to Lemma 3 we can be sure that there are no nodes in the graph
which depend on any node in the descendant graph. We can thus return this at the
end of the graph. Furthermore we note that the nodes in the predecessor set can

4.3. BADERS ALGORITHM 37

have no dependencies outside of the set itself. What order we return the SCC and
the remainder in is irrelevant as long as they are placed in between the descendant
and predecessor set, as they can not be dependent on each other.

4.3 Baders algorithm

Implementing Bader’s algorithm represents a considerable amount of the work done
on this thesis. It includes a considerably more complicated algorithm than the
DCSC. Furthermore we have implemented it for use on a distributed system, which
is more tedious to program. Even though it is not a complete algorithm for the
problem we want to solve, we consider it an interesting prospect for alteration, due
to its scalability. The distribution of sub graphs also allows us to exploit parallelism
due to independent regions as mentioned in Section 2.1.

Source code for this implementation can be found on:
https://github.com/henvik /BaderCycle.git.

Graph representation

The algorithm assumes input in the form of an already partitioned graph represented
in some sensible format. Our aim is to develop a fully functional method for solving
the transport equation in parallel. We have thus chosen a graph representation and
partitioned it into sub graphs. To represent the graph we use an adjacency list.
This approach conserves memory and allows for easy traversal of the graph.

We implement the adjacency list by using using two arrays: ia and ja. Here ja
holds all the edges of the graph, and ia[i] holds the index of vertex i’s first edge in
ja. This means that { jalial[il], jalia[i]+1], jalia[i]+2], ..., ja[ia[i+1]-1]
} constitutes all the vertexes which have an edge from the i’th vertex. In Figure 4.2
we show an example graph and its corresponding adjacency list.

Domain decomposition

Bader’s algorithm [10] works on subgraphs and we therefore have to decompose
our graph into as many sub graphs as there are processors. For simplicity we have
used rectangular grids when developing this algorithm. This makes the process of
partitioning the graph straight forward, and should suffice for testing. There exists
frameworks for partitioning graphs, such as [14], which could be applied later, but
we deem this an unnecessary complication at this stage.

In Figure 4.3 we show how an 8 x 8 grid can be partitioned across 4 processors. This
partitioning is done on the root processor and distributed to the other processors.
To maintain the topological structure of the grid we arrange the processors in a
Cartesian coordinate system and distribute the graph according to this system. In
Figure 4.3 the axis’ denotes the Cartesian coordinates of each sub graph in the grid.

38 SECTION 4. IMPLEMENTATION

(O———)

@——(—)

O—00—O

(a) Example graph

Vertexnr.. 0 1 2 3 4 5 6 7 8

ia: 02145791011]11
jao [1] 3[2|4|5]4]6|5|7[8]7]8

(b) Conceptual illustration of the adjecency list corresponding to the graph in 4.2a

Figure 4.2: Example graph and its adjacency list.

4.3. BADERS ALGORITHM

Yy
56 57 58 59 | 60 61 62 63
48 49 50 51|52 53 54 55
: 40 41 42 43 | 44 45 46 | 47
32 33 34 35|36 37 38 39
24 025 260 27 [28 29 30 31
6 17 18 19 | 20 21 22 23
" 8 9 10 11|12 13 14 15
0 1 2 3 4) 6 7
0 1

X

39

Figure 4.3: The figure illustrates how a 8 x 8 domain is split between four processors.

40 SECTION 4. IMPLEMENTATION

Distribution

Our implementation reads the graph from a formatted text file. This allows for
a certain degree of mobility and makes it possible to migrate graphs generated in
MRST [18]. We also devised a simple program for generating semi-random grids for
testing.

We have not focused on parallel I/O in our implementations, and have instead
chosen an approach where the grid is read from file by one of the processors, and
then distributed to all the other processors in the network. Our implementation
of this includes a method for reading a CSV file and converting it into either an
adjacency list or a linked list. After this is done, we build a send buffer for each of
the processors in the grid and send it to the respective processor using MPI Send.
To support this work a series of subroutines are implemented. These are included
in Appendix C.4.

Local cycle discovery

During the discovery phase the local sub graphs are examined for local cycles. In
this phase, the reachability lists containing information about which trans arc are
reachable from the border vertices, are also created. This is done through the
following routines:

discovery Initializes required variables and calls the three other routines. Code
can be found in Listing C.1.

visit Performs the visiting routine as described in Section 3.3. Every trans arc that
is found, is explicitly saved in both the express graph and the reachability
list of that vertex. If a cycle is found this is communicated to all the other
processes, and the algorithm is halted. Code can be found in Listing C.2

comm_transArcs Processors communicate the trans arcs found during the discov-
ery phase with their neighbours using non-blocking sends. Code can be found
in Listing C.3

complete ExprGraph After all trans arcs have been found, the express graph is
completed by adding express arcs to the graph, as described in Section 3.3.
Code can be found in Listing C.4.

Pairwise merging

The merging phase is controlled by a main routine called simply merge, which
controls which processors receive and send their graphs, such that the entire graph
ends up on one process. This is done by bitwise manipulation of the ranks, as shown
in Listing C.5.

Merge uses several sub routines to send, receive and merge sub graphs. The main
ones are as follows:

SendExp/ReceiveExp These routines control the sending and receiving of the
express graphs.

4.3. BADERS ALGORITHM 41

%1 Trans arc Express arcs Vs Trans arc Express arcs

N "

21011132405]0-9]3[0|4]0|-2[7]0

Figure 4.4: Illustration showing how an express graph is packed using the packRe-
ceiveBuffer routine. The -2 is used as a delimiter, signifying that there are no more
trans-arcs. The -9s signifies that all the express-arcs of a node has been listed and
a new node is about to begin.

packReceivebuffer /unpackReceivebuffer To save communication time we pack
the express graphs in a condensed format before sending them. Each graph
therefore has to be packed and unpacked before being sent and after having
been received. An illustration of how the express graphs are packed is shown
in Figure 4.4

MergeGraphs In this routine we do the actual merging of the graphs as described
in Section 3.3.

Section 5

Results and discussion

Thus far we have presented the theory behind the algorithms and our own imple-
mentations. In this section we present numerical result, discuss these, and make
propositions for future development towards a parallel multiphase solver.

Testing

To test our implementations we initially used grids exported from MRST [18]. How-
ever, to do performance testing we require larger grids than were conceivable to
generate with MRST. We therefore made our own program for generating pseudo-
random grids for test purposes. This program can be found on https://github.com/henvik /GraphGen

Our program generates vertices in either a two dimensional square or a three di-
mensional cube. All grids imitate a reservoir with flow from an injection well in one
corner of the grid to a production well in the other corner. The simplest grid are a
two-dimensional grid with flow strictly diagonal, as shown in Figure 5.1. All vertices
has edges to its right- and above neighbour.

To get cycles in our graphs we have assigned edges based on probabilities. To keep
the overall flow going from one corner to another we have assigned a 90% probability
for a vertex to have an edge to its right neighbour, a 75% probability for an edge
to the above neighbour. In addition we have made edges backwards and downwards

Oa0R0

ORO80
ORO%0

Figure 5.1: Example grid showing the structure of the simplest test case.

43

44 SECTION 5. RESULTS AND DISCUSSION

with probability of 10%. In that way we get a graph with 15-20 % of the vertices
included i a strongly connected component, evenly distributed throughout the graph.

Our implementation of Bader’s algorithm has been developed for two-dimensional
geometries, as introduced by Bader [10]. It is thus not capable of handling three
dimensional geometries, and have therefore only been tested with two-dimensional
grids. For DCSC we have also tested with three dimensional geometries, generated
the same way as their two-dimensional counterparts. We have tested on a Intel Core
i7-4770 CPU with 3.40Ghzx4 and 16 Gb of memory, running Ubuntu 14.04 LTS.
The processor has 4 hyper-threaded cores capable of a maximum of 8 logical threads.

5.1 Shared memory DCSC

We now present test results from our implementation of DCSC. Our implementa-
tions of DCSC is developed for use on shared memory machines. To verify the
claimed complexity of O(nlog(n)) stated in [9], we have tested our program on a
single processor, with varying problem sizes. Figure 5.2a shows execution times for
different problem sizes. We see that the run time is proportional to nlog(n), where
n is the problem size. This is in accordance with the theoretical serial complexity
presented by Fleischer [9]. Furthermore, the run time is not affected by the dimen-
sion of the underlying grid. Three dimensional grids have the same run time as
two-dimensional grids, as long as the number of nodes are equal.

Additionally we have tested the effect of the parallelism by comparing run-times to
the number of processors. Figure 5.2b shows execution time for a fixed problem size
of n = 2%° nodes, for different number of processors.

The implementation of DCSC for shared memory architecture was fruitless. Figure
5.2b shows that there is nothing to gain by sorting the graph in parallel, as one pro-
cessor gives the fastest execution time. This indicates that the overhead created by
solving in parallel exceeds the gains in execution time, discouraging further devel-
opments using only shared memory. McLendon et al. [29] reported linear speed-up
on their distributed implementation. Although their application differ from ours, a
distributed implementation should be explored.

5.2 Using DCSC to parallelize the FMS

As mentioned in Section 3 a criteria for a successful parallel FMS is parallelism in
both the reordering and the sequential solving of the elements. We propose two
possible adaptations that can be made in order to achieve this with DCSC. Of the
two proposals we make, the first is the most substantiated, whereas the second is a
notion that we would like to explore further.

5.2. USING DCSC TO PARALLELIZE THE FMS 45

DO
=)

—
(O3
T
|

Execution time (sec)
—_
)
X

log,(t)

5 [|
_6 | | | |
12 14 16 18 20 0 ‘ ‘ ‘
log, () > 4 6 8
Numb fP

(a) Log-log plot of the run time bl of TTOCESSOTs

on one processor for different grid (b) Run time results of a fixed prob-

sizes. Blue line indicates two- lem size for different number of pro-

dimensional grids, red line indicates Cessors.
three-dimensional grids.

Figure 5.2: Run time test results for DCSC.

Firstly we suggest an approach were we keep track of the dependencies of all the
subset DCSC is called recursively on. Consider the first time we find predeces-
sor, descendant, and remainder sets. It follows from Lemma 3 that we can start
solving the predecessors elements as soon as that set is sorted, since it has no de-
pendencies elsewhere in the graph. When this set is solved, we can start solving
the SCC, and then in turn the remainder and descendant sets. As a consequence,
we can do solving of the predecessors parallel to sorting descendants and remainders.

To keep all processors busy, we propose a load balancing scheme built around two
queues. One for ordered sets that are ready to be solved and one for sub-graphs
which are yet to be sorted. The queue containing sub-graphs for sorting should have
a priority system according to how many dependencies they have. In that way we
work on the problems that will make it possible to start computations on already
ordered sets. For a pivot vertex, the sub problems stemming from the predecessor
set will have higher priority than the sub problems stemming from the descendant
set, as the descendants can not be solved before the predecessors in any case. To
avoid idle processors, work should always be pulled from the longest queue. Ideally,
only a small amount of solving should remain when the whole graph has been solved.

Secondly we propose looking into the work by Barnat [31], in which modifications to
parallel algorithms are introduced to make them suitable for GPUs. Barnat reports
performance results that makes it feasible to obtain over 40 topological orderings
in the same time as one serial version needs. As we have mentioned before, there
may exist several valid topological orderings of any graph. This is true if there are
several sections in the graph whose ordering is irrelevant in the topological ordering.

46 SECTION 5. RESULTS AND DISCUSSION

The fact that DCSC choose pivot vertices randomly, ensures that there will be
variations in the different topological orderings returned by several executions on
the same graph. By considering these variations in the topological orderings, it
should be able to identify which regions are independent of each other, and thus
can be solved in parallel. However, this is just a notion and should be given more
consideration before attempted.

5.3 Bader’s algorithm

The implementation we present is still immature and needs further work to be a
viable alternative to the DCSC . Bader’s algorithm is quite involved and has many
technical pitfalls, making it particularly hard to implement. We have not succeeded
in developing an efficient implementation that incorporates features needed to be of
value to FMS. In particular, our current implementation lacks an efficient merging
procedure. Our merging procedure has to search through the entire express-graph
several times per merge, making the algorithm unscalable. The following test are
based on this implementation and does therefore not necessarily reflect the full po-
tential of the algorithm.

Figure 5.3a shows speed up tests for a graph representing a 1000 x 1000 grid, which
were randomly generated with our graph generator. As this graph contains a lot of
small cycles evenly distributed, the discovery procedure will detect local cycles and
the algorithm terminates before reaching the merge step. We see that this phase
scales well, showing a substantial speed-up. This is expected, as each processor gets
less data as the number of processors increase.

In Figure 5.3b we have tested the implementation on a graph without cycles. The
merging then continues until all express graphs are contained on one processor. This
creates a bottleneck, since the size of the merges do not decrease as we add more
processors. Consider an increase from 4 to 16 processors. After having merged until
there are only 4 express-graphs left, we are left with the same amount of work as
when we only had 4 processors in total. Here we see an increase in run time for
added processors. Because of our inefficient merging procedure, any gain in speed
from splitting up the problem is eaten up by the added overhead due to the extra
communication.

5.4 Using Bader’s algorithm to parallelize the FMS

Bader’s algorithm is appealing because of the domain decomposition it is built
around. As explained in 2.1, reservoirs with several wells offers possibilities for par-
allelization. Bader’s algorithm is an excellent candidate to exploit this parallelism.
The question that remains is whether the advantages of the algorithm will dimin-
ish when additional functionality are added. We now present our thoughts on the
alterations needed to adapt Bader’s algorithm, making it suitable for parallelizing
FMS.

5.4. USING BADER’S ALGORITHM TO PARALLELIZE THE FMS 47
15 40
- 30
<D}
10 | =z
o
2 = 20/
g 8=
ol =
o o' 10
0 ‘ ‘ ‘ 0 | | |
0 20 10 60 0 20 40 60
Processors
Processors

(b) Execution time of Bader’s algo-
rithm on a graph without cycles ver-
sus number of processors.

(a) Speedup of Bader’s algorithm on
a graph with cycles.

Handling SCCs

For Bader’s algorithm to be able to solve the transport equation by way of reorder-
ing, it has to treat cycles, not only detect them. In the original algorithm, once
a cycle is found, the execution of the program ends. If instead, a predecessor and
descendant search like the one used in DCSC were done, one could identify and
collapse the vertices in the strongly connected component. This would allow the
algorithm to continue and identify any other cycles present.

Topological sorting

Another problem with the existing Bader’s algorithm is its incapability to topolog-
ically sort the graph. Again we propose to use elements of the DCSC to extend
Bader’s algorithm. In the modified DCSC proposed by McLendon et al. [29], they
add a trimming step to the algorithm. This step examines vertices for incoming and
outgoing edges and removes vertices lacking either kind. Due to the definition, such
vertices can not be part of a strongly connected component, and the step is thus
valid. Drawing from the same wisdom, we propose a scheme were vertices which
have no unresolved vertices are marked ready for solving. By this we mean that a
vertex for which all predecessors have been solved, is ready to be solved.

Advanced geometries

Our current implementation consider two dimensional squares. This is of course
useless for any practical implementation. An extension therefore has to be made in
order to treat realistic domains, including irregular geometries in three dimensions.

Section 6

Conclusion

We have in this thesis given a general introduction to the FMS developed by Natvig,
Lie et al. [3] and explored how parallel computing can be exploited to speed it up.
In particular we have studied the Divide and Conquer Strong Connect (DCSC) algo-
rithm developed by Fleischer et al. [9], and the distributed algorithm due to Bader
[10]. For both of the algorithms mentioned above, we have given a thorough account
of our own implementations.

DCSC has been implemented for a shared memory architecture. Run time analysis
show serial performance in accordance with theoretical complexity. Speed-up test
however, are disappointing; showing no benefit from parallelism on shared memory.
This indicates that the overhead created by parallelism outweighs the advantages
gain by doing computations in parallel on a shared memory system. Tests done by
McLendon et al. [29] show that their distributed implementation achieved linear
speed-up. We thus propose distributed DCSC as the best candidate for parallelizing
FMS and in Section 5 we suggest two possible approaches that could be used for
this purpose.

Bader’s algorithm has been implemented on a distributed system. We have been
unable to develop this algorithm to fit FMS’ needs, but do propose several improve-
ments we deem necessary for this to become a capable solver. Although Bader’s
algorithm has properties that are tractable to a parallel FMS; it is still uncertain
whether it can be adapted to meet FMS’ needs. Another uncertainty is whether
the adapted version, if obtainable, will still be faster than the serial alternative. As
mentioned in Section 5, the merging phase has to be improve for this to be a viable
alternative.

Based on this we propose that further research towards a parallel FMS should be
focused on DCSC. This is a tested algorithm built on simple but powerful method,
sporting all the capabilities required for use with the FMS. As we propose in Section
5, it should be possible to use DCSC as a basis for developing a method that sorts
and solves in one step. Furthermore, the DCSC does not put any restrictions on the
geometry of the input graph, and can thus be used more or less as it is.

49

Bibliography

1]
2]

[12]

International Energy Agency. Key world energy statistics. 2014.

Jostein R Natvig, Knut-Andreas Lie, and Birgitte Eikemo. Fast solvers for flow
in porous media based on discontinuous galerkin methods and optimal reorder-
ing. In Proceedings of the XVI International Conference on Computational
Methods in Water Resources, Copenhagen, Denmark, 2006.

Jostein R Natvig and Knut-Andreas Lie. Fast computation of multiphase flow in
porous media by implicit discontinuous galerkin schemes with optimal ordering
of elements. Journal of Computational Physics, 227(24):10108-10124, 2008.

Jostein R Natvig, Knut-Andreas Lie, Birgitte Eikemo, and Inga Berre. An
efficient discontinuous galerkin method for advective transport in porous media.
Advances in water resources, 30(12):2424-2438, 2007.

Jostein R Natvig and Knut-Andreas Lie. On efficient implicit upwind schemes.
In 11th Furopean Conference on the Mathematics of Oil Recovery, 2008.

Felix Kwok and Hamdi Tchelepi. Potential-based reduced newton algorithm for
nonlinear multiphase flow in porous media. Journal of Computational Physics,

227(1):706-727, 2007.

Hamdi Tchelepi, Mohammad Shahvali, et al. Efficient coupling for nonlinear
multiphase flow with strong gravity. In SPE Reservoir Simulation Symposium.
Society of Petroleum Engineers, 2013.

Henrik Vikgren. Exploring a Parallel Fast Multiphase Solver Based on Potential
Ordering. Norwegian University of Science and Technology, 2015.

Lisa K Fleischer, Bruce Hendrickson, and Ali Pinar. On identifying strongly
connected components in parallel. In Parallel and Distributed Processing, pages
505-511. Springer, 2000.

David A Bader. A practical parallel algorithm for cycle detection in partitioned
digraphs. 1999.

Jorg E Aarnes, Tore Gimse, and Knut-Andreas Lie. An introduction to the
numerics of flow in porous media using matlab. In Geometric Modelling, Nu-
merical Simulation, and Optimization, pages 265-306. Springer, 2007.

Henry Darcy. Les fontaines publiques de la ville de Dijon. 1856.

51

o2

[13]

[14]

[15]

2]

[27]

BIBLIOGRAPHY

Secondary recovery. http://www.amerexco.com/recovery.html. Accessed: 2015-
06-15.

George Karypis and Vipin Kumar. A software package for partitioning un-
structured graphs, partitioning meshes, and computing fill-reducing orderings
of sparse matrices. University of Minnesota, Department of Computer Science
and Engineering, Army HPC Research Center, Minneapolis, MN, 1998.

Jaime Ambrus, CR Maliska, FSV Hurtado, and AFC da Silva. Finite volume
methods with multi-point flux approximation with unstructured grids for dif-
fusion problems. In Defect and Diffusion Forum, volume 297, pages 670-675.
Trans Tech Publ, 2010.

Ivar Aavatsmark. Multipoint flux approximation methods for quadrilateral
grids. In 9th International forum on reservoir simulation, Abu Dhabi, 2007.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146-160, 1972.

Knut-Andreas Lie. An introduction to reservoir simulation using matlab. SIN-
TEF ICT, 2014.

Peter Pacheco. An introduction to parallel programming. Elsevier, 2011.

Michael Flynn. Some computer organizations and their effectiveness. Comput-
ers, IEEE Transactions on, 100(9):948-960, 1972.

Gene M Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, spring
joint computer conference, pages 483-485. ACM, 1967.

John L Gustafson. Reevaluating amdahl’s law. Communications of the ACM,
31(5):532-533, 1988.

John H Reif. Depth-first search is inherently sequential. Information Processing
Letters, 20(5):229-234, 1985.

Hillel Gazit. An optimal randomized parallel algorithm for finding connected
components in a graph. In Foundations of Computer Science, 1986., 27th An-
nual Symposium on, pages 492-501. IEEE, 1986.

Hillel Gazit and Gary L Miller. An improved parallel algorithm that com-
putes the bfs numbering of a directed graph. Information Processing Letters,
28(2):61-65, 1988.

Richard Cole and Uzi Vishkin. Faster optimal parallel prefix sums and list
ranking. Information and computation, 81(3):334-352, 1989.

Nancy Amato. Improved processor bounds for parallel algorithms for weighted
directed graphs. Information Processing Letters, 45(3):147-152, 1993.

BIBLIOGRAPHY 53

28]

[29]

[36]

Ming-Yang Kao. Linear-processor nc algorithms for planar directed graphs i:
Strongly connected components. SIAM Journal on Computing, 22(3):431-459,
1993.

William Mclendon Tii, Bruce Hendrickson, Steven J Plimpton, and Lawrence
Rauchwerger. Finding strongly connected components in distributed graphs.
Journal of Parallel and Distributed Computing, 65(8):901-910, 2005.

T Sminia and Simona Mihaela Orzan. On distributed verification and verified
distribution. 2004.

Jiri Barnat, Petr Bauch, Lubos Brim, and Milan Ceska. Computing strongly
connected components in parallel on cuda. In Parallel € Distributed Processing
Symposium (IPDPS), 2011 IEEE International, pages 544-555. IEEE, 2011.

Michael J Quinn and Narsingh Deo. Parallel graph algorithms. ACM Comput-
ing Surveys (CSUR), 16(3):319-348, 1984.

Leonardo Dagum and Rameshm Enon. Openmp: an industry standard api for
shared-memory programming. Computational Science € Engineering, IFEFE,
5(1):46-55, 1998.

Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin,
Federico Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang.
The design of openmp tasks. Parallel and Distributed Systems, IEEE Transac-
tions on, 20(3):404-418, 2009.

Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Don-
garra, Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,
Andrew Lumsdaine, et al. Open mpi: Goals, concept, and design of a next gen-
eration mpi implementation. In Recent Advances in Parallel Virtual Machine
and Message Passing Interface, pages 97-104. Springer, 2004.

William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable
parallel programming with the message-passing interface, volume 1. MIT press,
1999.

Appendix A

Tarjans Algorithm

index:=0
WorkStack := empty
OutputGraph :=empty
for all v in V do
if index of v is undefined then
STRONGCONNECT(V)
end if
end for
return OutputGraph

95

56 APPENDIX A. TARJANS ALGORITHM

function STRONGCONNECT(V)
v.index = index
v.lowlink=index
index = index +1
pUSH(WorkStack,v)
for each (v,w) in £ do
if w.index is undefined then

STRONGCONNECT (W)
v.lowlink = min(v.lowlink,w.lowlink)
end if

if w is in WorkStack then
v.lowlink = min(v.lowlink,w.index)
end if
end for
if v.lowlink = v.index then
start new SCC
w = Por(W)orkStack
while w # v do
add w to SCC
end while
add SCC to OutputGraph
end if

end function

Appendix B
Code listings for DCSC

B.1 Main program

LinkedList* DCSC_parallel(LinkedList* G, int cutoff){
/*1f DCSC is called on an graph smaller than the cutof it calls the serial version=x/
if (G—>num_vert<=cutoff){
return DCSC_serial (G);
}

/«Finding pivot node. x/
Node *pivot=get_pivot (G, rand ()% G—>num_vert) ;
if (!'pivot){

printf(”get_-Node_error.\n”);
exit (0);

}

/+*Finding descendants and predecessors of the pivot node. x/
VisitStack xdesc_stack=new_VisitStack();
VisitStack xpred_stack=new_VisitStack();
LinkedList *xdesc=new_LinkedList () ;

LinkedList *SCC=new_LinkedList () ;
LinkedList *pred=new_LinkedList () ;

/*Finding descendants and predecessors in parallelsx/

#pragma omp task

FindDescendants (pivot ,desc,desc_stack);
#pragma omp task

FindPredecessors (pivot ,pred, pred_stack);
#pragma omp taskwait
free (desc_stack) ,free(pred_stack);

/* Remove the nodes that have been identified as part of a subset =x/

removeMarked (G, desc , pred ,SCC) ;

// Recursion is done in parallel using tasks, allowing for run—time load balancing

LinkedList *1istOfLists [4];
LinkedList #*predReturn, *remReturn, xdescReturnj;

#pragma omp task shared(predReturn)

predReturn =DCSC_parallel(pred,cutoff);

#pragma omp task shared (remReturn)

remReturn =DCSC_parallel (G, cutoff);
#pragma omp task shared(descReturn)

descReturn=DCSC_parallel (desc,cutoff);
#pragma omp taskwait
listOfLists [0]=predReturn;
list OfLists [1]= remReturn;
listOfLists [2]=SCC;
listOfLists [3]=descReturnj;

return mergeLinkedLists (listOfLists ,4);

}

LinkedList* DCSC_serial (LinkedList*x G){
/*I1f DCSC is called on an empty graph it returns immediately=x/
if (G—>num_vert==0){
return G;
}

Finding pivot node. =x/
Node xpivot=get_pivot (G, rand ()% G—>num_vert) ;
if (!'pivot){

printf(”get_-Node_error\n”);

exit (0);

}

o7

o8 APPENDIX B. CODE LISTINGS FOR DCSC

/+*Finding descendants and predecessors of the pivot node.
-/
LinkedList *SCC=new_LinkedList () ;
LinkedList xdesc=new_LinkedList ()
LinkedList xpred=new_LinkedList ()
VisitStack xstack=new_VisitStack (

H
;
)5
FindDescendants (pivot ,desc,stack);

FindPredecessors (pivot ,pred,stack);
free (stack);

/* Remove the nodes which have been determined to belong to a subset x/
removeMarked (G, desc , pred ,SCC) ;

// Recursion

LinkedList =x1
list OfLists [0]
listOfLists [1]= DCSC_serial (G);
listOfLists [2]=SCC;

listOfLists [3]=DCSC_serial (desc);

return mergeLinkedLists (listOfLists ,4);

Listing B.1: DCSC routines

B.2 Core routines

/* Finds the descendants of the pivot node

Input:

pivot: pivot node whose descendants we seek

stack: workstack to control the flow of the program
Output:

desc: linked list where we save the subgraph that make up the descendants
*/

void FindDescendants(Node *pivot, LinkedList *xdesc, VisitStack xstack){

/* We add a copy of th pivot node to the list of descendants. Current is our iterator , which

we use to iterate through all the descendants of the nodes we visit.sx/
arc_t *xcurrent;
pivot—>desc_status=new_Node(pivot—>vert_num) ;
add_node (desc ,pivot—>desc_status);
while (pivot){

/* We check all the descendants of the pivot node. x/
current=pivot—>children ;
while (current) {
/% 1f the descendant already have been visited through another node, we simply add and
edge to it. =/
if (current—>head—>desc_status){
add_-edge (pivot—>desc_status ,current —>head—>desc_status);
current=current —>next;
continue;

/* If it is the first time we encounter the descendant we add copy of it to the list
adds an edge to it from the current node.=x/

current —>head—>desc_status=new_Node(current —>head—>vert_num) ;

add_node (desc ,current —>head—>desc_status);

add_edge (pivot—>desc_status ,current —>head—>desc_status) ;

/* We put the discovered node on the workstack, indicating that we will visit it later

push_VisitStack (stack ,new_StackNode (current—>head));

current=current —>next ;

/* We pop a new pivot node to visit after having checked all the descendants.x/

pivot=pop-VisitStack (stack);

}
/+* Finds the predecessors of the pivot node
Input:
pivot: pivot node whose predecessors we seek
stack: workstack to control the flow of the program
Output:
pred: linked list where we save the subgraph that make up the predecessors

Implementation analogous to FindDescendants
*/
void FindPredecessors(Node *pivot, LinkedList spred, VisitStack =xstack);

/* Finds the union of the descendants and predecessors. Also removes these nodes from the
subgraphs .

and

B.3. GRAPH UTILITIES

Input:
G: the graph we have searched
desc: the descendants found
pred: the predecessors
Output :
SCC: nodes which make up a strongly connected component.

*/
void removeMarked(LinkedList *G, LinkedList xdesc, LinkedList xpred, LinkedList *SCC){
Node xcurrent=G—>first ;
Node *tmp;
/* We iterate through all the nodes in the graphx/
while (current){

/+ If a node is marked as both descendant and predecessors it is added to the SCC set.

node is then removed from the three other subgraphs. */

if (current—>desc_status && current—>pred_status){

add_node (SCC,new_Node(current —>desc_status —>vert_num));

tmp=current —>next;

remove_node (desc ,current —>desc_status);

remove_node (pred,current—>pred_status) ;

remove_node (G, current) ;

free_node(¤t —>desc_status);

free_node(¤t—>pred_status);

free_node(¤t);

current=tmp;

continue;

/#* If a node is a predecessors or descendant it is removed from the graph x/
if (current—>pred_status || current—>desc_status){

tmp=current —>next;

remove_node (G, current) ;

free_node(¤t);

current=tmp;

continue;

current=current —>next;

The

99

Listing B.2: Functions used to support the DCSC routine

B.3 Graph utilities

For support functions used in the implementations we include function declarations

only.

typedef struct arc_t{

struct Nodex head; //Pointer to node which the arc points to
struct arc_tx next; //pointer to the next arc
}arc_t;

typedef struct Node{
int vert_-num; //the vertex number in the global graph
struct Node *next; //the next node in the list
struct Node x*prev; //the prev node in the list

arc_t xparents; //1list of the direct predecessors
arc_t xchildren; //1list of the direct descendants

struct Node xdesc_status; //indicator of already discovered de
struct Node *xpred_status; //indicator of already discovered pre
}Node;

cendants

ecessors

typedef struct LinkedList{

int num_vert; //number of vertices in graph
Node =first ; //pointer to the first node in the graph
Node =xlast ; //pointer to the last node in the graph

}LinkedList ;

typedef struct Node_pointers({
struct Nodexx* list ;
int size;
int capasity;
}Node_pointers

/* Creates a new instance of the structure LinkedList on the heap. Returns a pointer to it'’s
location. =/

LinkedList* new_LinkedList () ;

/* Creates a new instance of the structure Node on the heap. Returns a pointer to it’s location.

*/

60 APPENDIX B. CODE LISTINGS FOR DCSC

Node* new_Node(int vert_-num);

/+*Adds a node to a graphx/

void add-node(LinkedList =graph,6 Node xnode) ;

/* Adds an edge from the source to the terminal =/
void add-edge(Node *source, Node xterminal);

/#* Copies the contents of a node to a new instance x/

Nodex copy-Node (Node xnode) ;

/* Frees a node, including all its edges x/
void free_node (Node x*node);

/* Frees a LinkedList, including all its nodes x*/
void free_LinkedList (LinkedList *xG);

/+* Imports a grid from a file and saves it as a LinkedListx/
LinkedList* importGridLinked (charx file);

/+* Converts a grid from adjacency list representation to LinkedList =/
LinkedList* convertGrid (int =*ia,int size_ia , int =xja);

// imports grid from file , saves it as an adjecency list in ia and ja. nv is the number of
vertices. ne is the number of edges
void importGrid(charx file , int *xia, int =x*ja, int *nv, int =xne);

//Printing

void printNode (Node *node);

void printLinkedList(LinkedList *graph);

void printNodeParents (Node *node);

void printLinkedListPredecessors(LinkedList xgraph);
void printNode_pointers(Node_pointers* pointers);
void printLinkedListSequence (LinkedList xgraph);

/* Checks if a certain node is a part of a graph =/
bool isIn(LinkedList xG, Node *node);

/* Finds a specified node based on the vertex number x/

Nodex get_Node(LinkedList sgraph,int vert_-num);

/* Returns the num_in_graph node in the graphx/

Nodex get_pivot (LinkedList xgraph, int num_in_graph);

//Remove nodes and edges
/* Removes a node from a graphsx/
void remove_node(LinkedList *G,Node* node) ;

/* removes an edge between two nodes x/
void remove_edge (Nodex source, Nodex terminal);

/* Removes all the forward edges of a nodex/
void remove_forward_edges (Node* node);

/+*Removes all the backward edges of a node x/
void remove_backwards_edges (Nodex node);

/ * removes a subset of nodes from a graph x/

LinkedList* remove_from_graph(LinkedList* graph, Node_pointers* sub_graph);

/* Removes nodes from the graph based on their statusessx/

void removeMarked (LinkedList xG, LinkedList xdesc, LinkedList xpred, LinkedList *SCC);

//Appends the second list onto the first
void appendLinkedLists(LinkedList *first , LinkedList =*xsecond);

/+*Merges n LinkedLists into onesx/
LinkedList* mergeLinkedLists(LinkedList xxlistOfLists , int n);

Listing B.3: Headers for graph utilities used in the DCSC

Appendix C

Code listings for Bader’s algortihm

C.1 Discovery phase

ExpGraph* discovery (int num_vert) {

.initializing exluded for brievity

* Colorcoding of all the vertices are set to WHITE, meaning not yet visited/
for(int i=0; i<num_vert;i++4){
color [i]=WHITE;

; vertices are visited in turns/
for (int i=num_vert—1; i>=0;i——){
if (color [1i] WHITE) {

adjecent [visit (i)

}
/*Communicate whether any of the processes have found a cycle. All processes end if any cycles
are found.x/
MPI_Alltoall (found ,1 ,MPI_INT,recv ,1 ,MPIINT, cart_-comm) ;
for(int i=0; i<size;i++){
if(recv[i]){
MPI_Finalize () ;
exit (0);

/% Communicate information about trans arcs to neighbouring processors, and add information
recieved to the processors expresss/
comm_transArcs (expGraph) ;
completeExpGraph (expGraph ,adjecent) ;

return expGraph;

Listing C.1: Discovery

AdjLst visit (int v){
) printf(” Visit called on local vertex %d, globCellNr %d.\n”,v,local_-map[v]);
adjecent [v]=new_AdjLst () ;
color [v]=RED;
for (int w=local_ia[v]; w<local_ia[v+1]; w++){
int procNr=procNrFromCell(local_dims , gridDims,local_ja [w]);
int locCellNr=globalCellNr2localCellNr (local_ja [w],gridDims, local_dims);
if (procNr==rank) {
// printf(” Internal edge: %d, on proc %d. Local cellNr is %d\n”, local_ja [w],rank,
globalCellNr2localCellNr (local_ja [w],gridDims,local_dims));
switch (color [locCellNr]) {
case WHITE:
adjecent [locCellNr]=visit (locCellNr);
merge_AdjLst(&adjecent [v],& adjecent [locCellNr]) ;
break;
case BLACK:
merge_AdjLst(&adjecent [v],& adjecent [locCellNr]) ;
break;
case RED:
printf (” Cycle_found _%d, _im_outta_here!\n” ,local_map|[v]) ;
int xfound=malloc(sizexsizeof (int));
for (int 1=0; i<size;i++){
found [i]=1;

int xrecv=malloc(sizexsizeof (int));

61

62 APPENDIX C. CODE LISTINGS FOR BADER’S ALGORTIHM

MPI_Alltoall (found ,1 ,MPI.INT,recv ,1,MPI_.INT, cart_-comm);
MPI_Finalize () ;

exit (0);
else{
// printf(” External edge: %d, on proc %d, to %d\n”, local_ja [w],rank,procNr);
//add_-trans_arc(v, local_ja [w], &trans_arcs , &trans_arcs_count , adjecent);

addExternalEdge (expGraph, local_-map[v], local_ja[w],rank,procNr, &adjecent[v]);

}

if (adjecent [v]. size==0){
color [v]=GREEN;

else{
color [v]=BLACK;

return adjecent [v];

Listing C.2: Visit subroutine of Bader’s algorithm

C.2 Express graph phase

void comm_transArcs (ExpGraph *expGraph){

int xbuffSizes=(int =x)calloc (NEIGHBOURS, sizeof (int));
for (int i=0; i<NEIGHBOURS; i++){
//pre allocating memory for send/recv buffers. reallocating later if needed.

trans_buffer [i]=new_EdgeLst (INITSIZE) ;

/* Subroutine assembling the information in a condensed array suitable for sending x/

build_transBuffer (buffSizes ,trans_buffer , expGraph);

/* Commiting self made MPI_Datatype */
MPI_Datatype MPI_Edge;
def_datatypes(&MPI_Edge) ;

/* Requests for communication x/

MPI_Request send_req [NEIGHBOURS] ,recv_req [NEIGHBOURS] ;

Sending the buffer to the processor to the northx/
if (north!=-2){
MPI_Isend(trans_buffer [0]. list , buffSizes [0] , MPI_Edge,north ,0,cart_.comm ,&send_req[0]) ;

Analogusly for sout,east, and west

/*Reciving buffer from the processor to the north =x/
Edge xrecv_buff;
if (north!=-2){
MPI_Status recv_status;
int recv_size;
MPI_Probe(north ,1,cart_.comm,&recv_status);
MPI_Get_count(&recv_status , MPI_Edge,&recv_size);

recv_buff =malloc(recv_sizexsizeof (Edge));
MPI_Recv(recv_buff ,recv_size ,MPI_Edge,north ,1,cart_.comm ,MPI.STATUS_IGNORE) ;

recvTransArcs (recv_buff, recv_size , expGraph, north);
free(recv_buff);

Analogously for south, east, and west

/+* Waiting for all sends to complete x/
if (north!=-2){
MPI_Wait(&send_req [0] ,MPI.STATUS_IGNORE) ;

/

Analogously for south, east, and west

free (buffSizes);
for (int i=0; i<NEIGHBOURS; i++){
free(trans_buffer[i]. list);

C.3. MERGE PHASE 63

/* Routine for putting the information of the received message into the ExpGraph x/
void recvTransArcs(Edge*x list , int size, ExpGraph xexpGraph, int procNr)({

for(int i=0; i<size;i++){
ExVert xnew=new_ExVert(list[i].v,procNr);
addExVert (expGraph ,new) ;
addTransArc(new, newTransArc(rank, list[i].w));

}
}

Listing C.3: Routine handling communication of trans arcs with neighbouring
processes. Part of Bader’s algorithm.

void completeExpGraph (ExpGraph *G, AdjLst xadjecent){
//Add express acrs
ExVert xcurrent=G—>first ;
while (current){
if (current —>procNr!=rank) {
TransArc *cTarc=current—>trans_arcs;
while (cTarc){
int index=globalCellNr2localCellNr (cTarc—>vert_num , gridDims ,local_dims);
for (int i=0; i<adjecent[index].size;i++){
addExArc(current ,newExArc(adjecent [index]. list [i], cTarc—>proc_nr));

cTarc=cTarc—>next;
current=current —>next ;
continue ;

}
ExVert xiterater=G—>first ;
while (iterater){
if (iterater==current){
iterater=iterater —>next;
continue;
s
TransArc xcTarc=iterater —>trans_arcs;
while (cTarc){
int index=globalCellNr2localCellNr (current—>vert_num , gridDims ,local_dims);
if (isReachable(adjecent [index],cTarc—>vert_num)){
addExArc(current ,newExArc(cTarc—>vert_.num , cTarc—>proc.nr));

cTarc=cTarc—>next;

}

iterater=iterater —>next;

}

current=current —>next;

}
}

Listing C.4: Routine for adding express arcs to the expressgraph.

C.3 Merge phase

void merge (ExpGraph* expGraph) {
EdgeLst* graphBuff;
for (int h=0;h<log2(size);h++){
if (last (rank ,h)==0){
if (test (rank ,h)==0){

int procNr=set (rank,h);
ExpGraph xexpRecieved;
RecieveExp (procNr ,&expRecieved) ;

MergeGraphs (expGraph, expRecieved ,rank, procNr);

}else{
int procNr=clear (rank,h);
SendExp (procNr, expGraph);

/+*Returns the h least—significant bits of z
int last(int z, int h);

/*Returns the h least—significant bit of z x/
int test(int z, int h);

64 APPENDIX C. CODE LISTINGS FOR BADER’S ALGORTIHM

/* Returns z with the h least—significant bit set to 1 =/
int set(int z, int h);

/* Returns z with the h—least significant bit set to 0 x/
int clear (int z, int h);

/*Sends express graph to the specified processor

Input:
procNr: rank of receiving processor
exp: express graph

void SendExp(int procNr, ExpGraphs* exp){

int *send_buffer=(int =)malloc(sizeof(int)*exp—>num_vert*12); //magic number 12 is semi—
arbitrary to allocate enough memory for each vertex, reallocated later if needed.
int send_count=packGraph(exp, &send_buffer);

MPI_Send(send_buffer ,, MPILINT, procNr,0,cart_.comm) ;
free(send_buffer);

}

/+*Packs the Express graph in the following manner:

All the vertices are stored sequentially with a —1 signaling the end of one vertice and the
start of the next.

Within each vertice the info is stored as following. The first element contains the vertice
number, the second contians the procNr.

The trans arc are stored in pairs of two integers. The first is the vertice, the second the proc

nr.
A —2 signals the end of transArcs and the start of express arcs. These are stored in pairs of
two, like the trans arcs.
A —9 signals the end of the express graph.
x/
int packGraph(ExpGraph *exp, int *xsend_buffer):
/* Receives graph from specified processor
Input:
procNr: rank of sending processor
Outpur:

/

void RecieveExp(int procNr, ExpGraphx* exp){
MPI_Status recv_status;

int recv_size;

MPI_Probe (procNr ,0,cart_.comm ,&recv_status);
MPI_Get-count(&recv_status ,MPIINT ,&recv_size);

exp: express graph received

int xrecv_buff =malloc(recv_sizexsizeof (int));
MPI_Recv(recv_buff ,recv_size ,MPI.INT,f procNr,0,cart_.comm ,MPI.STATUSIGNORE) ;
xexp=unPackRecvBuffer (recv_buff);

}

% Unpacks the receivebuffer
Input:
recv_buffer: receive buffer
Output:
express graph corresponding to the received information
«/

ExpGraph sxunPackRecvBuffer(int srecv_buffer);

/* Merges express graphs

Input:
expl: expr graph to be merged
exp2: expr graph to be merged
originl: originating processor for expl
origin2: originating processor for exp2
Output:

merged express graph

*/
ExpGraph*x MergeGraphs (ExpGraph* expl, ExpGraph* exp2, int originl, int origin2);

Listing C.5: Routine for pairwise merging of subgraphs. Used in Bader’s algortihm.

C.4 Graph utilites

For support functions used in the implementations we include function declarations
only.

/+*Reads the grid from a .csv file and saves it as an adjecancy list in ia and ja.

Input:
file : char string containing the path to the csv file

Output: ia: pointer to a string of integers. The th element of the lists contains the index
in ja of the first edge for node i,
ja: pointer to a string of integer. The ia[i]’ th element of ja conatins the first edge of

the i’th vertex.

/

void importGrid(char* file , int *xia, int =*xja, int =*nv);

C.4. GRAPH UTILITES

/+*Prints an adjecancy graph
Input:
ia: pointer to a string of integers. The i’th element of the
of the first edge for node i,

lists conta

ja: pointer to a string of integer. The ia[i]’th element of ja conatins

the i’th vertex.

*/

void printGraph(int* ia, int xja, int nv);

65

ins the index in ja

the first edge of

/*Prints an adjecancy graph, where the indices in ia have been maped to global coordinates

contained in map
Input:
ia: pointer to a string of integers. The i’th element of the
of the first edge for node map[i],

lists contains the index in ja

ja: pointer to a string of integer. The ia[i]’th element of ja conatins

the map[i] ’th vertex.
*/
void printMappedGraph(int=x ia, int =*ja,int =map, int nv);

the first edge of

/+*Calculates the rank of the processor owning a cell with a certain cell number

Input:

LocalGridDims: array specifying the dimensions of the local grids,

the processors in the network

CartGridDims : array specifying the dimensions of the global
CellNr: the global cell number of the cell
Output:

grid .

Integer specifying the rank of the processor which owns the cell.

*/

int procNrFromCell(int LocalGridDims[], int CartGridDims[], int CellNr);

/* Takes the global coordinates of a cell and returns its local coordinates

Input:
globalCoords: the coordinates of the cell in reference to the
localDims: the dimension of the local grid
Output :
localCoords: the coordinates of the cell with respect to the
*
/

void globalCoords2localCoords (int globalCoords[],int localDims[],

/*Converts local coordinates to local cell nr
Input:
loocalCoords: the local coordinates
localDims: dimension to the local cartesian grid
Output :
local cellnr
*/

int localCoords2localCellNr (int localCoords[], int localDims[]) ;
/+*Converts global cell nr to global cartesian coordinates

Input:
cellNr: the global cell number

GlobalDims: array containing the dimensions of the global car

Output :

output: pointer to an array containing the cartesian coordina

*
void cellNr2cartCoord (int cellNr, intx GlobalDims, intx output);

/*Converts cartesian coordinates to global cell nr
Input:
x: x—coordinate in the global grid
y: y—coordinate in the global grid
dims: dimensions of the global grid
Output:
the cellNr
*/

int cartCoord2cellNr(int x, int y, intx dims);

/+*Converts global cell nr to local cell nr
Input:
globalCellNr: the cell nr of the cell in the global grid
globalDims: the dimensions of the global grid
localDims: the dimension of the local grids
output:
the cell nr in the local grid
*/

distributed across all of

global grid

local grid

int* localCoords);

tesian grid

tes in the

int globalCellNr2localCellNr (int globalCellNr, int globalDims|[],int localDim

/*Concatenates the two arrays
Input:
A: array of integer
B: array of integers
lengthA: number of elements in A
lengthB: number of elements in B
output:

global grid

s

A: contains the concatenated array containing the elements of A followed by the elements of

A
lengthA: pointer to integer specifying the number of elements

*/
void concatenate(intx A, intx B, intx lengthA, intx lengthB);

Edge new_edge(int v, int w);

in the new

array

66 APPENDIX C. CODE LISTINGS FOR BADER’S ALGORTIHM

void add_-trans_arc(int v, int w,EdgeLst xtrans_arcs, int *xtrans_arcs_count ,AdjLstx adjecent);

/+*Creates a new instance of the structure AdjLst
Input:
NONE
Output:
new AdjLst allocated on the heap
*
/

AdjLst new_AdjLst () ;

/*Merges two AdjLsts into one.
Input:
A: AdjLst
B: AdjLst
Output:
A: New AdjLst now containing the elments of A and B.

*/
void merge_AdjLst (AdjLst =A, AdjLst =B);

/+*Adds an edge to an AdjLSt
Input:
A: the AdjLst that we want to add an edge to
edge: the cellNr to the edge that we want to add
Output:
A: the AdjLst now containing the new edge
*
/

void add-Edge(AdjLst *A, int edge);

/* Searches an AdjLst for a certain edge
Input:
A: the AdjLst that we want to search
x: the cellNr of the edge that we are searching for
Output:
boolean value. True if x is in A. False otherwise
*
/

bool isInAdjLst(AdjLst A,int x);

/+*Creates a new instance of the structure EXpGraph
Input:
takes no input
Output:
new pointer to a new ExpGraph element
*
/

ExpGraph* new_ExpGraph () ;

/*Creates a new instance of the structure ExVert
Input:
vert_num: unique vertex number identifying the vertex
procNr: rank of the processor on which the vertex currently resides.
Output:
new instance of an ExVert
*
/

ExVert* new_ExVert(int vert-num, int procNr);

/+*Adds a vertex two an express graph

Input:
G: express graph
vert: vertex
Output:

G: express graph now containing the new vertex
*/
void addExVert (ExpGraph *G, ExVert *xvert);

/*Adds a trans arc to an express vertex
Input:
vert: express vertex
trans_arc: the trans arc
Output:
vert: express vertex now containing new trans arc
*/

void addTransArc(ExVert sxvert, TransArc xtrans_arc);

/+*Adds Express arc to express vertex

Input:
vert: Express vertex
ex_arc: express arc
Output:

vert : express vertex now C()llt'd‘inillg new express arc
*/
void addExArc(ExVert xvert, ExArc xex_arc);

/*Creates new instance of the structure TransArc

Input:
proc_nr: rank of the processor owning the terminal vertex of the trans arc
vert_num: the vertex number of the terminal vertex.

Output:

pointer to a new TransArc
*/

TransArcx newTransArc(int proc_nr, int vert_num);

/+*Creates a new instance of the structure ExArc
Input:
vert_-num: vertex number of the terminal vertex.

C.4. GRAPH UTILITES

proc_nr: rank of the processor owning the terminal vertex of the express arc.
Output :
pointer to a new ExArc
*/

ExArcx newExArc(int vert_num , int proc._nr);

/+*Searches through an ExVerts express arcs looking for certain express arc
Input:
vert: the vertex to be searched
ex_arc: express arc
Output:
Returns true if ex_arc is found in vert. False otherwise.
*
/

bool isInExp_arcs(ExVert xvert ,ExArc *xex_arc);

/*Searches an express graph for a vertex
Input:
G: express graph
v: vertex number of the sought vertex
Output :
Pointer to vertex. NULL if vertex is not found.
*
/

ExVert* FindExVert(ExpGraph *G, int v);
/*Prints the express graph in a formatted matter
Input:

G: express graph
*/

void printfExpGraph (ExpGraph xG) ;

/*Adds a trans arc to the express graph G, and a new edge to the adjacency list of exit the

vertex
Input:
G: Express graph
internal_vert_num: vertex number of the exit vertex

external_vert_num: vertex number of the entrance vertex
in_procNr: the rank of the processor owning the exit vertex

external_procNr: rank of the processor owning the entrance vertex
adjacent: adjacency list of the exit vertex.
Output:

G: express graph with the new trans arc added
adjacent: adjacency list with the new edge added

*/

void addExternalEdge (ExpGraph *G, int internal_vert_num , int external_vert_num , int in_proc
int external_procNr, AdjLst *xadjecent);

/*Checks if a certain vertex is reachable from another
Input:
adjecent: Adjacency list of the initial vertex
vert_num: vertex number of vertex in question
Output:
True if vert_num is reachable. False otherwise.
*
/

bool isReachable(AdjLst adjecent ,int vert_num) ;

/+*Merges the vertices of expl and exp2 into one ExpGraph

Input:
expl: express graph
exp2: express graph
Output:

new express graph which vertices are the union of the vertices in expl and exp2
*/
ExpGraph* mergeVertices (ExpGraph xexpl, ExpGraph *exp2);

/*Removes vertex from express graph
Input:
G: express graph
vert: vertex to be removed
Output:
G: express graph with vert removed
*
/

void removeExVert(ExpGraph *G,ExVert xvert);

/+*Removes express arc from express vertex

Input:

vert: express vertex

exarc: express arc to be removed
Output:

vert: express vertex with exarc removed
*/

void removeExArc(ExVert *xvert, ExArc xexarc);

67

Listing C.6: Graph utilities for Bader’s algorithm.

